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Abstract

Many intra-cellular processes rely on transport by endosomes. Recent experimental techniques have provided
insights into organelle maturation and its specific role in, for instance, the ability of a virus to escape an
endosome and release its genetic material in the cytoplasm. Endosome maturation and dynamics depend on
GTPases called Rabs, found on their membrane. Here, we introduce a mathematical framework, combining
coagulation and fragmentation of endosomes with two variables internal to each organelle, to model
endosomes as intra-cellular compartments characterised by their levels of (active) Rab5 and Rab7. The key
element in our framework is the “per-cell endosomal distribution” and its its dynamical equation or
Boltzmann equation. The Boltzmann equation, then, allows one to deduce simple equations for the total
number of endosomes in a cell, and for the mean and standard deviation of the Rab5 and Rab7 levels. We
compare our solutions with experimental data sets of Dengue viral escape from endosomes. The relationship
between endosomal Rab levels and pH suggests a mechanism which can account for the observed variability in
viral escape times, which in turn regulate the viability of a viral intra-cellular infection.

Author summary

Endosomes are intra-cellular receptacle-like organelles, which transport endocytosed cargo upon
internalisation from the plasma membrane. These early endosomes, also known as sorting endosomes, mature
to late endosomes, with a lower pH than early ones, as a consequence of the intricate dynamics of a family of
molecules called Rabs. Viruses exploit this endosomal pH drop to their advantage. Here we bring together
experimental data on Dengue viral escape times from endosomes and a novel mathematical framework
inspired by the theory of droplet coalescence, to improve our understanding of endosome maturation, and in
turn to quantify the large variability of viral escape times. This mathematical framework can easily be
generalised to model the dynamics of other intra-cellular organelles, such as mitochondria or the endoplasmic
reticulum.

Introduction )
Endosomes are enigmatic organelles which regulate intra-cellular cargo trafficking [1]. These (literally) inner -
bodies are dynamic in movement and decorated [2]. They can merge; that is, they can undergo fusion!. 3
Endosomes can also break up (fission) [3] or kiss and run [4], in a random choreography that allows the cell to
sort, recycle or degrade internalised molecules. This endosomal maturation programme requires a dramatic 5
transformation of these organelles: from early endosomes, to late ones, recycling ones and degrading 6

n order to avoid confusion, in this manuscript we shall refer to viral RNA release from the endosome to the cytosol as escape
and to the merging of two endosomes as fusion. We note that other authors refer to fusion as the merging of the viral envelope
and the endosomal membrane.
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lysosomes [1,5]. In recent years, a lot of effort has been devoted to understand entry and subsequent 7
intra-cellular viral genome release [6]. Current consensus suggests that many viruses, independently of their s
entry pathway, are delivered to the so-called early endosomes, and thus, enter an intricate network of 9
endosomes: from early to late endosomes, until the endosomal pH is low enough to trigger viral membrane 10
fusion and escape to the cytosol [7,8]. In this way, endosomes become one of the main vehicles for viral 1
intra-cellular trafficking in the infected cell, bringing viral genomic cargo from the plasma membrane to the 1
cytosol. 13
For many viruses, escape is preceded by a sudden drop in the endosomal pH [6,7,9]. This often occurs in late 1
endosomes, where in fact, high levels of the GTPase Rab7 have been pointed out as responsible for viral 15
escape [10,11]. This rather interesting feature seems to indicate that by tracking the endosomal Rab 16
decoration, one is in fact, also following the maturation history of individual endosomes. Rabb is a marker of 7
early endosomes and Rab7 of late ones [12]. Besides their role as experimental markers, different Rab 18
molecules have been identified as central regulators of the endosomal transport pathway [13]. Of particular 19
relevance, is the fact that endosomal pH has been experimentally linked to different levels of Rabb and 2
Rab7 [5,13-15]. Given the large variability observed in viral escape times [9,11,16], it is timely to ask 2
ourselves the following questions: (i) is pH alone the main trigger of viral escape, (ii) is the pH dependence 2
gradual (analogical) or abrupt (digital), and (iii) can endosome maturation and dynamics explain the 2
observed heterogeneity in the distribution of viral escape times. The first question has been quantitatively 2
addressed, experimentally and theoretically, in recent work [10,17,18]. In this paper, we aim to provide 2

answers to the three questions above. We do so by making use of a novel mathematical framework to describe 2
the population dynamics of endosomes containing endocytosed viral particles. The mathematical approach 277

presented here includes the contribution to endosome maturation and dynamics from fusion and fission 2
events, as well as those molecular processes related to Rab recruitment and endosome acidification. In this 29
way, the framework allows one to characterise the mechanistic details of endosomal maturation, yet reduces
the mathematical complexity required in order to explain the experimental data. 3
The biology of endosomal Rab5/Rab7 dynamics »
Early endosomes (Rab5-positive) undergo a progressive replacement of Rab5 with Rab7 [3]; a process that 33
involves several molecules and chemical reactions (see a schematic summary in Fig. 1, adapted from Ref. [19]). 3
Specifically (see Ref. [19] for details), Rab5-positive endosomes (a signature of early endosomes) gradually 35
become Rab7-positive endosomes (namely, late endosomes) [3]. The complete endosomal maturation process s
then replaces the Rabb decoration with a Rab7 one. At the molecular level (see Fig. 1), Rab5 (in its two 37
conformations, Rab5:GDP and Rab5:GTP, inactive and active, respectively), Rab7, guanine nucleotide 38
exchange factors (GEFs), GTPase-activating proteins (GAPs), and effector molecules are interconnected on 3
the endosomal membrane [20]. The conversion from Rab5 to Rab7 is a consequence of programmed and 40
simultaneous changes in the nucleotide cycle of both Rab5 and Rab7, which shuttle between inactive, a

GDP-bound, and active, GTP-bound, conformations. GEFs catalyse the exchange of GDP into GTP and 2
GAPs catalyse the hydrolysis of GTP into GDP [21]. Other positive/negative feedback loops are summarised 43
in Fig. 1. We note that for the purposes of this manuscript the molecular reactions included in Fig. 1 will be 4
encoded in the specific choices for the molecular currents. Besides their role in the dynamics of Rab a5
molecules, endosomes also interact with other nearby endosomes. In particular, they can undergo fusion and 4
fission [22], or kiss-and-run [4] events. The latter process occurs when Rabb restricts the complete fusion of &

endosomes, allowing the exchange of solutes between them, but without complete intermixing of their a8
membranes [4]. Here, we shall only consider endosomal fusion and fission events. a9
Mathematical framework of endosome dynamics and maturation 50
Mathematical models have helped identify the main mechanisms involved in the endosomal maturation 51
process. For instance, some regulatory proteins, e.g., SNAREs, Rabs and other coating proteins, have been 52
linked to the formation, degradation and renewal of endosomes. There is some consensus on what 53
mechanisms are involved in those processes, although their individual quantitative contribution seems to be s
elusive [15,23]. In this section, we summarise the biology of endosomal Rab dynamics, as well as previous 55
mathematical modelling efforts. 56
Most mathematical models of endosome dynamics (with the notable exception of the model in Ref. [24] that s
pioneered the approach developed here) make use of a set of ordinary differential equations (ODEs) to 58
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Fig 1. Schematic summary of the reactions which decorate the endosomal membrane. They regulate the

levels of Rab5/Rab7 in the cytosol and at the membrane in inactive (Rab-GDP) and active forms (Rab-GTP).

GDI means GDP-dissociation inhibitor (see Ref. [19] for details). Mathematically, Eq. (10) and Eq. (11),
capture the main molecular interactions. For instance, the red dashed line is modelled by the term
proportional to vs7 7.

describe the incorporation of different Rab molecules to the endosome. This poses a practical problem since,
in all cases, the data used to parameterise the mathematical models is averaged over all the endosomes.
However, as we mentioned above, fusion and fission events couple two nearby endosomes and, hence,
endosomal averages might not be appropriate to describe the pH of an individual endosome. To illustrate why
traditional ODE models do not capture this variability properly, let us consider an extreme case with two
endosomes with pH 4 and 7, respectively, and let us assume that viral escape occurs for pH below 5. The
average endosome pH will be 5.5 in this case, so escape will not occur, which contradicts the fact that it will
in one of the endosomes, but not the other. Hence, endosomal averaging can smooth out fast changes and
lead to the conclusion that escape is a continuous process rather than mediated by a pH threshold [23]. At
the other end of the modelling spectrum, the biochemistry of proton exchange has been used to describe the
thermodynamics of endosome pH acidification [25]. Also, the authors of Ref. [14] consider the acidification of
individual endosomes, without considering interactions between them. Finally, it is worth mentioning that, in
Ref. [26] the authors made use of a hybrid method, which includes differential equations for active Rab5,
inactive Rab5b and the total number of endosomes. Specifically, the model considers the mean number of
Rab5 molecules per endosome and assumes that Rab5 exchange and activation between cytosol and
endosomes is proportional to the number of endosomes (see Egs. (75)-(78) in Section 3 of the Supporting
information, which were proposed by the authors of Ref. [26]). Note that Eq. (78) incorporates the role of
fusion and fission events in terms of the mean number of endosomes. Thus, this mean field approach is
unable to describe individual endosome dynamics. While this can be a valuable approach to understand the
organelle network, it does not capture endosome heterogeneity, which is essential if we want to understand
and describe the observed experimental variability. A suitable approach to resolve this issue would be the use
of agent-based models (ABM) [27], in which each endosome can be simulated, as an agent, and is described in
terms of its molecular content (or cargo). However, ABMs are often computationally expensive or not
amenable to parameter inference.

