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ABSTRACT  

Mapping protein-protein interactions at a proteome scale is critical to understanding how 

cellular signaling networks respond to stimuli. Since eukaryotic genomes encode 

thousands of proteins, testing their interactions one-by-one is a challenging prospect. 

High-throughput yeast-two hybrid (Y2H) assays that employ next-generation 

sequencing to interrogate cDNA libraries represent an alternative approach that 

optimizes scale, cost, and effort. We present NGPINT, a robust and scalable software to 

identify all putative interactors of a protein using Y2H in batch culture. NGPINT 

combines diverse tools to align sequence reads to target genomes, reconstruct prey 

fragments and compute gene enrichment under reporter selection. Central to this 

pipeline is the identification of fusion reads containing sequences derived from both the 

Y2H expression plasmid and the cDNA of interest. To reduce false positives, these 

fusion reads are evaluated as to whether the cDNA fragment forms an in-frame 

translational fusion with the Y2H transcription factor. NGPINT successfully recognized 

95% of interactions in simulated test runs. As proof of concept, NGPINT was tested 

using published data sets and recognized all validated interactions. NGPINT can be 

used in any organism with an available reference, thus facilitating the discovery of 

protein-protein interactions in non-model organisms. 

KEYWORDS 

Next-generation interaction screening, Yeast-Two Hybrid, Automated software, Protein-

Protein Interaction 
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INTRODUCTION 

All organisms respond to stimuli through a network of interacting proteins and other 

biomolecules. Such interactions play a pivotal role in biological processes such as 

signal transduction (Chen et al., 2016), gene transcription (Blaskovich et al., 2003), 

protein translation (Gumbart et al., 2009), disease regulation (Wang et al., 2012; 

Sharma et al., 2015) and developmental control (Braun and Gingras, 2012). It has been 

hypothesized that more than 80% of proteins form complexes with other proteins to 

carry out their respective functions (Berggård et al., 2007). Indeed, investigations into 

protein-protein interactions (PPI) are critical to evaluate information flow within the cell 

(Vinayagam et al., 2011; Nietzsche et al., 2016). Accordingly, PPI datasets 

(Arabidopsis_Interactome_Mapping_Consortium, 2011; Yu et al., 2011; Rolland et al., 

2014) have been used extensively to construct interaction databases to promote the  

understanding of protein function and regulation (Hermjakob et al., 2004; Oughtred et 

al., 2019; Szklarczyk et al., 2019).  

A multitude of in vitro and in vivo biochemical techniques have been designed to 

investigate and analyze binary PPI (Rao et al., 2014; Zhou et al., 2016). Commonly 

used methods include co-immunoprecipitation (Phizicky and Fields, 1995), protein pull 

down (Kaelin Jr et al., 1991), fluorescence and bioluminescence resonance energy 

transfer (Zal and Gascoigne, 2004; Rainey and Patterson, 2019), protein-fragment 

complementation assay (Galarneau et al., 2002; Remy and Michnick, 2006; Morell et 

al., 2009), and yeast two-hybrid (Walhout and Vidal, 2001; Vidal and Fields, 2014). 

These PPI assays are binary, i.e., they are used to interrogate a single pair of proteins, 

and thus demand significant time and resource commitment (Venkatesan et al., 2009). 

Among PPI detection methods, yeast two-hybrid (Y2H) has been widely used (Walhout 

and Vidal, 2001; Vidal and Fields, 2014). In Y2H, each protein of interest is expressed 

as a translational fusion to different domains of a transcription factor (TF), typically 

GAL4 or LexA. One protein (the “bait”) is fused to the DNA binding domain (DBD) and 

the second protein (the “prey”) is fused to the transcriptional activation domain (AD). If 

these two fusion proteins interact in yeast, reconstitution of transcription factor activity 

(DBD+AD) results in expression of reporter genes. Common reporters encode proteins 
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that are required for yeast growth on selective media or used for colorimetric assays. To 

discover novel interactions with no prior knowledge, Y2H can be adapted to screen a 

single bait against a prey cDNA library. Traditionally, this process has been limited to 

picking individual yeast colonies that grow on selective media and using Sanger 

sequencing to identify the putative interacting partners. Careful follow-up experiments 

must be performed to identify false positives, i.e., preys that can auto-activate the 

reporters in the absence of a bona fide PPI with the bait protein. 

The falling costs of next-generation sequencing have enabled more recent high-

throughput approaches to PPI discovery, collectively termed next-generation interaction 

screening (NGIS) (Suter et al., 2015). These methods employ deep sequencing to score 

the output from Y2H screens and can be scaled to process multiple interactions in 

parallel (Lewis et al., 2012; Weimann et al., 2013; Pashkova et al., 2016; Trigg et al., 

2017; Erffelinck et al., 2018; Kessens et al., 2018; Yang et al., 2018; Zong et al., 2020). 

Generally, NGIS involves performing Y2H selection in batch and pooling positive yeast 

colonies after reporter selection. Prey sequences are amplified by PCR and the 

resulting amplicons are analyzed by next-generation sequencing. The resulting reads 

enable identification of the prey cDNA sequences and read counts are used to quantify 

abundance of each cDNA relative to a control bait and/or non-selected growth 

conditions in the yeast populations.  

Model organisms such as human (Yu et al., 2011) and Arabidopsis (Trigg et al., 2017) 

have the advantage of full-length ORF libraries to facilitate genome-scale NGIS. 

However, most organisms outside models do not have available ORF resources and 

ORF libraries do not necessarily reflect the transcriptional landscape of specific 

conditions under study. Hence, the use of custom cDNA libraries derived from specific 

organisms and/or particular conditions of interest can be advantageous for large-scale 

PPI discovery in model and non-model organisms (Kessens et al., 2018; Zong et al., 

2020).  

