

1 Impact of sleep fragmentation, heart failure, and their combination, on

2 the gut microbiome

4 Olfat Khannous-Lleiffe^{1,2}, Jesse R. Willis^{1,2}, Ester Saus^{1,2}, Ignacio Cabrera-Aguilera^{3,4},
5 Isaac Almendros^{3,5,6}, Ramon Farré^{3,5,6}, David Gozal⁷, Nuria Farré^{8-10,*}, and Toni
6 Gabaldón^{1,2,11,*}

7 *Both authors share senior authorship and correspondence.

10 1) Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034. Barcelona, Spain.
11 2) Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and
12 Technology, Baldíri Reixac, 10, 08028 Barcelona, Spain
13 3) Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de
14 Barcelona, Barcelona, Spain
15 4) Department of Human Movement Sciences, Faculty of Health Sciences, School of Kinesiology,
16 Universidad de Talca, Talca, Chile
17 5) CIBER de Enfermedades Respiratorias, Madrid, Spain
18 6) Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
19 7) Department of Child Health and Child Health Research Institute, The University of Missouri
20 School of Medicine, Columbia, MO, United States
21 8) Heart Failure Unit, Department of Cardiology. Hospital del Mar (Parc de Salut Mar). Barcelona
22 9) Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research
23 Institute), Barcelona, Spain
24 10) Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
25 11) Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

28 Addresses for correspondence:

30 *Dr. Nuria Farré, MD, PhD
31 Heart Failure Programme, Department of Cardiology

32 Hospital del Mar
33 Passeig Marítim, 25-29
34 08003 Barcelona, Spain.
35 E-mail address: NFarreLopez@parcdesalutmar.cat
36
37 *Dr. Toni Gabaldon, PhD
38 Barcelona Supercomputing Centre (BSC-CNS)
39 Jordi Girona, 29
40 08034 Barcelona, Spain
41 Email address: toni.gabaldon.bcn@gmail.com
42
43
44

45 **ABSTRACT**

46 Heart failure (HF) is a common condition associated with a high rate of
47 hospitalizations and adverse outcomes. HF is characterized by impairments of the cardiac
48 ventricular filling and/or ejection of blood capacity. Sleep fragmentation (SF) involves a
49 series of short sleep interruptions that lead to fatigue and contribute to cognitive
50 impairments and dementia. Both conditions are known to be associated with increased
51 inflammation and dysbiosis of the gut microbiota. In the present study, male mice were
52 distributed into four groups, and subjected for four weeks to either HF, SF, both HF and
53 SF, or left unperturbed as controls. We used 16S metabarcoding to assess fecal microbiome
54 composition before and after the experiments. Evidence for distinct alterations in several
55 bacterial groups and an overall decrease in alpha diversity emerged in HF and SF treatment
56 groups. Combined HF and SF conditions, however, showed no synergism, and observed
57 changes were not always additive, suggesting that some of the individual effects of either
58 HF or SF cancel each other out when applied concomitantly.

59 **IMPORTANCE:**

60 The study demonstrates the potential of the gut microbiome as a source of molecular
61 markers for the diagnosis, prevention, and treatment of both heart failure and sleep
62 fragmentation conditions in isolation. Our results provide the first evidence of an
63 antagonistic effect of the presence of both conditions in the gut microbiome dysbiosis,
64 showing an attenuation of the alterations that are observed when considering them
65 separately.

66 **KEYWORDS:** *Metagenomics; Microbiome; Sleep fragmentation; Heart failure; Sleep*
67 *apnea.*

68

69 **INTRODUCTION**

70 Heart failure (HF) is a prevalent disease associated with a poor, yet variable
71 prognosis whose causal mechanisms are not entirely understood (Camps-Vilaro et al.
72 2020). Comorbidities, such as sleep apnea, are frequent in patients with HF, and have been
73 associated with a worsened prognosis (Farre et al. 2017). The adverse outcomes associated
74 with the co-existence of HF and sleep apnea have been attributed, at least in part, to
75 excessive activation of the sympathetic autonomic nervous system (Cowie et al. 2017,
76 Javaheri et al. 2020), yet there is substantial variability underlying these relationships
77 suggesting that other upstream factors may be also involved. Among these factors, the gut
78 microbiome, a vast and complex polymicrobial community that coexists with the human
79 host and is extraordinarily adaptable to a variety of intrinsic or extrinsic changes, plays an
80 important role in the development of immunological phenotypes and in host metabolism
81 (Tremaroli et al. 2012), and could be implicated in the adverse outcomes of HF-sleep apnea
82 (Mashaqi et al. 2019).

83 Indeed, previous studies have shown evidence implicating the gut microbiome in
84 the physiopathology and prognosis of HF (Tang et al. 2017). HF is associated with reduced
85 microbiome diversity (Luedde et al. 2017) and a shift in the major bacterial phyla, resulting
86 in a lower Firmicutes/Bacteroidetes ratio (Mayerhofer et al. 2020), an increase in
87 Enterbacteriales, *Fusobacterium* and *Ruminococcus gnavus*, but also in a decrease in

88 *Coriobacteriaceae*, *Erysipelotrichaceae*, *Ruminococcaceae*, and *Lachnospiraceae* (Luedde
89 et al 2017). Moreover, some intestinal microbial metabolites (e.g. trimethylamine-N-oxide
90 (TMAO) and its precursors) are present in higher amounts in patients with chronic HF, and
91 elevated levels of TMAO have been independently associated with an increased risk of
92 mortality in acute and chronic HF (Suzuki et al. 2016). Furthermore, patients with HF,
93 present high blood levels of endotoxins, lipopolysaccharides (LPS), and tumor necrosis
94 factor (TNF) (Genth-Zotz et al. 2002) and have increased thickness of the intestinal wall,
95 elevated intestinal permeability and intestinal ischemia (Sandek et al. 2007). All these
96 observations suggest a causal relationship between HF and gut dysbiosis and the edematous
97 intestinal wall, epithelial dysfunction, and the translocation of LPS and endotoxins through
98 the intestinal epithelial barrier promoting a mechanistic pathway that ultimately aggravates
99 HF and leads to accelerated cardiac decompensation.

100 Sleep apnea is a highly prevalent comorbidity in HF (Cowie et al. 2017), is
101 characterized by episodic hypoxia and intermittent arousals leading to sleep fragmentation
102 (SF). Like many other disorders, sleep apnea has recently been associated with gut
103 dysbiosis and systemic inflammation (Ko et al, 2019). SF, one of the hallmark components
104 of sleep apnea, has been less extensively examined than intermittent hypoxia (Moreno-
105 Indias et al. 2015; Tripathi et al. 2018), but studies to date have shown that it induces gut
106 dysbiosis (Poroyko et al. 2016), and such changes are reflected by an increase in the
107 Firmicutes/Bacteroidetes ratio, a preferential growth of the families *Lachnospiraceae* and
108 *Ruminococcaceae*, and a decrease in *Lactobacillaceae* (Poroyko et al. 2016). These
109 changes are in turn associated with increased gut permeability, increased systemic LPS

110 levels, and ultimately with systemic inflammation, which can further precipitate and
111 maintain gut dysbiosis (Farre et al, 2018).

112 Given that both HF and SF are associated with gut dysbiosis and increased
113 inflammation (Farre et al. 2018), we hypothesized that the coexistence of both conditions
114 would result in a more marked alteration of the gut microbiome as compared with either
115 condition in isolation. To test this hypothesis, we analyzed changes in the gut microbiome
116 using a mouse model of HF and SF.

117 **RESULTS**

118 **Characterization of the microbiome**

119 We used a 16S metabarcoding approach of the V3-V4 region and a computational
120 pipeline (see Materials and Methods) to assess the microbiome composition before and
121 after the treatment, in the different groups. The number of reads observed in each sample
122 ranged from 25,053 to 121,981 with a mean of 58,030.99 (Rarefaction curve, Figure S1.
123 Supplementary material). Overall, we identified 128 and 114 different taxa at the genus and
124 species levels, respectively. We classified 56.76% reads at the genus level, and the five
125 most abundant genera were *Akkermansia*, *Alistipes*, *Bacteroides*,
126 *Lachnospiraceae_NK4136_group* and an unclassified *Muribaculaceae*
127 (F.Muribaculaceae.UGC).

128 We produced Multidimensional scaling (MDS) plots based on the calculated beta
129 diversity (Figure 1). We observed that sample stratification was significantly driven by
130 *Time* ($P<0.05$ Adonis, in all distance metrics except VAW_GUNifrac). This finding
131 suggests that the microbiota of both treated and control mice had evolved significantly

132 during the four weeks of the experiment (Figure 1A). In addition, we observed that samples
133 clustered in two main enterotypes (Costea et al., 2018) (Figure 1B), which showed a
134 significant relationship with the *Time* variable according to Bray-Curtis dissimilarity (Chi-
135 square, $P = 3.228e-06$).

