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Abstract

Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases,
the untargeted identification of structural modifications in proteins remains challenging. Peptide location
fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated
differences in mass spectrometry (MS) datasets of complex biological samples. A new webtool
(Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin
proteomes, can relatively quantify peptides (spectral counting) and map statistically significant
differences to regions within protein structures. New photoageing biomarkers were identified in multiple
proteins including matrix components (collagens and proteoglycans), oxidation and protease
modulators (peroxiredoxins and SERPINs) and cytoskeletal proteins (keratins). Crucially, for many
extracellular biomarkers, structural modification-associated differences were not correlated with relative
abundance (by ion intensity). By applying peptide location fingerprinting to published MS datasets,
(identifying biomarkers including collagen V and versican in ageing tendon) we demonstrate the

potential of the MPLF webtool to discover novel biomarkers.
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Introduction

Loss of proteostasis (the ability to regulate the proteome) is a key feature of many age-associated
diseases (1). In human skin, for example, ageing induces remodelling of the architecture and
abundance of key structural proteins (such as fibrillar collagen and elastic fibres) which impact on
appearance and function. This loss of proteostasis is particularly evident in sites exposed to ultraviolet
radiation (UVR) (2). The photoageing process in these sites differentially affects the outer keratinocyte-
rich epidermis and the lower extracellular matrix (ECM)-rich dermis (3, 4). Within the dermis, some ECM
macromolecular assemblies, such as collagen 1 and elastic fibres are known to be long-lived with
biological half-lives spanning years and decades (5, 6). These abundant structural proteins are thought
to accumulate photoageing-induced damage over time (7) as a consequence of chronic ultraviolet
radiation (UVR) exposure (predominantly UVA) (8-10), UVR-induced reactive oxygen species (ROS)
(11, 12) and UVR-induced elevated protease activity (13). It is not known, however whether protein
modifications as a consequence of ageing is a common feature of ECM proteins in the complex dermal
matrisome. In contrast to the dermis, epidermal keratinocytes and biomolecules are further exposed to
higher energy UVB as well as to lower-energy UVA, leading to the progressive accumulation of DNA
damage (14) and a time-dependent modulation in gene expression and potential loss of function (15).
As a consequence of higher protein turnover, it is likely that damage manifests primarily in the epidermis
as changes in the ability of cells to synthesise functional proteins (16). Due to the biological complexity
of skin and these varied mechanisms of damage, the photoageing process creates a spectrum of
modifications to proteins which are challenging to track and distinguish using a single methodology. It
is therefore necessary to develop novel methods of analysis for the detection of biomarkers

characteristic of photoaged skin.

Label-free proteomic liquid chromatography tandem mass spectrometry (LC-MS/MS) is a powerful
analytical technique used traditionally for the identification and relative quantification of proteins within
complex mixtures, often extracted from whole tissues. The technique has enabled the identification of
disease and ageing biomarkers based on their relative abundance (17, 18). Although this approach
may successfully identify disease and age-related changes in protein abundance and deposition in
ECM-rich tissues, it is poorly suited to the detection of abundance-independent, damage-associated

protein modification in complex protein mixtures.
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In order to address the need for an approach capable of identifying proteins with photoageing specific-
modifications, we have developed the publicly available Manchester Peptide Location Fingerprinter
(MPLF) webtool which can detect changes in peptide yield along protein structure (10, 19). MPLF is an
LC-MS/MS proteomic analysis tool which implements peptide location fingerprinting: tryptic peptide
spectral counts are mapped to protein regions (specified by the user, or from the UniProt database),
relatively quantified per region and statistically tested between groups (Fig. 1). This enables the

characterisation of regional differences as a consequence of structure-related modifications.
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A Tissue group A Tryptic peptide B Peptide identification
generation Protein  Peptide
Tissue Uniprot spectrum spectrum Identified exclusive
group accession count count peptide sequence
LC-MS/MS A FBLN1_HUMAN 9 1 CLAFECPENYR
A FBLN1_HUMAN 9 1 CVDVDECAPPAEPK
A FBLN1_HUMAN 9 2 DCSLPYATESK
A FBLN1_HUMAN 9 2 EFTRPEEIIFLR
A FBLN1_HUMAN 9 1 MCVDVNECQR
A FBLN1_HUMAN 9 2 MVQEQCCHSQLEER
B FBLN1_HUMAN 8 2 CVDVDECAPPAEPK
B FBLN1_HUMAN 8 1 DCSLPYATESK
B FBLN1_HUMAN 8 1 EFTRPEEIIFLR
— —_— B FBLN1_HUMAN 8 1 GYHLNEEGTR
B FBLN1_HUMAN 8 2 MCVDVNECQR
B FBLN1_HUMAN 8 1 MVQEQCCHSQLEER
MPLF application v

Peptide mapping, relative quantification (spectral
counting) per protein region and statistical testing
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Figure 1. Identification of regional peptide yield differences within proteins using peptide
location fingerprinting. As standard in proteomic MS, proteins are first extracted from tissues of
interest using study-specific protocols and trypsin digested (A). Post LC-MS/MS, exclusive (protein-
specific) tryptic peptide sequences are identified and counted (spectral counted, i.e. peptide spectrum
matches; PSMs) per tissue sample. Fibulin-1 is used throughout this figure as an exemplar (B). Peptide
count reports are uploaded to the MPLF webtool (C) where protein structures are divided either into
user-defined amino acid (aa) step sizes (e.g. 50 aa shown here) or into step sizes corresponding to
domains, repeats or regions pre-defined by the UniProt database. Peptides and their counts are then
mapped to their protein regions and summed. Sample-specific regional counts are then normalised
across the experiment based on the median protein spectrum count, averaged per tissue group and
statistically compared (Bonferroni-corrected repeated measures ANOVA). This analysis is then
visualised using representative amino acid-scale schematics of each protein (D). Average peptide
counts are heat mapped to their corresponding region for comparison between groups (bar graphs).
Regional, average peptide counts in one tissue group are subtracted from the counts of the other to
show regional differences in peptide yield (line graph) with statistical significances indicated (** < 0.01,
***<0.001).

