

1 **GR chaperone cycle mechanism revealed by cryo-EM: reactivation of GR by the**
2 **GR:Hsp90:p23 client-maturation complex**

3 Chari M. Noddings*, Ray Yu-Ruei Wang*, & David A. Agard[^]

4 Department of Biochemistry and Biophysics, University of California, San Francisco, San
5 Francisco, CA 94158, USA

6 *These authors contributed equally to this work

7 [^]Correspondence to: agard@msg.ucsf.edu

8 **Abstract**

9 Hsp90 is a conserved and essential molecular chaperone responsible for the folding and
10 activation of hundreds of ‘client’ proteins^{1,2}. The glucocorticoid receptor (GR) is a model client
11 that constantly depends on Hsp90 for activity³. Previously, we revealed GR ligand binding is
12 inhibited by Hsp70 and restored by Hsp90, aided by the cochaperone p23⁴. However, a
13 molecular understanding of the chaperone-induced transformations that occur between the
14 inactive Hsp70:Hsp90 ‘client-loading complex’ and an activated Hsp90:p23 ‘client-maturation
15 complex’ is lacking for GR, or for any client. Here, we present a 2.56 Å cryo-EM structure of the
16 GR-maturation complex (GR:Hsp90:p23), revealing that the GR ligand binding domain is,
17 surprisingly, restored to a folded, ligand-bound conformation, while simultaneously threaded
18 through the Hsp90 lumen. Also, unexpectedly, p23 directly stabilizes native GR using a
19 previously uncharacterized C-terminal helix, resulting in enhanced ligand-binding. This is the
20 highest resolution Hsp90 structure to date and the first atomic resolution structure of a client
21 bound to Hsp90 in a native conformation, sharply contrasting with the unfolded kinase:Hsp90
22 structure⁵. Thus, aided by direct cochaperone:client interactions, Hsp90 dictates client-specific
23 folding outcomes. Together with the GR-loading complex structure (Wang et al. 2020), we

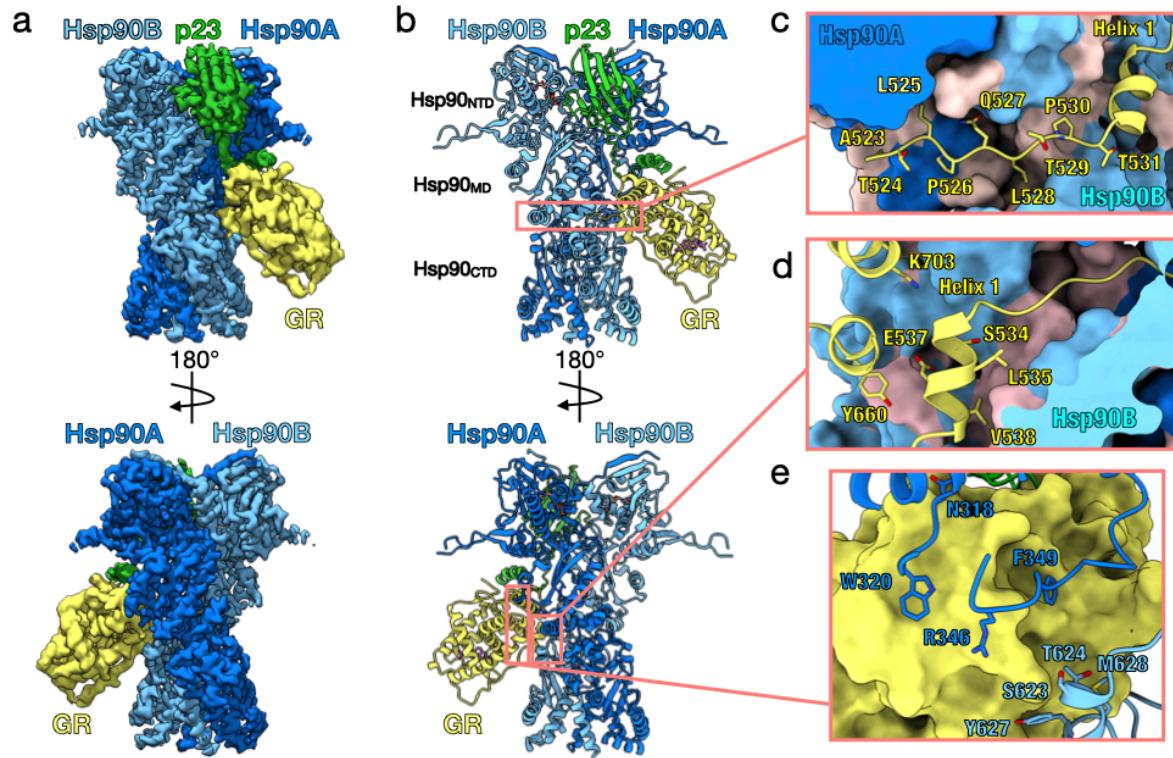
24 present the molecular mechanism of chaperone-mediated GR remodeling, establishing the first
25 complete chaperone cycle for any client.

