

1 **Minimal detection and low biological fluctuation of mitochondrial CpG**
2 **methylation at the single-molecule level**

3

4 Chloe Goldsmith^{1*}, Jesús Rafael Rodríguez-Aguilera², Ines El-Rifai¹, Adrien Jarretier¹, Valérie
5 Hervieu³, Victoria Chagoya de Sánchez², Robert Dante⁴, Gabriel Ichim⁵ and Hector
6 Hernandez-Vargas^{1*}

7

8 **Affiliations:**

9 1. Department of Tumor Escape, Resistance and Immunity. TGF-beta and immuno-regulation
10 Team. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université
11 de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon CEDEX 08, France.

12 2. Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad
13 Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán
14 04510, Cd. Mx., Mexico.

15 3. Department of Surgical Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Lyon,
16 France.

17 4. Dependence Receptors Cancer and Development Laboratory, Department of Signaling of
18 Tumoral Escape. Cancer Research. Center of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286,
19 Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon CEDEX 08, France.

20 5. Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France.
21 Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de
22 Lyon, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon CEDEX 08, France.

23

24 ORCID IDs: HHV: 0000-0001-6045-2103; JRRA: 0000-0003-1474-6826; VCS: 0000-0001-8577-1186; GI: 0000-
25 0002-8386-7405; CG: 0000-0002-1041-4333

26

27 *** Corresponding Authors**

28 chloe.goldsmith@inserm.fr ; hector.hernandez-vargas@lyon.unicancer.fr

29 Department of Tumor Escape, Resistance and Immunity. TGF-beta and immuno-regulation
30 Team. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, UCBL1.
31 Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France.

32 **Abstract**

33 Cytosine DNA methylation in the CpG context (5mCpG) is associated with the transcriptional
34 status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA
35 (mtDNA) is methylated and whether 5mCpG has a regulatory role in this context. The main aim
36 of this work was to develop and validate a novel tool for determining methylation of mtDNA and
37 to corroborate its existence across different biological contexts. Using long-read nanopore
38 sequencing we found low levels of CpG methylation (with few exceptions) and little variation
39 across biological processes: differentiation, oxidative stress, and cancer. 5mCpG was overall
40 higher in tissues compared to cell lines, with small additional variation between cell lines of
41 different origin. Although we do show several significant changes in all these conditions,
42 5mCpG is unlikely to play a major role in defining the transcriptional status of mitochondrial
43 genes.

44

45 **Keywords**

46 Nanopore sequencing, DNA methylation, mtDNA, metabolism, hepatocytes, differentiation,
47 oxidative stress, 5mC, long-read sequencing.

48

49 **Introduction**

50 It has long been established that mitochondria are the powerhouse of our cells. They are
51 responsible for producing ATP through the electron transport chain, contributing to the cellular
52 energetic and redox homeostasis (Porporato et al., 2018). In addition, mitochondria have many
53 other functions including the regulation of apoptotic pathways as well as storing calcium for cell
54 signaling (Porporato et al., 2018). The number of mitochondria in a single cell can vary widely;
55 some cells having no mitochondria, such as red blood cells, while other cells can have
56 hundreds, like liver cells (Alberts et al., 2002).

57 Mitochondrial DNA (mtDNA) has a molecular weight of 16.5 kb and is comprised of a Heavy
58 Strand (HS) and a Light Strand (LS), with an absence of histones and particular DNA repair
59 requirements (Alexeyev et al., 2013). This unique biology leaves mtDNA exposed to influencing
60 factors from both intra- and extra-cellular origin. For example, reactive oxygen species (ROS)
61 can increase mtDNA copy number (Sun and St John, 2018) and exposure to chemicals can
62 cause mtDNA damage (Weinhouse, 2017). Moreover, alcohol exposure can induce oxidative
63 stress (Lieber, 1991) and increase the expression of mtDNA methyl transferases (mtDNMT1)
64 (Bellizzi et al., 2013). These events highlight the sensitivity of mitochondria to environmental

65 factors which can have downstream consequences for cellular respiration as well as cancer
66 development and progression.

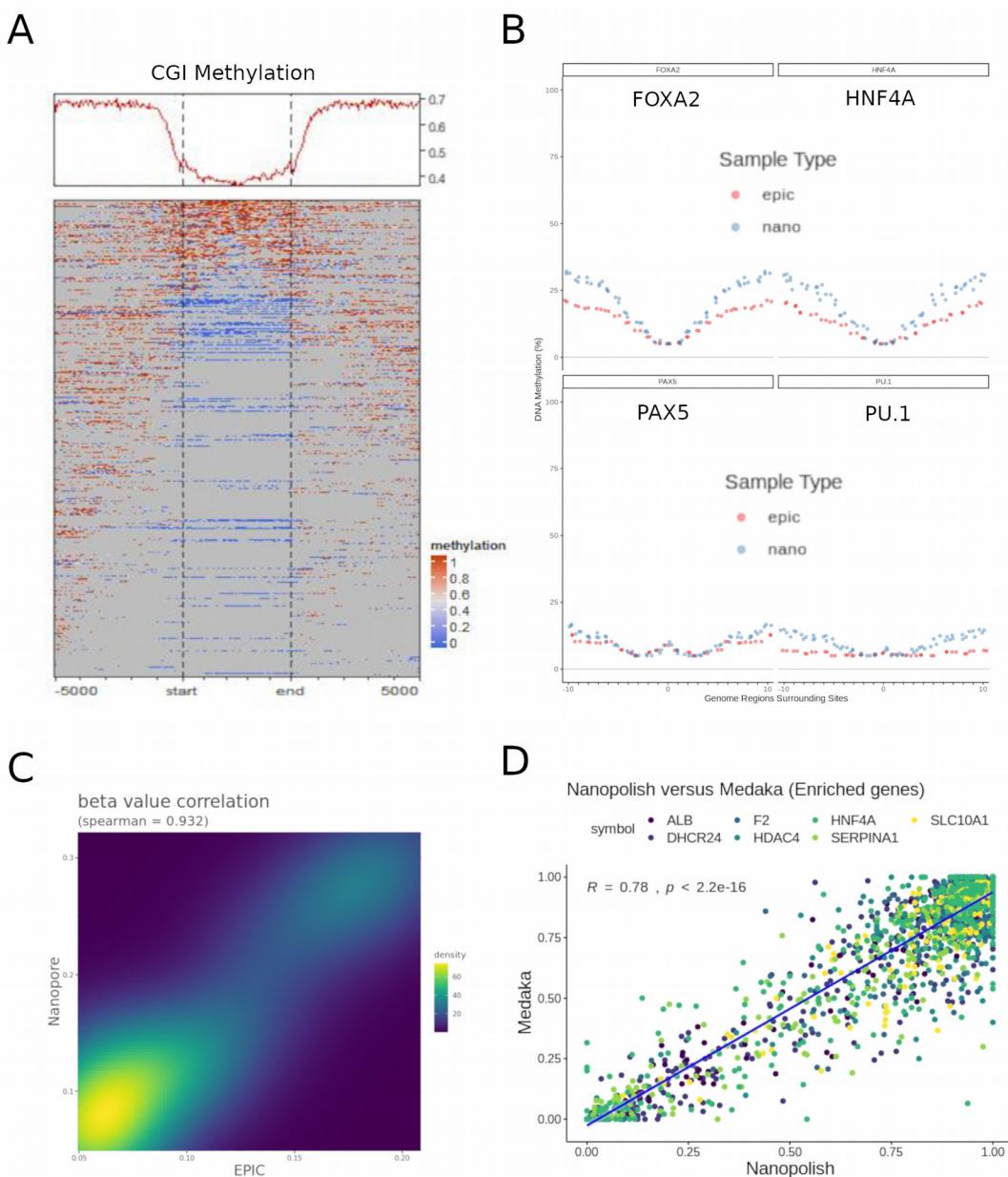
67 Regulation of mtDNA gene expression occurs primarily through the Displacement loop (D-
68 loop); a 1200-bp non-coding region of the mitochondrial genome. This region controls
69 mitochondrial replication as well as transcription of its encoded genes through a number of
70 different start sites and promoter regions (Crews et al., 1979; Fish et al., 2004).

71 Among regulatory mechanisms in nuclear DNA, DNA methylation is well characterized and
72 known to be influenced by metabolic activity. In the human genome, cytosine methylation
73 (5mC) occurs mainly in a CpG context (i.e. a cytosine followed by a guanine). However, the
74 existence of mitochondrial cytosine methylation at all has been a topic of debate, with evidence
75 for high levels of mtDNA 5mC in certain human cells and strand-biased non-CpG methylation
76 (Bellizzi et al., 2013; Dou et al., 2019; Feng et al., 2012; Pirola et al., 2013). However, other
77 studies suggested that some of these findings were due to incomplete bisulfite conversion
78 being caused by a failure to linearize mtDNA prior to sequencing (Hong et al., 2013; Mechta et
79 al., 2017; Owa et al., 2018). Moreover, the tools to analyse the presence of DNA methylation
80 rely heavily on sodium bisulfite conversion and PCR amplification; which damage DNA and can
81 lead to bias (Li and Tollefsbol, 2011).

82 Nanopore sequencing is a unique, scalable technology that enables direct, real-time analysis of
83 long DNA or RNA fragments (Madoui et al., 2015; Seki et al., 2019). It works by monitoring
84 changes to an electrical current as nucleic acids are passed through a protein nanopore. The
85 resulting signal is decoded to provide the specific DNA or RNA sequence. Moreover, this
86 technology allows for the simultaneous detection of nucleotide sequence and DNA and RNA
87 base modifications on native molecules (Jain et al., 2016); hence, removing introduced bias
88 from sodium bisulfite treatment and PCR amplification.

