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Abstract

Cytosine DNA methylation in the CpG context (5mCpG) is associated with the transcriptional 

status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA 

(mtDNA) is methylated and whether 5mCpG has a regulatory role in this context. The main aim 

of this work was to develop and validate a novel tool for determining methylation of mtDNA and 

to corroborate its existence across different biological contexts. Using long-read nanopore 

sequencing we found low levels of CpG methylation (with few exceptions) and little variation 

across biological processes: differentiation, oxidative stress, and cancer. 5mCpG was overall 

higher in tissues compared to cell lines, with small additional variation between cell lines of 

different origin. Although we do show several significant changes in all these conditions, 

5mCpG is unlikely to play a major role in defining the transcriptional status of mitochondrial 

genes.

Keywords

Nanopore sequencing, DNA methylation, mtDNA, metabolism, hepatocytes, differentiation, 
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Introduction

It has long been established that mitochondria are the powerhouse of our cells. They are 

responsible for producing ATP through the electron transport chain, contributing to the cellular 

energetic and redox homeostasis (Porporato et al., 2018). In addition, mitochondria have many 

other functions including the regulation of apoptotic pathways as well as storing calcium for cell

signaling (Porporato et al., 2018). The number of mitochondria in a single cell can vary widely; 

some cells having no mitochondria, such as red blood cells, while other cells can have 

hundreds, like liver cells (Alberts et al., 2002). 

Mitochondrial DNA (mtDNA) has a molecular weight of 16.5 kb and is comprised of a Heavy 

Strand (HS) and a Light Strand (LS), with an absence of histones and particular DNA repair 

requirements (Alexeyev et al., 2013). This unique biology leaves mtDNA exposed to influencing

factors from both intra- and extra-cellular origin. For example, reactive oxygen species (ROS) 

can increase mtDNA copy number (Sun and St John, 2018) and exposure to chemicals can 

cause mtDNA damage (Weinhouse, 2017). Moreover, alcohol exposure can induce oxidative 

stress (Lieber, 1991) and increase the expression of mtDNA methyl transferases (mtDNMT1) 

(Bellizzi et al., 2013). These events highlight the sensitivity of mitochondria to environmental 
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factors which can have downstream consequences for cellular respiration as well as cancer 

development and progression. 

Regulation of mtDNA gene expression occurs primarily through the Displacement loop (D-

loop); a 1200-bp non-coding region of the mitochondrial genome. This region controls 

mitochondrial replication as well as transcription of its encoded genes through a number of 

different start sites and promoter regions (Crews et al., 1979; Fish et al., 2004). 

Among regulatory mechanisms in nuclear DNA, DNA methylation is well characterized and 

known to be influenced by metabolic activity. In the human genome, cytosine methylation 

(5mC) occurs mainly in a CpG context (i.e. a cytosine followed by a guanine). However, the 

existence of mitochondrial cytosine methylation at all has been a topic of debate, with evidence 

for high levels of mtDNA 5mC in certain human cells and strand-biased non-CpG methylation 

(Bellizzi et al., 2013; Dou et al., 2019; Feng et al., 2012; Pirola et al., 2013). However, other 

studies suggested that some of these findings were due to incomplete bisulfite conversion 

being caused by a failure to linearize mtDNA prior to sequencing (Hong et al., 2013; Mechta et 

al., 2017; Owa et al., 2018). Moreover, the tools to analyse the presence of DNA methylation 

rely heavily on sodium bisulfite conversion and PCR amplification; which damage DNA and can

lead to bias (Li and Tollefsbol, 2011). 

Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of

long DNA or RNA fragments (Madoui et al., 2015; Seki et al., 2019). It works by monitoring 

changes to an electrical current as nucleic acids are passed through a protein nanopore. The 

resulting signal is decoded to provide the specific DNA or RNA sequence. Moreover, this 

technology allows for the simultaneous detection of nucleotide sequence and DNA and RNA 

base modifications on native molecules (Jain et al., 2016); hence, removing introduced bias 

from sodium bisulfite treatment and PCR amplification. 

