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Abstract

Many intra-cellular processes rely on transport by endosomes. Recent experimental techniques have provided
insights into organelle maturation and its specific role in, for instance, the ability of a virus to escape an
endosome and release its genetic material in the cytoplasm. Endosome maturation and dynamics depend on
GTPases called Rabs, found on their membrane. Here, we introduce a mathematical framework, combining
coagulation and fragmentation of endosomes with two variables internal to each organelle, to model
endosomes as intra-cellular compartments characterised by their levels of (active) Rab5 and Rab7. The key
element in our framework is the “per-cell endosomal distribution” and its its dynamical equation or
Boltzmann equation. The Boltzmann equation, then, allows one to deduce simple equations for the total
number of endosomes in a cell, and for the mean and standard deviation of the Rab5 and Rab7 levels. We
compare our solutions with experimental data sets of Dengue viral escape from endosomes. The relationship
between endosomal Rab levels and pH suggests a mechanism which can account for the observed variability in
viral escape times, which in turn regulate the viability of a viral intra-cellular infection.

Author summary

Endosomes are intra-cellular receptacle-like organelles, which transport endocytosed cargo upon
internalisation from the plasma membrane. These early endosomes, also known as sorting endosomes, mature
to late endosomes, with a lower pH than early ones, as a consequence of the intricate dynamics of a family of
molecules called Rabs. Viruses exploit this endosomal pH drop to their advantage. Here we bring together
experimental data on Dengue viral escape times from endosomes and a novel mathematical framework
inspired by the theory of droplet coalescence, to improve our understanding of endosome maturation, and in
turn to quantify the large variability of viral escape times. This mathematical framework can easily be
generalised to model the dynamics of other intra-cellular organelles, such as mitochondria or the endoplasmic
reticulum.

Introduction 1

Endosomes are enigmatic organelles which regulate intra-cellular cargo trafficking [1]. These (literally) inner 2

bodies are dynamic in movement and decorated [2]. They can merge; that is, they can undergo fusion1. 3

Endosomes can also break up (fission) [3] or kiss and run [4], in a random choreography that allows the cell to 4

sort, recycle or degrade internalised molecules. This endosomal maturation programme requires a dramatic 5

transformation of these organelles: from early endosomes, to late ones, recycling ones and degrading 6

1In order to avoid confusion, in this manuscript we shall refer to viral RNA release from the endosome to the cytosol as escape
and to the merging of two endosomes as fusion. We note that other authors refer to fusion as the merging of the viral envelope
and the endosomal membrane.
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lysosomes [1, 5]. In recent years, a lot of effort has been devoted to understand entry and subsequent 7

intra-cellular viral genome release [6]. Current consensus suggests that many viruses, independently of their 8

entry pathway, are delivered to the so-called early endosomes, and thus, enter an intricate network of 9

endosomes: from early to late endosomes, until the endosomal pH is low enough to trigger viral membrane 10

fusion and escape to the cytosol [7, 8]. In this way, endosomes become one of the main vehicles for viral 11

intra-cellular trafficking in the infected cell, bringing viral genomic cargo from the plasma membrane to the 12

cytosol. 13

For many viruses, escape is preceded by a sudden drop in the endosomal pH [6, 7, 9]. This often occurs in late 14

endosomes, where in fact, high levels of the GTPase Rab7 have been pointed out as responsible for viral 15

escape [10,11]. This rather interesting feature seems to indicate that by tracking the endosomal Rab 16

decoration, one is in fact, also following the maturation history of individual endosomes. Rab5 is a marker of 17

early endosomes and Rab7 of late ones [12]. Besides their role as experimental markers, different Rab 18

molecules have been identified as central regulators of the endosomal transport pathway [13]. Of particular 19

relevance, is the fact that endosomal pH has been experimentally linked to different levels of Rab5 and 20

Rab7 [5, 13–15]. Given the large variability observed in viral escape times [9, 11,16], it is timely to ask 21

ourselves the following questions: (i) is pH alone the main trigger of viral escape, (ii) is the pH dependence 22

gradual (analogical) or abrupt (digital), and (iii) can endosome maturation and dynamics explain the 23

observed heterogeneity in the distribution of viral escape times. The first question has been quantitatively 24

addressed, experimentally and theoretically, in recent work [10,17,18]. In this paper, we aim to provide 25

answers to the three questions above. We do so by making use of a novel mathematical framework to describe 26

the population dynamics of endosomes containing endocytosed viral particles. The mathematical approach 27

presented here includes the contribution to endosome maturation and dynamics from fusion and fission 28

events, as well as those molecular processes related to Rab recruitment and endosome acidification. In this 29

way, the framework allows one to characterise the mechanistic details of endosomal maturation, yet reduces 30

the mathematical complexity required in order to explain the experimental data. 31

The biology of endosomal Rab5/Rab7 dynamics 32

Early endosomes (Rab5-positive) undergo a progressive replacement of Rab5 with Rab7 [3]; a process that 33

involves several molecules and chemical reactions (see a schematic summary in Fig. 1, adapted from Ref. [19]). 34

Specifically (see Ref. [19] for details), Rab5-positive endosomes (a signature of early endosomes) gradually 35

become Rab7-positive endosomes (namely, late endosomes) [3]. The complete endosomal maturation process 36

then replaces the Rab5 decoration with a Rab7 one. At the molecular level (see Fig. 1), Rab5 (in its two 37

conformations, Rab5:GDP and Rab5:GTP, inactive and active, respectively), Rab7, guanine nucleotide 38

exchange factors (GEFs), GTPase-activating proteins (GAPs), and effector molecules are interconnected on 39

the endosomal membrane [20]. The conversion from Rab5 to Rab7 is a consequence of programmed and 40

simultaneous changes in the nucleotide cycle of both Rab5 and Rab7, which shuttle between inactive, 41

GDP-bound, and active, GTP-bound, conformations. GEFs catalyse the exchange of GDP into GTP and 42

GAPs catalyse the hydrolysis of GTP into GDP [21]. Other positive/negative feedback loops are summarised 43

in Fig. 1. We note that for the purposes of this manuscript the molecular reactions included in Fig. 1 will be 44

encoded in the specific choices for the molecular currents. Besides their role in the dynamics of Rab 45

molecules, endosomes also interact with other nearby endosomes. In particular, they can undergo fusion and 46

fission [22], or kiss-and-run [4] events. The latter process occurs when Rab5 restricts the complete fusion of 47

endosomes, allowing the exchange of solutes between them, but without complete intermixing of their 48

membranes [4]. Here, we shall only consider endosomal fusion and fission events. 49

Mathematical framework of endosome dynamics and maturation 50

Mathematical models have helped identify the main mechanisms involved in the endosomal maturation 51

process. For instance, some regulatory proteins, e.g., SNAREs, Rabs and other coating proteins, have been 52

linked to the formation, degradation and renewal of endosomes. There is some consensus on what 53

mechanisms are involved in those processes, although their individual quantitative contribution seems to be 54

elusive [15,23]. In this section, we summarise the biology of endosomal Rab dynamics, as well as previous 55

mathematical modelling efforts. 56

Most mathematical models of endosome dynamics (with the notable exception of the model in Ref. [24] that 57

pioneered the approach developed here) make use of a set of ordinary differential equations (ODEs) to 58
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Fig 1. Schematic summary of the reactions which decorate the endosomal membrane. They regulate the
levels of Rab5/Rab7 in the cytosol and at the membrane in inactive (Rab-GDP) and active forms (Rab-GTP).
GDI means GDP-dissociation inhibitor (see Ref. [19] for details). Mathematically, Eq. (10) and Eq. (11),
capture the main molecular interactions. For instance, the red dashed line is modelled by the term
proportional to v57 x7.

describe the incorporation of different Rab molecules to the endosome. This poses a practical problem since, 59

in all cases, the data used to parameterise the mathematical models is averaged over all the endosomes. 60

However, as we mentioned above, fusion and fission events couple two nearby endosomes and, hence, 61

endosomal averages might not be appropriate to describe the pH of an individual endosome. To illustrate why 62

traditional ODE models do not capture this variability properly, let us consider an extreme case with two 63

endosomes with pH 4 and 7, respectively, and let us assume that viral escape occurs for pH below 5. The 64

average endosome pH will be 5.5 in this case, so escape will not occur, which contradicts the fact that it will 65

in one of the endosomes, but not the other. Hence, endosomal averaging can smooth out fast changes and 66

lead to the conclusion that escape is a continuous process rather than mediated by a pH threshold [23]. At 67

the other end of the modelling spectrum, the biochemistry of proton exchange has been used to describe the 68

thermodynamics of endosome pH acidification [25]. Also, the authors of Ref. [14] consider the acidification of 69

individual endosomes, without considering interactions between them. Finally, it is worth mentioning that, in 70

Ref. [26] the authors made use of a hybrid method, which includes differential equations for active Rab5, 71

inactive Rab5 and the total number of endosomes. Specifically, the model considers the mean number of 72

Rab5 molecules per endosome and assumes that Rab5 exchange and activation between cytosol and 73

endosomes is proportional to the number of endosomes (see Eqs. (75)-(78) in Section 3 of the Supporting 74

information, which were proposed by the authors of Ref. [26]). Note that Eq. (78) incorporates the role of 75

fusion and fission events in terms of the mean number of endosomes. Thus, this mean field approach is 76

unable to describe individual endosome dynamics. While this can be a valuable approach to understand the 77

organelle network, it does not capture endosome heterogeneity, which is essential if we want to understand 78

and describe the observed experimental variability. A suitable approach to resolve this issue would be the use 79

of agent-based models (ABM) [27], in which each endosome can be simulated, as an agent, and is described in 80

terms of its molecular content (or cargo). However, ABMs are often computationally expensive or not 81

amenable to parameter inference. 82

Our approach here takes a different route beyond deterministic descriptions of endosomal dynamics at the 83

cellular level [19, 26,28,29], or at the single endosome level [14,15,23]. As we have discussed earlier, the 84

former presumes that Rab dynamics at the cellular scale can be studied from the observation of endosomal 85

averages, and, the latter, focuses on biochemical reactions on the endosome membrane, which do not include 86

the interaction between endosomes. To overcome these limitations, we introduce a model inspired by the 87

dynamics of droplet coalescence, also known in the physics literature as the Smoluchowski equation [24,30,31]. 88