89 The overall aim of this study was to produce conclusive data on the presence or absence of
90 mtDNA CpG methylation (5mCpG) using a novel technique, and to determine its conservation
91 across different biological conditions. Three cellular settings known to influence mitochondrial
92 dynamics were employed: a model of cellular differentiation, cancer and a model of oxidative
93 stress. After enrichment, mitochondria were sequenced using a ONT Minion device and
94 mtDNA methylation status was directly obtained from the raw signals. We observed low levels
95 of strand specific DNA methylation in hepatocytes with consistent changes related to sample
96 origin.

97


98

99 **Results**

100 **Nanopore sequencing reliably detects CpG DNA methylation (5mCpG)**

101 Long read sequencing is a rapidly evolving field that is largely still in its infancy. Hence, we first
102 sought to determine the reliability of using nanopore sequencing to detect DNA methylation
103 from native DNA in our own hands. To do so, we sequenced genomic DNA extracted from the
104 human liver cell line HepaRG, using an Oxford Nanopore Minion device (ONT). Global patterns
105 of DNA methylation were consistent with the known depletion of 5mCpG at CpG islands (CGIs)
106 (Figure 1A).

107

108

109 **Figure 1. Inspection of 5mCpG data obtained using nanopore sequencing.** A) Global profile of
110 nuclear DNA methylation at CpG islands (CGI), obtained after nanopore sequencing of the human liver
111 cell line HepaRG. B) Aggregated DNA methylation data was obtained for hepatocyte active (FOXA2
112 and HNF4A, top panels) and control (PAX5 and PU.1, bottom panels) transcription factor binding
113 regions. Methylation profiles for EPIC (epic) and Nanopore (nano) (red and blue lines, respectively) are
114 shown for each aggregated dataset. C) EPIC-Nanopore correlation for 5mCpG data on all aggregated
115 datasets shown in (B). D) Nanopore targeted sequencing for a panel of hepatocyte identity genes was
116 used to basecall 5mCpG using two different bioinformatic pipelines: Nanopolish and Guppy+Medaka
117 (see Methods). Single CpG level correlations are shown.

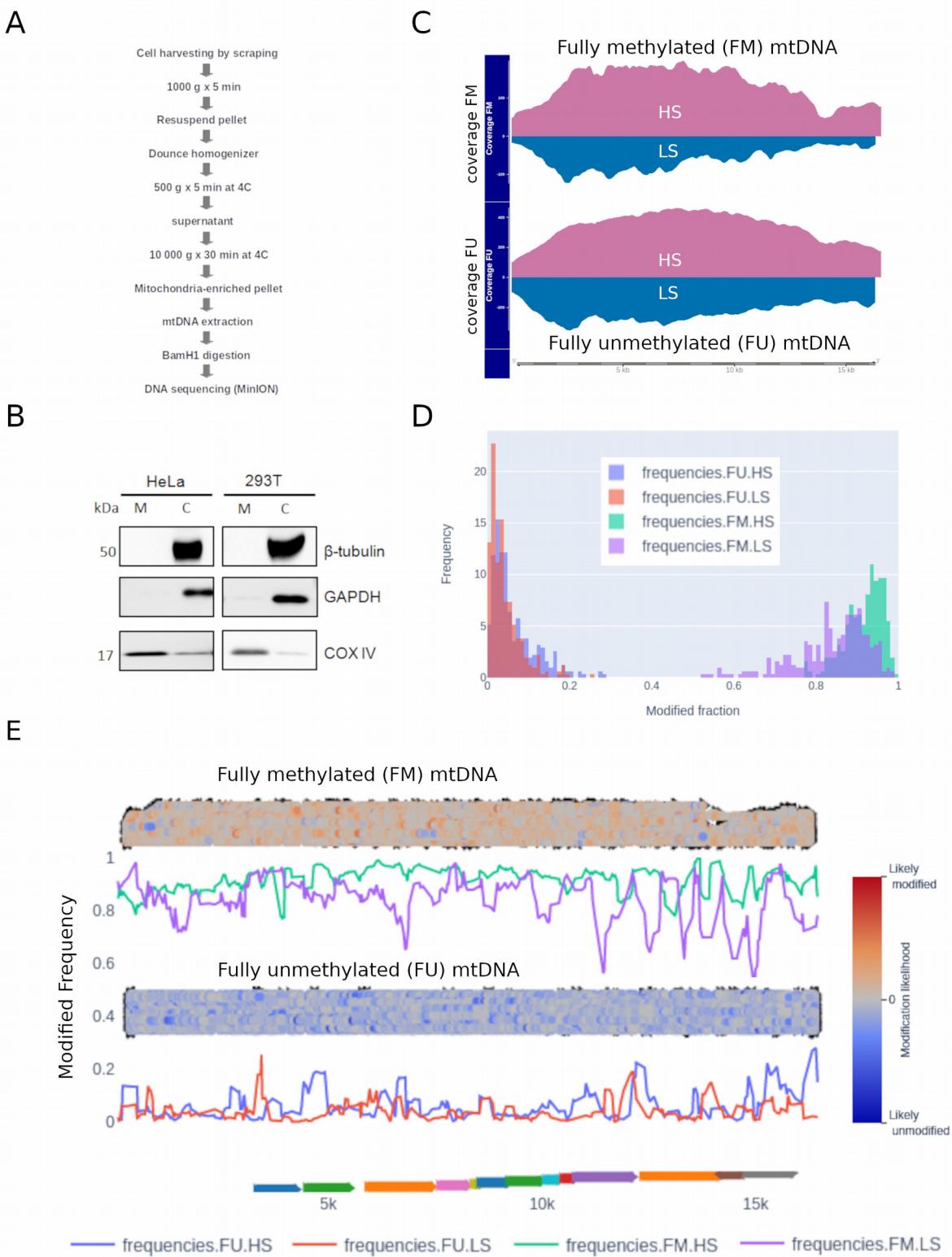
118

119 We then compared genome-wide methylation patterns of DNA from HepaRG cells sequenced
120 with nanopore, to those obtained with EPIC Bead Arrays (Illumina) (Rodríguez-Aguilera et al.,
121 2020). To overcome the problem of sparsity in DNA methylation data, we aggregated CpG
122 methylation values from more than 130k transcription binding site loci corresponding to
123 hepatocyte-specific (FOXA2 and HNF4A) and control (PAX5 and PU.1) target regions. Both,
124 EPIC and Nanopore data are able to capture the expected dip in methylation associated with
125 active regulatory regions (Figure 1B, top panels) (Lawson et al., 2018). In contrast, non-active
126 transcription factor binding sites produce a flat methylation profile after aggregation of a similar
127 number of genomic regions in both EPIC and Nanopore data (Figure 1B, bottom panels). Both
128 techniques were highly correlated when aggregated data from all transcription factor binding
129 sites was taken together (Figure 1C).

130 Next, we tested different available tools to detect DNA methylation from Nanopore sequencing
131 data. We used the well-established tool, Nanopolish (Simpson et al., 2017) which uses a
132 hidden markov model to detect DNA methylation and compared it to the novel tool Guppy +
133 Medaka which has been trained to basecall for modified human CpG dinucleotides using a
134 recurrent neural network (Wick et al., 2019). To perform a site-level correlation, we used
135 targeted nanopore sequencing data from HepaRG cells with a higher coverage in a set of
136 hepatocyte identity genes (i.e. *ALB*, *F2*, *HNF4A*, *SLC10A1*, *DHCR24*, *HDAC4* and
137 *SERPINA1*). Using this method of comparison, DNA methylation values were highly correlated,
138 with Guppy + Medaka having a higher tendency towards calling cytosines as unmethylated
139 (Figure 1D). Nanopolish and Medaka outputs have previously been compared with a slightly
140 higher tendency for Medaka to call unmethylated cytosines. (Gilpatrick et al., 2020); as such,
141 these data are in line with former studies.

142 Therefore, in agreement with recent publications, 5mCpG methylation can be reliably obtained
143 from native DNA using nanopore sequencing and different bioinformatic algorithms. For all
144 analyses presented below we used Guppy + Medaka for extraction of 5mCpG values and
145 Nanopolish for verification and visualization.

146


147 ***Detection of mtDNA 5mCpG in long reads***

148 Having shown the suitability of nanopore sequencing for analysis of nuclear 5mCpG, we used
149 the same strategy on mtDNA enriched by subcellular fractionation of different cell lines (Figure
150 2A). Importantly, mtDNA was linearized enzymatically before sequencing using a Minion
151 device. This technique enabled the clear enrichment of the mitochondrial cellular fraction,
152 measured by protein expression of mitochondrial or cytosolic markers (Figure 2B). After
153 sequencing, we obtained a high fraction of reads mapping to mtDNA. Of note, due to long read
154 length, the proportion of mapped reads and their coverage was higher than 80%. Indeed, some
155 reads consisted of full-length mtDNA sequences (Figure 2C). Interestingly, we observed an
156 unequal representation of the heavy strand (HS) and light strand (LS) of mtDNA (Figure 2C).
157 We attributed this to the efficiency of the Bam1 enzyme in its ability to cut the HS more
158 efficiently and leaving a slightly higher ratio of 5' ends available for the ligation of adapters
159 before loading onto the Nanopore sequencing device. Moreover, recent findings suggest there
160 can be an unequal representation of mtDNA CpG methylation on the HS and LS (Dou et al.,
161 2019). Hence, to reduce any potential bias to the average methylation of each CpG site, we
162 considered the methylation of the HS and the LS separately for further analysis. Furthermore,
163 mitochondrial populations can be heterogeneous within a single cell. Therefore, we also took
164 advantage of single molecule methylation, by visualizing the methylation of whole mtDNA reads
165 to better understand the single molecule methylation distribution in our samples.