136 **Alpha diversity**

137 When considering all the samples together, the alpha diversity showed a tendency to
138 increase at the end of the experiment (Figure 2A), although not significantly ($P > 0.05$,
139 Wilcoxon). However, when comparing alpha diversity before and after the treatment within
140 each group, the control group (C) but not the others, had a significant increase in alpha
141 diversity (Figure 2B), whereas a trend toward a decrease in alpha diversity was noted for
142 HF.

143 We also observed differences in alpha diversity between mice subjected to the
144 different conditions. When considering only the samples after the experiment, we observed
145 that both HF and SF groups had significantly lower alpha diversity, as compared to animals
146 in C and (HF+SF) conditions (Figure 3A). When considering all samples, SF mice also
147 showed a significantly lower alpha diversity as compared to the other groups (Figure 3B).
148 This indicates the existence of differences in the basal microbiota before the start of the
149 experiment and highlights the need to focus on changes occurring during the experiment
150 rather than simply comparing final states.

151 **Changes in microbial composition**

152 We observed particular differences in abundance at different taxonomic levels
153 according to the fixed effect variables used in the two different linear models: In the first
154 linear model, all the samples were included and we studied the effect of both the *Condition*
155 and *Time* variables, whereas in the second linear model we included only the samples after
156 the experiment, and focused on the *Condition* and *Change of weight* variables (Table 1).

157 For instance, according to the first linear model we obtained 47 differential taxa at
158 the species level according to the *Time* variable. From these taxa, 11 were differentially
159 abundant according to both the *Time* and *Condition* variables: *Bacteroides acidifaciens*,
160 *Bifidobacterium* spp., F. Atopobiaceae.UCS, *Bacteroides* spp.,
161 *Rikenellaceae_RC9_gut_group* spp., F. Lachnospiraceae.UCS, *Ruminococcaceae_UCG_014*
162 spp., *Ruminococcus* spp., *Allobaculum* spp., *Dubosiella* spp. and *Faecalibaculum* spp.,
163 whereas 15 and 36 taxa were exclusively reported for *Condition* and *Time* separately,
164 respectively. (Supplementary material, Table 1).

165 On the other hand, applying the second linear model which only considered post-
166 exposure samples, we observed 32 significantly differentially abundant species according
167 to the *Condition* variable. Applying a multiple comparison test, the comparison with more
168 differences was C versus HF (Figure 4 and Supplementary material, Table 2). Notice that
169 we observed more changes when comparing HF and SF to healthy controls separately
170 instead of when mice were exposed to both conditions. This supports the above mentioned
171 results, in which the alpha diversity was lower in HF or SF separately when compared to
172 either C or HF+SF.

173 Six taxa at the species level were significantly altered by both the *Condition* and
174 *Change of weight* variables: *Ileibacterium valens*, *Mucispirillum schaedleri*,
175 F.Peptococcaceae.UCS, *Anaerotruncus* spp., *Ruminococcus* spp. and *Allobaculum* spp.,
176 while 26 taxa were only significantly differentially abundant according to the *Condition*
177 variable (Table 2).

178 DISCUSSION

179 In the present study we used a mouse model to assess the impact on the gut
180 microbiome composition under conditions of HF and SF, and the combination of the two
181 perturbations, which is frequently present in patients suffering from heart failure who go on
182 to manifest sleep apnea. Overall, the study presents a clear separation between the samples
183 before and after the induction of the conditions, including among the mice in the control
184 group. This clustering may be produced by the anticipated evolution of the microbiome
185 over time, a phenomenon that has been reported in several other studies of the mouse gut
186 microbiome (Kim et al., 2019). Interestingly, an increase in the abundance of the family
187 *Rikenellaceae*, including the genus *Alistipes* (p-value 1.86e-09) in the post group samples
188 (after four weeks of experiment) emerged, taxa that have been previously reported as being
189 overrepresented in old mice and in elderly humans (Langille et al., 2014), (Claesson et al.,
190 2012).

191 The overall alpha diversity was increased in the post-exposure samples, but this
192 finding was only statistically significant in the control group. This suggests that species
193 richness is significantly higher after the four weeks of the experiment when the mice are
194 allowed to maintain their normal activities and are void of any of the experimental

195 exposures, thereby corroborating earlier studies showing that older individuals exhibit more
196 species overall than juveniles (Mika et al., 2015). These results support the notion of an
197 evolving gut microbiome during mouse development and underscore the importance of
198 including samples taken at the start and at the end of the experiments to control for that
199 variation. Importantly, the variation in species richness differed among the treated groups,
200 wherein those exposed to only one of the relevant conditions displayed diminished species
201 richness. Our findings concur with previous studies that showed an alteration in the
202 microbiome in both HF and SF conditions and a decreased alpha diversity in HF patients
203 (Luedde et al., 2017), (Yuzefpolskaya et al., 2020).

204 The alteration of both *Lachnospiraceae* and *Ruminococcaceae* observed herein has
205 also been noted by others in both isolated HF or SF models (Luedde et al., 2017; Poroyko
206 et al., 2016). As mentioned, when applying a multiple comparison test considering only
207 post samples, the largest differences were between C and HF. One example of a species
208 that is altered is *Bacteroides acidifaciens*, which decreased in HF compared to C. *B.*
209 *acidifaciens* has been linked to decreased obesity and to improve insulin sensitivity (Yang
210 et al., 2017), is more abundant in individuals with high-fiber diets and acetate
211 supplementation, and has been reported to play a role in the regulation of the circadian
212 cycle in the heart (Marques et al., 2017; Yang et al., 2017). Since a disturbance in the
213 circadian cycle can cause cardiovascular complications (Duong et al. 2019, Zhang et al.
214 2020), a decrease in *B. acidifaciens* may serve as an indicator of increased risk for
215 deterioration of the underlying cardiac insufficiency. Interestingly, we also found this
216 species to be decreased in SF samples compared to controls (p-value 0.00025). This could
217 also be due to the same reason, since a disturbed circadian cycle can lead to fragmented

218 sleep, or alternatively, SF could induce the changes in gut microbiome that then disrupt the
219 circadian cycle and elicit increased risk for cardiac decompensation in HF.

220 When we restrict our attention to the HF models, we observed an increase in the
221 species *Ileibacterium valens* and the genera *Defluviitaleaceae_UCG.011*,
222 *Ruminococcaceae_UCG.014*, *Ruminococcus*, *Allobaculum* and *Oxalobacter* compared to
223 healthy controls. On the other hand, in addition to the mentioned increase of *B.*
224 *acidifaciens*, we also observed a decrease in the species *Mucispirillum schaedleri* and the
225 genera *Odoribacter*, *Alistipes*, *Mucispirillum*, *Lactococcus*, *Lachnoclostridium*,
226 *Anaerotruncus*, *Oscillibacter*, *Dubosiella* and *Anaeroplasma*. In previous studies,
227 *Ruminococcaceae_UCG.014* abundance was found as significantly positively associated
228 with serum trimethylamine N-oxide (TMAO) levels, which were associated with coronary
229 atherosclerotic plaque and increased cardiovascular disease risk (Gao et al., 2020). The
230 genus *Ruminococcus* was also found increased in HF models (Cui et al., 2018), and was
231 related to the inflammation that is observed in HF patients by the disruption of the gut
232 barrier through the translocation of gut bacterial DNA and/or endotoxins into the
233 bloodstream (Lataro et al., 2019). It is known that both a high-fat diet (calorie-dense
234 obesogenic) and aging cause inflammation in HF through an alteration of the microbiome
235 such as increasing the phylum Firmicutes, specifically the genus *Allobaculum* (Kain et al.,
236 2019), which in our study was found as significantly more abundant in HF than in C. Both
237 *Alistipes* and *Oscillibacter* were also reported in previous studies as decreased in chronic
238 HF patients (Cui et al., 2018).

239 Regarding the SF models, we observed increased *Muribaculum* and
240 *Faecalibaculum* at the genus level, and decreased *B. acidifaciens* at the species level and

241 *Lactococcus*, *Lachnoclostridium*, *Harryflintia* and *Dubosiella* at the genus level. It is
242 known that melatonin plays a beneficial role in the stabilization of the circadian rhythm
243 (Turek & Gillette, 2004) and a recent study reported that melatonin inhibits
244 *Faecalibaculum* (Hong et al., 2020; Turek & Gillette, 2004). In our study we observed an
245 increase of this genus. Therefore, this reduction can be an indicator of reduced melatonin
246 bioavailability, and consequently reflect a destabilization of the circadian rhythm in SF-
247 exposed mice. Our results also support past findings, whereby the genus *Lachnoclostridium*
248 was reported as underrepresented in chronic intermittent hypoxia in guinea-pigs (Lucking
249 et al., 2018). Hypoxia can be a consequence of a sleep disorder such as sleep apnea. We
250 also found in the bibliography that *Harryflintia* was positively associated with a circadian
251 clock gene (Cry1) whose mutations were related to sleep disorders (Patke et al., 2017).