The overall aim of this study was to produce conclusive data on the presence or absence of 

mtDNA CpG methylation (5mCpG) using a novel technique, and to determine its conservation 

across different biological conditions. Three cellular settings known to influence mitochondrial 

dynamics were employed: a model of cellular differentiation, cancer and a model of oxidative 

stress. After enrichment, mitochondria were sequenced using a ONT Minion device and 

mtDNA methylation status was directly obtained from the raw signals. We observed low levels 

of strand specific DNA methylation in hepatocytes with consistent changes related to sample 

origin. 
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Results

Nanopore sequencing reliably detects CpG DNA methylation (5mCpG)

Long read sequencing is a rapidly evolving field that is largely still in its infancy. Hence, we first 

sought to determine the reliability of using nanopore sequencing to detect DNA methylation 

from native DNA in our own hands. To do so, we sequenced genomic DNA extracted from the 

human liver cell line HepaRG, using an Oxford Nanopore Minion device (ONT). Global patterns

of DNA methylation were consistent with the known depletion of 5mCpG at CpG islands (CGIs)

(Figure 1A).
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Figure 1. Inspection of 5mCpG data obtained using nanopore sequencing. A) Global profile of 

nuclear DNA methylation at CpG islands (CGI), obtained after nanopore sequencing of the human liver 

cell line HepaRG. B) Aggregated DNA methylation data was obtained for hepatocyte active (FOXA2 

and HNF4A, top panels) and control (PAX5 and PU.1, bottom panels) transcription factor binding 

regions. Methylation profiles for EPIC (epic) and Nanopore (nano) (red and blue lines, respectively) are 

shown for each aggregated dataset. C) EPIC-Nanopore correlation for 5mCpG data on all aggregated 

datasets shown in (B). D) Nanopore targeted sequencing for a panel of hepatocyte identity genes was 

used to basecall 5mCpG using two different bioinformatic pipelines: Nanopolish and Guppy+Medaka 

(see Methods). Single CpG level correlations are shown. 

We then compared genome-wide methylation patterns of DNA from HepaRG cells sequenced 

with nanopore, to those obtained with EPIC Bead Arrays (Illumina) (Rodríguez-Aguilera et al., 

2020). To overcome the problem of sparsity in DNA methylation data, we aggregated CpG 

methylation values from more than 130k transcription binding site loci corresponding to 

hepatocyte-specific (FOXA2 and HNF4A) and control (PAX5 and PU.1) target regions. Both, 

EPIC and Nanopore data are able to capture the expected dip in methylation associated with 

active regulatory regions (Figure 1B, top panels) (Lawson et al., 2018).  In contrast, non-active 

transcription factor binding sites produce a flat methylation profile after aggregation of a similar 

number of genomic regions in both EPIC and Nanopore data (Figure 1B, bottom panels). Both 

techniques were highly correlated when aggregated data from all transcription factor binding 

sites was taken together (Figure 1C).

Next, we tested different available tools to detect DNA methylation from Nanopore sequencing 

data. We used the well-established tool, Nanopolish (Simpson et al., 2017) which uses a 

hidden markov model to detect DNA methylation and compared it to the novel tool Guppy + 

Medaka which has been trained to basecall for modified human CpG dinucleotides using a 

recurrent neural network (Wick et al., 2019). To perform a site-level correlation, we used 

targeted nanopore sequencing data from HepaRG cells with a higher coverage in a set of 

hepatocyte identity genes (i.e. ALB, F2, HNF4A, SLC10A1, DHCR24, HDAC4 and 

SERPINA1). Using this method of comparison, DNA methylation values were highly correlated,

with Guppy + Medaka having a higher tendency towards calling cytosines as unmethylated 

(Figure 1D). Nanopolish and Medaka outputs have previously been compared with a slightly 

higher tendency for Medaka to call unmethylated cytosines. (Gilpatrick et al., 2020); as such, 

these data are in line with former studies. 
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Therefore, in agreement with recent publications, 5mCpG methylation can be reliably obtained 

from native DNA using nanopore sequencing and different bioinformatic algorithms. For all 

analyses presented below we used Guppy + Medaka for extraction of 5mCpG values and 

Nanopolish for verification and visualization.

Detection of mtDNA 5mCpG in long reads

Having shown the suitability of nanopore sequencing for analysis of nuclear 5mCpG, we used 

the same strategy on mtDNA enriched by subcellular fractionation of different cell lines (Figure 

2A). Importantly, mtDNA was linearized enzymatically before sequencing using a Minion 

device. This technique enabled the clear enrichment of the mitochondrial cellular fraction, 

measured by protein expression of mitochondrial or cytosolic markers (Figure 2B). After 

sequencing, we obtained a high fraction of reads mapping to mtDNA. Of note, due to long read 

length, the proportion of mapped reads and their coverage was higher than 80%. Indeed, some

reads consisted of full-length mtDNA sequences (Figure 2C). Interestingly, we observed an 

unequal representation of the heavy strand (HS) and light strand (LS) of mtDNA (Figure 2C). 