166 To validate the accuracy of nanopore for detecting 5mC, we prepared fully unmethylated (FU)
167 and fully methylated (FM) mtDNA controls. FU was prepared by whole genome amplification
168 and then FM was prepared by methylation of CpG nucleotides using DNA methyltransferase
169 (M.SssI). As expected, 5mCpG profiles were opposite in FU and FM mtDNA controls (Figure
170 2C and 2D). Some residual methylation was observed in the FU control and we considered
171 these levels as a baseline for this technique (Figure 2D and 2E). Indeed, we used the FU
172 control as our background to call detectable methylation. This value was obtained by dividing
173 the number of called sites as methylated by the total number of called sites in the FU sample.
174 The background calculated for the mtDNA HS was 0.022 and for the LS 0.016. We were also
175 able to identify some fully unmethylated reads in the FM control. We attributed this to the
176 efficiency of the DNA methyltransferase (M.SssI) in methylating these specific reads.

177 Furthermore, this observation highlights the utility of this approach to identify a mixture of DNA
178 in a single sample.

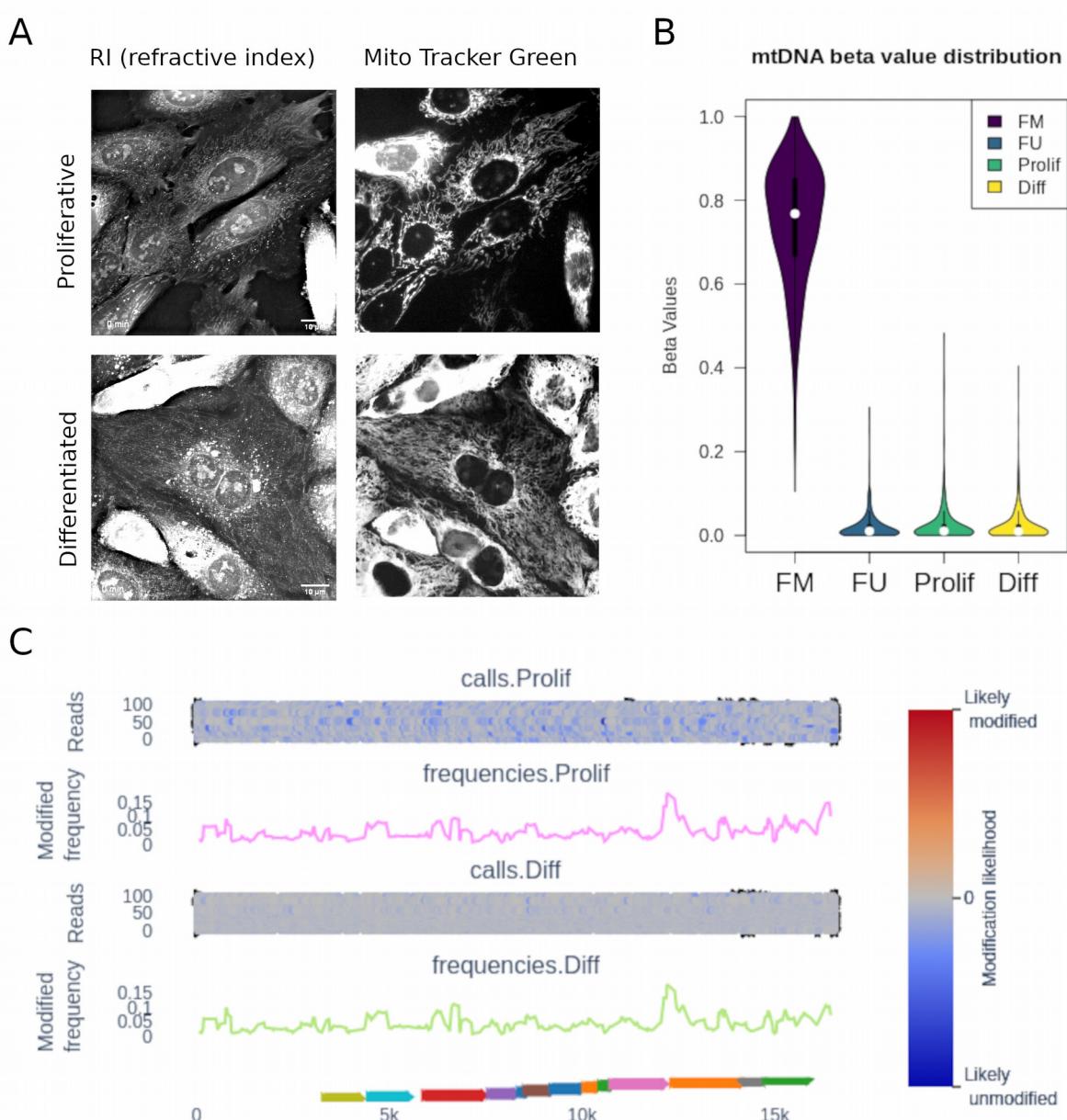
179

180 **Figure 2. 5mCpG methylation in mtDNA.** A) Protocol of subcellular fractionation and mtDNA
181 extraction used before nanopore sequencing. B) Quality control of mtDNA enrichment in different cell
182 lines (i.e. HeLa and 293T) using western blot against *b-Tubulin*, *GAPDH*, and *COX-IV* in mitochondrial
183 (M) and cytosolic (C) fractions. C) The same protocol was used on the liver cell line HepaRG. In
184 addition, whole genome amplification was used to produce a “fully” unmethylated control (FU), and
185 followed by DNA methylase (*M.SssI*) treatment to produce a “fully” methylated control (FM). Nanopore
186 sequencing coverage for the heavy strand (HS) and the light strand (LS) in FU and FM mtDNA-enriched
187 HepaRG samples. D) Nanopolish was used to infer 5mCpG likelihood and extract methylation
188 frequency tables. Histogram of 5mCpG frequencies in FU and FM, colored by strand. E) Strand-specific
189 5mCpG frequency plots (colored lines), and 5mCpG likelihood pile-plots (100 reads per sample). Gene
190 mapping to mtDNA are shown in the bottom track as colored arrows.

191

192 We observed low basal levels of 5mCpG in mtDNA from HepaRG cells. Indeed, we did not
193 identify any differential methylation between the FU control and HepaRG cells, either globally or
194 at the CpG site or strand-specific levels (see next Section).

195 These data shows that we are able to detect mtDNA methylation with Nanopore sequencing in
196 FM and FU controls. 5mCpG is not different from the unmethylated control at HepaRG basal
197 conditions. We next went further to investigate 5mCpG in several models known to modify
198 mitochondrial activity.


199

200 ***mtDNA methylation was not affected by hepatocyte differentiation***

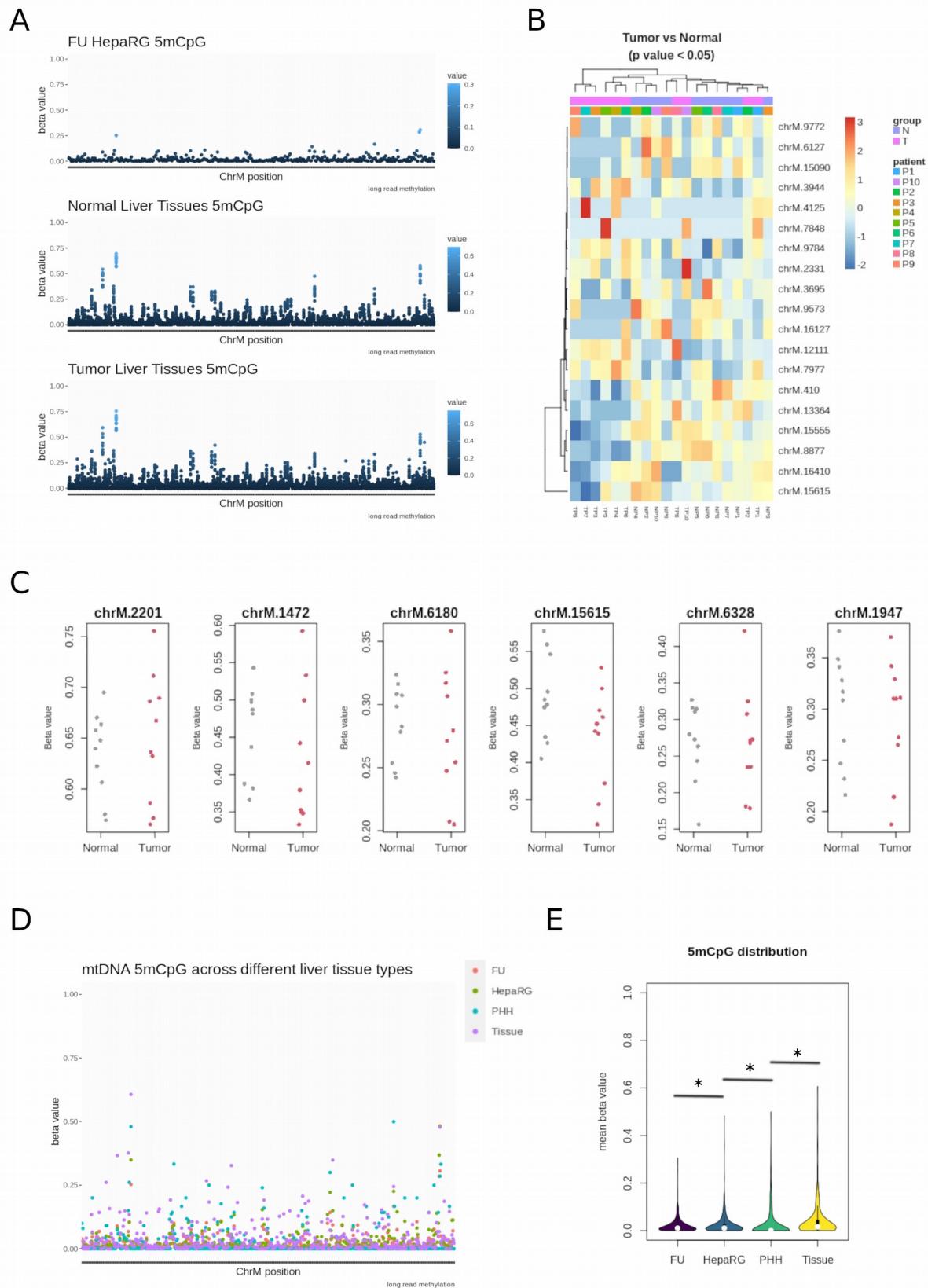
201 Hepatocyte differentiation implies metabolic rewiring and changes in mitochondrial content and
202 activity (Yu et al., 2012). As such, this dynamic context may involve concomitant changes in
203 mtDNA methylation. The bipotent liver progenitor cells, HepaRG, are capable of *in vitro*
204 differentiation into hepatocytes and biliary cells. By plating HepaRG cells under differentiating
205 conditions during four weeks we obtain a mixture of the hepatocyte and biliary lineages (Ancey
206 et al., 2017; Cerec et al., 2007; Rodríguez-Aguilera et al., 2020). This well-established model
207 allows us to compare hepatic “progenitor like” cells to their “differentiated” counterpart. We
208 used minimally photo-toxic holo-tomographic microscopy combined with mitochondrial labelling
209 (using MitoTracker Green) to determine mitochondrial content. We observed in both cellular
210 tomogram and MitoTracker staining profile that differentiated HepaRG cells have a higher
211 mitochondrial content, as well as more lipid droplets when compared to their progenitors
212 (Figure 3A).