In this report, we present NGPINT, a fully automated software platform to select 

candidate PPI from high-throughput Y2H-NGIS experiments. Unlike previously 

described pipelines (Pashkova et al., 2016), NGPINT can process data from any 
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organism with an available genome and/or a transcriptome reference. The software 

accepts a single csv file from the user containing the location of the fastq read files, 

output directory, Y2H plasmid sequences, and the genome and/or the transcriptome to 

use for read mapping. The pipeline aligns the reads, recognizes fusion reads from the 

alignments, trims Y2H plasmid sequence from fusion reads, generates gene counts, 

computes statistics on differential abundance, and automates the identification of 

putative interacting partners that are expressed as in-frame translational fusions. 

Finally, a report is generated which compiles the results of all analyses into a single file. 

The output from the pipeline facilitates the selection of high confidence 

genes/transcripts for further downstream validations.  

Using simulation and an experimental dataset, we assessed the success of NGPINT. 

NGPINT was able to deliver consistent performance recognizing over 95% of the 

simulated interactions with minimal false positives. Using recently published data 

(Erffelinck et al., 2018), use of NGPINT revealed all previously validated interactions. 

We also show that errors in base calls do not influence the detection of PPI. The 

software package can be accessed from https://github.com/Wiselab2/NGPINT released 

under MIT license and should be valuable to researchers performing NGIS to discover 

PPI in model and non-model organisms. 

 

IMPLEMENTATION of NGPINT 

Overview 

The NGPINT architecture comprises several features including trimming reads, aligning 

reads to a genome and/or transcriptome, read counting, detection of fusion reads, and 

calculation of differential abundance. To facilitate smooth operation among all software 

that NGPINT relies on, users are recommended to set up a conda environment that 

offers a virtual local environment and does not interfere with other conflicting software 

packages. The software has been developed in a modular style to allow future 

upgrades. The core of the software has been coded in Python; this enables it to be 

deployed cross-platform, from a personal computer to a cloud-based server. Should the 
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situation arise, the pipeline is designed to restart runs from the previous point of failure, 

eliminating the need to execute from the beginning. Additionally, most of the software 

modules have been parallelized to improve resource utilization and execution times.  

A flow chart outlining the data processing and analysis steps are presented in (Figure 
1).  In its current form, the workflow is optimized for use with baits mated individually to 

a prey cDNA library under selected and non-selected growth conditions. Processing 

begins with removal of adapter sequences using Trimmomatic (Bolger and Giorgi, 

2014). Trimmed reads are aligned to the reference with an initial run of STAR (Dobin et 

al., 2013) that aids the detection of fusion reads. A custom python script is used to trim 

Y2H plasmid sequence from the fusion reads, and then a second round of STAR is 

used to map the trimmed reads to the reference genome/transcriptome. Gene counts 

are obtained using Salmon (Patro et al., 2017) and DESeq2 (Love et al., 2014) is used 

for differential abundance analysis. Fusion read alignments are restructured and tagged 

which allows them to be differentiated from other kinds of reads when viewed in 

genome browsers. Finally, a file is generated that can assist users to construct primers 

for secondary validation of candidate PPI. Even though most of the modules are 

available individually, the implementation of those modules is tailored to address the 

unique aspects of Y2H data. NGPINT is fully automated to serve bench researchers 

with limited experience in the analysis of large-scale data sets.  
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Figure 1. Workflow of NGPINT. Interaction between the modules of NGPINT has been illustrated in 
this workflow diagram. Raw reads from selected and non-selected samples are processed an 

automated fashion to output potential interactors. Processes are depicted using blue colored boxes 
and the green colored boxes represents the input data. The arrows connecting two processes 

indicate flow of both data and order of execution. Arrows from data boxes (those in green color) 
illustrate flow of information. 

 

Central to this pipeline is the detection of Y2H plasmid/organism cDNA fusion reads that 

provide crucial information about the reading frame of the fusion protein expressed in 

yeast. Due to the stochastic nature of cDNA library preparation, detection of in-frame 

expression is essential to ensure that the native peptide sequence has been expressed 

as a translational fusion to the activation domain. A detailed description of each step is 

provided below: 

 

START

Adapter Trimming [Trimmomatic]

Identify fusion reads [STAR Round 1]

Trim Fusion reads [Custom Script]

Map Trimmed Fusion reads [STAR Round 2]

Quantify reads [Salmon]

Normalize & Enrichment analysis [DESeq2]

Ascertain in-frame fusion reads [Custom script]

Reconstruct fusion read alignments for 
genome browser viewing [Custom script]

Select interacting isoforms [IGV]

END

Selected 
Libraries

Non-
selected 
Libraries
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I. Inputs and Setup  

All inputs to the pipeline are accepted in the form of a comma separated value (csv) 

configuration file (Supplementary Table 1). A sample csv file is provided with the 

software application package. The genome is expected to be a single fasta file and the 

associated transcriptome annotations should be provided in GTF format. If a genome is 

unavailable, a transcriptome fasta file can be provided in its place. In addition, the 

pipeline requires the Y2H plasmid sequences of both the ‘prey’ and the ‘bait’ plasmids. 

Oligonucleotide primer sequences used for amplification of preys are supplied as 

anchors to detect fusion reads. NGPINT requires indexing for mapping short reads to 

the reference and the Y2H plasmid sequences. Users have the option of generating the 

genome index for read mapping prior to execution and this step only needs to be 

completed once. Index generation speeds up the execution considerably, especially for 

large genomes (> 3 Gb). Users are encouraged to use the pipeline to generate the 

indices for at least one bait and then reuse the same index for analyzing additional 

baits. Finally, fastq files, for each replicate, corresponding to the selected and the non-

selected conditions need to be provided. 

A. Validating inputs  

The pipeline starts by verifying all inputs. It checks for the presence of input files and 

ensures that all the files are in the appropriate formats. Checks are also performed to 

ensure that the requested CPUs and RAM are available. Genome indices used by the 

STAR aligner are generated if they are not provided by the user. Errors generated in 

this process are reported in the progress.log file in the output directory.  

B. Adapter trimming 

Adapter sequences are removed using Trimmomatic (Bolger and Giorgi, 2014). All 

adapter sequences required for trimming are provided with the software release. 

