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Abstract

Systemic analysis of available large-scale biological and biomedical data is critical for
developing novel and effective treatment approaches against both complex and infectious
diseases. Owing to the fact that different sections of the biomedical data is produced by
different organizations/institutions using various types of technologies, the data are
scattered across individual computational resources, without any explicit
relations/connections to each other, which greatly hinders the comprehensive multi-omics-
based analysis of data. We aimed to address this issue by constructing a new biological and
biomedical data resource, CROssBAR, a comprehensive system that integrates large-scale
biomedical data from various resources and store them in a new NoSQL database, enrich
these data with deep-learning-based prediction of relations between numerous biomedical
entities, rigorously analyse the enriched data to obtain biologically meaningful modules and
display them to users via easy-to-interpret, interactive and heterogenous knowledge graph
(KG) representations within an open access, user-friendly and online web-service at
https://crossbar.kansil.org. As a use-case study, we constructed CROssBAR COVID-19 KGs
(available at: https://crossbar.kansil.org/covid_main.php) that incorporate relevant virus
and host genes/proteins, interactions, pathways, phenotypes and other diseases, as well as
known and completely new predicted drugs/compounds. Our COVID-19 graphs can be
utilized for a systems-level evaluation of relevant virus-host protein interactions,

mechanisms, phenotypic implications and potential interventions.
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1. Main

Systemic analysis of available large-scale biological and biomedical data is critical for
developing novel and effective treatment approaches. Parts of this big-data are
continuously being updated and maintained by different organizations and institutions,
thus, data is scattered across individual computational resources. Although these entities
are biologically related and complementary to each other, the connections between data-
points at different resources are not well-established and explicit at all. In addition to the
connectivity problem, another issue related to biomedical data is the incompleteness in
knowledge space (e.g., possible ligands of a target biomolecule, or the disease related
implications of a critical mutation). There is a clear requirement for innovative
computational approaches to integrate available biomedical big-data and to complete
missing information with in silico predictions, to serve the ultimate aim of proposing novel

treatment options (especially) for complex diseases.

There are numerous studies in the literature that aimed to integrate the available
biomedical data'l°. These studies provided useful tools and methods to the life-sciences
research community; however, many of them miss important functionalities that prevent

them from becoming widely adopted tools/services (Supplementary Information section 1).

In this project, we aimed to address the current shortcomings by developing a
comprehensive open access biomedical system entitled CROssBAR via integrating various
biological databases to each other, inferring the missing relations between existing data
points, and constructing informative knowledge graphs based on specific biomedical
components/terms such as a disease/phenotype, biological process, gene/protein and
drug/compound, or specific combinations of them. To construct the CROssBAR system, we
accomplished multiple sub-projects: (i) the construction of the CROssBAR database to
house, and its APl service to serve the integrated biomedical data, (ii) development of deep-
learning based drug/compound-target protein interaction (DTI) prediction models, (iii) in
vitro wet-lab experiments at different levels of the project in order both to validate/assess
the relevance of in silico generated knowledge and to contribute to the development of new
treatment options for liver diseases, (iv) network based organization and analysis of large-
scale biomedical data using knowledge graph representations, and (v) the establishment of
an open access web-service, where users’ biomedical term queries are processed via on-the-
fly generation of knowledge graphs with both tabular and network-based visualization and

download options. The CROssBAR project is schematically summarized in Fig. 1a.

CROssBAR database (CROssBAR-DB) comprises carefully selected features from various data

sources namely UniProt, IntAct, InterPro, Reactome, Ensembl, DrugBank, ChEMBL,
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PubChem, KEGG, OMIM, Orphanet, Gene Ontology, Experimental Factor Ontology (EFO) and
Human Phenotype Ontology (HPO). Extract-Transform-Load (ETL) pipelines were developed
for heavy lifting of data from these resources by persisting specific data attributes with the
implementation of logic rules. These pipelines fetch, cleanse, validate and consolidate the
data, and thus, implement a multi-omics data integration approach to release a single
resource based on MongoDB collections. CROssBAR-DB, which provides a broad spectrum of
information such as biomolecular functions, domains, interactions, pathways, diseases,
phenotypes, drugs, compounds, etc., is hosted and maintained by the EMBL-EBI. Current
data statistics of the CROssBAR-DB and the database schema are shown in Fig. 1b and in Fig.
S1, respectively. CROssBAR-DB is periodically updated on demand/request basis via an
automated procedure, which makes the underlying data up to date most of the time.
CROssBAR-DB can be queried via a public RESTful API at:
www.ebi.ac.uk/Tools/crossbar/swagger-ui.html, which provides a multi-faceted view of the
stored data through 12 endpoints (Fig. S3).

As a part of the CROssBAR project, we developed two novel deep-learning-based predictive
systems: DEEPScreen and MDeePred, with the aim of enriching bioactivity data by
identifying unknown interactions between drugs/drug-candidate compounds and target
proteins. DEEPScreen employs convolutional neural networks to process 2D structural
images of drugs/compounds in 704 individually optimized high performance target-based
prediction models, suited for well-studied targets'!. MDeePred utilizes both compound and
target protein features within a pairwise input hybrid deep neural network architecture to
produce real valued bioactivity predictions, especially for targets with a few or no training
instances!?. We trained both systems using carefully filtered and integrated data in
CROssBAR-DB, and ran our trained-models on large compound and human protein spaces to
obtain comprehensive bio-interaction predictions, which are included in our knowledge
graphs. We also developed an accompanying computational tool, iBioProVis, which is an
unsupervised-learning-based visualization system for exploring large drug/compound-target

interaction datasets in reduced dimensions?!3.

The term knowledge graph (KG) defines a specialized data representation structure, in
which a collection of entities (nodes) are linked to each other (edges) in a semantic
context®. In this study, we chose to represent heterogeneous biomedical data in KG
structures. In CROssBAR knowledge graphs (CROssBAR-KG), biological components/terms
(i.e., drugs/compounds, genes/proteins, bio-processes/pathways, phenotypes/diseases) are
represented as nodes, and their known or predicted pairwise relationships are annotated as
edges (a protein and its coding gene is treated as one merged term/entry/node). The logic

behind the construction of a knowledge graph is centered around queried biological
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components/terms, as shown in Fig. 1c with a work-flow diagram and with an example
disease term query. At each step of the process, an overrepresentation-based enrichment
analysis has been performed to select the terms that are significantly associated with the
growing graph, and to discard the rest. This analysis comprises a series of hypergeometric
tests, based on the recorded relations in the CROssBAR database. Here, we applied a
layered construction approach, always taking the genes/proteins at the centre of the
enrichment analysis. Finally, additional relation types are incorporated to the graph as edges
between the existing nodes (e.g., drug-disease, disease-pathway and disease-HPO), to
further enrich the provided information. During the construction of graphs, terms (nodes)
and their pairwise relations (edges) are directly obtained from the CROssBAR-DB.
CROssBAR-KGs clearly display the direct and indirect relations between all of the terms in
the graph. These intensely-processed heterogeneous biological networks are expected to
aid biomedical research, especially to infer mechanisms of diseases in relation to

biomolecules, systems and candidate drugs.

