

1 Pervasive duplication of tumor suppressors in Afrotherians during

2 the evolution of large bodies and reduced cancer risk

3

4 Juan Manuel Vazquez^{1,2} and Vincent J. Lynch^{3,*}

5

⁶ ¹ Department of Human Genetics, The University of Chicago, 920 East 58th Street, CLSC 319C,
⁷ Chicago, IL 60637, USA.

⁸ ² Current Address: Department of Integrative Biology, University of California – Berkeley, 4111
⁹ Valley Life Sciences MC3140, Berkeley, CA 94720-3140, USA.

³ Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA.

12

13 *Correspondence: vilynch@buffalo.edu

14 **Abstract**

15 **The risk of developing cancer is correlated with body size and lifespan within species.**
16 **Between species, however, there is no correlation between cancer and either body size or**
17 **lifespan, indicating that large, long-lived species have evolved enhanced cancer protection**
18 **mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting**
19 **lineage for the exploration of mechanisms underlying the evolution of augmented cancer**
20 **resistance because they evolved large bodies recently within a clade of smaller bodied**
21 **species (Afrotherians). Here, we explore the contribution of gene duplication to body size**
22 **and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication**
23 **was pervasive in Afrotherian genomes, rather than restricted to Proboscideans.**
24 **Proboscideans, however, have duplicates in unique pathways that may underlie some**
25 **aspects of their remarkable anti-cancer cell biology. These data suggest that duplication**
26 **of tumor suppressor genes facilitated the evolution of increased body size by**
27 **compensating for decreasing intrinsic cancer risk.**

28 **Introduction**

29 Among the constraints on the evolution of large bodies and long lifespans in animals is an
30 increased risk of developing cancer. If all cells in all organisms have a similar risk of malignant
31 transformation and equivalent cancer suppression mechanisms, then organisms with many cells
32 should have a higher prevalence of cancer than organisms with fewer cells, particularly because
33 large and small animals have similar cell sizes [1]. Consistent with this expectation there is a
34 strong positive correlation between body size and cancer incidence within species; for example,
35 cancer incidence increases with increasing adult height in humans [2, 3] and with increasing body
36 size in dogs, cats, and cattle [4–6]. There is no correlation, however, between body size and
37 cancer risk between species; this lack of correlation is often referred to as ‘Peto’s Paradox’ [7–9].
38 Indeed, cancer prevalence is relatively stable at ~5% across species with diverse body sizes
39 ranging from the minuscule 51g grass mouse to the gargantuan 4800kg African elephant [10–12].
40 While the ultimate resolution to Peto’s Paradox is obvious, large bodied and long-lived species
41 evolved enhanced cancer protection mechanisms, identifying and characterizing the proximate
42 genetic, molecular, and cellular mechanisms that underlie the evolution of augmented cancer
43 protection has proven difficult [13–17].

44 One of the challenges for discovering how animals evolved enhanced cancer protection
45 mechanisms is identifying lineages in which large bodied species are nested within species with
46 small body sizes. Afrotherian mammals are generally small-bodied, but also include the largest
47 extant land mammals. For example, maximum adult weights are ~70g in golden moles, ~120g in
48 tenrecs, ~170g in elephant shrews, ~3kg in hyraxes, and ~60kg in aardvarks [18]. In contrast,
49 while extant hyraxes are relatively small, the extinct *Titanohyrax* is estimated to have weighed
50 ~1300kg [19]. The largest living Afrotheria are also dwarfed by the size of their recent extinct
51 relatives: extant sea cows such as manatees are large bodied (~322-480kg) but are relatively
52 small compared to the extinct Stellar's sea cow which is estimated to have weight ~8,000-
53 10,000kg [20]. Similarly African Savannah (4,800kg) and Asian elephants (3,200kg) are large, but
54 are dwarfed by the truly gigantic extinct Proboscideans such as *Deinotherium* (~12,000kg),
55 *Mammut borsoni* (16,000kg), and the straight-tusked elephant (~14,000kg) [21]. Remarkably,
56 these large-bodied Afrotherian lineages are nested deeply within small bodied species (**Fig. 1**)
57 [22-25], indicating that gigantism independently evolved in hyraxes, sea cows, and elephants
58 (Paenungulata). Thus, Paenungulates are an excellent model system in which to explore the
59 mechanisms that underlie the evolution of large body sizes and augmented cancer resistance.

60 Many mechanisms have been suggested to resolve Peto's paradox, including a decrease
61 in the copy number of oncogenes, an increase in the copy number of tumor suppressor genes [7,
62 8, 26], reduced metabolic rates, reduced retroviral activity and load [27], and selection for 'cheater'
63 tumors that parasitize the growth of other tumors [28], among many others. Among the most
64 parsimonious routes to enhanced cancer resistance may be through an increased copy number
65 of tumor suppressors. For example, transgenic mice with additional copies of *TP53* have reduced
66 cancer rates and extended lifespans [29], suggesting that changes in the copy number of tumor
67 suppressors can affect cancer rates. Indeed, candidate genes studies have found that elephant
68 genomes encode duplicate tumor suppressors such as *TP53* and *LIF* [10, 17, 30] as well as other
69 genes with putative tumor suppressive functions [31, 32]. These studies, however, focused on a
70 priori candidate genes, thus it is unclear whether duplication of tumor suppressor genes is a
71 general phenomenon in the elephant lineage (or reflects an ascertainment bias).

72 Here we trace the evolution of body mass, cancer risk, and gene copy number variation
73 across Afrotherian genomes, including multiple living and extinct Proboscideans (**Fig. 1**), to
74 investigate whether duplications of tumor suppressors coincided with the evolution of large body
75 sizes. Our estimates of the evolution of body mass across Afrotheria show that large body masses

76 evolved in a stepwise manner, similar to previous studies [22–25] and coincident with dramatic
77 reductions in intrinsic cancer risk. To explore whether duplication of tumor suppressors occurred
78 coincident with the evolution of large body sizes, we used a genome-wide Reciprocal Best BLAT
79 Hit (RBBH) strategy to identify gene duplications, and used maximum likelihood to infer the
80 lineages in which those duplications occurred. Unexpectedly, we found that duplication of tumor
81 suppressor genes was common in Afrotherians, both large and small. Gene duplications in the
82 Proboscidean lineage, however, were uniquely enriched in pathways that may explain some of
83 the unique cancer protection mechanisms observed in elephant cells. These data suggest that
84 duplication of tumor suppressor genes is pervasive in Afrotherians and proceeded the evolution
85 of species with exceptionally large body sizes.

86 Methods

87 Ancestral Body Size Reconstruction

88 We first assembled a time-calibrated supertree of Eutherian mammals by combining the
89 time-calibrated molecular phylogeny of Bininda-Emonds *et al.* [33] with the time-calibrated total
90 evidence Afrotherian phylogeny from Puttick and Thomas [25]. While the Bininda-Emonds *et*
91 *al.* [33] phylogeny includes 1,679 species, only 34 are Afrotherian, and no fossil data are included.
92 The inclusion of fossil data from extinct species is essential to ensure that ancestral state
93 reconstructions of body mass are not biased by only including extant species. This can lead to
94 inaccurate reconstructions, for example, if lineages convergently evolved large body masses from
95 a small-bodied ancestor. In contrast, the total evidence Afrotherian phylogeny of Puttick and
96 Thomas [25] includes 77 extant species and fossil data from 39 extinct species. Therefore, we
97 replaced the Afrotherian clade in the Bininda-Emonds *et al.* [33] phylogeny with the Afrotherian
98 phylogeny of Puttick and Thomas [25] using Mesquite. Next, we jointly estimated rates of body
99 mass evolution and reconstructed ancestral states using a generalization of the Brownian motion
100 model that relaxes assumptions of neutrality and gradualism by considering increments to
101 evolving characters to be drawn from a heavy-tailed stable distribution (the “Stable Model”)
102 implemented in StableTraits [34]. The stable model allows for large jumps in traits and has
103 previously been shown to out-perform other models of body mass evolution, including standard
104 Brownian motion models, Ornstein–Uhlenbeck models, early burst maximum likelihood models,
105 and heterogeneous multi-rate models [34].

106 **Identification of Duplicate Genes**

107 *Reciprocal Best-Hit BLAT*: We developed a reciprocal best hit BLAT (RBHB) pipeline to identify
108 putative homologs and estimate gene copy number across species. The Reciprocal Best Hit
109 (RBH) search strategy is conceptually straightforward: 1) Given a gene of interest G_A in a query
110 genome A , one searches a target genome B for all possible matches to G_A ; 2) For each of these
111 hits, one then performs the reciprocal search in the original query genome to identify the highest-
112 scoring hit; 3) A hit in genome B is defined as a homolog of gene G_A if and only if the original gene
113 G_A is the top reciprocal search hit in genome A . We selected BLAT [35] as our algorithm of choice,
114 as this algorithm is sensitive to highly similar (>90% identity) sequences, thus identifying the
115 highest-confidence homologs while minimizing many-to-one mapping problems when searching
116 for multiple genes. RBH performs similar to other more complex methods of orthology prediction
117 and is particularly good at identifying incomplete genes that may be fragmented in low quality/poor
118 assembled regions of the genome [36, 37].