We attributed this to the efficiency of the Bam1 enzyme in its ability to cut the HS more 

efficiently and leaving a slightly higher ratio of 5’ ends available for the ligation of adapters 

before loading onto the Nanopore sequencing device. Moreover, recent findings suggest there 

can be an unequal representation of mtDNA CpG methylation on the HS and LS (Dou et al., 

2019). Hence, to reduce any potential bias to the average methylation of each CpG site, we 

considered the methylation of the HS and the LS separately for further analysis. Furthermore, 

mitochondrial populations can be heterogeneous within a single cell. Therefore, we also took 

advantage of single molecule methylation, by visualizing the methylation of whole mtDNA reads

to better understand the single molecule methylation distribution in our samples.

To validate the accuracy of nanopore for detecting 5mC, we prepared fully unmethylated (FU) 

and fully methylated (FM) mtDNA controls. FU was prepared by whole genome amplification 

and then FM was prepared by methylation of CpG nucleotides using DNA methyltransferase 

(M.Sssl). As expected, 5mCpG profiles were opposite in FU and FM mtDNA controls (Figure 

2C and 2D). Some residual methylation was observed in the FU control and we considered 

these levels as a baseline for this technique (Figure 2D and 2E). Indeed, we used the FU 

control as our background to call detectable methylation. This value was obtained by dividing 

the number of called sites as methylated by the total number of called sites in the FU sample. 

The background calculated for the mtDNA HS was 0.022 and for the LS 0.016. We were also 

able to identify some fully unmethylated reads in the FM control. We attributed this to the 

efficiency of the DNA methyltransferase (M.Sssl) in methylating these specific reads. 
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Furthermore, this observation highlights the utility of this approach to identify a mixture of DNA 

in a single sample.
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Figure 2.  5mCpG methylation in mtDNA. A) Protocol of subcellular fractionation and mtDNA 

extraction used before nanopore sequencing. B) Quality control of mtDNA enrichment in different cell 

lines (i.e. HeLa and 293T) using western blot against b-Tubulin, GAPDH, and COX-IV in mitochondrial 

(M) and cytosolic (C) fractions. C) The same protocol was used on the liver cell line HepaRG. In 

addition, whole genome amplification was used to produce a “fully” unmethylated control (FU), and 

followed by DNA methylase (M.Sssl) treatment to produce a “fully” methylated control (FM). Nanopore 

sequencing coverage for the heavy strand (HS) and the light strand (LS) in FU and FM mtDNA-enriched

HepaRG samples. D) Nanopolish was used to infer 5mCpG likelihood and extract methylation 

frequency tables. Histogram of 5mCpG frequencies in FU and FM, colored by strand. E) Strand-specific

5mCpG frequency plots (colored lines), and 5mCpG likelihood pile-plots (100 reads per sample). Gene 

mapping to mtDNA are shown in the bottom track as colored arrows.

We observed low basal levels of 5mCpG in mtDNA from HepaRG cells. Indeed, we did not 

identify any differential methylation between the FU control and HepaRG cells, either globally or

at the CpG site or strand-specific levels (see next Section). 

These data shows that we are able to detect mtDNA methylation with Nanopore sequencing in 

FM and FU controls. 5mCpG is not different from the unmethylated control at HepaRG basal 

conditions. We next went further to investigate 5mCpG in several models known to modify 

mitochondrial activity. 

mtDNA methylation was not affected by hepatocyte differentiation

Hepatocyte differentiation implies metabolic rewiring and changes in mitochondrial content and

activity (Yu et al., 2012). As such, this dynamic context may involve concomitant changes in 

mtDNA methylation. The bipotent liver progenitor cells, HepaRG, are capable of in vitro 

differentiation into hepatocytes and biliary cells. By plating HepaRG cells under differentiating 

conditions during four weeks we obtain a mixture of the hepatocyte and biliary lineages (Ancey 

et al., 2017; Cerec et al., 2007; Rodríguez-Aguilera et al., 2020). This well-established model 

allows us to compare hepatic “progenitor like” cells to their “differentiated” counterpart. We 

used minimally photo-toxic holo-tomographic microscopy combined with mitochondrial labelling

(using MitoTracker Green) to determine mitochondrial content. We observed in both cellular 

tomogram and MitoTracker staining profile that differentiated HepaRG cells have a higher 

mitochondrial content, as well as more lipid droplets when compared to their progenitors 

(Figure 3A).