Our approach here takes a different route beyond deterministic descriptions of endosomal dynamics at the
cellular level [19,26,28,29], or at the single endosome level [14,15,23]. As we have discussed earlier, the
former presumes that Rab dynamics at the cellular scale can be studied from the observation of endosomal
averages, and, the latter, focuses on biochemical reactions on the endosome membrane, which do not include
the interaction between endosomes. To overcome these limitations, we introduce a model inspired by the

dynamics of droplet coalescence, also known in the physics literature as the Smoluchowski equation [24,30, 31].

Our approach allows one to recover previous phenomenological models [19,26] under certain mathematical
assumptions (see Section 3 of the Supplementary information). Mathematically, these models are based on an
integro-differential equation which can describe cells [32-34] or endosomes [24,35]. A difficulty with
phenomenological models is their lack of mathematical tractability. In order to address this issue, here, we
make use of a formalism that enables one to describe the dynamics of the number of endosomes and their
individual cargo of (active) Rab5 and Rab7 molecules. Furthermore, by means of the two-dimensional
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Laplace transform, the formalism naturally leads to analytical expressions for the rate equations (ODEs) of o

interest. Once the rate equations have been derived, and together with experimental data [8], we test the 96
validity of these equations and discriminate between two different mechanistic hypotheses [36]. Equipped with o
this mathematical framework, we are able to simplify some of the underlying assumptions used in other o8

models (see Section 3 on the Supplementary information) and perform a model selection analysis (making use o
of experimental data). Our interest is to directly emphasise the underlying molecular mechanisms rather than 100
certain mathematical choices; this can be done since our framework avoids ad hoc reaction terms based on 101
Hill or logistic functions (see the Results section). 102
Finally, and going back to our initial discussion on endosome acidification, we note that the quantification of 10
intra-cellular pH can be performed with the use of DNA nanomachines [37] or by luminescence markers of 104
acidity acting as cargo transported by the endosome [38]. Since the experimental error can be as large as 105
ApH~ 1, these experiments might not be accurate enough in the case of abrupt pH changes. To overcome 106
these experimental limitations, several approaches have been proposed to understand the interplay between 107
Rab decorations and endosomal pH [14,23]. These approaches, in a nutshell, provide a mechanistic model of 10
proton dynamics and an interpolation model between early and late endosomes, by means of an equation of 10
the following kind: 110

Rab7(t)
H(t) = Hearly Hlate _ Hearly 1
pH(®) =P + 0 P ) Rab5(t) + Rab7(t) ’ (1)
where Rab5(t) and Rab7(t) have to be understood at the single endosome level, not at the single cell level. 1
We shall make use of this equation to derive the time course of endosomal pH, pH(¢), by providing the 112
dynamics of Rab5(¢) and Rab7(t) as derived from our general mathematical framework. 13
Mathematical modelling hypotheses 114
We take into account the experimental evidence discussed in the preceding sections and now describe the 115
biological mechanisms that will be included in our mathematical formalism. 116
1. Endocytosis (endosome generation): new endosomes are formed by the invagination of the cell 17

membrane. Those newly created endosomes (containing endocytosed viral particles) do not have any 118
Rab5 or Rab7 molecules. Progressively, the endosomes become decorated with Rab5 and, subsequently, 119

with Rab?7. 120
2. Endosome degradation/removal: endosomes can fuse with a lysosome and thus, be removed from 1z
the cytosol. In our case, there exists a second form of endosome removal due to viral escape. 122
3. Fusion (coalescence): fusion of two endosomes involves the merging of their membranes and, as a 123
consequence, the Rab5 and Rab7 molecules are shared [3] (see Fig. 2 for a schematic picture of this 124
process). 125

4. Fission: endosomes can divide, thus splitting the amount of Rab5 and Rab7 between the two newly 126
created endosomes. When fission occurs, the total amount of Rab5 and Rab7 is shared randomly 127
between the two newly created endosomes (see Fig. 2 for a schematic picture of this process). 128

5. Rab5/Rab7 activation/deactivation: Rab molecules on the endosomal membrane can be activated 120
after prior incorporation of inactive Rab:GDI from the cytosol. A schematic summary of the reactions 1
of Rab activation/deactivation can be found in Fig. 1. 131

Mathematical model of endosomal maturation and dynamics 132

In this section, we provide a mathematical description of the biological mechanisms discussed in the previous 13
section. We consider a single cell containing a collection of endosomes. Each endosome is characterised by its 1.
active Rab cargo, technically, [Rab5:GTP] and [Rab7:GTP], respectively, (z5,27) at time t. We assume x5 13

and x7 are real numbers (greater or equal to zero) and introduce the “per-cell endosomal distribution”, 136
n(xs, x7;t), which is a function of 5, z7 and time, t. In fact, the mean number of endosomes at time ¢ with 1
Rab cargo (x5, x7), such that a5 < x5 < bs and a7 < x7 < by is given by 138

bs b7
/ / das dxy n(zs,x7;t) .
as ar
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Fusion Fission

@@&

Krus(zs, x5, x7, 2%) Kprs(xs + af, 27 + af)

Fig 2. Left: two endosomes with different levels of active Rabb and Rab7, (x5, x7) and (xf, 27), respectively,
merge into a new endosome with levels of active Rabb and Rab7, (x5 + z§, 27 + a%), with rate
Krus(xs, xk, 27, 2%). Right: an endosome with levels of active Rab5 and Rab7 (x5 + %, z7 + %) splits into
two new endosomes of levels (z5,27) and (zf, 27), respectively, with rate Kprg(xs, xk, 7, 2%).

Without loss of generality and, for the sake of simplicity, we make use of the number of Rab molecules per 13
endosome instead of the number density or the molar concentration. We now consider the contribution of 140
each of the five processes just introduced to the time evolution (or dynamical equation) of n(zs,z7;t). 1m

1. Endocytosis (endosome generation): newly created endosomes have zero levels of active Rab5 and 1

Rab7. Mathematically, endosome generation is described by a source term of the form 143
S(xs,z7) = So 6(x5)0(x7) , (2)

where Sy is a real positive constant with dimensions of number of endosomes per unit time and the 144

symbol 0(+) stands for the Dirac delta function. 145

2. Endosome degradation/removal: considering the two possible causes of endosome removal (fusion s
with a lysosome or viral escape out of the endosome), we assume that the endosomes can be removed at 14
any stage of the maturation process. Hence, we assume a constant removal (or death) rate proportional 1
to the number of endosomes, that is independent of the Rab cargo. We write 149

w5, x7) = po nlzs, x75) - (3)
3. Fusion (coalescence): when two endosomes with Rab cargo given by (5, z7) and (zf§, %),

respectively, fuse, they share their cargo, so the total number of each Rab cargo of the newly formed
endosome will be (z5 + a%, z7 + a%). The contribution to the time derivative of n(xs,z7;t) is

1 s g
5/0 dxg/o drt Kpys(zs, v5 — x5, o0, 17 — 47) n(xy, xb;t) n(rs — x5, 17 — 245 t)
+oo +oo
- n(x5,x7;t)/ dxg/ dry Kpys(s, ok, x7, 7)) n(xs, a7 t) (4)
0 0

where the first term represents the net gain of endosomes with Rab levels (x5, 27) and the second one 150
represents the loss of endosomes with total levels (x5, x7) after fusion with other endosomes. The 151
function Kpys(zs,xk, o7, %) is referred to as the fusion kernel. It dictates the rate of endosomal fusion, s
and it clearly depends on the endosomal levels of active Rab molecules. 153

A central feature of our model is the consideration of both fusion and fission events. Fusion is enhanced  1s4
in early endosomes so the rate of fusion correlates positively with the levels of Rab5 and negatively with 155
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those of Rab7 [3]. For simplicity, we assume that the fusion rate is a linearly increasing function of 156
Rab5 and a linearly decreasing function of Rab7. Hence, we propose 157
0 5 7
Krus(ws, a5, 27,27) = KE«“[)]S + Kz(?()Js (w5 + 75) — KI(TI)JS (z7 +a7) (5)
where K l(pk[} ¢ are constants for k = 0,5, 7. As shown in Ref. [39], endosomes need to be spatially close in 1
order to merge. As we are not modelling the intra-cellular endosome spatial location explicitly, the 159
latter equation favours fusion of early endosomes (higher x5 increases the overall fusion rate) and 160
reduces fusion in late endosomes (it decreases for higher x7). Yet our model does not preclude fusion &
events between early and late endosomes [8]. 162

4. Fission: similarly to fusion, fission can be described introducing a kernel function, as follows

—+oo —+o0
! ! / / / /
/ dx5/ dxr, Kprs(zs, x5, w7, 27) n(zs + x5, x7 + 273 1)
0 0

1 x5 xT7
—5 n(x5,x7;t)/o dxg/o drt Kprs(zs, v5 — x5, 00, 07 — 25) . (6)
The first term is the gain due to the fission of a larger endosome leading to two endosomes, one of them 13
with Rab levels (z5,27). The second one is a loss term due to the fission of an endosome with Rab 164
levels (x5, x7). 165
Endosomal fission is less well understood that fusion. In Ref. [3] it is suggested that fission occurs 166

randomly at any stage of maturation. Thus, we consider that fission is independent of the number of 16
Rabb or Rab7 molecules, but that it is not necessarily symmetric (namely, when an endosome splits, the 16

amount of Rab going to each daughter endosome can be different). Mathematically, we propose 160
0
Kprs(ws, o5, a1,27) = Kpijg f(lws — o], g — 2%]) (7)

where, by the symmetric properties of the fission kernel [30], the function f satisfies the normalisation 170

condition, f(0,0) =1 and is symmetric in its arguments. The simplest case one can consider is 71
symmetric fission; namely, we write 172
flas — a5, 27 — 27) = 0(x5 — a5) 6(27 — 27) - (8)
This choice for f means that 50% of each cargo is equally shared between daughter endosomes. The 173
contribution to the time derivative of n(xs,x7;t) is then 174

4K§PI)S n(2xs, 2x7;t) — KE,OI)S n(xs, x7;t) .