119 *Effective Copy Number By Coverage*: In low-quality genomes, many genes are fragmented
120 across multiple scaffolds, which results in BLA(S)T-like methods calling multiple hits when in
121 reality there is only one gene. To compensate for this, developed a novel statistic, Estimated Copy
122 Number by Coverage (ECNC), which averages the number of times we hit each nucleotide of a
123 query sequence in a target genome over the total number of nucleotides of the query sequence
124 found overall in each target genome (Fig. S1). This allows us to correct for genes that have been
125 fragmented across incomplete genomes, while accounting for missing sequences from the human
126 query in the target genome. Mathematically, this can be written as:

$$127 ECNC = \frac{\sum_{n=1}^l C_n}{\sum_{n=1}^l \text{bool}(C_n)} \quad (1)$$

128 Where n is a given nucleotide in the query, l is the total length of the query, C_n is the number of
129 instances that n is present within a reciprocal best hit, and $\text{bool}(C_n)$ is 1 if $C_n > 1$ or 0 if $C_n = 1$.

130 *RecSearch Pipeline*: We created a custom Python pipeline for automating RBHB searches
131 between a single reference genome and multiple target genomes using a list of query sequences
132 from the reference genome. For the query sequences in our search, we used the hg38 UniProt
133 proteome [38], which is a comprehensive set of protein sequences curated from a combination of
134 predicted and validated protein sequences generated by the UniProt Consortium. In order to
135 refine our search, we omitted protein sequences originating from long, noncoding RNA loci

136 (e.g. LINC genes); poorly-studied genes from predicted open reading frames (C-ORFs); and
137 sequences with highly repetitive sequences such as zinc fingers, protocadherins, and transposon-
138 containing genes, as these were prone to high levels of false positive hits. After filtering out
139 problematic protein queries, we then used our pipeline to search for all copies of 18011 query
140 genes in publicly available Afrotherian genomes [4], including African savannah elephant
141 (*Loxodonta africana*: loxAfr3, loxAfr4, loxAfrC), African forest elephant (*Loxodonta cyclotis*:
142 loxCycF), Asian Elephant (*Elephas maximus*: eleMaxD), Woolly Mammoth (*Mammuthus*
143 *primigenius*: mamPriV), Colombian mammoth (*Mammuthus columbi*: mamColU), American
144 mastodon (*Mammut americanum*: mamAmel), Rock Hyrax (*Procavia capensis*: proCap1,
145 proCap2, proCap2HiC), West Indian Manatee (*Trichechus manatus latirostris*: triManLat1,
146 triManLat1HiC), Aardvark (*Orycteropus afer*: oryAfe1, oryAfe1HiC), Lesser Hedgehog Tenrec
147 (*Echinops telfairi*: echTel2), Nine-banded armadillo (*Dasyurus novemcinctus*: dasNov3),
148 Hoffman's two-toed sloth (*Choloepus hoffmannii*: choHof1, choHof2, choHof2HiC), Cape golden
149 mole (*Chrysochloris asiatica*: chrAsi1), and Cape elephant shrew (*Elephantulus edwardii*:
150 eleEdw1).

151 *Query gene inclusion criteria:* To assemble our query list, we began with the *hg38* human
152 proteome from UniProt (Accession UP000005640) [38]. We first removed all unnamed genes
153 from the UP000005640. Next, we excluded genes from downstream analyses for which
154 assignment of homology was uncertain, including uncharacterized ORFs (991 genes), LOC (63
155 genes), HLA genes (402 genes), replication dependent histones (72 genes), odorant receptors
156 (499 genes), ribosomal proteins (410 genes), zinc finger transcription factors (1983 genes), viral
157 and repetitive-element-associated proteins (82 genes) and any protein described as either
158 "Uncharacterized," "Putative," or "Fragment" by UniProt in UP000005640 (30724 genes), leaving
159 us with a final set of 37,582 query protein isoforms, corresponding to 18,011 genes.

160 *Duplication gene inclusion criteria:* In order to condense transcript-level hits into single gene loci,
161 and to resolve many-to-one genome mappings, we removed exons where transcripts from
162 different genes overlapped, and merged overlapping transcripts of the same gene into a single
163 gene locus call. The resulting gene-level copy number table was then combined with the
164 maximum ECNC values observed for each gene in order to call gene duplications. We called a
165 gene duplicated if its copy number was two or more, and if the maximum ECNC value of all the
166 gene transcripts searched was 1.5 or greater; previous studies have shown that incomplete
167 duplications can encode functional genes [17, 30], therefore partial gene duplications were

168 included provided they passed additional inclusion criteria (see below). The ECNC cut-off of 1.5
169 was selected empirically, as this value minimized the number of false positives seen in a test set
170 of genes and genomes. The results of our initial search are summarized in **Fig. 3A**. Overall, we
171 identified 13880 genes across all species, or 77.1% of our starting query genes.

172 *Genome Quality Assessment using CEGMA*: In order to determine the effect of genome quality
173 on our results, we used the gVolante webserver and CEGMA to assess the quality and
174 completeness of the genome [39, 40]. CEGMA was run using the default settings for mammals
175 (“Cut-off length for sequence statistics and composition” = 1; “CEGMA max intron length” =
176 100000; “CEGMA gene flanks” = 10000, “Selected reference gene set” = CVG). For each
177 genome, we generated a correlation matrix using the aforementioned genome quality scores, and
178 either the mean Copy Number or mean ECNC for all hits in the genome. We observed that the
179 percentage of duplicated genes in non-Pseudoungulatan genomes was higher (12.94% to
180 23.66%) than Pseudoungulatan genomes (3.26% to 7.80%). Mean Copy Number, mean ECNC,
181 and mean CN (the lesser of Copy Number and ECNC per gene) moderately or strongly correlated
182 with genomic quality, such as LD50, the number of scaffolds, and contigs with a length above
183 either 100K or 1M (**Fig. S3**). The Afrosoricidians had the greatest correlation between poor
184 genome quality and high gene duplication rates, including larger numbers of private duplications.
185 The correlations between genome quality metric and number of gene duplications was particularly
186 high for Cape golden mole (*Chrysochloris asiatica*: chrAsi1) and Cape elephant shrew
187 (*Elephantulus edwardii*: eleEdw1), therefore we excluded these species from downstream
188 pathway enrichment analyses.

189 Determining functionality of duplicated via gene expression

190 In order to ascertain the functional status of duplicated genes, we generated de novo
191 transcriptomes using publicly-available RNA-sequencing data for African savanna elephant, West
192 Indian manatee, and nine-banded armadillo (**Table S2**). We mapped reads to the highest quality
193 genome available for each species, and assembled transcripts using HISAT2 and StringTie [41–
194 43]. We found that many of our identified duplicates had transcripts mapping to them above a
195 Transcripts Per Million (TPM) score of 2, suggesting that many of these duplications are
196 functional. RNA-sequencing data was not available for Cape golden mole, Cape elephant shrew,
197 rock hyrax, aardvark, or the lesser hedgehog tenrec.

198 **Reconstruction of Ancestral Copy Numbers**

199 We encoded the copy number of each gene for each species as a discrete trait ranging
200 from 0 (one gene copy) to 31 (for 32+ gene copies) and used IQ-TREE to select the best-fitting
201 model of character evolution [44–48], which was inferred to be a Jukes-Cantor type model for
202 morphological data (MK) with equal character state frequencies (FQ) and rate heterogeneity
203 across sites approximated by including a class of invariable sites (I) plus a discrete Gamma model
204 with four rate categories (G4). Next we inferred gene duplication and loss events with the empirical
205 Bayesian ancestral state reconstruction (ASR) method implemented in IQ-TREE [44–48], the best
206 fitting model of character evolution (MK+FQ+GR+I) [49, 50], and the unrooted species tree for
207 *Atlantogenata*. We considered ancestral state reconstructions to be reliable if they had Bayesian
208 Posterior Probability (BPP) ≥ 0.80 ; less reliable reconstructions were excluded from pathway
209 analyses.

210 **Pathway Enrichment Analysis**

211 To determine if gene duplications were enriched in particular biological pathways, we used
212 the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt)[51] to perform Over-Representation
213 Analysis (ORA) using the Reactome database [52]. Gene duplicates in each lineage were used
214 as the foreground gene set, and the initial query set was used as the background gene set.
215 WebGestalt uses a hypergeometric test for statistical significance of pathway over-representation,
216 which we refined using two methods: an False Discovery Rate (FDR)-based approach, and an
217 empirical p-value approach [53]. The Benjamini-Hochberg FDR multiple-testing correction was
218 generated by WebGestalt. In order to correct P-values based on an empirical distribution, we
219 modified the approach used by Chen *et al.* in Enrichr [53] to generate a “combined score” for each
220 pathway based on the hypergeometric P-value from WebGestalt, and a correction for expected
221 rank for each pathway. In order to generate the table of expected ranks and variances for this
222 approach, we randomly sampled foreground sets of 10-5,000 genes from our background set
223 5000 times, and used WebGestalt ORA to obtain a list of enriched terms and P-values for each
224 run; we then compiled a table of Reactome terms with their expected frequencies and standard
225 deviation. This data was used to calculate a Z-score for terms in an ORA run, and the combined
226 score was calculated using the formula $C = \log(p)z$.