Custom adapters can be added if desired. No quality trimming is performed because of 

the improvement in sequencing technology rarely produces any incorrect bases (Pfeiffer 

et al., 2018). Also, most aligners allow for soft clipping of poor quality unmappable 
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bases, thus eliminating the need to trim low-quality bases. Illumina sequencers 

sometimes produce reads which have trailing and/or leading ‘N’. Reads that are flanked 

with ‘N’ introduce ambiguity, which are soft clipped by STAR. During in-frame detection, 

soft-clipped portions of reads are compared with plasmid sequence. The presence of 

'N’s will increase hamming distance of the trimmed portion preventing it to be detected 

as a fusion read. Hence, such sequences are trimmed due to possible interference with 

detection of in-frame fusion reads. 

C. Mapping to reference 

Adapter-trimmed reads are aligned to the reference genome and to the Y2H vector 

sequences using two cycles of STAR (Dobin et al., 2013). STAR version 2.7.3a is 

included in the software package. In the first round, STAR is configured to allow at least 

30% of a read to map. The low threshold of 30% ensures the capture of as many fusion-

reads as possible. STAR can map reads to the genome and simultaneously transfer the 

alignments to the transcriptome (if provided), thus speeding up the operation of the 

entire pipeline. Reads that align to the genome and to the flanking vector sequence with 

soft clips are mined for fusion reads. In the second round of alignment with STAR, only 

the identified fusion reads that aligned to the flanking vector sequence in the first round 

are re-mapped after trimming the flanking sequence. Lastly, alignments from the two 

rounds of STAR are merged together. 

II. Detection of Fusion Reads  

After performing batch Y2H and plasmid extraction, vector primers on either side of the 

cDNA insert are used to amplify prey sequences in the selected and non-selected yeast 

populations. (Supplementary Figure S1A). Sequence reads derived from both the 

flanking region of the Y2H plasmid and the prey cDNA are referred to as fusion reads 

(Supplementary Figure S1B). Reads that map to the reference but do not possess 

flanking plasmid sequence are referred to as fusion-free reads (Supplementary Figure 
S1C). The junction sequence at the 5’ end of the amplicon provides information 

essential to detect in-frame fusion.  
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Before mapping fusion reads to the reference, NGPINT Algorithm 1 is first used to trim 

away the plasmid sequence, and the remaining part of the read is flagged. Reads that 

contain only plasmid sequence are discarded because they should not map to 

transcripts derived from the experimental organism(s). Fusion reads containing 3’ vector 

and poly-A tails, longer than half the length of the read, are also discarded since they do 

not contain useful information for mapping. Fusion reads are detected from alignments 

that contain soft clips. If the majority of a fusion read is made of cDNA, then it will align 

to the organism reference and the flanking region will be soft clipped. The remaining 

fusion reads that contain longer flanking region will map to the plasmid sequence and 

the region corresponding to the organism reference will be soft-clipped. Aligners 

typically generate a string (termed CIGAR) for each alignment to indicate matches, 

mismatches, insertion and deletion of nucleotides between the read and the reference 

segment (https://genome.sph.umich.edu/wiki/SAM). The cigar string of read alignment, 

that bear soft-clips, is used to determine the exact junction between the vector and the 

cDNA in fusion reads. Reads are then split at this junction, and the trimmed reads are 

mapped back to the genome. These reads will be later used to detect in-frame fusions 

between the TF activation domain and the cDNA. If the 5’ primer for prey amplification is 

designed too far away from the junction, some reads may have a very small portion of 

the cDNA sequence post-trimming. Such a small trimmed sequence (<25 bp) usually 

has multiple hits to the organism reference. To address this ambiguity, paired-end 

libraries can be used to facilitate mapping the mate-pair to the reference. NGPINT 

restructures the alignments which enables examination of the fusion reads along with all 

other reads in a genome browser such as Integrated Genome Viewer (IGV), with the 

flanking plasmid sequence soft-clipped (Figure 2). Visualization in this manner is useful 

for confirming the exact cDNA fragments that were expressed from the Y2H expression 

plasmid. 
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Figure 2. Selective protein isoforms interact with the bait. Integrated genome viewer (IGV) was 

used to visualize read coverage of genes and their isoforms. NGPINT generates alignment files 
which can be loaded into IGV to select the isoforms that have missing coverage. (A) Out of two 

isoforms only one protein isoform is detected as enriched with the Arabidopsis thaliana protein 
NINJA (AT4G28910). Absense of read coverage on the last exon of transcript isoform AT5G49540.2 

clearly indicate that it was not detected (B) A single isoform was selected to be overexpressed and 

interacting with the simulated bait. 5’ fusion reads and polyA tail flanks the simulated overexpressed 
transcript. Fusion reads are shown in red and fusion-free reads are blue. Magnifying the 5’ region 

will enable viewing the junction region in nucleotide level precision. 
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Algorithm 1. Step-by-step protocol to trim vector portion from fusion reads 

 

A. Estimating read counts 

Read counts are estimated using Salmon (Patro et al., 2017) in alignment-based mode. 

Trimmed fusion reads and fusion-free reads aligned to the reference sequences are 

provided to Salmon as input. In addition to the alignment files, a transcript to gene map 

is also provided when genome and transcriptome are used as a reference. Salmon 

employs statistical models to account for sample-specific parameter effects and guard 

against GC bias. Salmon is executed on multiple cores to speed up the counting 

process. NGPINT will generate counts for a single replicate, or multiple replicates, 

depending on the user’s experimental design, for both the selected and non-selected 

conditions. 