26

27 **Introduction**

28 Hsp90 is required for the functional maturation of 10% of the eukaryotic proteome,
29 including signaling proteins, such as kinases and steroid hormone receptors (SHRs), such as
30 GR^{1,6}. We previously uncovered the biochemical basis for GR's Hsp90 dependence using *in*
31 *vitro* reconstitution starting with an active GR ligand binding domain (hereafter GR, for
32 simplicity)⁴. We demonstrated that GR ligand binding is regulated by a cycle of GR:chaperone
33 complexes (**Fig. 3d**). In this chaperone cycle, GR is first inhibited by Hsp70, then loaded onto
34 Hsp90:cochaperone Hop (Hsp70/Hsp90 organizing protein) forming an inactive
35 GR:Hsp90:Hsp70:Hop loading complex (Wang et al. 2020). Upon ATP hydrolysis on Hsp90,
36 Hsp70 and Hop are released, and p23 is incorporated to form an active GR:Hsp90:p23
37 maturation complex, restoring GR ligand binding with enhanced affinity. Progression through
38 this cycle is coordinated by the ATPase activity of both Hsp70 and Hsp90, which dictate large
39 conformational rearrangements^{2,7}. Particularly, Hsp90 functions as a constitutive dimer that
40 undergoes an open-to-closed transition upon ATP binding and this conformational cycle is
41 further regulated by cochaperones⁸. The cochaperone p23 specifically binds and stabilizes the
42 closed Hsp90 conformation⁹ and p23 is required for full reactivation of GR ligand binding *in*
43 *vitro*⁴ and proper function *in vivo*¹⁰. Altogether, the coordinated actions of Hsp70, Hsp90, and
44 cochaperones remodel the conformation of GR to control access to the buried, hydrophobic
45 ligand binding pocket.

46 While the Hsp90/Hsp70 chaperone systems are fundamental in maintaining protein
47 homeostasis, the absence of client:chaperone structures has precluded a mechanistic
48 understanding of the remodeling process for any client. The kinase:Hsp90 structure⁵ first
49 revealed how Hsp90 can stabilize an inactive client, but provided no insights to explain how
50 Hsp90 can reactivate a client, such as GR. Here, we report a high-resolution cryo-EM structure
51 of the GR-maturation complex, providing a long-awaited molecular mechanism for chaperone-
52 mediated client remodeling and activation.


53

54 **Results**

55 *Sample preparation and structure determination*

56 The maturation complex sample was prepared through *in vitro* reconstitution of the GR
57 chaperone cycle, whereby MBP (maltose binding protein)-GR ligand binding domain was
58 incubated with Hsp70, Hsp40, Hop, Hsp90, and p23, allowing GR to progress through the
59 chaperone cycle to reach the maturation complex (**Materials and Methods, Supplementary**
60 **Fig. 1a-d**). A 2.56 Å cryo-EM reconstruction of the maturation complex was obtained (**Fig. 1a**;
61 **Supplementary Fig. 2a,b; Supplementary Table 1**) using RELION¹¹ and atomic models were
62 built in Rosetta starting from previously published atomic structures. The structure reveals a fully
63 closed, nucleotide-bound Hsp90 dimer (Hsp90A and B) complexed with a single GR and a
64 single p23, which occupy the same side of Hsp90 (**Fig. 1a,b; Supplementary Fig. 3a**).

65

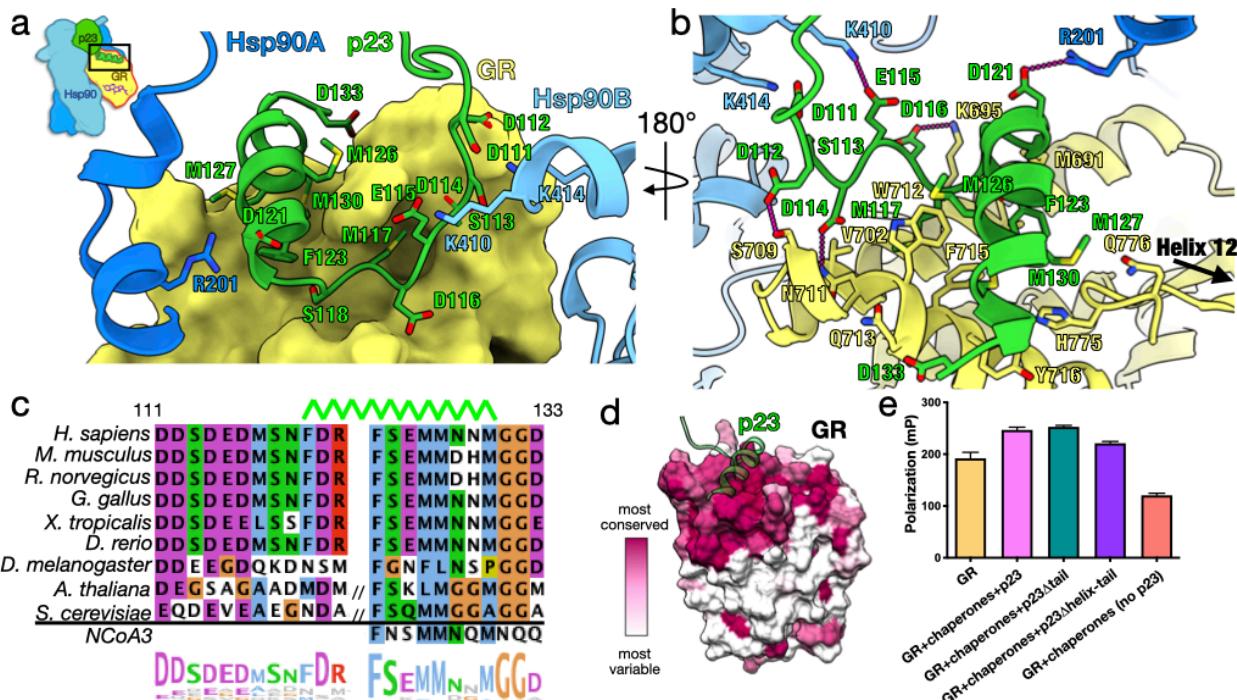
Figure 1: Architecture of the GR-Maturation Complex