252 When considering the coexistence of both HF and SF conditions compared with
253 control mice, we detected only a very small number of differences, namely an increase of
254 *Muribaculum* and a decrease of *Bilophila*. Neither of these genera was previously related to
255 these conditions. Overall, contrary to our initial hypothesis, our results show no strong
256 synergism between the HF and SF conditions as their individual effects were not
257 potentiated when applied in combination. Rather, the changes when the two conditions
258 were combined were less apparent than when applying each condition individually, both in
259 terms of changes in the alpha diversity and in the number of altered taxa. This suggests
260 some level of antagonism between the two conditions, which may influence the
261 microbiome in opposite directions, resulting in some of these effects cancelling each other
262 out.

263 **CONCLUSION**

264 In summary, we have shown that the gut microbiome contains potential markers of
265 heart failure and of sleep fragmentation when these conditions are evaluated separately.
266 The inflammation observed in HF and SF could be mediated by alterations in abundance of
267 particular taxa. Finally, when the two conditions were applied concomitantly, the
268 alterations in the gut microbiome were milder and virtually disappeared, suggesting some
269 level of antagonism between the effects for HF and SF.

270 **MATERIALS AND METHODS**

271 **Animal models experiments**

272 Forty male mice (C57BL/6J; 10 weeks old; 12 h light/dark cycle; water/food *ad*
273 *libitum*) were randomly allocated into four groups (n=10 each). In two groups, the mice
274 were allowed to sleep normally: healthy control (C) and heart failure (HF). In two groups
275 (SF, HF+SF), SF was imposed, and in two groups (HF, HF+SF) heart failure was induced.
276 The animal experiment including the setting of the HF and SF models were approved by
277 the institution ethical committee and has been recently described in detail (Cabrera-
278 Aguilera et al, 2020).

279 HF was induced by continuous infusion of isoproterenol (Cabrera-Aguilera et al,
280 2020). Briefly, mice were anesthetized by isoflurane inhalation and an osmotic minipump
281 (Alzet, model 1004) was implanted subcutaneously in the flank. The pump delivered 30
282 mg/kg per day of isoproterenol (Sigma Aldrich; in sterile 0.9% NaCl solution) for 28 days.
283 Buprenorphine (0.3 mg/kg, i.p.) was administered 10 minutes before surgery and after 24
284 hours, and the suture was removed 7 days after surgery. Healthy animals were subjected to
285 the same protocol with the only difference being that no isoproterenol was dissolved into

286 the 0.9% NaCl pump medium. As described elsewhere (Cabrera-Aguilera et al, 2020), the
287 effectiveness of the HF model in these animals was assessed by echocardiography after 28
288 days of isoproterenol infusion, confirming that mice in the HF groups had significant
289 increases in left ventricular end-diastolic and LVESD and end-systolic diameter as well as
290 significant reductions in left ventricular ejection fraction and fraction shortening.

291 Two days after surgery, SF was induced daily by means of a previously described
292 and validated device for mice (Lafayette Instruments, Lafayette, IN), which is based on
293 intermittent tactile stimulation with no human intervention. Sleep arousals were induced by
294 a mechanical near-silent motor with a horizontal bar sweeping just above the cage floor
295 from one side to the other side in the standard mouse laboratory cage. Each sweep was
296 applied in 2-minute intervals during the murine sleep period (8 a.m. to 8 p.m.) for 28 days
297 (until day 30 from surgery) (Cabrera-Aguilera et al, 2020).

298 At the end of the 4-week experiment (HF, SF, HF+SF and control), fecal
299 samples were obtained directly from stool expulsion stimulated by manual handling
300 of the animal and were immediately frozen at -80°C and stored until analyzed.

301 **DNA extraction, library preparation and sequencing**

302 DNA was extracted from mice fecal individual samples using the DNeasy
303 PowerLyzer PowerSoil Kit (Qiagen, ref. QIA12855) following the manufacturer's
304 instructions. After adding mice stool samples to the PowerBead Tubes, 750 µl of
305 PowerBead Solution and 60 µl of Solution C1 were added, and samples were vortexed
306 briefly and incubated at 70°C with shaking (700 rpm) for 10 min. The extraction tubes were
307 then agitated twice in a 96-well plate using Tissue lyser II (Qiagen) at 30 Hz/s for 5 min.

308 Tubes were centrifuged at 10,000 g for 3 min and the supernatant was transferred to a clean
309 tube. 250 μ l of Solution C2 were added, and samples were vortexed for 5 s and incubated
310 on ice for 10 min. After 1 min centrifugation at 10,000 g, the supernatant was transferred to
311 a clean tube, 200 μ l of Solution C3 were added, and samples were vortexed for 5 s and
312 incubated on ice for 10 min again. 750 μ l of the supernatant were transferred into a clean
313 tube after 1 min centrifugation at 10,000 g. Then, 1,200 μ l of Solution C4 were added to the
314 supernatant, samples were mixed by pipetting up and down, and 675 μ l were loaded onto a
315 spin column and centrifuge at 10,000 g for 1 min, discarding the flow through. This step
316 was repeated three times until all samples had passed through the column. 500 μ l of
317 Solution C5 were added onto the column and samples were centrifuged at 10,000 g for 1
318 min, the flow through was discarded and one extra minute centrifugation at 10,000 g was
319 done to dry the column. Finally, the column was placed into a new 2 ml tube to the final
320 elution with 50 μ l of Solution C6 and centrifugation at 10,000 g for 30 s.

321 Four μ l of each DNA sample were used to amplify the V3–V4 regions of the
322 bacterial 16S ribosomal RNA gene, using the following universal primers in a limited cycle
323 PCR:

324 V3-V4-Forward (5'-
325 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGNGGCWGCAG-3')
326 and V3-V4-Reverse (5'-
327 GTCTCGTGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAAT
328 CC-3').

329 To prevent unbalanced base composition in further MiSeq sequencing, we shifted
330 sequencing phases by adding various numbers of bases (from 0 to 3) as spacers to both
331 forward and reverse primers (we used a total of 4 forward and 4 reverse primers). The PCR
332 was performed in 10 μ l volume reactions with 0.2 μ M primer concentration and using the
333 Kapa HiFi HotStart Ready Mix (Roche, ref. KK2602). Cycling conditions were initial
334 denaturation of 3 min at 95 °C followed by 20 cycles of 95 °C for 30 s, 55 °C for 30 s, and
335 72 °C for 30 s, ending with a final elongation step of 5 min at 72 °C.

336 After the first PCR step, water was added to a total volume of 50 μ l and reactions
337 were purified using AMPure XP beads (Beckman Coulter) with a 0.9X ratio according to
338 manufacturer's instructions. PCR products were eluted from the magnetic beads with 32 μ l
339 of Buffer EB (Qiagen) and 30 μ l of the eluate were transferred to a fresh 96-well plate. The
340 primers used in the first PCR contain overhangs allowing the addition of full-length
341 Nextera adapters with barcodes for multiplex sequencing in a second PCR step, resulting in
342 sequencing ready libraries. To this end, 5 μ l of the first amplification were used as template
343 for the second PCR with Nextera XT v2 adaptor primers in a final volume of 50 μ l using
344 the same PCR mix and thermal profile as for the first PCR but only 8 cycles. After the
345 second PCR, 25 μ l of the final product was used for purification and normalization with
346 SequalPrep normalization kit (Invitrogen), according to the manufacturer's protocol.
347 Libraries were eluted in 20 μ l and pooled for sequencing.

348 Final pools were quantified by qPCR using Kapa library quantification kit for
349 Illumina Platforms (Kapa Biosystems) on an ABI 7900HT real-time cycler (Applied
350 Biosystems). Sequencing was performed in Illumina MiSeq with 2 \times 300 bp reads using v3
351 chemistry with a loading concentration of 18 pM. To increase the diversity of the sequences

352 10% of PhIX control libraries were spiked in.