 

Input : Alignments to genomic reference in SAM format

Output: Python dictionary containing details about fusion reads

1 fiveprimetrimreadinfo Ω {}

2 threeprimetrimreadinfo Ω {}

3 for (line in alignmentfile){

4 Extract read id, orientation, chromosome, cigar,read sequence and read quality from line
5 if (read is not Soft Clipped){

6 continue

7 }

8 if ( chromosome is either of the vectors){ // Majority of the read maps to one of the
vectors

9 if ( entire read is vector){

10 Discard read

11 // Since junction region is missing this read cannot be used for in-frame
detection

12 }

13 else{

14 Use cigar string to find position of junction

15 Update fiveprimetrimreadinfo or threeprimetrimreadinfo depending on which vector sequence was

detected in read

16 }

17 }

18 elif ( chromosome is the plasmid){

19 Discard read mapping to plasmid sequence

20 }

21 else{ // Majority of the read maps to the genome
22 Use cigar string to find position of junction

23 Match vector portion of the read to vector sequence

24 Update fiveprimetrimreadinfo or threeprimetrimreadinfo depending on which vector sequence was

detected in read

25 }

26 }
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B. Computing differential abundance  

The NGPINT pipeline calculates differential abundance of each gene between the 

selected and the non-selected conditions using DESeq2 (Love et al., 2014). DESeq2 

software was selected for this step because the Y2H-NGIS read counts resemble a 

negative binomial distribution (Pashkova et al., 2016). This analysis provides a relative 

measure to the enrichment levels of cDNAs after Y2H reporter selection, thus indicating 

a candidate PPI. The default median-of-ratios normalization (Anders and Huber, 2010) 

that is implemented in DESeq2 is not suitable for Y2H-NGIS because it assumes that 

only a small portion of the identified genes are differentially enriched (Velásquez-Zapata 

et al., 2020). Thus, raw read counts, ascertained by Salmon, were normalized using 

size factors estimated by library size (Dillies et al., 2013) prior to DESeq2 analysis.  

 C. Detecting in-frame fusion reads 

In addition to identifying differentially enriched genes, it is advantageous to ensure that 

the gene expression occurred in-frame with the TF. Reverse transcription using poly-A 

tail capture ensures priming of most expressed transcripts even if they are partial. 

Partial cDNA fragments and full-length cDNA containing 5’ UTR are not guaranteed to 

be in-frame with the coding region of the TF-AD.  

A potential solution is to construct cDNA libraries in all three reading frames. This 

ensures that all fragments (even the ones with 5’ UTR sequence) have the potential to 

be expressed as the native peptide sequence in one reading frame. Three-frame 

libraries can reduce false negatives but can also increase false positives by creating 

spurious peptide sequences, which might coincidentally interact with the ‘bait’ protein or 

be enriched for unidentified reasons. Hence, whether one selects a single- or three-

frame library, detecting the reading frame of enriched cDNAs is critical. 

Fusion reads mapped to each transcript are used to assess whether the transcript was 

expressed in the correct reading frame using NGPINT Algorithm 2. Transcript 

sequences, along with their CDS information, are extracted using the gffread utility of 

cufflinks (Trapnell et al., 2012). The cigar string of the alignment of each fusion read is 

interrogated to find the bases that are soft clipped and the location of mapping within 
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the transcript. The CDS start location, the mapping location and the number of soft 

clipped bases are used to determine if the transcript was expressed in-frame. If the 

distance between the mapped location and start of the CDS is a multiple of three, the 

read is declared to be in-frame with the CDS. Then, the fraction of fusion reads aligning 

to transcripts in-frame with the coding sequence can be used to prioritize interactions for 

secondary validations (Velásquez-Zapata et al., 2020). Samtools (Li et al., 2009) was 

used to perform operations on alignment files and is included with NGPINT. Alignments 

of fusion reads to the genome can be viewed in any genome browser (Figure 2B). 

 

 

Algorithm 2. Determining in-frame expression of fusion reads 

 

D. Generating visualizations for isoform selection and protein domain 
analysis 

Once cDNAs that are differentially enriched and expressed in-frame have been 

identified, secondary validation should be conducted to confirm interactions. Protein-

coding genes in eukaryotes often have multiple transcript isoforms, which encode 

different peptide sequences. These protein isoforms can have significant variability in 

Input : Fusion read alignments to the transcriptome

Output: Tags appended alignments to denote in-frame fusion

1 transcriptomeInfo Ω {} // Stores CDS start and end of each transcript
2 for (line in alignmentfile){

3 Extract read id, transcript id, mappingLocation, cigar from line
4 basesSoftClipped Ω Compute number of bases soft clipped from the alignment

5 CDSStart Ω CDS start site of transcript id collected from transcriptomeInfo

6 CDSEnd Ω CDS end site of transcript id collected from transcriptomeInfo

7 if (no bases are soft clipped or mappingLocation >= CDSEnd){

8 Declare read NOT expressed in-frame

9 continue

10 }

11 if (basesSoftClipped is divided by 3 and (mappingLocation - CDStart) is divisible by 3 ){

12 Declare read expressed in-frame

13 }

14 elif ( (basesSoftClipped-1) is divided by 3 and (mappingLocation - 1 - CDStart) is divisible by 3 ){

15 Declare read expressed in-frame

16 }

17 elif ( (basesSoftClipped-2) is divided by 3 and (mappingLocation - 2 - CDStart) is divisible by 3 ){

18 Declare read expressed in-frame

19 }

20 else{

21 Declare read NOT expressed in-frame

22 }

23 }

Algorithm 1: Determining in-frame expression of fusion reads



 15 

their amino acid content and contain alternate domain structure, and thus, it is possible 

that only a few of the isoforms interact with the target protein. An example is illustrated 

in (Figure 2A), where it is clear that out of two possible transcript sequences only one 

was captured during cDNA synthesis. To facilitate visualization of the junction between 

vector and cDNA, NGPINT Algorithm 3 is applied to modify the mappings of fusion 

reads to accommodate the previously trimmed vector sequence. Details about viewing 

the soft-clipped alignments can be found in the manual. When multiple cDNA fragments 

are identified from a single gene, these visualizations are useful to narrow down the 

minimal protein-coding region of the interacting prey (Figure 3). 