We developed the CROssBAR web-service (CROssBAR-WS) to make the CROssBAR-KGs
available to the public in an easily interpretable and interactive way
(https://crossbar.kansil.org). KGs are presented visually on web-browsers as flexible
Cytoscape®® networks. Users can create queries with biomedical terms, individually or in
combination, to obtain the relevant graph. Combinatory term query is especially critical as it
provides the ability to investigate the indirect biological relationships between the terms
from both the same and different biomedical components. Since there are billions of
different ways to query CROssBAR, it was not feasible to pre-calculate the resulting graphs;
therefore, they are set to be constructed on-the-fly, in real-time. Several options are
provided to users to customize the procedure both before the search, such as the UniProt
databases to be used (UniProtKB/Swiss-Prot or UniProtKB/Swiss-Prot+UniProtKB/TrEMBL),
taxons to be included, and the number of terms/nodes to include from each entity type
(selected from enrichment score-based ranked lists). It is also possible to display the graph
using a variety of layout options, including our in-house CROssBAR-layout (Fig. 2a). Saving
options let users to store the graph in different formats, including json, figure-ready
snapshots and protein-centric delimited data-tables. The interactive visualization also lets

users prepare a custom display by relocating the nodes/edges as desired.

As a use-case, we present Coronavirus disease 2019 (COVID-19) CROssBAR-KGs
(https://crossbar.kansil.org/covid_main.php). Starting from the end of 2019, the new
coronavirus (SARS-CoV-2) pandemic has ravaged the entire globe and caused immeasurable
damage?®. As of July 2020, the scientific endeavour to develop effective drugs and vaccines

is at peak, and systemic evaluation of the current knowledge about SARS-CoV-2 infection is
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expected aid researchers in this struggle. To demonstrate the capabilities of CROssBAR, we
have constructed two different versions of the COVID-19 knowledge graph, (i) a large-scale
version including nearly the entirety of the related information on different CROssBAR-
integrated data sources, which is ideal for further network and machine learning based
analysis or a detailed inspection (Fig. 2b), and (ii) a simplified version distilled to include only
the most relevant genes/proteins as provided in UniProt-COVID-19 portal (https://covid-
19.uniprot.org), which is ideal for fast interpretation (Fig. 2c). It is interesting to observe the
indirect relations between the diseases/phenotypes in the KGs and COVID-19 over the
incorporated host proteins and enriched pathways, and between COVID-19 and our in silico
predicted drugs, as they may reveal further evidence to be utilized against COVID-19 (Fig.
2b,c). For this, we conducted a short literature-based validation study and found that many
of these drugs have already been experimented at both preclinical and clinical stages for

new COVID-19 treatments (Supplementary Information section 2).

Although COVID-19 is a respiratory disease and lung lesions have been considered the major
damage caused by SARS-CoV-2, liver injury has also been reported in about one-third of
hospitalized patients infected with the virus and the majority of COVID-19 patient deaths
are associated with cytokine storm/release syndrome resulting in multi organ damage?’.
Hence, with the aim of indicating the biological relevance of the information in CROssBAR-
KGs, we conducted in vitro experimentation on drug treated liver cancer cell-lines and
comparatively analysed the results on both COVID-19 KGs. Chloroquine (CQ) phosphate was
reported to be used in treatment of COVID-19 with controversies*®. CQ is an anti-
inflammatory drug that has been used in autoimmune diseases and can significantly alter
the production of pro-inflammatory and anti-inflammatory cytokines. We investigated the
effect CQ on normal hepatocytes like Huh7 cells and poorly differentiated Mahlavu cells.
Cells were treated with CQ and the differentially expressed gene (DEG) data were acquired
from a large multiplex panel of genes using the NanoString platform (Fig. 2d). Our
experimental data indicated significant alterations in JAK/STAT, PI3K, RAS, MAPK pathways
involving cytokine production in liver cells (full pathway list: Table S.3). These pathways
were also presented in both KGs along with additional cytokine related pathways, such as
interleukin signaling, along with dense connections to other biological components in
COVID-19 CROssBAR-KGs, which is an expected output considering the mode of action of CQ
in COVID-19 (Fig. 2c). Additional use-cases are provided in the Supplementary Information
section 3. We believe that the CROssBAR system can be utilized towards the systematic
analysis of the pharmacological effects of drugs as it brings relevant pieces of biological data
together, that is relevant to the user’s query, which can be manually explored by the expert

to build new hypotheses.
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2. Methods (Online)

2.1. CROssBAR Database & API

Integrated data resources and the CROssBAR-DB

CROssBAR-DB has developed its bespoke ETL pipelines in Java 8 using the Spring batch
framework to structure the jobs. The latter are executed on state-of-the-art EMBL-EBI LSF
clusters powered by IBM in a parallel distributed fashion to reduce the processing time. The
data are finally stored in MongoDB in the form of independent data collections, thus,
providing schemaless flexibility and faster development, while sustaining data relationships
in the form of nested documents. The pipelines have been both unit and integration tested

using Spock framework in Groovy language.

The public databases integrated in the CROssBAR system can be listed along with the type of

the biomedical data it contains as follows;

(i)  UniProt Knowledgebase (protein sequence and annotations including functions,

domains, families, interactions, disease relations, pathway memberships, and more),
(i)  IntAct (protein-protein interactions, currently incorporated directly from UniProt),
(iii) InterPro (protein domain and family information),
(iv) DrugBank (approved and investigational drugs and their targets),

(v) ChEMBL (small molecule compounds, targets, bioassays and bioactivities collected

from literature and other sources),

(vi) PubChem (small molecule compounds, targets, bioassays and bioactivities collected

from various resources),

(vii) Reactome (pathway entries and their relations to proteins, currently incorporated

directly from UniProt),
(viii) KEGG (pathway and disease entries together with their relations to genes),

(ix) Experimental Factor Ontology - EFO (disease terms integrated from multiple disease-
centric databases including OMIM and Orphanet, and organized under an ontological

system), and

(x)  Human Phenotype Ontology - HPO (phenotypic abnormality terms that relate to both

genes and disease entries).

The statistics regarding the number of terms and annotations incorporated to CROssBAR-DB

from each resource listed above is given in Fig. 1b. CROssBAR-DB schema is provided both in
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Supplementary Information Fig. S1 and in the GitHub repository of the project
(https://github.com/cansyl/CROssBAR), where the attributes/fields belonging to each
collection can be observed in full detail. KEGG is currently kept apart from the CROssBAR-

API| due to potential issues related to giving public access to the bulk of their data.

Obtaining biomedical data via the CROssBAR-API

CROssBAR data services (CROssBAR-API) are developed in Java 8 using Spring Boot’s web
module in a RESTful architecture style. The API currently provides 12 endpoints documented
using Swagger APl documentation which allows endpoints to be tested within the
documentation, and gives all information about the expected response schema. The API
leverages the CROssBAR-DB hosted in a MongoDB platform to fetch data and filter results
for users. The web services have been both unit and integration tested using Spock
framework in Groovy language. CROssBAR-API is publicly available at
https://www.ebi.ac.uk/Tools/crossbar/swagger-ui.html, where users can query
independent collections over the indexed attributes/fields. The screenshots of the Swagger
APl are given in the Supplementary Information Fig. S3, where the 12 CROssBAR-DB
collections are shown. Here, the collections entitled "Activities", "Assays", "Molecules" and
"Targets" correspond to bioactivity, bioassay, compound and target entries in the ChEMBL
database, respectively. "Drugs" corresponds to drug entries in DrugBank, "EFO disease
terms" corresponds to the disease entries in the Experimental Factor Ontology, "HPO"
corresponds to phenotype entries in the Human Phenotype Ontology, "Proteins"
correspond to a subset of the protein entries in the UniProtKB. The remaining four
collections belong to the PubChem data. There is no one-to-one correspondence between
the incorporated data resources and the CROssBAR-DB collections since some of the
resources had to be split to multiple collections for easier query (e.g., ChREMBL and
PubChem). Also, some of the sources are directly incorporated from the UniProt database,
thus, reside in the proteins collection (e.g., both terms and annotations for InterPro,

Reactome, and only annotations for IntAct, OMIM and Orphanet).

