

1 **A high-affinity calmodulin-binding site in the CyaA toxin translocation domain is**
2 **essential for invasion into eukaryotic cells**

3

4 Alexis Voegele^{1,2*}, Mirko Sadi^{1,2*}, Darragh P O'Brien^{1*}, Pauline Gehan^{3*}, Dorothée
5 Raoux-Barbot¹, Maryline Davi¹, Sylviane Hoos⁴, Sébastien Brûlé⁴, Bertrand Raynal⁴,
6 Patrick Weber⁵, Ariel Mechaly⁵, Ahmed Haouz⁵, Nicolas Rodriguez³, Patrice Vachette⁶,
7 Dominique Durand⁶, Sébastien Brier⁷, Daniel Ladant¹, Alexandre Chenal¹

8 1: Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and
9 Chemistry, Institut Pasteur, CNRS UMR3528, 75015 Paris, France

10 2: Université de Paris, Sorbonne Paris Cité, Paris, France

11 3: Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des
12 biomolécules, LBM, 75005 Paris, France

13 4: Plateforme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France

14 5: Institut Pasteur, Plate-forme de cristallographie-C2RT, UMR-3528 CNRS, Paris, France

15 6: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),
16 91198, Gif-sur-Yvette, France.

17 7: Biological NMR Technological Plateform, Center for Technological Ressources and
18 Research, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS
19 UMR3528, 75015 Paris, France

20 Author Contribution note: * these authors contribute equally to this work

21 To whom correspondence and material requests should be addressed:

22 daniel.ladant@pasteur.fr; alexandre.chenal@pasteur.fr

23

24

25

26 **Abstract**

27 The molecular mechanisms and forces involved in the translocation of bacterial toxins into
28 host cells have thus far remained elusive. The adenylate cyclase (CyaA) toxin from *Bordetella*
29 *pertussis* displays a unique intoxication pathway in which its catalytic domain is directly
30 translocated across target cell membranes. We have previously identified a translocation
31 region in CyaA that contains a segment, P454 (residues 454–484), exhibiting membrane-
32 active properties related to antimicrobial peptides. Herein, we show that this peptide is able to
33 translocate across membranes and interact with calmodulin. Structural and biophysical
34 analyses have revealed the key residues of P454 involved in membrane destabilization and
35 calmodulin binding. Mutational analysis demonstrated that these residues play a crucial role
36 in CyaA translocation into target cells. We have also shown that calmidazolium, a calmodulin
37 inhibitor, efficiently blocks CyaA internalization. We propose that after CyaA binding to
38 target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid
39 bilayer and binds calmodulin. Trapping of the CyaA polypeptide chain by the CaM:P454
40 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by
41 converting the stochastic process of protein translocation into an efficient vectorial chain
42 transfer into host cells.

43

44

45 **Introduction**

46 The adenylate cyclase (CyaA) toxin is a major virulence factor produced by *Bordetella*
47 *pertussis*, the causative agent of whooping cough, and is involved in the early stages of
48 respiratory tract colonization ¹⁻⁵. CyaA, a 1706-residue long protein (Figure S1), is a Repeat-
49 in-ToXin (RTX) ⁶⁻¹⁰ multi-domain toxin ¹¹⁻¹². Once secreted by *B. pertussis*, CyaA invades
50 eukaryotic cells through an original molecular mechanism that involves a direct translocation
51 of its N-terminal adenyl cyclase catalytic (AC) domain across the plasma membrane. The
52 ATP-cyclizing, calmodulin-activated AC domain comprises the first 364 N-terminal residues
53 ¹³⁻¹⁶. The translocation region (TR, residues 365 to 527) is essential for AC translocation into
54 target cells ¹⁷. The hydrophobic region (HR, residues 528 to 710) inserts into the cell
55 membrane and makes cation-selective pores ^{10, 18-19}; the acylation region (AR, residues 711 to
56 1005) contains two post-translational acylation sites, at lysines K860 and K983 ²⁰⁻²², required
57 for the refolding of the CyaA toxin ^{12, 23} and AC translocation across membranes *in vivo* and
58 *in vitro* ^{5, 20-21, 24}. The cell-receptor binding domain of CyaA (RD, residues 1006 to 1706) is
59 made up of approximately 40 copies of calcium-binding RTX motifs ^{8-10, 25}.

60 The dedicated type 1 secretion system (T1SS), made of CyaB, CyaD and CyaE proteins ²⁶⁻²⁷,
61 recognizes a secretion signal located at the C-terminal extremity of CyaA. Once secreted
62 through the T1SS, the toxin binds calcium and folds in the extracellular milieu. A calcium-
63 induced disorder-to-order transition of the RTX motifs occurs upon CyaA secretion from the
64 low-calcium concentration of the bacterial cytosol to the calcium-rich extracellular
65 environment ^{7-8, 25, 28-40}. CyaA folding is an acylation-dependent and calcium-driven
66 sequential process ^{12, 23, 41}.

67 Invasion of target cells occurs via a unique process among known bacterial toxins. First, RD
68 binds with high affinity to a cell receptor, the CD11b/CD18 integrin that is expressed by a
69 subset of leukocytes (neutrophils, dendritic cells (DC) and macrophages) ⁴²⁻⁵⁰. CyaA can also
70 intoxicate cells lacking CD11b/CD18 by directly interacting with the target cell membrane,
71 although with a reduced efficiency ^{12, 51-54}. CyaA then inserts into the membrane of target
72 cells via its hydrophobic domains and AC is directly translocated across the plasma
73 membrane into the cytoplasm in a calcium and membrane-potential dependent manner ^{17, 24, 46,}
74 ⁵⁵⁻⁵⁷.

75 Inside the cell, AC binds to calmodulin (CaM) that stabilizes the catalytic site into its active
76 state ^{15-16, 58} to convert ATP into cAMP with a high catalytic turnover (> 1000 /s).
77 Accumulation of supraphysiologic levels of cAMP in target cells alters their phagocytic
78 functions leading to host defense subversion ^{5, 11, 59-60}.

79 Experimental results from the past few decades have provided direct evidence that AC
80 translocation requires CyaA acylation, a calcium gradient, and a membrane potential across
81 the plasma membrane^{21, 24, 61-62}. However, the molecular mechanism and forces involved in
82 the translocation of the CyaA catalytic domain across the plasma membrane have thus far
83 remained elusive. We have previously shown that a peptide, corresponding to the C-terminus
84 of the translocation region TR of CyaA, P454 (residues 454–484, Figure S1), exhibits
85 membrane-active properties related to antimicrobial peptides (AMPs)^{17, 63}: this peptide adopts
86 a helical conformation upon membrane interaction and induces a local destabilization of the
87 lipid bilayer⁶³⁻⁶⁶. This property is likely essential for CyaA as deletion of the TR region
88 (residues 384–489) encompassing the P454 segment, selectively abrogates the ability of the
89 modified toxin to intoxicate target cells¹⁷.

90 Here, we show that P454 is able to translocate across a lipid bilayer and binds with high
91 affinity to calcium-loaded calmodulin (holo-CaM). We present structural models and crystal
92 structures of the P454 peptide in complex with holo-CaM, and identified in P454 the amino
93 acid residues that are critical for CaM-binding, membrane interaction and destabilization.
94 Modifications of these residues within the full-length CyaA toxin are sufficient to fully and
95 specifically abrogate the translocation of the catalytic domain across the cell membrane.
96 Finally, we show that calmidazolium, a high-affinity CaM inhibitor, specifically blocks
97 translocation of the AC domain into eukaryotic cells. We propose that once CyaA is inserted
98 into the target cell membrane, the P454 segment can interact with the plasma membrane and
99 destabilize the lipid bilayer, favoring its translocation across the lipid bilayer into the cytosol
100 where it binds CaM. Trapping of the CyaA polypeptide chain by the CaM:P454 interaction
101 may thus assist the irreversible translocation of the N-terminal AC domain. Therefore, CaM is
102 not only a key activator of the catalytic activity of CyaA inside cells, but also acts as an
103 essential cytosolic binder of the CyaA translocation region able to grab the polypeptide chain
104 to favor its entry into target cells.

105

106 **Material and methods**

107 Material and methods are described in the supplementary information file.

108

109 **Results**

110 **1- The P454 peptide from the CyaA toxin binds to calmodulin**

111 We have previously shown that the P454 peptide, residues 454-484 from the CyaA
112 translocation region, exhibits membrane-active properties similar to antimicrobial peptides
113 (AMPs)⁶⁷. As with certain AMPs, the P454 peptide displays biophysical properties that are
114 similar to that of many calmodulin-binding peptides: they can form amphiphilic helices, they
115 are positively charged and contain a few aromatic or hydrophobic residues involved in
116 complex stabilization⁶⁸⁻⁷⁰. Indeed, we found that P454 binds calmodulin (CaM) in solution in
117 a calcium-dependent manner as shown by analytical ultracentrifugation and far-UV circular
118 dichroism spectroscopy (Figure S2 and Table S1). Analysis of the thermodynamic parameters
119 of the P454:CaM complex formation by isothermal titration calorimetry (ITC) revealed a
120 calcium-dependent interaction with a dissociation constant of about 90 nM at 25°C ($\Delta G_{Kd} = -$
121 9.6 kcal/mol) and a P454:CaM stoichiometry of 1:1 (Figure S3A-B, Figure S4 and Table S2).
122 No binding could be detected in the absence of calcium (Figure S3A-B).

123 The affinity of P454 for CaM is much higher than that for lipid membranes. Indeed, the
124 dissociation constant K_d of the P454:membrane equilibrium (calculated from the partition
125 coefficient $K_x = 790000$) is $\approx 70 \mu\text{M}$ ($\Delta G_{Kx} = -8 \text{ kcal/mol}$, Table S3), about three orders of
126 magnitude higher than that for CaM. Therefore, based on the free energy difference, $\Delta\Delta G$,
127 P454 should preferentially bind to CaM rather than interact with the membrane. This was
128 confirmed by solution-to-membrane partition of P454 measured by fluorescence (Figure S5A
129 and S5B): P454 progressively partitioned from buffer to membranes as lipid concentration
130 increased. A shift of fluorescence polarity was observed upon addition of calcium-loaded
131 calmodulin (holo-CaM), indicating that a P454:CaM complex was formed whatever the lipid
132 concentration. Holo-CaM is converted into apo-CaM upon EDTA addition, leading to its
133 dissociation from P454 that can then interact again with membranes (Figure S5).

134 The preferential binding of P454 to calmodulin over membrane was confirmed by a lipid
135 vesicle permeabilization assay^{63, 65}. In this set up, addition of P454 peptide to ANTS:DPX
136 loaded vesicles induces membrane permeabilization leading to a dye efflux that is monitored
137 by fluorescence increase as a result of ANTS dequenching. Addition of holo-CaM at an early
138 stage of membrane permeabilization immediately stopped the P454-induced dye efflux
139 (Figure S5C). This suggests that holo-CaM selectively binds P454 leading to a displacement
140 of the peptide from the membrane and an arrest of the P454-induced vesicle permeabilization.
141 Calcium chelation by EDTA triggered dissociation of the P454:CaM complex and release of
142 the P454 peptide that could partition back into membranes to resume permeabilization of the

143 vesicles, leading to ANTS fluorescence recovery (Figure S5C). Taken together, these
144 experiments show that P454 is a calcium-dependent calmodulin-binding peptide and that
145 holo-CaM can efficiently antagonize the P454 interaction with membrane. These results
146 prompted us to evaluate the intrinsic propensity of P454 to translocate across a lipid bilayer,
147 in particular if holo-CaM would be asymmetrically present on the *trans* side of the membrane.