227 **Estimating the Evolution of Cancer Risk**

228 The dramatic increase in body mass and lifespan in some *Afrotherian* lineages, and the
229 relatively constant rate of cancer across species of diverse body sizes [10], indicates that those
230 lineages must have also evolved reduced cancer risk. To infer the magnitude of these reductions
231 we estimated differences in intrinsic cancer risk across extant and ancestral *Afrotherians*.
232 Following Peto [54], we estimate the intrinsic cancer risk (K) as the product of risk associated with
233 body mass and lifespan. In order to determine (K) across species and at ancestral nodes (see
234 below), we first estimated ancestral lifespans at each node. We used Phylogenetic Generalized
235 Least-Square Regression (PGLS) [55, 56], using a Brownian covariance matrix as implemented
236 in the R package *ape* [57], to calculate estimated ancestral lifespans across *Atlantogenata* using
237 our estimates for body size at each node. In order to estimate the intrinsic cancer risk of a species,
238 we first inferred lifespans at ancestral nodes using PGLS and the model
239 $\ln(\text{lifespan}) = \beta_1 \text{corBrowninan} + \beta_2 \ln(\text{size}) + \epsilon$. Next, we calculated K_1 at all nodes, and
240 then estimated the fold-change in cancer susceptibility between ancestral and descendant nodes
241 (**Fig. 2**). Next, in order to calculate K_1 at all nodes, we used a simplified multistage cancer risk
242 model for body size D and lifespan t : $K \approx Dt^6$ [9, 54, 58, 59]. The fold change in cancer risk
243 between a node and its ancestor was then defined as $\log_2 \left(\frac{K_2}{K_1} \right)$.

244 **Data Analysis**

245 All data analysis was performed using R version 4.0.2 (2020-06-22), and the complete
246 reproducible manuscript, along with code and data generation pipeline, can be found on the
247 author's GitHub page at www.github.com/docmanny/smRecSearch/tree/publication [57, 60–104]

248 **Results**

249 **Step-wise evolution of body size in Afrotherians**

250 Similar to previous studies of Afrotherian body size [25, 34], we found that the body mass
251 of the Afrotherian ancestor was inferred to be small (0.26kg, 95% CI: 0.31-3.01kg) and that
252 substantial accelerations in the rate of body mass evolution occurred coincident with a 67.36x
253 increase in body mass in the stem-lineage of Pseudoungulata (17.33kg); a 1.45x increase in body
254 mass in the stem-lineage of Paenungulata (25.08kg); a 11.82x increase in body mass in the stem-

255 lineage of Tehthytheria (296.56kg); a 1.39x increase in body mass in the stem-lineage of
256 Proboscidea (412.5kg); and a 2.69x increase in body mass in the stem-lineage of
257 Elephantimorpha (4114.39kg), which is the last common ancestor of elephants and mastodons
258 using the fossil record (**Fig. 2A/B**). The ancestral Hyracoidea was inferred to be relatively small
259 (2.86kg-118.18kg), and rate accelerations were coincident with independent body mass
260 increases in large hyraxes such as *Titanohyrax andrewsi* (429.34kg, 67.36x increase) (**Fig. 2A/B**).
261 While the body mass of the ancestral Sirenian was inferred to be large (61.7-955.51kg), a rate
262 acceleration occurred coincident with a 10.59x increase in body mass in Stellar's sea cow (**Fig.**
263 **2A/B**). Rate accelerations also occurred coincident with 36.6x decrease in body mass in the stem-
264 lineage of the dwarf elephants *Elephas (Palaeoloxodon) antiquus falconeri* and *Elephas cypriotes*
265 (**Fig. 2A/B**). These data indicate that gigantism in Afrotherians evolved step-wise, from small to
266 medium bodies in the Pseudoungulata stem-lineage, medium to large bodies in the Tehthytherian
267 stem-lineage and extinct hyraxes, and from large to exceptionally large bodies independently in
268 the Proboscidean stem-lineage and Stellar's sea cow (**Fig. 2A/B**).

269 **Step-wise reduction of intrinsic cancer risk in large, long-lived Afrotherians**

270 In order to account for a relatively stable cancer rate across species [10–12], intrinsic
271 cancer risk must also evolve with changes body size (and lifespan) across species. As expected,
272 intrinsic cancer risk in Afrotheria also varies with changes in body size and longevity (**Fig. 2A/B**),
273 with a 6.41-log_2 decreases in the stem-lineage of Xenarthra, followed by a 13.37-log_2 decrease in
274 Pseudoungulata, and a 1.49-log_2 decrease in Aardvarks (**Fig. 2A**). In contrast to the
275 Paenungulate stem-lineage, there is a 7.84-log_2 decrease in cancer risk in Tethytheria, a 0.67-
276 log_2 decrease in Manatee, a 3.14-log_2 decrease in Elephantimorpha, and a 1.05-log_2 decrease in
277 Proboscidea. Relatively minor decreases occurred within Proboscidea including a 0.83-log_2
278 decrease in Elephantidae and a 0.57-log_2 decrease in the American Mastodon. Within the
279 Elephantidae, Elephantina and Loxodontini have a 0.06-log_2 decrease in cancer susceptibility,
280 while susceptibility is relatively stable in Mastodons. The three extant Proboscideans, Asian
281 Elephant, African Savana Elephant, and the African Forest Elephant, meanwhile, have similar
282 decreases in body size, with slight increases in cancer susceptibility (**Fig. 2A/B**).

283 **Pervasive duplication of tumor suppressor genes in Afrotheria**

284 Our hypothesis was that genes which duplicated coincident with the evolution of increased
285 body mass (IBM) and reduced intrinsic cancer risk (RICR) would be uniquely enriched in tumor

286 suppressor pathways compared to genes that duplicated in other lineages. Therefore, we
287 identified duplicated genes in each Afrotherian lineage (**Fig. 3A**) and tested if they were enriched
288 in Reactome pathways related to cancer biology (**Fig. 3B, Table 2**). No pathways related to
289 cancer biology were enriched in either the Pseudoungulata (67.36-fold IBM, 13.37-log₂ RICR) or
290 Paenungulata (1.45-fold IBM, 1.17-log₂ RICR) stem-lineages (**Fig. 3B**), however while a large
291 change in both IBM and RICR occurred in the Pseudoungulata stem-lineage only few were
292 inferred to be duplicated in this lineage, reducing power to detect enriched pathways. Consistent
293 with our hypothesis, 55.8% (29/52) of the pathways that were enriched in the Tethytherian stem-
294 lineage (11.82-fold IBM, 7.84-log₂ RICR), 27.8% (20/72) of the pathways that were enriched in
295 the Proboscidean stem-lineage (1.06-fold IBM, 3.14-log₂ RICR), and 28% (33/118) of the
296 pathways that were enriched within Proboscideans were related to tumor suppression (**Fig. 3B**).
297 Similarly, 17.8% (10/56) and 30% (30/100) of the pathways that were enriched in manatee (1.11-
298 fold IBM, 0.89-log₂ RICR) and aardvark (67.36-fold IBM, 1.49-log₂ RICR), respectively, were
299 related to tumor suppression. In contrast, only 4.9% (2/41) of the pathways that were enriched in
300 hyrax (1.6-fold IBM, 1.49-log₂ RICR) were related to tumor suppression (**Fig. 3B**). Unexpectedly,
301 however, lineages without major increases in body size or lifespan, or decreases in intrinsic
302 cancer risk, were also enriched for tumor suppressor pathways. For example, 13.2% (9/68),
303 36.1% (13/36), and 20% (20/100) of the pathways that were enriched in the stem-lineages of
304 Afroinsectivida and Afrosoricida, and in *E. telfairi*, respectively, were related to cancer biology (**Fig.**
305 **3B**).

306 **Duplication of tumor suppressor genes is pervasive in *many* Afrotherians**

307 Our observation that gene duplicates in most lineages (15/20) are enriched in cancer
308 pathways suggest that either duplication of genes in cancer pathways is common in Afrotherians,
309 or that there may be a systemic bias in the pathway enrichment analyses. For example, random
310 gene sets may be generally enriched in pathway terms related to cancer biology. To explore this
311 latter possibility, we generated 5000 randomly sampled gene sets of between 10 and 5000 genes,
312 and tested for enriched Reactome pathways using ORA. We found that no cancer pathways were
313 enriched (median hypergeometric p-value ≤ 0.05) among gene sets tested greater than 157
314 genes; however, in these smaller gene sets, 12% - 18% of enriched pathways were classified as
315 cancer pathways. Without considering p-value thresholds, the percentage of enriched cancer
316 pathways approaches ~15% (213/1381) in simulated sets. Thus, for larger gene sets, we
317 conservatively used a threshold of 15% for enriched pathways related to cancer biology resulting

318 from sampling bias. We directly compared our simulated and observed enrichment results by
319 lineage and gene set size, and found that only Columbian mammoth, Paenungulata,
320 Elephantidae, African Forest elephant, Afrosoricida, Tethytheria, Asian elephant, African
321 Savannah elephant, Proboscidea, manatee, aardvark, and tenrec had enriched cancer pathway
322 percentages above background with respect to their gene set sizes, i.e., expected enrichments
323 based on random sampling of small gene sets (**Fig. 3B**). Thus, we conclude that duplication of
324 genes in cancer pathways is common in many Afrotherians but that the inference of enriched
325 cancer pathway duplication is not different from background in some lineages, particularly in
326 ancestral nodes with a small number of estimated duplicates.