It is possible to obtain cross-collection relational data (i.e., integrated relational data from
multiple collections) by writing programmatic queries and submitting them to the API, as it
is applied in CROssBAR-WS to construct the knowledge graphs. However, it is not possible to
obtain this complex relational data in a single query using the Swagger graphical user
interface. Currently, CROssBAR knowledge graphs do not include PubChem data due to both
elevated computational demand (the sizes of PubChem collections are large) and high
redundancy (a large portion of bioactivity data points in PubChem and ChEMBL databases
are shared). However, it is possible to query the CROssBAR-DB using the provided API
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service, to obtain data entries from PubChem database collections.

The database and API construction work has been handled by the Protein Function
Development (UniProt database) team at EMBL-EBI, utilizing their expertise in biological
database development and maintenance together with the available strong computational
infrastructure, the team managed to build a huge but stable resource. The professional
service providing approach applied by the team allowed the proper and constant

maintenance of both the database and the entire CROssBAR system.

2.2. Deep-learning-based predictors and dataset construction

The identification of novel drug-like compounds and discovering new usages of existing
drugs are key steps in drug discovery and development. Traditionally, this is accomplished
via costly and time-consuming procedures and the rate of identifying novel drugs has
decreased in recent years. Out of all different biomedical entity relation types,
drug/compound-target protein interaction (DTI) is one of those with the highest rate of data
incompleteness considering the current knowledge. There are more than 100 million
distinct drug candidate compound records in total in public bioactive chemical databases
such as ChEMBL and PubChem, let alone the theoretical number of all possible small
molecules around 10%°. Considering their pairwise combinations against hundreds of
thousands of target biomolecules such as single proteins and macromolecular complexes,
the current knowledge corresponds to less than 0.001% of the whole compound-target
space?®. The high rate of missing DTl data negatively impacts the integrated biomedical
resources as well. In the CROssBAR project, we aimed to address this issue by producing
machine learning based DTI predictions and incorporating these predictions to the
CROssBAR resource. The studies specifically about the development of these tools have
already been published or under review!'!2, however, we used our tools to produce DTI

predictions to be incorporated in our knowledge graphs in the framework of this study.

Bioactivity dataset construction

One critical topic in developing DTI prediction models is the source dataset to be used in
system training procedures. It is especially critical to construct large-scale DTl datasets to
train deep-learning models. To address this issue, we prepared a DTl dataset from the
ChEMBL database that is suitable for training machine learning systems, with standardized
filtering operations on targets, compounds and bioactivities. The dataset is periodically
updated with each ChEMBL database release. We employed this dataset for the training and
validation of the deep-learning based DTI prediction models we developed in the framework

of the CROssBAR project, and also as the source dataset for drug/compound-target
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interaction space visualization (the methods are described below). It can also be used for
developing new DTI prediction models. The current version of the bioactivity dataset
(ChEMBL v27) is available for public use in:
https://github.com/cansyl/CROssBAR/blob/master/CROssBAR_DB_API/ChEMBL27_preproc
essed_activities_sp_b_pchembl.zip. Details regarding the dataset can be found in our recent

article®®.

Deep learning base predictor 1 - DEEPScreen

DEEPScreen was the first DTl prediction system that we developed in this endeavour.
DEEPScreen is a high-performance drug—target interaction predictor that utilizes deep
convolutional neural networks and 2-D structural compound representations (i.e., simple
images) to predict their activity against intended target proteins. DEEPScreen system is
composed of 704 target protein specific prediction models, each independently trained
using experimental bioactivity measurements against many drug candidate small molecules,
and optimized according to the binding properties of the target proteins. The main novelty
of DEEPScreen is employing readily available 2-D structural representations of compounds
at the input level instead of conventional drug/compounds descriptors (e.g., molecular
fingerprints) that display limited performance. DEEPScreen produces binary predictions,
meaning that a compound is either predicted as active or inactive against a target protein.
During the development of this method, we also carried out cell-based in vitro wet-lab
experiments on computationally generated DTI predictions, with the purposes of both
validating the accuracy of the prediction models, and for gaining biological insight in the
framework of health and disease, especially to contribute to the understanding of processes
active in different cancer subtypes. DEEPScreen can be used for the fast screening of the
chemogenomic space, to provide completely new DTIs that can later be investigated
experimentally in the fields of drug discovery and repurposing®!. The source code, datasets

and the results of DEEPScreen are available at https://github.com/cansyl/deepscreen.

To enrich the DTl data in CROssBAR, DEEPScreen was employed to scan a considerable
portion of the chemogenomic space and predicted more than 21 million new DTls between
1.3 million drug candidate compounds in the ChEMBL database and 532 target proteins. A
filtered version of these predictions (~8 million) were incorporated in CROssBAR and
displayed to users as part of CROssBAR-KGs. These predictions can directly be downloaded
from:
https://github.com/cansyl/CROssBAR/blob/master/CROssBAR_DB_API/CROssBAR_DEEPScr

een_Largescale_DTI_predictions_filtered.tsv.zip.
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Deep learning base predictor 2 - MDeePred

Our second deep-learning based DTI prediction system "MDeePred" adopts the
proteochemometric approach, where both the compound and target protein features are
employed at the input level to model their interaction, which enables the prediction of
binders to under-studied or completely non-targeted proteins. In MDeePred, multiple types
of protein features such as sequence, structural, evolutionary and physicochemical
properties are incorporated within multi-channel 2-D vectors, which is then fed to state-of-
the-art pairwise input hybrid deep neural networks, together with molecular fingerprint-
based vectors of compounds. MDeePred predicts real-valued drug/compound-target
protein interactions, which can be interpreted in terms of comparable response values such
as IC50/Kd/Ki/potency!?. The source code and datasets of MDeePred are available at
https://github.com/cansyl/MDeePred.

In the framework of this study, we trained two MDeePred prediction models, with the aim
of incorporating their DTl predictions to th COVID-19 CROssBAR-KG. One of these models
was trained using ChEMBL experimental bioactivity data of orthologous ACE/ACE2 receptors
from different organisms (i.e., human, rat, mouse and rabbit) and used for predicting new
inhibitor drugs for human ACE2 receptor. The second model was trained using ChEMBL
bioactivity data points that belong to 3C-like proteinase sub-unit of replicase polyprotein
1ab of closely related coronavirus strains (i.e., SARS, MERS, Feline and NL63 coronaviruses)
and used for predicting new inhibitor drugs for SARS-CoV-2 3C-like proteinase. For both
models, only ~10,000 drug entries in the DrugBank database (the ones with investigational
and approved drug status) were used as the query/test set, since the principle requirement
for new potential COVID-19 treatments is to be exempt from early drug development
procedures (e.g., pre-clinical analyses, phase | clinical trials, ...). Five drugs with high
predicted affinities (i.e., most of them with predicted IC50 < 2 uM for 3C-like proteinase and
IC50 < 100 nM for ACE2) were selected for human ACE2 (i.e., 7-Hydroxystaurosporine,
Eribaxaban, Becatecarin, Ticagrelor and Amcinonide) and for SARS-CoV-2 3C-like proteinase
(i.e., Diloxanide furoate, Quinfamide, Phenyl aminosalicylate, Netarsudil and Amlodipine)
and included in the COVID-19 CROssBAR-KG. Both the ChEMBL derived training datasets of
these models and the full prediction results are provided in the GitHub repository of the
CROssBAR project (https://github.com/cansyl/CROssBAR). The chemogenomic modelling
approach used in MDeePred enabled us to provide predictions for these two targets, which
would otherwise be impossible due to the unavailability of training data points, as SARS-
CoV-2 3C-like proteinase has no experimental bioassay results in the source databases, and
human ACE2 protein have only an insufficient number of experimental bioactivity data

points.