148

149 **2- P454 translocation across lipid bilayers**

150 We investigated the ability of P454 to translocate across membranes using the droplet
151 interface bilayers (DIB) approach ⁷¹. The *cis* droplet population contains the dye-labeled
152 peptide TAMRA-P454 while the *trans* droplet population is prepared in the presence or
153 absence of holo-CaM. After mixing and random formation of pairs of droplets, a lipid bilayer
154 is formed at the interface between two adhering droplets (Figure S6). We measure the transfer
155 of fluorescence from a *cis* fluorescent droplet to a *trans* non-fluorescent droplet to reveal
156 peptide translocation across the lipid bilayer formed at the droplet interface (Figure S6A). All
157 dye-labeled peptides used in this study interact with membranes, as evidenced by the
158 fluorescent rings staining the *cis* droplets at the beginning of the experiments. In the absence
159 of calmodulin in the *trans* droplet, no increase of fluorescent P454 is measured in the volume
160 of the *trans* compartment after 15 minutes of incubation (Figure 1 and Figure S6B).
161 Conversely, in the presence of 5 μ M of holo-CaM in the *trans* droplet, a significant amount of
162 fluorescence is measured in the *trans* compartment (Figure 1 and Figure S6C). These results
163 indicate that P454 is competent to translocate across membrane and to bind holo-CaM if
164 present in the *trans* compartment.

165 We then assayed two other dye-labeled peptides: the first being the H-helix peptide,
166 corresponding to the main binding site of AC (residues 233-254 of CyaA) to CaM and that is
167 involved in adenyl cyclase activation ¹⁶. The second peptide is a P454-derived peptide in
168 which the two arginine residues R461 (R1) and R474 (R2) were substituted by glutamate
169 residues, hereafter designated P454_{R12E}. This peptide exhibits a drastically reduced affinity for
170 CaM ($K_d^{R12E} / K_d^{WT} = 300$) and a slightly decreased partitioning into membrane
171 ($K_x^{R12E} / K_x^{WT} = 10$, see below). Both P454_{R12E} and H-helix peptides interact with the
172 membrane, as evidenced by the fluorescent ring located on the *cis* lipid leaflet observed at the
173 beginning of the experiment. However, these peptides do not accumulate in the *trans* droplets
174 containing 5 μ M of holo-CaM even after 15 min of incubation (Figure 1). These results
175 suggest that the H-helix peptide does not translocate across membrane in these experimental
176 conditions, as this peptide should strongly interact with CaM ($K_d^H = 10$ nM, Figure S7 and

177 Table S4) and accumulate as a peptide:CaM complex in the *trans* compartment if
178 translocation had occurred. The DIB experiment was also carried out with P454_{R12E} in the
179 presence of 100 μ M of CaM in the *trans* compartment (Figure S6D), i.e., at a concentration
180 well above the K_d (22.7 μ M) of the P454_{R12E}:CaM complex formation (Table S3). In these
181 conditions, a significant accumulation of P454_{R12E} in the *trans* compartment was measured,
182 indicating that this peptide was able to translocate across the lipid bilayer and to bind CaM.
183 Taken together, these data indicate that P454 interacts with the *cis* lipid leaflet of the
184 membrane, translocates across the droplet interface bilayers, and forms a peptide:CaM
185 complex in the *trans* compartment, as summarized in Figure S8.

186

187 3- Structure and dynamics of P454:CaM complex

188 We further characterized the interaction between P454 and CaM by an integrative structural
189 biology approach. Initial attempts to crystallize the P454:CaM complex were unsuccessful.
190 However, we obtained two distinct crystal forms of CaM in complex with a slightly shorter
191 peptide, P458, corresponding to the residues 458-481 of CyaA (i.e. shorter than P454 by 4
192 residues (ASAH) at N-terminus and 3 residues (MTQ) at C-terminus), and that displays an
193 affinity for CaM similar to that of P454 ($K_d^{CaM} = 240$ nM, see Table S3). In both cases,
194 several copies of CaM and P458 were present in the asymmetric unit (Table S5A). The
195 superposition of these multiple copies yields an ensemble of P458:CaM conformations
196 (Figures 2A and S9), which illustrates the well-documented conformational plasticity of CaM
197 ^{68-69, 72} due to its central helix flexibility.

198 The dynamics and the overall shape of the P454:CaM complex in solution were confirmed by
199 SEC-SAXS measurements ⁷³. The experimental SAXS pattern of the P454:CaM complex is
200 shown in Figure 2B and the derived structural parameters are compared in Table S6 to that of
201 the previously analyzed CaM complexes with either the H-helix peptide, corresponding to the
202 main CaM binding segment from the AC domain or the MLCK peptide, corresponding to the
203 CaM binding site from myosin light chain kinase ¹⁶. The distance distribution $P(r)$ of the
204 P454:CaM complex appears to be intermediate between that of free CaM and H:CaM
205 complex on the one hand, and MLCK:CaM complex on the other (Figure 2C). *Ab initio*
206 modeling yields a shape intermediate between the globular MLCK:CaM complex and the bi-
207 lobed, extended shape of free CaM and H:CaM complex (Figure 2D), further exemplifying
208 the conformational plasticity of CaM adapted to peptide ligand diversity.

209 The calculated SAXS curves from ten out of the twelve crystal structures of P458:CaM (PDB
210 6YNS) obtained are similar to, but slightly different from our experimental SAXS data, while

211 two structures exhibit a different N- and C-domain arrangement and, accordingly, larger
212 amplitude differences with experimental data. Using the model with the closest agreement, we
213 added the six missing N-terminal amino-acids of CaM and the few missing terminal residues
214 of P454 with Modeller to the P458:CaM X-ray structure. We then used this completed
215 complex as a starting model to fit the SAXS data using the modeling program Dadimodo⁷⁴⁻⁷⁵.
216 Each run of the program yielded several models, the scattering pattern of which fitted our
217 experimental SAXS data. After superimposition of the N-CaM domain, all resulting models
218 appeared to exhibit close, but slightly different positions of the C-CaM domain (Figure 2E)
219 that were similar to those observed within the crystal structures (Figure 2A).

220 Using HDX-MS⁷⁶, we compared the effect of P454 binding to CaM (Figures 2F, S10 and
221 Table S7) with those observed following H-helix and MLCK peptide binding reported in our
222 previous study¹⁶. HDX-MS analysis reveals that the inter-lobe helix (residues 73-84) remains
223 accessible in the presence and absence of all three peptides. The MLCK and H-helix peptides
224 induce similar differences in deuterium uptake when bound to CaM as those observed in
225 Figure S4 and S5 from¹⁶. Interestingly, the deuterium uptake difference induced by P454
226 binding to CaM is significantly distinct from that observed with MLCK or H-helix, further
227 highlighting the high conformational plasticity of CaM that is able to adapt to a wide diversity
228 of peptide ligands. HDX-MS data show that N-CaM is more strongly stabilized by P454 than
229 by the H-helix peptide as suggested from the comparison of the magnitudes in deuterium
230 uptake differences following P454 binding (Figure S10) or H-helix binding (see Figure S4 in
231¹⁶). This is in agreement with the mutational analysis of the P454-derived peptides (see below
232 and Table S3), and the crystal structures of the P458:CaM complex, which show that the C-
233 terminal part of P454 establishes several interactions with the hydrophobic groove of N-CaM
234 (Figure 3A). In summary, these studies establish that P454 is an authentic CaM binder
235 displaying original structural and dynamic features (Figures 2-3, S3 and S7 and Table S3).

236

237 **4- Mutations altering P454:CaM and P454:membrane interactions *in vitro***

238 The structure of the P454:CaM complex presented above reveals several residues of P454 that
239 might be critical for the interaction with CaM, including the aromatic residue W458, the
240 arginine residues R461 (R1) and R474 (R2), the aliphatic residues L463, L475, I479 and
241 L481, and finally the histidine residue H477. To corroborate the structural data, we designed a
242 series of P454 derivatives in which several of these residues were mutated and characterized
243 both their CaM binding as well as their membrane interaction properties.

244 The affinity of the P454-derived peptides for CaM was investigated by fluorescence and ITC
245 (Table S3 and Figure S11) through the determination of the dissociation constant K_d and the
246 free energy of the peptide:CaM complex (ΔG_{Kd}). Our data shows that the affinity of the P454-
247 derived peptides for CaM is mainly altered by mutations of arginine and aliphatic residues
248 (Table S3 and Figure 4A) with a progressive decrease with the single point mutations L475A,
249 R474Q, H477S, L463A and I479A or with the reduction of the side chain apolarity of the
250 I479 residue (*i.e.*, I479L, I479V and I479A). These results confirm the contribution of these
251 residues in the complex formation as suggested from the observation of the peptide:CaM
252 crystal structure (Figure 3A).

253 As expected, the affinity of the P454-derived peptides for CaM is affected to a greater extent
254 by multiple mutations. In particular, the double substitution of both arginine residues R461
255 and R474 (R12) into either glutamine or glutamate residues (R12Q and R12E peptides
256 respectively) resulted in both cases in a significant loss of affinity for CaM. Substitutions of
257 aliphatic and histidine residues at the C-terminus of P454 (H477S-I479A and L475A-H477S-
258 I479A) resulted in a *circa* 20-fold decrease of affinity of P454 for CaM, while the mutation of
259 the N-terminal aromatic and aliphatic residues (W458A-L463A) results in only a 4-fold
260 decrease in P454:CaM affinity (Table S3). These observations are in agreement with the
261 crystal structure of P458:CaM, showing that the residue H477, and more importantly I479,
262 from the C-terminal part of P454 are crucial for P454:CaM interactions (Figure 3A). The
263 W458 substitution also seems to be involved in CaM binding as its combination with I479
264 (W458A-I479A) induces a significant loss in affinity (Table S3 and Figure 3B). Taken
265 together, the mutational analysis (Table S3), the HDX-MS data (Figure 2F) and the crystal
266 structures of the complex (Figure 3) indicate that the C-terminal part of the peptide strongly
267 interacts with the N-terminal lobe of CaM and, to a lesser extent, the N-terminal part of the
268 peptide interacts with the C-terminal lobe of CaM.

269 We then characterized the membrane binding and permeabilization properties of P454-
270 derived peptides. We analyzed the membrane-induced secondary structure changes of the
271 peptides by circular dichroism (Figure S12 and Table S8) and also determined their partition
272 coefficient, K_x , and free energy of membrane interaction, ΔG_{Kx} , using fluorescence
273 spectroscopy and ITC (Figure 4A and Table S3). The secondary structure content of the
274 P454-derived peptides is characterized by a disorder-to-helical conformation transition upon
275 membrane binding for most peptides. The ΔG_{Kx} values indicate that membrane interaction of
276 P454-derived peptides is affected by mutations of arginine, aliphatic and aromatic residues.
277 Notably, a strong correlation is observed between the free energy values of P454-derived

278 peptides for membrane interaction and CaM binding (Figure 4A). We also measured the
279 membrane permeabilization efficiency of the P454-derived peptides, reported as the peptide
280 concentration required for recovering 50% of ANTS fluorescence intensity upon
281 permeabilization ($C_{p1/2}$ values, see Table S9). We color-coded the $C_{p1/2}$ values ranging from
282 red-to-blue (high-to-low permeabilization efficiency, respectively) using a logarithmic scale
283 (see legend of Figure 4A for details). As observed for P454 membrane partitioning, the $C_{p1/2}$
284 values show a good correlation with the free energy of P454:CaM complex formation (Figure
285 4A). These results show that the three properties of P454-derived peptides (K_d , K_X and $C_{p1/2}$)
286 are correlated, *i.e.*, any mutation affecting one of the parameters will likely affect the other
287 two. Altogether, these data indicate that the biophysical properties of P454 required to interact
288 and destabilize membranes are highly similar to that involved in CaM binding: the peptide
289 must adopt an amphipathic helical conformation with positively charged and apolar residues
290 to exert these three activities *in vitro*.