353 Two bacterial mock communities were obtained from the BEI Resources of the
354 Human Microbiome Project (HM-276D and HM-277D), each contained genomic DNA of
355 ribosomal operons from 20 bacterial species. Mock DNAs were amplified and sequenced in
356 the same manner as all other murine stool samples. Negative controls of the DNA
357 extraction and PCR amplification steps were also included in parallel, using the same
358 conditions and reagents. These negative controls provided no visible band or quantifiable
359 DNA amounts by Bioanalyzer, whereas all of our samples provided clearly visible bands
360 after 20 cycles.

361 **Microbiome analysis**

362 The *dada2* pipeline (v. 1.10.1) (Callahan et al., 2016) was used to obtain an ASV
363 (amplicon sequence variants) table (Nearing et al., 2018). First, the sequence quality
364 profiles of forward and reverse sequencing reads were examined using the
365 *plotQualityProfile* function of *dada2*. Based on these profiles, low-quality sequencing reads
366 were filtered out and the remaining reads were trimmed at positions 285 (forward) and 240
367 (reverse). The first 10 nucleotides corresponding to the adaptors were also trimmed, using
368 the *filterAndTrim* function with the following parameters:

369 “filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=c(285,240), maxN=0,
370 maxEE=c(10,10), truncQ=1, rm.phix=TRUE, trimLeft=c(10,10), compress=TRUE,
371 multithread=TRUE)”

372 Then, identical sequencing reads were combined into unique sequences to avoid
373 redundant comparisons (dereplication), sample sequences were inferred (from a pre-
374 calculated matrix of estimated learning error rates) and paired reads were merged to obtain
375 full denoised sequences. From these, chimeric sequences were removed. Taxonomy was
376 assigned to ASVs using the *SILVA* 16s rRNA database (v. 132) (Quast et al., 2013). Next, a
377 phylogenetic tree representing the taxa found in the sample dataset was reconstructed by
378 using the phangorn (v. 2.5.5) (Schliep, 2011) and Decipher R packages (v 2.10.2) (Wright
379 et al., 2016). We integrated the information from the ASV table, Taxonomy table,
380 phylogenetic tree and metadata (information relative to the samples such as the time, batch
381 of the DNA extraction and change of weight) to create a *phyloseq* (v. 1.26.1) object
382 (McMurdie & Holmes, 2013). Positive and negative sequencing controls (mock
383 communities and water samples, respectively) sequenced and included in the ASV table
384 were removed from subsequent statistical analyses.

385 The metadata consisted of 11 variables: *batchDNAextraction*, *sample*, *Time*
386 (indicating whether samples were taken prior to or post treatment); *Box*;
387 *SF.NORMAL.SLEEP* (Sleep fragmentation or normal sleep); *Animal*; *Pump* (What
388 substance was injected, Isoproterenol or Saline - control); *Initial_weight*; *Final_weight*; and
389 *Initial_ecography* (the value of which was “Ready” for all the animals). We created a new
390 variable called *Condition* corresponding to the four different treatment groups: C, HF, SF
391 and HF+SF.

392 Taxonomic composition metrics such as alpha-diversity (within-sample) and beta-
393 diversity (between samples) were characterized. Using the *estimate_richness* function of
394 the *phyloseq* package we calculated the alpha diversity metrics including Observed.index,

395 Chao1, Shannon, Simpson and InvSimpson indices. Regarding the different beta-diversity
396 metrics, we used the *Phyloseq* and *Vegan* (v. 2.5-6) (Oksanen et al. 2019) packages to
397 characterize nine distances based on differences in taxonomic composition of the samples
398 including JSD, Weighted-Unifrac, Unweighted-unifrac, VAW-Gunifrac, a0-Gunifrac,
399 a05_Gunifrac, Bray, Jaccard and Canberra. We also computed Aitchison distance (Gloor et
400 al., 2017) using the *cmultRepl* and *codaSeq.clr* functions from the *CodaSeq* (v. 0.99.6)
401 (Gloor & Reid, 2016) and *zCompositions* (v.1.3.4) (Palarea-Albaladejo & Martín-
402 Fernández, 2015) packages.

403 Normalization was performed by transforming the data to relative abundances, and
404 samples containing fewer than 950 reads were discarded and taxa that appeared in fewer
405 than 5% of the samples at low abundances were filtered out:

406 “prune_samples(sample_sums(object) >= 950, object)”
407 “filter_taxa(object, function(x) sum(x > 0.001) > (0.05 * length(x)), prune =
408 TRUE)”

409 Statistical analysis

410 Comparison of echocardiographic data between all groups at baseline was
411 performed using one-way ANOVA. Comparison of echocardiographic data between all
412 groups at day 30 was performed using two-way ANOVA followed by the Student-
413 Newman-Keuls comparison method. The data is presented as mean \pm SEM.

414 We used the Partitioning Around Medoid (PAM) algorithm (Reynolds et al., 2006),
415 as implemented in the *cluster* library (v. 2.0.7-1), to explore clustering of the samples. We

416 further evaluated this, performing a Permutational Multivariate Analysis of Variance
417 (PERMANOVA) using the ten-distance metrics mentioned above, and the *adonis* function
418 from the *Vegan* R package (v. 2.5-6) (Oksanen et al. 2019). The *Time* and *Box* variables
419 were considered as covariates.

420 To identify taxonomic features (Phylum, Class, Order, Family, Genus and Species)
421 that show significantly different abundances among studied conditions, we used linear
422 models, as implemented in the R package *lme4* (v. 1.1-21) (Bates et al. 2015). Two
423 different linear models were built: In the first one, the fixed effects were the *Condition* and
424 *Time* variables and the random effects were the *batch of the DNA extraction* and the
425 *animal*, where this last one is an indicator of a paired analysis (tax_element ~ Condition +
426 Time + (1| batchDNAextraction) + (1|Animal)). On the other hand, in the second linear
427 model we included only post samples and instead of the *Time* variable, we used as a fixed
428 effect the *Change of weight* of the mouse models (Final_weight - Initial_weight). In this
429 case we only used as a random effect the batch (tax_element ~ Condition_POST_only +
430 Change_of_weight + (1|batchDNAextraction)).

431 Analysis of Variance (ANOVA) was applied to assess the significance for each of
432 the fixed effects included in the models using the *Car* R package (v. 3.0-6) (Fox et al.,
433 2013). To assess particular differences between groups we performed multiple comparisons
434 to the results obtained in the linear models using the *multcomp* R package (v. 1.4-12)
435 (Hothorn et al., 2008). We applied Bonferroni as a multiple testing correction. Statistical
436 significance was defined when p values were lower than 0.05 in all the analyses.

437

438 **ACKNOWLEDGMENTS**

439 The authors wish to thank Mrs. Elisabeth Urrea and Mr. Miguel A. Rodriguez-
440 Lazaro for their excellent technical assistance.

441

442 **Data availability:**

443 Raw sequence data can be found in the Sequence Read Archive with the Bioproject
444 accession code: PRJNA662468

445 **Funding:**

446 IC-A was supported by CONICYT PFCHA—Chilean Doctorate Fellowship 2017; Grant
447 No. 72180089. RF was supported in part by the Spanish Ministry of Economy and
448 Competitiveness (SAF2017-85574-R). DG was supported in part by National Institutes of
449 Health grants HL130984 and HL140548. TG group acknowledges support from the
450 Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00, cofounded
451 by European Regional Development Fund (ERDF); from the CERCA Programme /
452 Generalitat de Catalunya; from the Catalan Research Agency (AGAUR) SGR423. from the
453 European Union’s Horizon 2020 research and innovation programme under the grant
454 agreement ERC-2016-724173; and from Instituto de Salud Carlos III (INB Grant,
455 PT17/0009/0023 - ISCIII-SGEFI/ERDF).

456

457

458

459

460 **Authors contribution:**

461 O. Khannous-Lleiffe, J.R. Willis and E. Saus carried out the microbiota analysis. I.
462 Cabrera-Aguilera was in charge of the animal model experiments. I. Almendros, R. Farré
463 and D. Gozal participated in data interpretation and scientific discussion. T. Gabaldón

464 designed and supervised the microbiota analysis and discussion. Nuria Farré conceived the
465 study and supervised the whole research. All authors participated in the manuscript
466 preparation.

467 **REFERENCES**

468 Cabrera-Aguilera I, Benito B, Tajes M, et al. Chronic Sleep Fragmentation Mimicking
469 Sleep Apnea Does Not Worsen Left-Ventricular Function in Healthy and Heart Failure
470 Mice. *Front Neurol.* 2020;10:1364. doi:10.3389/fneur.2019.01364

471 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S.
472 P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data.
473 *Nature Methods*, 13(7), 581–583.