213 To determine the effect of hepatocyte differentiation on mtDNA methylation, we used the
214 nanopore sequencing protocol described above, comparing progenitor-like HepaRG cells with

215 their differentiated progeny. In both cases, methylation values were not different from the fully
216 unmethylated control (Figure 3B). There was no differential methylation when directly
217 comparing proliferative and differentiated HepaRG cells (Figure 3C). Similar results were
218 obtained when analyzing both strands together or independently. Interestingly, the likelihood of
219 methylation, as calculated with nanopolish, was higher in differentiated HepaRG cells. This can
220 be seen at the read level (likelihood scale in Figure 3C shows mainly blue reads in proliferative
221 and mainly gray reads in differentiated cells). However, this difference was not high enough to
222 be called as methylation and/or may represent additional nucleotide modifications.

224 **Figure 3. Methylation of mitochondrial DNA measured by nanopore sequencing of a liver**
225 **progenitor cell line.** A) holotomography images of proliferative (progenitor) HepaRG cells and their
226 differentiated progeny. Left panel: Refractive Index (RI) map. Right panel: MitoTracker Green staining to
227 distinguish mitochondrial content and distribution. B) mtDNA enriched DNA extracts from HepaRG cells
228 were linearized and sequenced, as described in Figure 2A. The distribution of 5mCpG beta values
229 (both strands combined) is shown for proliferative (Prolif) and differentiated (Diff) HepaRG, as well as
230 FM and FU controls. C) Methylation frequency and likelihood (pile-plots for the first 100 reads) is shown
231 for proliferative and differentiated HepaRG (one representative sample of three independent
232 differentiation assays). Methylation likelihood scale shown in the pile-plots represents unlikely
233 methylated in blue, likely methylated in red, and intermediate values in gray. Gene mapping to mtDNA
234 are shown in the bottom track as colored arrows.

235


236 **mtDNA methylation in liver cancer**

237 Most cancer cells display a switch in their metabolic configuration, primarily relying on aerobic
238 glycolysis instead of mitochondrial oxidative phosphorylation (Vander Heiden et al., 2009). In
239 addition, it was recently described that, mtDNA from liver cancer cells had higher levels of CpG
240 methylation than that of non-tumorigenic liver cells *in vitro* (Patil et al., 2019). With this in mind,
241 we wanted to go further and test if mitochondria *in vivo* exhibit this same pattern of DNA
242 methylation. To this end, we sequenced the mitochondria of ten patient liver tissue samples
243 (normal and tumor matched pairs). Both tumor and non-tumor tissues displayed 5mCpG
244 methylation above background levels at several CpG sites (Figure 4A). However, we did not
245 find differentially methylated sites when comparing tumor and their matched adjacent tissues
246 (paired, multifactor approach). A subset of CpG sites with lowest p values for this comparison
247 (non-adjusted p < 0.05), were able to partially discriminate tumors from non-tumor tissues, with
248 the latter displaying slightly higher levels of 5mCpG (Figure 4B).

249 Rather than differential methylation between tumors and non-tumor tissues, we found
250 consistent 5mCpG at discrete sites (when compared to the FU background control) in both
251 type of samples (Figure 4C). Most 5mCpG was detected exclusively in the HS (Table), and
252 only 3 CpG sites were consistently found in the LS (i.e. chrM:314, chrM:5469, and
253 chrM:14382). There were also more sites detected as methylated in non-tumor tissues,
254 probably due to a higher 5mCpG variation in tumor samples (Figure 4C and Table 1).

255

256

258 **Figure 4. Long read DNA methylation in liver cancer.** DNA was extracted from 10 hepatocellular
259 carcinoma (HCC) patients and matched non-tumor adjacent tissues. A) 5mCpG values are shown after
260 nanopore sequencing of a fully unmethylated (FU) liver cell line (HepaRG, top panel), 10 non-tumor liver
261 tissues (middle panel), and 10 matched tumor tissues (bottom panel). B) 5mCpG heatmap of top most
262 significant (lowest p value in the paired Tumor vs. surrounding comparison) CpG sites. Annotations
263 include Tumor (T) vs Normal (N) status, and patient ID (P1 to P10). C) stripchart of 5mCpG (beta
264 values) for those sites displaying higher levels of methylation in tissues relative to the background (FU
265 sample). Each Normal or Tumor sample is represented in gray and red, respectively. D) 5mCpG values
266 along mtDNA for fully unmethylated control (FU), proliferative HepaRG cells, primary human
267 hepatocytes (PHH) and one representative non-tumor liver tissue (Tissue). E) Distribution of
268 mitochondrial 5mCpG in the same samples represented in (D). (*) indicates p value < 0.05, Mann-
269 Whitney' test.