a, Composite cryo-EM map of the GR-maturation complex. Hsp90A (dark blue), Hsp90B (light blue), GR (yellow), p23 (green). This color scheme is maintained in all figures that show the structure. **b**, Atomic model built into the cryo-EM map. **c**, Interface 1 of the Hsp90:GR interaction depicting the GR_{pre-Helix1} region (GR⁵²³⁻⁵³¹) threading through the Hsp90 lumen. Hsp90A/B are in surface representation. Hydrophobic residues on Hsp90A/B are colored in pink. **d**, Interface 2 of the Hsp90:GR interaction depicting GR_{Helix1} (GR⁵³²⁻⁵³⁹) packing against the entrance to the Hsp90 lumen. Hsp90A/B are in surface representation. Hydrophobic residues on Hsp90A/B are colored in pink. **e**, Interface 3 of the Hsp90:GR interaction depicting residues on the Hsp90A_{MD} loops (Hsp90A^{N318,W320,R346,F349}) and Hsp90B_{amphi- α} (Hsp90B^{S623,T624,Y627,M628}) packing against GR, which is in surface representation.

79 *Hsp90 stabilizes GR in a native, active conformation*

80 GR and Hsp90 have three major interfaces (**Fig. 1c-e**): (1) the Hsp90 lumen:GR_{pre-Helix1};

81 (2) the Hsp90_{MD/CTD}:GR_{Helix1}, and (3) the Hsp90_{MD}:GR Helices 3, 4, and 9. In the first interface,


82 the N-terminal GR_{pre-Helix1} (GR⁵²³⁻⁵³¹) is threaded through the closed Hsp90 lumen ($\sim 742 \text{ \AA}^2$ buried surface area (BSA)) (**Fig. 1c**). The Hsp90 lumen provides a mostly hydrophobic ‘tunnel’

84 that captures GR_{pre-Helix1} (**Supplementary Fig. 4a**). Specifically, two residues (GR^{L525,L528})

85 occupy hydrophobic binding pockets within the Hsp90 lumen. The interaction is further
86 stabilized by multiple hydrogen bonds from Hsp90 to the backbone and side chains of GR_{pre-Helix1}
87 (**Supplementary Fig. 4b**). Interface 2 is mainly comprised of the short GR_{Helix1} (GR⁵³²⁻⁵³⁹)
88 packing up against the amphipathic helical hairpin (Hsp90_{amphi- α}) in the C-terminal domain of
89 Hsp90B (Hsp90B_{CTD}), as well as Hsp90B interactions with GR Helices 8 and 9 ($\sim 425\text{\AA}^2$
90 BSA)(**Fig. 1d, Supplementary Fig. 4c**). In interface 3, the Hsp90B_{amphi- α} packs against GR
91 Helix 3 and the conserved, solvent exposed hydrophobic residues Hsp90^{F349,W320}, located at the
92 middle domain of Hsp90A (Hsp90A_{MD}), make contact with Helices 4 and 9 on GR ($\sim 421\text{\AA}^2$
93 BSA)(**Fig. 1e, Supplementary Fig. 4d**). Notably, Hsp90^{F349,W320} also make contact with GR in
94 the loading complex (Wang et al. 2020).

95 Surprisingly, in the maturation complex, despite being bound to Hsp90, GR adopts an
96 active, folded conformation (C α RMSD of 1.24\AA to crystal structure 1M2Z¹²). Specifically,
97 GR_{Helix12}, a dynamic motif responsive to ligand binding, is in the agonist-bound position, as in
98 the crystal structure (1M2Z)(**Supplementary Fig. 5a**). However, unlike the crystal structure,
99 GR_{Helix12} is not stabilized by a co-activator peptide. Unexpectedly, the density also revealed that
100 GR is ligand-bound (**Supplementary Fig. 5b**). The only ligand source was the initial GR
101 purification with agonists and GR was extensively dialyzed, which removes the vast majority of
102 ligand⁴. During preparation of the maturation complex, GR likely rebound residual ligand and
103 despite multiple washes, the ligand remained bound, suggesting a slow ligand off-rate from the
104 maturation complex. Based on the ligand density and positions of GR^{Y735}, the bound ligand is
105 likely dexamethasone (**Supplementary Fig. 5b**).