10
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2.3. Construction of knowledge graphs

In CROssBAR, the data is stored in a non-relational database (MongoDB), as separate
collections for easy maintenance and fast querying. As a result, the database itself is not a
knowledge graph. Instead, biologically relevant small-scale knowledge graphs are
constructed on-the-fly, triggered by users’ queries with a single or multiple term(s) such as
the names or ids of genes/proteins, diseases/phenotypes, compounds/drugs and/or

pathways/biological processes of interest.

In CROssBAR knowledge graphs, biological entities are represented as vertices/nodes.
Distinct types of nodes are defined for: (i) biomolecules (i.e., genes/proteins), (ii) biological
mechanisms (i.e., processes/pathways), (iii) pathologies (i.e., diseases and phenotypes), and
(iv) small molecule ligands used for treatment (i.e., drugs and drug candidate compounds).
Relations between different types of biological entities are expressed by the edges of the
graph. Edge types vary according to the defined relations. For a relation between; (i) two
proteins, the edge is labelled as "interacts_with", (ii) for a gene/protein and a disease, the
edge label is "related_to", (iii) for a drug/compound and a protein, the edge label is
"targets", (iv) for a gene/protein and a pathway, the edge label is "involved_in", (v) for a
gene/protein and a phenotype term, the edge label is "associated_with", (vi) for a drug and
a disease, the edge label is "indicates", (vii) for a disease and a pathway, the edge label is
"modulates"”, and (viii) for a disease and a phenotype term, the edge label is

"associated_with".

The incorporation of pathway-related information (both signalling and metabolic pathways)
in CROssBAR is done based on a membership-based approach, where pathways are
expressed on the graph as single nodes and the nodes of those member proteins are
connected to them via edges. This approach leaves out the detailed reaction-based
mechanistic information provided in pathway databases such as Reactome and KEGG
pathways; however, the inclusion of this information via applying a pathway resource styled
network approach would prevent the generation of large heterogeneous networks
composed of tens of different pathways and other components. Nevertheless, it is possible
to explore these pathways in detail using the provided links, which takes the user to the
corresponding page on that pathway database. Both Reactome and KEGG pathways provide
the same type of biological information at the level of large-scale biological processes;
however, Reactome also divides these processes into sub-pathways, whereas KEGG only
provides the pathway information at a generic level. In CROssBAR, due to the way the

overrepresentation analysis is done, only specific sub-pathways are incorporated from the
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Reactome database, in most cases. As a result, pathway information in the knowledge

graphs is displayed at different levels of specificity, and thus, not redundant.

A simplified form of the knowledge graph construction work-flow is displayed in Fig. 1c. In
this figure, the parts where the disease and gene/protein collections are queried are shown
in full detail and queries on the rest of the components are simplified. The full-scale version
of the knowledge graph construction procedure is displayed in Supplementary Information
Fig. S2. Here, the finalized filtered dataset of each biological component (i.e.,
genes/proteins, diseases, phenotypes, drugs, compounds and pathways) is shown with a
shape surrounded by a black frame. The graph is built using the entities in these datasets,

together with their inter-component relations.

Node filtering via overrepresentation analysis

Due to the fact that the construction of the graph is based on including all biological
components/terms that are connected to the query term(s) directly or indirectly in the
database, without further filtering operations, most of the searches resulted in a huge graph
composed of tens of thousands of nodes and hundreds of thousands of edges, including
nearly each and every biological data entry in the source database. This kind of a graph
would be unusable due to multiple reasons. First of all, it would not be possible to visually
perceive a biologically relevant result from the giant network. Second, constructing and
interactively displaying this graph would have computational requirements so high that it
would not be feasible. To address this problem, we applied a multi-staged
overrepresentation-based enrichment analysis process during the construction of graphs. In
this analysis, we calculate an independent enrichment score for each biological entity in the
database (i.e., a disease, phenotype, drug, compound, gene/protein or pathway), to be
considered as its relevance to the graph that is being constructed. The calculation of
enrichment score and its statistical significance is done using a modified version of the
hypergeometric test for overrepresentation?®, which also corresponds to a one-tailed
Fisher's exact test, and it is based on the statistics of the relations/connections with
gene/protein nodes. For example, the enrichment score (Ep,w) and its significance (Sp,w), in

terms of p-value, for a disease term D, for graph W is calculated as follows:

2
"

= W/N (1)

ED,W
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D,W

L ( N ) (2)

Ny

where Ep,w is the enrichment score calculated for the disease term D for graph W; mp?
represent the square of the number of genes/proteins in graph W that are associated with
disease D; nw represents the total number of gene/protein nodes in graph W; Mp is the total
number of genes/proteins (not necessarily in graph W) that is associated with disease D;
and N represents the total number of reviewed human gene/protein entries (i.e.,
UniProtKB/Swiss-Prot entries) in the CROssBAR database that is annotated with any disease
entry. Sp,w represents the significance (p-value) for the disease term D for graph W

calculated in the hypergeometric test.

While constructing the graph, an enrichment score is calculated for each disease entry in the
CROssBAR database and these scores are used to rank disease entries according to their
biological relevance to graph W. A cut-off value k is employed to include the top k relevant
disease entries to graph W. The default value for k is 10, which means that only top-10
relevant diseases will be included in the graph. Apart from diseases, the same methodology
is used to filter out the nodes of neighbouring genes/proteins, phenotypes, drugs,
compounds and pathways. Significance values are not directly used in the filtering
operation, since the main objective here is not only including significantly over-represented
terms, but just reducing the number of nodes in the graph by filtering out the ones that are
least relevant. In the traditional way of calculating an enrichment score, mp is without
square. The reason behind taking the square of mp here is to break the tie between the

scores of terms in favour of the one with a higher mp value.

Formalizing the graph construction around gene/protein entries

During the construction of a knowledge graph, first, the gene/protein entries that are
directly connected to the query term (i.e., core proteins) are fetched, such as the member
genes/proteins of the queried signalling pathway. After that, neighbouring/interacting
genes/proteins are added to the graph by calculating enrichment scores for each interacting
protein, using the equation above, and filtering out based on the selected cut-off value. This
is followed by the enrichment-based filtering and addition of other entity types; however,
this time, both core and neighbouring genes/proteins are taken into consideration together
to calculate the enrichment scores. If the user starts a heterogenous search that contains

multiple terms from different entity types, both core and neighbouring genes/proteins are
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independently collected for each non-protein query term, queried gene/protein entries are
added to this list (if there is any), and the entity collection process is continued using the
union of these genes/proteins (Fig. 1c). This approach enables the exploration of direct and

indirect relations between the queried terms.