474 Camps-Vilaró A, Delgado-Jiménez JF, Farré N, et al. Estimated Population Prevalence of
475 Heart Failure with Reduced Ejection Fraction in Spain, According to DAPA-HF Study
476 Criteria. *J Clin Med.* 2020;9(7):E2089. Published 2020 Jul 3.
477 doi:10.3390/jcm9072089.

478 Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S.,
479 Harris, H. M. B., Coakley, M., Lakshminarayanan, B., O'Sullivan, O., Fitzgerald, G.
480 F., Deane, J., O'Connor, M., Harnedy, N., O'Connor, K., O'Mahony, D., van
481 Sinderen, D., Wallace, M., Brennan, L., ... O'Toole, P. W. (2012). Gut microbiota
482 composition correlates with diet and health in the elderly. *Nature*, 488(7410), 178–184.

483 Costea, P. I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M. J., Bushman, F. D.,
484 de Vos, W. M., Ehrlich, S. D., Fraser, C. M., Hattori, M., Huttenhower, C., Jeffery, I.
485 B., Knights, D., Lewis, J. D., Ley, R. E., Ochman, H., O'Toole, P. W., Quince, C.,
486 Relman, D. A., ... Bork, P. (2018). Enterotypes in the landscape of gut microbial
487 community composition. *Nature Microbiology*, 3(1), 8–16.

488 Cui, X., Ye, L., Li, J., Jin, L., Wang, W., Li, S., Bao, M., Wu, S., Li, L., Geng, B., Zhou,
489 X., Zhang, J., & Cai, J. (2018). Metagenomic and metabolomic analyses unveil

490 dysbiosis of gut microbiota in chronic heart failure patients. *Scientific Reports*, 8(1),
491 635.

492 Cowie MR, Gallagher AM. Sleep Disordered Breathing and Heart Failure: What Does the
493 Future Hold? *JACC Heart Fail.* 2017 Oct;5(10):715-723. doi:
494 10.1016/j.jchf.2017.06.016. Epub 2017 Sep 6. PMID: 28888522.

495 Duong ATH, Reitz CJ, Louth EL, Creighton SD, Rasouli M, Zwaiman A, Kroetsch JT,
496 Bolz SS, Winters BD, Bailey CDC, Martino TA. The Clock Mechanism Influences
497 Neurobiology and Adaptations to Heart Failure in Clock-Δ19/Δ19 Mice With
498 Implications for Circadian Medicine. *Sci Rep.* 2019 Mar;9(1):4994. doi:
499 10.1038/s41598-019-41469-7. PMID: 30899044; PMCID: PMC6428811.

500 Farré N, Vela E, Clèries M, et al. Real world heart failure epidemiology and outcome: A
501 population-based analysis of 88,195 patients. *PLoS One.* 2017;12(2):e0172745.
502 Published 2017 Feb 24. doi:10.1371/journal.pone.0172745

503 Farré N, Farré R, Gozal D. Sleep Apnea Morbidity: A Consequence of Microbial-Immune
504 Cross-Talk?. *Chest.* 2018;154(4):754-759. doi:10.1016/j.chest.2018.03.001.

505 Fox, J., Friendly, M., & Weisberg, S. (2013). Hypothesis Tests for Multivariate Linear
506 Models Using the car Package. In *The R Journal* (Vol. 5, Issue 1, p. 39).
507 <https://doi.org/10.32614/rj-2013-004>

508 Gao, J., Yan, K.-T., Wang, J.-X., Dou, J., Wang, J., Ren, M., Ma, J., Zhang, X., & Liu, Y.
509 (2020). Gut microbial taxa as potential predictive biomarkers for acute coronary
510 syndrome and post-STEMI cardiovascular events. *Scientific Reports*, 10(1), 2639.

511 Genth-Zotz S, von Haehling S, Bolger AP, et al. Pathophysiologic quantities of endotoxin-
512 induced tumor necrosis factor-alpha release in whole blood from patients with chronic

513 heart failure. Am J Cardiol. 2002;90(11):1226-1230. doi:10.1016/s0002-
514 9149(02)02839-4.

515 Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egoscue, J. J. (2017). Microbiome
516 Datasets Are Compositional: And This Is Not Optional. *Frontiers in Microbiology*, 8.
517 <https://doi.org/10.3389/fmicb.2017.02224>

518 Gloor, G. B., & Reid, G. (2016). Compositional analysis: a valid approach to analyze
519 microbiome high-throughput sequencing data. *Canadian Journal of Microbiology*,
520 62(8), 692–703.

521 Hong, F., Pan, S., Xu, P., Xue, T., Wang, J., Guo, Y., Jia, L., Qiao, X., Li, L., & Zhai, Y.
522 (2020). Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal
523 Circadian Clock and Microbiota during Constant Light Exposure. *Cells* , 9(2).
524 <https://doi.org/10.3390/cells9020489>

525 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric
526 models. *Biometrical Journal. Biometrische Zeitschrift*, 50(3), 346–363.

527 Javaheri S, Brown LK, Khayat RN. Update on Apneas of Heart Failure With Reduced
528 Ejection Fraction: Emphasis on the Physiology of Treatment: Part 2: Central Sleep
529 Apnea. Chest. 2020 Jun;157(6):1637-1646. doi: 10.1016/j.chest.2019.12.020. Epub
530 2020 Jan 17. PMID: 31958442.

531 Kain, V., Van Der Pol, W., Mariappan, N., Ahmad, A., Eipers, P., Gibson, D. L., Gladine,
532 C., Vigor, C., Durand, T., Morrow, C., & Halade, G. V. (2019). Obesogenic diet in
533 aging mice disrupts gut microbe composition and alters neutrophil:lymphocyte ratio,
534 leading to inflamed milieu in acute heart failure. *FASEB Journal: Official Publication
535 of the Federation of American Societies for Experimental Biology*, 33(5), 6456–6469.

536 Kim, S. J., Kim, S.-E., Kim, A.-R., Kang, S., Park, M.-Y., & Sung, M.-K. (2019). Dietary

537 fat intake and age modulate the composition of the gut microbiota and colonic
538 inflammation in C57BL/6J mice. *BMC Microbiology*, 19(1), 193.

539 Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea
540 syndrome: disease-related dysbiosis and metabolic comorbidities. *Clin Sci (Lond)*.
541 2019;133(7):905-917. Published 2019 Apr 12. doi:10.1042/CS20180891

542 Langille, M. G., Meehan, C. J., Koenig, J. E., Dhanani, A. S., Rose, R. A., Howlett, S. E.,
543 & Beiko, R. G. (2014). Microbial shifts in the aging mouse gut. *Microbiome*, 2(1), 50.

544 Lataro, R. M., Imori, P. F. M., Santos, E. S., Silva, L. E. V., Duarte, R. T. D., Silva, C. A.
545 A., Falcão, J. P., Paton, J. F. R., & Salgado, H. C. (2019). Heart failure developed after
546 myocardial infarction does not affect gut microbiota composition in the rat. *American
547 Journal of Physiology. Gastrointestinal and Liver Physiology*, 317(3), G342–G348.

548 Lucking, E. F., O'Connor, K. M., Strain, C. R., Fouhy, F., Bastiaanssen, T. F. S., Burns, D.
549 P., Golubeva, A. V., Stanton, C., Clarke, G., Cryan, J. F., & O'Halloran, K. D. (2018).
550 Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut
551 microbiota composition in adult male guinea-pigs. *EBioMedicine*, 38, 191–205.

552 Luedde, M., Winkler, T., Heinsen, F.-A., Rühlemann, M. C., Spehlmann, M. E., Bajrović,
553 A., Lieb, W., Franke, A., Ott, S. J., & Frey, N. (2017). Heart failure is associated with
554 depletion of core intestinal microbiota. *ESC Heart Failure*, 4(3), 282–290.

555 Marques, F. Z., Nelson, E., Chu, P.-Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J. K.,
556 Kuruppu, S., Rajapakse, N. W., El-Osta, A., Mackay, C. R., & Kaye, D. M. (2017).
557 High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent
558 the Development of Hypertension and Heart Failure in Hypertensive Mice.
559 *Circulation*, 135(10), 964–977.

560 Mashaqi S, Gozal D. Obstructive Sleep Apnea and Systemic Hypertension: Gut Dysbiosis

561 as the Mediator?. *J Clin Sleep Med.* 2019;15(10):1517-1527. doi:10.5664/jcsm.7990.

562 Mayerhofer CCK, Kummen M, Holm K, et al. Low fibre intake is associated with gut
563 microbiota alterations in chronic heart failure. *ESC Heart Fail.* 2020;7(2):456-466.
564 doi:10.1002/ehf2.12596.

565 McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive
566 analysis and graphics of microbiome census data. *PloS One*, 8(4), e61217.