291

292 **5- Characterization of recombinant CyaA toxins harboring mutations in the P454 region**
293 To explore whether the interaction of the P454 region with membrane and CaM is also
294 involved in CyaA intoxication, we designed several recombinant toxins harboring specific
295 modifications at the key residues identified above (R461 and R474, W458, H477 and
296 aliphatic residues L463, L475 and I479) (Figure S13) and characterized their cytotoxic
297 activities (Table 1). The recombinant toxins were produced in *E. coli* and purified to
298 homogeneity (Figure S14), and their capacities to bind to and translocate their AC domain
299 across the plasma membrane were determined on sheep erythrocytes, a model of target cells
300 (Table 1). In the first recombinant CyaA tested, CyaA_{Mut1}, six residues from the P454 region
301 were modified: the arginine residues R461 and R474 were changed to glutamate, the leucine
302 L463 and L475 and the isoleucine I479 to alanine and the histidine residue H477 to serine.
303 These combined modifications did not affect binding of CyaA_{Mut1} to cells but completely
304 abolished translocation of its catalytic domain into the cytosol. This result provides direct
305 evidence that the P454 region is absolutely critical for the invasive activity of the toxin, *i.e.*,
306 AC translocation into the target cell cytosol.

307 We then further delineated the respective contribution of these different residues to the
308 cytotoxic properties of CyaA. We first examined the contribution of the arginine residues
309 R461 and R474 to cell intoxication. Charge reversion of these two arginine residues by
310 glutamate residues in CyaA_{R12E} was enough to fully abolish the ability of CyaA to invade
311 cells while not affecting toxin binding to plasma membrane (Table 1). However, the

312 substitution of the guanidinium group of the two arginine residues by lysine residues in
313 CyaA_{R12K}, as well as the neutralization of the arginine residues in CyaA_{R12Q} and the deletion
314 of the arginine side chain in CyaA_{R12A}, did not significantly affect the invasive activities of
315 the corresponding toxins (Table 1). The contribution of the neutral and apolar residues in
316 P454 region to CyaA internalization was evaluated in a second series of recombinant
317 modified toxins, CyaA_{Mut2} to CyaA_{Mut7}. The CyaA_{Mut2} variant harboring the 4 mutations
318 L463A, L475A, H477S and I479A, was also completely unable to invade erythrocytes (Table
319 1). The modified toxin CyaA_{Mut4}, which harbors only 3 mutations L475A, H477S and I479A
320 at the C-terminus of P454, was also drastically impaired in translocation capability. The other
321 recombinant toxin that was significantly altered in its invasion activity was CyaA_{Mut7} carrying
322 the double mutation W458A and I479A and showing about 60 % of wild-type translocation
323 activity. Notably, the binding of all these toxins to erythrocytes was not altered, indicating
324 that the specific modifications introduced into the recombinant CyaA proteins do not affect
325 the cell-binding step, but selectively affected the translocation step. Taken together, these
326 results suggest that the ability of the P454 motif to associate with CaM within the target cell is
327 critical for the efficient translocation of the AC domain across the membrane. This is further
328 supported by the correlation between the cytotoxic activity of the CyaA recombinant proteins
329 (data from Table 1) and the affinity of the corresponding P454-derived peptides (data from
330 Table S3) shown in Figure 4B.

331

332 **6- Cytosolic CaM is required for efficient CyaA internalization**

333 The above cell intoxication data (Table 1 and Figure 4B) suggest that the ability of the P454
334 motif to bind CaM inside target cells might contribute to the translocation of the AC domain
335 across membrane. To test this hypothesis, we analyzed the effects of a CaM inhibitor,
336 calmidazolium (CDZ), which exhibits a high affinity (K_I about 10-50 nM) for holo-CaM⁷⁷.
337 For these experiments, erythrocytes were first incubated in the presence of calcium at 4°C in
338 conditions that allow the toxin to bind to the cell membrane but not to translocate across
339 membranes, as originally described by Rogel and Hanski⁶¹. After washing of unbound toxin,
340 a rapid (within minutes) internalization of the catalytic domain was observed upon transfer of
341 the samples to 37 °C (Figure 5). However, when CDZ (10 μ M) was added to the cell mixture
342 just prior to the temperature shift from 4 to 37°C, the amount of internalized AC was
343 drastically reduced (Figure 5).

344 The inhibitory CDZ concentration (10 μ M) is in excess over the total intracellular CaM
345 concentration, estimated to be between 3 to 7 μ M⁷⁸⁻⁷⁹ of which up to 10% should be free⁸⁰⁻⁸¹.
346 In the presence of CDZ, the free CaM in erythrocytes should drop to low nM ranges, *i.e.*, 1-10
347 nM (assuming a binding constant for CDZ:CaM of 10-50 nM). This free CaM concentration
348 is enough for binding and activation of AC (Figure S15), given the very high AC:CaM
349 affinity (K_d about 0.1 nM) but is well below the affinity constant of P454:CaM (K_d about 90
350 nM). Size exclusion chromatography experiments confirm that CDZ can specifically inhibit
351 CaM association with P454, but not with the AC domain (Figure S16). In agreement, the
352 H:CaM complex (K_d about 10 nM, Figure S7 and Table S4) is partially inhibited by CDZ
353 (Figure S16). Notably, it was previously shown that CaM binding to the catalytic domain of
354 CyaA is not required for toxin internalization⁸². Taken together, we conclude that CDZ
355 blocks CyaA internalization into the cells primarily by preventing CaM binding to the P454
356 motif. We propose that trapping of the CyaA polypeptide chain by cytosolic CaM *via* the
357 P454 segment may facilitate the entry of the N-terminal AC domain into the cells.

358

359

360 **Discussion**

361 We demonstrate here the critical role of the P454 peptide segment (residues 454 to 484) in the
362 translocation of the catalytic domain of CyaA across the plasma membrane of target cells, and
363 suggest a new mechanism for CyaA invasion. We have previously shown that a deletion of
364 the whole translocation domain TD (residues 373 to 485) hindered the entry of CyaA into
365 target cells ¹⁷. In the present work, we show that substitutions of a few residues within the
366 P454 segment are sufficient to fully abrogate the delivery of the AC domain into the cell
367 cytoplasm, without impairing toxin binding to target cells. Most importantly, the mutated
368 residues that result in inactivation of CyaA translocation are also involved into two key
369 properties of the P454 motif: firstly, its ability to bind to membranes and destabilize the lipid
370 bilayer, as reported previously ^{63, 65} and corroborated here using various P454-derived
371 peptides; and secondly, its ability to bind with high affinity to holo-CaM, as shown here for
372 the first time. We propose that these two properties are directly implicated in the process of
373 CyaA translocation across the plasma membrane of eukaryotic target cells.

374 The P454 peptide exhibits characteristics found in many calmodulin-binding peptides that
375 form amphiphilic helices upon association with CaM. We have shown by a combination of
376 biophysical approaches that P454 forms a 1:1 complex with CaM in a calcium-dependent
377 manner, with a K_d of about 90 nM at 25°C (Figures S2-S5 and Tables S1-S3). We solved the
378 crystal structures of P454 (actually a slightly shorter peptide, P458, exhibiting similar
379 properties) in complex with holo-CaM, and obtained structural models in solution by SEC-
380 SAXS measurements, which revealed the dynamics and the overall shape of the P454:CaM
381 complex (Figures 2, 3 and S9). Together with HDX-MS data, these studies have revealed the
382 original mode of association of P454 with CaM, which primarily occurs via several
383 interactions between the C-terminal moiety of the peptide and the hydrophobic groove of N-
384 terminal domain of CaM. Comparison of the structural and dynamic characteristics of the
385 P454:CaM complex with those of CaM with MLCK peptide or H peptide (the main CaM-
386 binding site of the AC domain) illustrates the remarkable plasticity of CaM in binding to
387 target proteins. These structural data also indicated key residues of P454 that could be
388 potentially important in CaM-binding (Figure 3). The implication of these amino-acids in
389 CaM was experimentally confirmed by analysis of P454-derived peptides with modified
390 residues (Figure 4). In particular, modification of the two positively charged Arg residues into
391 Glu resulted in a drastic decrease in CaM-binding affinity. Multiple mutations of aliphatic
392 residues L463, L475, I479 to alanine, and histidine residue H477 to serine, also lead to a
393 significant decrease in CaM-binding affinity.

394 Combining these mutations differently affected binding to CaM, as well as the membrane
395 itself (Figure 4A). In all cases, the affinity values of P454 and P454-derived peptides for CaM
396 were 2-3 orders of magnitude higher than that for membranes, i.e., with dissociation constants
397 in the nM range and μ M ranges, respectively (Table S3). Consequently, P454 preferentially
398 interacts with calmodulin over membranes. Moreover, we demonstrate by using a droplet
399 interface bilayers (DIB) technique that P454 can translocate across a lipid bilayer and that
400 holo-CaM favors its accumulation in the *trans* compartment (Figure 1). In contrast, the
401 passage of the fluorescent-P454_{R12E} peptide could not be detected unless very high CaM
402 concentrations were loaded in *trans* droplets to overcome the low affinity of this peptide for
403 CaM ($K_d^{\text{CaM}} \approx 20 \mu\text{M}$). Taken together, these data suggest that the P454 peptide is capable of
404 translocating across lipid membranes. Moreover, once translocated, the peptide is able to form
405 a complex with CaM. This interaction displaces the P454 peptide from the membrane to form
406 a peptide:CaM complex in solution due to a favorable free energy difference (Figures S4 and
407 S8). The C-terminal part of P454 strongly interacts with the N-CaM lobe via the arginine and
408 apolar residues of the peptide (Figure 3).

409 The cell intoxication data (Table 1) indicate that the ability of CyaA to translocate its catalytic
410 domain across the membrane of target cells is strongly correlated with both membrane
411 permeabilization efficiency of the P454 motif and its affinity for CaM (Figure 4). We propose
412 that after binding of CyaA to target cells, the translocation region interacts with the plasma
413 membrane and the P454 motif locally destabilizes it, leading to calcium influx ⁴⁶. The
414 negative potential across the membrane may then favor the passage of the positively charged
415 P454 region through the lipid bilayer to reach the cytoplasmic side of the membrane where it
416 can associate with holo-CaM. Binding to a cytosolic partner would strongly increase the
417 entropic pulling force by preventing the backward movement of the polypeptide chain across
418 the plasma membrane. This strong interaction between the P454 motif and CaM in the cytosol
419 may then favor the translocation of the catalytic domain across the plasma membrane.
420 Collectively, we propose that the membrane destabilization caused by P454, followed by its
421 translocation and binding to calmodulin, are essential to convert the stochastic process of
422 protein translocation into an efficient vectorial chain transfer into the cytoplasm of host cells.
423 To evaluate the contribution of P454:CaM complex formation to the AC translocation process
424 into cells, we analyzed the effects of a CaM inhibitor, calmidazolium (CDZ), which exhibits a
425 high affinity for calmodulin ⁷⁷.