5. Rab5/Rab7 activation/deactivation in an endosome: in Ref. [19], the authors considered two 175
competing hypotheses for Rab5/Rab7 activation/deactivation (see Fig. 1). The first one is the 176
toggle-switch model and consists in a weakened repression of Rab7 by Rabb, described by a logistic term. 17
In the second one, the cut-off switch model, Rab7 activation strongly suppresses Rab5. In order to 178

identify which hypothesis was more compatible with the experimental data, the authors introduced a 1o
modular model where a certain mechanisms could be explained making use of different mathematical  1s0

functions (see Supplementary information 1 of Ref. [19]). The drawback of this type of exhaustive 181
model comparison is that specific fitting algorithms had to be adapted to infer model parameters from 1s
the data [28]. 183

We note that the total number of endosomes does not change with the activation/deactivation of Rab s
molecules. This fact can be naturally expressed in terms of a conserved quantity. We also note that we 1
model the number of Rab molecules in a given endosome rather than its concentration, since the latter 1s
one might be affected by fusion and fission events, where the volume or the area of the endosome can  1sr

significantly change. In the absence of other mechanisms, this conservation law can be expressed in 188
terms of a molecular current. The contribution of the dynamics of x5 and x7 inside each endsosome to s
the time derivative of n(zs,x7;t) is equal to minus the divergence of a current .J: 190

-

O n(xs, x7;t) + V- J(zs,27) =0,
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where

— -

V- J(Z‘5, $7) = 0s J5(.135,$7) + 07 J7($5,$7) . (9)

In the previous equation we have introduced the notation 0y to indicate 0,,, with kK = 5,7. We have
also made use of the notation J(zs,z7) = (J5(x5, 27), J7 (x5, 27)). One must supplement Eq. (9) with
constitutive equations for the currents, Js(x5,27) and J7 (x5, 7). In this paper we are going to assume
that the currents are proportional to the total number of endosomes, n(xs,x7;t). This implies that
Js5 (x5, x7) = v5(x5, 27) n(xs, x7;t) and J7 (x5, x7) = v7(xs5, x7) n(xs, x7;t), where we have introduced
the velocities vs 7(zs5,x7). The velocities vs 7 are generic functions of x5 and z7 that need to be
prescribed according to the underlying biology of Rab5/Rab7 activation/deactivation discussed earlier.
Following Refs. [19,26], we assume that both molecules evolve and are coupled to each other (see

Fig. 1). In other words, the concrete form of the functions vs 7(x5, x7) will be determined by performing
model selection and thus, identifying the underlying biological mechanisms. Mathematically, Rab5 and
Rab7 interact via positive/negative feedback loops. We include these molecular interactions in the
current, j, and assume a linear dependence on the number of Rab molecules. For the cut-off switch
model one has [19]

U5 (@5, T7) = V50 — Uss Ts — Us7 T7 (10)

v7 (5, T7) = V70 + V75 T5 — V77 T7 (11)

where the choice of the signs in the coefficients v;; is determined by the network of interactions in
Fig. 1. For instance, the inhibition described by the red dashed arrow is captured by the term —vs7 x7.
For the toggle-switch model one has vs7 = 0 [19]. Namely, levels of Rab7 do not affect levels of Rab5,
and thus, the velocity vs(zs5,27) does not depend on z7. Yet, the model is non-linear, since it includes
two logistic terms. The non-linear terms encode inhibitory mechanisms, as for example, the terms
proportional to vs; and vzs. For the toggle-switch model one has [19]

Ts
vs(x5,27) =v50 —Uss 5 (1 — — | 12
( ) ( K55> (12)
x5
vr(xs,27) = vro +vrs w5 | 1 — Koo ) v e (13)
75
The parameters K55 and Krs are carrying capacities that encapsulate the inhibitory behaviour of Rabb 1
in the toggle-switch model. As a consequence, we shall show (see Eq. (26)), that the ODE for the 192
endosomal average of Rab5 does not contain the inhibitory feedback proportional to vs; present in 103
Eq. (23) 194
Boltzmann equation for the endosomal distribution 105
We now combine the mathematical considerations described in the previous section to derive a dynamical 196
equation for n(xs,x7;t). Before we do so, we need to discuss the relationship between the creation of 107
endosomes and the current J. As newly created endosomes have zero levels of Rab5 and Rab7 (see Eq. (2)), 10
the following boundary conditions for the current J must be fulfilled: 199
J5(0,$7) =0= J7($L‘5, 0) . (14)

Intuitively, these equations mean that the Rabb-associated current of endosomes with non-zero levels of Rab7 200
(first equation) and the RabT7-associated current of endosomes with non-zero levels of Rab5 (second equation) ou
have to be zero. 202
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We can now write the evolution equation for n(xs,x7;t). We have

o n(xs,z7;t) 1 [*° o
! / ! / / ! / A ! /
— %  —3 dxy dxr, Krpus(xs, x5 — x5, a7, w7 — a7) n(xs, 255 t) n(xs — x5, o7 — 275 1)
0 0

+oo +oo
! / / / / /
- n(x5,x7;t)/ dx5/ dxy Krus(ws, x5, x7, 7)) n(x, 25;t)
0 0
+oo +oo
/ / / ! / !
+ / day / dxy, Kprs(as, ok, x7,27) n(zs + a5, x7 + a7; 1)
0 0
xT xr
1 . 5d / 7d ! K !/ !/ / !
~3 n(xs, x7;t) T xr Kprs(as, x5 — x5, o0, x7 — T7)
0 0

— o n(ws, x73t) — V- J(ws, x7) + So 8(ws) 6(ar) - (15)

We refer to this equation as the Boltzmann equation for the endosomal distribution n(zs,x7;t). Although 20
this precise equation has not been proposed before, simplified versions with fewer biological mechanisms [24] 20

or in fewer dimensions [34,40] have been studied in different contexts. 205
Equations for the moments of the Boltmann distribution 206
Equation (15) is a non-linear integro-differential equation that is, in principle, analytically intractable. 207
However, it can be simplified under some assumptions that should be carefully scrutinised together with 208
experimental data. In practice, in many experimental conditions only the time evolution of the mean number 20
of molecules of different species (including the total number of endosomes) is attainable. To this end, it is 210

convenient to introduce the first order moments of the distribution n(xs,z7;t). In particular, we introduce  au

+o0o +o0o
N(it) = / dxg,/ dxr7 n(xs,x7;t)  (total number of endosomes) , (16)
0 0
—+oo “+oo
R5(t) = / dxs x5/ dx7 n(xs,x7;t)  (total cargo of Rab5:GTP), and (17)
0 0
+oo +oo
R:(t) = / d:cg,/ dx7 x7 n(zs,z7;t)  (total cargo of Rab7:GTP) . (18)
0 0
We can also define second order moments of the distribution as follows 212
“+o0 “+o0
o2 (t) = / dxs xg/ dxy n(zs,r7;t) — RE(t)  (variance of Rj) , (19)
0 0
—+oo —+oo
o2(t) = / da:s/ dx7 ©2 n(xs,w7;t) — R2(t)  (variance of Ry), and (20)
0 0
—+o0 +o0
os7(t) = / dxs x5/ dxr x7 n(ws,x7;t) — Rs5(t)R7(t) (covariance between Rs and Ry) .(21)
0 0

If we make use of the two-dimensional Laplace transform (for details, see Section 1 in the Supporting
information), we obtain an ODE for the first order moments defined above. For the cut-off switch model one
can show

(0)
dN(t K .
dt( ) _ So + <§Is — 1o — K g Rs(t) + K R7(t)> N(t) - iKI(”?[)]S MO 22
dR5(t

dt( ) _ vso N (t) — (vss + po) Rs(t) —vs7 Rr(t), and 2
dR(t

d7t( ) = v70 N(t) +vrs R5(t) — (vrr + po) Re(t) . 24
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For the toggle-switch model the ODEs for the first moments can be shown to be

AN(t KY) 5 1
# = 5o+ <gls — o — K\9g Rs(t) + K\ o Re(t) | N(t) — 5[(}5}}5 N2(t), (25)
dRs5(t Rs(t
dARs(f) _ vso N(t) — po R5(t) — vss Rs(t) (1 — 5L ; and (26)
dt K5
dR7(t Rs(t
10— g N + vrs Baft) (1~ 220 (g 4 vrr) Rr(1) (27)
dt Krs
We note that as expected, Eq. (25) and Eq. (22) are the same in both models. We also note that Eq. (15) 213
allows one to derive the dynamical non-linear equation of Refs. [19,26] (for further details, please, see 214
Section 3 in the Supporting information). 215
Experimental data 216