To determine the effect of hepatocyte differentiation on mtDNA methylation, we used the 

nanopore sequencing protocol described above, comparing progenitor-like HepaRG cells with 

8

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296269
http://creativecommons.org/licenses/by/4.0/


their differentiated progeny. In both cases, methylation values were not different from the fully 

unmethylated control (Figure 3B). There was no differential methylation when directly 

comparing proliferative and differentiated HepaRG cells (Figure 3C). Similar results were 

obtained when analyzing both strands together or independently. Interestingly, the likelihood of 

methylation, as calculated with nanopolish, was higher in differentiated HepaRG cells. This can

be seen at the read level (likelihood scale in Figure 3C shows mainly blue reads in proliferative 

and mainly gray reads in differentiated cells). However, this difference was not high enough to 

be called as methylation and/or may represent additional nucleotide modifications. 
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Figure 3. Methylation of mitochondrial DNA measured by nanopore sequencing of a liver 

progenitor cell line. A) holotomography images of proliferative (progenitor) HepaRG cells and their 

differentiated progeny. Left panel: Refractive Index (RI) map. Right panel: MitoTracker Green staining to

distinguish mitochondrial content and distribution. B) mtDNA enriched DNA extracts from HepaRG cells

were linearized and sequenced, as described in Figure 2A. The distribution of 5mCpG beta values 

(both strands combined) is shown for proliferative (Prolif) and differentiated (Diff) HepaRG, as well as 

FM and FU controls. C) Methylation frequency and likelihood (pile-plots for the first 100 reads) is shown

for proliferative and differentiated HepaRG (one representative sample of three independent 

differentiation assays). Methylation likelihood scale shown in the pile-plots represents unlikely 

methylated in blue, likely methylated in red, and intermediate values in gray. Gene mapping to mtDNA 

are shown in the bottom track as colored arrows.

mtDNA methylation in liver cancer

Most cancer cells display a switch in their metabolic configuration, primarily relying on aerobic 

glycolysis instead of mitochondrial oxidative phosphorylation (Vander Heiden et al., 2009). In 

addition, it was recently described that, mtDNA from liver cancer cells had higher levels of CpG

methylation than that of non-tumorigenic liver cells in vitro (Patil et al., 2019). With this in mind, 

we wanted to go further and test if mitochondria in vivo exhibit this same pattern of DNA 

methylation. To this end, we sequenced the mitochondria of ten patient liver tissue samples 

(normal and tumor matched pairs). Both tumor and non-tumor tissues displayed 5mCpG 

methylation above background levels at several CpG sites (Figure 4A). However, we did not 

find differentially methylated sites when comparing tumor and their matched adjacent tissues 

(paired, multifactor approach). A subset of CpG sites with lowest p values for this comparison 

(non-adjusted p < 0.05), were able to partially discriminate tumors from non-tumor tissues, with

the latter displaying slightly higher levels of 5mCpG (Figure 4B). 

Rather than differential methylation between tumors and non-tumor tissues, we found 

consistent 5mCpG at discrete sites (when compared to the FU background control) in both 

type of samples (Figure 4C). Most 5mCpG was detected exclusively in the HS (Table), and 

only 3 CpG sites were consistently found in the LS (i.e. chrM:314, chrM:5469, and 

chrM:14382). There were also more sites detected as methylated in non-tumor tissues, 

probably due to a higher 5mCpG variation in tumor samples (Figure 4C and Table 1).
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Figure 4. Long read DNA methylation in liver cancer. DNA was extracted from 10 hepatocellular 

carcinoma (HCC) patients and matched non-tumor adjacent tissues. A) 5mCpG values are shown after 

nanopore sequencing of a fully unmethylated (FU) liver cell ine (HepaRG, top panel), 10 non-tumor liver

tissues (middle panel), and 10 matched tumor tissues (bottom panel). B) 5mCpG heatmap of top most 

significant (lowest p value in the paired Tumor vs. surrounding comparison) CpG sites. Annotations 

include Tumor (T) vs Normal (N) status, and patient ID (P1 to P10). C) stripchart of 5mCpG (beta 

values) for those sites displaying higher levels of methylation in tissues relative to the background (FU 

sample). Each Normal or Tumor sample is represented in gray and red, respectively. D) 5mCpG values 

along mtDNA for fully unmethylated control (FU), proliferative HepaRG cells, primary human 

hepatocytes (PHH) and one representative non-tumor liver tissue (Tissue). E) Distribution of 

mitochondrial 5mCpG in the same samples represented in (D). (*) indicates p value < 0.05, Mann-

Whitney’ test.