426 We found that CDZ selectively blocks AC internalization into cells and we provide evidence
427 that CDZ primarily interferes with CaM binding to the P454 motif of CyaA, without altering

428 CaM association with the catalytic domain and activation of its enzymatic activity (Figures 5,
429 S15 and S16).

430 In summary, our results indicate that CaM plays a dual role in CyaA intoxication: firstly, it
431 acts as a cytosolic binder that can grab the polypeptide chain by the P454 motif to favor the
432 translocation of the catalytic domain across the plasma membrane of target cells; secondly,
433 after entry of the catalytic domain into the cell, CaM can associate with the AC domain to
434 activate its enzymatic activity by stabilizing active conformations of the catalytic site ¹⁵⁻¹⁶.
435 This illustrates a remarkable parsimony in the molecular mechanism of the CyaA toxin which
436 exploits the same ubiquitous and abundant protein, CaM, to enable two essential functions,
437 entry and activation, that are both required for an effective intoxication of eukaryotic cells.
438 Interestingly, we demonstrated in a prior study that CyaA can efficiently translocate across a
439 biomimetic membrane model made of a tethered lipid bilayer (tBLM) assembled over an
440 amine-gold surface derivatized with CaM ²⁴. Remarkably, in this synthetic system, CaM is the
441 only eukaryotic component needed for translocation of the CyaA catalytic domain. This
442 observation nicely fits with the present results indicating that CaM may play the dual function
443 of both cytosolic binder and activator of CyaA.

444 Interestingly, several toxins hijack eukaryotic cytosolic factors to achieve the translocation of
445 their respective catalytic domains: these toxins contain segments able to translocate across
446 target membranes and to interact with host soluble proteins ⁸³⁻⁹⁷. We propose that the
447 formation of such toxin:target complexes significantly contributes to the energy required to
448 achieve the translocation of bacterial toxin catalytic domains across membranes of eukaryotic
449 cells.

450

451

452 **Supplementary Information:** the file contains the materials and methods section, Tables S1
453 to S9, Figures S1 to S16, and the supplementary references.

454 **Acknowledgments:** A.V. was supported by a DIM MalInf grant from the region Ile-de-
455 France. M.S. was supported by the Pasteur - Paris University (PPU) International PhD
456 Program. D.P.O.B. was supported by Institut Pasteur (grants PasteurInnoV15006-01A and
457 PTR451). P.G. was supported by Sorbonne Université. We acknowledge SOLEIL and ESRF
458 for provision of synchrotron radiation facilities. We thank the staff of the SWING beamline
459 for constant support and help during SAXS data collection, the staff of the PROXIMA-1
460 (Synchrotron SOLEIL, St Aubin, France) and MASSIF (Synchrotron ESRF, Grenoble,
461 France) beamlines for assistance during the X-ray diffraction data collection.

462 **Data Availability:** All relevant HDX-MS, X-ray and SAXS data are available in supporting
463 information. The crystal structures have been deposited on the PDB with the access codes
464 6YNU and 6YNS. The molecular model and experimental SAXS data have been deposited on
465 SASBDB (Small Angle Scattering Biological Data Bank,
466 <http://www.sasbdb.org/aboutSASBDB/>) under the SAS code SASDJ64 (calcium-bound
467 calmodulin) and SASDJ74 (P454 peptide from *B. pertussis* CyaA toxin complexed with
468 calmodulin).

469 **Funding:** Agence Nationale de la Recherche (grant number CACSICE Equipe ANR-11-
470 EQPX-0008). Region Ile de France (grant number DIM MalInf 2016). CNRS. Institut Pasteur
471 (grant numbers PasteurInnoV15006-01A, PTR451 and PTR166-19, PPUIP program)
472 The funders have no role in study design, data collection and analysis, decision to publish, or
473 preparation of the manuscript.

474 **Competing interests:** The authors have declared that no competing interests exist.

475 **Abbreviations:** AC, adenylate cyclase catalytic domain; CaM, calmodulin; C-CaM, C-
476 terminal domain of CaM; CyaA, adenylate cyclase toxin; HDX-MS, hydrogen/deuterium
477 exchange mass spectrometry; IDR, intrinsically disordered region; MEMHDX, Mixed-Effects
478 Model for HDX experiments; MLCK, myosin light chain kinase; MS, mass spectrometry; N-
479 CaM, N-terminal domain of CaM; pdb, Protein Data Bank; SASBDB, Small Angle Scattering
480 Biological Data Bank; SAXS, small-angle X-ray scattering; SEC, size exclusion
481 chromatography.

482

483 **Figure legends**

484

485 **Figure 1. Peptide translocation across droplet interface bilayers.** Boxplot representation
486 of the TAMRA-peptide concentration (μM) in the *trans* droplet 15 min after the formation of
487 the droplet interface bilayers (see Material and Methods for details). TAMRA fluorescence
488 was measured in the absence (1) and in the presence of 5 μM CaM (2-5) in the *trans* droplet;
489 in the absence (3) and in the presence (1-2,4-5) of a calcium gradient across the lipid bilayer
490 (CaCl_2 : 2 mM *cis* vs 0.2 mM *trans*). Concentration of TAMRA-P454 WT (1-3), TAMRA-
491 P454 R12E (4) and the TAMRA-H-helix (5) peptides in the *trans* droplets are reported. Five
492 to seven independent trials were conducted for each condition. Mann-Whitney-Wilcoxon test
493 was applied to compare the experiments (ns: $p>0.05$, *: $p<0.05$ and **: $p<0.01$).

494

495 **Figure 2. Structure and dynamics of the P454:CaM complex.** **(A)** The twelve P458:CaM
496 crystal structures (PDB 6YNS) are displayed after superimposition of C_{α} s over the range 10 to
497 70 included, corresponding to the N-ter lobe of calmodulin. The crystal structure 1CLL
498 {Chattopadhyaya, 1992 #1590} of the extended conformation of CaM is shown in light green.
499 **(B)** Experimental SAXS curve of the P454:CaM complex (black dots) superimposed over the
500 best fit (red curve) obtained from the structural model shown in Fig 2F. **(C)** Comparison of
501 the four distance distribution functions obtained using the program GNOM for CaM alone
502 (grey), H:CaM (red), MLCK:CaM (cyan) and P454:CaM (green) complexes. **(D)** DAMMIN
503 models of CaM alone, H:CaM, MLCK:CaM and P454:CaM complexes, shown with the same
504 color code. **(E)** Ten models fitting the SAXS curve shown on Fig 2B obtained using the
505 program DADIMODO {Evrard, 2011 #1766} are displayed after superimposition of C_{α} s over
506 the range 10 to 70. **(F)** Effects of P454 on the HDX behavior of CaM. The uptake differences
507 ($\Delta\text{Deuteration}$) measured between the free- and P454-bound CaM were extracted for each
508 peptide at each time point, summed, and plotted on the best-fitting structural model of
509 P454:CaM (red curve in 2B). The summed $\Delta\text{Deuteration}$ values [$\Sigma (\Delta\text{Deuteration})$] are
510 colored from blue (no variation of deuterium uptake) to red (major reductions of deuterium
511 uptake). Uncovered regions are in grey.

512

513 **Figure 3. P458:CaM interactions.** Close views of the molecular contacts between P458
514 and the N (panel A) and C (panel B) lobes of CaM (pdb 6YNU). The peptide is shown in
515 cartoon representation and colored in grey. Side chains of key residues interacting with CaM

516 are shown as sticks. These residues establish numerous non-polar interactions, as well as
517 several hydrogen bonds with CaM residues. These contacts are summarized in Table S5B-
518 C. The CaM lobes are represented by their electrostatic surfaces (negative and positive charges
519 are colored in red and blue, respectively).

520

521 **Figure 4. Correlations between *in vitro* properties of P454-derived peptides and the**
522 **internalization activity of the CyaA recombinant proteins. (A)** The free energy values of
523 peptide:CaM complex formation (ΔG_{Kd}) are plotted as a function of free energy values for
524 peptide solution-to-membrane partitioning (ΔG_{Kx} , see Table S3) and permeabilization
525 efficiency ($C_{p1/2}$ values, see Table S9). The color code refers to the $C_{p1/2}$ values ranging from
526 red-to-blue (high-to-low permeabilization efficiency, respectively) using a logarithmic scale
527 (red: $C_{p1/2} < 100$ nM, orange: $0.1 < C_{p1/2} < 1$ μ M, green: $1 < C_{p1/2} < 10$ μ M and blue: $10 <$
528 $C_{p1/2} < 100$ μ M. **(B)** The free energy values of peptide:CaM complex formation (ΔG_{Kd}) as a
529 function of relative internalization activity of the CyaA variants (data from Table 1). The
530 peptide names are in black and the names of the recombinant CyaA proteins are in red, if
531 different from the peptide name.

532

533 **Figure 5. Calmidazolium (CDZ) inhibits CyaA translocation into erythrocytes.**
534 Erythrocytes were first incubated with CyaA (5.6 nM) at 4 °C in the presence of $CaCl_2$ for 30
535 min so that the toxin could bind to cells but does not translocate across plasma membrane (see
536 main text). After removal of unbound toxin, 10 μ M CDZ was added (open symbols) or not
537 (CyaA, filled symbols) and the cell mixtures were transferred to 37 °C. At the indicated time
538 the cell suspensions were treated with trypsin for 10 min and after addition of soybean trypsin
539 inhibitor, cells were washed and lysed with 0.1% Tween 20 and the internalized AC activity
540 (*i.e.*, enzyme activity protected from trypsin digestion) was measured as described in Material
541 and Methods.

542

543 **Table 1. Cytotoxic activities of the recombinant CyaA proteins.** The binding and
544 internalization of CyaA and different variants were assayed on sheep erythrocytes as
545 described in the Material and Methods section. The proteins in 6M urea were directly diluted
546 (to a final concentration of 5.6 nM) in sheep erythrocyte suspensions in buffer B. Bound and
547 internalized AC activities for each recombinant proteins is expressed as % of that measured
548 with the wild-type CyaA toxin and represent the average values of at least 3 independent
549 measurements. The substituted residues are indicated in bold letters for each CyaA variants.
550

Proteins	Sequence of the 454-484 region of CyaA recombinant proteins	Cell-bound AC activity (% of WT)	Internalized AC activity (% of WT)	nb of replicates
CyaAwt	ASAHWGQRALQGAQAVAAQRLVHAIALMTQ	100	100	17
CyaA _{Mut1}	----- E - A ----- EA-S-A -----	96 ± 24	4 ± 2	5
CyaA _{R12E}	----- E ----- E -----	106 ± 28	3 ± 3	9
CyaA _{R12Q}	----- Q ----- Q -----	107 ± 36	102 ± 7	3
CyaA _{R12A}	----- A ----- A -----	112 ± 18	112 ± 7	3
CyaA _{R12K}	----- K ----- K -----	110 ± 17	114 ± 19	3
CyaA _{Mut2}	----- A ----- A-S-A -----	112 ± 17	4 ± 3	6
CyaA _{Mut3}	----- A - A -----	94 ± 9	106 ± 13	3
CyaA _{Mut4}	----- A-S-A -----	110 ± 19	15 ± 6	8
CyaA _{Mut5}	----- S-A -----	113 ± 10	72 ± 12	5
CyaA _{Mut6}	----- A -----	97 ± 33	99 ± 7	3
CyaA _{Mut7}	----- A ----- A -----	107 ± 34	62 ± 7	5