Using peptide location fingerprinting, we have previously shown that: i) long-lived macromolecular ECM
assemblies exhibit inter-tissue structural diversity (19) and; ii) in vitro UVR-induced damage
modifications to protein tertiary/quaternary structures can be detected in cell culture-derived
suspensions of isolated ECM assemblies (fibrillin and collagen 6 microfibrils) and their associated
receptors (integrins) (10). Here, we show that this same method can be used as a surveying tool

capable of detecting statistically significant, photoageing-specific, structure modification-related
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differences in proteins within human epidermal and dermal proteomes. In addition to this, the MPLF
webtool was further used to analyse a previously published human ageing tendon dataset (20) to
demonstrate the webtool’s wider applicability in evaluating existing LC-MS/MS data. This enables the
identification of potentially novel biomarkers and protein classes which are independent from protein

abundance when compared to traditional relative quantification by peak area ion intensity.

Results and Discussion

Peptide location fingerprinting reveals regional fluctuations in peptide yield within the
structures of proteins from photoaged skin.
Prior to LC-MS/MS we confirmed that forearm skin in our donor cohort was consistently and severely
photoaged compared with buttock skin. In comparison to buttock skin sections from aged donors,
matched extensor forearm skin exhibited clear hallmarks of photoageing (Fig. S1) including epidermal
thinning and disruption of elastic fibre architecture including solar elastosis (21, 22). Quantification of
solar elastosis (% elastic fibre coverage) indicated that forearm skin had significantly higher abundance

of elastin in comparison to matched buttock skin (Fig. S2).

As the epidermis and dermis contain distinct molecular and cellular populations, we separated these
two skin layers and analysed them independently with LC-MS/MS. A total of 51,895 protein-specific
tryptic peptide sequences corresponding to 975 proteins (Table S1) were detected across all dermal
samples and 45,868 sequences corresponding to 836 proteins across epidermal samples (Table S2).
Principal component analysis (PCA) of peptide spectral counts showed clear separation of extensor
forearm and buttock data into distinct clusters (Fig. S3) highlighting the global difference between
photoaged and intrinsically aged skin. Peptide sequences were then regionally mapped to their
respective proteins, relatively quantified for forearm and buttock and statistically compared using the
MPLF webtool. A full workflow describing the application of peptide location fingerprinting using the
MPLF webtool to our skin datasets for photoageing biomarker identification is shown in Fig. 2. Online

access to webtool will be provided upon publication in a scientific journal.
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MPLF
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657 regions in
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variation

337 regions in
219 proteins

Photoageing
-modified
biomarkers

Input data of forearm vs buttock (N = 7) datasets = Scaffold peptide

report. Parameters =

* 95% peptide probabhility threshold

* 99% protein probability threshold

+ exclusive unique peptides (assigned TRUE on report).

MPLF application:

* peptides regionally mapped to 50 amino acid-sized protein regions

* quantified per group by spectral counting

* median normalised based on whole protein exclusive spectrum count

+ statistically compared using a Bonferroni-corrected repeated
measures paired ANOVA.

Intragroup variation testing of datasets (N = 3) - MPLF applied to 4

comparisons within forearm group and within buttock group:

* 2x 3 vs 3 randomly chosen within group

* 2x3vs 3 chosen based on spectral count PCA analysis (1 = closest
cluster, 1 = largest spread) (Fig. S3).

* Significant differences = regions with significantinter-sample
variability

8 tests (Tables S3 and S4) in total revealed:

* 315 out of 642 regions for epidermis and 320 out of 657 regions for
dermis which were significantly different for photoageing had high
inter-sample variation in at least one test.

* These were therefore discounted to leave only the photoageing-
specific protein regions least susceptible to inter-sample variation.

Removal of proteins containing zero counts in one group and positive

counts in the other.

+ 48 epidermal proteins and 45 dermal proteins contained significantly
different regions due to zero counts (zero for all regions) in one group

Epidermis

836 proteins

MPLF
significant
differences

642 regions in
336 proteins

Regions with
lowest
intragroup
variation

327 regions in
194 proteins

Photoageing
-modified
biomarkers

and positive counts in the other group.

* These significant differences are due to proteins being present in one
group and not the other, rather than protein modification.

* To select proteins which are photoageing modification-specific and

235 regions in
independent from relative quantification, these were discounted. g

146 proteins

251 regions in
174 proteins

Figure 2. ldentification of photoageing-modified biomarkers in human skin by filtering
significant regional differences detected using the MPLF webtool. The MPLF webtool was applied
to dermal and epidermal datasets to identify 50 aa-sized protein regions with significant differences in
peptide yield between forearm and buttock samples. Once identified, (657 for dermis, 642 for epidermis)
significantly different regions were tested for intragroup variation (forearm group and buttock group;
Tables S3 and S4). Regions which exhibited significant intragroup variation were discounted to leave
only those which were photoageing-specific (337 for dermis, 327 for epidermis). Lastly, proteins which
were present in one group (forearm or buttock) but not the other were also discounted. The remaining
regions (251 for dermis, 235 for epidermis) and their respective proteins were considered as possible
structural modification-specific biomarkers of photoageing.

Using the MPLF webtool, peptide location fingerprinting identified a total of 657 protein regions in dermis
and 642 regions in epidermis (corresponding to 375 and 336 proteins respectively) which had significant
fluctuations in peptide yield between photoaged forearm and intrinsically aged buttock samples (for
standardisation, all regions were 50 amino acids in size; Fig. 2). Of the protein regions displaying
significant differences of peptide counts between forearm and buttock samples, 337 for dermis and 327
for epidermis were least susceptible to intragroup variation (Tables S3 and S4) and therefore most
photoageing-specific (these corresponded to 219 proteins in dermis and 194 proteins in epidermis).

Lastly, to identify modification-specific regional differences that are most independent from protein
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presence, proteins which were present in either forearm or buttock groups but not the other were also
discounted. This left a total of 251 regions within 174 proteins in dermis (Table S5) and 235 regions
within 146 proteins in epidermis (Table S6) to be considered as biomarkers susceptible to photoageing-

related modifications (Fig. 2).