106

107

108 **Figure 2: p23_{tail-helix} interactions and effect on GR ligand binding**

109 **a**, Interface between the p23_{tail-helix} (green), GR (yellow, surface representation), and Hsp90
110 (Hsp90A-dark blue, Hsp90B-light blue). The p23_{tail-helix} (p23¹²⁰⁻¹³⁰) binds the top of GR, while
111 the p23 loop (p23¹¹¹⁻¹¹⁹) interacts with GR and both protomers of Hsp90. **b**, Interface between
112 the p23_{tail-helix} (green), GR (yellow), and Hsp90 (Hsp90A-dark blue, Hsp90B-light blue) showing
113 interacting side chains and hydrogen bonds (dashed pink lines). **c**, Sequence alignment of
114 eukaryotic p23 showing conservation of the p23_{tail-helix} sequence. The top green line indicates the
115 position of the p23_{tail-helix} in the maturation complex atomic model. Slashes indicate insertions in
116 the sequence not shown (longer sequences shown in **Supplementary Fig. 7d**). The alignment is
117 colored according to the ClustalW convention. **d**, Sequence conservation mapped onto GR in
118 surface representation using ConSurf, colored from most variable (white) to most conserved
119 residues (maroon). 87 GR sequences were used for the calculation. The p23_{tail-helix} (light green)
120 was overlaid to indicate the p23:GR interface. **e**, Equilibrium binding of 20nM fluorescent
121 dexamethasone to 250nM GR with chaperone components and p23 tail mutants measured by
122 fluorescence polarization (\pm SD). Assay conditions were 5 mM ATP, 2 μ M Hsp40, 15 μ M
123 Hsp70, Hsp90, Hop, and p23/p23 tail mutants.

124

125 *p23 stabilizes Hsp90 while also interacting directly with GR*

126 The Hsp90:p23 interface is comparable to the crystal structure of the yeast Hsp90:p23
127 complex (2CG9)⁹, where p23 makes extensive contacts with the N-terminal domains of Hsp90
128 (Hsp90_{NTDS}) to stabilize the Hsp90 closed state (\sim 1375 \AA^2 BSA) (**Supplementary Fig. 6a-d**).
129 Only one p23 is bound to the Hsp90 dimer, although two p23 molecules are in the yeast

130 Hsp90:p23 structure and a 2-fold excess of p23 to Hsp90 was added during complex preparation.
131 Consistent with a previous report, GR binding on Hsp90 may favor incorporation of a single
132 p23¹³. The slight asymmetry observed here between the Hsp90_{NTD} dimer interfaces
133 (**Supplementary Fig. 3b**) combined with the avidity afforded by simultaneous interactions with
134 Hsp90 and GR likely provides a molecular explanation.

135 Unexpectedly, p23 also makes direct and extensive contacts with GR (~740 Å² BSA)
136 through the early part (p23¹¹²⁻¹³³) of its ~57 residue C-terminal tail (p23¹⁰⁴⁻¹⁶⁰), while the
137 following 27 tail residues (p23¹³⁴⁻¹⁶⁰) were not visible. As seen in the yeast Hsp90:p23 crystal
138 structure (2CG9), the beginning of the p23 tail (p23^{F103,N104,W106,D108}) interacts with both
139 Hsp90_{NTD}s through multiple hydrogen bonds (**Supplementary Fig. 6c**). The following loop
140 (p23¹¹¹⁻¹¹⁹) forms multiple hydrogen bonds and salt bridges with both GR and Hsp90 (**Fig. 2a,b**).

141 Although the tail was previously thought to be unstructured¹⁴, we found an ~11-residue helix
142 (p23¹²⁰⁻¹³⁰, p23_{tail-helix}) bound to GR (**Fig. 2a,b; Supplementary Fig. 7a,b**). This newly identified
143 p23_{tail-helix} was also predicted by multiple state-of-the-art secondary structure prediction
144 algorithms (**Supplementary Fig. 7e**). The hydrophobic surface of the p23_{tail-helix} packs against an
145 exposed hydrophobic patch on the GR surface made by helices 9 and 10 (**Supplementary Fig.**
146 **7b**). The p23_{tail-helix} also contacts the C-terminal strand of GR (GR^{H775,Q776}), potentially
147 allosterically stabilizing the dynamic GR_{Helix12} (**Fig. 2b, Supplementary Fig. 5c**).

148 Notably, in both p23 and GR this novel p23:GR interface is conserved across vertebrates
149 (**Fig. 2c,d**). The GR hydrophobic patch is also conserved across SHRs, which are thought to
150 undergo similar regulation by Hsp90/Hsp70 (**Supplementary Fig. 7c**). Attesting to its
151 importance beyond SHRs, the p23_{tail-helix} motif is conserved in yeast, which lack GR; however,
152 there are two additional predicted helices in the much longer yeast p23 tail (**Supplementary Fig.**

153 **7d)**. Due to the high level of conservation of the p23_{tail-helix} and the hydrophobic patch on SHRs,
154 we reasoned that other proteins may utilize a p23_{tail-helix}-like motif to bind SHRs. Using
155 ScanProsite¹⁵ to search the human proteome for a p23_{tail-helix}-like motif (“FXXMMN”),
156 remarkably, Nuclear Coactivator 3 (NCoA3/SRC-3), a canonical co-activator protein for SHRs,
157 was among the 10 hits. The identified NCoA3 motif (**FNSMMNQM**) aligns with the p23_{tail-helix}
158 sequence and contains the key conserved hydrophobic residues that interact with GR (**Fig. 2c**,
159 **Supplementary Fig. 7d**). This suggests NCoA3 may use this newly identified motif to bind GR
160 at the novel interface, in addition to using its LXXLL motif to bind SHRs at Helix 12 (Activation
161 Function 2 (AF-2) Helix)¹⁶.