567 Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015).
568 Exercise is More Effective at Altering Gut Microbial Composition and Producing
569 Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. *PloS One*,
570 10(5), e0125889.

571 Moreno-Indias I, Torres M, Montserrat JM, et al. Intermittent hypoxia alters gut microbiota
572 diversity in a mouse model of sleep apnoea. *Eur Respir J.* 2015;45(4):1055-1065.
573 doi:10.1183/09031936.00184314.

574 Nearing, J. T., Douglas, G. M., Comeau, A. M., & Langille, M. G. I. (2018). Denoising the
575 Denoisers: an independent evaluation of microbiome sequence error-correction
576 approaches. *PeerJ*, 6, e5364.

577 Palarea-Albaladejo, J., & Martín-Fernández, J. A. (2015). zCompositions — R package for
578 multivariate imputation of left-censored data under a compositional approach. In
579 *Chemometrics and Intelligent Laboratory Systems* (Vol. 143, pp. 85–96).
580 <https://doi.org/10.1016/j.chemolab.2015.02.019>

581 Patke, A., Murphy, P. J., Onat, O. E., Krieger, A. C., Özçelik, T., Campbell, S. S., &
582 Young, M. W. (2017). Mutation of the Human Circadian Clock Gene CRY1 in
583 Familial Delayed Sleep Phase Disorder. *Cell*, 169(2), 203–215.e13.

584 Poroyko, V. A., Carreras, A., Khalyfa, A., Khalyfa, A. A., Leone, V., Peris, E., Almendros,

585 I., Gileles-Hillel, A., Qiao, Z., Hubert, N., Farré, R., Chang, E. B., & Gozal, D. (2016).
586 Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose
587 Tissue Inflammation and Insulin Resistance in Mice. In *Scientific Reports* (Vol. 6,
588 Issue 1). <https://doi.org/10.1038/srep35405>

589 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., &
590 Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved
591 data processing and web-based tools. *Nucleic Acids Research*, 41(Database issue),
592 D590–D596.

593 Reynolds, A. P., Richards, G., de la Iglesia, B., & Rayward-Smith, V. J. (2006). Clustering
594 Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms. *Journal
595 of Mathematical Modelling and Algorithms*, 5(4), 475–504.

596 Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with
597 chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-1569.
598 doi:10.1016/j.jacc.2007.07.016.

599 Schliep, K. P. (2011). phangorn: phylogenetic analysis in R. In *Bioinformatics* (Vol. 27, Issue 4, pp. 592–
600 593). <https://doi.org/10.1093/bioinformatics/btq706>
601 Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart.
602 2016;102(11):841-848. doi:10.1136/heartjnl-2015-308826.

603 Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ
604 Res. 2017;120(7):1183-1196.

605 Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host
606 metabolism. Nature. 2012;489(7415):242-249. doi:10.1038/nature11552

607 Tripathi A, Melnik AV, Xue J, et al. Intermittent Hypoxia and Hypercapnia, a Hallmark of
608 Obstructive Sleep Apnea, Alters the Gut Microbiome and Metabolome. *mSystems*.

609 2018;3(3):e00020-18. Published 2018 Jun 5. doi:10.1128/mSystems.00020-18

610 Turek, F. W., & Gillette, M. U. (2004). Melatonin, sleep, and circadian rhythms: rationale
611 for development of specific melatonin agonists. *Sleep Medicine*, 5(6), 523–532.

612 Willis, J. R., González-Torres, P., Pittis, A. A., Bejarano, L. A., Cozzuto, L., Andreu-
613 Somavilla, N., Alloza-Trabado, M., Valentín, A., Ksieziopolska, E., Company, C.,
614 Onywera, H., Montfort, M., Hermoso, A., Iraola-Guzmán, S., Saus, E., Labeeuw, A.,
615 Carolis, C., Hecht, J., Ponomarenko, J., & Gabaldón, T. (2018). Citizen science charts
616 two major “stomatotypes” in the oral microbiome of adolescents and reveals links with
617 habits and drinking water composition. *Microbiome*, 6(1), 218.

618 Wright, E., Erik, & Wright, S. (2016). Using DECIPHER v2.0 to Analyze Big
619 Biological Sequence Data in R. In *The R Journal* (Vol. 8, Issue 1, p. 352).
620 <https://doi.org/10.32614/rj-2016-025>

621

622 Yang, J.-Y., Lee, Y.-S., Kim, Y., Lee, S.-H., Ryu, S., Fukuda, S., Hase, K., Yang, C.-S.,
623 Lim, H. S., Kim, M.-S., Kim, H.-M., Ahn, S.-H., Kwon, B.-E., Ko, H.-J., & Kweon,
624 M.-N. (2017). Gut commensal *Bacteroides acidifaciens* prevents obesity and improves
625 insulin sensitivity in mice. *Mucosal Immunology*, 10(1), 104–116.

626 Yuzefpolskaya, M., Bohn, B., Nasiri, M., Zuver, A. M., Onat, D. D., Royzman, E. A.,
627 Nwokocha, J., Mabasa, M., Pinsino, A., Brunjes, D., Gaudig, A., Clemons, A., Trinh,
628 P., Stump, S., Giddins, M. J., Topkara, V. K., Garan, A. R., Takeda, K., Takayama, H.,
629 ... Demmer, R. T. (2020). Gut microbiota, endotoxemia, inflammation, and oxidative
630 stress in patients with heart failure, left ventricular assist device, and transplant. *The
631 Journal of Heart and Lung Transplantation: The Official Publication of the
632 International Society for Heart Transplantation*.

633 https://doi.org/10.1016/j.healun.2020.02.004.

634 Zhang J, Chatham JC, Young ME. Circadian Regulation of Cardiac Physiology: Rhythms
635 That Keep the Heart Beating. *Annu Rev Physiol.* 2020 Feb 10;82:79-101. doi:
636 10.1146/annurev-physiol-020518-114349. Epub 2019 Oct 7. PMID: 31589825.

637

638

639

640

641

642 **Table 1.** Differential abundance analysis findings. A) Linear model including all the
643 samples; Fixed effects: *Condition* and *Time* variable. Random effects: *Batch DNA*
644 *extraction* and *Animal* (to indicate a paired analysis). B) Linear model taking into
645 consideration only post samples; Fixed effects: *Condition* and *Change of weight* variables.
646 Random effect: *Batch DNA extraction*.

647

648 **A)**

Variable \ Rank	Phylum	Class	Order	Family	Genus	Species
Condition	3	5	5	10	23	26
Time	4	9	10	19	41	47

649

650 **B)**

Variable \ Rank	Phylum	Class	Order	Family	Genus	Species
Condition	1	2	4	14	30	32
Weight change	1	1	1	3	9	9

651

652

653 **Table 2.** Summary of the p-values corresponding to the 32 significantly differentially
654 abundant taxa at species level according to both *Condition* and *Change of weight* variables.

	<i>Condition</i>	<i>Change of weight</i>
<i>Bacteroides acidifaciens</i>	0.00015	
<i>Ileibacterium valens</i>	0.00113	0.00062
<i>Mucispirillum schaedleri</i>	0.00125	0.03626
<i>Olsenella</i> spp.	2.79e-25	
<i>Bacteroides</i> spp.	0.00904	
<i>Odoribacter</i> spp.	0.03183	
<i>Muribaculum</i> spp.	0.01244	
<i>Prevotellaceae_UCG.001</i> spp.	0.03238	
<i>Alistipes</i> spp.	3.44e-05	
O.Bacteroidales.UCS	0.00117	
<i>Mucispirillum</i> spp.	0.00408	
<i>Lactococcus</i> spp.	0.00262	
<i>Defluviitaleaceae_UCG.011</i> spp.	0.04673	
<i>Lachnoclostridium</i> spp.	0.00029	
<i>Lachnospiraceae_NK4A136_group</i> spp.	0.00637	
F.Peptococcaceae.UCS	1.57e-06	0.00019
<i>Anaerotruncus</i> spp.	0.00799	0.02487
<i>Harryflitia</i> spp.	0.02105	
<i>Oscillibacter</i> spp.	0.01505	
<i>Ruminococcaceae_UCG.010</i> spp.	0.04265	
<i>Ruminococcaceae_UCG.014</i> spp.	8.72e-06	
<i>Ruminococcus</i> spp.	3.73e-06	0.00302
F.Ruminococcaceae.UCS	0.02286	
<i>Allobaculum</i> spp.	0.00087	0.01719
<i>Candidatus_Stoquefichus</i> spp.	0.04012	
<i>Dubosiella</i> spp.	0.00068	
<i>Faecalibaculum</i> spp.	0.03229	
<i>Bilophila</i> spp.	0.00968	
F.Desulfovibrionaceae.UCS	1.99e-07	
<i>Oxalobacter</i> spp.	0.01909	
<i>Anaeroplasma</i> spp.	0.03002	
O.Mollicutes_RF39.UCS	0.03361	

655

656 **FIGURE LEGENDS**

657

658 **Figure 1.** Stratification of the samples. MDS plots based on Bray distance dissimilarity. A)
659 The samples are colored according to the *Time* and shaped according to *Condition* variable
660 B) The samples are colored according to the *Enterotype* variable calculated according to the
661 Bray-Curtis dissimilarity and shaped according to the *Time* variable.