Our approach allows one to recover previous phenomenological models [19,26] under certain mathematical 89

assumptions (see Section 3 of the Supplementary information). Mathematically, these models are based on an 90

integro-differential equation which can describe cells [32–34] or endosomes [24,35]. A difficulty with 91

phenomenological models is their lack of mathematical tractability. In order to address this issue, here, we 92

make use of a formalism that enables one to describe the dynamics of the number of endosomes and their 93

individual cargo of (active) Rab5 and Rab7 molecules. Furthermore, by means of the two-dimensional 94
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Laplace transform, the formalism naturally leads to analytical expressions for the rate equations (ODEs) of 95

interest. Once the rate equations have been derived, and together with experimental data [8], we test the 96

validity of these equations and discriminate between two different mechanistic hypotheses [36]. Equipped with 97

this mathematical framework, we are able to simplify some of the underlying assumptions used in other 98

models (see Section 3 on the Supplementary information) and perform a model selection analysis (making use 99

of experimental data). Our interest is to directly emphasise the underlying molecular mechanisms rather than 100

certain mathematical choices; this can be done since our framework avoids ad hoc reaction terms based on 101

Hill or logistic functions (see the Results section). 102

Finally, and going back to our initial discussion on endosome acidification, we note that the quantification of 103

intra-cellular pH can be performed with the use of DNA nanomachines [37] or by luminescence markers of 104

acidity acting as cargo transported by the endosome [38]. Since the experimental error can be as large as 105

∆pH∼ 1, these experiments might not be accurate enough in the case of abrupt pH changes. To overcome 106

these experimental limitations, several approaches have been proposed to understand the interplay between 107

Rab decorations and endosomal pH [14,23]. These approaches, in a nutshell, provide a mechanistic model of 108

proton dynamics and an interpolation model between early and late endosomes, by means of an equation of 109

the following kind: 110

pH(t) = pHearly + (pHlate − pHearly)
Rab7(t)

Rab5(t) + Rab7(t)
, (1)

where Rab5(t) and Rab7(t) have to be understood at the single endosome level, not at the single cell level. 111

We shall make use of this equation to derive the time course of endosomal pH, pH(t), by providing the 112

dynamics of Rab5(t) and Rab7(t) as derived from our general mathematical framework. 113

Mathematical modelling hypotheses 114

We take into account the experimental evidence discussed in the preceding sections and now describe the 115

biological mechanisms that will be included in our mathematical formalism. 116

1. Endocytosis (endosome generation): new endosomes are formed by the invagination of the cell 117

membrane. Those newly created endosomes (containing endocytosed viral particles) do not have any 118

Rab5 or Rab7 molecules. Progressively, the endosomes become decorated with Rab5 and, subsequently, 119

with Rab7. 120

2. Endosome degradation/removal: endosomes can fuse with a lysosome and thus, be removed from 121

the cytosol. In our case, there exists a second form of endosome removal due to viral escape. 122

3. Fusion (coalescence): fusion of two endosomes involves the merging of their membranes and, as a 123

consequence, the Rab5 and Rab7 molecules are shared [3] (see Fig. 2 for a schematic picture of this 124

process). 125

4. Fission: endosomes can divide, thus splitting the amount of Rab5 and Rab7 between the two newly 126

created endosomes. When fission occurs, the total amount of Rab5 and Rab7 is shared randomly 127

between the two newly created endosomes (see Fig. 2 for a schematic picture of this process). 128

5. Rab5/Rab7 activation/deactivation: Rab molecules on the endosomal membrane can be activated 129

after prior incorporation of inactive Rab:GDI from the cytosol. A schematic summary of the reactions 130

of Rab activation/deactivation can be found in Fig. 1. 131

Mathematical model of endosomal maturation and dynamics 132

In this section, we provide a mathematical description of the biological mechanisms discussed in the previous 133

section. We consider a single cell containing a collection of endosomes. Each endosome is characterised by its 134

active Rab cargo, technically, [Rab5:GTP] and [Rab7:GTP], respectively, (x5, x7) at time t. We assume x5 135

and x7 are real numbers (greater or equal to zero) and introduce the “per-cell endosomal distribution”, 136

n(x5, x7; t), which is a function of x5, x7 and time, t. In fact, the mean number of endosomes at time t with 137

Rab cargo (x5, x7), such that a5 < x5 < b5 and a7 < x7 < b7 is given by 138∫ b5

a5

∫ b7

a7

dx5 dx7 n(x5, x7; t) .
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Fusion Fission

Fig 2. Left: two endosomes with different levels of active Rab5 and Rab7, (x5, x7) and (x′5, x
′
7), respectively,

merge into a new endosome with levels of active Rab5 and Rab7, (x5 + x′5, x7 + x′7), with rate
KFUS(x5, x

′
5, x7, x

′
7). Right: an endosome with levels of active Rab5 and Rab7 (x5 + x′5, x7 + x′7) splits into

two new endosomes of levels (x5, x7) and (x′5, x
′
7), respectively, with rate KFIS(x5, x

′
5, x7, x

′
7).

Without loss of generality and, for the sake of simplicity, we make use of the number of Rab molecules per 139

endosome instead of the number density or the molar concentration. We now consider the contribution of 140

each of the five processes just introduced to the time evolution (or dynamical equation) of n(x5, x7; t). 141

1. Endocytosis (endosome generation): newly created endosomes have zero levels of active Rab5 and 142

Rab7. Mathematically, endosome generation is described by a source term of the form 143

S(x5, x7) = S0 δ(x5)δ(x7) , (2)

where S0 is a real positive constant with dimensions of number of endosomes per unit time and the 144

symbol δ(·) stands for the Dirac delta function. 145

2. Endosome degradation/removal: considering the two possible causes of endosome removal (fusion 146

with a lysosome or viral escape out of the endosome), we assume that the endosomes can be removed at 147

any stage of the maturation process. Hence, we assume a constant removal (or death) rate proportional 148

to the number of endosomes, that is independent of the Rab cargo. We write 149

µ(x5, x7) = µ0 n(x5, x7; t) . (3)

3. Fusion (coalescence): when two endosomes with Rab cargo given by (x5, x7) and (x′5, x
′
7),

respectively, fuse, they share their cargo, so the total number of each Rab cargo of the newly formed
endosome will be (x5 + x′5, x7 + x′7). The contribution to the time derivative of n(x5, x7; t) is

1

2

∫ x5

0

dx′5

∫ x7

0

dx′7 KFUS(x′5, x5 − x′5, x′7, x7 − x′7) n(x′5, x
′
7; t) n(x5 − x′5, x7 − x′7; t)

− n(x5, x7; t)

∫ +∞

0

dx′5

∫ +∞

0

dx′7 KFUS(x5, x
′
5, x7, x

′
7) n(x′5, x

′
7; t) , (4)

where the first term represents the net gain of endosomes with Rab levels (x5, x7) and the second one 150

represents the loss of endosomes with total levels (x5, x7) after fusion with other endosomes. The 151

function KFUS(x5, x
′
5, x7, x

′
7) is referred to as the fusion kernel. It dictates the rate of endosomal fusion, 152

and it clearly depends on the endosomal levels of active Rab molecules. 153

A central feature of our model is the consideration of both fusion and fission events. Fusion is enhanced 154

in early endosomes so the rate of fusion correlates positively with the levels of Rab5 and negatively with 155
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those of Rab7 [3]. For simplicity, we assume that the fusion rate is a linearly increasing function of 156

Rab5 and a linearly decreasing function of Rab7. Hence, we propose 157

KFUS(x5, x
′
5, x7, x

′
7) = K

(0)
FUS +K

(5)
FUS (x5 + x′5)−K(7)

FUS (x7 + x′7) , (5)

where K
(k)
FUS are constants for k = 0, 5, 7. As shown in Ref. [39], endosomes need to be spatially close in 158

order to merge. As we are not modelling the intra-cellular endosome spatial location explicitly, the 159

latter equation favours fusion of early endosomes (higher x5 increases the overall fusion rate) and 160

reduces fusion in late endosomes (it decreases for higher x7). Yet our model does not preclude fusion 161

events between early and late endosomes [8]. 162

4. Fission: similarly to fusion, fission can be described introducing a kernel function, as follows∫ +∞

0

dx′5

∫ +∞

0

dx′7 KFIS(x5, x
′
5, x7, x

′
7) n(x5 + x′5, x7 + x′7; t)

− 1

2
n(x5, x7; t)

∫ x5

0

dx′5

∫ x7

0

dx′7 KFIS(x′5, x5 − x′5, x′7, x7 − x′7) . (6)

The first term is the gain due to the fission of a larger endosome leading to two endosomes, one of them 163

with Rab levels (x5, x7). The second one is a loss term due to the fission of an endosome with Rab 164

levels (x5, x7). 165

Endosomal fission is less well understood that fusion. In Ref. [3] it is suggested that fission occurs 166

randomly at any stage of maturation. Thus, we consider that fission is independent of the number of 167

Rab5 or Rab7 molecules, but that it is not necessarily symmetric (namely, when an endosome splits, the 168

amount of Rab going to each daughter endosome can be different). Mathematically, we propose 169

KFIS(x5, x
′
5, x7, x

′
7) = K

(0)
FIS f(|x5 − x′5|, |x7 − x′7|) , (7)

where, by the symmetric properties of the fission kernel [30], the function f satisfies the normalisation 170

condition, f(0, 0) = 1 and is symmetric in its arguments. The simplest case one can consider is 171

symmetric fission; namely, we write 172

f(x5 − x′5, x7 − x′7) = δ(x5 − x′5) δ(x7 − x′7) . (8)

This choice for f means that 50% of each cargo is equally shared between daughter endosomes. The 173

contribution to the time derivative of n(x5, x7; t) is then 174

4K
(0)
FIS n(2x5, 2x7; t)−K(0)

FIS n(x5, x7; t) .