We make use of experimental data obtained by labelling Dengue viral particles (DENV) with the lipophilic 217
fluorescent probe DiD, as previously reported in Ref. [8] and reproduced in Fig. 3. We use the normalised 218
number of probes (DENV viral particles) colocalised with endosomal Rab5 and Rab7 as an estimate of the 219
number of Rab molecules in endosomes with endocytosed DENV. Here, we are not interested in the DENV 2
lifecycle, but the viral particles will serve as markers to track endosomal dynamics, since in the experiments 2z
viral particles were colocalised with fluorescent markers for endosomal Rab5 and Rab7 molecules. Overall, 51 22
escape events were analysed in order to quantify the levels of Rab5 and Rab7 (see Fig. 3). Analysis of those 2

51 cases revealed that, in spite of the fact that most escape events took place in early endosomes (86%), a 204
non-negligible number of events, 14%, took place in Rab5/Rab7-positive intermediate endosomes [8]. In 225
addition, tracking fluorescently labelled endosomes allowed the authors to show that almost half of the 226

endosomes skipped several steps of the maturation process by merging with existing Rab7-positive endosomes 27
(precisely, 45%) [8]. Finally, 30% of the tracked endosomes underwent fission events at different stages of their 2
trajectory in the cytoplasm. This supports our choice for a constant fission rate, termed splitting in Ref. [8], 22
which does not depend on the stage of maturation of the endosome, as defined by its Rab cargo (x5, z7). 230

Cut-off switch model

-

Rab, / Rab,

=~ ~

y [ R B SR
OO 250 500 750 1000 1250 1500

time (s)

Fig 3. Comparison of model predictions (solid lines) as described by Egs. (22)-(24) and the experimental
data (black circles and red squares) from Ref. [8]. Solid lines correspond to the normalised number of
endosomal Rab5 and Rab7 molecules. Dashed lines correspond to the mean + one standard deviation, as
derived from Egs. (51)-(53).
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Results -

Data and mathematical modelling support the cut-off switch hypothesis 2%

Fig. 3 shows the experimental data (black circles and red squares) from Ref. [8] and the result of fitting the
data to the mathematical model (cut-off switch) described by Eqs. (22)-(24) (solid lines). A sensitivity
analysis of the cut-off switch model (see Table 2 of Section 2 in Supporting information) reveals that the most

. . 0 0 7
sensitive parameters are, in order of relevance, KI(W)JS, Kl(g, I)S, vso and vs7, and the least relevant, K;,ﬂ[)] g

Kﬁ% g+ Ho and Sp. The results from our sensitivity analysis is rather interesting since it shows that fusion and
fission are essential to understand the experimental data, but that the corrections to the constant term of the
fusion kernel, K;?[)JS, which are proportional to KJ(UTI)]S and Kz(rs()Js and depend on the Rab cargo, are
negligible. Thus, it seems that a simpler model than the cut-off switch can be used to explain the data, as we
show in Section 2 in Supporting information (see also A quasi-linear approximation to describe experimental
data section below and Fig. 4C). Furthermore, the source term of new endosomes with zero levels of Rabb
and Rab7 does not significantly affect the dynamics of endosomal Rabb or Rab7. Numerical integration of
Eq. (22) shows that, independently of the initial condition, N(0), the number of endosomes quickly
approaches a steady state (see Fig. 6). Taking into account the order of magnitude of the parameters in
Table 1 and the results of the sensitivity analysis, we find that

AN (t K 5 ; 1
70 —s0+ (gs ~ o~ Ky Balt) + Kf3hs Belt) | N() ~ LK N2(0) ~ 0
(0)
K
=N(t) ~ Ny = %f, (28)
4K pps
where we have neglected Kg,)] 5 Kg})] g+ o and Sy and assumed Ny # 0. As a consequence of N(t) being 233

almost stationary, the terms vsoN and v7oN in Eq. (23) and Eq. (24), respectively, are also almost constant. 2
Our theoretical analysis is consistent with our numerical results: Fig. 6 shows that the number of endosomes, 2
N(t), reaches a value close to its steady state after 40 seconds. Given the best-fit parameters from Table 1, 2
we conclude that fusion and fission events are more relevant for the dynamics of the Rabs than the rate of = o

endosome generation, since we have Sy < Kl(pOL),SN 2 and S) < KE«“O[) ¢N. Finally, we now explore the role of 23

the parameter vs; in the decrease of R5(t) at the time of increase of R7(t). This coefficient encodes the 230
inhibitory effect of Rab7 on the dynamics of Rab5. On the one hand, the sensitivity analysis of the cut-off 20
switch model (see Table 2) gives this parameter a normalised value of 0.7543 and on the other hand, the 241

best-fit parameters from Table 1, suggest a value of 4 x 1073 s~! for vs7. These two results together show the 2
qualitative and quantitative importance of this parameter in the cut-off switch model, which in turn, and in = 23
light of the experimental data, provide most support to the cut-off switch hypothesis 2, in agreement with 244
Ref. [19]. To further test this conclusion, we have also fitted the toggle-switch model, Egs. (25)-(27), to the  as
experimental data. The results are shown in Fig. 4A. It can be concluded that the toggle-switch model 246
cannot explain the decrease of Rab5 observed in the data. We first note that in Eq. (26) R5(t) does not 247
depend on R7(t). We then argue that for this model, only fine-tuned mathematical functions of R; might 248
explain the decrease of R5 at late times. Yet, there is biological evidence to support that the Rab5 decrease 20
and the Rab7 decrease are not independent events. Possibly, more sophisticated mathematical models, as 250
those explored in Ref. [19], might provide better agreement with the experimental data. Still, simply adding s
more mathematical terms (and so more parameters) to the dynamical equations would obscure our ability to 2

systematically select between plausible biological mechanisms regulating the dynamics of Rab5 and Rab7. 253
A quasi-linear approximation to describe experimental data 254
Ziegler et al. in Ref. [26] considered Rab5-dependent fusion and fission of endosomes, making use of a 255

differential equation similar to Eq. 22. Del Conte-Zerial et al. in Ref. [19] modelled the conversion of early 25
endosomes into late endosomes, which assumes the dynamical replacement of Rab5 by Rab7 during endosome 25
maturation. Their equations, summarised in Section 2 of the Supporting information, require a larger number s
of parameters than those in the cut-off switch model, Egs. (22)-(24), but do not include a dynamical equation 25
for the number of endosomes. In Fig. 4B we show the fit of their model to the DENV data. Comparison of 20

2We note that vsy = 0 in the toggle-switch hypothesis, since Rab7 does not affect the dynamics of Rab5.
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A) Toggle-switch model B) Model from Ref. [19]

Rab, / Rab,
Rab, / Rab,

L 1 L 1 L 1 L 1 L 1 L 1 L 1 L J
0 500 1000 1500 0 250 500 750 1000 1250 1500
time (s) time (s)
C) Reduced model D) Model comparison
Fig. Egs. RSS k AIC BIC

3 (22)-(24) 0019 12 -369.5 -338.2

Rab, / Rab,

4A  (25)-(27) 0.067 12 -225.6  -194.3
4B (71)-(74) 0.021 18 -3485  -301.6
4C  (69)-(70) 0.020 7 -374.7 -356.4

0 250 500 750 1000 1250 1300

time (s)
Fig 4. Comparison of different models (solid lines) with the experiments of Ref. [8]. A) Toggle-switch model,
Egs. (25)-(27). B) Model from Ref. [19] (see also Egs. (71)-(74) in Supporting information). C) Comparison
of the sensitivity-based reduced model, Eqgs. (69)-(70) (see Section 2 in Supporting information for details).
D) Model comparison based on the Akaike Information Criterion, Eq. (29) and the Bayesian Information
Criterion, Eq. (30). The selected model according to the minimum AIC and BIC is the one shown in boldface.
Dashed lines represent the mean + the standard deviation, as described by Eqs. (48)-(49). We note that the
formalism introduced here allows one to predict the variance of the estimated solution (panels A and C),
unlike traditional ODE modelling approaches, where only the mean can be explained (panel B).
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Fig. 3 and Fig. 4 shows that a model which includes the dynamics of the number of endosomes can explain  2a
the molecular mechanisms parsimoniously. Our model does not explicitly consider inactive Rabs 262
([Rab5-GDP] and [Rab7-GDP]) because their levels remain almost constant (see Ref. [19], Supplementary 263
information). On the other hand, our framework provides dynamical equations for the variance of the number 2

of molecules, as shown in Fig. 4A and Fig. 4C. 265

In order to perform quantitative model selection, we show in Fig. 4D the value of the Akaike Information 266

Criterion (AIC) for the three models, defined as: 267
AIC = nlog (RSS) + 2k , (29)

where RSS is the residual sum of squares, n the number of points in the data series and k the number of 268

parameters in the mathematical model. Similarly, we compute the Bayesian Information Criterion (BIC), 269

defined as 270
BIC = nlog (RSS) + klogn . (30)

Both methods quantify the goodness of fit but introduce a penalty on the number of parameters (the lower

the better). As the RSS is similar in all the models (and n = 100 is the same for all of them), the most 272

decisive factor is the number of parameters, k, thus, pointing at the reduced model, given by Eq. (69) and 3

Eq. (70) (see Fig. 4C). We conclude then that a mathematical that considers the mean number of endosomes 27
(0)

in a quasi-steady state, Ny = 41;%1)3, and assumes linear dynamics for the evolution of Rabb and Rab7 (see s
FUS