 

 

Figure 3. Domain specific interaction. (A) NINJA interacts with a portion of an Arabidopsis protein. 
Such cases help locate the domain of interaction and allow for a much more targeted study. (B) 

Similar cases were also simulated and was recognized by NGPINT. 
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Algorithm 3 Preparing file for viewing in genome browser 

 

III. Pipeline Outputs 

NGPINT generates a report file with all details about the mapping process, number of 

fusion reads recognized in each sample, and the duration of execution of each step. It 

also compiles a file with details about each transcript outlining the number of reads 

recognized in-frame for that transcript, statistics on differential abundance including fold 

change, p-values, and false discovery rate (FDR), location of any stop codons in the 

UTRs and transcripts per million (TPM) generated by Salmon (Patro et al., 2017). TPM 

uses the gene size to normalize counts accounting for the fact that longer genes are 

expected to produce more reads. We also have developed a companion module to 

prioritize candidate PPI using the Y2H-SCORES statistical workflow (Velásquez-Zapata 

et al., 2020). A wrapper has been included such that this statistical framework can be 

used directly from the NGPINT output and metadata files. Y2H-SCORES comprises a 

ranking system for the preys with three elements: 1) an enrichment score calculated 

from the selection/non-selection contrast, 2) when multiple baits have been screened, a 

specificity score defined as the degree of enrichment in pairwise comparisons of all 

baits under selection, and 3) an in-frame score calculated from the in-frame prey 

selection with the AD of the upstream transcription factor. Velásquez-Zapata and 

associates (2020) demonstrate that this scoring system efficiently ranks high-confidence 

interactors and is superior to differential abundance analysis alone. 

Input : Fusion read alignments to the genome

Output: Replaced fusion reads witth whole reads and cigar string modified

1 for (line in alignmentfile){

2 if (read in 5 prime fusion reads){

3 lengthTrimmed Ω Compare trimmed fusion read with untrimmed fusion read

4 Replace trimmed fusion read with untrimmed fusion read

5 if (read mapped in forward orientation){

6 Prepend cigar string with lengthTrimmed softclips

7 }

8 else{

9 Append cigar string with lengthTrimmed softclips

10 }

11 Append FR tag to denote in-frame or out-of-frame expression

12 }

13 }
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Finally, a file is generated which contains sequence information useful for follow-up 

experiments. Users are recommended to use this file to design primers for cloning 

genes and gene fragments for further confirmation via binary assays. While it is 

important to view reconstructed fusions along with the transcript, most genome viewers 

do not offer the functionality of copying the CDS portion of the genome sequence. 

Hence, NGPINT generates an additional text file to facilitate primer design (Figure 4). 

Each transcript is represented by a header, its nucleotide sequence and a sequence of 

symbols. The header contains the gene identifier, sample origin, and various statistics 

from the differential abundance analysis. Coding sequences are represented in block 

letters and UTR in small letters. Three symbols are used {‘*’,’X’,’ ’} to depict whether a 

fusion read originated from that loci. If no fusion reads map to a nucleotide then it is 

represented as a space. Nucleotides from where in-frame fusion reads originate, have 

been annotated with a ‘*’.  An ‘X’ has been put beneath nucleotides in the 5’ UTR from 

which fusion reads originate but have premature stop codons before the CDS (Figure 
4).  

 

 

Figure 4. File to assist in primer design. NGPINT generates a text file to design primers for 

cloning transcripts. Each transcript is represented by three lines. The first line contains the ID of the 
transcript followed by the sample name where it was detected. This is followed by the fold change, 

p-adjusted value and start and stop of the coding region. The entire nucleotide sequence is 
represented in the following line. Both 5’ and 3’ UTR is represented in small case whereas the 
nucleotides in the coding region are represented by upper case. The final line contains a string from 

the alphabet {‘*’,’X’, ‘ ‘}. Nucleotides from where fusion reads originate are marked with an asterisk ‘*’ 
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if they are expressed in-frame. If fusion reads arise from nucleotides in the 5’ UTR but have a 
premature stop-codon in the UTR, they are represented by an ‘X’. If no fusion reads originate from a 

nucleotide, then no symbol is printed beneath it. (A) AT1G71260.1 is enriched in-frame and fusion 
reads are mapped to location 387, which is within the coding region. No fusion reads originate from 

the 5’ UTR. Portion of the transcript expressed in-frame have been bolded. (B) All fusion reads 
originate from the 5’ UTR regions from locations 1, 84 and 86. Fusion reads starting from position 1 

and 86 are in-frame with the coding sequence. Those originating from position 84 will have 
premature stop codons before the CDS. 

 

RESULTS  

I. Simulated datasets 

To test the robustness of our pipeline, we simulated data from Arabidopsis thaliana 

since most gene models are well-established and complete. We used simulated data 

because it is impossible to know all true and false positives in an actual experiment. For 

the simulation, five baits were selected, each with its own unique interaction properties. 

To represent interacting preys, a set of transcripts were simulated to be differentially 

enriched. This set of overexpressed transcripts were considered true positives for each 

bait. Any other transcripts not belonging to this set but reported by NGPINT, were 

deemed false positives. Often overlapping genes, transcripts of the same gene or genes 

with similar sequence are incorrectly detected as putative candidates of interaction. 

Using Y2H-SCORES (Velásquez-Zapata et al., 2020) users can assign priorities to 

each interacting candidate which is designed to penalize a candidate if there is any 

evidence of it being a false positive. False negatives comprise those interacting 

isoforms which were simulated to be differentially enriched but was not reported by 

NGPINT. 

Short reads were simulated using the Polyester package (Frazee et al., 2015). 

Originally developed to simulate RNA-Seq reads, Polyester generates two samples per 

replicate – one sample corresponding to the control and the other sample containing 

higher/lower proportion of reads from differentially expressed transcripts. In the 

experiment described below, we considered the control sample as the non-selected 
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condition and the other sample as the selected condition. Prior to read generation, each 

transcript was flanked with the Y2H plasmid sequence. We also added enriched 

transcripts that were truncated, out of frame, and without vector sequence. A series of 

fold change values for each transcript (Supplementary Table 2), were provided to 

these scenarios as input to Polyester.  

Additionally, we tested parameters that could vary across different sequencing platforms 

and conditions. Read length, dispersion and error rate were altered to generate reads 

under different conditions. Illumina error rates were estimated to be 0.24 +/- 0.06% per 

base (Pfeiffer et al., 2018). Libraries with reads containing base-call errors, ranging from 

0.0001 per base to 0.05 per base, were simulated to test robustness. Four different 

libraries with read lengths 75, 100, 150 and 200 were simulated to see if higher read 

length could assist in better discovery of interacting candidates. Three replicates for 

each experiment was simulated. Replicates help in attaining superior estimates of 

dispersion leading to correct determination of fold change. In this experiment, we tested 

NGPINT with five different values of dispersion. In addition, we also simulated data at 

different coverages and varied the minimum trimmed length option to run NGPINT 

(Supplementary Table 1). Finally, NGPINT was executed with both paired- and single-

end reads.  