162

163 *The p23_{tail-helix} is necessary for enhanced GR ligand binding in the chaperone cycle*

164 To quantitatively assess the importance of the p23:GR interface for the enhanced ligand
165 binding in the chaperone cycle, we compared full length p23 to one which lacks both the p23_{tail-}
166 _{helix} and the last 27 C-terminal residues (p23_{Δhelix-tail}) and one which only maintains the p23 helix
167 (p23_{Δtail}) (**Supplementary Fig. 8a**). In both cases, the loop between the p23 core and the helix is
168 preserved as this makes critical Hsp90 contacts. While p23_{Δtail} had no significant effect on the
169 chaperone-mediated enhancement of ligand binding, p23_{Δhelix-tail} abolished the enhancement,
170 reducing binding almost to GR alone levels (**Fig. 2e**). Thus, the observed chaperone-mediated
171 ligand binding enhancement is dependent upon the presence of the p23_{tail-helix}. Importantly,
172 p23_{Δhelix-tail} did not reduce the GR ligand binding activity to the same extent as omitting p23,
173 indicating that the p23 core plays a distinct and critical role in stabilizing the closed Hsp90
174 conformation in the maturation complex. Interestingly, p23 also had an effect on GR ligand

175 binding independent of Hsp90, with addition of p23 to GR modestly increasing ligand binding

176 **(Supplementary Fig. 8b).**

177

178 *Hsp90 contains lumen density in non-GR containing reconstructions*

179 From the same GR:Hsp90:p23 dataset, we also obtained reconstructions of Hsp90:p23

180 (2.78Å resolution) **(Supplementary Fig. 9a,b)** and MBP:Hsp90:p23 (3.96Å resolution)

181 **(Supplementary Fig. 10a,b).** In both complexes, the Hsp90 lumen contains density

182 **(Supplementary Fig. 9c, 10d).** In the MBP:Hsp90:p23 complex, one p23 with low occupancy is

183 bound to Hsp90 on the opposite side of MBP. The MBP is in a partially unfolded state, as

184 density for the two C-terminal helices is missing. The MBP C-terminal region likely threads

185 through Hsp90, accounting for the lumen density. The MBP is also in an apo state, consistent

186 with the unfolding of the last two helices which form part of its binding pocket **(Supplementary**

187 **Fig. 10c).**

188

189 **Discussion**

190 We present the first atomic resolution structure of a client bound to Hsp90 in a native

191 folded conformation, as well as the highest resolution structure of full-length Hsp90 to date. In

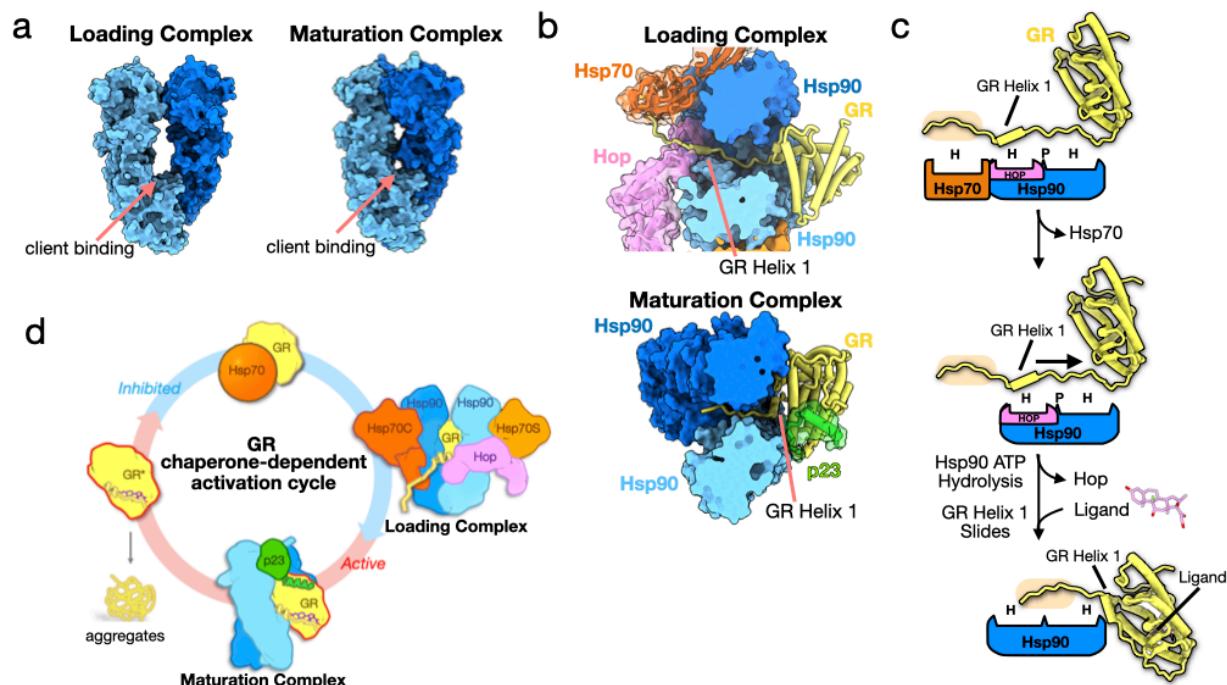
192 the maturation complex, GR simultaneously threads through the closed Hsp90 lumen and adopts