Eq. (69) and Eq. (70)) is the best candidate for future model extensions. Clearly, the toggle-switch model 276

cannot capture the behaviour of the experimental data, as argued in the previous section. This emphasises an 277

important conclusion which can be derived from our analysis: fusion, fission and Rab7 inhibition of Rabb are s

the main mechanisms regulating endosome maturation and, in our context, the endosome acidification which 27

drives viral escape. 280
Fluctuations explain variability of pH-driven viral escape 281
There exists a simple connection between the levels of endosomal Rab5/Rab7 and endosomal pH given by 282

Eq. (1) (for details, please, see Ref. [14]). In our case, the estimated time evolution of pH is given in Fig. 5A, 2
where we have used the best-fit parameters from Fig. 3 (see Table 1). The shape of the curve is consistent 284
with previous results [14,25,41]. Since we can compute the second order moments of the distribution, we can 2

evaluate the standard deviation of the pH (dashed lines in Fig. 5A). 286
As we mentioned in the Introduction, many intra-cellular processes are triggered by low (below threshold) 287
values of the pH [8-10]. Yet, as shown in Fig. 5A, the pH fluctuates due to the rich dynamics of endosome 2
maturation and Rab decoration. This variability can only be accounted for if one considers the collective 289
dynamics of the population of endosomes, as described by the distribution n(xs,z7;t). We can exploit this 200
variability to define the probability of the pH being below a certain threshold. In particular, we can 201
approximate the fluctuations by a normal distribution, as follows 200
pH(t) ~N [m(t)’ UpH(t)] s (31)

where ~ A denotes normally distributed, and pH and o,y are the mean and standard deviation of the pH 203
(solid and dashed lines in Fig. 5A, respectively). In Fig. 5B we show synthetically generated histograms 204
according to Eq. (31) to emphasise the role of the width of the distribution and how it affects the probability s
of having a pH below a certain threshold. The resulting probabilities are shown in Fig. 5C for different values 20
of the pH threshold. For instance, inspection of the green dashed line in Fig. 5C shows that at time 500 207
seconds, the probability of finding endosomes with pH below 5.5 is already 10%, in spite of the fact that the 20
mean pH is above 6.0 at that time (see the arrows in Fig. 5). This probability represents also the normalised 200
number of viral escape events; that is, for a virus and a fiducial (fixed but arbitrary) pH escape threshold, it 30
gives the probability of viral to escape. For instance, under ideal conditions, a virus that requires a pH=4.5 to s

escape, would only have a maximal probability of success of 0.022 (~ 2%). This, in addition to the large 302
mean time to achieve that probability (that would allow the endosome to fuse with the lysosome and, thus, 3
destroy the intra-cellular virus), would make the infection non-viable. 304
This result is of great relevance in the understanding of endosomal viral escape events. For instance, in 305
Ref. [8] (whose data we are using in the present work), analysis of the experiments revealed that escape 306
events occurred from 300 seconds post-entry (viral endocytosis). Moreover, colocalisation of escape events 307
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Fig 5. A) Time evolution of the mean endosomal pH (thick curved line) computed from Egs. (22)-(24) and
Eq. (1), and mean + standard deviation (computed from Eqs. (51)-(53), curved dashed lines). The horizontal
colour lines correspond to different pH thresholds that could be linked to a virus endosomal escape. B)
Similar to panel A) but showing the sampled distribution of pH using Eq. (31). Note how the distribution
broadens with time, thus increasing the probability of crossing a given pH threshold. C) Normalised number
of viral escape events quantified as the probability of pH being below a threshold (see colour-coded legend),
making use of Eq. (31), namely, P[N(pH, opn)] <threshold.

with levels of Rab5/Rab7 also showed that around 5% of the viral particles escaped from within 308
Rab5-positive early endosomes (lacking Rab7). This implies that the quick pH drop after those early 300
endosomes merged with more acidic endosomes is ultimately regulating the initiation of viral escape events. s
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Discussion and conclusions -

Traditional mathematical methods, based on ordinary differential equations, can only tell only a part of the 3w
story when describing systems with a small number of “particles”, such as endosomes in the present case, and 33
where heterogeneity can be large. Deterministic approaches can be a good approximation if one is interested i
in average numbers or trends, but exclusively at the cell population level. However, in those cases where the s
response of a system to small variations of a parameter is abrupt (as in the case of viral escape to a pH 316
threshold), averaging can provide confounding answers or lead to mathematical models with a large number a7
of parameters. One of the main results of the present work is that, while detailed models of the Rab5/Rab7 s

dynamics can be found to fit accurately to experiments, such as in Refs. [19,26], a description based on 310
individual endosomes, decorated with Rab molecules (defined by the distribution n(zs,x7;t)), and their 320
interactions (characterised by fusion and fission events), provides a natural link to the underlying biological
mechanisms. The mathematical framework proposed here also allows us to characterise the fluctuations 32

beyond mean number of endosomes or Rab molecules, since higher order moments can be computed from the
endosomal distribution n(xs,z7;t). As such, we are able to determine the time course of the variance in the s
number of Rab molecules and the covariance. 325
We have shown that fusion and fission events regulate the maturation and dynamics of endosomes. Even 6

when we have only considered linear constitutive equations, such as Krygs(xs, 25, x7,2%) or J(zs,x7), they sz
have allowed us to capture the complexity of the problem at hand. For instance, more detailed models where

kiss-and-run [4] or vesicle budding events [42], decoupled from the rates of fusion/fission, might help to 329
quantify the relative role of those mechanisms. Our approach also sheds some light on the variability of other 33
processes relying on this maturation. As an illustration, as it has been shown for many different 331

viruses [8-10], viral escape (after pH drop) is a highly variable process rather than a smooth one, despite the 33
fact that acidification occurs gradually at the endosome level. For instance, in the case of DENV [8], it was a3
already reported that some viruses escaped as early as a few seconds after entry via endocytosis and that, in = 33

those cases, fusion with a more acidic endosome preceded that escape event. So, understating endosome 335
dynamics can be relevant to ascertain the role of different entry pathways in the subsequent fate of the virus, 33
since different receptors deliver the virus into distinct populations of early endosomes [43]. 337
Finally, form a practical viewpoint, while Eq. (15) has proven useful to study the time evolution of the 338

number of endosomes, and the total number of active Rab5/Rab7 molecules on the endosomal membrane, it 33
is still a complex system of ODEs, hard to solve analytically. Thus, computational methods aimed to solve 30
these equations can provide rather valuable information. For example, knowledge of the exact distribution 31
n(xs, x7;t) would provide the cell endosomal pH spectrum, namely, the number of endosomes with a certain s

pH, n(pH, t), that could be compared with recent experimental methods aimed to quantify intra-cellular 343
pH [37]. Also, this formalism can be translated to other contexts or scales: n(x,y;t) might be seen as the 344
number of cells with a certain expression level of receptors x and y. Thus, solving the corresponding 35
Smoluchowski equation for n(z,y;t) would be a theoretical metaphor of flow cytometry experiments. Another s
interesting and timely application of our mathematical framework is that of mitochondrial dynamics and u7

interactions. In this case, and in analogy with the endosomes, mitochondria are subject to fusion and fission s
events modulated by different cargo species (e.g., Ca?*, ATP, reactive oxygen species, mtDNA, etc.). These 3o

extensions will be the aim of future work and out of the scope of the present paper. 350
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Supporting information -
1 Two-dimensional Laplace transform and moment equations -
In analogy with the Laplace transform in one dimension, we introduce the two-dimensional Laplace transform, e
as follows 361
—+oo +oo
L[ n(xs, z7;t)] E/ dx5/ dxy e 5T n(x5, 175 t) (32)
which is a function of the variables z5 and z7, and time t. We introduce the following notation for the 362
two-dimensional Laplace transform 363
(25, z7;t) = L] n(xs, 27;t)] - (33)

We can also define partial (or one-dimensional) Laplace transforms associated with each variable, x5 and x7, 36
as follows 365

+o0 +oo
Ls]n(xs,x7;t)] = / dxs e n(xs,x7;t) ,  Lr] n(xs, z7;t)] E/ dx7 e 277 n(xs,x7;t) . (34)

Eq. (32) allows one to derive useful expressions to rewrite the Boltzmann equation, Eq. (15), in terms of the
Laplace transform of n(zs,x7;t). Thus, if we make use of the notation introduced in Eq. (33), it can be
shown that the following expressions hold [44]:

(35)
(36)
(37)
(38)
=—0.. [A(zs,20:1)]2 (39)
(40)
(41)
(42)
(43)

—L[@m,; J5(CL’5,£C7 ] = —Z5j5(25, Z7) + £7[J5(071’7)] R 41

—L[0, J7(x5,27)] = —27.J7(25, 21) + L[ J2(w5,0)] , 42

L[0(x5)0(z7)] =1, 43
where Jj, (x5, x7) is the Laplace transform of Jy, (for £ = 5,7) and the symbol “x” denotes the convolution; 366
that is, 367

x5 X7
n(ws, 27:t) ¢ nlas, writ) = / da, / darly (s t) m(zs — b, 7 — 2hit) |
0 0
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We note that the boundary conditions (see Eq. (14)) imply 368
L7]J5(0,27)] = 0 = Ls[J7(z5,0)] . (44)

We now make use of the above properties to compute the Laplace transform of Eq. (15). We do so, term by 360

term, as follows: 370

e Time derivative: as the Laplace transform does not involve the time variable, ¢, we have: an

O n(xs5, x7;t) £ O 1(z5, 273 t) .