327 **Tumor suppressor pathways enriched exclusively within Proboscideans**

328 While duplication of cancer associated genes is common in Afrotheria, the 157 genes that
329 duplicated in the Proboscidean stem-lineage (**Fig. 3A**) were uniquely enriched in 12 pathways
330 related to cancer biology (**Fig. 3B**). Among these uniquely enriched pathways (**Fig. 3C**) were
331 pathways related to the cell cycle, including “G0 and Early G1”, “G2/M Checkpoints” and
332 “Phosphorylation of the APC/C”, pathways related to DNA damage repair including “Global
333 Genome Nucleotide Excision Repair (GG-NER)”, “HDR through Single Strand Annealing (SSA)”,
334 “Gap-filling DNA repair synthesis and ligation in GG-NER”, “Recognition of DNA damage by
335 PCNA-containing replication complex”, and “DNA Damage Recognition in GG-NER”, pathways
336 related to telomere biology including “Extension of Telomeres” and “Telomere Maintenance”,
337 pathways related to the apoptosome including “Activation of caspases through apoptosome-
338 mediated cleavage”, pathways related to “mTORC1-mediated signaling” and “mTOR signaling”.
339 Thus, duplication of genes with tumor suppressor functions is pervasive in Afrotherians, but
340 genes in some pathways related to cancer biology and tumor suppression are uniquely duplicated
341 in large-bodied (long-lived) Proboscideans (**Fig. 4A/B**).

342 Among the genes uniquely duplicated within Proboscideans are *TP53*, *COX20*,
343 *LAMTOR5*, *PRDX1*, *STK11*, *BRD7*, *MAD2L1*, *BUB3*, *UBE2D1*, *SOD1*, *LIF*, *MAPRE1*, *CNOT11*,
344 *CASP9*, *CD14*, *HMGB2* (**Fig. 4C**). Two of these, *TP53* and *LIF*, have been previously described
345 [10, 17, 30]. These genes are significantly enriched in pathways involved in apoptosis, cell cycle
346 regulation, and both upstream and downstream pathways involving *TP53*. The majority of these
347 genes are expressed in African Elephant transcriptome data (**Fig. 4D**), suggesting that they
348 maintained functionality after duplication.

349 **Coordinated duplication of TP53-related genes in Proboscidea**

350 Prior studies found that the “master” tumor suppressor *TP53* duplicated multiple times in
351 elephants [10, 17], motivating us to further study duplication of genes involved in *TP53*-related
352 pathways Proboscidea. We traced the evolution of genes the in *TP53* pathway that appeared in
353 one or more Reactome pathway enrichments for genes duplicated recently in the African
354 Elephant, which has the most complete genome among Proboscidean and for which several
355 RNA-Seq data sets are available. We found that the initial duplication of *TP53* in Tethytheria,
356 where body size expanded, was preceded by the duplication of *GTF2F1* and *STK11* in
357 Paenungulata and was coincident with the duplication of *BRD7*. These three genes are involved
358 in regulating the transcription of *TP53* [105–108], and their duplication prior to that of *TP53* may
359 have facilitated re-functionalization of *TP53* retroduplicates. Interestingly, *STK11* is also tumor
360 suppressor that mediates tumor suppression via p21-induced senescence [106]. The other genes
361 that are duplicated in the pathway are downstream of *TP53*; these genes duplicated either
362 coincident with *TP53*, as in the case of *SIAH1*, or subsequently in Probodiscea, Elephantidae, or
363 extant elephants (**Fig. 4**). These genes are expressed in RNA-Seq data (**Fig. 4D**), suggesting
364 that they are functional.

365 **Discussion**

366 Among the evolutionary, developmental, and life history constraints on the evolution of
367 large bodies and long lifespans is an increased risk of developing cancer. While body size and
368 lifespan are correlated with cancer risk within species, there is no correlation between species
369 because large and long-lived organisms have evolved enhanced cancer suppression
370 mechanisms. While this ultimate evolutionary explanation is straightforward [54], determining the
371 mechanisms that underlie the evolution of enhanced cancer protection is challenging because
372 many mechanisms of relatively small effects likely contribute to evolution of reduced cancer risk.
373 Previous candidate gene studies in elephants have identified duplications of tumor suppressors
374 such as *TP53* and *LIF*, among others, suggesting that an increased copy number of tumor
375 suppressors may contribute to the evolution of large body sizes in the elephant lineage [10, 17,
376 30–32]. Here we: 1) trace the evolution of body size and lifespan in Eutherian mammals, with
377 particular reference to Afrotherians; 2) infer changes in cancer susceptibility across Afrotherian
378 lineages; 3) use a genome-wide screen to identify gene duplications in Afrotherian genomes,

379 including multiple living and extinct Proboscideans; and 4) show that while duplication of genes
380 with tumor suppressor functions is pervasive in Afrotherian genomes, Proboscidean gene
381 duplicates are enriched in unique pathways with tumor suppressor functions.

382 **Correlated evolution of large bodies and reduced cancer risk**

383 The hundred- to hundred-million-fold reductions in intrinsic cancer risk associated with the
384 evolution of large body sizes in some Afrotherian lineages, in particular Elephantimorphs such as
385 elephants and mastodons, suggests that these lineages must have also evolved remarkable
386 mechanisms to suppress cancer. While our initial hypothesis was that large bodied lineages would
387 be uniquely enriched in duplicate tumor suppressor genes compared to other smaller bodied
388 lineages, we unexpectedly found that the duplication of genes in tumor suppressor pathways
389 occurred at various points throughout the evolution of Afrotheria, regardless of body size. These
390 data suggest that this abundance of tumor suppressors may have contributed to the evolution of
391 large bodies and reduced cancer risk, but that these processes were not necessarily coincident.
392 Interestingly, pervasive duplication of tumor suppressors may also have contributed to the
393 repeated evolution of large bodies in hyraxes and sea cows, because at least some of the genetic
394 changes that underlie the evolution of reduced cancer risk was common in this group. It remains
395 to be determined whether our observation of pervasive duplication of tumor suppressors also
396 occurs in other multicellular lineages. Using a similar reciprocal best BLAST/BLAT approach that
397 focused on estimating copy number of known tumor suppressors in mammalian genomes, for
398 example, Caulin *et al.* (2015) found no correlation between copy number or tumor suppressors
399 with either body mass or longevity, whilst Tollis *et al.* (2020) found a correlation between copy
400 number and longevity (but not body size) [12, 31]. These opposing conclusions may result from
401 differences in the number of genes (81 vs 548) and genomes (8 vs 63) analyzed, highlighting the
402 need for genome-wide analyses of many species that vary in body size and longevity.

403 **All Afrotherians are equal, but some Afrotherians are more equal than others**

404 While we found that duplication of tumor suppressor genes is common in Afrotheria, genes
405 that duplicated in the Proboscidean stem-lineage (**Fig. 3A/B**) were uniquely enriched in functions
406 and pathways that may be related to the evolution of unique anti-cancer cellular phenotypes in
407 the elephant lineage (**Fig. 3C**). Elephant cells, for example, cannot be experimentally
408 immortalized [109, 110], rapidly repair DNA damage [17, 111, 112], are extremely resistant to
409 oxidative stress [110] - and yet are also extremely sensitive to DNA damage [10, 17, 30]. Several

410 pathways related to DNA damage repair, in particular nucleotide excision repair (NER), were
411 uniquely enriched among genes that duplicated in the Proboscidean stem-lineage, suggesting a
412 connection between duplication of genes involved in NER and rapid DNA damage repair [111,
413 112]. Similarly, we identified a duplicate *SOD1* gene in Proboscideans that may confer the
414 resistance of elephant cells to oxidative stress [110]. Pathways related to the cell cycle were also
415 enriched among genes that duplicated in Proboscideans, and cell cycle dynamics are different in
416 elephants compared to other species; population doubling (PD) times for African and Asian
417 elephant cells are 13-16 days, while PD times are 21-28 days in other Afrotherians [110]. Finally,
418 the role of “mTOR signaling” in the biology of aging is well-known. Collectively these data suggest
419 that gene duplications in Proboscideans may underlie some of their cellular phenotypes that
420 contribute to cancer resistance.