193 a native, ligand-bound conformation that is extensively stabilized by both Hsp90 and the p23_{tail}-

194 helix. No GR^{apo} complexes were identified during image analysis, suggesting GR^{apo} is either too

195 dynamic or quickly released from the complex. The native GR conformation in the maturation

196 complex is in striking contrast with the loading complex, in which GR is partially unfolded and


197 unable to bind ligand (Wang et al. 2020). In both complexes, GR threads through the Hsp90

198 lumen and also interacts on the surface with Hsp90^{F349,W320}, although different GR segments are
199 involved. Supporting a general role in client recognition, Hsp90^{W320} is critical for client
200 activation *in vivo*¹⁷⁻¹⁹. The active, native GR in our complex also starkly contrasts with the only
201 other structure of a closed Hsp90:client complex, which stabilizes an unfolded kinase client⁵.
202 The Hsp90 conformation is nearly identical in both structures and both clients are threaded
203 through the Hsp90 lumen in a similar manner, suggesting a universal binding mode for Hsp90
204 clients (**Supplementary Fig. 11a,b**). Although the overall Hsp90:client interactions are similar,
205 the outcomes for folding and function of these two clients are opposing, demonstrating
206 evolutionarily determined, client-specific conformational modulation by Hsp90 (**Supplementary**
207 **Fig. 11c**).

208 While previously thought to be a general cochaperone whose primary function is to
209 stabilize a closed Hsp90, our structure reveals that p23 also makes extensive contacts with GR
210 through a previously uncharacterized helix in the p23 tail. This p23_{tail-helix} is necessary for the
211 observed enhanced GR ligand binding activity *in vitro* and may act by stabilizing ligand-bound
212 GR, securing GR within the complex to indirectly stabilize GR_{Helix1}, and/or by allosterically
213 positioning the dynamic GR_{Helix12}. Thus, p23 not only serves as a cochaperone to stabilize the
214 closure of Hsp90, but also directly contributes to client maturation. In support of this essential
215 p23:GR interaction, the p23_{tail-helix} and GR hydrophobic groove are well conserved. In fact, the
216 hydrophobic groove is conserved across SHRs, indicating the p23_{tail-helix} may contribute to the
217 Hsp90-dependent chaperoning of all SHRs. Indeed, the activity of all SHRs is dependent on
218 p23¹⁰ and the progesterone receptor (PR) requires the p23 tail for enhanced ligand binding
219 activity²⁰. Intriguingly, NCoA3 contains a p23_{tail-helix}-like motif, suggesting other GR
220 coregulators may utilize this novel helix motif to bind the hydrophobic groove on GR and

221 compete with p23, potentially facilitating GR release. Surprisingly, the p23_{tail-helix} is conserved
222 among eukaryotes that lack SHRs; however, previous studies have demonstrated that the p23 tail
223 has general chaperoning activities^{14,20}. To this point, we observed p23 alone could modestly
224 enhance the ligand binding activity of GR independent of Hsp90. Along with the discovery that
225 the Hop cochaperone interacts with the client in the loading complex (Wang et al. 2020), these
226 findings support an emerging paradigm in which Hsp90 cochaperones make specific, direct
227 contact with Hsp90 clients to aid in client recognition and function⁵.

228

229

230 **Figure 3: Mechanism of GR Activation by Hsp90**

231 **a**, Surface representation of Hsp90 in the GR-loading complex (Wang et al. 2020) versus the
232 GR-maturation complex showing the change in Hsp90 conformation. Hsp90A (dark blue),
233 Hsp90B (light blue) **b**, Top view of the loading complex (top), where GR_{Helix1} is extended
234 through the Hsp90 lumen, versus a top view of the maturation complex (bottom), where GR_{Helix1}
235 is docked back onto GR. Hsp70 (orange, partially transparent surface), Hop (pink, partially
236 transparent surface), Hsp90A (dark blue, surface representation), Hsp90B (light blue, surface
237 representation), GR (yellow), p23 (green, partially transparent surface). **c**, Schematic showing
238 the conformational change of the GR_{Helix1} region from the loading complex to the maturation
239 complex. Boxes represent chaperone and co-chaperone binding sites along the GR_{Helix1} region
240 (H=hydrophobic interface, P=polar interface). The GR_{pre-Helix1} strand is highlighted (tan). Color