To assess the performance of NGPINT, we used an F1 score and Mathew’s correlation 

coefficient (MCC). F1 score is the harmonic mean of precision and recall. Higher F1 

scores signify better recognition of true interactions and fewer false interactions. MCC is 

a correlation coefficient between the true and predicted binary classes where a higher 

value indicates better correlation. MCC ranges from -1 to +1 and is suitable for several 

applications in bioinformatics where unbalanced class sizes exist.  

Results from the simulations are summarized in Table 1. Transcripts that had a log2 

fold change over 1, a p-adjusted value less than 0.01, and in-frame reads in at least two 

replicates were considered as putative candidates. The predicted candidates were 

compared with the ground truth as defined by our simulated reads to estimate the rate 

of false discovery. Differentially enriched transcripts simulated in the first mock bait 

represent an ideal situation where there were no truncated transcripts, no transcripts 
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without vector sequence and all transcripts were expressed in-frame. No false positives 

were detected in this case and 95% of true positives were identified. Partial transcripts 

were differentially enriched in bait2 (Supplementary Table 2) and they were captured 

appropriately (Figure 3). In bait3, bait4 and bait5 transcripts that were out-of-frame 

were differentially enriched. Several transcripts overlapped with other genes and/or 

transcripts that were intentionally overexpressed in bait3 and bait5. This sequence 

similarity resulted in an increase in read count that led DESeq2 to declare those 

transcripts as differentially abundant. For example, two out of 12 true interactions were 

missed in bait3, which decreased the recall to 0.83. NGPINT was able to recognize 

those transcripts and did not declare them as putative candidates, even when some had 

very high abundance (Supplementary Table 2). Analysis of experimental data below 

(Erffelinck et al., 2018) revealed differential enrichment of several transcripts which had 

no flanking vector sequence. Transcripts without vector were differentially enriched in 

bait3, bait4 and bait5. They were recognized as being differentially enriched by NGPINT 

but were not reported as potential interactors since they are lower priority candidates. 

Detailed description for each bait and transcript output by NGPINT is illustrated in 

(Supplementary Table 3). 

 

 

 

 

 

 

 

 

 

 



 21 

Table 1. Comparison between ground truth from Arabidopsis thaliana and predicted 
candidates of protein interaction under different simulated conditions 

 

 

Basis for 
comparison

Unaltered 
Parameters

Altered 
Parameter 

values

Bait 
number Precision Recall F1 score MCC

bait1 1.00 0.95 0.97 0.97
bait2 1.00 0.94 0.97 0.97
bait3 0.71 0.83 0.77 0.77
bait4 0.84 0.94 0.89 0.89
bait5 0.72 0.95 0.82 0.83

Error_rate
0 bait1 1.00 0.95 0.97 0.97

0.0001 bait1 1.00 0.95 0.97 0.97
0.0005 bait1 1.00 0.95 0.97 0.97
0.001 bait1 1.00 0.95 0.97 0.97
0.005 bait1 1.00 0.95 0.97 0.97
0.01 bait1 1.00 0.95 0.97 0.97
0.05 bait1 1.00 0.95 0.97 0.97

Dispersion
1 bait1 1.00 0.95 0.97 0.97
2 bait1 1.00 0.95 0.97 0.97
3 bait1 1.00 0.95 0.97 0.97
4 bait1 1.00 0.95 0.97 0.97
5 bait1 1.00 0.95 0.97 0.97

Minimum 
trimmed 

length
10 bait1 1.00 0.95 0.97 0.97
15 bait1 1.00 0.95 0.97 0.97
20 bait1 1.00 0.95 0.97 0.97
25 bait1 1.00 0.95 0.97 0.97
30 bait1 1.00 0.95 0.97 0.97
35 bait1 1.00 0.95 0.97 0.97
40 bait1 1.00 0.95 0.97 0.97
45 bait1 1.00 0.95 0.97 0.97
50 bait1 1.00 0.95 0.97 0.97

Coverage
1 bait1 1.00 0.95 0.97 0.97
5 bait1 0.95 0.95 0.95 0.95
10 bait1 1.00 0.95 0.97 0.97
15 bait1 0.90 0.95 0.93 0.93
20 bait1 0.95 0.95 0.95 0.95

Read Length
75 bait1 1.00 0.95 0.97 0.97

100 bait1 1.00 0.95 0.97 0.97
150 bait1 1.00 0.95 0.97 0.97

200 bait1 1.00 0.95 0.97 0.97

Paired

Unpaired bait1 1.00 0.95 0.97 0.97

Paired bait1 0.95 0.95 0.95 0.95
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Dispersion=3
No sequencing error 
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To summarize, simulations were carried out by varying dispersion, read coverage, read 

length and error rate. NGPINT was able to detect all interacting candidates in all 

conditions. For all the baits under different experimental conditions, almost all 

candidates were recalled successfully. Several genes bear close homology to other 

genes. Reads from these differentially enriched genes will map to all paralogs and 

create the illusion of interaction. This impacts precision since it increases false 

positives. Secondary validation is hence recommended to select the true positives. 