e Fusion (1): we make use of Eq. (37), a2
L= [, (0) oo ’ / L ;‘(‘][)JS N 2
3 dxg dry Kyplg n(xs, xnt)n(es — x5, 7 — o75t) = —5 [ (25, 27;1)]
0 0
since Kpys(xh, x5 — ok, 57,07 — %) = KI(,O[)]S + K}?[)]S T5 — K}?JS ZT7. ar3
e Fusion (2): we make use of Eq. (38) 374
1 [ @7 5 - K(5) R
5/ dxg/ dxr, Kz(«“[)Js x5 n(xs, o0 t)n(vs — xk, 17 — T3 t) = — I;US 0y [P(z5, 27 1))
0 0
e Fusion (3): we make use of Eq. (39) 375
1 Ts5 T7 ” - K(7) R
—5/0 dxg/o dx? K},)JS x7 n(zg, oh; t)n(zs — o5, x7 — ah;t) = I;US 0z, [z, 27 1))
e Fusion (4): we make use of the definition of N(¢) in Eq. (16) 376

+oo +oo
— n(x5,x7;t)/ dmg/ dx? KS)I)JS n(xy, xh;t) = —Kg)()JSN(t) n(zs, z7;t) £ —K}?&SN(t) i(zs, 273 t) -
0 0

e Fusion (5): we make use of Eq. (35) and the definitions of N(¢) and Rs(t) in Eq. (16) and Eq. (17),
respectively 378

“+oo +oo
— n(ws, a:7;t)/ dxg/ dx’, KS()JS (xs+xs) n(xs, xh;t) = —Kl(;)()]S [z N (t) n(zs5, z7;t) + R5(t) n(xs, x7; )]
0 0
r 379
E KB G IN()0., [ 25, 273 1)] — Rs(t) (25, 27:1)] -
e Fusion (6): we make use of Eq. (36) and the definitions of N(t) and R(t) in Eq. (16) and Eq. (18), 0

respectively 381

—+oo —+oo
n(xs,x7;t)/ dxg/ dx”, Kgl)Js (xr4a7) n(xl, 255 t) = Kgl)]s [27N(t) n(zs, z7;t) + R7(t) n(zs, z7; )]
0 0
382

L K G [=N(8)0.. [ lzs, 27 1)) + Re(t) iz, 27:1)] -

e Fission (1): we make use of Eq. (8) and Eq. (40) 383
+o00 +o00 ©) © r K(O)
/ dmé/ daty Kpjg 0(xs—a5)0(xr—ah)n(xs+as, xr+ar;t) = Kpj g n(2xs, 207, t) = ZIS n(z5/2, 27/2;t) .
0 0
e Fission (2): we make use of Eq. (8) 384

]‘ e / o / / / / /
—5 n(xs, x7;t) dxg dxy Kprs(zs, x5 — o5, 27, o7 — 27)
0 0

1 x5 xT7 (O) C K(O)
=3 n(:b5,x7;t)/0 dmg/o daty Kipjg 6(xs — (w5 — 21))0 (2% — (z7 — ah)) = —%IS (25, 275 t) .
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Degradation: we make use of Eq. (15) and Eq. (32) 386
c .
—po n(ws, x7it) = —po N(2s5, 2731) -

¢ Divergence of the current (1): we make use of Eq. (41)) and Eq. (44) 387

L A~
*81-5J5(I5,1‘7) — 725:]5(25,2’7) .

e Divergence of the current (2): we make use of Eq. (42)) and Eq. (44) 388

E’ ~
—0, J7(T5,27) = —27J7(25, 27)

Endocytosis: we make use of Eq. (15) and Eq. (43) 389
Sod(25)5(z7) =5 S, .

Now that we have established, term by term, the two-dimensional Laplace transform of the Boltmann 390
equation, we take a look at the individual mathematical models considered for Rab5/Rab7 301
activation/deactivation, the cut-off switch and the toggle-switch models. 39
1.1 Cut-off switch model 303
We first consider the cut-off switch model and the precise expression of the divergence of the current under s
the two-dimensional Laplace transform. We make use of Eq. (10) and Eq. (11) to write 305
e Rate of change of Rab5: from the definition of J5, Eq. (10), and Eq. (35) and Eq. (36) 396
Js(x5,27) = (vs0 — vs5T5 — Us7a7) N(T5, T751)
L. 3 R . R
= Js(z5,27) = vs0 (25, 273 1) + V550:, [ (25, 273 1)] + V570, [ M(25, 2751)] . (45)
e Rate of change of Rab7: from the definition of J;, Eq. (11), and Eq. (35) and Eq. (36) 307
Jr(zs,a7) = (vro + vrsT5 — vr7aT) N(Ts, T75)
L. 3 R . .
= Jr(zs, 27) = vro (25, 275t) — V75025 (25, 275 )] + v7702, [ 1(25, 2751)] . (46)

We are now ready to bring all the previous results together for the cutt-off switch model. We find the Laplace
transform of Eq. (15) is given by

IR0 ®) IR o
O (25, 27;t) = I;US [A(zs5, 275 1)])% — FTUS@S [(z5, 275 1)) + FTUS@7 [A(25, 273 1)]* — Kpprg N () (25, 273 )
+ KI(;’:)()JS [N()0., n(2s5, 27;t) — Rs(t) (25, 27;1)] + K1(77z)15 [=N ()02, (25, 27;t) + Re(t) (25, 27; )]
(0) (0)
+ % [A(z5/2, 27/2; 1)) — gls (25, 27;1)

— o 125, 273 ) — 25 [Us0 N(25, 273 t) + U550, 1(25, 275 1) + V570,, 1(25, 275 1))

— 27 [v70 (25, 275 1) — V7505, (25, 27;t) + V7702, (25, 2751)] + So - (47)
The differential equations for the first order moments, Eq. (22), Eq. (23) and Eq. (24), can be derived from 30
Eq. (47) after one makes the following identifications 399
N(t) = n(0,05t),
R5(t) = <.’E5> = —8Z5 ﬁ(0,0,t) s
R:(t) = (z7) = -0, 7(0,0;%),
(23) = 025,25 1(0,051)
(27) = 02z, 1(0,052) ,
(x527) = 05,2, 1(0,0;) ,
oz = (2) — (x5)? (variance) , (48
o2 = (22) — (x7)? (variance) , (49
: (
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where the derivative has been taken before setting z5 = 0 = z7. 400
The equations for the second order moments, variances and covariance, can be computed in the same way as
those for the first order moments, and are given by

d(z?
W) K o2+ 2K ) Ra(a3) — 2K s Rl
- —K(O) (x2) + 2us0R5 — 2us5(x2) — 2us7(w527) — o (w2) (51)
16 FIS\'5 50415 55\L5 57\L5L7) — Ho\ZTs5) ,
d(z?
<th> = K\ gR2 + 2K ), s Re(wsw7) — 2K 4, g Ry (22)
1
- TGKI(TOI)S@% + 2ur Ry + 2v7s(w527) — 2077(2F) — po(a?) (52)
d{zsz
S _1e0) Ry + K tasan) + KSholr(a?) — KE Rt
1
— K gRe(wsar) — 1—6K$)}s<x5x7> + v70R5 + vs0 Ry
— vss(w527) — 7 (xF) + v (23) — vrr{TsrT) — po(wswr) - (53)
These three ordinary differential equations, together with equations (48)-(50), allow us to obtain the time 401
course of the standard deviations of R5 and R7 (and, indirectly, of the endosomal pH). a0
1.2 Toggle-switch model w03

In the case of the toggle-switch model, the precise expressions for the current are non-linear. We make use of 40
Eq. (12) and Eq. (13) to write 405

e Rate of change of Rab5: from the definition of Js, Eq. (12), and Eq. (35) and Eq. (36)

Us5
Js(xs,27) = <U50 — Us5x5 + I% m%) n(xs, x7;t)
55

L 3 N N v N
= J5(25, 27) = v50 1(25, 275 1) + U550, [ (25, 275 1)) + K555 835[ (25, 27;t)] (54)
e Rate of change of Rab7: from the definition of J7, Eq. (13), and Eq. (35) and Eq. (36) 406
v
J7 (x5, 27) = (Um + vrsT5 — Fﬁxg - v77x7> n(zs, z7;t)
75
~ " R v " N
— J7(z5, 27) = v70 N(25, 27;t) — V750, [ (25, 275 1)) — K7755 635[ (25, 27; )] + v770., [ (25, 27: )] -

(55)

We are now ready to bring all the previous results together for the toggle-switch model. We find the Laplace
transform of Eq. (15) is given by

KO RG] PR o
O 1(z5, 27;t) = I;US [ﬁ(z5,27;t)]2 FUS8 S [0 (25,27,t)]2+ I;Usé) [7(z5, 27; )] — KppgN(t) n(zs, 273 t)

+ KI(TSI)]S [N(t)0.5 1(2s5, 27;t) — R5(t) (25, 275t)] + Kgr)Js [=N(t)0., 1(zs, z7;t) + Re(t) n(zs, 275 t)]
KO KO
+ 71;]5 [(25/2, 27/2;t)])* — gls (25, 275 1)

N N A Us5 .
— o n(Z5, 27 t) — Z5 |:’U50 7?,(25, Z7, t) —+ v558z5 TL(Z5, 27 t) -+ K755835 n(25, 27 t):|
. . v75 . .
— 2 {1}70 f(zs, 27;t) — V750, N(z5, 27;1) — Eag{) (25, 27;t) + V770, 1i(zs, zv;t)] + Sp . (56)
5