Of the protein biomarkers identified with local molecular differences using peptide location
fingerprinting, eight exemplar proteins that play key functional roles in skin are displayed in Fig. 3
(interleaved graphs: Fig. S4). Collagen 6 alpha-3, fibulin-1, biglycan and galectin-7 from the dermis and
keratins (K)-2 and -10, desmoplakin and heat shock protein (HSP) 70 from the epidermis all had
significant regional differences in peptide yields along their structures. This indicated that these proteins

were structurally modified as a consequence of photoageing.
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Figure 3. Exemplar skin biomarkers exhibiting photoageing-specific structural modifications.
Proteins were segmented into 50 aa-sized step regions with average peptide counts (PSMs; N = 7)
heat mapped to each step and compared between forearm and buttock (bar graphs = average PSMs,
error bars = SD). Average peptide counts corresponding to each forearm protein step were subtracted
from the counts of their corresponding buttock protein step and divided by the amino acid sequence
length of that step to reveal regional differences in peptide yield (line graphs). Multiple protein structures
within the dermis (A - D) and epidermis (E - H) exhibited statistically significant regional differences in
the peptide yield (* < 0.05, ** < 0.01, *** < 0.001; Bonferroni-corrected repeated measures paired
ANOVA) between forearm and buttock. In the dermis, one region in the N-terminal half of collagen 6
alpha-3 had significantly lower peptide counts in buttock samples than in forearm, whereas another
region in the C-terminal half of the protein had significantly higher (A). Two N-terminal regions within
fibulin-1 had significantly higher peptide counts in buttock than in forearm (B). Biglycan had two regions
near the central portion of the protein with significantly higher peptide counts in buttock than in forearm
and another region on the C-terminal side which had significantly lower (C). A central protein region in
galectin 7 yielded significantly lower peptides in buttock samples than in forearm (D). In epidermis, two
regions in K2 (E) and one in K10 (F) (on the N-terminal sides of both proteins) had significantly higher
peptide counts in buttock than in forearm whereas one region on the C-terminal end of K2 and two near
the protein centre of K10 had significantly lower counts in buttock than forearm. In desmoplakin (G) one
N-terminal region and another near the C-terminus yielded significantly higher peptides in buttock than
in forearm. Lastly, heat shock protein 7 exhibited one N-terminal sided region with significantly lower
peptide counts in buttock than in forearm and another C-terminal region with significantly higher (H).
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The collagen 6 microfibril is a structural ECM assembly comprised predominantly of three alpha chains
with alpha-3 being the largest (23). Although previous histological analysis of photoaged skin showed
no gross changes to the distribution of the collagen 6 network (24), we recently demonstrated using
peptide location fingerprinting that the alpha-3 chain was structurally susceptible to physiological doses
of UVR in vitro (10). As these ECM assemblies are markedly long-lived, here we show evidence for the
first time that the alpha-3 chain is susceptible to photoageing-dependant modifications in vivo. Fibulin-
1 is an ECM-associated protein (25, 26) in the dermis which influences cell activity by modulating
integrin interactions (27). Although skin photoageing has been shown to affect the co-localisation of
fibulins-2 and -5 on elastic fibres (25, 28), we demonstrate that the structure of fibulin-1 may also be
affected. Biglycan is an ECM-associated proteoglycan (29) capable of transforming growth factor-3
(TGFB) regulation (30) whose presence is reduced in photoaged forearm dermis compared to
intrinsically aged buttock (31). We reveal that the biglycan present in photoaged forearm is also
subjected to damage modification by photoageing which may impair functionality. Galectin-7 plays a
key role in epidermal cell migration and wound re-epithelialisation (32). Although reductions in
epidermal galectin-7 expression was shown recently in intrinsically aged skin (33), our study
demonstrates that dermal galectin-7 is additionally susceptible to modifications as a consequence of

photoageing.

Within the epidermis, both K2 and K10 had evidence of being structurally modified in photoageing. Both
are heavily involved in keratinocyte differentiation and cornification (34). Although the upregulation of
several epidermal keratins (35) has been shown in response to acute UVR exposure, including K10
(36), differences to K2 and K10 as a consequence of chronic UVR exposure have not to our knowledge
been previously been demonstrated in vivo. The desmosomal protein desmoplakin is required for
epidermal cell adhesion (37). To our knowledge, this is the first instance of a photoageing-specific
difference to an epidermal desmosomal protein. HSP70s are molecular chaperones and crucial
regulators of cell proteostasis, a process that becomes increasingly unbalanced during ageing (38). In
mice, HSP70 overexpression was shown to suppress UVR-induced wrinkle formation highlighting its
therapeutic potential (39). However, this is the first demonstration of photoageing-dependant alterations

to HSP70.

Through a variety of mechanisms initiated by chronic UVR exposure (direct photochemistry, induction
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of ROS and aberrant protease expression and activity), photoageing introduces a spectrum of protein
modifications which are very challenging to track. Peptide location fingerprinting successfully enabled
the identification of local molecular differences within protein regions revealing a profile of proteins with
photoageing-specific modifications. These may impact the functionality of skin, influencing multiple
mechanisms of damage and, ultimately, skin homeostasis. For this reason, it is important to next
consider these gross changes in infrastructure with a more holistic approach using classification and

pathway analysis.

Classification and pathway analysis of skin proteins with photoageing modifications

reveals ECM, cytoskeletal proteins and metabolic enzymes as classes most affected.
Classification analysis of proteins with significant differences in regional peptide yield between forearm
and buttock highlighted components of the ECM as the most affected protein class in the dermis (Fig
4A, blue pie chart). Common to both dermis and epidermis, cytoskeletal proteins (grey pie chart; top in
epidermis) and metabolite interconversion enzymes were also among the top four classes most affected
by photoageing, according to peptide location fingerprinting. Protease activity modulators (yellow pie
chart) were confined to the dermis and translational (Fig. 4B, brown pie chart) and DNA- / RNA-binding
proteins (dark blue pie chart) were classes exclusive to the epidermis. Crucially, this analysis identifies
the potential involvement of several new protein families in the photoageing process, such as
peroxiredoxins, serpins, ribosomal proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs),
as well as collagens, laminins, proteoglycans and keratins with previously unappreciated roles in

photoageing biology.
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Figure 4. Classification of modification-specific protein biomarkers into functional groups
reveals ECM components, ROS- and protease-modifying enzymes, cytoskeletal proteins and
ribosomal proteins as the main classes in skin most affected by the photoageing process.
Biomarker proteins with photoageing-specific modifications were categorised into protein classes
(PANTHER classification system; large multi-coloured pie charts: clockwise rankings with top rank at
12:00; only classes with two or more proteins are represented). The top four classes for dermis (A)
were: ECM proteins (blue slice) which can be further categorised (blue pie chart) into structural matrix
proteins, matrix-associated proteins and proteoglycans; metabolite interconversion enzymes (orange
slice) which can be categorised (orange pie chart) into oxidoreductase and transferase enzymes;
cytoskeletal proteins (grey slice) which can be categorised (grey pie chart) into intermediate filament-,
actin-, and microtubule-associated proteins; and protein activity modulators (yellow slice) which can be
categorised (yellow pie chart) into protease inhibitors and G-proteins. As for the dermis, cytoskeletal
proteins and metabolite interconversion enzymes were also in the top four classes for the epidermis (B)
in addition to translational proteins (brown slice) which can be categorised (brown pie chart) into
ribosomal proteins and translational factors and nucleic acid binding proteins (dark blue slice) which
can be categorised (dark blue pie chart) into RNA- and DNA-binding proteins. Protein identities
contained within those categories are also listed on the right.