A. Impact of sequencing errors 

Modern sequencing technology seldom produce errors in base calling (Pfeiffer et al., 

2018) but are not completely free of  inaccuracies. Since the detection of fusion reads is 

crucial to confirm in-frame expression, we simulated datasets with intentional 

sequencing errors. As illustrated in Figure 5, an increase in sequence error rate 

resulted in a decrease of both fusion-read precision and fusion-read recall. The 

reduction is expected, since it becomes difficult for NGPINT to predict fusion reads 

bearing erroneous nucleotides at the junction between the TF and the transcript 

sequence. But the drop in the detection of fusion reads does not impact the accurate 

recognition of candidate interactors (Table 1) since there are other reads to 

compensate for those which bear sequencing errors.  
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Figure 5. Change in performance of fusion read detection with increasing error rate of 
sequencing. Very high fraction of fusion reads is correctly recognized when sequencing error is low. 
The proportion of true fusion reads among all reported fusion reads (precision) remains consistent 

with increasing error rate. The rate of recognition of true fusion reads (recall) reduces as error rate 
increases. 
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B. Impact of changing minimum trimmed length 

Fusion reads are hybrid sequence fragments that contain both plasmid sequence and 

organism cDNA. Random shearing of the amplicons prior to sequencing will produce 

some reads that contain a much lower proportion of vector sequence as compared to 

organism cDNA. After trimming, such fusion reads can yield very small sequences (<25 

bp) of the vector which is not necessarily sufficient to ascertain the actual existence of 

vector sequence. Hence, a minimum read length is imposed to accurately detect of 

fusion reads. A similar situation arises when the cDNA fragment is less than the 

provided threshold. Smaller cDNA fragments will map to multiple transcripts, resulting in 

an increased read count. Therefore, if a read is detected with a vector sequence or 

cDNA fragment less than this minimum length (default set to 25), then the read is not 

classified as a fusion read. We ran NGPINT with different values of minimum trimmed 

length. As the minimum length increased, fewer fusion reads were being recalled, while 

the precision remained same (Figure 6). However, this reduction in the number of 

detected fusion reads did not impact detection of true interacting candidates (Table 1).  
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Figure 6. Change in detection of fusion reads with increasing minimum trimmed length. 
Minimum length of vector portion of soft-clipped reads used as a cutoff to determine fusion reads. 

Increasing the cutoff leads to recognition of fewer fusion reads but does not impact precision. 
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C. Additional test cases 

NGPINT was able to report a very high fraction of true positives (>95%) in all the 

different categories of simulated data. NGPINT was able to report most of the true 

positives even when the gene counts were simulated to be highly dispersed (Table 1). 

Library size normalization was implemented which led to the adjustment of the highly 

dispersed read counts. Hence, DESeq2 was able to detect differentially enriched 

transcripts. Varying the read length or the coverage did not impact detection of 

interacting candidates (Table 1) showing that the NGPINT performs well with shorter 

reads and low coverage. The difference noted in precision for different coverages is due 

to the stochasticity of simulating reads by Polyester. Finally, for both paired and single 

ended reads, NGPINT was able to report a similar performance – an F1 score more 

than 0.95. 

II. Testing NGPINT with published datasets 

In addition to simulations, we used available experimental data (Erffelinck et al., 2018) 

to test the performance of NGPINT. Erffelinck and associates (2018) used as bait a 

previously identified interactor of the jasmonate signalling cascade known as NINJA 

(AT4G28910) (Pauwels et al., 2010). The Y2H experiment was performed with one 

replicate and empty vector was used as a negative control. NGPINT was launched with 

the selected sample from the bait NINJA and the empty vector as background. NGPINT 

was able to recognize 42 genes which were detected to be highly differentially enriched 

as compared with the empty vector (Signal-to-Noise ratio (SNR) > 2) and also in-frame 

with the Gal-4 TF (Supplementary Table 4 [rows 12-53]). Additionally, NGPINT was 

able to find all 7 previously known NINJA interactors (Supplementary Table 4 [rows 5-

11]) and also detect the 4 newly reported interactors (Supplementary Table 4 [rows 1-

4]) identified by NGPINT. In order to take full advantage of NGPINT and its companion 

statistical software, Y2H SCORES (Velásquez-Zapata et al., 2020), the experimental 

design should include multiple replicates. Nevertheless, when NGPINT was executed 

with the data provided by Erffelinck and associates (2018), the output file successfully 

returned gene counts, SNR and other relevant information (as outlined in III. Pipeline 
outputs).  
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The Y2H-NGIS protocol introduces additional unique aspects, for example, expression 

of overlapping genes or partial transcripts, which require careful consideration. Each of 

these cases are discussed in detail below. 

Selecting transcripts for secondary validation 

Most eukaryotic genes have multiple transcript isoforms. Often these transcripts share 

the same sequence, depending on splice junctions. Even when one transcript encodes 

a protein that interacts with the bait, sequence similarity will prompt the aligner to map 

reads to all the transcripts. However, it is possible to compare the structures of different 

transcripts of the same gene, in order to eliminate those transcripts that were not 

detected. Subtle differences among the transcripts, like presence of unique exons, can 

be used to select the candidate transcripts. For example, reads originating from the 

Arabidopsis thaliana gene AT5G49540, a Rab5-interacting family protein, map to both 

transcript isoforms (Figure 2A). Both the transcripts share 3 exons but isoform 

AT5G49540.1 contains an additional 4th exon. Absence of read coverage on the 3rd 

exon of the AT5G49540.2 isoform and coverage of the 4th exon of AT5G49540.1 is a 

clear indication that only AT5G49540.1 was detected. Thus, this analysis can prioritize 

transcript isoforms for secondary validation. NGPINT was also able to detect such 

cases from the simulated experiments (Figure 2B). 

B. The case of overlapping transcripts 

Despite the large size of eukaryotic genomes, genes can be co-located in the same 

genomic region and overlap. Reads originating from overlapping regions map to both 

transcripts boosting the read count for transcripts whose protein did not interact with the 

bait. Read count estimators like Salmon adjusts read counts for transcripts that are only 

partially covered by reads. One such example is the A. thaliana gene AT5G17280, 

which is present in the 3’ UTR region of a second gene, AT5G17290. The coverage plot 

indicates that only AT5G17280 is a putative interactor for NINJA. However, read counts 

for AT5G17290 are artificially increased and also register a high SNR (Supplementary 
Figure 2). Hence, careful analysis of the coverage plots should be performed before 

proceeding with any further secondary validations. 
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C. The case of partial transcripts 

Y2H-NGIS utilizes a cDNA library derived from mRNA isolated from a species and 

condition of interest. Due to the stochastic nature of cDNA synthesis, this process does 

not always reverse transcribe full-length cDNAs for all transcripts, resulting in partial 

cDNAs. However, due to the modular nature of proteins, this can be advantageous in 

Y2H-NGIS because it allows the user to narrow down specific protein domains that 

interact with the bait of interest. As shown in (Figure 3A), NINJA appears to interact 

with a protein domain present in the last 40% of the chaperone protein AT5G20890. 