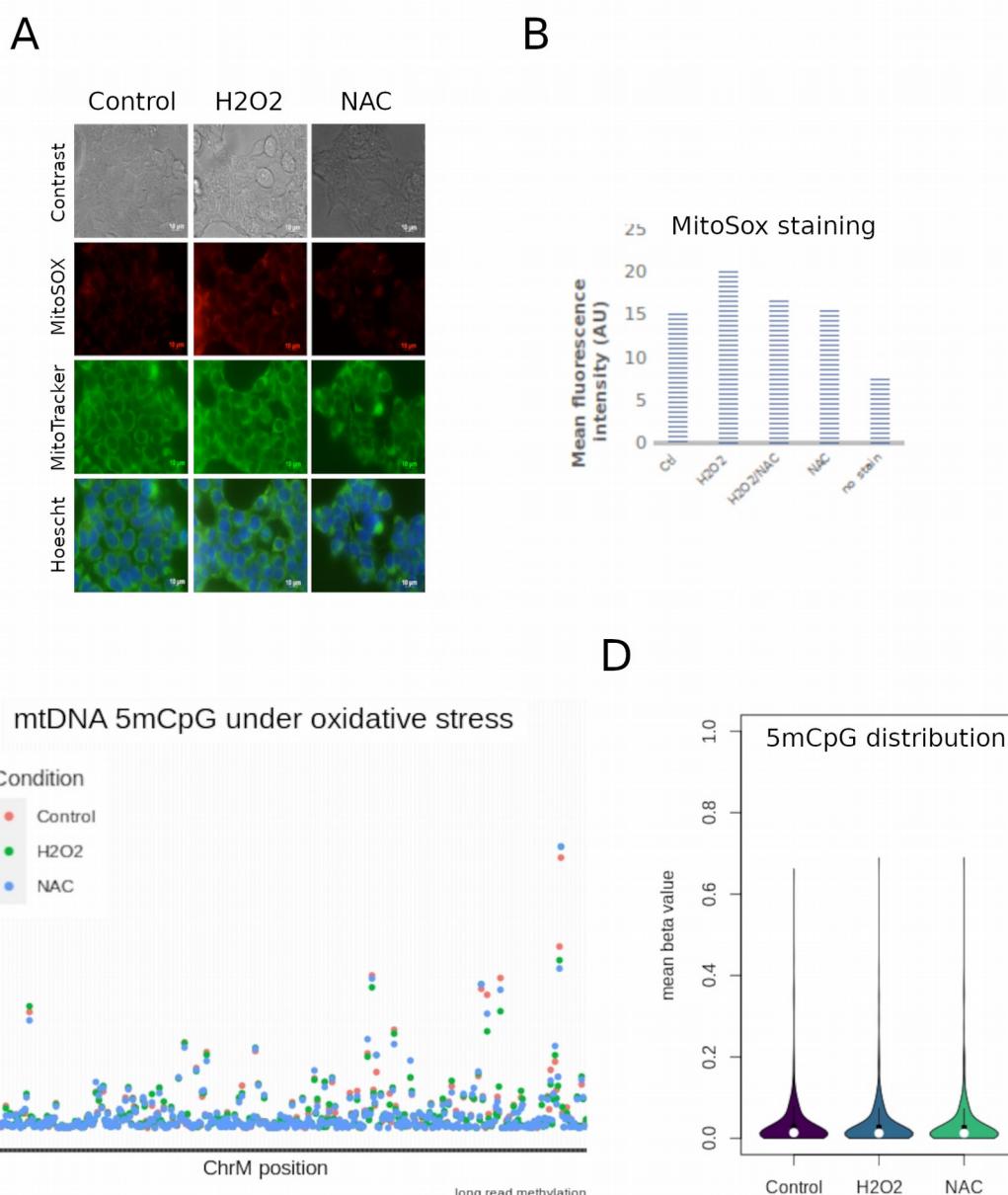
270

271 While the liver cell line HepaRG did not display 5mCpG above background (Figure 3), liver
272 tissues were consistently methylated at discrete CpG sites regardless of their tumor/normal
273 status. This suggests that 5mCpG may be lost in culture conditions. Indeed, major metabolic
274 alterations, notably metabolic repression, has been described after hepatocytes are placed in
275 culture (Cassim et al., 2017). In line with this, we observed intermediate 5mCpG values in
276 primary human hepatocytes (PHH) after two weeks in culture (Figure 4D). Globally, 5mCpG
277 was not different in HepaRG as compared to the FU control ($p = 0.5$). In contrast, 5mCpG was
278 higher in PHH relative to HepaRG ($p < 2.2\text{e-}16$), and higher in liver tissues relative to PHH ($p <$
279 $2.2\text{e-}16$) (Figure 4E). This result was similar when analyzing separately both mtDNA strands.

280 Therefore, there are no strong differences in mitochondrial 5mCpG in tumors relative to their
281 matched normal liver tissues. Instead, we were able to detect consistent 5mCpG in tissues and
282 a gradual loss in 5mCpG values as samples are placed in cell culture conditions.

283

284 ***mtDNA methylation was not affected by oxidative stress***


285 In addition to differentiation and cell transformation, mitochondrial activity is largely associated
286 to oxidative stress, and therefore an interesting process where to study 5mCpG variation. To
287 induce oxidative stress *in vitro*, we used an established method utilizing hydrogen peroxide to
288 induce reactive oxygen species (ROS) (Yagi et al., 2013). Several cell lines were tested (data
289 not shown) and *Homo sapiens* embryonic kidney 293T cells emerged as an ideal candidate for
290 an oxidative stress model. Treatment for two hours was sufficient to induce oxidative stress in
291 293T cells measured by MitoSox staining, which could be rescued by treatment with N-

292 acetylcysteine (NAC) (Figure 5A and 5B).

293 At basal levels, 293T cells exhibited higher global levels of 5mCpG than HepaRG cells (p value
294 = 0.05). However, the same strand specific methylation was observed (i.e. higher 5mCpG in
295 the HS). We then aimed to study the effect of oxidative stress on mtDNA methylation levels. In
296 order to do so, we induced oxidative stress in 293T cells and compared the mtDNA methylation
297 levels before and after treatment. We also rescued these cells from the induced oxidation using
298 NAC. Again we calculated the differential methylation between these three treatment groups
299 and with a threshold of 10% (Figure 4), we did not observe any differential methylation on the
300 HS or the LS (Figures 5C and 5D).

301 Although 5mCpG was clearly detectable in 293T cells, and higher than HepaRG cells, it was
302 not significantly affected by H2O2 exposure.

303

304 **Figure 5. Mitochondrial 5mCpG in response to oxidative stress.** Mitochondrial DNA was obtained
305 from the human embryonic kidney cell line 293T under basal conditions (Control), oxidative stress
306 (H_2O_2) and oxidative stress rescued with N-acetylcysteine (NAC). A) Representative images of phase
307 contrast, MitoSOX, MitoTracker and Hoechst staining. B) MitoSOX quantification of 5 independent
308 replicates. C) 5mCpG measured by nanopore under the same experimental conditions. Each dot
309 represents the average of triplicate values for each condition and each CpG site. D) mitochondrial
310 5mCpG distribution (both, HS and LS strands together) of the data shown in (C).

311

312 **Discussion**

313 In the present study we have shown that nanopore sequencing can reliably detect 5mCpG in
314 mitochondrial DNA from human cells. Exploiting the advantages of long reads and native DNA
315 sequencing, we show that 5mCpG can be detected at discrete CpG locations at levels that
316 depend on the cellular model (i.e. immortalized cell line, primary cells, or tissue). However, we
317 did not observe differential 5mCpG in three biological contexts: in vitro differentiation of a liver
318 progenitor cell line, comparison of human liver tumors and their matched non-tumor tissues,
319 and in vitro induction of oxidative stress.

320 For the first time, we provide a comprehensive characterization of mtDNA methylation in liver
321 cells, kidney cells and liver tissue by long read sequencing (ONT). We were able to use this
322 highly novel tool to detect the methylation patterns along 16kb reads spanning the entire
323 mitochondrial chromosome with deep coverage of $>10000x$ on naive DNA. In doing so, we
324 have produced a map of mtDNA 5mCpG, that has completely eliminated any introduced bias
325 from bisulfite conversion and PCR amplification; tools that we have relied on, and that have
326 served us well for many years.

327 Using ONT, we identified low basal levels of mtDNA methylation at specific regions in liver cells
328 *in vitro*. These levels were lower than that previously described (Ghosh et al., 2014; Patil et al.,
329 2019), however these authors have noted that CpG methylation was highly cell specific. While
330 we also analyzed the mitochondrial methylome of liver cells, we did not use the same cell lines
331 as these previous studies. Hence, the differences observed are likely due to the cell specific
332 nature of mtDNA 5mCpG. Moreover, it should be noted that a series of work outlining
333 amendments to the bisulfite conversion protocol for mitochondria have been published in order
334 to ensure the bisulfite conversion efficiency is properly controlled for (Owa et al., 2018). Since
335 the average mtDNA CpG methylation levels were very low, we further validated this work
336 through extensive comparisons of basal 5mCpG with negative controls. Other studies have
337 reported similar cell specific mtDNA methylation patterns (Bellizzi et al., 2013), however, we
338 are the first to represent these landscapes in differentiation models and/or using long reads.

339 Furthermore, we have also for the first time, clearly identified strand specific mtDNA
340 methylation using long read sequencing. We observed higher levels of 5mCpG in the HS
341 generally. This was in accordance with recent reports that have also identified a strand specific
342 methylation via different techniques such as bisulfite sequencing and meDIP (Dou et al., 2019;
343 Ghosh et al., 2014; Patil et al., 2019).

344 We did not find significant variation in 5mCpG under oxidative stress conditions. While the
345 effect of oxidative stress on mitochondrial activity has been extensively studied (Ashari et al.,
346 2020; Yu et al., 2020), there had not yet been a comprehensive mapping of mtDNA 5mCpG in
347 oxidative stress conditions. In fact, we could not find any work that has investigated mtDNA
348 methylation in this context.

349 Despite our novelty, there are limitations to this work as it stands; including the lack of
350 investigation into non-CpG methylation, which has previously been characterized in liver
351 cancer cells and linked strongly to the control of mitochondrial gene expression (Bellizzi et al.,
352 2013; Patil et al., 2019), as well as the detection of 5hmCpG, which has been also reported in
353 mtDNA (Shock et al., 2011), and is highly dynamic in liver cell differentiation and linked to gene
354 regulation (Ancey et al., 2017; Rodríguez-Aguilera et al., 2020). Therefore, it is clear that more
355 work is needed to develop long read sequencing tools to determine non-CpG methylation or
356 other modified bases like 5hmC in general. There are technical and bioinformatic limitations to
357 nanopore sequencing currently. But this field is rapidly advancing and as such we are confident
358 that making this data publicly available will continue to contribute to this important work.

359 In conclusion, nanopore is a useful tool for the detection of modified DNA bases on
360 mitochondria, however, care must be taken to consider the HS and LS strands separately as
361 well as the heterogeneity of mitochondrial populations.

362

363 **Methods**

364 ***Cell culture, maintenance and differentiation***

365 HepaRG cells were cultured in Williams media enriched with 10% Fetal calf serum clone II, 1%
366 Penicillin/Streptomycin, L-glutamine (2mM), insulin (5 μ g/mL) and hydrocortisone (25 μ g/mL).
367 Proliferative HepaRGs were taken before reaching 50% confluence and differentiated
368 hepaRGs were differentiated as previously described (Ancey et al., 2017; Cerec et al., 2007;
369 Rodríguez-Aguilera et al., 2020).

370 HEK293T, immortal cells derived from embryonic kidney were grown in tissue culture dishes
371 (Falcon, Becton Dickinson) and cultured in DMEM 1X media containing 1%

372 Penicillin/Streptomycin, 1% sodium pyruvate, 1% L-glutamine, 1% non-essential amino-acids,
373 all from Life Technologies, and 10% fetal bovine serum (Eurobio Abcys).

374 ***Induction of oxidative stress***

375 HEK293T cells were treated ydrogen peroxide (H₂O₂) (Sigma-Aldrich, 216763) at a concentration
376 of 500 μ M for 2 hours, alone or in combination with 5mM N-acetyl-cysteine (NAC) (Sigma-Aldrich,
377 A7250). When using NAC, cells were pre-treated for 2hrs with 5mM NAC.