551

552

553

554

555

556 **References**

- 557 1. Ladant, D.; Brezin, C.; Alonso, J. M.; Crenon, I.; Guiso, N., *Bordetella pertussis*
558 adenylate cyclase. Purification, characterization, and radioimmunoassay. *J Biol Chem* **1986**,
559 *261* (34), 16264-9.
- 560 2. Glaser, P.; Danchin, A.; Ladant, D.; Barzu, O.; Ullmann, A., *Bordetella pertussis*
561 adenylate cyclase: the gene and the protein. *Tokai J Exp Clin Med* **1988**, *13 Suppl*, 239-52.
- 562 3. Glaser, P.; Ladant, D.; Sezer, O.; Pichot, F.; Ullmann, A.; Danchin, A., The
563 calmodulin-sensitive adenylate cyclase of *Bordetella pertussis*: cloning and expression in
564 *Escherichia coli*. *Molecular microbiology* **1988**, *2* (1), 19-30.
- 565 4. Guiso, N., *Bordetella Adenylate Cyclase-Hemolysin Toxins*. *Toxins (Basel)* **2017**, *9*
566 (9).
- 567 5. Novak, J.; Cerny, O.; Osickova, A.; Linhartova, I.; Masin, J.; Bumba, L.; Sebo, P.;
568 Osicka, R., Structure-Function Relationships Underlying the Capacity of *Bordetella*
569 Adenylate Cyclase Toxin to Disarm Host Phagocytes. *Toxins (Basel)* **2017**, *9* (10).
- 570 6. Coote, J. G., Structural and functional relationships among the RTX toxin
571 determinants of gram-negative bacteria. *FEMS Microbiol Rev* **1992**, *8* (2), 137-61.
- 572 7. Welch, R. A., RTX toxin structure and function: a story of numerous anomalies and
573 few analogies in toxin biology. *Current topics in microbiology and immunology* **2001**, *257*,
574 85-111.
- 575 8. Linhartova, I.; Bumba, L.; Masin, J.; Basler, M.; Osicka, R.; Kamanova, J.;
576 Prochazkova, K.; Adkins, I.; Hejnova-Holubova, J.; Sadilkova, L.; Morova, J.; Sebo, P., RTX
577 proteins: a highly diverse family secreted by a common mechanism. *FEMS Microbiol Rev*
578 **2010**, *34* (6), 1076-112.
- 579 9. Chenal, A.; Sotomayor Perez, A. C.; Ladant, D., Structure and function of RTX
580 Toxins. In *The Comprehensive Sourcebook of Bacterial Protein Toxins*, 4th Edition, 4th ed.;
581 Elsevier: 2015.
- 582 10. Benz, R., Channel formation by RTX-toxins of pathogenic bacteria: Basis of their
583 biological activity. *Biochim Biophys Acta* **2016**, *1858* (3), 526-37.
- 584 11. Ladant, D.; Ullmann, A., *Bordetella pertussis* adenylate cyclase: a toxin with multiple
585 talents. *Trends in microbiology* **1999**, *7* (4), 172-6.
- 586 12. Karst, J. C.; Ntsogo Enguene, V. Y.; Cannella, S. E.; Subrini, O.; Hessel, A.; Debard,
587 S.; Ladant, D.; Chenal, A., Calcium, Acylation, and Molecular Confinement Favor Folding of
588 *Bordetella pertussis* Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form. *J
589 Biol Chem* **2014**, *289* (44), 30702-16.
- 590 13. Ladant, D., Interaction of *Bordetella pertussis* adenylate cyclase with calmodulin.
591 Identification of two separated calmodulin-binding domains. *J Biol Chem* **1988**, *263* (6),
592 2612-8.
- 593 14. Guo, Q.; Shen, Y.; Lee, Y. S.; Gibbs, C. S.; Mrksich, M.; Tang, W. J., Structural basis
594 for the interaction of *Bordetella pertussis* adenylyl cyclase toxin with calmodulin. *Embo J*
595 **2005**, *24* (18), 3190-201.
- 596 15. Karst, J. C.; Sotomayor Perez, A. C.; Guijarro, J. I.; Raynal, B.; Chenal, A.; Ladant,
597 D., Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of
598 *Bordetella pertussis* adenylate cyclase toxin. *Biochemistry* **2010**, *49* (2), 318-28.
- 599 16. O'Brien, D. P.; Durand, D.; Voegele, A.; Hourdel, V.; Davi, M.; Chamot-Rooke, J.;
600 Vachette, P.; Brier, S.; Ladant, D.; Chenal, A., Calmodulin fishing with a structurally
601 disordered bait triggers CyaA catalysis. *PLoS Biol* **2017**, *15* (12), e2004486.
- 602 17. Karst, J. C.; Barker, R.; Devi, U.; Swann, M. J.; Davi, M.; Roser, S. J.; Ladant, D.;
603 Chenal, A., Identification of a region that assists membrane insertion and translocation of the
604 catalytic domain of *Bordetella pertussis* CyaA toxin. *J Biol Chem* **2012**, *287* (12), 9200-12.

605 18. Knapp, O.; Maier, E.; Masin, J.; Sebo, P.; Benz, R., Pore formation by the *Bordetella*
606 adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH. *Biochim Biophys*
607 *Acta* **2008**, 1778 (1), 260-9.

608 19. Basler, M.; Knapp, O.; Masin, J.; Fiser, R.; Maier, E.; Benz, R.; Sebo, P.; Osicka, R.,
609 Segments crucial for membrane translocation and pore-forming activity of *Bordetella*
610 adenylate cyclase toxin. *J Biol Chem* **2007**, 282 (17), 12419-29.

611 20. Barry, E. M.; Weiss, A. A.; Ehrmann, I. E.; Gray, M. C.; Hewlett, E. L.; Goodwin, M.
612 *S.* *Bordetella* pertussis adenylate cyclase toxin and hemolytic activities require a second
613 gene, *cyaC*, for activation. *J Bacteriol* **1991**, 173 (2), 720-6.

614 21. Hackett, M.; Guo, L.; Shabanowitz, J.; Hunt, D. F.; Hewlett, E. L., Internal lysine
615 palmitoylation in adenylate cyclase toxin from *Bordetella* pertussis. *Science* **1994**, 266 (5184),
616 433-5.

617 22. Westrop, G. D.; Hormozi, E. K.; Da Costa, N. A.; Parton, R.; Coote, J. G., *Bordetella*
618 pertussis adenylate cyclase toxin: proCyaA and CyaC proteins synthesised separately in
619 *Escherichia coli* produce active toxin in vitro. *Gene* **1996**, 180 (1-2), 91-9.

620 23. O'Brien, D. P.; Cannella, S. E.; Voegele, A.; Raoux-Barbot, D.; Davi, M.; Douche, T.;
621 Matondo, M.; Brier, S.; Ladant, D.; Chenal, A., Post-translational acylation controls the
622 folding and functions of the CyaA RTX toxin. *FASEB J* **2019**, 33 (9), fj201802442RR.

623 24. Veneziano, R.; Rossi, C.; Chenal, A.; Devoisselle, J. M.; Ladant, D.; Chopineau, J.,
624 *Bordetella* pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer. *Proc*
625 *Natl Acad Sci U S A* **2013**, 110 (51), 20473-8.

626 25. Rose, T.; Sebo, P.; Bellalou, J.; Ladant, D., Interaction of calcium with *Bordetella*
627 pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and
628 calcium-induced conformational changes. *J Biol Chem* **1995**, 270 (44), 26370-6.

629 26. Glaser, P.; Sakamoto, H.; Bellalou, J.; Ullmann, A.; Danchin, A., Secretion of
630 cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of
631 *Bordetella* pertussis. *Embo J* **1988**, 7 (12), 3997-4004.

632 27. Masure, H. R.; Au, D. C.; Gross, M. K.; Donovan, M. G.; Storm, D. R., Secretion of
633 the *Bordetella* pertussis adenylate cyclase from *Escherichia coli* containing the hemolysin
634 operon. *Biochemistry* **1990**, 29 (1), 140-5.

635 28. Knapp, O.; Maier, E.; Polleichtner, G.; Masin, J.; Sebo, P.; Benz, R., Channel
636 formation in model membranes by the adenylate cyclase toxin of *Bordetella* pertussis: effect
637 of calcium. *Biochemistry* **2003**, 42 (26), 8077-84.

638 29. Martin, C.; Requero, M. A.; Masin, J.; Konopasek, I.; Goni, F. M.; Sebo, P.; Ostolaza,
639 H., Membrane restructuring by *Bordetella* pertussis adenylate cyclase toxin, a member of the
640 RTX toxin family. *J Bacteriol* **2004**, 186 (12), 3760-5.

641 30. Bauche, C.; Chenal, A.; Knapp, O.; Bodenreider, C.; Benz, R.; Chaffotte, A.; Ladant,
642 D., Structural and functional characterization of an essential RTX subdomain of *Bordetella*
643 pertussis adenylate cyclase toxin. *J Biol Chem* **2006**, 281 (25), 16914-26.

644 31. Chenal, A.; Guijarro, J. I.; Raynal, B.; Delepierre, M.; Ladant, D., RTX calcium
645 binding motifs are intrinsically disordered in the absence of calcium: implication for protein
646 secretion. *J Biol Chem* **2009**, 284 (3), 1781-9.

647 32. Sotomayor Perez, A. C.; Karst, J. C.; Davi, M.; Guijarro, J. I.; Ladant, D.; Chenal, A.,
648 Characterization of the regions involved in the calcium-induced folding of the intrinsically
649 disordered RTX motifs from the *bordetella* pertussis adenylate cyclase toxin. *Journal of*
650 *molecular biology* **2010**, 397 (2), 534-49.

651 33. Chenal, A.; Karst, J. C.; Sotomayor Perez, A. C.; Wozniak, A. K.; Baron, B.; England,
652 P.; Ladant, D., Calcium-induced folding and stabilization of the intrinsically disordered RTX
653 domain of the CyaA toxin. *Biophys J* **2010**, 99 (11), 3744-53.

654 34. Sotomayor-Perez, A. C.; Ladant, D.; Chenal, A., Calcium-induced folding of
655 intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and
656 oligomerization states. *J Biol Chem* **2011**, *286* (19), 16997-7004.

657 35. Sotomayor-Perez, A. C.; Subrini, O.; Hessel, A.; Ladant, D.; Chenal, A., Molecular
658 Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded
659 Calcium-Bound State of a Repeat in Toxin (RTX) Protein. *Journal of the American Chemical
660 Society* **2013**, *135* (32), 11929-34.

661 36. Sotomayor-Perez, A. C.; Ladant, D.; Chenal, A., Disorder-to-order transition in the
662 CyaA toxin RTX domain: implications for toxin secretion. *Toxins (Basel)* **2015**, *7* (1), 1-20.

663 37. O'Brien, D. P.; Hernandez, B.; Durand, D.; Hourdel, V.; Sotomayor-Perez, A. C.;
664 Vachette, P.; Ghomi, M.; Chamot-Rooke, J.; Ladant, D.; Brier, S.; Chenal, A., Structural
665 models of intrinsically disordered and calcium-bound folded states of a protein adapted for
666 secretion. *Sci Rep* **2015**, *5*, 14223.

667 38. Bumba, L.; Masin, J.; Macek, P.; Wald, T.; Motlova, L.; Bibova, I.; Klimova, N.;
668 Bednarova, L.; Veverka, V.; Kachala, M.; Svergun, D. I.; Barinka, C.; Sebo, P., Calcium-
669 Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through
670 Type I Secretion Ducts. *Mol Cell* **2016**, *62* (1), 47-62.