While the liver cell line HepaRG did not display 5mCpG above background (Figure 3), liver 

tissues were consistently methylated at discrete CpG sites regardless of their tumor/normal 

status. This suggests that 5mCpG may be lost in culture conditions. Indeed, major metabolic 

alterations,  notably metabolic repression, has been described after hepatocytes are placed in 

culture (Cassim et al., 2017). In line with this, we observed intermediate 5mCpG values in 

primary human hepatocytes (PHH) after two weeks in culture (Figure 4D). Globally, 5mCpG 

was not different in HepaRG as compared to the FU control (p = 0.5). In contrast, 5mCpG was 

higher in PHH relative to HepaRG (p < 2.2e-16), and higher in liver tissues relative to PHH (p <

2.2e-16) (Figure 4E). This result was similar when analyzing separately both mtDNA strands.

Therefore, there are no strong differences in mitochondrial 5mCpG in tumors relative to their 

matched normal liver tissues. Instead, we were able to detect consistent 5mCpG in tissues and

a gradual loss in 5mCpG values as samples are placed in cell culture conditions.

mtDNA methylation was not affected by oxidative stress 

In addition to differentiation and cell transformation, mitochondrial activity is largely associated 

to oxidative stress, and therefore an interesting process where to study 5mCpG variation. To 

induce oxidative stress in vitro, we used an established method utilizing hydrogen peroxide to 

induce reactive oxygen species (ROS) (Yagi et al., 2013). Several cell lines were tested (data 

not shown) and Homo sapiens embryonic kidney 293T cells emerged as an ideal candidate for

an oxidative stress model. Treatment for two hours was sufficient to induce oxidative stress in 

293T cells measured by MitoSox staining, which could be rescued by treatment with N-

acetylcysteine (NAC) (Figure 5A and 5B).
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At basal levels, 293T cells exhibited higher global levels of 5mCpG than HepaRG cells (p value

= 0.05). However, the same strand specific methylation was observed (i.e. higher 5mCpG in 

the HS). We then aimed to study the effect of oxidative stress on mtDNA methylation levels. In 

order to do so, we induced oxidative stress in 293T cells and compared the mtDNA methylation

levels before and after treatment. We also rescued these cells from the induced oxidation using

NAC. Again we calculated the differential methylation between these three treatment groups 

and with a threshold of 10% (Figure 4), we did not observe any differential methylation on the 

HS or the LS (Figures 5C and 5D).

Although 5mCpG was clearly detectable in 293T cells, and higher than HepaRG cells, it was 

not significantly affected by H2O2 exposure.
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Figure 5. Mitochondrial 5mCpG in response to oxidative stress. Mitochondrial DNA was obtained 

from the human embryonic kidney cell line 293T under basal conditions (Control), oxidative stress 

(H2O2) and oxidative stress rescued with N-acetlycysteine (NAC). A) Representative images of phase 

contrast, Mitosox, MiitoTracker and Hoescht staining. B) MitoSox quantification of 5 independent 

replicates. C) 5mCpG measured by nanopore under the same experimental conditions. Each dot 

represents the average of triplicate values for each condition and each CpG site. D) mitochondrial 

5mCpG distribution (both, HS and LS strands together) of the data shown in (C).

Discussion 

In the present study we have shown that nanopore sequencing can reliably detect 5mCpG in 

mitochondrial DNA from human cells. Exploiting the advantages of long reads and native DNA 

sequencing, we show that 5mCpG can be detected at discrete CpG locations at levels that 

depend on the cellular model (i.e. immortalized cell line, primary cells, or tissue). However, we 

did not observe differential 5mCpG  in three biological contexts: in vitro differentiation of a liver 

progenitor cell line, comparison of human liver tumors and their matched non-tumor tissues, 

and in vitro induction of oxidative stress.

For the first time, we provide a comprehensive characterization of mtDNA methylation lin liver 

cells, kidney cells and liver tissue by long read sequencing (ONT). We were able to use this 

highly novel tool to detect the methylation patterns along 16kb reads spanning the  entire 

mitochondrial chromosome with deep  coverage of >10000x on naive DNA. In doing so, we 

have produced a map of mtDNA 5mCpG, that has completely eliminated any introduced bias 

from bisulfite conversion and PCR amplification; tools that we have relied on, and that have 

served us well for many years.   