378 The mitochondrial superoxide indicator stain MitoSOX (ThermoFisher, M36008) was used to probe
379 the relative oxidative stress in live cells. Cells were stained with 1 μ M MitoSOX diluted in DMEM.
380 250,000 cells were incubated with 330 μ l for 30 min and analyzed by flow cytometry, then washed
381 with PBS and trypsinized. Flow cytometry tubes were kept on ice and in the dark until use. Flow
382 cytometry analysis was performed with a FACSCalibur (BD Biosciences). The mean fluorescence
383 intensity of minimum 10,000 stained cells and unstained control cells were recorded and plotted for
384 analysis. Alternatively, MitoSOX was analyzed by epifluorescence microscopy (Zeiss, Axio
385 Observer).

386 ***Holotomography***

387 Differentiated and proliferative HepaRG cells were plated at high confluence. Mitotracker
388 (100nM) was added to normal growth medium for 1h before imaging with a 3D Cell-Explorer
389 Fluo (Nanolive, Ecublens, Switzerland) using a 60x air objective. Refractory index maps were
390 generated and images were processed every 5 seconds for 20 minutes with the STEVE
391 software.

392 ***Subcellular fractionation and mtDNA extraction***

393 Subcellular fractionation was performed as previously described (Arnoult et al., 2003) with
394 some modifications. Briefly, cells were washed with PBS, harvested by scraping and
395 centrifuged at 1000 g for 5 min. The pellet was re-suspended in buffer containing 210 mM
396 sorbitol, 70 mM sucrose, 1 mM EDTA, 10 mM HEPES and 0.1% BSA (Sigma) before grinding
397 with a Dounce Homogenizer (Wheaton, USA) with a loose and tight pestle (100 strokes with
398 each pestle). Cells were observed under microscope (Axiovert 40C, Zeiss) with trypan blue dye
399 to assess cell membrane disruption followed by centrifugation at 500 g for 5 min at 4 °C. The
400 supernatant was collected before centrifugation at 10 000 g for 30 min at 4 °C. DNA extraction
401 (Nucleospin Tissue, Macherey-Nagel) was performed on the resulting pellet according to
402 manufacturer instructions. mtDNA was digested using BamH1 HF (New England BioLabs) in
403 order to linearize mtDNA genome.

404 ***Fully unmethylated and fully methylated controls***

405 After mtDNA enrichment and linearization, we prepared a negative (FU = fully unmethylated)

406 control sample from differentiated HepaRG mtDNA by performing whole genome amplification
407 using a repliG kit (Qiagen) according to manufacturer's instructions. After amplification, a
408 positive control for methylation (FM = fully methylated) was prepared. Briefly, CpG
409 dinucleotides were methylated by incubating 1 μ g of DNA with S-Adenosyl methionine (SAM)
410 (32 μ M) with CpG Methyltransferase (M.SssI) (4-25 units) (New England BioLabs) at 37°C for
411 1h before heating to 65°C for 20mins.

412 ***Patient tissue samples***

413 Human biological samples and associated data were obtained from "Tissu-Tumorothèque Est"
414 (CRB-HCL, Hospices Civils de Lyon Biobank, BB-0033-00046). DNA extracted with the
415 epicentre kit.

416 ***Nanopore sequencing***

417 400ng of DNA from each sample or control was barcoded and multiplexed using the Nanopore
418 Rapid Barcoding Sequencing kit (SQK-RBK004) according to manufacturer's instructions.
419 Sequencing was conducted with a Minion sequencer on ONT 1D flow cells (FLO-min106) with
420 protein pore R9.4 1D chemistry for 48h. Reads were basecalled with GUPPY (version 4.3.2).
421 Basecalled reads were mapped using Minimap2 to the GRCh38/hg38 human genome.

422 ***Bioinformatic analyses***

423 Basecalling was performed with Guppy version 4.0.15 (ONT). We first determined the
424 methylation status of each CpG site on every read by using the widely used tool, *nanopolish*
425 (Simpson et al., 2017) used recently by (Gigante et al., 2019). For validation, we also called
426 DNA methylation using novel tool, Medaka (git repository reference). Medaka is a tool to create
427 a consensus sequence from nanopore sequencing data. This task is performed using neural
428 networks applied from a pileup of individual sequencing reads against a draft assembly. It
429 outperforms graph-based methods operating on basecalled data, and can be competitive with
430 state-of-the-art signal-based methods, whilst being much faster.

431 PycoQC was used for data inspection and quality control (<https://github.com/a-slide/pycoQC>),
432 and methplotlib (<https://github.com/wdecoster/methplotlib>) for read-level visualizations.

433 Called CpG sites in the FU control were used to determine a baseline of methylation. The
434 following calculation was utilised: FalsePositiveRate=[#called methylated cytosines in
435 FU/#called cytosines in FU].

436 For differential methylation analyses we used DSS (Dispersion shrinkage for sequencing data)
437 (Park and Wu, 2016) adapted for nanopore sequencing (Gigante et al., 2019). The aggregated
438 β methylation values for each CpG group are tested for differential methylation using the DSS

439 software (Park and Wu, 2016) and adapted for nanopore sequencing according to (Gigante et
440 al., 2019). Briefly, DSS tests for differential methylation at single CpG-sites, using a Wald test
441 on the co-efficients of a beta-binomial regression of count data with an 'arcsine' link function. In
442 order to set minimum requirements for DSS analysis, an internal comparison of biological
443 replicates of differentiated HepaRG cells was undertaken. From this we were able to better
444 understand the background and determine the minimum smoothing and delta values. These
445 values were set at a smoothing of 10-50bp and a delta of 0.05 with minimum P-value of 0.05.

446 We used the bioconductor packages MIRA (Lawson et al., 2018) for methylation data
447 aggregation, and LOLA for dataset selection (Sheffield and Bock, 2016).

448 Mann-Whitney's test was used for pairwise comparisons of 5mCpG distribution.

449

450 **Availability of data and material**

451 Datasets generated during the current study will be uploaded to the GEO repository.

452

453 **Competing interests**

454 C.G. and H.H.-V. have received travel and accommodation support to attend conferences for
455 Oxford Nanopore Technology. The authors declare that they have no additional competing
456 interests.

457

458 **Funding**

459 This work was supported by the Agence Nationale de Recherches sur le SIDA et les Hépatites
460 Virales (ANRS, Reference No. ECTZ47287 and ECTZ50137); the Institut National du Cancer
461 AAP PLBIO 2017 (project : T cell tolerance to microbiota and colorectal cancers); La Ligue
462 Nationale Contre Le Cancer Comité d'Auvergne-Rhône-Alpes AAP 2018; Dirección General de
463 Asuntos del Personal Académico/Programa de Apoyo a Proyectos de Investigación e
464 Innovación Tecnológica (DGAPA/PAPIIT-UNAM Grant number IN9082015); PhD Fellowship
465 from Consejo Nacional de Ciencia y Tecnología to JRRA (CONACyT CVU 508509);
466 International Research Internship Support to JRRA from Programa de Apoyo a los Estudios de
467 Posgrado del Programa de Maestría y Doctorado en Ciencias Bioquímicas (PAEP-UNAM No.
468 Cta. 30479367-5), CONACyT (Beca Mixta CVU 508509), Stipend Supplement from IARC
469 (Ref. STU. 2052), and Aide au logement from CAF (No Allocataire: 4384941 W) and
470 ROAL660122.

471

472 **Acknowledgements**

473 The authors would like to thank the patients that participated in this study.

474

475 **Authors' contributions**

476 C.G. carried out the experiments and wrote the first draft of the manuscript; J.R.R.A. and I.E-R.
477 performed experiments and additional validations; C.G., A.J. and H.H.-V. performed all
478 statistical and bioinformatic analyses; V.H. obtained the human samples; R.D., G.I., and
479 V.C.d.S. provided conceptual assistance and supervised experiments; H.H.-V. and G.I.
480 conceived the study; H.H.-V. coordinated the project and wrote the manuscript. All authors
481 discussed the results and manuscript text.

482

483

484

485 **Table.** Differential methylation in normal and tumor samples, relative to FU control.

486

487

488

		Normal Liver vs. FU control		HCC vs. FU control	
	CpG site	pval	fdr	pval	fdr
Heavy Strand					
489	chrM:185	5.0E-14	1.1E-12	4.4E-06	5.5E-05
490	chrM:410	1.5E-07	1.6E-06	3.0E-04	2.3E-03
491	chrM:931	2.5E-21	1.3E-19	2.0E-18	1.2E-16
492	chrM:934	1.2E-16	3.2E-15	1.0E-17	5.5E-16
493	chrM:1176	2.0E-28	1.5E-26	2.8E-26	4.1E-24
494	chrM:1472	2.4E-20	1.2E-18	2.7E-17	1.3E-15
495	chrM:1474	2.0E-47	8.6E-45	8.7E-38	3.8E-35
496	chrM:1483	7.6E-09	8.9E-08	-	-
497	chrM:1748	2.6E-09	3.2E-08	1.2E-07	2.0E-06
498	chrM:1947	4.4E-07	4.2E-06	2.8E-06	3.7E-05
499	chrM:2201	3.5E-07	3.5E-06	9.6E-08	1.7E-06
500	chrM:3171	2.1E-19	7.7E-18	-	-
501	chrM:3246	1.8E-07	1.9E-06	-	-
502	chrM:3965	7.8E-12	1.4E-10	1.8E-07	2.8E-06
503	chrM:5754	9.9E-12	1.7E-10	1.2E-05	1.3E-04
504	chrM:6180	3.2E-18	1.1E-16	6.3E-17	2.5E-15
505	chrM:6328	4.7E-11	6.8E-10	4.7E-09	1.1E-07
506	chrM:6568	8.2E-20	3.2E-18	1.2E-18	1.1E-16
507	chrM:6571	5.8E-15	1.4E-13	5.0E-17	2.2E-15
508	chrM:6850	8.9E-32	7.7E-30	-	-
509	chrM:7018	1.4E-10	1.9E-09	-	-
510	chrM:7995	1.3E-37	1.9E-35	1.4E-15	5.1E-14
511	chrM:8018	1.9E-15	4.9E-14	1.2E-08	2.5E-07
512	chrM:8116	4.4E-17	1.3E-15	-	-
513	chrM:9053	6.9E-08	7.7E-07	5.5E-06	6.6E-05
514	chrM:9161	1.9E-10	2.5E-09	1.0E-08	2.2E-07
515	chrM:9380	1.9E-32	2.0E-30	3.3E-25	3.6E-23
516	chrM:9382	6.5E-41	1.4E-38	7.3E-32	1.6E-29
517	chrM:10201	2.7E-10	3.4E-09	6.4E-10	1.6E-08
518	chrM:11029	1.4E-11	2.2E-10	-	-
519	chrM:11161	2.3E-05	1.5E-04	-	-
520	chrM:11475	1.7E-05	1.2E-04	-	-
521	chrM:11715	1.5E-08	1.8E-07	-	-
522	chrM:11912	8.1E-07	7.4E-06	-	-
523	chrM:14696	5.0E-13	1.0E-11	6.1E-06	7.0E-05
524	chrM:15615	3.4E-04	1.9E-03	3.8E-04	2.7E-03
525	chrM:15925	4.5E-06	3.5E-05	-	-