5. Rab5/Rab7 activation/deactivation in an endosome: in Ref. [19], the authors considered two 175

competing hypotheses for Rab5/Rab7 activation/deactivation (see Fig. 1). The first one is the 176

toggle-switch model and consists in a weakened repression of Rab7 by Rab5, described by a logistic term. 177

In the second one, the cut-off switch model, Rab7 activation strongly suppresses Rab5. In order to 178

identify which hypothesis was more compatible with the experimental data, the authors introduced a 179

modular model where a certain mechanisms could be explained making use of different mathematical 180

functions (see Supplementary information 1 of Ref. [19]). The drawback of this type of exhaustive 181

model comparison is that specific fitting algorithms had to be adapted to infer model parameters from 182

the data [28]. 183

We note that the total number of endosomes does not change with the activation/deactivation of Rab 184

molecules. This fact can be naturally expressed in terms of a conserved quantity. We also note that we 185

model the number of Rab molecules in a given endosome rather than its concentration, since the latter 186

one might be affected by fusion and fission events, where the volume or the area of the endosome can 187

significantly change. In the absence of other mechanisms, this conservation law can be expressed in 188

terms of a molecular current. The contribution of the dynamics of x5 and x7 inside each endsosome to 189

the time derivative of n(x5, x7; t) is equal to minus the divergence of a current ~J : 190

∂t n(x5, x7; t) + ~∇ · ~J(x5, x7) = 0 ,
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where

~∇ · ~J(x5, x7) ≡ ∂5 J5(x5, x7) + ∂7 J7(x5, x7) . (9)

In the previous equation we have introduced the notation ∂k to indicate ∂xk
, with k = 5, 7. We have

also made use of the notation ~J(x5, x7) = (J5(x5, x7), J7(x5, x7)). One must supplement Eq. (9) with
constitutive equations for the currents, J5(x5, x7) and J7(x5, x7). In this paper we are going to assume
that the currents are proportional to the total number of endosomes, n(x5, x7; t). This implies that
J5(x5, x7) = v5(x5, x7) n(x5, x7; t) and J7(x5, x7) = v7(x5, x7) n(x5, x7; t), where we have introduced
the velocities v5,7(x5, x7). The velocities v5,7 are generic functions of x5 and x7 that need to be
prescribed according to the underlying biology of Rab5/Rab7 activation/deactivation discussed earlier.
Following Refs. [19, 26], we assume that both molecules evolve and are coupled to each other (see
Fig. 1). In other words, the concrete form of the functions v5,7(x5, x7) will be determined by performing
model selection and thus, identifying the underlying biological mechanisms. Mathematically, Rab5 and
Rab7 interact via positive/negative feedback loops. We include these molecular interactions in the

current, ~J , and assume a linear dependence on the number of Rab molecules. For the cut-off switch
model one has [19]

v5(x5, x7) ≡ v50 − v55 x5 − v57 x7 , (10)

v7(x5, x7) ≡ v70 + v75 x5 − v77 x7 , (11)

where the choice of the signs in the coefficients vij is determined by the network of interactions in
Fig. 1. For instance, the inhibition described by the red dashed arrow is captured by the term −v57 x7.
For the toggle-switch model one has v57 = 0 [19]. Namely, levels of Rab7 do not affect levels of Rab5,
and thus, the velocity v5(x5, x7) does not depend on x7. Yet, the model is non-linear, since it includes
two logistic terms. The non-linear terms encode inhibitory mechanisms, as for example, the terms
proportional to v55 and v75. For the toggle-switch model one has [19]

v5(x5, x7) ≡ v50 − v55 x5
(

1− x5
K55

)
, (12)

v7(x5, x7) ≡ v70 + v75 x5

(
1− x5

K75

)
− v77 x7 . (13)

The parameters K55 and K75 are carrying capacities that encapsulate the inhibitory behaviour of Rab5 191

in the toggle-switch model. As a consequence, we shall show (see Eq. (26)), that the ODE for the 192

endosomal average of Rab5 does not contain the inhibitory feedback proportional to v57 present in 193

Eq. (23). 194

Boltzmann equation for the endosomal distribution 195

We now combine the mathematical considerations described in the previous section to derive a dynamical 196

equation for n(x5, x7; t). Before we do so, we need to discuss the relationship between the creation of 197

endosomes and the current ~J . As newly created endosomes have zero levels of Rab5 and Rab7 (see Eq. (2)), 198

the following boundary conditions for the current ~J must be fulfilled: 199

J5(0, x7) = 0 = J7(x5, 0) . (14)

Intuitively, these equations mean that the Rab5-associated current of endosomes with non-zero levels of Rab7 200

(first equation) and the Rab7-associated current of endosomes with non-zero levels of Rab5 (second equation) 201

have to be zero. 202
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We can now write the evolution equation for n(x5, x7; t). We have

∂ n(x5, x7; t)

∂t
=

1

2

∫ x5

0

dx′5

∫ x7

0

dx′7 KFUS(x′5, x5 − x′5, x′7, x7 − x′7) n(x′5, x
′
7; t) n(x5 − x′5, x7 − x′7; t)

− n(x5, x7; t)

∫ +∞

0

dx′5

∫ +∞

0

dx′7 KFUS(x5, x
′
5, x7, x

′
7) n(x′5, x

′
7; t)

+

∫ +∞

0

dx′5

∫ +∞

0

dx′7 KFIS(x5, x
′
5, x7, x

′
7) n(x5 + x′5, x7 + x′7; t)

− 1

2
n(x5, x7; t)

∫ x5

0

dx′5

∫ x7

0

dx′7 KFIS(x′5, x5 − x′5, x′7, x7 − x′7)

− µ0 n(x5, x7; t)− ~∇ · ~J(x5, x7) + S0 δ(x5) δ(x7) . (15)

We refer to this equation as the Boltzmann equation for the endosomal distribution n(x5, x7; t). Although 203

this precise equation has not been proposed before, simplified versions with fewer biological mechanisms [24] 204

or in fewer dimensions [34,40] have been studied in different contexts. 205

Equations for the moments of the Boltmann distribution 206

Equation (15) is a non-linear integro-differential equation that is, in principle, analytically intractable. 207

However, it can be simplified under some assumptions that should be carefully scrutinised together with 208

experimental data. In practice, in many experimental conditions only the time evolution of the mean number 209

of molecules of different species (including the total number of endosomes) is attainable. To this end, it is 210

convenient to introduce the first order moments of the distribution n(x5, x7; t). In particular, we introduce 211

N(t) ≡
∫ +∞

0

dx5

∫ +∞

0

dx7 n(x5, x7; t) (total number of endosomes) , (16)

R5(t) ≡
∫ +∞

0

dx5 x5

∫ +∞

0

dx7 n(x5, x7; t) (total cargo of Rab5:GTP) , and (17)

R7(t) ≡
∫ +∞

0

dx5

∫ +∞

0

dx7 x7 n(x5, x7; t) (total cargo of Rab7:GTP) . (18)

We can also define second order moments of the distribution as follows 212

σ2
5(t) ≡

∫ +∞

0

dx5 x
2
5

∫ +∞

0

dx7 n(x5, x7; t)−R2
5(t) (variance of R5) , (19)

σ2
7(t) ≡

∫ +∞

0

dx5

∫ +∞

0

dx7 x
2
7 n(x5, x7; t)−R2

7(t) (variance of R7) , and (20)

σ57(t) ≡
∫ +∞

0

dx5 x5

∫ +∞

0

dx7 x7 n(x5, x7; t)−R5(t)R7(t) (covariance between R5 and R7) .(21)

If we make use of the two-dimensional Laplace transform (for details, see Section 1 in the Supporting
information), we obtain an ODE for the first order moments defined above. For the cut-off switch model one
can show

dN(t)

dt
= S0 +

(
K

(0)
FIS

8
− µ0 −K(5)

FUS R5(t) +K
(7)
FUS R7(t)

)
N(t)− 1

2
K

(0)
FUS N

2(t) , (22)

dR5(t)

dt
= v50 N(t)− (v55 + µ0) R5(t)− v57 R7(t) , and (23)

dR7(t)

dt
= v70 N(t) + v75 R5(t)− (v77 + µ0) R7(t) . (24)
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For the toggle-switch model the ODEs for the first moments can be shown to be

dN(t)

dt
= S0 +

(
K

(0)
FIS

8
− µ0 −K(5)

FUS R5(t) +K
(7)
FUS R7(t)

)
N(t)− 1

2
K

(0)
FUS N

2(t) , (25)

dR5(t)

dt
= v50 N(t)− µ0 R5(t)− v55 R5(t)

(
1− R5(t)

K55

)
, and (26)

dR7(t)

dt
= v70 N(t) + v75 R5(t)

(
1− R5(t)

K75

)
− (µ0 + v77) R7(t) . (27)

We note that as expected, Eq. (25) and Eq. (22) are the same in both models. We also note that Eq. (15) 213

allows one to derive the dynamical non-linear equation of Refs. [19, 26] (for further details, please, see 214

Section 3 in the Supporting information). 215

Experimental data 216

We make use of experimental data obtained by labelling Dengue viral particles (DENV) with the lipophilic 217

fluorescent probe DiD, as previously reported in Ref. [8] and reproduced in Fig. 3. We use the normalised 218

number of probes (DENV viral particles) colocalised with endosomal Rab5 and Rab7 as an estimate of the 219

number of Rab molecules in endosomes with endocytosed DENV. Here, we are not interested in the DENV 220

lifecycle, but the viral particles will serve as markers to track endosomal dynamics, since in the experiments 221

viral particles were colocalised with fluorescent markers for endosomal Rab5 and Rab7 molecules. Overall, 51 222

escape events were analysed in order to quantify the levels of Rab5 and Rab7 (see Fig. 3). Analysis of those 223

51 cases revealed that, in spite of the fact that most escape events took place in early endosomes (86%), a 224

non-negligible number of events, 14%, took place in Rab5/Rab7-positive intermediate endosomes [8]. In 225

addition, tracking fluorescently labelled endosomes allowed the authors to show that almost half of the 226

endosomes skipped several steps of the maturation process by merging with existing Rab7-positive endosomes 227

(precisely, 45%) [8]. Finally, 30% of the tracked endosomes underwent fission events at different stages of their 228

trajectory in the cytoplasm. This supports our choice for a constant fission rate, termed splitting in Ref. [8], 229

which does not depend on the stage of maturation of the endosome, as defined by its Rab cargo (x5, x7). 230