Gene/protein filtering based on source organisms

We set a taxonomic filter for the inclusion of gene/protein entries in knowledge graphs,
where the default selection is human (tax id: 9606), since the main focus of CROssBAR is
biomedicine. Even though there are entries for proteins from hundreds of different
organisms in the UniProtKB/Swiss-Prot database, only a few of these non-human protein
entries possess annotations in terms of pathway memberships, targeting drugs/compounds
and phenotype/disease implications. Thus, many of these protein entries are useless in
terms of constructing biomedical knowledge graphs. Nevertheless, it is possible use the
taxonomic filter in the web-service to include genes/proteins from a few additional
organisms namely, Rattus norvegicus (Rat) [10116], Mus musculus (Mouse) [10090], Sus
scrofa (Pig) [9823], Bos taurus (Bovine) [9913], Oryctolagus cuniculus (Rabbit) [9986],
Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292],
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) (MYCTU) [83332] and Escherichia
coli (strain K12) (ECOLI) [83333].

Bioactive compound and bioactivity selection procedure

Small molecule compounds are selected and incorporated to KGs based on their reported
bioactivities against target proteins. In a KG, a compound is represented as a node and a
bioactivity is represented as an edge between a compound node and a gene/protein node.
We start the bioactive compound collection procedure with a set of target gene/protein
entries at hand (gathered in a previous step of the KG construction process), and obtain the
compounds that are reported to be bio-actively interacting with these proteins, as their
target biomolecules. Despite having a simple logic, this procedure is extremely complex due
to practical reasons. Since there are more than 15 million bioactivity measurements in the
ChEMBL database (v26), we rigorously filter these data points with the aim of providing only
the most relevant bioactivity/compound information in CROssBAR-KGs. Since CROssBAR is a
gene/protein centric system, we first filter out the data points where the target is not a
single protein. We also set an organism filter for the targets, where the default selection is
human. Additionally, we filter out bioactivities if their standard (activity) type is not one of
these: IC50, EC50, AC50, XC50, Ki, Kd, potency; since these standard types provide roughly

comparable measures of half-maximal response. Furthermore, we eliminated data points
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without a pChEMBL value, which standardizes the above-mentioned standard types under
one value in the negative logarithmic scale. Bioactivity data points with an assigned
pChEMBL value have usually received additional curation, and thus, they are more reliable.
Finally, with the aim of only taking the data points at the active binding range (i.e., high
affinities between the ligand and the target) we discard the data points with a pChEMBL
value less than 5 (i.e., XC50 > 10 uM). Despite these filtering operations, we still usually end
up with tens of thousands of compounds before the compound enrichment analysis, which
significantly increases the KG construction run time. Exploiting the fact that it is a better
choice to include a compound with higher binding affinity compared to a compound with a
lower binding affinity for the same target protein, we set the pChEMBL value cut off value to
8, at the beginning of the compound collection procedure. Then, we reduce the cut off value
and re-run the query if the total number of gathered compound entries is less than 1000 in
the first run. We iteratively do this procedure until we obtain at least 1000 compound
entries. Similarly, if the number of returned compounds is more than 2500 in the first run,
we further increase the cut off iteratively until we obtain less than 2500 compound entries.
This number (i.e., 1000 to 2500) is still much higher than the number of compounds we
incorporate to a KG, which is between 0 and 50; however, we aim to enter the enrichment
analysis with a high amount to be able to select the compounds that are interacting with
multiple proteins in the network, not just one. Another reason is to be able to select diverse
compounds, in terms of their scaffolds/structures, which is explained below (under the

compound clustering sub-section).

Compound clustering

There are more than one million compound entries in the ChEMBL database, most of which
have bioactivity data points against target biomolecules. Since it is not feasible to include
each and every bioactive compound node in a KG (otherwise the graph would be extremely
crowded), only the most overrepresented compounds are tried to be incorporated. We
observed that some of the compounds with the same (or a very similar) enrichment score
are also structurally very similar to each other. These are mostly molecules with matching
scaffolds, which are screened against the same target and produced similar results in the
same bioassay. Since their enrichment scores are similar as well, they are either selected or
discarded together. To provide a better selection of compounds in the graph, we
incorporated a structural property-based filtering in the enrichment analysis. The aim here
is to select overrepresented compounds that are as diverse from each other as possible in
terms of molecular structures, so that users will be provided with a variety of ligands for the

target proteins in the graph. To achieve this, we calculated the pairwise molecular
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similarities between all compounds in CROssBAR-DB using circular fingerprints (ECFP4) and
the Tanimoto coefficient. After that, we clustered the compounds based on a predefined
similarity cut-off value of 0.5, meaning that each cluster is composed of compounds that are
at least 50% similar to each other. The cluster information is pre-calculated and recorded on
our server. Each time a knowledge graph is being constructed, enrichment score ranked
compounds are checked one by one in terms of their cluster membership and if there
already is a compound from the same cluster in the graph, the compound in turn is
discarded (i.e., not incorporated to the graph). The same clustering-based selection
approach is applied to incorporate compounds that are computationally predicted to

interact with the proteins in the graph.

Following the finalization of the compound nodes, we check whether some of these
compounds correspond to drugs that are already incorporated to the KG (since ChEMBL also
contains bioactivity measurements belonging to approved or investigational drugs), using
the identifier mapping between ChEMBL and DrugBank databases. When a positive case is
detected, we merge these two nodes and set the node type as a drug, since drugs are
considered more reliable in terms of evidence on their molecular properties and
interactions, compared to drug candidate compound entries. If there are interactions
reported both in DrugBank (as DTIs) and ChEMBL (as bioactivity measurements), we place
all of the necessary edges from this drug node to the corresponding target protein nodes in
the KG.

Evidence-based labelling of compound-target relations

Relations that signify the interactions between drugs/compounds and target proteins have
three different sources with varying degrees of confidence. The most reliable relation in
CROssBAR-DB is obtained from the DrugBank database, where the reported drug-target
interaction (DTI) is verified by extensive analyses as part of an official drug development
process. The resources that provide the interaction information that came second in terms
of reliability are bioactivity databases such as ChEMBL. In these resources, reported
bioactivities are obtained by experimental bioassays; however, they are not as extensively
verified as in drug discovery and development procedures. The third in the list of interaction
sources is the deep-learning based in-house computational predictions that we produced.
These predictions are not verified by any experimental means so they should be considered
with caution, even though we carried out numerous computational validation experiments
for all predictions and provided in vitro experimental verification for a small selected set'?.
As a result, predicted relations comprise the least reliable part of the DTl information

provided in CROssBAR-KGs. With the aim of transmitting this evidence-based relation
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confidence information to users, we used edge labels in the KGs. In terms of visualization,
these labels are encoded on the graphs as colours, such that green colour corresponds to
DTlIs obtained from approved or investigational drugs, blue colour corresponds to
experimental bioactivity measures obtained from ChEMBL, and the red colour corresponds
to computationally predicted interactions. During the generation of KGs, if a specific relation
is obtained from multiple sources (e.g., when the same relation is reported both in
DrugBank and in ChEMBL) the edge label of the more reliable relation is incorporated. To

accomplish this task, KG construction process comprises an edge label update procedure.

Another process we applied at this step is the edge addition. Some drugs possess bioactivity
data points in ChEMBL in addition to their approved targets in DrugBank. To detect this, we
first do a mapping between ChEMBL compound entries and DrugBank drug entries, to find
the equivalent ChEMBL entry for each drug. After that, we identify the reported ChEMBL
bioactivities between that compound and all of the proteins presented in the KG. For those
relations, which were not already incorporated into the KG via DrugBank, we added blue
coloured edges. The same procedure is applied for adding red coloured edges to the drugs

and compounds that have extra computationally predicted target interactions.