509 **Light Strand**

	CpG site	pval	fdr	pval	fdr
510	chrM:314	1.5E-18	6.4E-16	1.3E-07	2.8E-05
511	chrM:4425	2.9E-07	1.1E-05	-	-
512	chrM:5469	9.1E-07	3.0E-05	1.6E-05	1.0E-03
513	chrM:14382	6.9E-18	1.5E-15	5.8E-12	2.5E-09

511

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. Molecular Biology of the Cell, 4th ed. Garland Science.

Alexeyev, M., Shokolenko, I., Wilson, G., LeDoux, S., 2013. The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. *Cold Spring Harb Perspect Biol* 5. <https://doi.org/10.1101/cshperspect.a012641>

Ancey, P.-B., Ecsedi, S., Lambert, M.-P., Talukdar, F.R., Cros, M.-P., Glaise, D., Narvaez, D.M., Chauvet, V., Herceg, Z., Corlu, A., Hernandez-Vargas, H., 2017. TET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors. *Stem Cell Reports* 9, 264–278. <https://doi.org/10.1016/j.stemcr.2017.05.023>

Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J.C., Cecconi, F., Youle, R.J., 2003. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. *EMBO J.* 22, 4385–4399. <https://doi.org/10.1093/emboj/cdg423>

Ashari, S., Karami, M., Shokrzadeh, M., Ghandadi, M., Ghassemi-Barghi, N., Dashti, A., Ranaee, M., Mohammadi, H., 2020. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. *Toxicol. Mech. Methods* 30, 427–437. <https://doi.org/10.1080/15376516.2020.1758980>

Bellizzi, D., D'Aquila, P., Scafone, T., Giordano, M., Riso, V., Riccio, A., Passarino, G., 2013. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. *DNA Res.* 20, 537–547. <https://doi.org/10.1093/dnares/dst029>

Cassim, S., Raymond, V.-A., Lapierre, P., Bilodeau, M., 2017. From in vivo to in vitro: Major metabolic alterations take place in hepatocytes during and following isolation. *PLoS ONE* 12, e0190366. <https://doi.org/10.1371/journal.pone.0190366>

Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B., Gripon, P., Kremsdorff, D., Guguen-Guillouzo, C., Corlu, A., 2007. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. *Hepatology* 45, 957–967. <https://doi.org/10.1002/hep.21536>

Crews, S., Ojala, D., Posakony, J., Nishiguchi, J., Attardi, G., 1979. Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. *Nature* 277, 192–198. <https://doi.org/10.1038/277192a0>

Dou, X., Boyd-Kirkup, J.D., McDermott, J., Zhang, X., Li, F., Rong, B., Zhang, R., Miao, B., Chen, P., Cheng, H., Xue, J., Bennett, D., Wong, J., Lan, F., Han, J.-D.J., 2019. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. *Genome Res.* 29, 1622–1634. <https://doi.org/10.1101/gr.234021.117>

Fish, J., Raule, N., Attardi, G., 2004. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. *Science* 306, 2098–2101. <https://doi.org/10.1126/science.1102077>

Ghosh, S., Sengupta, S., Scaria, V., 2014. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. *Mitochondrion* 18, 58–62.
<https://doi.org/10.1016/j.mito.2014.07.007>

Gigante, S., Gouil, Q., Lucattini, A., Keniry, A., Beck, T., Tinning, M., Gordon, L., Woodruff, C., Speed, T.P., Blewitt, M.E., Ritchie, M.E., 2019. Using long-read sequencing to detect imprinted DNA methylation. *Nucleic Acids Res.* 47, e46.
<https://doi.org/10.1093/nar/gkz107>

Gilpatrick, T., Lee, I., Graham, J.E., Raimondeau, E., Bowen, R., Heron, A., Downs, B., Sukumar, S., Sedlazeck, F.J., Timp, W., 2020. Targeted nanopore sequencing with Cas9-guided adapter ligation. *Nat. Biotechnol.* 38, 433–438.
<https://doi.org/10.1038/s41587-020-0407-5>

Hong, E.E., Okitsu, C.Y., Smith, A.D., Hsieh, C.-L., 2013. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. *Mol. Cell. Biol.* 33, 2683–2690. <https://doi.org/10.1128/MCB.00220-13>

Jain, M., Olsen, H.E., Paten, B., Akeson, M., 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biol.* 17, 239. <https://doi.org/10.1186/s13059-016-1103-0>

Lawson, J.T., Tomazou, E.M., Bock, C., Sheffield, N.C., 2018. MIRA: an R package for DNA methylation-based inference of regulatory activity. *Bioinformatics* 34, 2649–2650. <https://doi.org/10.1093/bioinformatics/bty083>

Li, Y., Tollefsbol, T.O., 2011. DNA methylation detection: bisulfite genomic sequencing analysis. *Methods Mol. Biol.* 791, 11–21. https://doi.org/10.1007/978-1-61779-316-5_2

Lieber, C.S., 1991. Hepatic, metabolic and toxic effects of ethanol: 1991 update. *Alcohol. Clin. Exp. Res.* 15, 573–592. <https://doi.org/10.1111/j.1530-0277.1991.tb00563.x>

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A., Lemainque, A., Wincker, P., Aury, J.-M., 2015. Genome assembly using Nanopore-guided long and error-free DNA reads. *BMC Genomics* 16, 327.
<https://doi.org/10.1186/s12864-015-1519-z>

Mechta, M., Ingerslev, L.R., Fabre, O., Picard, M., Barrès, R., 2017. Evidence Suggesting Absence of Mitochondrial DNA Methylation. *Front Genet* 8, 166.
<https://doi.org/10.3389/fgene.2017.00166>

Owa, C., Poulin, M., Yan, L., Shioda, T., 2018. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection. *PLoS ONE* 13, e0192722.
<https://doi.org/10.1371/journal.pone.0192722>

Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-Garmendia, I., Bilbao, J.R., Cahais, V., Rothwell, J., Herceg, Z., 2019. Human mitochondrial DNA is extensively methylated in a non-CpG context. *Nucleic Acids*

Res. 47, 10072–10085. <https://doi.org/10.1093/nar/gkz762>

Porporato, P.E., Filigheddu, N., Pedro, J.M.B.-S., Kroemer, G., Galluzzi, L., 2018. Mitochondrial metabolism and cancer. *Cell Res.* 28, 265–280. <https://doi.org/10.1038/cr.2017.155>

Rodríguez-Aguilera, J.R., Ecsedi, S., Goldsmith, C., Cros, M.-P., Domínguez-López, M., Guerrero-Celis, N., Pérez-Cabeza de Vaca, R., Chemin, I., Recillas-Targa, F., Chagoya de Sánchez, V., Hernández-Vargas, H., 2020. Genome-wide 5-hydroxymethylcytosine (5hmC) emerges at early stage of in vitro differentiation of a putative hepatocyte progenitor. *Sci Rep* 10, 7822. <https://doi.org/10.1038/s41598-020-64700-2>

Seki, M., Katsumata, E., Suzuki, A., Sereewattanawoot, S., Sakamoto, Y., Mizushima-Sugano, J., Sugano, S., Kohno, T., Frith, M.C., Tsuchihara, K., Suzuki, Y., 2019. Evaluation and application of RNA-Seq by MinION. *DNA Res.* 26, 55–65. <https://doi.org/10.1093/dnares/dsy038>

Sheffield, N.C., Bock, C., 2016. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics* 32, 587–589. <https://doi.org/10.1093/bioinformatics/btv612>

Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J., Timp, W., 2017. Detecting DNA cytosine methylation using nanopore sequencing. *Nat. Methods* 14, 407–410. <https://doi.org/10.1038/nmeth.4184>

Sun, X., St John, J.C., 2018. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. *Epigenetics Chromatin* 11, 53. <https://doi.org/10.1186/s13072-018-0223-z>

Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science* 324, 1029–1033. <https://doi.org/10.1126/science.1160809>

Weinhause, C., 2017. Mitochondrial-epigenetic crosstalk in environmental toxicology. *Toxicology* 391, 5–17. <https://doi.org/10.1016/j.tox.2017.08.008>

Wick, R.R., Judd, L.M., Holt, K.E., 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. *Genome Biol.* 20, 129. <https://doi.org/10.1186/s13059-019-1727-y>

Yagi, H., Tan, J., Tuan, R.S., 2013. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. *J. Cell. Biochem.* 114, 1163–1173. <https://doi.org/10.1002/jcb.24459>

Yu, Y., Liu, H., Ikeda, Y., Amiot, B.P., Rinaldo, P., Duncan, S.A., Nyberg, S.L., 2012. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. *Stem Cell Res* 9, 196–207. <https://doi.org/10.1016/j.scr.2012.06.004>

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. *Molecular Biology of the Cell*, 4th ed. Garland Science.