421 **There's no such thing as a free lunch: Trade-offs and constraints on tumor suppressor
422 copy number**

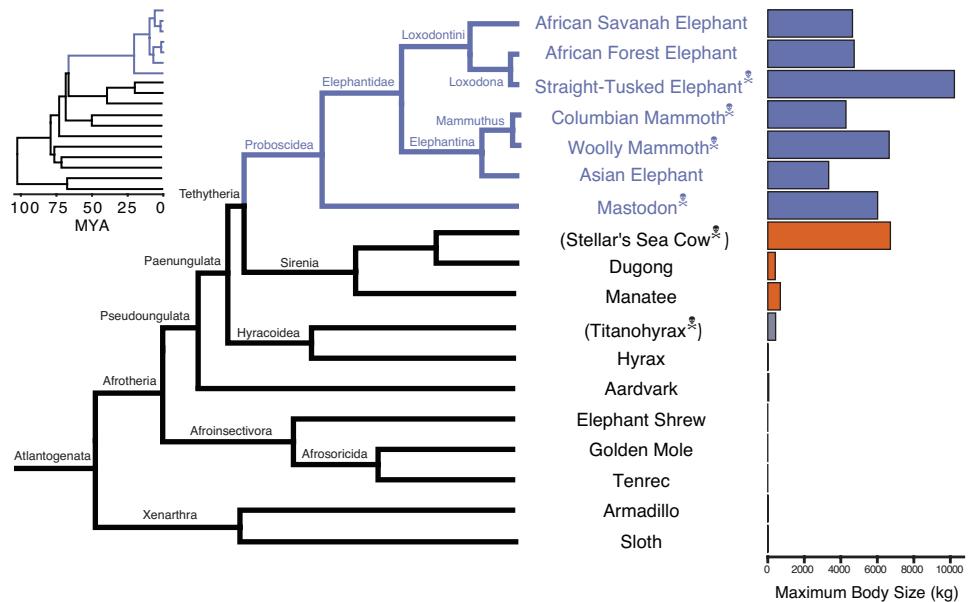
423 While we observed that duplication of genes in cancer related pathways – including genes
424 with known tumor suppressor functions – is pervasive in Afrotheria, the number of duplicate tumor
425 suppressor genes was relatively small, which may reflect a trade-off between the protective
426 effects of increased tumor suppressor number on cancer risk and potentially deleterious
427 consequences of increased tumor suppressor copy number. Overexpression of *TP53* in mice, for
428 example, is protective against cancer but associated with progeria, premature reproductive
429 senescence, and early death; however, transgenic mice with a duplication of the *TP53* locus that
430 includes native regulatory elements are healthy and experience normal aging, while also
431 demonstrating an enhanced response to cellular stress and lower rates of cancer [29, 113]. These
432 data suggest duplication of tumor suppressors can contribute to augmented cancer resistance, if
433 the duplication includes sufficient regulatory architecture to direct spatially and temporally
434 appropriate gene expression. Thus, it is interesting that duplication of genes that regulate *TP53*
435 function, such as *STK11*, *SIAH1*, and *BRD7*, preceded the retroduplication *TP53* in the
436 Proboscidean stem-lineage, which may have mitigated toxicity arising from dosage imbalances.
437 Similar co-duplication events may have alleviated the negative pleiotropy of tumor suppressor
438 gene duplications to enable their persistence and allow for subsequent co-option during the
439 evolution of cancer resistance.

440 **Conclusions, caveats, and limitations**

441 Our genome-wide results suggest that duplication of tumor suppressors is pervasive in
442 Afrotherians and may have enabled the evolution of larger body sizes in multiple lineages by
443 lowering intrinsic cancer risk either prior to or coincident with increasing body size. However, our
444 study has several inherent limitations, for example, we have shown that genome quality plays an
445 important role in our ability to identify duplicate genes and several species have poor quality
446 genomes (and thus were excluded from further analyses). Conversely, without comprehensive
447 gene expression data we cannot be certain that duplicate genes are actually expressed.
448 Duplication of tumor suppressor genes is also unlikely to be the only mechanism responsible for
449 the evolution of large body sizes, long lifespans, and reduced cancer risk. The evolution of
450 regulatory elements, coding genes, and genes with non-canonical tumor suppressor functions are
451 also important for mediating the cancer risk. We also assume that duplicate genes preserve their
452 original functions and increase overall gene dosage. Many processes, however, such as
453 developmental systems drift, neofunctionalization, and sub-functionalization can cause
454 divergence in gene functions [114–116], leading to inaccurate inferences of dosage effects and
455 pathway functions.

456 **Acknowledgements**

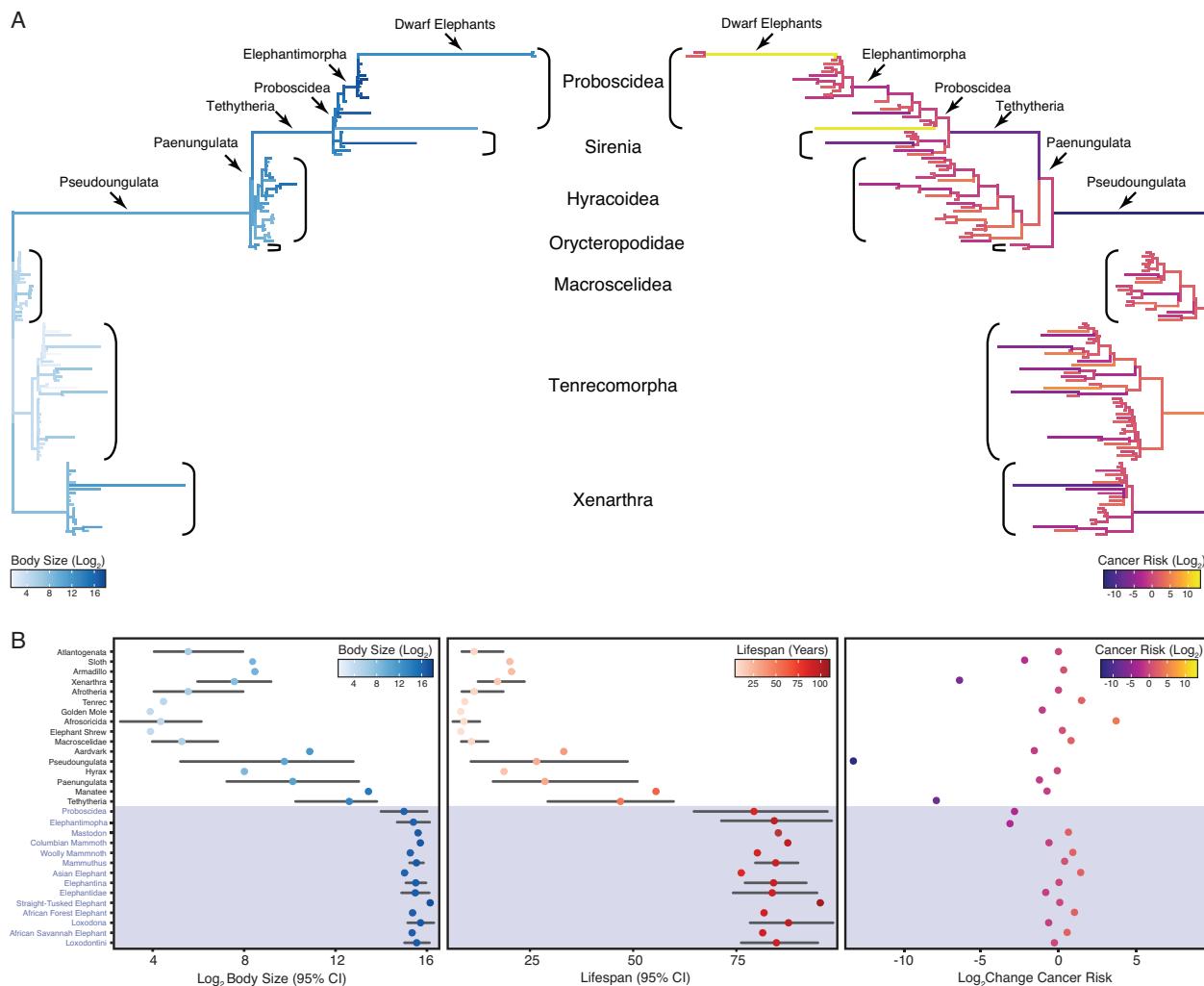
457 We would like to thank Dr. Olga Dudchenko and Dr. Erez Aiden at Baylor College of Medicine for
458 the Hi-C scaffolded *Procavia capensis*, *Trichechus manatus*, *Orycteropus afer*, and *Choloepus*
459 *hoffmannii* genomes. We would also like to thank D.H. Vazquez for his indispensable support.