241 scheme is maintained from **(b)**. **d**, Schematic of the GR chaperone-dependent activation cycle.
242 Ligand-bound, active GR (left) is aggregation prone under physiological conditions. GR ligand
243 binding is inhibited upon binding to Hsp70. Inactive GR is then loaded onto Hsp90, with Hop, to
244 form the loading complex, where GR_{Helix1} is extended through the Hsp90 lumen. Hsp70 and Hop
245 leave and p23 is incorporated to form the maturation complex, where GR_{Helix1} slides back onto
246 the body of GR and ligand binding is restored.
247

248 Together with the structure of the GR-loading complex (Wang et al. 2020), we provide
249 for the first time, a complete picture of the chaperone cycle for any client (**Fig. 3d**). These two
250 structures reveal that GR transitions from a partially unfolded conformation in the loading
251 complex to an active, folded conformation in the maturation complex. In the loading complex,
252 GR_{pre-Helix1} is captured by Hsp70, GR_{Helix1} is stabilized by Hop, and GR_{post-Helix1} is threaded
253 through the semi-closed Hsp90 lumen. First, Hsp70 releases and then Hop releases, which lets
254 GR_{pre-Helix1} slide into the Hsp90 lumen, allowing GR_{Helix1} to refold onto the GR core, thereby
255 generating a ligand binding capable, native GR, stabilized by the p23_{tail-helix} (**Fig. 3b**). During
256 this transition, Hsp90 twists to the fully closed conformation, which likely facilitates client
257 sliding and helps rearrange the client binding site to fully enclose GR_{pre-Helix1} (**Fig. 3a**). Perhaps
258 most critical for GR function, GR becomes protected from Hsp70 rebinding and inhibition once
259 it is in the maturation complex. GR_{Helix1} has been proposed to function as a lid over the GR
260 ligand binding pocket²¹, thus ligand likely binds during the transition from the loading complex
261 to the maturation complex, just as GR_{Helix1} slides through the Hsp90 lumen to seal the ligand
262 binding pocket (**Fig. 3c**). In line with previous studies, our findings suggest that ligand-bound
263 GR may be translocated to the nucleus in the maturation complex²², perhaps with the aid of
264 FKBP52²³, where it would be protected by Hsp90 from re-inhibition by Hsp70. Supporting this,
265 Hsp90 and p23 have been found in the nucleus colocalized with GR²⁴, suggesting the maturation
266 complex may persist even after translocation.

267 The proposed sliding mechanism may be a general theme for Hsp90's client remodeling
268 mechanism. Our two other reconstructions, Hsp90:p23 and MBP:Hsp90:p23, have density in the
269 Hsp90 lumen, suggesting Hsp90 has bound regions in our construct other than GR. Given that
270 GR_{Helix1} slides through the Hsp90 lumen from the loading complex to the maturation complex, it
271 is possible that Hsp90 can act processively during open-to-closed transitions to remodel other
272 client domains beyond the one initially engaged. This would explain these other structural
273 classes, although this remains to be tested. Nevertheless, the mechanism of GR_{Helix1} sliding
274 explains how Hsp90 can provide protected refolding of client domains as they exit the lumen to
275 become directly stabilized by cochaperones. Our results suggest Hsp90 may use this mechanism
276 to allow domains to fold independently on either side of the lumen or uncouple annealed
277 misfolded regions to ensure folding fidelity.

278

279

280 **Acknowledgements**

281 We thank members of the Agard Lab and Elaine Kirschke for helpful discussions. We thank
282 David Bulkley, Glenn Gilbert, and Zanlin Yu from the W.M. Keck Foundation Advanced
283 Microscopy Laboratory at the University of California, San Francisco (UCSF) for EM facility
284 maintenance and help with data collection. We also thank Matt Harrington and Joshua Baker-
285 LePain for computational support with the UCSF Wynton cluster. R.Y.-R.W is a Howard
286 Hughes Medical Institute Fellow of the Life Sciences Research Foundation. This work was
287 supported by funding from Howard Hughes Medical Institute and National Institutes of Health
288 grants R35GM118099, S10OD020054, S10OD021741 (to D.A.A.).
289

290 **Author Contributions**

291 C.M.N. and R.Y.-R.W. designed and executed biochemical experiments, cryo-EM sample
292 preparation, data collection, data processing, and model building. C.M.N., R.Y.-R.W., and
293 D.A.A. conceived the project, interpreted the results, and wrote the manuscript.

294

295 **Competing interests**

296 The authors declare no competing interests.

297

298

299 **References**

300 1 Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis:
301 emerging mechanistic insights. **11**, 515-528, doi:10.1038/nrm2918 (2010).

302 2 Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. *Nature
303 Reviews Molecular Cell Biology* **18**, 345-360, doi:10.1038/nrm.2017.20 (2017).

304 3 Pratt, W. B. & Toft, D. O. Steroid Receptor Interactions with Heat Shock Protein and
305 Immunophilin Chaperones. *Endocrine Reviews* **18**, 306-360, doi:10.1210/edrv.18.3.0303
306 (1997).