Alexeyev, M., Shokolenko, I., Wilson, G., LeDoux, S., 2013. The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. *Cold Spring Harb Perspect Biol* 5. <https://doi.org/10.1101/cshperspect.a012641>

Ancey, P.-B., Ecsedi, S., Lambert, M.-P., Talukdar, F.R., Cros, M.-P., Glaise, D., Narvaez, D.M., Chauvet, V., Herceg, Z., Corlu, A., Hernandez-Vargas, H., 2017. TET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors. *Stem Cell Reports* 9, 264–278. <https://doi.org/10.1016/j.stemcr.2017.05.023>

Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J.C., Cecconi, F., Youle, R.J., 2003. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. *EMBO J.* 22, 4385–4399. <https://doi.org/10.1093/emboj/cdg423>

Ashari, S., Karami, M., Shokrzadeh, M., Ghandadi, M., Ghassemi-Barghi, N., Dashti, A., Ranaee, M., Mohammadi, H., 2020. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. *Toxicol. Mech. Methods* 30, 427–437. <https://doi.org/10.1080/15376516.2020.1758980>

Bellizzi, D., D'Aquila, P., Scafone, T., Giordano, M., Riso, V., Riccio, A., Passarino, G., 2013. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. *DNA Res.* 20, 537–547. <https://doi.org/10.1093/dnares/dst029>

Cassim, S., Raymond, V.-A., Lapierre, P., Bilodeau, M., 2017. From in vivo to in vitro: Major metabolic alterations take place in hepatocytes during and following isolation. *PLoS ONE* 12, e0190366. <https://doi.org/10.1371/journal.pone.0190366>

Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B., Gripon, P., Kremsdorff, D., Guguen-Guillouzo, C., Corlu, A., 2007. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. *Hepatology* 45, 957–967. <https://doi.org/10.1002/hep.21536>

Crews, S., Ojala, D., Posakony, J., Nishiguchi, J., Attardi, G., 1979. Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. *Nature* 277, 192–198. <https://doi.org/10.1038/277192a0>

Dou, X., Boyd-Kirkup, J.D., McDermott, J., Zhang, X., Li, F., Rong, B., Zhang, R., Miao, B., Chen, P., Cheng, H., Xue, J., Bennett, D., Wong, J., Lan, F., Han, J.-D.J., 2019. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. *Genome Res.* 29, 1622–1634. <https://doi.org/10.1101/gr.234021.117>

Feng, S., Xiong, L., Ji, Z., Cheng, W., Yang, H., 2012. Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. *Mol Med Rep* 6, 125–130. <https://doi.org/10.3892/mmr.2012.870>

Fish, J., Raule, N., Attardi, G., 2004. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. *Science* 306, 2098–2101. <https://doi.org/10.1126/science.1103500>

doi.org/10.1126/science.1102077

Ghosh, S., Sengupta, S., Scaria, V., 2014. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. *Mitochondrion* 18, 58–62.
<https://doi.org/10.1016/j.mito.2014.07.007>

Gigante, S., Gouil, Q., Lucattini, A., Keniry, A., Beck, T., Tinning, M., Gordon, L., Woodruff, C., Speed, T.P., Blewitt, M.E., Ritchie, M.E., 2019. Using long-read sequencing to detect imprinted DNA methylation. *Nucleic Acids Res.* 47, e46.
<https://doi.org/10.1093/nar/gkz107>

Gilpatrick, T., Lee, I., Graham, J.E., Raimondeau, E., Bowen, R., Heron, A., Downs, B., Sukumar, S., Sedlazeck, F.J., Timp, W., 2020. Targeted nanopore sequencing with Cas9-guided adapter ligation. *Nat. Biotechnol.* 38, 433–438.
<https://doi.org/10.1038/s41587-020-0407-5>

Hong, E.E., Okitsu, C.Y., Smith, A.D., Hsieh, C.-L., 2013. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. *Mol. Cell. Biol.* 33, 2683–2690. <https://doi.org/10.1128/MCB.00220-13>

Jain, M., Olsen, H.E., Paten, B., Akeson, M., 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biol.* 17, 239. <https://doi.org/10.1186/s13059-016-1103-0>

Lawson, J.T., Tomazou, E.M., Bock, C., Sheffield, N.C., 2018. MIRA: an R package for DNA methylation-based inference of regulatory activity. *Bioinformatics* 34, 2649–2650. <https://doi.org/10.1093/bioinformatics/bty083>

Li, Y., Tollefson, T.O., 2011. DNA methylation detection: bisulfite genomic sequencing analysis. *Methods Mol. Biol.* 791, 11–21. https://doi.org/10.1007/978-1-61779-316-5_2

Lieber, C.S., 1991. Hepatic, metabolic and toxic effects of ethanol: 1991 update. *Alcohol. Clin. Exp. Res.* 15, 573–592. <https://doi.org/10.1111/j.1530-0277.1991.tb00563.x>

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A., Lemainque, A., Wincker, P., Aury, J.-M., 2015. Genome assembly using Nanopore-guided long and error-free DNA reads. *BMC Genomics* 16, 327.
<https://doi.org/10.1186/s12864-015-1519-z>

Mechta, M., Ingerslev, L.R., Fabre, O., Picard, M., Barrès, R., 2017. Evidence Suggesting Absence of Mitochondrial DNA Methylation. *Front Genet* 8, 166.
<https://doi.org/10.3389/fgene.2017.00166>

Owa, C., Poulin, M., Yan, L., Shioda, T., 2018. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection. *PLoS ONE* 13, e0192722.
<https://doi.org/10.1371/journal.pone.0192722>

Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-

Garmendia, I., Bilbao, J.R., Cahais, V., Rothwell, J., Herceg, Z., 2019. Human mitochondrial DNA is extensively methylated in a non-CpG context. *Nucleic Acids Res.* 47, 10072-10085. <https://doi.org/10.1093/nar/gkz762>

Pirola, C.J., Gianotti, T.F., Burgueño, A.L., Rey-Funes, M., Loidl, C.F., Mallardi, P., Martino, J.S., Castaño, G.O., Sookoian, S., 2013. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. *Gut* 62, 1356-1363. <https://doi.org/10.1136/gutjnl-2012-302962>

Porporato, P.E., Filigheddu, N., Pedro, J.M.B.-S., Kroemer, G., Galluzzi, L., 2018. Mitochondrial metabolism and cancer. *Cell Res.* 28, 265-280. <https://doi.org/10.1038/cr.2017.155>

Rodríguez-Aguilera, J.R., Ecsedi, S., Goldsmith, C., Cros, M.-P., Domínguez-López, M., Guerrero-Celis, N., Pérez-Cabeza de Vaca, R., Chemin, I., Recillas-Targa, F., Chagoya de Sánchez, V., Hernández-Vargas, H., 2020. Genome-wide 5-hydroxymethylcytosine (5hmC) emerges at early stage of in vitro differentiation of a putative hepatocyte progenitor. *Sci Rep* 10, 7822. <https://doi.org/10.1038/s41598-020-64700-2>

Seki, M., Katsumata, E., Suzuki, A., Sereewattanawoot, S., Sakamoto, Y., Mizushima-Sugano, J., Sugano, S., Kohno, T., Frith, M.C., Tsuchihara, K., Suzuki, Y., 2019. Evaluation and application of RNA-Seq by MinION. *DNA Res.* 26, 55-65. <https://doi.org/10.1093/dnares/dsy038>

Sheffield, N.C., Bock, C., 2016. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics* 32, 587-589. <https://doi.org/10.1093/bioinformatics/btv612>

Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G., Taylor, S.M., 2011. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. *Proc. Natl. Acad. Sci. U.S.A.* 108, 3630-3635. <https://doi.org/10.1073/pnas.1012311108>

Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J., Timp, W., 2017. Detecting DNA cytosine methylation using nanopore sequencing. *Nat. Methods* 14, 407-410. <https://doi.org/10.1038/nmeth.4184>

Sun, X., St John, J.C., 2018. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. *Epigenetics Chromatin* 11, 53. <https://doi.org/10.1186/s13072-018-0223-z>

Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science* 324, 1029-1033. <https://doi.org/10.1126/science.1160809>

Weinhouse, C., 2017. Mitochondrial-epigenetic crosstalk in environmental toxicology. *Toxicology* 391, 5-17. <https://doi.org/10.1016/j.tox.2017.08.008>

Wick, R.R., Judd, L.M., Holt, K.E., 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. *Genome Biol.* 20, 129. <https://doi.org/10.1186/s13059-019-1727-y>

Yagi, H., Tan, J., Tuan, R.S., 2013. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. *J. Cell. Biochem.* 114, 1163–1173. <https://doi.org/10.1002/jcb.24459>

Yu, Y., Liu, H., Ikeda, Y., Amiot, B.P., Rinaldo, P., Duncan, S.A., Nyberg, S.L., 2012. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. *Stem Cell Res* 9, 196–207. <https://doi.org/10.1016/j.scr.2012.06.004>

Yu, Z., Li, Q., Wang, Y., Li, P., 2020. A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. *Apoptosis* 25, 412–425. <https://doi.org/10.1007/s10495-020-01608-2>