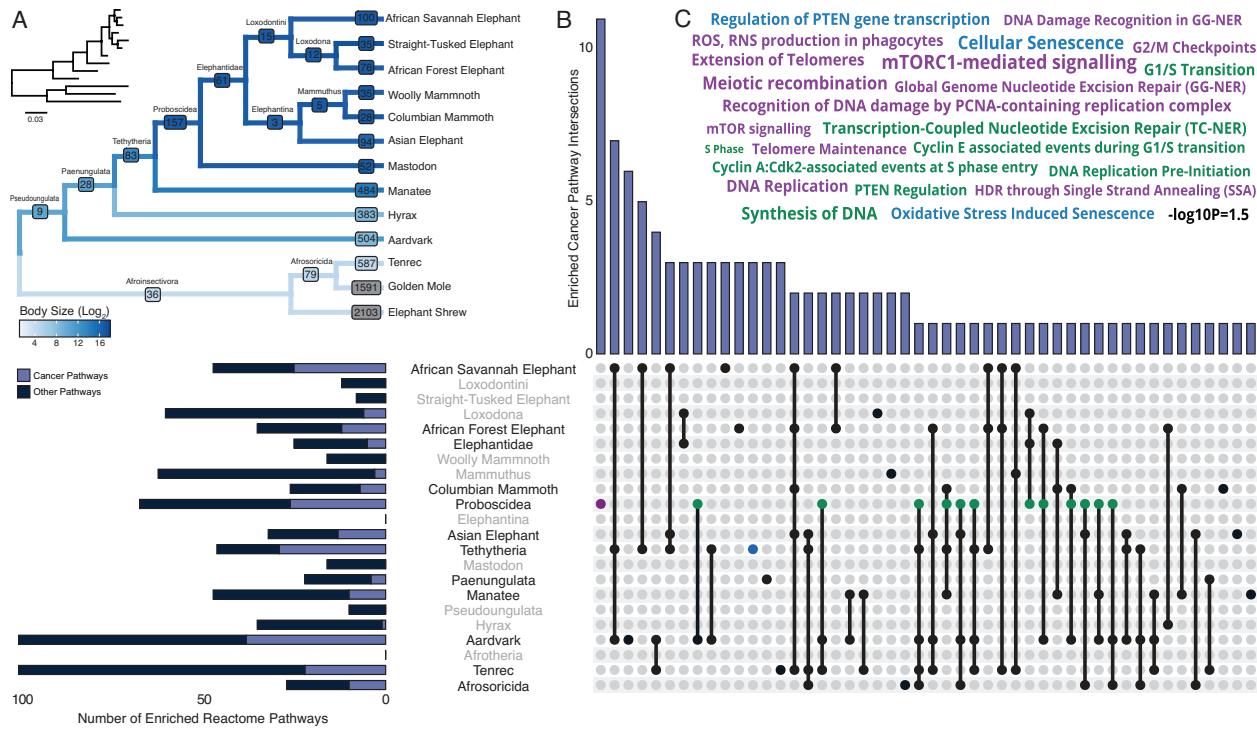

460 **Conflicts of Interest**

461 The Authors have no conflicts of interest to report.

462 **Funding Source**

463 We would like to thank the Department of Human Genetics at the University of Chicago for
464 supporting this project.


465



466

467

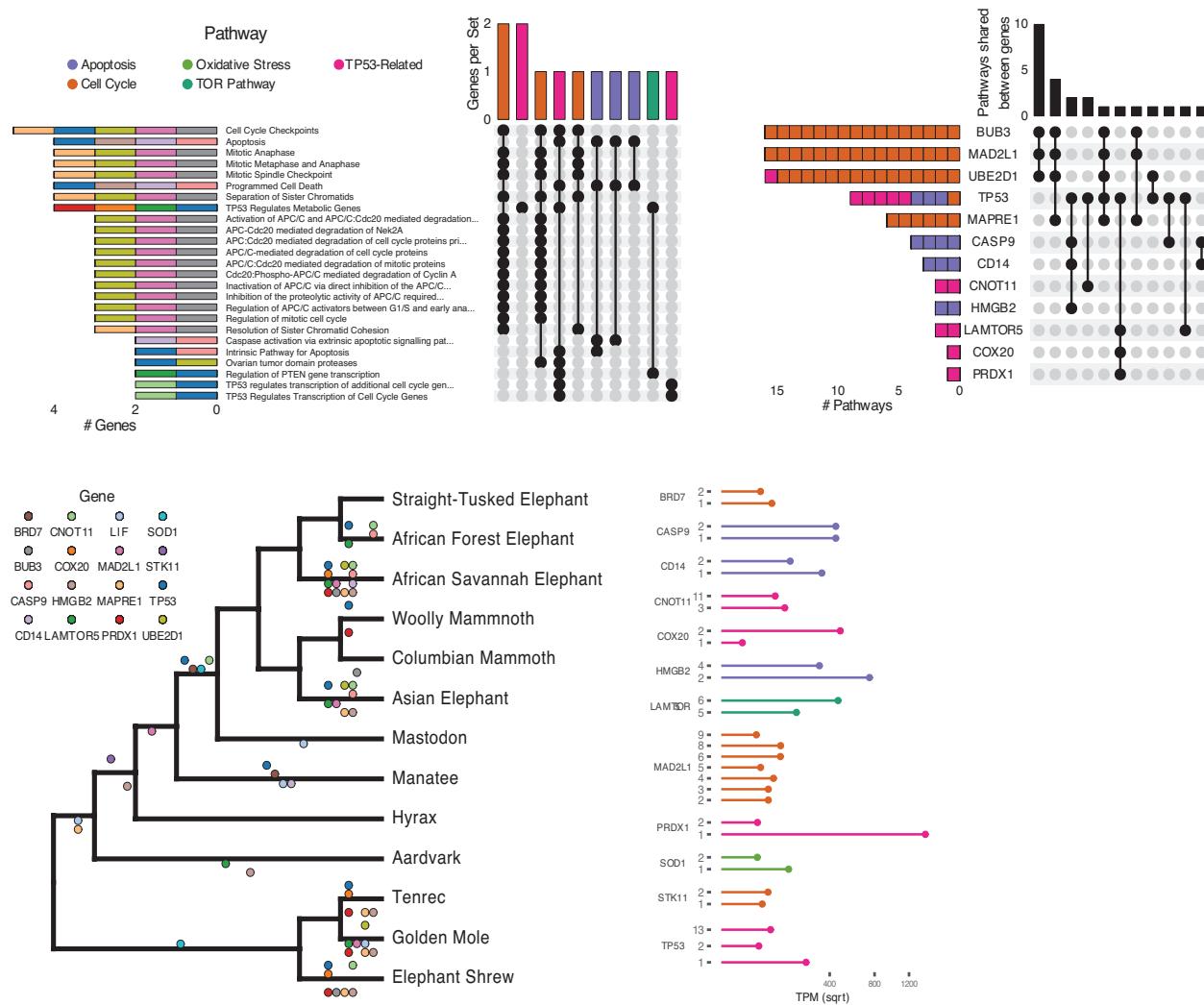
468 **Figure 1. Large bodied Afrotherians are nested within species with smaller body sizes** [18, 469 25]. Phylogenetic relationships of extant and recently extinct Atlantogenatans with available 470 genomes are shown along with clade names and maximum body sizes. Inset phylogeny shows 471 branch lengths relative to divergence times. Species indicated with skull and crossbones are 472 extinct, and those in parentheses do not have genomes.

482

483

484 **Figure 3. Pervasive duplication of tumor suppressors in Atlantogenata. (A)** Afrotherian
 485 phylogeny indicating the number of genes duplicated in each lineage, inferred by maximum
 486 likelihood with Bayesian posterior probability (BPP) ≥ 0.80 . Branches are colored according to
 487 \log_2 change in body size. Inset, phylogeny with branch lengths proportional to gene expression
 488 changes per gene. **(B)** Upset plot of cancer related Reactome pathways enriched in each
 489 Afrotherian lineage, lineages in which the cancer pathway enrichment percentage is less than
 490 background are shown in grey. (Note that empty sets are not shown). **(C)** Wordcloud of pathways
 491 enriched exclusively in the Proboscidean stem-lineage (purple), shared between Proboscidea
 492 and Tethytheria (blue), or shared between Proboscidea and any other lineage (green).

493


494

495

496

497

498

499

500

501 **Figure 4. Duplications in the African savannah elephant (*Loxodonta africana*) are enriched**
502 **for TP53-related and other tumor suppressor processes. (A)** Upset plot of cancer-related
503 Reactome pathways in African savannah elephant, highlighting shared genes in each set, and
504 the pathway class represented by the combinations. **(B)** Inverted Upset plot from **A**, showing the
505 pathways shared by genes highlighted by WEBGESTALT in each pathway. **(C)** Cladogram of
506 Atlantogenata, colored by the rate of gene duplication estimated by maximum likelihood. Dots
507 represent a duplication event of the color-coded genes. **D)** Gene expression levels of genes in **C**
508 which have two or more expressed duplicates.

509

510 **Table 1. Genomes used in this study.**

Species	Common Name	Genomes	Highest Quality Genome	Reference(s)
<i>Choloepus hoffmanni</i>	Hoffmans two-toed sloth	choHof1, choHof2, choHof- C_hoffmanni- 2.0.1_HiC	choHof-C_hoffmanni- 2.0.1_HiC	[118]
<i>Chrysochloris asiatica</i>	Cape golden mole	chrAsi1m	chrAsi1m	GCA_000296735.1
<i>Dasypus novemcinctus</i>	Nine-banded armadillo	dasNov3	dasNov3	GCA_000208655.2
<i>Echinops telfairi</i>	Lesser Hedgehog Tenrec	echTel2	echTel2	GCA_000313985.1
<i>Elephantulus edwardii</i>	Cape elephant shrew	eleEdw1m	eleEdw1m	GCA_000299155.1
<i>Elephas maximus</i>	Asian elephant	eleMaxD	eleMaxD	[120]
<i>Loxodonta africana</i>	African savanna elephant	loxAfr3, loxAfrC, loxAfr4	loxAfr4	ftp://ftp.broadinstitute.org/pub/assemblies/mammals/elephant/loxAfr4
<i>Loxodonta cyclotis</i>	African forest elephant	loxCycF	loxCycF	[120]
<i>Mammut americanum</i>	American mastodon	mamAmel	mamAmel	[120]
<i>Mammuthus columbi</i>	Columbian mammoth	mamColU	mamColU	[120]
<i>Mammuthus primigenius</i>	Woolly mammoth	mamPriV	mamPriV	[119]
<i>Orycteropus afer</i>	Aardvark	oryAfe1, oryAfe2	oryAfe2	[118]
<i>Palaeoloxodon antiquus</i>	Straight tusked elephant	palAntN	palAntN	[120]
<i>Procavia capensis</i>	Rock hyrax	proCap1, proCap2, proCap- Pcap_2.0_HiC	proCap-Pcap_2.0_HiC	[118, 122]
<i>Trichechus manatus latirostris</i>	Manatee	triMan1, triManLat2	triManLat2	[118, 121]