Cut-off switch model
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Fig 3. Comparison of model predictions (solid lines) as described by Eqs. (22)-(24) and the experimental
data (black circles and red squares) from Ref. [8]. Solid lines correspond to the normalised number of
endosomal Rab5 and Rab7 molecules. Dashed lines correspond to the mean ± one standard deviation, as
derived from Eqs. (51)-(53).
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Results 231

Data and mathematical modelling support the cut-off switch hypothesis 232

Fig. 3 shows the experimental data (black circles and red squares) from Ref. [8] and the result of fitting the
data to the mathematical model (cut-off switch) described by Eqs. (22)-(24) (solid lines). A sensitivity
analysis of the cut-off switch model (see Table 2 of Section 2 in Supporting information) reveals that the most

sensitive parameters are, in order of relevance, K
(0)
FUS , K

(0)
FIS , v50 and v57, and the least relevant, K

(7)
FUS ,

K
(5)
FUS , µ0 and S0. The results from our sensitivity analysis is rather interesting since it shows that fusion and

fission are essential to understand the experimental data, but that the corrections to the constant term of the

fusion kernel, K
(0)
FUS , which are proportional to K

(7)
FUS and K

(5)
FUS and depend on the Rab cargo, are

negligible. Thus, it seems that a simpler model than the cut-off switch can be used to explain the data, as we
show in Section 2 in Supporting information (see also A quasi-linear approximation to describe experimental
data section below and Fig. 4C). Furthermore, the source term of new endosomes with zero levels of Rab5
and Rab7 does not significantly affect the dynamics of endosomal Rab5 or Rab7. Numerical integration of
Eq. (22) shows that, independently of the initial condition, N(0), the number of endosomes quickly
approaches a steady state (see Fig. 6). Taking into account the order of magnitude of the parameters in
Table 1 and the results of the sensitivity analysis, we find that

dN(t)

dt
=S0 +

(
K

(0)
FIS

8
− µ0 −K(5)

FUS R5(t) +K
(7)
FUS R7(t)

)
N(t)− 1

2
K

(0)
FUS N

2(t) ' 0

⇒N(t) ' Nss ≡
K

(0)
FIS

4K
(0)
FUS

, (28)

where we have neglected K
(7)
FUS , K

(5)
FUS , µ0 and S0 and assumed Nss 6= 0. As a consequence of N(t) being 233

almost stationary, the terms v50N and v70N in Eq. (23) and Eq. (24), respectively, are also almost constant. 234

Our theoretical analysis is consistent with our numerical results: Fig. 6 shows that the number of endosomes, 235

N(t), reaches a value close to its steady state after 40 seconds. Given the best-fit parameters from Table 1, 236

we conclude that fusion and fission events are more relevant for the dynamics of the Rabs than the rate of 237

endosome generation, since we have S0 � K
(0)
FUSN

2 and S0 � K
(0)
FISN . Finally, we now explore the role of 238

the parameter v57 in the decrease of R5(t) at the time of increase of R7(t). This coefficient encodes the 239

inhibitory effect of Rab7 on the dynamics of Rab5. On the one hand, the sensitivity analysis of the cut-off 240

switch model (see Table 2) gives this parameter a normalised value of 0.7543 and on the other hand, the 241

best-fit parameters from Table 1, suggest a value of 4× 10−3 s−1 for v57. These two results together show the 242

qualitative and quantitative importance of this parameter in the cut-off switch model, which in turn, and in 243

light of the experimental data, provide most support to the cut-off switch hypothesis 2, in agreement with 244

Ref. [19]. To further test this conclusion, we have also fitted the toggle-switch model, Eqs. (25)-(27), to the 245

experimental data. The results are shown in Fig. 4A. It can be concluded that the toggle-switch model 246

cannot explain the decrease of Rab5 observed in the data. We first note that in Eq. (26) R5(t) does not 247

depend on R7(t). We then argue that for this model, only fine-tuned mathematical functions of R5 might 248

explain the decrease of R5 at late times. Yet, there is biological evidence to support that the Rab5 decrease 249

and the Rab7 decrease are not independent events. Possibly, more sophisticated mathematical models, as 250

those explored in Ref. [19], might provide better agreement with the experimental data. Still, simply adding 251

more mathematical terms (and so more parameters) to the dynamical equations would obscure our ability to 252

systematically select between plausible biological mechanisms regulating the dynamics of Rab5 and Rab7. 253

A quasi-linear approximation to describe experimental data 254

Ziegler et al. in Ref. [26] considered Rab5-dependent fusion and fission of endosomes, making use of a 255

differential equation similar to Eq. 22. Del Conte-Zerial et al. in Ref. [19] modelled the conversion of early 256

endosomes into late endosomes, which assumes the dynamical replacement of Rab5 by Rab7 during endosome 257

maturation. Their equations, summarised in Section 2 of the Supporting information, require a larger number 258

of parameters than those in the cut-off switch model, Eqs. (22)-(24), but do not include a dynamical equation 259

for the number of endosomes. In Fig. 4B we show the fit of their model to the DENV data. Comparison of 260

2We note that v57 = 0 in the toggle-switch hypothesis, since Rab7 does not affect the dynamics of Rab5.
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A) Toggle-switch model B) Model from Ref. [19]
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C) Reduced model D) Model comparison
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Fig. Eqs. RSS k AIC BIC
3 (22)-(24) 0.019 12 -369.5 -338.2
4A (25)-(27) 0.067 12 -225.6 -194.3
4B (71)-(74) 0.021 18 -348.5 -301.6
4C (69)-(70) 0.020 7 -374.7 -356.4

Fig 4. Comparison of different models (solid lines) with the experiments of Ref. [8]. A) Toggle-switch model,
Eqs. (25)-(27). B) Model from Ref. [19] (see also Eqs. (71)-(74) in Supporting information). C) Comparison
of the sensitivity-based reduced model, Eqs. (69)-(70) (see Section 2 in Supporting information for details).
D) Model comparison based on the Akaike Information Criterion, Eq. (29) and the Bayesian Information
Criterion, Eq. (30). The selected model according to the minimum AIC and BIC is the one shown in boldface.
Dashed lines represent the mean ± the standard deviation, as described by Eqs. (48)-(49). We note that the
formalism introduced here allows one to predict the variance of the estimated solution (panels A and C),
unlike traditional ODE modelling approaches, where only the mean can be explained (panel B).
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Fig. 3 and Fig. 4 shows that a model which includes the dynamics of the number of endosomes can explain 261

the molecular mechanisms parsimoniously. Our model does not explicitly consider inactive Rabs 262

([Rab5-GDP] and [Rab7-GDP]) because their levels remain almost constant (see Ref. [19], Supplementary 263

information). On the other hand, our framework provides dynamical equations for the variance of the number 264

of molecules, as shown in Fig. 4A and Fig. 4C. 265

In order to perform quantitative model selection, we show in Fig. 4D the value of the Akaike Information 266

Criterion (AIC) for the three models, defined as: 267

AIC ≡ n log (RSS) + 2k , (29)

where RSS is the residual sum of squares, n the number of points in the data series and k the number of 268

parameters in the mathematical model. Similarly, we compute the Bayesian Information Criterion (BIC), 269

defined as 270

BIC ≡ n log (RSS) + k log n . (30)

Both methods quantify the goodness of fit but introduce a penalty on the number of parameters (the lower 271

the better). As the RSS is similar in all the models (and n = 100 is the same for all of them), the most 272

decisive factor is the number of parameters, k, thus, pointing at the reduced model, given by Eq. (69) and 273

Eq. (70) (see Fig. 4C). We conclude then that a mathematical that considers the mean number of endosomes 274

in a quasi-steady state, Nss ≡
K

(0)
FIS

4K
(0)
FUS

, and assumes linear dynamics for the evolution of Rab5 and Rab7 (see 275

Eq. (69) and Eq. (70)) is the best candidate for future model extensions. Clearly, the toggle-switch model 276

cannot capture the behaviour of the experimental data, as argued in the previous section. This emphasises an 277

important conclusion which can be derived from our analysis: fusion, fission and Rab7 inhibition of Rab5 are 278

the main mechanisms regulating endosome maturation and, in our context, the endosome acidification which 279

drives viral escape. 280

Fluctuations explain variability of pH-driven viral escape 281

There exists a simple connection between the levels of endosomal Rab5/Rab7 and endosomal pH given by 282

Eq. (1) (for details, please, see Ref. [14]). In our case, the estimated time evolution of pH is given in Fig. 5A, 283

where we have used the best-fit parameters from Fig. 3 (see Table 1). The shape of the curve is consistent 284

with previous results [14, 25, 41]. Since we can compute the second order moments of the distribution, we can 285

evaluate the standard deviation of the pH (dashed lines in Fig. 5A). 286

As we mentioned in the Introduction, many intra-cellular processes are triggered by low (below threshold) 287

values of the pH [8–10]. Yet, as shown in Fig. 5A, the pH fluctuates due to the rich dynamics of endosome 288

maturation and Rab decoration. This variability can only be accounted for if one considers the collective 289

dynamics of the population of endosomes, as described by the distribution n(x5, x7; t). We can exploit this 290

variability to define the probability of the pH being below a certain threshold. In particular, we can 291

approximate the fluctuations by a normal distribution, as follows 292

pH(t) ∼ N
[
pH(t), σpH(t)

]
, (31)

where ∼ N denotes normally distributed, and pH and σpH are the mean and standard deviation of the pH 293

(solid and dashed lines in Fig. 5A, respectively). In Fig. 5B we show synthetically generated histograms 294

according to Eq. (31) to emphasise the role of the width of the distribution and how it affects the probability 295

of having a pH below a certain threshold. The resulting probabilities are shown in Fig. 5C for different values 296

of the pH threshold. For instance, inspection of the green dashed line in Fig. 5C shows that at time 500 297

seconds, the probability of finding endosomes with pH below 5.5 is already 10%, in spite of the fact that the 298

mean pH is above 6.0 at that time (see the arrows in Fig. 5). This probability represents also the normalised 299

number of viral escape events; that is, for a virus and a fiducial (fixed but arbitrary) pH escape threshold, it 300

gives the probability of viral to escape. For instance, under ideal conditions, a virus that requires a pH=4.5 to 301

escape, would only have a maximal probability of success of 0.022 (∼ 2%). This, in addition to the large 302

mean time to achieve that probability (that would allow the endosome to fuse with the lysosome and, thus, 303

destroy the intra-cellular virus), would make the infection non-viable. 304

This result is of great relevance in the understanding of endosomal viral escape events. For instance, in 305