Using ONT, we identified low basal levels of mtDNA methylation at specific regions in liver cells

in vitro. These levels were lower than that previously described (Ghosh et al., 2014; Patil et al., 

2019), however these authors have noted that CpG methylation was highly cell specific. While 

we also analyzed the mitochondrial methylome of liver cells, we did not use the  same cell lines 

as these previous studies. Hence, the differences observed are likely due to the cell specific 

nature of mtDNA 5mCpG. Moreover, it should be noted that a series of work outlining 

amendments to the bisulfite conversion protocol for mitochondria have been published in order 

to ensure the bisulfite conversion efficiency is properly controlled for (Owa et al., 2018). Since 

the average mtDNA CpG methylation levels were very low, we further validated this work 

through extensive comparisons of basal 5mCpG with negative controls. Other studies have 

reported similar cell specific mtDNA methylation patterns (Bellizzi et al., 2013), however, we 

are the first to represent these landscapes in differentiation models and/or using long reads. 
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Furthermore, we have also for the first time, clearly identified strand specific mtDNA 

methylation using long read sequencing. We observed higher levels of 5mCpG in the HS 

generally. This was in accordance with recent reports that have also identified a strand specific 

methylation via different techniques such as bisulfite sequencing and meDIP (Dou et al., 2019; 

Ghosh et al., 2014; Patil et al., 2019). 

We did not find significant variation in 5mCpG under oxidative stress conditions. While the 

effect of oxidative stress on mitochondrial activity has been extensively studied (Ashari et al., 

2020; Yu et al., 2020), there had not yet been a comprehensive mapping of mtDNA 5mCpG in 

oxidative stress conditions. In fact, we could not find any work that has investigated mtDNA 

methylation in this context.  

Despite our novelty, there are limitations to this work as it stands; including the lack of 

investigation into non-CpG methylation, which has previously been characterized in liver 

cancer cells and linked strongly to the control of mitochondrial gene expression (Bellizzi et al., 

2013; Patil et al., 2019), as well as the detection of 5hmCpG, which has been also reported in 

mtDNA (Shock et al., 2011), and is highly dynamic in liver cell differentiation and linked to gene

regulation (Ancey et al., 2017; Rodríguez-Aguilera et al., 2020). Therefore, it is clear that more 

work is needed to develop long read sequencing tools to determine non-CpG methylation or 

other modified bases like 5hmC in general. There are technical and bioinformatic limitations to 

nanopore sequencing currently. But this field is rapidly advancing and as such we are confident

that making this data publicly available will continue to contribute to this important work.

In conclusion, nanopore is a useful tool for the detection of modified DNA bases on 

mitochondria, however, care must be taken to consider the HS and LS strands separately as 

well as the heterogeneity of mitochondrial populations. 

Methods

Cell culture, maintenance and differentiation

HepaRG cells were cultured in Williams media enriched with 10% Fetal calf serum clone II, 1%

Penicillin/Streptomycin, L-glutamine (2mM), insulin (5µg/mL) and hydrocortisone (25µg/mL). 

Proliferative HepaRGs were taken before reaching 50% confluence and differentiated 

hepaRGs were differentiated as previously described (Ancey et al., 2017; Cerec et al., 2007; 

Rodríguez-Aguilera et al., 2020). 

HEK293T, immortal cells derived from embryonic kidney were grown in tissue culture dishes 

(Falcon, Becton Dickinson) and cultured in DMEM 1X media containing 1% 
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Penicillin/Streptomycin, 1% sodium pyruvate, 1% L-glutamine, 1% non-essential amino-acids, 

all from Life Technologies, and 10% fetal bovine serum (Eurobio Abcys). 

Induction of oxidative stress

HEK293T cells were treated ydrogen peroxide (H2O2) (Sigma-Aldrich, 216763) at a concentration 

of 500 μM for 2 hours, alone or in combination with 5mM N-acetyl-cyteine (NAC) (Sigma-Aldrich, M for 2 hours, alone or in combination with 5mM N-acetyl-cyteine (NAC) (Sigma-Aldrich, 

A7250). When using NAC, cells were pre-treated for 2hrs with 5mM NAC.

The mitochondrial superoxide indicator stain MitoSOX (ThermoFisher, M36008) was used to probe

the relative oxidative stress in live cells. Cells were stained witiih 1uM MitoSox diluted in DMEM. 