The differential equations for the first order moments, Eq. (25), Eq. (26) and Eq. (27), can be derived from
Eq. (47) in the same way as for the cut-off switch model. We note that the differential equation for the mean
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number of endosomes, N(t), is the same for both models, since the specific form of the currents, Js(xs5,x7)
and Jr(z5,x7), does not change the mean number of endosomes. However, as it should be expected, the
differential equations for R5(t) and R7(t) depend on the choice of currents. We have

dR v
7; = 50N (t) — vss Rs5 + KL;< x2) — poRs (57)
dR? o V75 2
= v7oN(t) + vis Ry — ——(x5) — vrr Ry — po Ry . (58)
dt Kqs

We note that the non-linear nature of the currents in this model implies that the differential equations for the
first order moments, Eq. (57) and Eq. (58), depend on the second order moments. At the level of the Laplace
transform, this non-linearity implies that (for k =5,7) Jy, involves second order derivatives of (25, 27;1).
Thus, the equations for the first order moments involve the second order ones, and so on. If we define the
joint cumulants [45], &, ; %, where 4, j, k = 5,7, as follows:

ki = (Ti) , (59)
Kij = (zizg) — (@i)(xs) , (60)
Kijk = (Tixor) + 2(z) (x5) () — (Tizj)(T) — (Trwi)(@5) — (Tj28) (74) | (61)

then we can, for the sake of simplicity, make use of a zero-cumulant moment-closure approximation [46]. This
approximation implies the following choices for the relevant cumulants

k55— 0 = (23) = (25)° = RZ
K77 — 0 = <$$> = <$7>2 = R% s
Ks5,7 —0 = <$5.’L‘7 = <.’1?5><3'}7> = R5R7 R
Ks55 = 0 = (23) = —2R} + 3Rs5(a}) ,
K5,5,7 —7 0 = <.T§l‘7 = 72R§R7 + R7<Z§> + 2R5 <I51‘7> .

If we make use of the zero-cumulant moment-closure approximation above in Eq. (57) and Eq. (58), we obtain
Eq. (26) and Eq. (27), respectively. Similarly, for the second order moments we find the following equations

d(x3)

0 5 7
Do) = KR+ K ) R () — 2K g Raosn) — <Kl (ad)
+ 2u50R5 — 2055 (23) — 2%@@ — po(a3) (62)
d<x2> 0 5
dt7 = KJ(W)JSRg + 2K | )sR7<x5$7> - ZKI(TZ)]SR7< > - EK}U‘I)S< 7>
+ 2v7o Ry 4 2urs{x527) + 2K—75( §x7> — 2v77<m$> — ,u0<m$> , (63)
d{xsx
< ;t 2 _ el WsBsRr + Khs [Rs(aser) + Re(a?)] — Kig [Rs(a?) + Re(wszq)] — 16K1(w)s<9353«“7>
v
+ vs0 Ry — vss(ws7) — Kii@gxﬁ
v
+ v7Rs + vrs(22) + Ki;@%) — vrr{@sT7) — po(Ts5T7) - (64)
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If we now make use of the moment-closure approximation, the previous equations can be written as follows:

d(3)
dt

0 5 7 1 o
= K\ g R2 + 2K ) o Ry (02) — 2K o Rs (wsar) — — K W)g(a?)

Us5
+ 2v50R5 — 2us5 22y — 2

(=2R3 + 3Rs5(23)) — po(23) , (65)

d(z7)
dt

0 5 7 1 0
= Ky B + 2K s Re(wsee) — 2K s Br (@) — oK fhs(ad)
V75

+ 2u7oR7 4 2urs{x527) + 2K—75(—2R§R7 + R7<m§> + 2R5(x527)) — 2@77<x$> — ,u0<x$> , (66)

d<1‘5$7>
dt

5 1
= KysRsRr + K [Rs(aser) + Re(a2)] — K\ [Rs(x2) + Re{wsar)] — 1*6K1(w01)s<905337>

v
+ vs0 Ry — vss(ws7) — KL;(—?REI% + R7(x2) + 2Rs(ws527))

v
+ v70Rs + vz (22) + %;(—2]%? + 3R5(x2)) — vrr{xsar) — polrses) . (67)

2 Fitted parameters and sensitivity analysis wr

We have made use of the software Copasi to perform parameter fitting with three different methods: 208
Levenberg-Marquardt, steepest descent, and Hooke and Jeeves methods [47]. The results converged in all 409
three cases. In Table 1, we summarise the best-fit parameters for the three models introduced in this paper. a0

Parameter ~ Cut-off  Reduced  Toggle-switch

KO, 4.54 4.48 0.7723
KW 0.0032  0.0032 0.0039
V50 1.3x107°  1.2x107° 1.3 x107°
050 Nss 0.0050  0.0045 0.0050
vs7 0.0040  0.0036 —
77 0.0013  0.0010 0.0013
vrs 0.0032  0.0039 0.00314
vss 0.0062  0.0058 0.0062
70 1.2x1076 — 1.2 x 1076
So 0.4389 — 0.1586
1o 1.0x1076 — 1.0 x 1076
K& 20x1076 — 1.8 x 1076
Ko 1.2x1078 — 1.2 x 1076
Kss — 0.45
Kss — 0.53

Table 1. Best-fit parameters obtained by three different methods as implemented in the software

Copasi [47] for: i) the cut-off switch model defined by Egs. (22)-(24), ii) the reduced model defined by

Eq. (69) and Eq. (70), and iii) the toggle-switch model degined by Egs. (25)-(27). All parameter values are
given in units of seconds™!.

We also used the Copasi built-in (relative) sensitivity analysis algorithm. Tables 2-5 provide a summary of
the results of that algorithm for the three models used: cut-off switch model, toggle-switch model and the a2
model in Ref. [26]. In each table, the column Aggregated is the square root of the sum of the squares of each a3
sensitivity. This measure (also computed by Copasi) gives an idea of the most relevant parameters (highest 41

value in that column). Mathematically, we have 415
Aggregated = \/S% + 5%, + 5%, . (68)
Consider, for instance, the variable IV and the parameter Sy. The value showed in the table corresponds to
So dEnN
= = 0.0005 .
YN dSo
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That is, every order of magnitude that we increase Sy only produces an increase of 1029005 ~ 1,001 in the 416
mean number of endosomes (a mere ~ 0.1% increase). Thus, values close to 1 correspond, roughly, to a linear av
dependence between variable and parameter and values close to -1, an inverse proportionality. In addition, we s

have added the column Normalised, where we divide the Aggregated column by the maximum of all a19
parameters. For instance, in Table 2, the maximum is 1.7294 corresponding to K}%S. 420
Parameter YN YR, YR, Aggregated Normalised

K©o 0998 -0.9984 -0.9984  1.7294 1.0000

KS)s 09990 09955  1.0007  1.7293 0.9999

V50 0.0000 1.4462 0.8411 1.6731 0.9674

V57 0.0000 -1.1510 -0.6141 1.3046 0.7543

V77 0.0000 1.0718 -0.3886 1.1401 0.6593

U75 0.0000 -0.7050  0.2265 0.7405 0.4282

Uss 0.0000 -0.4462 0.1589 0.4737 0.2739

V70 0.0000 -0.2259 -0.2519 0.3384 0.1957

So 0.0005  0.0005  0.0005 0.0009 0.0005

Lo -0.0001  0.0007  -0.0003 0.0008 0.0004

KWs <107* <107* <107% <1074 <107*

K¢ <10* <10* <107* <107 <10°*

Table 2. Sensitivity analysis of the mathematical model described by Eqs. 22-(24), corresponding to the
cut-off switch hypothesis in Fig. 1, as computed by three different methods implemented in the software
Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value in Aggregated
divided by the maximum value in that column. The thin dotted lines are a guide to the eye to separate the
most sensitive parameters (top part of the table) and the least (bottom part).

From Table 2 we can derive a simpler model, where we drop the less sensitive parameters, namely, Sy, v7g 21
K }?,)J gand K g& g- We have also set the number of endosomes to a constant, given by the steady state value
of the full model, and as given by Egs. (22)-(24). The resulting model is given by the following equations 3

dRs

T v50Nss — (Us5 + po)Rs — vs7R7 , (69)
dR
7; v75Rs — (v77 + o) R7 (70)

with parameters shown in Table 1 and sensitivities in Table 3. Note that, from Table 2, only KI(,O}S and
K}%S have strong sensitivities on the variable N. We can then safely assume that

(0)
N.. — KFIS
5 0 -

4K pps
This is confirmed in Fig. 6, where the number of endosomes quickly converges to its steady state. a2
Finally, and for the sake of completeness, in Table 4 we summarise the sensitivity analysis for the s
toggle-switch model. 26
3 Study of two previous of Rab dynamics ar
3.1 Mathematical model in Ref. [19] o

The authors in Ref. [19] encoded the dynamics of Fig. 1 as a set of four ODEs, where each reaction term was
fitted to different mathematical equations. One set of functions ® provides the following equations (with ¢ the

3As documented in http://biomodels.caltech.edu/BIOMDO000000174.
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Fig 6. Time course of the number of endosomes, N (¢), for the cut-off switch model (solid red line) and its
steady state value, Ny, (black dashed lines). Note that N(¢) grows rapidly in the first 40 seconds and reaches
the steady state value of the reduced model after 500 seconds. The numerical value is extremely close to the
value given by Eq. (28).