Ref. [8] (whose data we are using in the present work), analysis of the experiments revealed that escape 306

events occurred from 300 seconds post-entry (viral endocytosis). Moreover, colocalisation of escape events 307
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Fig 5. A) Time evolution of the mean endosomal pH (thick curved line) computed from Eqs. (22)-(24) and
Eq. (1), and mean ± standard deviation (computed from Eqs. (51)-(53), curved dashed lines). The horizontal
colour lines correspond to different pH thresholds that could be linked to a virus endosomal escape. B)
Similar to panel A) but showing the sampled distribution of pH using Eq. (31). Note how the distribution
broadens with time, thus increasing the probability of crossing a given pH threshold. C) Normalised number
of viral escape events quantified as the probability of pH being below a threshold (see colour-coded legend),
making use of Eq. (31), namely, P[N (pH, σpH)] <threshold.

with levels of Rab5/Rab7 also showed that around 5% of the viral particles escaped from within 308

Rab5-positive early endosomes (lacking Rab7). This implies that the quick pH drop after those early 309

endosomes merged with more acidic endosomes is ultimately regulating the initiation of viral escape events. 310
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Discussion and conclusions 311

Traditional mathematical methods, based on ordinary differential equations, can only tell only a part of the 312

story when describing systems with a small number of “particles”, such as endosomes in the present case, and 313

where heterogeneity can be large. Deterministic approaches can be a good approximation if one is interested 314

in average numbers or trends, but exclusively at the cell population level. However, in those cases where the 315

response of a system to small variations of a parameter is abrupt (as in the case of viral escape to a pH 316

threshold), averaging can provide confounding answers or lead to mathematical models with a large number 317

of parameters. One of the main results of the present work is that, while detailed models of the Rab5/Rab7 318

dynamics can be found to fit accurately to experiments, such as in Refs. [19, 26], a description based on 319

individual endosomes, decorated with Rab molecules (defined by the distribution n(x5, x7; t)), and their 320

interactions (characterised by fusion and fission events), provides a natural link to the underlying biological 321

mechanisms. The mathematical framework proposed here also allows us to characterise the fluctuations 322

beyond mean number of endosomes or Rab molecules, since higher order moments can be computed from the 323

endosomal distribution n(x5, x7; t). As such, we are able to determine the time course of the variance in the 324

number of Rab molecules and the covariance. 325

We have shown that fusion and fission events regulate the maturation and dynamics of endosomes. Even 326

when we have only considered linear constitutive equations, such as KFUS(x5, x
′
5, x7, x

′
7) or ~J(x5, x7), they 327

have allowed us to capture the complexity of the problem at hand. For instance, more detailed models where 328

kiss-and-run [4] or vesicle budding events [42], decoupled from the rates of fusion/fission, might help to 329

quantify the relative role of those mechanisms. Our approach also sheds some light on the variability of other 330

processes relying on this maturation. As an illustration, as it has been shown for many different 331

viruses [8–10], viral escape (after pH drop) is a highly variable process rather than a smooth one, despite the 332

fact that acidification occurs gradually at the endosome level. For instance, in the case of DENV [8], it was 333

already reported that some viruses escaped as early as a few seconds after entry via endocytosis and that, in 334

those cases, fusion with a more acidic endosome preceded that escape event. So, understating endosome 335

dynamics can be relevant to ascertain the role of different entry pathways in the subsequent fate of the virus, 336

since different receptors deliver the virus into distinct populations of early endosomes [43]. 337

Finally, form a practical viewpoint, while Eq. (15) has proven useful to study the time evolution of the 338

number of endosomes, and the total number of active Rab5/Rab7 molecules on the endosomal membrane, it 339

is still a complex system of ODEs, hard to solve analytically. Thus, computational methods aimed to solve 340

these equations can provide rather valuable information. For example, knowledge of the exact distribution 341

n(x5, x7; t) would provide the cell endosomal pH spectrum, namely, the number of endosomes with a certain 342

pH, n(pH, t), that could be compared with recent experimental methods aimed to quantify intra-cellular 343

pH [37]. Also, this formalism can be translated to other contexts or scales: n(x, y; t) might be seen as the 344

number of cells with a certain expression level of receptors x and y. Thus, solving the corresponding 345

Smoluchowski equation for n(x, y; t) would be a theoretical metaphor of flow cytometry experiments. Another 346

interesting and timely application of our mathematical framework is that of mitochondrial dynamics and 347

interactions. In this case, and in analogy with the endosomes, mitochondria are subject to fusion and fission 348

events modulated by different cargo species (e.g., Ca2+, ATP, reactive oxygen species, mtDNA, etc.). These 349

extensions will be the aim of future work and out of the scope of the present paper. 350
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Supporting information 358

1 Two-dimensional Laplace transform and moment equations 359

In analogy with the Laplace transform in one dimension, we introduce the two-dimensional Laplace transform, 360

as follows 361

L[ n(x5, x7; t)] ≡
∫ +∞

0−
dx5

∫ +∞

0−
dx7 e

−z5x5−z7x7 n(x5, x7; t) , (32)

which is a function of the variables z5 and z7, and time t. We introduce the following notation for the 362

two-dimensional Laplace transform 363

n̂(z5, z7; t) ≡ L[ n(x5, x7; t)] . (33)

We can also define partial (or one-dimensional) Laplace transforms associated with each variable, x5 and x7, 364

as follows 365

L5[ n(x5, x7; t)] ≡
∫ +∞

0−
dx5 e

−z5x5 n(x5, x7; t) , L7[ n(x5, x7; t)] ≡
∫ +∞

0−
dx7 e

−z7x7 n(x5, x7; t) . (34)

Eq. (32) allows one to derive useful expressions to rewrite the Boltzmann equation, Eq. (15), in terms of the
Laplace transform of n(x5, x7; t). Thus, if we make use of the notation introduced in Eq. (33), it can be
shown that the following expressions hold [44]:

L[x5 n(x5, x7; t)] = −∂z5 n̂(z5, z7; t) , (35)

L[x7 n(x5, x7; t)] = −∂z7 n̂(z5, z7; t) , (36)

L[ n(x5, x7; t) ∗ n(x5, x7; t)] = [n̂(z5, z7; t)]2 , (37)

L[x5 n(x5, x7; t) ∗ n(x5, x7; t)] = −∂z5 [n̂(z5, z7; t)]2 , (38)

L[x7 n(x5, x7; t) ∗ n(x5, x7; t)] = −∂z7 [n̂(z5, z7; t)]2 , (39)

L[n(2x5, 2x7; t)] =
1

4
n̂(z5/2, z7/2; t) , (40)

−L[∂x5J5(x5, x7)] = −z5Ĵ5(z5, z7) + L7[J5(0, x7)] , (41)

−L[∂x7
J7(x5, x7)] = −z7Ĵ7(z5, z7) + L5[J7(x5, 0)] , (42)

L[δ(x5)δ(x7)] = 1 , (43)

where Ĵk(x5, x7) is the Laplace transform of Jk (for k = 5, 7) and the symbol “∗” denotes the convolution; 366

that is, 367

n(x5, x7; t) ∗ n(x5, x7; t) ≡
∫ x5

0

dx′5

∫ x7

0

dx′7 n(x′5, x
′
7; t) n(x5 − x′5, x7 − x′7; t) .
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We note that the boundary conditions (see Eq. (14)) imply 368

L7[J5(0, x7)] = 0 = L5[J7(x5, 0)] . (44)

We now make use of the above properties to compute the Laplace transform of Eq. (15). We do so, term by 369

term, as follows: 370

� Time derivative: as the Laplace transform does not involve the time variable, t, we have: 371

∂t n(x5, x7; t)
L−→ ∂t n̂(z5, z7; t) .

� Fusion (1): we make use of Eq. (37), 372

1

2

∫ x5

0

dx′5

∫ x7

0

dx′7 K
(0)
FUS n(x′5, x

′
7; t)n(x5 − x′5, x7 − x′7; t)

L−→
K

(0)
FUS

2
[n̂(z5, z7; t)]2 ,

since KFUS(x′5, x5 − x′5, x′7, x7 − x′7) = K
(0)
FUS +K

(5)
FUS x5 −K

(7)
FUS x7. 373

� Fusion (2): we make use of Eq. (38) 374

1

2

∫ x5

0

dx′5

∫ x7

0

dx′7 K
(5)
FUS x5 n(x′5, x

′
7; t)n(x5 − x′5, x7 − x′7; t)

L−→ −
K

(5)
FUS

2
∂z5 [n̂(z5, z7; t)]2 .

� Fusion (3): we make use of Eq. (39) 375

−1

2

∫ x5

0

dx′5

∫ x7

0

dx′7 K
(7)
FUS x7 n(x′5, x

′
7; t)n(x5 − x′5, x7 − x′7; t)

L−→
K

(7)
FUS

2
∂z7 [n̂(z5, z7; t)]2 .

� Fusion (4): we make use of the definition of N(t) in Eq. (16) 376

− n(x5, x7; t)

∫ +∞

0

dx′5

∫ +∞

0

dx′7 K
(0)
FUS n(x′5, x

′
7; t) = −K(0)

FUSN(t) n(x5, x7; t)
L−→ −K(0)

FUSN(t) n̂(z5, z7; t) .

� Fusion (5): we make use of Eq. (35) and the definitions of N(t) and R5(t) in Eq. (16) and Eq. (17), 377

respectively 378

− n(x5, x7; t)

∫ +∞

0

dx′5

∫ +∞

0

dx′7 K
(5)
FUS (x5+x′5) n(x′5, x

′
7; t) = −K(5)

FUS [x5N(t) n(x5, x7; t) +R5(t) n(x5, x7; t)]

379

L−→ K
(5)
FUS [N(t)∂z5 [ n̂(z5, z7; t)]−R5(t) n̂(z5, z7; t)] .