250,000 cells were incubated with 330 ul for 30 min and analyzed by flow cytometry, then washed 

with PBS and trypsinized. Flow cytometry tubes were kept on ice and in the dark until use. Flow 

cytometry analysis was performed with a FACSCalibur (BD Biosciences). The mean fluorescence 

intensity of minimum 10,000 stained cells and unstained control cells were recorded and plotted for 

analysis. Alternatively, MitoSOX was analyzed by epifluorescence microscopy (Zeiss, Axio 

Observer).

Holotomography 

Differentiated and proliferative HepaRG cells were plated at high confluence. Mitotracker 

(100nM) was added to normal growth medium for 1h before imaging with a 3D Cell-Explorer 

Fluo (Nanolive, Ecublens, Switzerland) using a 60x air objective. Refractory index maps were 

generated and images were processed every 5 seconds for 20 minutes with the STEVE 

software. 

Subcellular fractionation and mtDNA extraction

Subcellular fractionation was performed as previously described (Arnoult et al., 2003)  with 

some modifications. Briefly, cells were washed with PBS, harvested by scraping and 

centrifuged at 1000 g for 5 min. The pellet was re-suspended in buffer containing 210 mM 

sorbitol, 70 mM sucrose, 1 mM EDTA, 10 mM HEPES and 0.1% BSA (Sigma) before grinding 

with a Dounce Homogenizer (Wheaton, USA) with a loose and tight pestle (100 strokes with 

each pestle). Cells were observed under microscope (Axiovert 40C, Zeiss) with trypan blue dye

to assess cell membrane disruption followed by centrifugation at 500 g for 5 min at 4 °C. The 

supernatant was collected before centrifugation at 10 000 g for 30 min at 4 °C. DNA extraction 

(Nucleospin Tissue, Macherey-Nagel) was performed on the resulting pellet according to 

manufacturer instructions. mtDNA was digested using BamH1 HF (New England BioLabs) in 

order to linearize mtDNA genome.

Fully unmethylated and fully methylated controls 

After mtDNA enrichment and linearization, we prepared a negative (FU = fully unmethylated) 
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control sample from differentiated HepaRG mtDNA by performing whole genome amplification 

using a repliG kit (Qiagen) according to manufacturer’s instructions. After amplification, a 

positive control for methylation (FM = fully methylated) was prepared. Briefly, CpG 

dinucleotides were methylated by incubating 1µg of DNA with S-Adenosyl methionine (SAM) 

(32µM) with CpG Methyltransferase (M.SssI) (4-25 units) (New England BioLabs) at 37°C for 

1h before heating to 65°C for 20mins. 

Patient tissue samples 

Human biological samples and associated data were obtained from “Tissu-Tumorothèque Est”

(CRB-HCL, Hospices Civils de Lyon Biobank, BB-0033-00046). DNA extracted with the 

epicentre kit. 

Nanopore sequencing

400ng of DNA from each sample or control was barcoded and multiplexed using the Nanopore 

Rapid Barcoding Sequencing kit (SQK-RBK004) according to manufacturer's instructions. 

Sequencing was conducted with a Minion sequencer on ONT 1D flow cells (FLO-min106) with 

protein pore R9.4 1D chemistry for 48h. Reads were basecalled with GUPPY (version 4.3.2). 

Basecalled reads were mapped using Minimap2 to the GRCh38/hg38 human genome. 

Bioinformatic analyses

Basecalling was performed with Guppy version 4.0.15 (ONT). We first determined the 

methylation status of each CpG site on every read by using the widely used tool, nanopolish 

(Simpson et al., 2017) used recently by (Gigante et al., 2019). For validation, we also called 

DNA methylation using novel tool, Medaka (git repository reference). Medaka is a tool to create

a consensus sequence from nanopore sequencing data. This task is performed using neural 

networks applied from a pileup of individual sequencing reads against a draft assembly. It 

outperforms graph-based methods operating on basecalled data, and can be competitive with 

state-of-the-art signal-based methods, whilst being much faster.

PycoQC was used for data inspection and quality control (https://github.com/a-slide/pycoQC), 

and methplotlib (https://github.com/wdecoster/methplotlib) for read-level visualizations.

Called CpG sites in the FU control were used to determine a baseline of methylation. The 

following calculation was utilised: FalsePositiveRate=[#called methylated cytosines in 

FU/#called cytosines in FU].