Parameter YN Yg, YR, Aggregated Normalised
K®, 10000 09995 1.0001  1.7318 1.0000
K96 -0.9990 -0.9992 -0.9991  1.7305 0.9992

V50 <107 0.9991 1.0013 1.4145 0.8168
vs7 <107* -0.7805 -0.7288  1.0679 0.6166
vrs <1074 -0.7805 02704  0.8260 0.4770
77 <10~* 0.7556 -0.2928  0.8103 0.4679
Uss <107* -0.1181 -0.3022 0.3245 0.1874

Table 3. Sensitivity analysis of the reduced model computed by three different methods implemented in the
software Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value in
Aggregated divided by the maximum value in that column.

Parameter YN YR, YR, Aggregated Normalised
KO, 09990 05301 08049  1.3881 1.0000
K9 209985 -0.5301 -0.8029  1.3866 0.9989

w70 <107 <10™* 0.6682  0.6682 0.4814
V77 <107 <107 -0.6632  0.6632 0.4778
Us0 <107* 05307 01359  0.5478 0.3947
Kss <107* -0.4688 -0.1193  0.4838 0.3485
w75 <107 <10™* 03318  0.3318 0.2390
Krs <107 <10™* 00764  0.0764 0.0550
V54 <10~ -0.0616 -0.0157  0.0636 0.0458
S 0.00050.00030.0007 " 0.0009 0.0007
110 <107 < 10™* -0.0006  0.0005 0.0004
KDo  <100* <107* <1074 <1074 <1074
KOs <10* <107* <10* <10 <107*

Table 4. Sensitivity analysis for the toggle-switch model computed by three different methods implemented
in the software Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value
in Aggregated divided by the maximum value in that column. The thin dotted lines are a guide to the eye to
separate the most sensitive parameters (top part of the table) and the least (bottom part).
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Parameter Y gas—Gpp  YRabs—GTP  LRab7-GDP  “Rrab7—GTp Aggregated Normalised

k7 0.0022 28.8007 -1.0044 -7.8522 29.8683 1.0000
k7 0.0021 28.7917 -0.0055 -7.8498 29.8426 0.9991
V7 -0.0018 -27.1203 1.0046 7.57364 28.17588 0.9433
ke -0.0018 -26.6033 0.0045 7.4276 27.6207 0.9247
kg 0.0007 9.4375 £0.0020 22,5938 9.7875 0.3277

kg 57 0.0004 4.3526 -0.0010 -1.1988 4.5147 0.1512

kst 0.0003 3.3470 -0.0007 -0.9223 3.4718 0.1162

kg5 -0.0005 0.2003 0.0012 1.6523 1.6643 0.0557
hs 0.0003 1.2028 -0.0007 -0.3313 1.2476 0.0418
ks 0.9998 0.0216 0.0002 0.2905 1.0414 0.0349
vs -0.9989 -0.0135 -0.0003 -0.2928 1.0410 0.0349

kps -0.0002 0.0541 0.0006 0.6927 0.6948 0.0233
ke 57 0.0001 -0.5757 0.0001 0.1589 0.5972 0.0200
ke.s -0.0002 0.0205 0.0002 0.2908 0.2915 0.0098
ke.75 0.0001 -0.0133 -0.0002 -0.2268 0.2272 0.0076
kg s <1071 20.0074 20.0001 20.1559 0.1561 0.0052
krs <1074 -0.0068 -0.0001 -0.1354 0.1355 0.0045
krs <104 -0.0007 <104 -0.0661 0.0661 0.0022
T <1074 0.0053 <10~ -0.0390 0.03938 0.0013

Table 5. Sensitivity analysis of the model in Ref. [19] (corresponding to Eqgs. (71)-(74) of Section 2 in
Supporting information) obtained by three different methods implemented in the software Copasi [47]. The
column Aggregated is defined in Eq. 68. The column Normalised is the value in Aggregated divided by the
maximum value in that column. The thin dotted lines are a guide to the eye to separate the most sensitive
parameters (top part of the table) and the least (bottom part).

variable describing experimental time)

ke 5-t
d[Rab5 — GDP] [Rab — GDP] - 722
at = U ok, s [R5 GTPE,, s+ [Rab5 — GDP]
ke,57 . [Rab5 - GTP]
R aTEyAy Hh - [Rab3 — GTP], (71)
d[Rab5 — GTP] _ [Rab5 — GDP] - 727 kes7 - [Rab5 — GTP]
dt T 1+ eFo5—[Rab5—GTPlkys | 4 gkg,s7—[Rab7T—GTP]-ks 57
—ks - [Rab5 — GTP] , (72)
d[Rab7 — GDP] [Rab7 — GDP] - k.7 - [Rab7 — GTP)"

dt kg7 + [Rab7 — GTP]""

ke,57 . [Rab? - GDP]
"1 4 ekg.57—[Rab5—GTPlks5r

+ky 7 - [Rab7 — GTP] (73)

k7 - [Rab7 — GDP]

d[Rab7 — GTP]  [Rab7 — GDP] - k. 7 - [Rab7 — GTP]""

dt kg7 + [Rab7 — GTP)""

ke.s - [Rab7 — GDP)
1 + ekg,yjf[RabS*GTP]-kfys

—ky 7 - [Rab7 — GTP] . (74)

Although this model looks clearly more complex than our model (see Eq. (23) and Eq. (24)), numerical
integration of these equations (as shown in Fig. 4B) shows that the variables [Rab5-GDP] and [Rab7-GDP)]
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are almost constant (not shown). Hence, Egs. (71)-(74) are identical to Eq. (23) and Eq. (24), after
linearisation of the equations for [Rab5-GTP] and [Rab7-GTP], with the following approximations:

[Rab5 — GDP] - 7222

1 4+ ekg.5—[Rab5—GTP]-ky 5 — vs0N ,
" ke s - [Rab7 — GDP)
e,b ’ a —
1 1 choo—[Rab5—GTPI k5 vroN .
3.2 Mathematical model in Ref. [26] B

For completeness, we reproduce here the system of equations in Ref. [26]. Note that the first two terms in
Eq. (22) are equivalent to those in Eq. (78).

dRab5,. dN 1
Zit = ~Rab3e. -+ — kaap(Rab5e)Rabe. + kapr (Rabbe Jrabs. | (75)
drabb.. AN 1
% = —rab3e, - + kaap(Rab5e)Rab5e. — kapr (Rabe Jrabb.
+ kirabbey — k_q1rabbee , (76)

drabs,,
% = —kyrab5ey; + k_jrabb,. | (77)

AN ,

—r = —hius(Rab5.c) N + kg (Rabi. )N - (78)

Note that, as according to our model, the number of endosomes reaches quickly a steady state, the terms
proportional to % are negligible in comparison to the other terms. Similarly, as shown in the Supporting
information in Ref. [19], the inactive rabbe. is also almost constant. Thus, we can reduce the equations above

to the following system

dRab5,,
?1715 = —kaap(Rab5e.)Rabb.e + kapr(Rab5ee )rabbe. |
AN )
= ~Frus(Rab5ec) N + kps(Rab5ec) N (79)

where our notation kgap(Rabbee), karr(Rabbe.), kfus(Rabbe.) and kgs(Rabb..) implies that these rates are
functions of the variable Rab5... Our analysis has shown that the source term, proportional to Sy, and the
death term, proportional to pg, are only important in the initial and transient regime. So Eq. (23) and

Eq. (22) can be written as:

dR
7; = 050N — (vs5 + po)Rs — vs7R7 |

AN 1 1

= —§K(O()]SN2 + (8Kf£}s — KW Ry + K}Tgs&) N, (80)

which are analogous to Egs. (79). In our case, the inclusion of the variable R; (not included in Ref. [26]) can 43
explain the need to choose more sophisticated mathematical functions for kggr and kgap in the equations s
above. To illustrate this point, in Fig. 7 we show Rabb as a function of Rab7 for both the experimental data
(circles) and the fitted model (solid line). This allows us to conclude that Rab5 depends non-linearly on Rab7. 4
If we describe Rab5, without reference to the dynamics of Rab7, as done in Ref. [26], one would require an 43

equation for Ry containing non-linearities. In particular, if we denote by kgap(Rab5..), the coefficient of 435
Rabb.. and by kgpr(Rabbee), the coefficient of rabb.., one can see that the dependence on Ry in the first 436
case and on N on the second one, are equivalent to the non-linear functions of R5 in Eq. (79). 437

Finally, and as shown in the Supplementary Figures la-1b from Ref. [19], the best-fit for the fusion rate is 438
almost independent of Rab5 (note the large bars in logarithmic scale), while the best-fit for the fission rate

consistently changes as a function Rab5b. In our framework, this dependence is encapsulated in the factor 440
Kg)l)s/S — o — KE,?[)]S + KI(;()]S multiplying the variable N in Eq. (22), and the constant coefficient KE,OI)JS a1
multiplying N2. So the we can identify a2

Kgis(Rabbee) — I{I(«“OI)S/8 — Mo — K?I)JSRE) + KJ(T7I)JSR7
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Fig 7. Phase-diagram of Rab5 and Rab7. Circles: experimental data. Solid line: fit to Eq. (22) and
Eq. (24). This shows that Rs can be expressed as a non-linear function of R7. Thus, linear terms of Rs and
R7 can be misidentified with non-linear functions of Rs5 alone.

in Eq. 79. This identification clearly shows that kgs(Rabb..) is a non-linear function of Ry since Ry = R7(R5)
(see Fig. 7). This completes the connection between the mathematical framework presented here and previous
mathematical models of endosome maturation.
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