671 39. O'Brien, D. P.; Perez, A. C. S.; Karst, J.; Cannella, S. E.; Enguene, V. Y. N.; Hessel,
672 A.; Raoux-Barbot, D.; Voegele, A.; Subrini, O.; Davi, M.; Guijarro, J. I.; Raynal, B.; Baron,
673 B.; England, P.; Hernandez, B.; Ghomi, M.; Hourdel, V.; Malosse, C.; Chamot-Rooke, J.;
674 Vachette, P.; Durand, D.; Brier, S.; Ladant, D.; Chenal, A., Calcium-dependent disorder-to-
675 order transitions are central to the secretion and folding of the CyaA toxin of *Bordetella*
676 pertussis, the causative agent of whooping cough. *Toxicon : official journal of the
677 International Society on Toxicology* **2018**, *149*, 37-44.

678 40. Motlova, L.; Klimova, N.; Fiser, R.; Sebo, P.; Bumba, L., Continuous Assembly of β -
679 Roll Structures Is Implicated in the Type I-Dependent Secretion of Large Repeat-in-Toxins
680 (RTX) Proteins. *J Mol Biol*. **2020**.

681 41. Cannella, S. E.; Ntsogo Enguene, V. Y.; Davi, M.; Malosse, C.; Sotomayor Perez, A.
682 C.; Chamot-Rooke, J.; Vachette, P.; Durand, D.; Ladant, D.; Chenal, A., Stability, structural
683 and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA,
684 from *Bordetella* pertussis. *Sci Rep* **2017**, *7*, 42065.

685 42. Guermonprez, P.; Khelef, N.; Blouin, E.; Rieu, P.; Ricciardi-Castagnoli, P.; Guiso, N.;
686 Ladant, D.; Leclerc, C., The adenylate cyclase toxin of *Bordetella* pertussis binds to target
687 cells via the alpha(M)beta(2) integrin (CD11b/CD18). *J Exp Med* **2001**, *193* (9), 1035-44.

688 43. Guermonprez, P.; Fayolle, C.; Rojas, M. J.; Rescigno, M.; Ladant, D.; Leclerc, C., In
689 vivo receptor-mediated delivery of a recombinant invasive bacterial toxoid to CD11c + CD8
690 alpha -CD11bhigh dendritic cells. *Eur J Immunol* **2002**, *32* (11), 3071-81.

691 44. El-Azami-El-Idrissi, M.; Bauche, C.; Loucka, J.; Osicka, R.; Sebo, P.; Ladant, D.;
692 Leclerc, C., Interaction of *Bordetella* pertussis adenylate cyclase with CD11b/CD18: Role of
693 toxin acylation and identification of the main integrin interaction domain. *J Biol Chem* **2003**,
694 *278* (40), 38514-21.

695 45. Masin, J.; Basler, M.; Knapp, O.; El-Azami-El-Idrissi, M.; Maier, E.; Konopasek, I.;
696 Benz, R.; Leclerc, C.; Sebo, P., Acylation of lysine 860 allows tight binding and cytotoxicity
697 of *Bordetella* adenylate cyclase on CD11b-expressing cells. *Biochemistry* **2005**, *44* (38),
698 12759-66.

699 46. Fiser, R.; Masin, J.; Basler, M.; Krusek, J.; Spulakova, V.; Konopasek, I.; Sebo, P.,
700 Third activity of *Bordetella* adenylate cyclase (AC) toxin-hemolysin. Membrane translocation
701 of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently
702 of the catalytic and hemolytic activities. *J Biol Chem* **2007**, *282* (5), 2808-20.

703 47. Adkins, I.; Holubova, J.; Kosova, M.; Sadilkova, L., Bacteria and their toxins tamed
704 for immunotherapy. *Curr Pharm Biotechnol* **2012**, *13* (8), 1446-73.

705 48. Svedova, M.; Masin, J.; Fiser, R.; Cerny, O.; Tomala, J.; Freudenberg, M.; Tuckova,
706 L.; Kovar, M.; Dadaglio, G.; Adkins, I.; Sebo, P., Pore-formation by adenylate cyclase toxinoid
707 activates dendritic cells to prime CD8+ and CD4+ T cells. *Immunol Cell Biol* **2016**, *94* (4),
708 322-33.

709 49. Fedele, G.; Schiavoni, I.; Adkins, I.; Klimova, N.; Sebo, P., Invasion of Dendritic
710 Cells, Macrophages and Neutrophils by the *Bordetella* Adenylate Cyclase Toxin: A
711 Subversive Move to Fool Host Immunity. *Toxins (Basel)* **2017**, *9* (10).

712 50. Chenal, A.; Ladant, D., Bioengineering of *Bordetella* pertussis Adenylate Cyclase
713 Toxin for Antigen-Delivery and Immunotherapy. *Toxins (Basel)* **2018**, *10* (7).

714 51. Angely, C.; Nguyen, N. M.; Andre Dias, S.; Planus, E.; Pelle, G.; Louis, B.; Filoche,
715 M.; Chenal, A.; Ladant, D.; Isabey, D., Exposure to *Bordetella* pertussis adenylate cyclase
716 toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells. *Biol Cell*
717 **2017**, *109* (8), 293-311.

718 52. Hasan, S.; Kulkarni, N. N.; Asbjarnarson, A.; Linhartova, I.; Osicka, R.; Sebo, P.;
719 Gudmundsson, G. H., *Bordetella* pertussis Adenylate Cyclase Toxin Disrupts Functional
720 Integrity of Bronchial Epithelial Layers. *Infection and immunity* **2018**, *86* (3).

721 53. Roderova, J.; Osickova, A.; Sukova, A.; Mikusova, G.; Fiser, R.; Sebo, P.; Osicka, R.;
722 Masin, J., Residues 529 to 549 participate in membrane penetration and pore-forming activity
723 of the *Bordetella* adenylate cyclase toxin. *Scientific Reports* **2019**, *9*.

724 54. Angely, C.; Ladant, D.; Planus, E.; Louis, B.; Filoche, M.; Chenal, A.; Isabey, D.,
725 Functional and structural consequences of epithelial cell invasion by *Bordetella* pertussis
726 adenylate cyclase toxin. *PLoS One* **2020**, *15* (5), e0228606.

727 55. Bumba, L.; Masin, J.; Fiser, R.; Sebo, P., *Bordetella* adenylate cyclase toxin mobilizes
728 its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell
729 membrane in two steps. *PLoS Pathog* **2010**, *6* (5), e1000901.

730 56. Uribe, K. B.; Martin, C.; Etxebarria, A.; Gonzalez-Bullon, D.; Gomez-Bilbao, G.;
731 Ostolaza, H., Ca2+ influx and tyrosine kinases trigger *Bordetella* adenylate cyclase toxin
732 (ACT) endocytosis. Cell physiology and expression of the CD11b/CD18 integrin major
733 determinants of the entry route. *PLoS One* **2013**, *8* (9), e74248.

734 57. Uribe, K. B.; Etxebarria, A.; Martin, C.; Ostolaza, H., Calpain-Mediated Processing of
735 Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal
736 Domain. *PLoS One* **2013**, *8* (6), e67648.

737 58. Voegele, A.; O'Brien, D. P.; Subrini, O.; Sapay, N.; Cannella, S. E.; Enguene, V. Y.
738 N.; Hessel, A.; Karst, J.; Hourdel, V.; Perez, A. C. S.; Davi, M.; Veneziano, R.; Chopineau,
739 J.; Vachette, P.; Durand, D.; Brier, S.; Ladant, D.; Chenal, A., Translocation and calmodulin-
740 activation of the adenylate cyclase toxin (CyaA) of *Bordetella* pertussis. *Pathog Dis* **2018**, *76*
741 (8).

742 59. Sakamoto, H.; Bellalou, J.; Sebo, P.; Ladant, D., *Bordetella* pertussis adenylate
743 cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities.
744 *J Biol Chem* **1992**, *267* (19), 13598-602.

745 60. Vojtova, J.; Kamanova, J.; Sebo, P., *Bordetella* adenylate cyclase toxin: a swift
746 saboteur of host defense. *Curr Opin Microbiol* **2006**, *9* (1), 69-75.

747 61. Rogel, A.; Hanski, E., Distinct steps in the penetration of adenylate cyclase toxin of
748 *Bordetella* pertussis into sheep erythrocytes. Translocation of the toxin across the membrane.
749 *J Biol Chem* **1992**, *267* (31), 22599-605.

750 62. Otero, A. S.; Yi, X. B.; Gray, M. C.; Szabo, G.; Hewlett, E. L., Membrane
751 depolarization prevents cell invasion by *Bordetella* pertussis adenylate cyclase toxin. *J Biol*
752 *Chem* **1995**, *270* (17), 9695-7.

753 63. Subrini, O.; Sotomayor-Perez, A. C.; Hessel, A.; Spaczka-Karst, J.; Selwa, E.; Sapay, N.; Veneziano, R.; Pansieri, J.; Chopineau, J.; Ladant, D.; Chenal, A., Characterization of a membrane-active peptide from the *Bordetella pertussis* CyaA toxin. *J Biol Chem* **2013**, *288* (45), 32585-98.

754 64. Masin, J.; Osickova, A.; Sukova, A.; Fiser, R.; Halada, P.; Bumba, L.; Linhartova, I.; Osicka, R.; Sebo, P., Negatively charged residues of the segment linking the enzyme and 755 cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. 756 *Sci Rep* **2016**, *6*, 29137.

757 65. Voegele, A.; Subrini, O.; Sapay, N.; Ladant, D.; Chenal, A., Membrane-Active 758 Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region. *Toxins* 759 (*Basel*) **2017**, *9* (11).

760 66. Sukova, A.; Bumba, L.; Srb, P.; Veverka, V.; Stanek, O.; Holubova, J.; Chmelik, J.; 761 Fiser, R.; Sebo, P.; Masin, J., Negative charge of the AC-to-Hly linking segment modulates 762 calcium-dependent membrane activities of *Bordetella* adenylate cyclase toxin. *Bba-Biomembranes* **2020**, *1862* (9).

763 67. Last, N. B.; Schlamadinger, D. E.; Miranker, A. D., A common landscape for 764 membrane-active peptides. *Protein science : a publication of the Protein Society* **2013**, *22* (7), 765 870-82.

766 68. Brokx, R. D.; Lopez, M. M.; Vogel, H. J.; Makhadze, G. I., Energetics of target 767 peptide binding by calmodulin reveals different modes of binding. *J Biol Chem* **2001**, *276* 768 (17), 14083-91.

769 69. Villarroel, A.; Taglialatela, M.; Bernardo-Seisdedos, G.; Alaimo, A.; Agirre, J.; 770 Alberdi, A.; Gomis-Perez, C.; Soldovieri, M. V.; Ambrosino, P.; Malo, C.; Areso, P., The 771 ever changing moods of calmodulin: how structural plasticity entails transductional 772 adaptability. *Journal of molecular biology* **2014**, *426* (15), 2717-35.

773 70. Liu, F.; Chu, X.; Lu, H. P.; Wang, J., Molecular mechanism of multispecific 774 recognition of Calmodulin through conformational changes. *Proc Natl Acad Sci U S A* **2017**, 775 *114* (20), E3927-E3934.