662

663 **Figure 2.** Shannon alpha Diversity measure representation for the paired samples. A)
664 Shannon index according to the *Time* variable B) Shannon index according to the *Condition*
665 variable (C: Controls; HF: Heart Failure; SF: Sleep Fragmentation; HF+SF: Heart Failure
666 and Sleep Fragmentation. C) Variation of Shannon diversity indexes before and after the
667 experiment in each individual mouse. Samples are colored according to the experimental
668 condition.

669

670 **Figure 3.** Shannon index representation of the paired samples according to the *Condition*
671 variable. The line inside the boxplot represents the median for each of the groups. A)
672 Considering only post samples B) Considering both pre and post samples. Kruskal-Wallis
673 test showed significance ($P = 0.028$).

674

675 **Figure 4.** Heatmap representing the 32 significantly differentially abundant taxa at the
676 species level between groups in post samples. The logarithm of only the significant p-
677 values are reported ($P < 0.05$), where the infinite values are represented as 2.2e-16. The
678 sign of the values was transformed to positive or negative according to the direction of the
679 alteration: positive values for increases in the first group within the comparison and

680 negative values for the decreases. Example: A value of 7.218 for *Bacteroides acidifaciens*

681 when comparing C to HF means that this species is significantly higher in C compared to

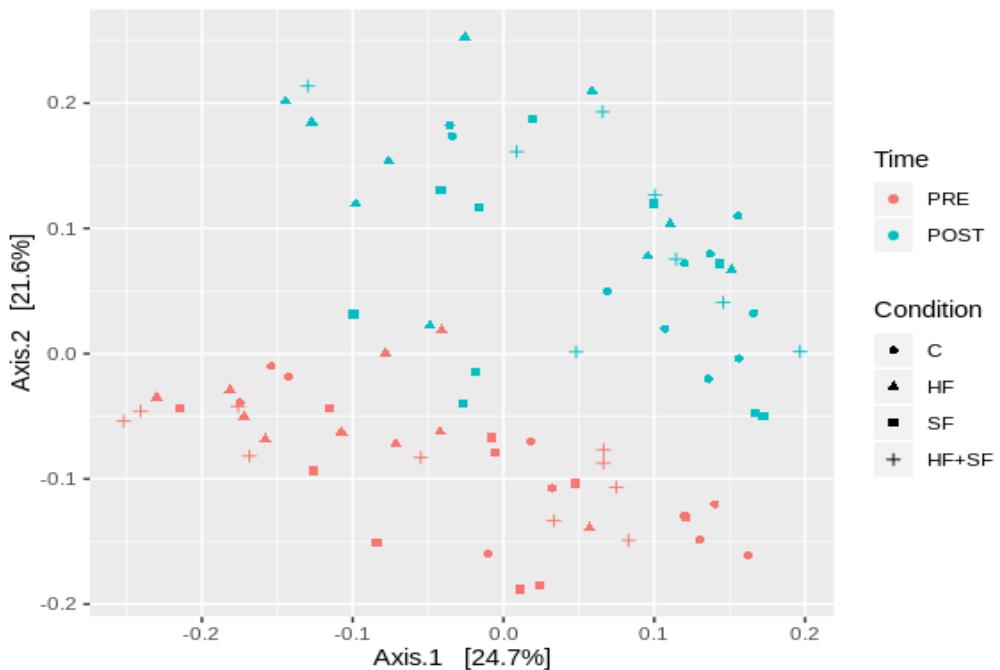
682 HF.