� Fusion (6): we make use of Eq. (36) and the definitions of N(t) and R7(t) in Eq. (16) and Eq. (18), 380

respectively 381

n(x5, x7; t)

∫ +∞

0

dx′5

∫ +∞

0

dx′7 K
(7)
FUS (x7+x′7) n(x′5, x

′
7; t) = K

(7)
FUS [x7N(t) n(x5, x7; t) +R7(t) n(x5, x7; t)]

382

L−→ K
(7)
FUS [−N(t)∂z7 [ n̂(z5, z7; t)] +R7(t) n̂(z5, z7; t)] .

� Fission (1): we make use of Eq. (8) and Eq. (40) 383∫ +∞

0

dx′5

∫ +∞

0

dx′7 K
(0)
FIS δ(x5−x

′
5)δ(x7−x′7)n(x5+x′5, x7+x′7; t) = K

(0)
FIS n(2x5, 2x7; t)

L−→
K

(0)
FIS

4
n̂(z5/2, z7/2; t) .

� Fission (2): we make use of Eq. (8) 384

−1

2
n(x5, x7; t)

∫ x5

0

dx′5

∫ x7

0

dx′7 KFIS(x′5, x5 − x′5, x′7, x7 − x′7)

385

= −1

2
n(x5, x7; t)

∫ x5

0

dx′5

∫ x7

0

dx′7 K
(0)
FIS δ(x

′
5 − (x5 − x′5))δ(x′7 − (x7 − x′7))

L−→ −
K

(0)
FIS

8
n̂(z5, z7; t) .
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� Degradation: we make use of Eq. (15) and Eq. (32) 386

−µ0 n(x5, x7; t)
L−→ −µ0 n̂(z5, z7; t) .

� Divergence of the current (1): we make use of Eq. (41)) and Eq. (44) 387

−∂x5
J5(x5, x7)

L−→ −z5Ĵ5(z5, z7) .

� Divergence of the current (2): we make use of Eq. (42)) and Eq. (44) 388

−∂x7
J7(x5, x7)

L−→ −z7Ĵ7(z5, z7) .

� Endocytosis: we make use of Eq. (15) and Eq. (43) 389

S0δ(x5)δ(x7)
L−→ S0 .

Now that we have established, term by term, the two-dimensional Laplace transform of the Boltmann 390

equation, we take a look at the individual mathematical models considered for Rab5/Rab7 391

activation/deactivation, the cut-off switch and the toggle-switch models. 392

1.1 Cut-off switch model 393

We first consider the cut-off switch model and the precise expression of the divergence of the current under 394

the two-dimensional Laplace transform. We make use of Eq. (10) and Eq. (11) to write 395

� Rate of change of Rab5: from the definition of J5, Eq. (10), and Eq. (35) and Eq. (36) 396

J5(x5, x7) = (v50 − v55x5 − v57x7) n(x5, x7; t)
L−→ Ĵ5(z5, z7) = v50 n̂(z5, z7; t) + v55∂z5 [ n̂(z5, z7; t)] + v57∂z7 [ n̂(z5, z7; t)] . (45)

� Rate of change of Rab7: from the definition of J7, Eq. (11), and Eq. (35) and Eq. (36) 397

J7(x5, x7) = (v70 + v75x5 − v77x7) n(x5, x7; t)
L−→ Ĵ7(z5, z7) = v70 n̂(z5, z7; t)− v75∂z5 [ n̂(z5, z7; t)] + v77∂z7 [ n̂(z5, z7; t)] . (46)

We are now ready to bring all the previous results together for the cutt-off switch model. We find the Laplace
transform of Eq. (15) is given by

∂t n̂(z5, z7; t) =
K

(0)
FUS

2
[n̂(z5, z7; t)]2 −

K
(5)
FUS

2
∂z5 [n̂(z5, z7; t)]2 +

K
(7)
FUS

2
∂z7 [n̂(z5, z7; t)]2 −K(0)

FUSN(t) n̂(z5, z7; t)

+K
(5)
FUS [N(t)∂z5 n̂(z5, z7; t)−R5(t) n̂(z5, z7; t)] +K

(7)
FUS [−N(t)∂z7 n̂(z5, z7; t) +R7(t) n̂(z5, z7; t)]

+
K

(0)
FIS

4
[n̂(z5/2, z7/2; t)]2 −

K
(0)
FIS

8
n̂(z5, z7; t)

− µ0 n̂(z5, z7; t)− z5 [v50 n̂(z5, z7; t) + v55∂z5 n̂(z5, z7; t) + v57∂z7 n̂(z5, z7; t)]

− z7 [v70 n̂(z5, z7; t)− v75∂z5 n̂(z5, z7; t) + v77∂z7 n̂(z5, z7; t)] + S0 . (47)

The differential equations for the first order moments, Eq. (22), Eq. (23) and Eq. (24), can be derived from 398

Eq. (47) after one makes the following identifications 399

N(t) = n̂(0, 0; t) ,

R5(t) ≡ 〈x5〉 = −∂z5 n̂(0, 0; t) ,

R7(t) ≡ 〈x7〉 = −∂z7 n̂(0, 0; t) ,

〈x25〉 = ∂z5,z5 n̂(0, 0; t) ,

〈x27〉 = ∂z7,z7 n̂(0, 0; t) ,

〈x5x7〉 = ∂z5,z7 n̂(0, 0; t) ,

σ2
5 = 〈x25〉 − 〈x5〉2 (variance) , (48)

σ2
7 = 〈x27〉 − 〈x7〉2 (variance) , (49)

σ2
57 = 〈x5x7〉 − 〈x5〉〈x7〉 (covariance) , (50)
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where the derivative has been taken before setting z5 = 0 = z7. 400

The equations for the second order moments, variances and covariance, can be computed in the same way as
those for the first order moments, and are given by

d〈x25〉
dt

= K
(0)
FUSR

2
5 + 2K

(5)
FUSR5〈x25〉 − 2K

(7)
FUSR5〈x5x7〉

− 1

16
K

(0)
FIS〈x

2
5〉+ 2v50R5 − 2v55〈x25〉 − 2v57〈x5x7〉 − µ0〈x25〉 , (51)

d〈x27〉
dt

= K
(0)
FUSR

2
7 + 2K

(5)
FUSR7〈x5x7〉 − 2K

(7)
FUSR7〈x27〉

− 1

16
K

(0)
FIS〈x

2
7〉+ 2v70R7 + 2v75〈x5x7〉 − 2v77〈x27〉 − µ0〈x27〉 , (52)

d〈x5x7〉
dt

= K
(0)
FUSR5R7 +K

(5)
FUSR5〈x5x7〉+K

(5)
FUSR7〈x25〉 −K

(7)
FUSR5〈x27〉

−K(7)
FUSR7〈x5x7〉 −

1

16
K

(0)
FIS〈x5x7〉+ v70R5 + v50R7

− v55〈x5x7〉 − v57〈x27〉+ v75〈x25〉 − v77〈x5x7〉 − µ0〈x5x7〉 . (53)

These three ordinary differential equations, together with equations (48)-(50), allow us to obtain the time 401

course of the standard deviations of R5 and R7 (and, indirectly, of the endosomal pH). 402

1.2 Toggle-switch model 403

In the case of the toggle-switch model, the precise expressions for the current are non-linear. We make use of 404

Eq. (12) and Eq. (13) to write 405

� Rate of change of Rab5: from the definition of J5, Eq. (12), and Eq. (35) and Eq. (36)

J5(x5, x7) =

(
v50 − v55x5 +

v55
K55

x25

)
n(x5, x7; t)

L−→ Ĵ5(z5, z7) = v50 n̂(z5, z7; t) + v55∂z5 [ n̂(z5, z7; t)] +
v55
K55

∂2z5 [ n̂(z5, z7; t)] . (54)

� Rate of change of Rab7: from the definition of J7, Eq. (13), and Eq. (35) and Eq. (36) 406

J7(x5, x7) =

(
v70 + v75x5 −

v75
K75

x25 − v77x7
)
n(x5, x7; t)

→ Ĵ7(z5, z7) = v70 n̂(z5, z7; t)− v75∂z5 [ n̂(z5, z7; t)]− v75
K75

∂2z5 [ n̂(z5, z7; t)] + v77∂z7 [ n̂(z5, z7; t)] .

(55)

We are now ready to bring all the previous results together for the toggle-switch model. We find the Laplace
transform of Eq. (15) is given by

∂t n̂(z5, z7; t) =
K

(0)
FUS

2
[n̂(z5, z7; t)]2 −

K
(5)
FUS

2
∂z5 [n̂(z5, z7; t)]2 +

K
(7)
FUS

2
∂z7 [n̂(z5, z7; t)]2 −K(0)

FUSN(t) n̂(z5, z7; t)

+K
(5)
FUS [N(t)∂z5 n̂(z5, z7; t)−R5(t) n̂(z5, z7; t)] +K

(7)
FUS [−N(t)∂z7 n̂(z5, z7; t) +R7(t) n̂(z5, z7; t)]

+
K

(0)
FIS

4
[n̂(z5/2, z7/2; t)]2 −

K
(0)
FIS

8
n̂(z5, z7; t)

− µ0 n̂(z5, z7; t)− z5
[
v50 n̂(z5, z7; t) + v55∂z5 n̂(z5, z7; t) +

v55
K55

∂2z5 n̂(z5, z7; t)

]
− z7

[
v70 n̂(z5, z7; t)− v75∂z5 n̂(z5, z7; t)− v75

K75
∂2z5 n̂(z5, z7; t) + v77∂z7 n̂(z5, z7; t)

]
+ S0 . (56)

The differential equations for the first order moments, Eq. (25), Eq. (26) and Eq. (27), can be derived from
Eq. (47) in the same way as for the cut-off switch model. We note that the differential equation for the mean
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number of endosomes, N(t), is the same for both models, since the specific form of the currents, J5(x5, x7)
and J7(x5, x7), does not change the mean number of endosomes. However, as it should be expected, the
differential equations for R5(t) and R7(t) depend on the choice of currents. We have

dR5

dt
= v50N(t)− v55R5 +

v55
K55
〈x25〉 − µ0R5 , (57)

dR7

dt
= v70N(t) + v75R5 −

v75
K75
〈x25〉 − v77R7 − µ0R7 . (58)

We note that the non-linear nature of the currents in this model implies that the differential equations for the
first order moments, Eq. (57) and Eq. (58), depend on the second order moments. At the level of the Laplace
transform, this non-linearity implies that (for k = 5, 7) Ĵk involves second order derivatives of n̂(z5, z7; t).
Thus, the equations for the first order moments involve the second order ones, and so on. If we define the
joint cumulants [45], κi,j,k, where i, j, k = 5, 7, as follows:

κi = 〈xi〉 , (59)

κi,j = 〈xixj〉 − 〈xi〉〈xj〉 , (60)

κi,j,k = 〈xixjxk〉+ 2〈xi〉〈xj〉〈xk〉 − 〈xixj〉〈xk〉 − 〈xkxi〉〈xj〉 − 〈xjxk〉〈xi〉 , (61)

then we can, for the sake of simplicity, make use of a zero-cumulant moment-closure approximation [46]. This
approximation implies the following choices for the relevant cumulants

κ5,5 → 0 ⇒ 〈x25〉 = 〈x5〉2 = R2
5 ,

κ7,7 → 0 ⇒ 〈x27〉 = 〈x7〉2 = R2
7 ,

κ5,7 → 0 ⇒ 〈x5x7〉 = 〈x5〉〈x7〉 = R5R7 ,
κ5,5,5 → 0 ⇒ 〈x35〉 = −2R3

5 + 3R5〈x25〉 ,
κ5,5,7 → 0 ⇒ 〈x25x7〉 = −2R2

5R7 +R7〈x25〉+ 2R5〈x5x7〉 .