The dermis is comprised primarily of long-lived structural ECM proteins. Some of the structural ECM

biomarkers identified by peptide location fingerprinting such as collagen family members have half-lives
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measured in decades (6, 40). Therefore, many of these assemblies are thought to accumulate damage
as a result of chronic UVR exposure, leading to changes in molecular abundance and function,
ultimately contributing to the photoageing phenotype (7, 41, 42). The majority of evidence for this is
based on histological differences in elastic fibre (such as by fibrillin-1 and elastin) and collagen 1
architecture and protein abundance. Although peptide location fingerprinting did identify significant
differences in the protein regions within fibrillin-1 and collagen 1 alpha chains (Table S5), the high
intragroup variation of these regions between samples (Table S3) meant that it was difficult to attribute
differences to either photoageing or individual variability. Due to the stringency of our methods, these
were therefore disregarded as modification-dependant biomarkers of photoageing. For proteins such
as these, with higher inter-individual variability, more samples may be required to identify photoageing-
specific regional changes. Regardless, peptide location fingerprinting revealed numerous, potentially
novel ECM biomarkers meriting further study (Fig. 4A), whose regions were not susceptible to individual
variation according to our methods. These include alpha chains of collagens 3, 4 and 12, elastic fibre-
associated proteins such as fibulins-1, -2 and LTBP4, basement membrane nidogen-2 and laminins A3,
A5 and C1, and lastly the proteoglycans asporin, biglycan, mimecan and versican. These novel
biomarkers were also highlighted within protein-protein interaction networks using STRING analysis,
which showed a cluster of interactions between these proteins (collagens in particular; Fig. S5, blue
dashed line). The identification of these ECM protein super-families strengthens the hypothesis that
long-lived macromolecular assemblies accumulate damage over time which may be independent from

protein presence or abundance.

In addition to versican, which has previously been identified as a dermal biomarker of skin photoageing
(43), asporin, lumican and biglycan all bind to fibrillar collagens (44—46) and are capable of modifying
their assembly and function (47). Similarly, versican binds to fibrillin microfibrils and link these major
elastic fibre component to connective tissue networks (48). As such, these proteoglycans function to
build and network major structural ECM components. We hypothesise therefore, that their functional

decline may lead to the degeneration of matrix architecture seen in photoaged forearm (49).

The ROS-modulating (50) peroxiredoxins (PRDXs)-3 and -6, identified by peptide location fingerprinting
(Fig. 4), have not previously been reported as affected by photoageing. Photoexposed tissue is

commonly associated with an increased oxidative environment (51) through the photodynamic
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formation of ROS (11, 52). The functional decline of these antioxidants may play an active part in the

progression of photoageing.

Of the protease modulators, three serine protease inhibitors (SERPINS) were also newly identified (Fig.
4A). As well as the inhibition of serine proteases (53) some, such as SERPINA1L, also inhibit
collagenase matrix metalloproteinase (MMP) 2 and the gelatinase MMP9 preventing the degradation
of collagen 1 (54), which is reduced in photoaged dermis (41). The structure-associated modifications
identified within three members of the SERPIN superfamily may be indicative of their impaired function

and therefore synonymous with a global dysregulation of dermal protease activity.

Within both dermal and epidermal proteomes, intracellular metabolite interconversion enzymes and
structural cytoskeletal proteins were two of the main classes with significant regional differences
between photoaged forearm and buttock (Fig. 4). These new observations suggest that the
photoageing process may be having a global effect on cell metabolism and structure. Although the
acceleration of cumulative DNA damage as a result of chronic UVR exposure may not necessarily lead
to tumorigenesis, it is still thought to have a profound impact on keratinocyte function. This includes
disordered maturation, a loss of polarity (15) and a decrease in the capacity for differentiation and
proliferation in vivo (55). It is likely that our identification of a large number of proteins fundamental to
cell metabolism and structure may reflect these large-scale changes in cell function and behaviour

which are characteristic of epidermal chronic sun exposure.

Of particular interest, within the epidermal proteome (in addition to K2 and K10, Fig. 3E, F), a number
of other keratins were also identified as modified by photoageing (Fig. 4B, grey pie chart). This is also
highlighted by STRING analysis which shows a cluster of interactions between all twelve keratin
members identified (Fig. S6, dashed blue line). These keratins play a variety of roles within the
epidermis from cornification (56) and barrier function integrity (57) in the superficial layers to
keratinocyte differentiation and proliferation in deeper layers (58). The revelation of a global change
within the keratin superfamily by peptide location fingerprinting is indicative of a wider functional decline

of these crucial processes.

Peptide location fingerprinting revealed that several epidermal proteins affected by photoageing were

ribosomal (Fig 4B, brown pie chart). STRING analysis also demonstrates a cluster of interactions
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between all ten ribosomal protein members identified (Fig. S6, dashed black line). Structural changes
in these proteins may result in the decline of ribosome functionality within resident epidermal cells. The
deterioration of ribosome presence (59) and function (60) during ageing has been shown previously in
mice. In addition, it is well established that photoageing grossly affects gene expression in human
keratinocytes (16, 61). A decline in ribosome function and in RNA-binding proteins (Fig 4B, blue pie
chart) would lead to impairment of the cell’s translational machinery impacting globally on keratinocyte

gene expression.

Peptide location fingerprinting allows the assessment of protein modifications both on a molecular scale
by visualising significant differences in peptide yield along a protein’s structure (Fig. 3) and on a
proteomic scale through global analyses of identified biomarkers (Fig. 4). Together, it reveals potentially
novel mechanisms and/or perturbed pathways following chronic sun exposure which merit future

functional validation and study.