776 71. Bayley, H.; Cronin, B.; Heron, A.; Holden, M. A.; Hwang, W. L.; Syeda, R.; 777 Thompson, J.; Wallace, M., Droplet interface bilayers. *Mol Biosyst* **2008**, *4* (12), 1191-208.

778 72. Johnson, C. N.; Potet, F.; Thompson, M. K.; Kroncke, B. M.; Glazer, A. M.; Voehler, 779 M. W.; Knollmann, B. C.; George, A. L., Jr.; Chazin, W. J., A Mechanism of Calmodulin 780 Modulation of the Human Cardiac Sodium Channel. *Structure* **2018**, *26* (5), 683-694 e3.

781 73. O'Brien, D. P.; Brier, S.; Ladant, D.; Durand, D.; Chenal, A.; Vachette, P., SEC-SAXS 782 and HDX-MS: A powerful combination. The case of the calcium-binding domain of a 783 bacterial toxin. *Biotechnol Appl Biochem* **2018**, *65* (1), 62-68.

784 74. Evrard, G.; Mareuil, F.; Bontems, F.; Sizun, C.; Perez, J., DADIMODO: a program for 785 refining the structure of multidomain proteins and complexes against small-angle scattering 786 data and NMR-derived restraints. *J Appl Crystallogr* **2011**, *44*, 1264-1271.

787 75. Rudenko, O.; Thureau, A.; Perez, P., *Evolutionary refinement of the 3D structure of* 788 *multi-domain protein complexes from small angle X-ray scattering data*. ACM, New York, 789 NY, USA ed.; 2019.

790 76. O'Brien, D. P.; Hourdel, V.; Chenal, A.; Brier, S., Hydrogen/Deuterium Exchange 791 Mass Spectrometry for the Structural Analysis of Detergent-Solubilized Membrane Proteins. 792 *Methods in molecular biology* **2020**, *2127*, 339-358.

793 77. Dagher, R.; Briere, C.; Feve, M.; Zeniou, M.; Pigault, C.; Mazars, C.; Chneiweiss, H.; 794 Ranjeva, R.; Kilhoffer, M. C.; Haiech, J., Calcium fingerprints induced by Calmodulin 795 interactors in eukaryotic cells. *Bba-Mol Cell Res* **2009**, *1793* (6), 1068-1077.

801 78. Kakiuchi, S.; Yasuda, S.; Yamazaki, R.; Teshima, Y.; Kanda, K.; Kakiuchi, R.; Sobue,
802 K., Quantitative-Determinations of Calmodulin in the Supernatant and Particulate Fractions of
803 Mammalian-Tissues. *J Biochem-Tokyo* **1982**, 92 (4), 1041-1048.

804 79. Cox, J. A.; Comte, M.; Stein, E. A., Activation of Human-Erythrocyte Ca-2+-
805 Dependent Mg-2+-Activated Atpase by Calmodulin and Calcium - Quantitative-Analysis. *P
806 Natl Acad Sci-Biol* **1982**, 79 (14), 4265-4269.

807 80. Foder, B.; Scharff, O., Decrease of apparent calmodulin affinity of erythrocyte (Ca2+
808 + Mg2+)-ATPase at low Ca2+ concentrations. *Biochim Biophys Acta* **1981**, 649 (2), 367-76.

809 81. Black, D. J.; Tran, Q. K.; Persechini, A., Monitoring the total available calmodulin
810 concentration in intact cells over the physiological range in free Ca2+. *Cell Calcium* **2004**, 35
811 (5), 415-25.

812 82. Heveker, N.; Ladant, D., Characterization of mutant *Bordetella pertussis* adenylate
813 cyclase toxins with reduced affinity for calmodulin. Implications for the mechanism of toxin
814 entry into target cells. *European journal of biochemistry / FEBS* **1997**, 243 (3), 643-9.

815 83. Lemichez, E.; Bomsel, M.; Devilliers, G.; vanderSpek, J.; Murphy, J. R.; Lukianov, E.
816 V.; Olsnes, S.; Boquet, P., Membrane translocation of diphtheria toxin fragment A exploits
817 early to late endosome trafficking machinery. *Molecular microbiology* **1997**, 23 (3), 445-57.

818 84. Ratts, R.; Zeng, H.; Berg, E. A.; Blue, C.; McComb, M. E.; Costello, C. E.;
819 vanderSpek, J. C.; Murphy, J. R., The cytosolic entry of diphtheria toxin catalytic domain
820 requires a host cell cytosolic translocation factor complex. *The Journal of cell biology* **2003**,
821 160 (7), 1139-50.

822 85. Haug, G.; Leemhuis, J.; Tiemann, D.; Meyer, D. K.; Aktories, K.; Barth, H., The host
823 cell chaperone Hsp90 is essential for translocation of the binary *Clostridium botulinum* C2
824 toxin into the cytosol. *J Biol Chem* **2003**, 278 (34), 32266-74.

825 86. Ratts, R.; Trujillo, C.; Bharti, A.; vanderSpek, J.; Harrison, R.; Murphy, J. R., A
826 conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain
827 delivery to the cytosol. *Proc Natl Acad Sci U S A* **2005**, 102 (43), 15635-40.

828 87. Tamayo, A. G.; Bharti, A.; Trujillo, C.; Harrison, R.; Murphy, J. R., COPI coatomer
829 complex proteins facilitate the translocation of anthrax lethal factor across vesicular
830 membranes in vitro. *Proc Natl Acad Sci U S A* **2008**, 105 (13), 5254-9.

831 88. Kaiser, E.; Pust, S.; Kroll, C.; Barth, H., Cyclophilin A facilitates translocation of the
832 *Clostridium botulinum* C2 toxin across membranes of acidified endosomes into the cytosol of
833 mammalian cells. *Cell Microbiol* **2009**, 11 (5), 780-95.

834 89. Trujillo, C.; Taylor-Parker, J.; Harrison, R.; Murphy, J. R., Essential lysine residues
835 within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic
836 domain entry. *Molecular microbiology* **2010**, 76 (4), 1010-9.

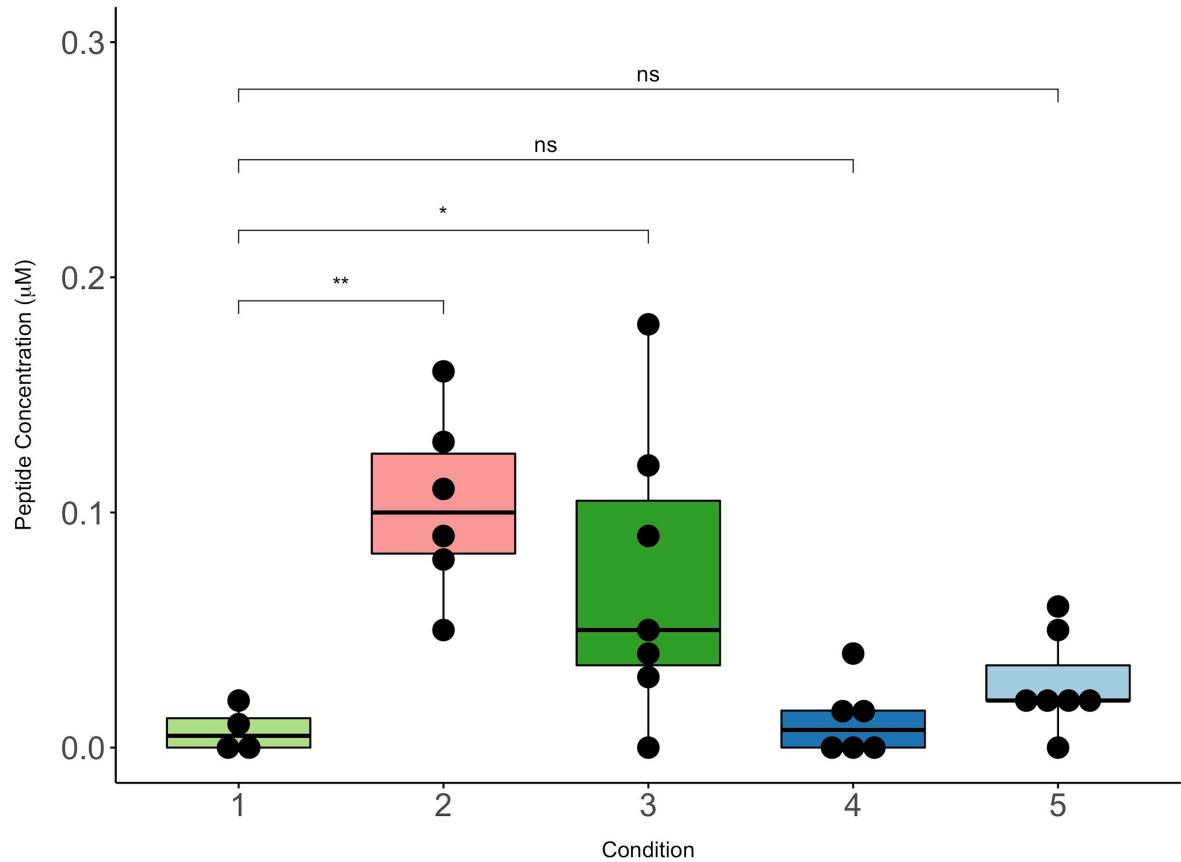
837 90. Dmochewitz, L.; Lillich, M.; Kaiser, E.; Jennings, L. D.; Lang, A. E.; Buchner, J.;
838 Fischer, G.; Aktories, K.; Collier, R. J.; Barth, H., Role of CypA and Hsp90 in membrane
839 translocation mediated by anthrax protective antigen. *Cell Microbiol* **2011**, 13 (3), 359-73.

840 91. Kaiser, E.; Kroll, C.; Ernst, K.; Schwan, C.; Popoff, M.; Fischer, G.; Buchner, J.;
841 Aktories, K.; Barth, H., Membrane Translocation of Binary Actin-ADP-Ribosylating Toxins
842 from *Clostridium difficile* and *Clostridium perfringens* Is Facilitated by Cyclophilin A and
843 Hsp90. *Infection and immunity* **2011**, 79 (10), 3913-3921.