511

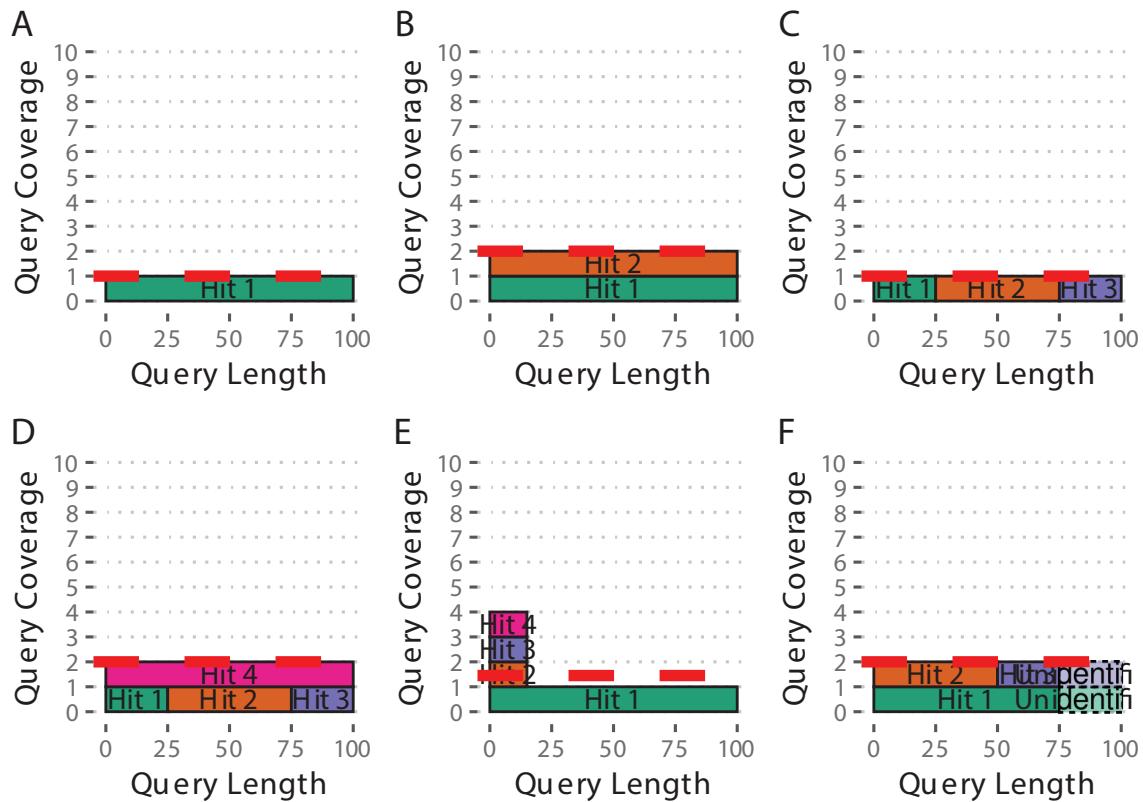
512

513

514

515

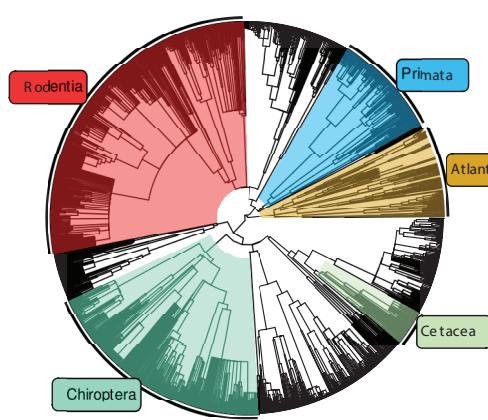
516

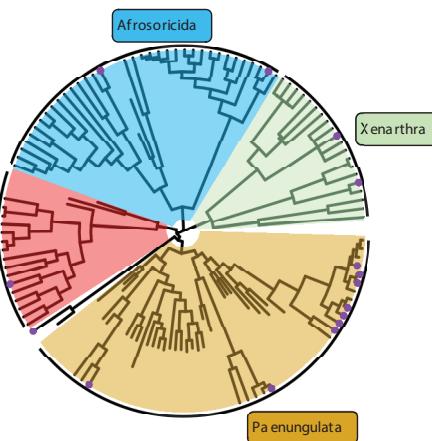

517

518 **Table 2. Summary of Reactome Pathways in Atlantogenata**

Node	Number of		Percentage		Cancer Pathways Greater than Background?
	Genes	Pathways	Cancer Pathways	Simulated Cancer Pathways	
<i>Afroinsectivora</i>	36	65	13.85%	15.42%	Yes
<i>Afrosoricida</i>	79	27	37.04%	15.42%	Yes
<i>Chrysochloris asiatica</i>	1591	100	27.00%	15.42%	No
<i>Echinops telfairi</i>	587	100	22.00%	15.42%	No
<i>Elephantidae</i>	61	25	20.00%	13.03%	Yes
<i>Elephantulus edwardii</i>	2103	100	22.00%	15.42%	No
<i>Elephas maximus</i>	94	32	40.63%	17.73%	Yes
<i>Loxodona</i>	12	60	10.00%	14.53%	Yes
<i>Loxodonta africana</i>	100	47	53.19%	15.42%	Yes
<i>Loxodonta cyclotis</i>	76	35	34.29%	16.11%	Yes
<i>Loxodontini</i>	15	12	0.00%	13.82%	Yes
<i>Mammut americanum</i>	52	16	0.00%	12.91%	Yes
<i>Mammuthus</i>	5	62	4.84%	15.29%	Yes
<i>Mammuthus columbi</i>	28	26	26.92%	12.88%	Yes
<i>Mammuthus primigenius</i>	35	16	0.00%	12.28%	Yes
<i>Orycteropus afer</i>	504	100	38.00%	15.42%	No
<i>Paenungulata</i>	28	22	18.18%	12.88%	Yes
<i>Palaeoloxodon antiquus</i>	35	8	0.00%	12.28%	Yes
<i>Proboscidea</i>	157	67	38.81%	9.52%	Yes
<i>Procavia capensis</i>	383	35	2.86%	15.42%	No
<i>Pseudoungulata</i>	9	10	0.00%	14.90%	Yes
<i>Tethytheria</i>	83	46	63.04%	18.52%	Yes
<i>Trichechus manatus</i>	484	47	21.28%	15.42%	No

519


520


521

522 **Figure S1. Estimated Copy Number by Coverage (ECNC) consolidates fragmented genes**
523 **while accounting for missing domains in homologs. (A)** A single, contiguous gene homolog
524 in a target genome with 100% query length coverage has an ECNC of 1.0. **(B)** Two contiguous
525 gene homologs, each with 100% query length coverage have an ECNC of 2.0. **(C)** A single gene
526 homolog, split across multiple scaffolds and contigs in a fragmented target genome; BLAT
527 identifies each fragment as a single hit. Per nucleotide of query sequence, there is only one
528 corresponding nucleotide over all the hits, thus the ECNC is 1.0. **(D)** Two gene homologs, one
529 fragmented and one contiguous. 100% of nucleotides in the query sequence are represented
530 between all hits; however, every nucleotide in the query has two matching nucleotides in the target
531 genome, thus the ECNC is 2.0. **(E)** One true gene homolog in the target genome, plus multiple
532 hits of a conserved domain that span 20% of the query sequence. While 100% of the query
533 sequence is represented in total, 20% of the nucleotides have 4 hits. Thus, the ECNC for this
534 gene is 1.45. **(F)** Two real gene homologs; one hit is contiguous, one hit is fragmented in two, and
535 the tail end of both sequences was not identified by BLAT due to sequence divergence. Only 75%
536 of the query sequence was covered in total between the hits, but for that 75%, each nucleotide
537 has two hits. As such, ECNC is equal to 2.0 for this gene.

A

B

538

539

540 **Figure S2. A time-calibrated tree of *Eutheria*, including fossil data for *Afrotheria*.** The tree
541 represents a combination of the time-calibrated tree of Eutheria from Bininda-Emonds *et al.* [117]
542 (A), and a time-calibrated total-evidence tree for Afrotheria from Puttik and Thomas [25] (B).

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558 **Figure S3. Correlations between genome quality metrics and ECNC metrics.** Gene copy
559 number metrics, and the genome quality metrics most strongly associated with them, are
560 highlighted in red.