Peptide location fingerprinting reveals biomarkers of the photoageing process which

are not identified by conventional relative quantification of protein abundance
In addition to regional protease susceptibility using peptide location fingerprinting, protein abundance
was also relatively quantified within the same label-free LC-MS/MS datasets by peak area ion intensity.
This was performed in order to identify abundance-dependant protein differences due to photoageing
and reveal biomarkers unique to both methodological approaches. A total of 635 dermal proteins and
926 epidermal proteins were significantly different in relative abundance (Fig. S7) between photoaged
forearm and intrinsically aged buttock according to peak area intensity (principal component analyses
indicated clear data separations, Fig. S8; full list of proteins - dermis: Table S7, epidermis: Table S8).
As seen for peptide location fingerprinting, classification analysis also identified cytoskeletal proteins,
metabolite interconversion enzymes and translational proteins as the top three classes whose relative
abundance was affected in forearm epidermis (Fig. S9). These may be linked to the profound changes
to keratinocyte morphology and gene expression as a result of the photoageing process (62).
Counterintuitively, the main protein classes affected in dermis were intracellular rather than ECM-
associated. A lower presence of fibroblasts in intrinsically aged skin (buttock) (63) coupled to the higher
biosynthetic activity of fibroblasts and an increased presence of inflammatory cells in photoaged skin

(forearm) (64) may explain these differences in intracellular protein abundance.
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Two new potential photoageing biomarkers TIMP3 (metalloprotease inhibitor 3) in dermis and RPL36
(ribosomal protein L36) in epidermis, identified as significantly different in relative abundance between
forearm and buttock skin by LC-MS/MS peak area intensity, were successfully experimentally validated
with Western blotting (Fig S10). Western blotting on the same dermis and epidermis protein extracts
corroborated a significant increase in TIMP3, and decrease in RPL36, in photoaged forearm compared
to intrinsically aged buttock. Furthermore, normalised relative quantification of TIMP3 and human serum
albumin (loading control selected based on non-significance) by Western blotting matched well with that
of LC-MS/MS peak area relative quantification on a sample by sample basis (Fig S11). Although all
four TIMPs have been shown to inhibit all 26 MMPs (65), TIMP3 is also capable of inhibiting more
members of the a disintegrin and metalloproteinase proteins (ADAMs) and ADAMs with
thrombospondin motifs (ADAMTSS) than its other family members (66). One proposed mechanism of
photoageing is that chronic exposure of UVR to fibroblasts and keratinocytes can lead to the
upregulation of MMPs in skin (13, 67). The elevated presence of TIMP3 in photoaged forearm dermis
compared to intrinsically aged buttock is perhaps indicative of a heightened proteolytic environment and

an attempt to mitigate UVR-induced remodelling.

Peptide location fingerprinting uniquely identified 120 protein biomarkers in the dermis (Fig. 5A; Table
S9) and 71 biomarkers in the epidermis (Fig. 5B; Table S10), which were modified as a consequence
of photoageing but did not differ significantly in relative abundance according to peak area
guantification. This demonstrates that changes in protein abundance do not necessarily correlate with
changes related to protein modification, particularly in ECM-rich tissues. Of these, thirteen were ECM-
associated proteins including four collagens, two elastic fibre-associated proteins (LTBP4 and nidogen-
2), three laminin chains, nidogen-2 and the proteoglycan versican. This suggests that peptide location
fingerprinting is capable of identifying long-lived proteins (5, 6, 68) subjected to accumulated chronic
damage (7), whose abundance may not be impacted by the photoageing process. This is also
corroborated by protein classification analysis which ranked ECM proteins as the top most affected
classes in dermis for structural modifications (Fig. 4), but not for changes in relative abundance (Fig
S9). In epidermis, peptide location fingerprinting also successfully identified photoageing modifications

in numerous keratins, serpins and ribosomal proteins which did not significantly differ in abundance.
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Figure 5. Peptide location fingerprinting identifies unique modification-specific skin biomarkers
of photoageing which were not identified by whole protein relative quantification. Venn diagrams
compare the number photoageing-modified protein biomarkers identified by peptide location
fingerprinting with the number proteins identified with significant differences in whole protein relative
abundance by peak area quantification. Several proteins were uniquely identified by peptide location
fingerprinting as photoageing-specific biomarkers in both dermis (A) and epidermis (B) including
multiple ECM proteins and protein activity modulators for dermis, translational and nucleic acid-
associated proteins for epidermis and cytoskeletal proteins and metabolite interconversion enzymes for
both sub-tissues. Protein identities with significant modifications in structure correlated less strongly
with significant differences in protein abundance in the dermis (C) than in the epidermis (D). Proteins
with photoageing-specific structural modifications were identified and labelled blue on relative protein
abundance volcano plots from Fig S7. Violin plots (dashed lines = median and IQR) of the labelled
points (blue) were superimposed to show correlation between proteins with modification-associated
differences and protein abundance differences (violin plots of all data points also shown in pink and
gold). For the epidermis, a large proportion of proteins which have structural modifications (blue points
and blue violin plot) are positioned above the p = 0.05 line, indicating that these were also significantly
different in relative abundance between photoaged forearm and intrinsically aged buttock. This
suggests that for epidermis, structure-related differences appear to correlate strongly with differences
in abundance (median p-value = 0.01). For the dermis however, a smaller proportion of proteins
identified with modification-associated differences are positioned above the p = 0.05 line suggesting
that these differences appear to correlate less with abundance (median p-value = 0.04).
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To test whether differences in structural modification in proteins may correlate with differences in
relative abundance in epidermis and dermis, p-values of relative abundance differences (measured by
peak area) of proteins identified with modifications (measured by peptide location fingerprinting) were
compared between epidermis and dermis (Fig. 5 C, D). The proportion of proteins with both significant
modifications and also significant differences in relative abundance was higher in epidermis than in the
dermis. Since the dermis consists primarily of longer-lived structural ECM whereas the epidermis is
predominantly cellular, this observation may be reflective of the higher protein turnover in the cellular
epidermis compared to the relatively acellular dermis. This is a further demonstration of the potential of
peptide location fingerprinting in elucidating biomarkers of chronic disease, particularly in ECM-rich

connective tissue but also in cell-rich tissues.

The MPLF webtool can be readily applied to existing LC-MS/MS datasets to reveal

previously undiscovered disease biomarkers.
To showcase that peptide location fingerprinting can be used as a surveying tool to reveal novel disease
biomarkers by post hoc analysis of published LC-MS/MS datasets, the MPLF webtool was used to
analyse an independent, publicly available label-free LC-MS/MS human tendon data (downloaded from
the PRIDE repository; dataset identifier PXD006466 and 10.6019/PXD006466). Hakimi et al. (2017)
recently published a quantitative proteomic comparison between aged (torn) and young human
supraspinatus tendon (20). They revealed significant reductions in the multiple pericellular matrix
components in aged, torn tendon compared to young uninjured tendon, such as collagens 1 and 6 and

elastic fibre components fibrillin-1, microfibril-associated protein 5 (MFAPS5), LTBP2 and fibulin-1.