683

684

685 Figure 1.

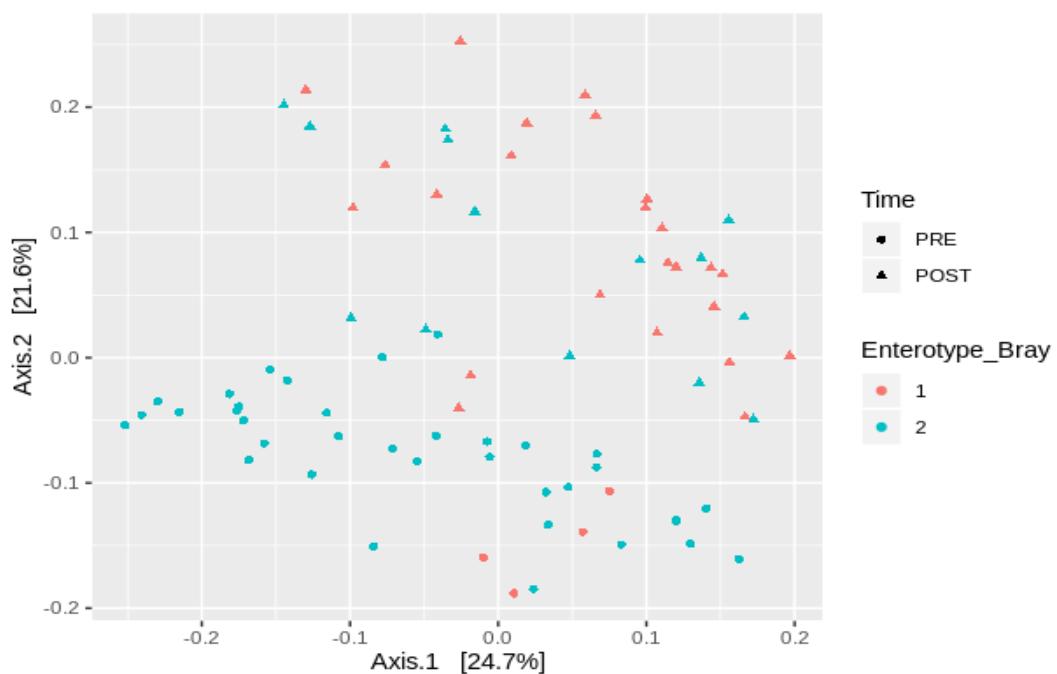
686 A



687

688 B

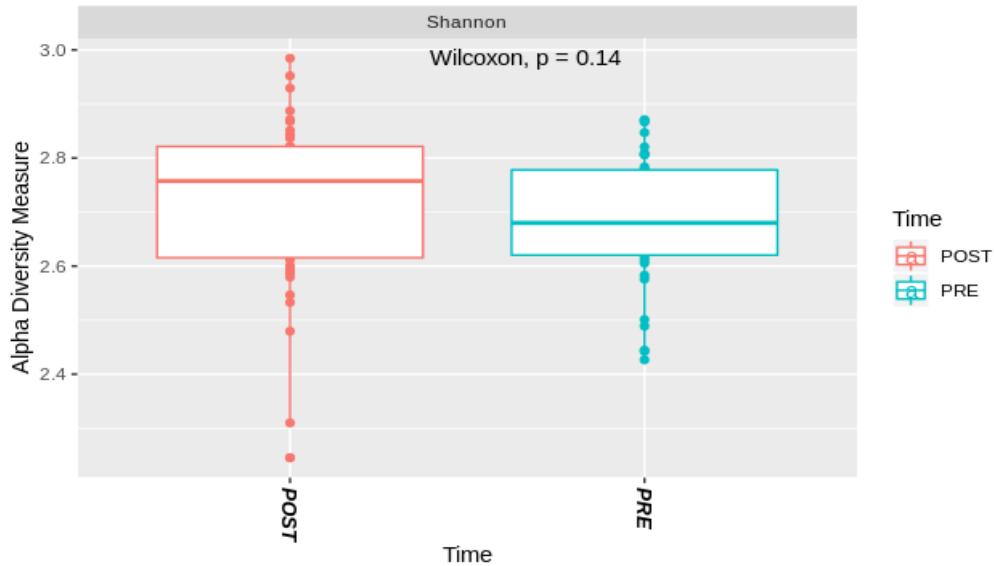
689



690

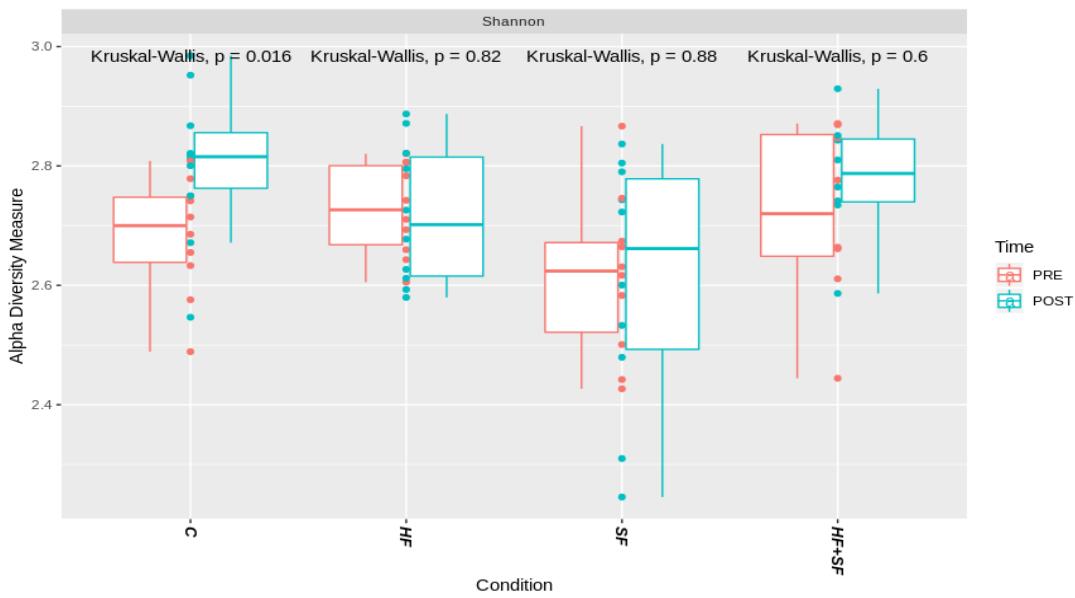
691 Figure 2

692 A



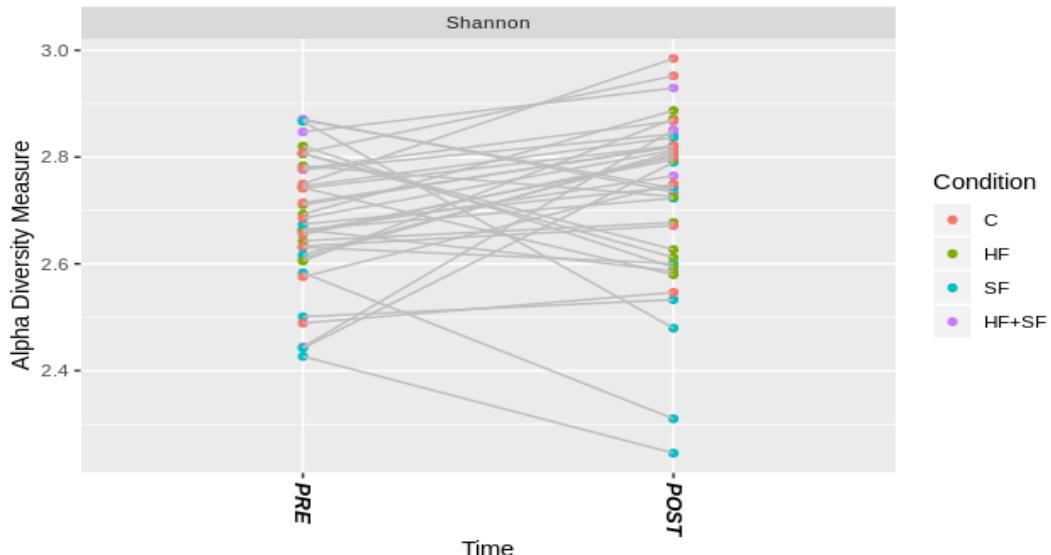
693

694 B



695

696 C

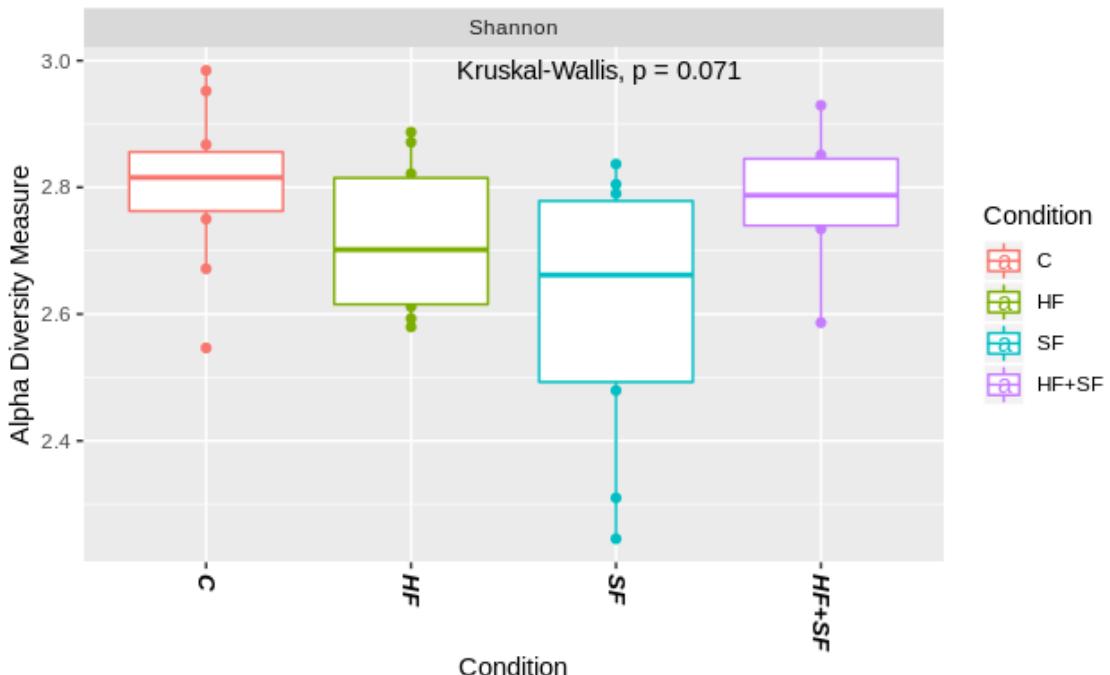


697

698

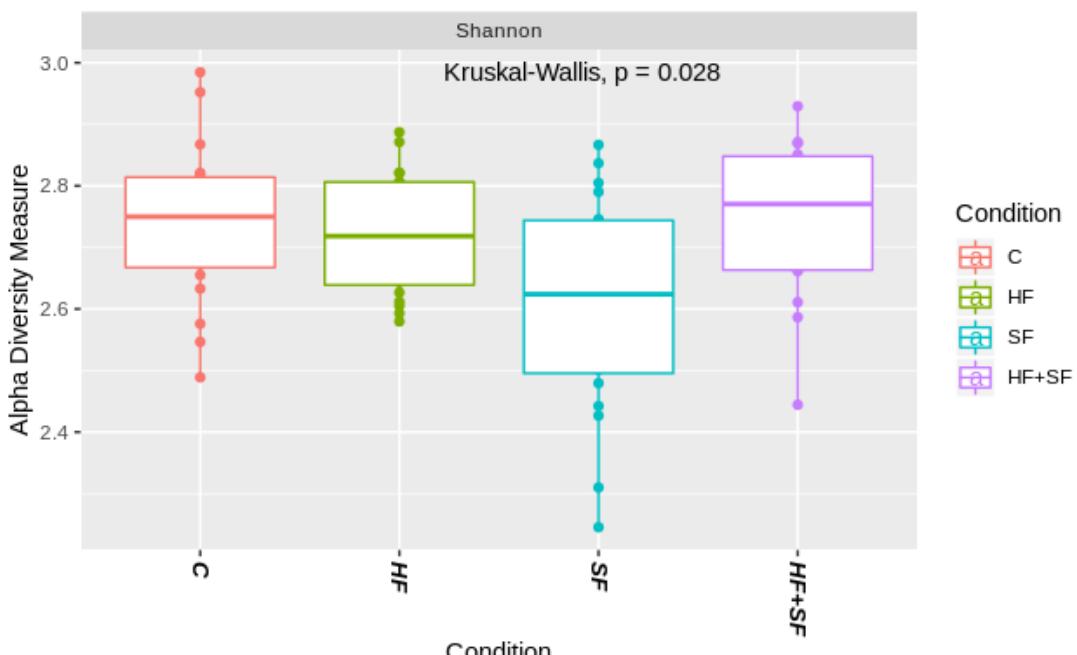
699 Figure 3

700 A



701

702 B



703

704 Figure 4

705

706