307 4 Kirschke, E., Goswami, D., Southworth, D., Patrick & David. Glucocorticoid Receptor
308 Function Regulated by Coordinated Action of the Hsp90 and Hsp70 Chaperone Cycles.
309 *Cell* **157**, 1685-1697, doi:10.1016/j.cell.2014.04.038 (2014).

310 5 Verba, K. A. *et al.* Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and
311 stabilizes an unfolded kinase. *Science* **352**, 1542-1547, doi:10.1126/science.aaf5023
312 (2016).

313 6 Zhao, R. *et al.* Navigating the chaperone network: an integrative map of physical and
314 genetic interactions mediated by the hsp90 chaperone. *Cell* **120**, 715-727,
315 doi:10.1016/j.cell.2004.12.024 (2005).

316 7 Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone
317 network. *Nat Rev Mol Cell Biol* **20**, 665-680, doi:10.1038/s41580-019-0133-3 (2019).

318 8 Krukenberg, K. A., Street, T. O., Lavery, L. A. & Agard, D. A. Conformational dynamics
319 of the molecular chaperone Hsp90. *Q Rev Biophys* **44**, 229-255,
320 doi:10.1017/S0033583510000314 (2011).

321 9 Ali, M. M. U. *et al.* Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone
322 complex. *Nature* **440**, 1013-1017, doi:10.1038/nature04716 (2006).

323 10 Sahasrabudhe, P., Rohrberg, J., Biebl, M. M., Rutz, D. A. & Buchner, J. The Plasticity of
324 the Hsp90 Co-chaperone System. *Mol Cell* **67**, 947-961.e945,
325 doi:10.1016/j.molcel.2017.08.004 (2017).

326 11 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure
327 determination. *J Struct Biol* **180**, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).

328 12 Bledsoe, R. K. *et al.* Crystal Structure of the Glucocorticoid Receptor Ligand Binding
329 Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition.
330 **110**, 93-105, doi:10.1016/s0092-8674(02)00817-6 (2002).

331 13 Lorenz, O. R. *et al.* Modulation of the Hsp90 Chaperone Cycle by a Stringent Client
332 Protein. **53**, 941-953, doi:10.1016/j.molcel.2014.02.003 (2014).

333 14 Weikl, T., Abelmann, K. & Buchner, J. An unstructured C-terminal region of the Hsp90
334 co-chaperone p23 is important for its chaperone function. *J Mol Biol* **293**, 685-691,
335 doi:10.1006/jmbi.1999.3172 (1999).

336 15 de Castro, E. *et al.* ScanProsite: detection of PROSITE signature matches and ProRule-
337 associated functional and structural residues in proteins. *Nucleic Acids Res* **34**, W362-
338 365, doi:10.1093/nar/gkl124 (2006).

339 16 McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear
340 receptors and coregulators. *Cell* **108**, 465-474, doi:10.1016/s0092-8674(02)00641-4
341 (2002).

342 17 Meyer, P. *et al.* Structural and Functional Analysis of the Middle Segment of Hsp90:
343 Implications for ATP Hydrolysis and Client Protein and Cochaperone Interactions.
344 *Molecular Cell* **11**, 647-658, doi:10.1016/S1097-2765(03)00065-0 (2003).

345 18 Rutz, D. A. *et al.* A switch point in the molecular chaperone Hsp90 responding to client
346 interaction. *Nature Communications* **9**, 1472, doi:10.1038/s41467-018-03946-x (2018).

347 19 Hawle, P. *et al.* The middle domain of Hsp90 acts as a discriminator between different
348 types of client proteins. *Molecular and cellular biology* **26**, 8385-8395,
349 doi:10.1128/MCB.02188-05 (2006).

350 20 Weaver, A. J., Sullivan, W. P., Felts, S. J., Owen, B. A. L. & Toft, D. O. Crystal
351 Structure and Activity of Human p23, a Heat Shock Protein 90 Co-chaperone. **275**,
352 23045-23052, doi:10.1074/jbc.m003410200 (2000).

353 21 Suren, T. *et al.* Single-molecule force spectroscopy reveals folding steps associated with
354 hormone binding and activation of the glucocorticoid receptor. *Proceedings of the
355 National Academy of Sciences* **115**, 11688, doi:10.1073/pnas.1807618115 (2018).

356 22 Czar, M. J., Galigniana, M. D., Silverstein, A. M. & Pratt, W. B. Geldanamycin, a heat
357 shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent
358 translocation of the glucocorticoid receptor from the cytoplasm to the nucleus.
359 *Biochemistry* **36**, 7776-7785, doi:10.1021/bi970648x (1997).

360 23 Galigniana, M. D., Radanyi, C., Renoir, J. M., Housley, P. R. & Pratt, W. B. Evidence
361 that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is
362 involved in both dynein interaction and glucocorticoid receptor movement to the nucleus.
363 *J Biol Chem* **276**, 14884-14889, doi:10.1074/jbc.M010809200 (2001).

364 24 Freeman, B. C. & Yamamoto, K. R. Disassembly of Transcriptional Regulatory
365 Complexes by Molecular Chaperones. *Science* **296**, 2232, doi:10.1126/science.1073051
366 (2002).

367

368