Peptide location fingerprinting on this published dataset identified 54 protein regions with significant
differences in tryptic peptide yield between aged torn tendon and young uninjured male tendon (Table
S11) corresponding to 31 proteins with possible modifications to structure (Fig. 6A). Of these, lamin-A,
human serum albumin, tenascin-X and cartilage intermediate layer protein-2 (CILP2) are displayed as
exemplary proteins with significant regional differences in peptide yields along their structures (Fig. 6

B - E).
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Figure 6. MPLF webtool analysis of publicly available ageing human tendon data demonstrates
that peptide location fingerprinting can be applied post hoc to downloaded conventional label-
free LC-MS/MS datasets to reveal unique structural modification disease biomarkers. Protein-
protein interaction network (STRING; minimum required interaction score = 0.400) highlighted ECM
and ECM-associated proteins as the main MPLF-identified tendon biomarkers of human ageing and
injury (A). Differences in peptide yield along the protein structure of four of these biomarkers identified
are shown (B - E). Similar to Fig. 2, proteins are segmented into 50 aa-sized step regions with average
peptide counts (PSMs; N = 9) heat mapped to each step and compared between aged/torn and young
groups (bar graphs = average PSMs, error bars = SD). Average peptide counts corresponding to each
protein step in the aged/torn group were subtracted from the counts of their corresponding protein step
in the young group and divided by the amino acid sequence length of that step to reveal regional
differences in peptide yield (line graphs) with statistically significances between groups shown (** <
0.01, *** < 0.001; Bonferroni-corrected repeated measures unpaired ANOVA). Both lamin-A (B) and
albumin (C) contained one region on their N-terminal sides with significantly higher peptide counts in
young compared to aged samples. Tenascin-X contained one region near the N-terminus which yielded
significantly higher peptides in young compared to aged and another on C-terminal side which yielded
significantly lower peptide counts (D). A C-terminal region of CILP2 also had significantly lower peptide
counts in young compared to aged (E).
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In common with biomarkers identified by Hakimi et al. (2017) by relative quantification (20), peptide
location fingerprinting also identified collagen 1 alpha-1, collagen 6 alpha 2, fibrillin-1, latent-
transforming growth factor beta-binding protein 2 (LTBP2), complement and CILP as modification-
specific markers of tendon damage. However, a number of newly identified biomarkers exclusive only
to protein structural modifications were also identified. These were collagen V alpha-1, the
proteoglycans versican, mimecan and asporin, human serum albumin, the nuclear intermediate filament

protein lamin A, and the multifunctional cytokine TGF.

Through the use of the MPLF webtool, peptide location fingerprinting was successfully applied to a
previously published human tendon dataset, revealing possible novel modification-specific protein
biomarkers of tendon damage not previously identified (20). This highlights the wider impact of peptide
location fingerprinting as a novel surveying tool capable of enhancing biomarker discovery in

combination with conventional relative quantification LC-MS/MS methods.

Conclusion
Peptide location fingerprinting of label-free LC-MS/MS datasets generated from photoaged forearm and
intrinsically aged buttock skin enabled the identification of structure-associated modifications to proteins
as a consequence of chronic sun exposure. As well as a biomarker discovery tool, we demonstrated
that peptide location fingerprinting can be used to investigate local molecular differences in tryptic
peptide yield within structural regions of proteins in complex, whole tissue lysates. Crucially, this
approach also identified proteins which did not exhibit significant differences in relative abundance. As
such, peptide location fingerprinting revealed novel biomarkers of photoageing which remain

undetectable by conventional relative quantification, in particular of long-lived ECM proteins.

Through the use of the MPLF webtool, peptide location fingerprinting can be applied to any label-free
LC-MS/MS dataset suitable for conventional data-dependant acquisition. As such, a combinational
approach of both peptide location fingerprinting and relative protein quantification of protein abundance
enables a more complete assessment of tissue proteostasis as a consequence of chronic disease and

creates a powerful tool for biomarker discovery.
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Materials and Methods

Human tissue and materials
Chemicals were sourced from Sigma-Aldrich Co. Ltd (Poole, UK) unless otherwise stated. Human skin
was collected from photoaged donors (N = 7, mean age = 70 years, range = 62 — 79 years, 3 males;
Fitzpatrick skin phototype I-1Il) with informed and written consent following approval from The University
of Manchester Research Ethics Committee (ref: UREC 15464). Samples were bisected, one half snap
frozen (for LC-MS/MS) and one half embedded in Optimal Cutting Temperature compound (OCT;

CellPath; Powys, UK) and snap frozen (for histology).

Tissue cryosectioning and Weigert’s staining
Tissue (buttock and forearm) was cryosectioned at a thickness of 5 um (OTF cryostat; Bright
Instruments, Bedfordshire, UK). Three serial sections were collected per slide and stained with
Weigert’s resorcin fuchsin (Merck; Darmstadt, Germany). In brief, cryosections were fixed in 4% [w/V]
paraformaldehyde (PFA) in PBS and then submerged in staining solution, each step for 10 minutes at
room temperature. Stained sections were dehydrated in graded industrial methylated spirit (IMS) (70%
[v/v], then twice with 100%), cleared in xylene (5 minutes per step at room temperature) and then

permanently mounted (DPX).

Imaging and solar elastosis quantification
Weigert's stained skin sections were imaged using brightfield microscopy (BX53 microscope; Olympus
Industrial, Southend-on-Sea, UK). Solar elastosis was quantified by measuring the percentage area of
positively-stained elastic fibres using ImageJ (NIH; Bethesda, MA, USA). Percentage areas of elastic
fibres were measured automatically by thresholding the images by brightness using “Threshold Colour”.
All coloured pixels, corresponding to the purple stained elastic fibres were then converted to a single
colour and all other pixels were coloured white. Elastic fibre abundances were measured within ImageJ
as a percentage of coloured pixels within the areas. Statistical comparisons were performed using
GraphPad Prism (GraphPad Software Incorporated; California, USA). The percentage area of elastic
fibres was assessed for matched forearm and buttock skin groups with six individuals per group.
Percentage area was measured in three images per section and three sections per individual, and then
averaged. Elastic fibres were analysed between matched forearm and buttock groups using the

Student’s paired t-test. Only differences of p < 0.05 were considered significant.
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Sample preparation for mass spectrometry
Employing any LC-MS/MS analysis on skin dermis is challenging as networking ECM structures are
tightly bonded, highly modified and covalently crosslinked. This, along with the hierarchical assembly
of macromolecular ECM components (as seen in fibrillary collagens and elastic fibres) renders them
highly insoluble (69). As such, an optimised protocol was devised which maximised peptide yield and

protein discovery in dermis and epidermis by LC-MS/MS analysis.