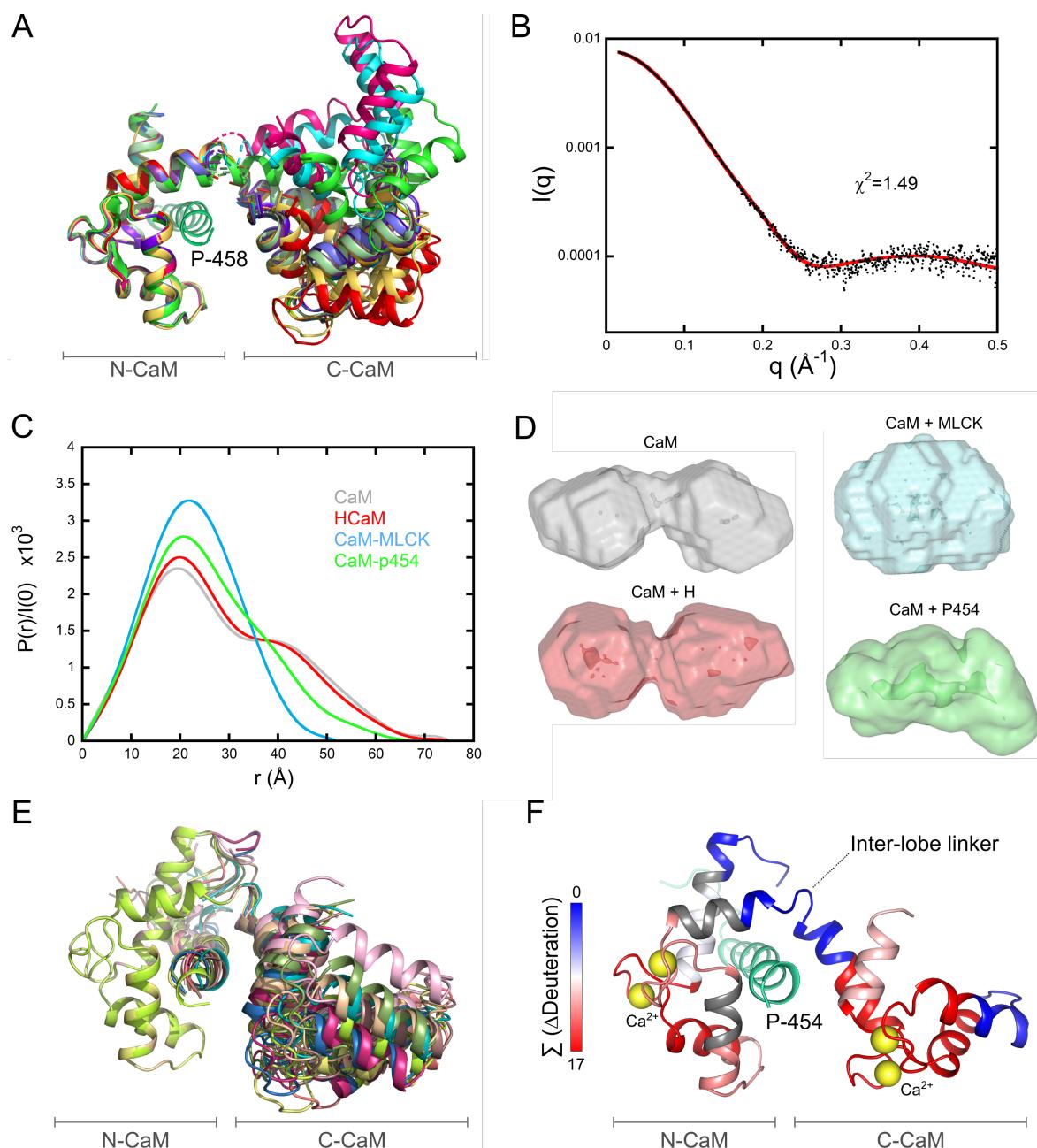
844 92. Kaiser, E.; Bohm, N.; Ernst, K.; Langer, S.; Schwan, C.; Aktories, K.; Popoff, M.;
845 Fischer, G.; Barth, H., FK506-binding protein 51 interacts with *Clostridium botulinum* C2
846 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. *Cellular
847 Microbiology* **2012**, 14 (8), 1193-1205.

848 93. Lang, A. E.; Ernst, K.; Lee, H.; Papatheodorou, P.; Schwan, C.; Barth, H.; Aktories,
849 K., The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate

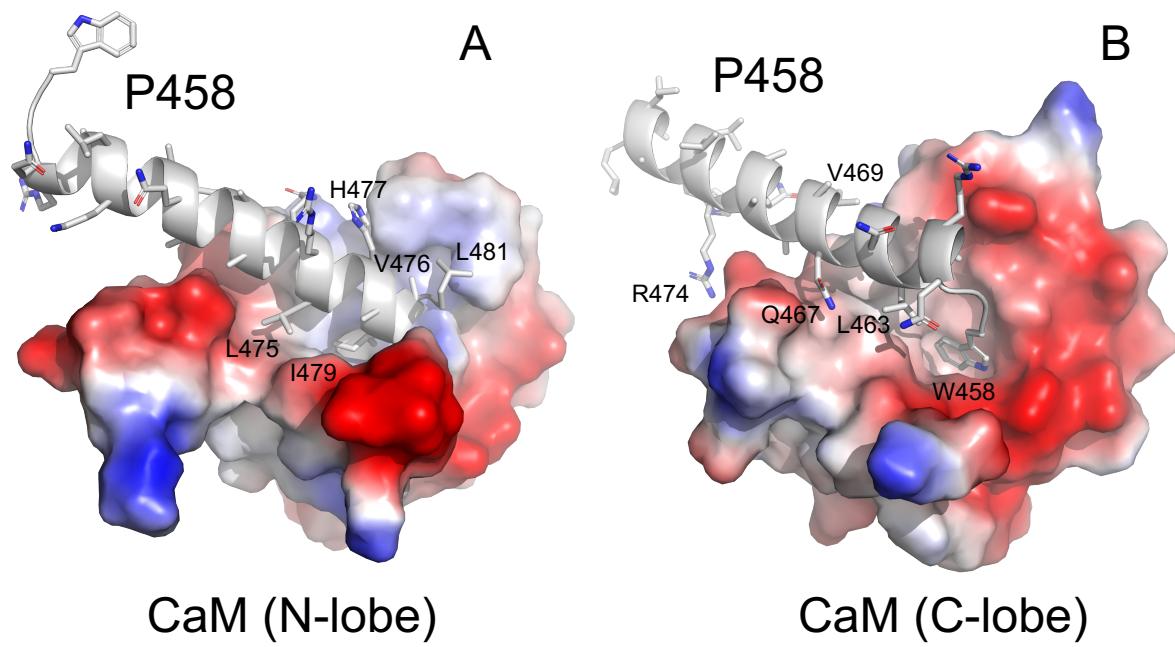
850 membrane translocation of *Photorhabdus luminescens* ADP-ribosyltransferases. *Cell*
851 *Microbiol* **2014**, *16* (4), 490-503.

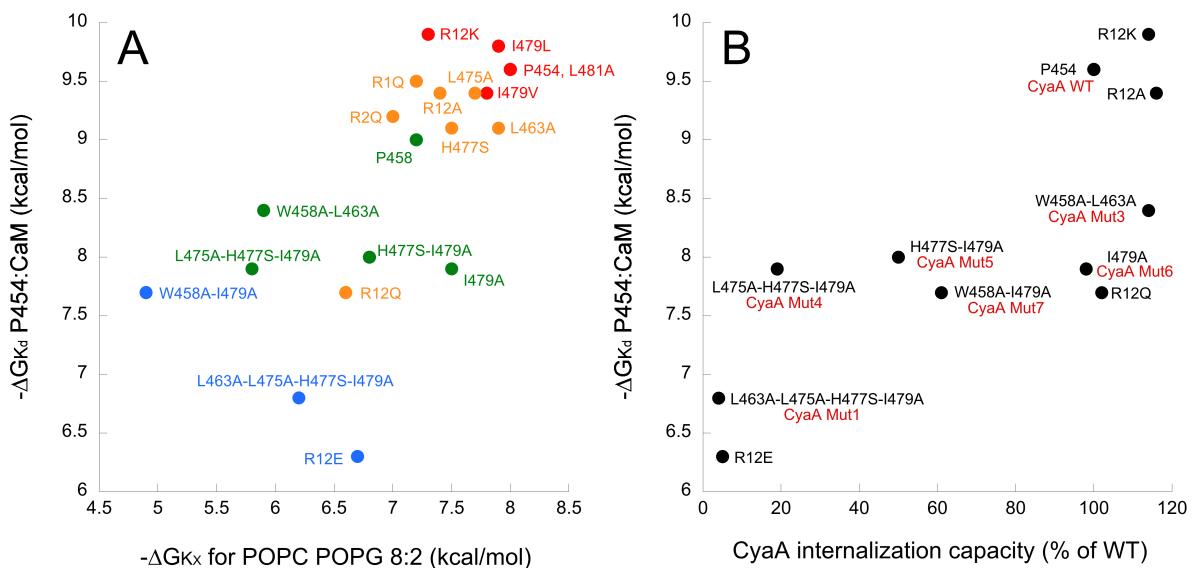

852 94. Schnell, L.; Dmochewitz-Kuck, L.; Feigl, P.; Montecucco, C.; Barth, H., Thioredoxin
853 reductase inhibitor auranofin prevents membrane transport of diphtheria toxin into the cytosol
854 and protects human cells from intoxication. *Toxicon : official journal of the International*
855 *Society on Toxicology* **2016**, *116*, 23-8.

856 95. Schuster, M.; Schnell, L.; Feigl, P.; Birkhofer, C.; Mohr, K.; Roeder, M.; Carle, S.;
857 Langer, S.; Tippel, F.; Buchner, J.; Fischer, G.; Hausch, F.; Frick, M.; Schwan, C.; Aktories,
858 K.; Schiene-Fischer, C.; Barth, H., The Hsp90 machinery facilitates the transport of diphtheria
859 toxin into human cells. *Sci Rep* **2017**, *7* (1), 613.


860 96. Ernst, K.; Schmid, J.; Beck, M.; Hagele, M.; Hohwieler, M.; Hauff, P.; Uckert, A. K.;
861 Anastasia, A.; Fauler, M.; Jank, T.; Aktories, K.; Popoff, M. R.; Schiene-Fischer, C.; Kleger,
862 A.; Muller, M.; Frick, M.; Barth, H., Hsp70 facilitates trans-membrane transport of bacterial
863 ADP-ribosylating toxins into the cytosol of mammalian cells. *Scientific Reports* **2017**, *7*.

864 97. Burress, H.; Kellner, A.; Guyette, J.; Tatulian, S. A.; Teter, K., HSC70 and HSP90
865 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit
866 from the endoplasmic reticulum to the cytosol. *J Biol Chem* **2019**, *294* (32), 12122-12131.


867


Figure 1. Peptide translocation across droplet interface bilayers.

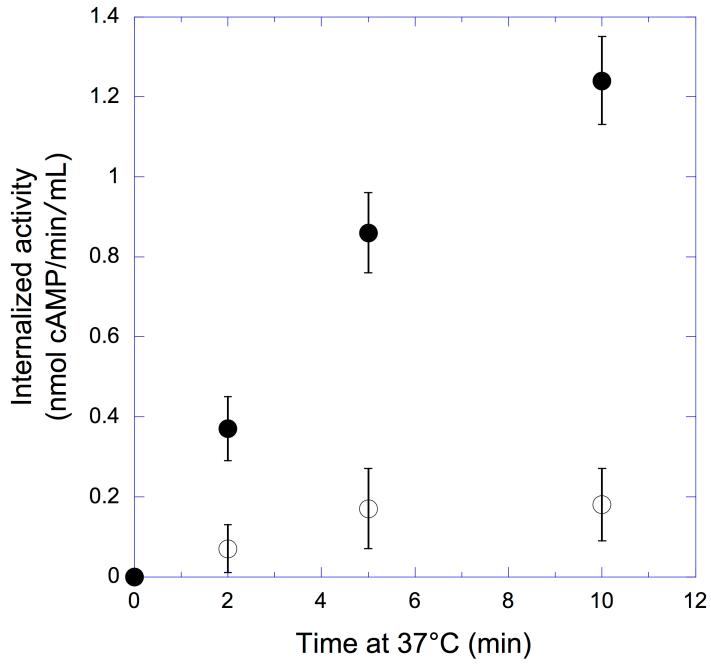

Figure 2. Structure and dynamics of the P454:CaM complex.

Figure 3. P458:CaM interactions.

Figure 4. Correlations between *in vitro* properties of P454-derived peptides and the internalization activity of the CyaA recombinant proteins.

Figure 5. Calmidazolium (CDZ) inhibits CyaA translocation into erythrocytes.