For differential methylation analyses we used DSS (Dispersion shrinkage for sequencing data) 

(Park and Wu, 2016) adapted for nanopore sequencing (Gigante et al., 2019). The aggregated 

β methylation values for each CpG group are tested for differential methylation using the DSS 
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software (Park and Wu, 2016) and adapted for nanopore sequencing according to (Gigante et 

al., 2019). Briefly, DSS tests for differential methylation at single CpG-sites, using a Wald test 

on the co-efficients of a beta-binomial regression of count data with an ‘arcsine’ link function. In 

order to set minimum requirements for DSS analysis, an internal comparison of biological 

replicates of differentiated HepaRG cells was undertaken. From this we were able to better 

understand the background and determine the minimum smoothing and delta values. These 

values were set at a smoothing of 10-50bp and a delta of 0.05 with minimum P-value of 0.05. 

We used the bioconductor packages MIRA (Lawson et al., 2018) for methylation data 
aggregation, and LOLA for dataset selection (Sheffield and Bock, 2016).

Mann-Whitney’s test was used for pairwise comparisons of 5mCpG distribution.

Availability of data and material

Datasets generated during the current study will be uploaded to the GEO repository.
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Table. Differential methylation in normal and tumor samples, relative to FU control.
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Normal Liver vs. FU control HCC vs. FU control
CpG site pval fdr pval fdr

Heavy Strand
chrM:185 5.0E-14 1.1E-12 4.4E-06 5.5E-05

chrM:410 1.5E-07 1.6E-06 3.0E-04 2.3E-03
chrM:931 2.5E-21 1.3E-19 2.0E-18 1.2E-16

chrM:934 1.2E-16 3.2E-15 1.0E-17 5.5E-16

chrM:1176 2.0E-28 1.5E-26 2.8E-26 4.1E-24

chrM:1472 2.4E-20 1.2E-18 2.7E-17 1.3E-15

chrM:1474 2.0E-47 8.6E-45 8.7E-38 3.8E-35
chrM:1483 7.6E-09 8.9E-08 - -

chrM:1748 2.6E-09 3.2E-08 1.2E-07 2.0E-06

chrM:1947 4.4E-07 4.2E-06 2.8E-06 3.7E-05

chrM:2201 3.5E-07 3.5E-06 9.6E-08 1.7E-06

chrM:3171 2.1E-19 7.7E-18 - -
chrM:3246 1.8E-07 1.9E-06 - -

chrM:3965 7.8E-12 1.4E-10 1.8E-07 2.8E-06

chrM:5754 9.9E-12 1.7E-10 1.2E-05 1.3E-04

chrM:6180 3.2E-18 1.1E-16 6.3E-17 2.5E-15
chrM:6328 4.7E-11 6.8E-10 4.7E-09 1.1E-07

chrM:6568 8.2E-20 3.2E-18 1.2E-18 1.1E-16

chrM:6571 5.8E-15 1.4E-13 5.0E-17 2.2E-15

chrM:6850 8.9E-32 7.7E-30 - -

chrM:7018 1.4E-10 1.9E-09 - -
chrM:7995 1.3E-37 1.9E-35 1.4E-15 5.1E-14

chrM:8018 1.9E-15 4.9E-14 1.2E-08 2.5E-07

chrM:8116 4.4E-17 1.3E-15 - -

chrM:9053 6.9E-08 7.7E-07 5.5E-06 6.6E-05
chrM:9161 1.9E-10 2.5E-09 1.0E-08 2.2E-07

chrM:9380 1.9E-32 2.0E-30 3.3E-25 3.6E-23

chrM:9382 6.5E-41 1.4E-38 7.3E-32 1.6E-29

chrM:10201 2.7E-10 3.4E-09 6.4E-10 1.6E-08

chrM:11029 1.4E-11 2.2E-10 - -
chrM:11161 2.3E-05 1.5E-04 - -

chrM:11475 1.7E-05 1.2E-04 - -

chrM:11715 1.5E-08 1.8E-07 - -

chrM:11912 8.1E-07 7.4E-06 - -
chrM:14696 5.0E-13 1.0E-11 6.1E-06 7.0E-05

chrM:15615 3.4E-04 1.9E-03 3.8E-04 2.7E-03

chrM:15925 4.5E-06 3.5E-05 - -

Light Strand
CpG site pval fdr pval fdr
chrM:314 1.5E-18 6.4E-16 1.3E-07 2.8E-05

chrM:4425 2.9E-07 1.1E-05 - -

chrM:5469 9.1E-07 3.0E-05 1.6E-05 1.0E-03

chrM:14382 6.9E-18 1.5E-15 5.8E-12 2.5E-09
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