If we make use of the zero-cumulant moment-closure approximation above in Eq. (57) and Eq. (58), we obtain
Eq. (26) and Eq. (27), respectively. Similarly, for the second order moments we find the following equations

d〈x25〉
dt

= K
(0)
FUSR

2
5 + 2K

(5)
FUSR5〈x25〉 − 2K

(7)
FUSR5〈x5x7〉 −

1

16
K

(0)
FIS〈x

2
5〉

+ 2v50R5 − 2v55〈x25〉 − 2
v55
K55
〈x35〉 − µ0〈x25〉 , (62)

d〈x27〉
dt

= K
(0)
FUSR

2
7 + 2K

(5)
FUSR7〈x5x7〉 − 2K

(7)
FUSR7〈x27〉 −

1

16
K

(0)
FIS〈x

2
7〉

+ 2v70R7 + 2v75〈x5x7〉+ 2
v75
K75
〈x25x7〉 − 2v77〈x27〉 − µ0〈x27〉 , (63)

d〈x5x7〉
dt

= K
(0)
FUSR5R7 +K

(5)
FUS

[
R5〈x5x7〉+R7〈x25〉

]
−K(7)

FUS

[
R5〈x27〉+R7〈x5x7〉

]
− 1

16
K

(0)
FIS〈x5x7〉

+ v50R7 − v55〈x5x7〉 −
v55
K55
〈x25x7〉

+ v70R5 + v75〈x25〉+
v75
K75
〈x35〉 − v77〈x5x7〉 − µ0〈x5x7〉 . (64)
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If we now make use of the moment-closure approximation, the previous equations can be written as follows:

d〈x25〉
dt

= K
(0)
FUSR

2
5 + 2K

(5)
FUSR5〈x25〉 − 2K

(7)
FUSR5〈x5x7〉 −

1

16
K

(0)
FIS〈x

2
5〉

+ 2v50R5 − 2v55〈x25〉 − 2
v55
K55

(−2R3
5 + 3R5〈x25〉)− µ0〈x25〉 , (65)

d〈x27〉
dt

= K
(0)
FUSR

2
7 + 2K

(5)
FUSR7〈x5x7〉 − 2K

(7)
FUSR7〈x27〉 −

1

16
K

(0)
FIS〈x

2
7〉

+ 2v70R7 + 2v75〈x5x7〉+ 2
v75
K75

(−2R2
5R7 +R7〈x25〉+ 2R5〈x5x7〉)− 2v77〈x27〉 − µ0〈x27〉 , (66)

d〈x5x7〉
dt

= K
(0)
FUSR5R7 +K

(5)
FUS

[
R5〈x5x7〉+R7〈x25〉

]
−K(7)

FUS

[
R5〈x27〉+R7〈x5x7〉

]
− 1

16
K

(0)
FIS〈x5x7〉

+ v50R7 − v55〈x5x7〉 −
v55
K55

(−2R2
5R7 +R7〈x25〉+ 2R5〈x5x7〉)

+ v70R5 + v75〈x25〉+
v75
K75

(−2R3
5 + 3R5〈x25〉)− v77〈x5x7〉 − µ0〈x5x7〉 . (67)

2 Fitted parameters and sensitivity analysis 407

We have made use of the software Copasi to perform parameter fitting with three different methods: 408

Levenberg-Marquardt, steepest descent, and Hooke and Jeeves methods [47]. The results converged in all 409

three cases. In Table 1, we summarise the best-fit parameters for the three models introduced in this paper. 410

Parameter Cut-off Reduced Toggle-switch

K
(0)
FIS 4.54 4.48 0.7723

K
(0)
FUS 0.0032 0.0032 0.0039
v50 1.3×10−5 1.2×10−5 1.3× 10−5

v50Nss 0.0050 0.0045 0.0050
v57 0.0040 0.0036 —
v77 0.0013 0.0010 0.0013
v75 0.0032 0.0039 0.00314
v55 0.0062 0.0058 0.0062
v70 1.2×10−6 — 1.2× 10−6

S0 0.4389 — 0.1586
µ0 1.0×10−6 — 1.0× 10−6

K
(5)
FUS 2.0×10−6 — 1.8× 10−6

K
(7)
FUS 1.2×10−5 — 1.2× 10−6

K55 — — 0.45
K55 — — 0.53

Table 1. Best-fit parameters obtained by three different methods as implemented in the software
Copasi [47] for: i) the cut-off switch model defined by Eqs. (22)-(24), ii) the reduced model defined by
Eq. (69) and Eq. (70), and iii) the toggle-switch model degined by Eqs. (25)-(27). All parameter values are
given in units of seconds−1.

We also used the Copasi built-in (relative) sensitivity analysis algorithm. Tables 2-5 provide a summary of 411

the results of that algorithm for the three models used: cut-off switch model, toggle-switch model and the 412

model in Ref. [26]. In each table, the column Aggregated is the square root of the sum of the squares of each 413

sensitivity. This measure (also computed by Copasi) gives an idea of the most relevant parameters (highest 414

value in that column). Mathematically, we have 415

Aggregated ≡
√

Σ2
N + Σ2

R5
+ Σ2

R7
. (68)

Consider, for instance, the variable N and the parameter S0. The value showed in the table corresponds to

S0

ΣN

dΣN

dS0
= 0.0005 .
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That is, every order of magnitude that we increase S0 only produces an increase of 100.0005 ' 1.001 in the 416

mean number of endosomes (a mere ∼ 0.1% increase). Thus, values close to 1 correspond, roughly, to a linear 417

dependence between variable and parameter and values close to -1, an inverse proportionality. In addition, we 418

have added the column Normalised, where we divide the Aggregated column by the maximum of all 419

parameters. For instance, in Table 2, the maximum is 1.7294 corresponding to K
(0)
FUS . 420

Parameter ΣN ΣR5
ΣR7

Aggregated Normalised

K
(0)
FUS -0.9986 -0.9984 -0.9984 1.7294 1.0000

K
(0)
FIS 0.9990 0.9955 1.0007 1.7293 0.9999
v50 0.0000 1.4462 0.8411 1.6731 0.9674
v57 0.0000 -1.1510 -0.6141 1.3046 0.7543
v77 0.0000 1.0718 -0.3886 1.1401 0.6593
v75 0.0000 -0.7050 0.2265 0.7405 0.4282
v55 0.0000 -0.4462 0.1589 0.4737 0.2739
v70 0.0000 -0.2259 -0.2519 0.3384 0.1957
S0 0.0005 0.0005 0.0005 0.0009 0.0005
µ0 -0.0001 0.0007 -0.0003 0.0008 0.0004

K
(5)
FUS < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

K
(7)
FUS < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

Table 2. Sensitivity analysis of the mathematical model described by Eqs. 22-(24), corresponding to the
cut-off switch hypothesis in Fig. 1, as computed by three different methods implemented in the software
Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value in Aggregated
divided by the maximum value in that column. The thin dotted lines are a guide to the eye to separate the
most sensitive parameters (top part of the table) and the least (bottom part).

From Table 2 we can derive a simpler model, where we drop the less sensitive parameters, namely, S0, v70 421

K
(5)
FUS and K

(7)
FUS . We have also set the number of endosomes to a constant, given by the steady state value 422

of the full model, and as given by Eqs. (22)-(24). The resulting model is given by the following equations 423

dR5

dt
= v50Nss − (v55 + µ0)R5 − v57R7 , (69)

dR7

dt
= v75R5 − (v77 + µ0)R7 , (70)

with parameters shown in Table 1 and sensitivities in Table 3. Note that, from Table 2, only K
(0)
FIS and

K
(0)
FUS have strong sensitivities on the variable N . We can then safely assume that

Nss =
K

(0)
FIS

4K
(0)
FUS

.

This is confirmed in Fig. 6, where the number of endosomes quickly converges to its steady state. 424

Finally, and for the sake of completeness, in Table 4 we summarise the sensitivity analysis for the 425

toggle-switch model. 426

3 Study of two previous of Rab dynamics 427

3.1 Mathematical model in Ref. [19] 428

The authors in Ref. [19] encoded the dynamics of Fig. 1 as a set of four ODEs, where each reaction term was
fitted to different mathematical equations. One set of functions 3 provides the following equations (with t the

3As documented in http://biomodels.caltech.edu/BIOMD0000000174.
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Fig 6. Time course of the number of endosomes, N(t), for the cut-off switch model (solid red line) and its
steady state value, Nss, (black dashed lines). Note that N(t) grows rapidly in the first 40 seconds and reaches
the steady state value of the reduced model after 500 seconds. The numerical value is extremely close to the
value given by Eq. (28).