Skin samples were defrosted at room temperature and incubated in 20 nM Ethylenediaminetetraacetic
acid (EDTA) in PBS for 2 hr at 37°C to ensure dermal-epidermal separation. Biopsies were washed in
PBS and the epidermis removed. Dermis was minced and incubated in 8 M urea buffer (8 M urea + 25
mM ammonium bicarbonate + 25 mM dithiothretol [DTT]) and homogenised using a bullet blender (Next
Advance, New York, USA) at maximum speed. Dermal samples were centrifuged and supernatants
diluted to 2 M urea with AB buffer (25 mM ammonium bicarbonate and 1.3 mM calcium chloride). The
epidermis was homogenised in 8 M urea buffer with an ultrasonicator (S220X, Covaris, Brighton, UK)
with 175 W peak power for 8 min. Samples were centrifuged and supernatants diluted to 2 M urea with
AB buffer. Dermis- and epidermis-derived supernatants were digested with trypsin SMART Digest
Beads (Thermo Fisher Scientific, MA, USA) and agitated overnight at 37°C. Tryptic peptide samples
were reduced in 10 mM DTT for 10 min at 60°C, alkylated in 30 mM iodoacetamide for 30 min and
acidified in 2% (v/v) trifluoroacetic acid. Biphasic extraction was performed via agitation with ethyl
acetate. Peptides were then desalted using OLIGO R3 Reversed-Phase Resin beads (Thermo) and
vacuum dried. Samples were re-suspended in 5% acetonitrile (ACN) and peptides (~10 ug injections)

were analysed using LC-MS/MS.

Mass spectrometry
Dermal- and epidermal-derived peptide mixtures were separately analysed by LC-MS/MS using an
UltiMate® 3000 Rapid Separation Liquid Chromatography system (RSLC; Dionex Corporation, CA,
USA) coupled to a Q Exactive HF mass spectrometer (Thermo). Peptide mixtures were separated using
a multistep gradient from 95% A (0.1% formic acid [FA] in water) and 5% B (0.1% FA in ACN) to 7% B
at 1 min, 18% B at 58 min, 27% B at 72 min and 60% B at 74 min at 300 nL min-1, using a 250 mm X
75 uymi.d. 1.7 uyM CSH C18, analytical column (Waters, Hertfordshire, UK). Peptides were selected for

fragmentation automatically by data-dependant analysis.
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Peptide list generation for peptide location fingerprinting
Raw MS spectrum files were converted to Mascot MGF files containing peak lists with associated mass
and intensity values using the ExtractMSn algorithm (Thermo) under default parameters. The Mascot
Daemon application v 2.5.1 (Matrix Science; London, UK) was used to automate the submission of
peak list MGF files to the Mascot server. The Mascot search engine then correlated the peak spectra
within each file to the UniProt human database (2018; Swiss-Prot and TreEMBL). Mascot MS/MS ion
searches were performed with the following parameters: database — Swissprot_TreEMBL_2018 01;
species — Homo sapiens; enzyme — trypsin; peptide charge — 2+ and 3+; max missed cleavages — 2;
fixed modifications — carbamidomethyl (mass: 57.02 Da; amino acid: C); variable modification —
oxidation (mass: 15.99 Da; amino acid: M); peptide tolerance — 10 ppm (monoisotopic); fragment
tolerance — 0.02 Da (monoisotopic); instrument — ESI-TRAP. Mascot search results were exported as
DAT files for every run performed. Peptide spectrum matches (PSM) were generated using the Scaffold
4 software (Proteome Software; Portland, OR, USA). DAT files were imported into Scaffold 4 and
peptide/protein identifications generated automatically using LFDR scoring. Data were filtered to report
only peptides exclusive and unique to their matched proteins. Peptide probability was thresholded to
95% minimum giving a low peptide false discovery rate (FDR) of 0.5% for epidermis samples and 0.6%
for dermis samples. Peptide FDR was automatically calculated by Scaffold 4 using peptide probabilities
assigned by the Trans-Proteomic Pipeline (Sourceforge; Seattle. WA, USA) using the PeptideProphet™
algorithm. Peptide lists used for peptide location fingerprinting were exported from Scaffold 4 (Tables

S1 and S2) within CSV files which were then imported into the MPLF webtool.

Peptide location fingerprinting using the Manchester Peptide Location Fingerprinting

webtool
The MPLF webtool is a publicly available (upon publication in a journal) bioinformatics spectral counting
LC-MS/MS analysis tool developed in-house, hosted on our previously published database: the
Manchester Proteome website (70). MPLF allows users to perform high-throughput peptide location
fingerprinting analysis of LC-MS/MS peptide spectrum lists. Calculations are performed by MPLF on
the server side with a code written in Python version 3.8. The back end is powered by Python Django
3.8 framework and by mySQL 8 database and the front end operates REACT]js with Redux state

management to ensure speed and reliability of analysis.
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The concept of peptide location fingerprinting by the MPLF webtool was designed using LC-MS/MS
spectral counting data instead of peak area ion intensity, since spectral counting is the easiest data to
access in the field and instrument independent. Additionally, peptide location fingerprinting measures
gross differences across the protein structure profile making spectral counting suitable. Lastly, we
wanted to make MPLF a useful LC-MS/MS analysis and visualisation tool for other researchers in the
field and spectral counting data is easiest for users to access. We hope to continue developing the
MPLF webtool and adjust in future to include peak area ion intensity and additional organism

proteomes.

The MPLF webtool allows protein amino acid sequence structures to be divided either into 20, 40, 50,
80, 100 aa regional steps or into step sizes corresponding to domains, repeats or regions pre-defined
by the UniProt database. Peptide list CSVs (Tables S1 and S2) were imported into the MPLF webtool
and peptide spectrum matches (PSM and associated spectral counts) were then automatically summed
per respective regional step within a protein, normalised based on individual protein total spectrum
count, averaged per group (forearm or buttock; N = 7) and subsequently heat mapped onto
representative “amino acid-length scale” schematics of each protein. Average PSM counts
corresponding to amino acid number step sizes within protein structures of one group (buttock) were
then subtracted from the counts of their corresponding step sizes in the other group (forearm) and
divided by each step’s amino acid length to show regional differences in peptide yield. In addition, PSM
counts corresponding to each amino acid step size within a protein of one group (buttock) was
statistically compared with counts of each corresponding amino acid step size in the other group
(forearm) using Bonferroni-corrected, repeated measures paired ANOVA. For further information on
peptide location fingerprinting, please refer to previous publications detailing the same process for

fibrillin-1 and collagen 6 alpha-3 proteins (10, 19).