NGPINT was also able to detect differential abundance of truncated transcripts with 

simulated data (Figure 3B). 

 

DISCUSSION 

Recent developments in sequencing technology have enabled the rapid increase in the 

availability of high-quality genomes for many non-model species, including plant species 

of agricultural importance (Van Dijk et al., 2014). Accurate interpretation of protein-

protein interactions underlying signaling networks in these species is key to breeding 

crops with enhanced stress tolerance. Y2H-NGIS offers a fast, accurate and cost-

effective approach to discover PPI and map protein interactomes in both model and 

under-studied organisms (Lewis et al., 2012; Weimann et al., 2013; Pashkova et al., 

2016; Trigg et al., 2017; Erffelinck et al., 2018). Although numerous technical 

advancements have been achieved in Y2H-NGIS protocols, a generalized data analysis 

pipeline applicable to any biosystem is needed to robustly identify candidate interacting 

proteins. Here we describe NGPINT - a software package that automates the entire 

process of analyzing data from Y2H-NGIS protocols. Once executed, NGPINT can run 

without manual intervention and is configured to run both on Mac and Linux, requiring 

minimal installations. It is optimized to execute its operations in parallel on the number 

of permitted CPU cores and can be run on HPC clusters. For example, our analysis 

using the NINJA dataset (Erffelinck et al., 2018) was completed in less than 1 hour.  
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Sequence libraries resulting from Y2H-NGIS possess two unique attributes: 1) fusion 

reads which comprise a hybrid of the prey plasmid and the desired enriched transcripts; 

these contain junction information to identify transcripts expressed in-frame, and 2) high 

variability of gene counts within replicates.  

A. Fusion reads 

NGPINT detects fusion reads by two rounds of alignments of the input prey sequences 

using STAR (Dobin et al., 2013); fusion reads detected in the first round are trimmed 

and realigned in the second run, resulting in optimum number of reads aligned to the 

reference. Accordingly, since cDNA fragments are randomly sheared prior to 

sequencing, some of these fusion reads contain very short vector sequence or cDNA 

fragments. This can pose a challenge when using single-end data given that such a 

small sequence may not be sufficient to align to its reference. Alternatively, paired-end 

data do not suffer from this issue because mapping of the mate pair can be used to 

determine the transcript from where the fragment had originated.  

B. Gene Counts 

Alignments to the transcripts are generated from the genomic mappings and Salmon 

(Patro et al., 2017) was used to estimate gene counts. DESeq2 (Love et al., 2014) was 

used to estimate differential abundance, however, library size normalization (Dillies et 

al., 2013) was used as opposed to the default median-of-ratios normalization (Anders 

and Huber, 2010). This is because Y2H-NGIS is expected to exhibit enrichment of all 

the identified preys in the selected samples. However, this violates the assumption of 

the median-of-ratios method that requires only a small proportion of the genes to be 

differentially enriched. In the Y2H-SCORES software workflow, Velásquez-Zapata and 

associates (2020) showed that using library size normalization over median-of-ratios 

method has significantly reduced variation of read counts among replicates, thereby 

improving the power of the statistical tests. 

C. Summary 

NGPINT displays exceptional performance when it was executed with data which was 

simulated with different kinds of errors proving its robustness. NGPINT was able to 
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recall 95% of the true positives when sequencing errors were intentionally introduced in 

the read data. Difference in read lengths or the choice of paired-end over single-end 

sequencing did not impact the performance of the pipeline. NGPINT was able to recall 

most of the true positives even at high dispersion of read counts among the replicates.  

NGPINT could also recognize transcripts that were (1) differentially abundant but were 

expressed out-of-frame (2) transcripts with no flanking plasmid sequence and (3) 

transcripts not having read coverage across its entire length.  

One drawback of high-throughput PPI techniques is the presence of auto-activating 

preys that lead to detection of spurious PPI. One method to detect such cases is to 

screen many baits and discard those preys that interact with all the baits. If the study is 

restricted to a few baits, background controls (e.g., empty vector) could be screened to 

identify and remove the auto-activating preys (Suter et al., 2015). Also, use of the 

companion software, Y2H-SCORES (Velásquez-Zapata et al., 2020), offers a 

comprehensive framework to evaluate large-scale PPI screens. 

NGPINT offers a user-friendly and cross-platform analysis to detect PPI from NGIS 

datasets without the need for any specialized computer hardware support. This tool can 

be further integrated into other complex computational pipelines. Streamlining different 

bioinformatics tools into a single, easy to use software that addresses unique aspects of 

Y2H-NGIS data will facilitate rapid PPI mapping in any system under study. 

 

AVAILABILITY OF CODE, DATA, AND MATERIALS 

 

The python and R scripts code including the software manual file for NGPINT software 

is provided at GitHub (https://github.com/Wiselab2/NGPINT). Additionally, we 

implemented a python script to link the Y2H-SCORES functions (Velásquez-Zapata et 

al., 2020) with the NGPINT pipeline, which will facilitate the integration of both software 

packages. Using this, it is possible to run the Y2H-SCORES from the NGPINT outputs. 

Codes and instruction to use Y2H-SCORES can be obtained from 
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(https://github.com/Wiselab2/Y2H-SCORES). Please report any issues regarding the 

NGPINT software at https://github.com/Wiselab2/NGPINT/issues. 

 

SUPPLEMENTARY DATA 

Supplementary Figure 1. Overview of prey insert amplification and sequencing 

process 

Supplementary Figure 2. Overlapping transcripts causing increase in read counts. 

Supplementary Table 1.  Description of the arguments of NGPINT 

Supplementary Table 2.  Fold change provided to Polyester for simulation 

Supplementary Table 3.  Detailed description of each interaction reported by NGPINT 

on the simulated data 

Supplementary Table 4.  Detailed description of each interaction reported by NGPINT 

on the NINJA data 
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