2.4. CROssBAR Web-Service, User Interface and Layout

CROssBAR Web-Service (CROssBAR-WS) comprises both the backend and the frontend
processes to construct the KGs and to display them to users. CROssBAR-WS comprises an
underlying complex APl query set that gathers data from the CROssBAR-DB. The underlying
API query that collects relevant terms (entries) from 8 independent CROssBAR database
collections together with their relations, is given in the GitHub repository of the project
(https://github.com/cansyl/CROssBAR). CROssBAR-WS also contains a sophisticated
graphical user interface that runs on our server. The open access technologies used in the
construction of CROssBAR-WS are PHP, JavaScript (cytoscape.js), jQuery, CSS (BootStrap),
MySQL.

A user query initiates the entity (node) gathering procedure first from the related database
collections, using the CROssBAR RESTful API. Together with the entities that match the
search term, the information regarding the related/connected entities are obtained from
the corresponding collection. After that, the next database collection is queried with the
terms gathered at the previous step. The order of the API queries follows the logic defined
for the construction of the KGs, as given in Fig. 1c (simplified version), and in Fig. S2. (full
version). Following the initiation of a query, the growing knowledge graph is displayed on

the web-browser in real time (using CytoScape Web), starting from the collection and
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filtering of core and neighbouring genes/proteins. The process is continued with the
collection, filtering and addition of phenotype/pathway/disease terms, drugs, bioactive
compounds and predicted interacting compounds to the KG (as nodes), together with their
relations with gene/protein nodes (as edges). The construction process is finished with the

addition of respective edges between non-protein nodes.

An important subject in graph/network visualization is the layout. In CROssBAR-WS, we
incorporated the standard layouts of CytoScape Web, such as circle, cose, grid and
concentric. However, none of these layouts were sufficient for communicating highly
heterogeneous graphs with 7 different types of nodes and 9 different types of edges. To
address this problem, we developed the CROssBAR layout, in which biological terms (nodes)
from a specific biomedical component (e.g., diseases, pathways, ...) are placed on circular
points within a fixed radius. With the aim of preventing overlapping nodes, the radius of
each circle is selected as a different value. Curved edge style (i.e., unbundled-bezier) is
applied to reduce the amount of edge crossing. More information regarding the usage of
CROssBAR-WS and its user interface can be found at
https://crossbar.kansil.org/tutorial.php.

CROssBAR web-service queries run in linear time and the actual duration of the process is
correlated with the total number of core genes/proteins obtained within the query,
together with the annotation volume of these genes/proteins. Highly studied
genes/proteins usually have high number of associations, which in turn, extends the actual
query runtime in practice. According to our tests, most of the queries with disease,
gene/protein, drug and compound terms (in terms of both single and combinatory term
searches) take between 1 and 3 minutes to complete (from job submission to the display of
the whole graph). However, most pathway and some phenotypic term queries take longer,
especially when the number of directly associated genes/proteins is over one hundred. With
the aim of creating a better user experience, we applied a procedure in which the collected
nodes and their edges are instantaneously and interactively displayed on the screen, before
the end of the job. This way, users do not have to wait for the whole job to be finished

before starting to explore the KGs.

The entire CROssBAR web-service including the web-site and the underlying API queries can
be found in the GitHub repository of the project (https://github.com/cansyl/CROssBAR).

2.5. Generation of COVID-19 KGs

We constructed two versions of COVID-19 knowledge graph. First, the large-scale version

that includes nearly the whole of the COVID-19 related information recently accumulated in
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the scientific literature, organized and presented in an interpretable way. Second, the
simplified version, which is suitable for quick exploration. The aim behind constructing the
simplified version was that the large-scale KG is not easily explorable visually due to its huge
size. Since most of the COVID-19 related data has still not been integrated into the regular
releases of biological databases, the data could not be pulled to the CROssBAR database at
the time of writing this manuscript. As a result, we had to make manual interventions to
obtain the data from CROssBAR data resources. We applied the same knowledge graph
construction methodology incorporated in CROssBAR; however, we also conducted manual
curation to a certain extent, since, unlike the rest of the CROssBAR data, COVID-19 related
information has not been extensively curated yet. We saved the pre-constructed KGs, which
are directly accessible and viewable through the links given on our web-service
(https://crossbar.kansil.org/covid_main.php). It is also important to note that, due to the
integrated data resources, CROssBAR heavily contains rare and complex disease data, and
mostly leaves infectious diseases out. Nevertheless, the constructed COVID-19 graphs
provided rich biomedical information. Below, we describe the methodology followed for the
generation of CROssBAR COVID-19 KGs.

Construction of the large-scale COVID-19 graph started with acquiring the related EFO
disease term named: "COVID-19" (id: MONDQ:0100096). We also incorporated the disease
term for "Severe acute respiratory syndrome" (id: EFO:0000694) (the original SARS) into the
graph since SARS is better annotated compared to COVID-19. The full-scale COVID-19 KG

construction is continued as follows:

COVID-19 related genes/proteins and PPls

We obtained related genes/proteins and their interactions from the IntAct database’s
COVID-19 dataset. Unlike a genetic disease, human genes/proteins represent only a portion
of an infectious disease. Due to this, we aimed to incorporate SARS-CoV and SARS-CoV-2
genes/proteins, as well as, the host genes/proteins into the graph. Without any filtering, the
KG contained 1,172 gene/protein and metabolite nodes from various organisms and 2,214
edges. Due to the high number of genes/proteins in the KG, there was a risk of incorporating
non-specific/irrelevant terms from the other biological components at later steps. To
address this risk, we applied several filtering operations on this data. First, we eliminated all
non-gene/protein nodes and we discarded the genes/proteins if the corresponding
organism is not human or SARS-CoV/SARS-CoV-2. Second, we eliminated the protein entries
that are not reviewed (i.e., not from UniProtKB/Swiss-Prot) except SARS-CoV-2 ORF10
(accession: AOA663DJA2), which currently is an unreviewed protein entry in

UniProtKB/TrEMBL. We also filtered out a portion of the host genes/proteins using
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interaction-based information, according to their confidence scores reported in IntAct. We
discarded the edges between host proteins and SARS-CoV and/or SARS-CoV-2 proteins if the
confidence score was less than 0.35. We also discarded the edges between host proteins in
the KG (i.e., neighbouring proteins) if their interaction confidence score is less than 0.6. We
removed the disconnected components made up of host proteins, which were formed due
to the edge filtering operation. Orthology relations between SARS-CoV and SARS-CoV-2
genes/proteins were annotated with "is ortholog of" edge type. The subunits of large
protein complexes such as the NSPs of replicase polyprotein 1ab of SARS-CoV/SARS-CoV-2
were mapped to their corresponding protein complex nodes with "is subunit of" edge label.
After these operations, the finalized number of genes/proteins/subunits is 539 (475 host
genes/proteins, and 33 SARS-CoV and 31 SARS-CoV-2 genes/proteins/subunits) and the
number of edges (i.e., PPIs) is 1284. After this point, we started collecting new nodes and
edges from various biological components based on the overrepresentation analysis and

curation.