Relative quantification of protein abundance with peak area ion intensity using
Progenesis QI software
Relative quantification of protein abundance was performed using Progenesis QI software package
(Nonlinear Dynamics, Waters, Newcastle, UK). Raw mass spectra files were imported and ion intensity
maps were automatically generated. lon outlines were automatically aligned by Progenesis QI to a

single reference run using default settings. lon peaks and their relative abundances were then
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automatically picked without filtering and normalised to a single reference run by Progenesis QI using
default settings. Data were then exported and searched using Mascot v2.5.1 with same search
parameters and on the same database as described for peptide location fingerprinting. This was then
re-imported back into Progenesis QI where identified peptide ions were automatically matched.
Normalised abundance for each protein was calculated by Progenesis QI as the sum of the each
matched peptide ion abundance (individual peptide ion abundance is equal to the sum of the intensities
within the isotope areas). Normalised protein abundances, compared between matched forearm and
buttock samples, were statistically analysed within Progenesis QI using a paired (repeated measured)
ANOVA test. A fold change for each protein was also calculated automatically (fold change is defined
as the higher average normalised abundance of one group divided by the average normalised
abundance of the second group). Principal component analysis (PCA) was performed on the quantified

proteins using Python Sklearn package (Fig. S8).

TIMP3 and RPL36 Western blotting
Samples were ran on 4 — 12% NuPAGE gels (Life Technologies, Warrington, UK) and transferred onto
Immun-Blot PVDF membranes (Bio-Rad, Watford, UK) using a Trans-Blot Turbo Transfer system (Bio-
Rad). Membranes were blocked with 5% (v/v) milk in TBS-T (50 mM Tris-HCI, 5% [v/v] TWEEN 20) for
one hour at room temperature and split into two halves along the direction of electrophoresis at ~40
kDa. Bottom halves of dermal sample membranes were incubated with rabbit anti-TIMP3 (Cell
Signalling Technology; D74B10) and top halves with mouse anti-HSA (Abcam, ab10241; loading
control). Bottom half of epidermal sample membranes were incubated with rabbit anti-RPL36 (Sigma;
HPAO047153) and top halves with rabbit anti-VCL (Sigma; HPA063777; loading control). All primary
antibodies were incubated at 1:1000 dilution, overnight at 4°C. Membranes were washed thrice with
TBS-T before incubation for one hour at room temperature with secondary antibodies (horse radish
peroxidase goat anti-mouse or anti-rabbit; Bio-Rad), all at 1:5000 dilution. Blots were developed with

Western Lightning Plus ECL (PerkinElmer, Beaconsfield, UK).

Expansion of the Manchester Proteome
Skin proteins identified (Scaffold 4; peptide probability threshold = 50%, protein probability threshold =
99%, minimum two peptides per protein) in the LC-MS/MS data generated in this study were used to

expand the existing Manchester Proteome database with new protein entries (70). All protein
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identifications with their associated p-values and fold changes are freely searchable on

www.manchesterproteome.manchester.ac.uk/proteome.
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Table S1. Full list of LC-MS/MS-identified exclusive peptides in dermis
samples used for structural mapping and fingerprinting.

Table S2. Full list of LC-MS/MS-identified exclusive peptides in
epidermis samples used for structural mapping and fingerprinting.

Table S3: Intragroup variation testing of dermal protein regions
Table S4: Intragroup variation testing of epidermal protein regions

Table S5. Full list of peptide fingerprinted dermal protein regions
with significantly different peptide counts between forearm and
buttock

Table S6. Full list of peptide fingerprinted epidermal protein regions
with significantly different peptide counts between forearm and
buttock

Table S7. Full list of whole protein relatively quantified dermal
proteins by peak ion intensity ranked by significance.

Table S8. Full list of whole protein relatively quantified epidermal
proteins by peak ion intensity ranked by significance.

Table S9: Dermal protein biomarkers identified exclusively by peptide
location fingerprinting, relative protein quantification or by both
methodologies.
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Table S10: Epidermal protein biomarkers identified exclusively by
peptide location fingerprinting, relative protein quantification or by
both methodologies.

Table S11: Full list of peptide fingerprinted tendon protein regions
with significantly different peptide counts between old and buttock
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Figure S1. Representative histology images of biopsies to visually
showcase photoageing phenotype. .

Figure S2. Skin samples from photoexposed forearm had significant
solar elastosis compared to photoprotected buttock.

Figure S3: Principal component analysis (PCA) of spectral count data
used for peptide location fingerprinting shows clear separation of
forearm and buttock data into distinct clusters.

Figure S4: Eight exemplary biomarkers exhibiting photoageing-
specific structural modifications.

Figure S5. Protein-protein interaction network analysis of dermal
biomarkers containing structural modifications indicates a global
effect to tissue homeostasis as a consequence of chronic sun
exposure.

Figure S6. Protein-protein interaction network analysis of epidermal
biomarkers containing structural modifications indicates a global
effect to tissue homeostasis as a consequence of photoageing.

Figure S7. Label-free relative quantification of protein abundance by
peak area ion intensity identifies multiple proteins with significant
differences in relative abundance between matched photoaged
forearm and intrinsically-aged buttock skin.

Figure S8. PCA analysis of peak area ion intensity data used for
relative quantification shows clear data separation between forearm
and buttock samples analysed.
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Figure S9: Classification of protein biomarkers significantly different
in relative abundance into functional groups reveals metabolite
interconversion enzymes, nucleic-acid binding proteins, cytoskeletal
proteins and translational proteins as the main classes in skin most
affected by the photoageing process.

Figure S10: Western blot validation of LC-MS/MS relative
quantification of protein abundance highlights TIMP3 and RPL36 as
novel biomarkers of photoageing.

Figure S11: Dermis LC-MS/MS-based relative abundances for TIMP3
and HSA match well with Western blot relative abundances on a
sample by sample basis.
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Figure S1. Representative histology images of biopsies to visually
showcase photoageing phenotype.
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Figure S2. Skin samples from photoexposed forearm were severely
photoaged compared to photoprotected buttock.
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Figure S3. Principal component analysis (PCA) with partitioning
around medoids clustering of spectral count data used for peptide

location fingerprinting.
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