Parameter ΣN ΣR5 ΣR7 Aggregated Normalised

K
(0)
FIS 1.0000 0.9995 1.0001 1.7318 1.0000

K
(0)
FUS -0.9990 -0.9992 -0.9991 1.7305 0.9992
v50 < 10−4 0.9991 1.0013 1.4145 0.8168
v57 < 10−4 -0.7805 -0.7288 1.0679 0.6166
v75 < 10−4 -0.7805 0.2704 0.8260 0.4770
v77 < 10−4 0.7556 -0.2928 0.8103 0.4679
v55 < 10−4 -0.1181 -0.3022 0.3245 0.1874

Table 3. Sensitivity analysis of the reduced model computed by three different methods implemented in the
software Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value in
Aggregated divided by the maximum value in that column.

Parameter ΣN ΣR5
ΣR7

Aggregated Normalised

K
(0)
FIS 0.9990 0.5301 0.8049 1.3881 1.0000

K
(0)
FUS -0.9985 -0.5301 -0.8029 1.3866 0.9989
v70 < 10−4 < 10−4 0.6682 0.6682 0.4814
v77 < 10−4 < 10−4 -0.6632 0.6632 0.4778
v50 < 10−4 0.5307 0.1359 0.5478 0.3947
K55 < 10−4 -0.4688 -0.1193 0.4838 0.3485
v75 < 10−4 < 10−4 0.3318 0.3318 0.2390
K75 < 10−4 < 10−4 0.0764 0.0764 0.0550
v54 < 10−4 -0.0616 -0.0157 0.0636 0.0458
S0 0.0005 0.0003 0.0007 0.0009 0.0007
µ0 < 10−4 < 10−4 -0.0006 0.0005 0.0004

K
(7)
FUS < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

K
(5)
FUS < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

Table 4. Sensitivity analysis for the toggle-switch model computed by three different methods implemented
in the software Copasi [47]. The column Aggregated is defined in Eq. 68. The column Normalised is the value
in Aggregated divided by the maximum value in that column. The thin dotted lines are a guide to the eye to
separate the most sensitive parameters (top part of the table) and the least (bottom part).
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Parameter ΣRab5−GDP ΣRab5−GTP ΣRab7−GDP ΣRab7−GTP Aggregated Normalised
k7 0.0022 28.8007 -1.0044 -7.8522 29.8688 1.0000
k1,7 0.0021 28.7917 -0.0055 -7.8498 29.8426 0.9991
v7 -0.0018 -27.1203 1.0046 7.57364 28.17588 0.9433
ke,7 -0.0018 -26.6033 0.0045 7.4276 27.6207 0.9247
kg,7 0.0007 9.4375 -0.0020 -2.5938 9.7875 0.3277
kg,57 0.0004 4.3526 -0.0010 -1.1988 4.5147 0.1512
kf,57 0.0003 3.3470 -0.0007 -0.9223 3.4718 0.1162
kg,75 -0.0005 0.2003 0.0012 1.6523 1.6643 0.0557
h7 0.0003 1.2028 -0.0007 -0.3313 1.2476 0.0418
k5 0.9998 0.0216 0.0002 0.2905 1.0414 0.0349
v5 -0.9989 -0.0135 -0.0003 -0.2928 1.0410 0.0349
kf,75 -0.0002 0.0541 0.0006 0.6927 0.6948 0.0233
ke,57 0.0001 -0.5757 0.0001 0.1589 0.5972 0.0200
ke,5 -0.0002 0.0205 0.0002 0.2908 0.2915 0.0098
ke,75 0.0001 -0.0133 -0.0002 -0.2268 0.2272 0.0076
kg,5 < 10−4 -0.0074 -0.0001 -0.1559 0.1561 0.0052
k1,5 < 10−4 -0.0068 -0.0001 -0.1354 0.1355 0.0045
kf,5 < 10−4 -0.0007 < 10−4 -0.0661 0.0661 0.0022
T0 < 10−4 0.0053 < 10−4 -0.0390 0.03938 0.0013

Table 5. Sensitivity analysis of the model in Ref. [19] (corresponding to Eqs. (71)-(74) of Section 2 in
Supporting information) obtained by three different methods implemented in the software Copasi [47]. The
column Aggregated is defined in Eq. 68. The column Normalised is the value in Aggregated divided by the
maximum value in that column. The thin dotted lines are a guide to the eye to separate the most sensitive
parameters (top part of the table) and the least (bottom part).

variable describing experimental time)

d[Rab5−GDP]

dt
= v5−

[Rab5−GDP] · ke,5·t
T0+t

1 + ekg,5−[Rab5−GTP]·kf,5
−k5 · [Rab5−GDP]

+
ke,57 · [Rab5−GTP]

1 + ekg,75−[Rab7−GTP]·kf,57
+k7 · [Rab5−GTP] , (71)

d[Rab5−GTP]

dt
=

[Rab5−GDP] · ke,5·t
T0+t

1 + ekg,5−[Rab5−GTP]·kf,5
− ke,57 · [Rab5−GTP]

1 + ekg,57−[Rab7−GTP]·kf,57

−k5 · [Rab5−GTP] , (72)

d[Rab7−GDP]

dt
= v7−

[Rab7−GDP] · ke,7 · [Rab7−GTP]
h7

kg,7 + [Rab7−GTP]
h7

− ke,57 · [Rab7−GDP]

1 + ekg,57−[Rab5−GTP]·kf,57
−k7 · [Rab7−GDP]

+k1,7 · [Rab7−GTP] , (73)

d[Rab7−GTP]

dt
=

[Rab7−GDP] · ke,7 · [Rab7−GTP]
h7

kg,7 + [Rab7−GTP]
h7

+
ke,5 · [Rab7−GDP]

1 + ekg,5−[Rab5−GTP]·kf,5
−k1,7 · [Rab7−GTP] . (74)

Although this model looks clearly more complex than our model (see Eq. (23) and Eq. (24)), numerical
integration of these equations (as shown in Fig. 4B) shows that the variables [Rab5-GDP] and [Rab7-GDP]

September 9, 2020 25/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.295915doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.295915
http://creativecommons.org/licenses/by/4.0/


are almost constant (not shown). Hence, Eqs. (71)-(74) are identical to Eq. (23) and Eq. (24), after
linearisation of the equations for [Rab5-GTP] and [Rab7-GTP], with the following approximations:

[Rab5−GDP] · ke,5·t
T0+t

1 + ekg,5−[Rab5−GTP]·kf,5
→ v50N ,

and
ke,5 · [Rab7−GDP]

1 + ekg,5−[Rab5−GTP]·kf,5
→ v70N .

3.2 Mathematical model in Ref. [26] 429

For completeness, we reproduce here the system of equations in Ref. [26]. Note that the first two terms in
Eq. (22) are equivalent to those in Eq. (78).

dRab5ee
dt

= −Rab5ee
dN

dt

1

N
− kGAP(Rab5ee)Rab5ee + kGEF(Rab5ee)rab5ee , (75)

drab5ee
dt

= −rab5ee
dN

dt

1

N
+ kGAP(Rab5ee)Rab5ee − kGEF(Rab5ee)rab5ee

+ k1rab5cyt − k−1rab5ee , (76)

drab5cyt
dt

= −k1rab5cyt + k−1rab5ee , (77)

dN

dt
= −kfus(Rab5ee)N

2 + kfis(Rab5ee)N . (78)

Note that, as according to our model, the number of endosomes reaches quickly a steady state, the terms
proportional to dN

dt are negligible in comparison to the other terms. Similarly, as shown in the Supporting
information in Ref. [19], the inactive rab5ee is also almost constant. Thus, we can reduce the equations above
to the following system

dRab5ee
dt

= −kGAP(Rab5ee)Rab5ee + kGEF(Rab5ee)rab5ee ,

dN

dt
= −kfus(Rab5ee)N

2 + kfis(Rab5ee)N , (79)

where our notation kGAP(Rab5ee), kGEF(Rab5ee), kfus(Rab5ee) and kfis(Rab5ee) implies that these rates are
functions of the variable Rab5ee. Our analysis has shown that the source term, proportional to S0, and the
death term, proportional to µ0, are only important in the initial and transient regime. So Eq. (23) and
Eq. (22) can be written as:

dR5

dt
= v50N − (v55 + µ0)R5 − v57R7 ,

dN

dt
= −1

2
K

(0)
FUSN

2 +

(
1

8
K

(0)
FIS −K

(5)
FUSR5 +K

(7)
FUSR7

)
N , (80)

which are analogous to Eqs. (79). In our case, the inclusion of the variable R7 (not included in Ref. [26]) can 430

explain the need to choose more sophisticated mathematical functions for kGEF and kGAP in the equations 431

above. To illustrate this point, in Fig. 7 we show Rab5 as a function of Rab7 for both the experimental data 432

(circles) and the fitted model (solid line). This allows us to conclude that Rab5 depends non-linearly on Rab7. 433

If we describe Rab5, without reference to the dynamics of Rab7, as done in Ref. [26], one would require an 434

equation for R5 containing non-linearities. In particular, if we denote by kGAP (Rab5ee), the coefficient of 435

Rab5ee and by kGEF (Rab5ee), the coefficient of rab5ee, one can see that the dependence on R7 in the first 436

case and on N on the second one, are equivalent to the non-linear functions of R5 in Eq. (79). 437

Finally, and as shown in the Supplementary Figures 1a-1b from Ref. [19], the best-fit for the fusion rate is 438

almost independent of Rab5 (note the large bars in logarithmic scale), while the best-fit for the fission rate 439

consistently changes as a function Rab5. In our framework, this dependence is encapsulated in the factor 440

K
(0)
FIS/8− µ0 −K(5)

FUS +K
(7)
FUS multiplying the variable N in Eq. (22), and the constant coefficient K

(0)
FUS 441

multiplying N2. So the we can identify 442

kfis(Rab5ee)→ K
(0)
FIS/8− µ0 −K(5)

FUSR5 +K
(7)
FUSR7
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Fig 7. Phase-diagram of Rab5 and Rab7. Circles: experimental data. Solid line: fit to Eq. (22) and
Eq. (24). This shows that R5 can be expressed as a non-linear function of R7. Thus, linear terms of R5 and
R7 can be misidentified with non-linear functions of R5 alone.

in Eq. 79. This identification clearly shows that kfis(Rab5ee) is a non-linear function of R5 since R7 = R7(R5) 443

(see Fig. 7). This completes the connection between the mathematical framework presented here and previous 444

mathematical models of endosome maturation. 445
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