COVID-19 related drugs and compounds

The approved/investigational drug interactions of the COVID-19 related genes/proteins
were retrieved from DrugBank database, v5.1.6 release. To incorporate only the most
relevant drug-target interactions, a drug overrepresentation analysis was applied in terms of
the target genes/proteins in the KG using the hypergeometric distribution, as described in
the section entitled "Construction of knowledge graphs". The selected drugs were mapped
to the related protein targets in the graph using the edge label of green colour, as this
represents the highest level of confidence in terms of ligand interactions. DrugBank also has
a COVID-19 specific drug list, which includes a curated list of drugs currently under research
for COVID-19 treatment. These drugs were included in the KG as well. Considering those
without known targets (or the targets are known but not presented in the KG), we included
them by connecting directly to the COVID-19 disease node. We also incorporated drug
repurposing based curated and experimental results from new and critical SARS-CoV-2
related publications such as Gordon et al.?!, and we mapped these interactions to our KG
with suitable edge labels based on the data source. Finally, we added drug-disease
relationships based on reported drug indications obtained from the KEGG resource. The KG
contains well-studied drugs for COVID-19 treatment such as Chloroquine (DB00608),
Remdesivir (DB14761), Favipiravir (DB12466), Dexamethasone (DB01234) and etc., as well
as rather under-studied or non-studied ones (in the context of COVID-19) such as Isosorbide
(DB09401) and Quercetin (DB04216).
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For the retrieval of compound-target interactions based on experimentally measured
bioactivities, ChREMBL database (v27) database was utilized. We retrieved the ChREMBL
bioactivity data points in binding assays, where the targets are human or SARS proteins, and
the pChEMBL value is greater than or equal to 5. Overrepresentation analysis was applied to
select the most relevant ones. Here, only drugs/compounds with enrichment scores greater
than 1 and p-value less than 0.05 were considered. Compounds were clustered based on
Tanimoto coefficient based molecular similarities with a threshold of 0.5, and top 5
overrepresented compound nodes, that are in different clusters, were selected for each
target protein and incorporated to the KG. We also incorporated selected compound - host
target protein interactions from ChEMBL’s SARS-CoV-2 curated dataset. Finally, the edge

labels are set accordingly (i.e., blue coloured edges).

For the computationally predicted drug and compound - target protein interactions, our in-
house deep-learning-based tools DEEPScreen'! and MDeePred!? were used. DEEPScreen
large-scale prediction run results were scanned and 326 bioactive drug/compound-target
interaction predictions for 18 human proteins were incorporated to the KG following the
application of overrepresentation analysis, similar to the one applied for selecting
experimental bioactivities from ChEMBL. We trained two prediction models, one for human
ACE2 receptor protein and one for SARS-CoV-2 3C-like proteinase using ChEMBL bioactivity
datasets as our training dataset. Both models are used to scan full DrugBank drugs dataset
to predict new binders for ACE2 and 3C-like proteinase to be utilized towards drug
repurposing. The details of this process is given under the Methods sub-section entitled
"Deep learning based predictors and dataset construction". We only incorporated 5 selected
inhibitors for each protein in the KG in order to avoid the crowding of the KG, however the
full prediction sets are provided in the GitHub repository of the project
(https://github.com/cansyl/CROssBAR). The selected bioactive drug predictions for ACE2
were Eribaxaban (DB06920), 7-Hydroxystaurosporine (DB01933), Becatecarin (DB06362),
Ticagrelor (DB08816) and Amcinonide (DB00288); whereas the predictions for the 3C-like
protease were Quinfamide (DB12780), Diloxanide furoate (DB14638), Phenyl
aminosalicylate (DB06807), Netarsudil (DB13931) and Amlodipine (DB00381). The included

predicted interactions were labelled with red coloured edges.

We also merged nodes with respect to drug-compound entry correspondences in DrugBank
and ChEMBL databases. This way, some of the drug nodes also contain experimental
bioassay-based relations (i.e., blue coloured edges) and computationally predicted relations
(i.e., red coloured edges). At the end of these procedures, the total number of drugs (nodes)
in the KG is 108 and the total number of drug interactions (edges) is 279. The total number

of drug candidate small-molecule compounds in the KG is 233 and the total number of
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compound interactions (edges) is 517. Out of all drug/compound-target interaction edges,
135 correspond to drug development procedures, 335 to experimental bioassays and 326 to

deep-learning-based predictions.

Pathways of COVID-19 related host genes/proteins

Signaling and metabolic pathway information was taken from Reactome (via CROssBAR
database) and KEGG pathways data sources. The most relevant pathways were determined
by the overrepresentation analysis and mapped to the related genes/proteins in the KG.
Some of the incorporated pathways are directly related to SARS-CoV-2 infection such as
"Viral mRNA Translation" (R-HSA-192823) or "ISG15 antiviral mechanism" (R-HSA-1169408)
and innate pathways of the host such as "Endocytosis" (hsa04144), "Cell cycle" (hsa04110)
or "NF-kappa B signaling pathway" (hsa04064). We also incorporated pathway-disease
relations (in the sense of pathways that are modulated due to presence of certain diseases)
based on the relation information obtained from the KEGG database. The finalized number
of pathways in the KG is 57 (23 for KEGG and 34 for Reactome, among which there are
corresponding terms) and the total number of gene/protein-pathway associations (edges) is
718 (244 for KEGG and 474 for Reactome).

COVID-19 related phenotypic implications

The resource for the phenotype terms is the Human Phenotype Ontology (HPO) database.
For each phenotype term that is associated with at least one gene in the KG according to
HPO data, we calculated an enrichment score and p-value via overrepresentation analysis.
From the score-ranked HPO term list we selected phenotype terms that are not in a close
parent-child relationship with each other in the HPO direct acyclic graph. HPO also has a
curated list of SARS related phenotype terms. These terms were also added into the
network and mapped to "COVID-19" and "Severe acute respiratory syndrome" disease
nodes if their associated genes are not presented in the KG. This way, COVID-19 related
phenotypes including symptoms such as Fever (HP:0001945), Myalgia (HP:0003326),
Respiratory distress (HP:0002098), Immunodeficiency (HP:0002721) and etc. are included in
the graph. The finalized number of phenotype terms in the KG (nodes) is 27 and the number
of HPO term - gene/protein associations (edges) is 653. There are also 41 HPO term -

disease associations.

Other associated diseases of COVID-19 related host genes/proteins

The aim behind this step is collecting the non-infectious (mostly genetic) diseases that utilize
the same (or similar) biological mechanisms/processes of human, so that it may indicate

potential risks for COVID-19 patients, or potential COVID-19 related repurposing options for
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drugs that are currently used to treat these associated diseases. For this, disease terms that
are associated with genes/proteins in the COVID-19 KG are collected from the CROssBAR
database resources: EFO disease collection (mainly including OMIM and Orphanet disease
entries) and KEGG diseases database. The linkage of proteins and EFO terms was achieved
through OMIM ids. The most relevant disease terms were selected based on the results of
the overrepresentation analysis. Finally, disease-HPO term relations were also integrated
into the KG using the disease association information provided in HPO resource. At the end
of this step, diseases such as Combined oxidative phosphorylation deficiency (H00891),
Amyotrophic lateral sclerosis - ALS (HO0058), Bruck syndrome (H00514), Malignant
Mesothelioma (EFO:1000355), and etc. have entered the KG. The finalized number of
disease terms in the KG is 23 (10 for KEGG and 13 for EFO) and the number of disease -
gene/protein associations (edges) is 52 (31 for KEGG and 21 for EFO).

The finalized large-scale COVID-19 KG includes 987 nodes (i.e., genes/proteins,
drugs/compounds, pathways, diseases/phenotypes) and 3639 edges (i.e., various types of

relations).

For the construction of the simplified COVID-19 KG, the starting point was the COVID-19
associated proteins in the UniProt COVID-19 portal (https://covid-19.uniprot.org/), instead
of the IntAct SARS-CoV-2 interactions dataset, which was used as the base gene/protein set
for the large-scale KG. The remaining steps of building the graph were mainly similar except
that, additional nodes representing the organisms: human, SARS-CoV and SARS-CoV-2 were
placed in the graph and connected to the corresponding proteins. The aim here was to
prevent the presence of singleton protein nodes due to the reduced number of
gene/protein nodes, and thus, the reduced number of PPIs, in the simplified graph. It is also
important to note that the simplified version is not just a subset of the large-scale KG. Since
the starting point of gene/protein collection were different in two KGs, the resulting graphs
contain a slightly different content. For example, the drugs Siltuximab (DB09036),
Pirfenidone (DB04951) and Lifitegrast (DB11611) are specific to the simplified KG. The
simplified COVID-19 KG includes a total of 178 nodes and 298 edges. The detailed statistics
for both KGs are provided in Table S.5.

For the Cytoscape network files of both COVID-19 KGs, overrepresentation analysis results,
and for more information about the CROssBAR COVID-19 KGs please visit the CROssBAR
project GitHub repository at: https://github.com/cansyl/CROssBAR. For directly visualizing
and exploring the COVID-19 KGs interactively, please visit CROssBAR web-service at:
https://crossbar.kansil.org/covid_main.php.
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2.6. In vitro experimental procedures for Chloroquine treatment on liver cells

Cell Culture

Normal hepatocyte-like epithelial Huh7 cells and mesenchymal-like Mahlavu liver cells were
grown in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) (Gibco / Thermo Fisher Scientific), 0.1mM non-essential amino acids (Gibco /
Thermo Fisher Scientific), and 100 Units/mL Penicillin/Streptomycin. Cells were maintained
in 37°Cin a humidified incubator under %5 CO,.

NCI-60 sulforhodamine B(SRB) cytotoxicity assay

Huh7 and Mabhlavu liver cells were grown in 96-well plates (1000-200 cells/well) in an
incubator for 24 hours. Both Mahlavu and Huh7 cells were treated with Chloroquine
Phosphate (CQ) and water control in 40 uM to 0.3 uM concentrations for 72h. After fixation
with cold 10% (w/v) trichloroacetic acid (MERCK) for an hour at +4°C, plate wells were
washed 3 times with ddH,0. Each well was stained with 50ul of 0.4%SRB dye(Sigma-Aldrich)
and incubated at RT for 10 min. To remove unbound SRB dye, wells were washed with 1%
acetic acid for four times and left to air-dying. The protein-bound SRB was solubilized in 100
ul/well 10 mM Tris-Base solution, and the absorbance was measured with 96-well plate
reader at 515 nm wavelength (ELx800, BioTek).

Gene expression analysis of Chloroquine with NanoString multiplex gene expression panel

Huh7 and Mahlavu liver cells were treated with CQ at cytotoxic doses of 3.6 uM and 12 uM,
respectively, for 48 h. NanoString nCounter multiplex gene expression analysis, which
includes 770 genes and various canonical pathways such as PI3K, MAPK, STAT, RAS, Cell
cycle, DNA damage control, apoptosis, Hedgehog, Wnt, Transcriptional regulation,
chromatin modification, and TGF-B, was applied on the RNA extracted from cells using the
RNeasy mini kit (Qiagen), followed by the hybridization with code sets and scanning using
the nCounter Digital Analyzer as instructed by the manufacturer (NanoString Technologies).
Results were analysed using the Advanced Analysis Module on nSolver™ 3.0 software for
quality control, normalization, and differential expression. The expression levels of each
gene were normalized to those of control genes. After obtaining the differentially expressed
gene list with the native software, a further filtering operation was applied based on the p-
value (i.e., < 0.01), to identify the finalized list of genes with statistically significant
expression changes. Differential expression of key pathways was revealed for both Huh7
and Mahlavu cell lines using the fold change of the member genes and their significance
values. The resulting files are provided in the GitHub repository of the project
(https://github.com/cansyl/CROssBAR).
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4. Availability

CROssBAR web-service (including a tutorial on how to use the service) is available at:
https://crossbar.kansil.org; CROssBAR database is available through our API at:
https://www.ebi.ac.uk/Tools/crossbar/swagger-ui.html; all of the datasets, results and the
source code of this project are available for download at:
https://github.com/cansyl/CROssBAR; additional information is available in the CROssBAR

project web-site at: https://cansyl.metu.edu.tr/crossbar.
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Figure 1. (a) Overall schematic representation of the CROssBAR project within five main pillars; (b)
CROssBAR database statistics displayed in a circular bar-graph layout, bar lengths are shown in
logarithmic scale, each high-level biomedical data component group is displayed with a different
color, gray curves show the matching components in different database collections (i.e., bars
connected with gray curves signify the same types of biomedical data -keys-, these mappings are
utilized for relating independent database collections to each other), green curves signify the
biomedical relations (e.g., drug-target protein interactions) between different CROssBAR
components, statistics are also provided in Table S.1 (abbreviations; Dis.: disease, Pat.: pathway,
DTls: drug-target interactions); (c) simplified work-flow of the KG construction procedure, shown in
detail for an example disease term query. With the initiation of KG construction by a disease query,
the system (1) finds the matching disease entry from the relevant collection, (2) gathers
genes/proteins that are associated with the query disease (i.e., core genes/proteins), (3) collects
additional genes/proteins (i.e., first-neighbours) using PPIs of core genes/proteins, (4) identifies
biological processes (pathways), of which these genes/proteins (core+neighbouring) are members,
(5) gathers phenotypic terms (HPO) associated with the whole gene/protein set, (6) obtains known
drugs and drug candidate compounds targeting these genes/proteins, together with our deep-
learning based interaction predictions, and (7) revisits the disease collection to make another query
with all collected genes/proteins, to obtain the disease entries that have similar implications as the

query disease.
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Figure 2. (a) An example KG obtained from CROssBAR-WS, generated on-the-fly with the user’s
query of "MAPK1" gene (with the node limit of 10 and other default parameters), displayed under
the layout selections of multi-layered CROssBAR and circular. The use case of CROssBAR COVID-19
knowledge graphs (https://crossbar.kansil.org/covid_main.php): (b) the large-scale KG (987 nodes
and 3639 edges) and (c) the simplified KG (178 nodes and 298 edges). Both of these graphs reveal
the most overrepresented biological processes during a SARS-CoV-2 infection (i.e., cell cycle, viral
mRNA translation, endocytosis, interleukin signaling, etc.), as well as, the potential treatment
options with COVID-19 related pre-clinical/clinical results (e.g., Chloroquine, Remdesivir, Favipiravir,
Dexamethasone, etc.) and our novel in silico predictions (for both virus and host proteins)
considering long-term drug discovery or short-term drug repositioning applications (e.g.,
Prednisolone, Tocilizumab, Isosorbide, Quercetin, Eribaxaban, Becatecarin, Quinfamide, Amlodipine,
etc.). It also displays rare and complex diseases and phenotypic implications with similar host protein
associations (e.g., arthritis, diabetes, respiratory distress, fever, etc.); (d) in vitro experimental
results: volcano plots displaying differentially expressed genes in Chloroquine treated liver cells
(Huh7 and Mahlavu). We checked the interaction between the significant DEGs (Table S.2) and genes
in the large-scale COVID-19 KG, and applied Fisher’s exact test to analyse the significance of the
presence of DEGs on the KG (Table S.4) as opposed to the non-DEGs in the multiplex panel of the
gene expression analysis platform (NanoString). The results indicated that DEGs were significantly

overrepresented (p-value < 0.01).
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