561

562

563

564

565 **Table S1. Summary of duplications in Atlantogenata**

Species	Common Name	Number of		Percent of Genes		Mean ECNC/Hit
		Hits	Duplicated	Found	Duplicated	
<i>Choloepus hoffmanni</i>	Hoffmans Two-Toed Sloth	14082	3204	78.19%	22.75%	0.98
<i>Chrysochloris asiatica</i>	Cape Golden Mole	13547	2716	75.22%	20.05%	0.99
<i>Dasypus novemcinctus</i>	Nine-Banded Armadillo	13819	2605	76.73%	18.85%	0.98
<i>Echinops telfairi</i>	Lesser Hedgehog Tenrec	12903	1670	71.64%	12.94%	0.99
<i>Elephantulus edwardii</i>	Cape Elephant Shrew	12884	3048	71.53%	23.66%	0.99
<i>Elephas maximus</i>	Asian Elephant	14073	907	78.14%	6.44%	1
<i>Loxodonta africana</i>	African Savanna Elephant	14051	940	78.01%	6.69%	1
<i>Loxodonta cyclotis</i>	African Forest Elephant	14065	900	78.09%	6.40%	1
<i>Mammut americanum</i>	American Mastodon	13840	737	76.84%	5.33%	1
<i>Mammuthus columbi</i>	Columbian Mammoth	13059	426	72.51%	3.26%	1
<i>Mammuthus primigenius</i>	Woolly Mammoth	13935	723	77.37%	5.19%	1
<i>Orycteropus afer</i>	Aardvark	13880	1083	77.06%	7.80%	0.99
<i>Palaeoloxodon antiquus</i>	Straight Tusked Elephant	13969	745	77.56%	5.33%	1
<i>Procavia capensis</i>	Rock Hyrax	13672	788	75.91%	5.76%	1
<i>Trichechus manatus</i>	Manatee	14092	1046	78.24%	7.42%	1

566

567

568

569

570

571

572 **Table S2. RNA-Seq datasets used in this study, along with key biological and genome**
 573 **information.**

Organism	Common Name	Genome	SRA Acc.	Tissues
<i>Dasypus novemcinctus</i>	Nine-banded armadillo	dasNov3	SRR494779, SRR494767, SRR494780, SRR494770, SRR309130, SRR494771, SRR4043756, SRR494776, SRR494778, SRR4043762, SRR4043755, SRR6206923, SRR4043761, SRR4043760, SRR6206913, SRR4043763, SRR494772, SRR494781, SRR494774, SRR494777, SRR494775, SRR4043754, SRR1289524, SRR4043758, SRR6206903, SRR1289523, SRR4043759, SRR3222425, SRR494768, SRR494769, SRR6206908, SRR4043757, SRR494766, SRR6206918, SRR494773	Kidney, Spleen, Cerebellum W/ Brainstem, Rt. Quadricep, Mid-Stage Pregnant Endometrium, Cervix, Lung, Liver, Skeletal Muscle, Ascending Colon, Pregnant Armadillo Endometrium, Heart, Placenta
<i>Loxodonta africana</i>	African savanna elephant	loxAfr3, loxAfrC, loxAfr4	SRR6307198, SRR1041765, SRR6307199, SRR6307201, SRR6307196, SRR6307202, SRR6307200, SRR6307195, SRR975188, SRR6307194, SRR6307204, SRR3222430, SRR6307205, SRR975189, SRR6307197, SRR6307203	Blood, Fibroblast, Placenta
<i>Trichechus manatus latirostris</i>	Manatee	triMan1, triManLat2	SRR4228542, SRR4228545, SRR4228544, SRR4228539, SRR4228541, SRR4228538, SRR4228546, SRR4228537, SRR4228540, SRR4228543, SRR4228547	Buffy Coat

575 **Table S3. Summary of PGLS model used to estimate lifespan.**

PGLS: $\ln(\text{Lifespan}) \sim \ln(\text{Size})$

$\ln(\text{Lifespan})$	
$\ln(\text{Size})$	0.200***
	-0.027
Constant	1.327**
	-0.237
<hr/>	
Observations	28
Log	-22.16
Likelihood	
Akaike Inf.	50.32
Crit.	
Bayesian Inf.	54.095
Crit.	
<hr/>	

Note: *p**p***p<0.01

576

577

578

579

580

581

582

583

584

585

586

587

588 **Supplementary Data Files**

589 **Data File S1: “*Atlantogenata_GeneCopyNumber.csv*”** A spreadsheet with genes and copy
590 numbers for all genomes searched.

591 **Data File S2: “*Atlantogenata_miTree.nexus*”** A NEXUS file containing estimated copy numbers
592 of genes across *Atlantogenata*.

593 **Data File S3: “*Atlantogenata_Reactome_ORA.xlsx*”** A spreadsheet with all Reactome
594 enrichments.

595 **Data File S4: “*AtlantogenataReactomePathwayClasses.csv*”** Classification of Reactome
596 Pathways.

597 **Data File S5: “*Atlantogenata_RBB.zip*”** A .zip archive containing BED files with the
598 locations of all identified Reciprocal Best Hits.

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616 **References**

- 617 1. V. M. Savage, A. P. Allen, J. H. Brown, J. F. Gillooly, A. B. Herman, W. H. Woodruff, G. B.
618 West, Scaling of number, size, and metabolic rate of cells with body size in mammals.
619 *Proceedings of the National Academy of Sciences*. **104**, 4718–4723 (2007).
- 620 2. J. Green, B. J. Cairns, D. Casabonne, F. L. Wright, G. Reeves, V. Beral, for the M. W. S.
621 collaborators, Height and cancer incidence in the Million Women Study: prospective cohort, and
622 meta-analysis of prospective studies of height and total cancer risk. *The Lancet Oncology*. **12**,
623 785–794 (2011).
- 624 3. L. Nunney, Size matters: height, cell number and a person's risk of cancer. *Proc. R. Soc. B.*
625 **285**, 20181743 (2018).
- 626 4. J. M. Dobson, Breed-predispositions to cancer in pedigree dogs. *ISRN veterinary science*.
627 **2013**, 941275 (2013).
- 628 5. C. R. Dorn, D. O. N. Taylor, R. Schneider, H. H. Hibbard, M. R. Klauber, Survey of Animal
629 Neoplasms in Alameda and Contra Costa Counties, California. II. Cancer Morbidity in Dogs and
630 Cats From Alameda County<xref ref-type="fn" rid="FN2">2</xref>. *JNCI: Journal of the National
631 Cancer Institute*. **40**, 307–318 (1968).
- 632 6. R. B. Lucena, D. R. Rissi, G. D. Kommers, F. Pierezan, J. C. Oliveira-Filho, J. T. S. A. Macêdo,
633 M. M. Flores, C. S. L. Barros, A Retrospective Study of 586 Tumours in Brazilian Cattle. *Journal
634 of Comparative Pathology*. **145**, 20–24 (2011).
- 635 7. A. F. Caulin, C. C. Maley, Peto's Paradox: evolution's prescription for cancer prevention.
636 *Trends in ecology & evolution*. **26**, 175–82 (2011).
- 637 8. A. M. Leroi, V. Koufopanou, A. Burt, Cancer selection. *Nature Reviews Cancer*. **3**, 226–231
638 (2003).
- 639 9. R. Peto, F. Roe, P. Lee, L. Levy, J. Clack, Cancer and ageing in mice and men. *British Journal
640 of Cancer*. **32**, 411–426 (1975).
- 641 10. L. M. Abegglen, A. F. Caulin, A. Chan, K. Lee, R. Robinson, M. S. Campbell, W. K. Kiso, D.
642 L. Schmitt, P. J. Waddell, S. Bhaskara, S. T. Jensen, C. C. Maley, J. D. Schiffman, Potential

643 Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA
644 Damage in Humans. *JAMA*. **314**, 1850–1860 (2015).

645 11. A. M. Boddy, L. M. Abegglen, A. P. Pessier, J. D. Schiffman, C. C. Maley, C. Witte, Lifetime
646 cancer prevalence and life history traits in mammals. *Evolution, Medicine, and Public Health*,
647 eoaa015 (2020).

648 12. M. Tollis, E. Ferris, M. S. Campbell, V. K. Harris, S. M. Rupp, T. M. Harrison, W. K. Kiso, D.
649 L. Schmitt, M. M. Garner, C. A. Aktipis, C. C. Maley, A. M. Boddy, M. Yandell, C. Gregg, J. D.
650 Schiffman, L. M. Abegglen, Elephant Genomes Reveal Insights into Differences in Disease
651 Defense Mechanisms between Species. *bioRxiv*, 2020.05.29.124396 (2020).

652 13. O. Ashur-Fabian, A. Avivi, L. Trakhtenbrot, K. Adamsky, M. Cohen, G. Kajakaro, A. Joel, N.
653 Amariglio, E. Nevo, G. Rechavi, Evolution of p53 in hypoxia-stressed *Spalax* mimics human tumor
654 mutation. *Proceedings of the National Academy of Sciences*. **101**, 12236–12241 (2004).

655 14. A. Seluanov, C. Hine, M. Bozzella, A. Hall, T. H. C. Sasahara, A. A. C. M. Ribeiro, K. C.
656 Catania, D. C. Presgraves, V. Gorbunova, Distinct tumor suppressor mechanisms evolve in
657 rodent species that differ in size and lifespan. *Aging cell*. **7**, 813–23 (2008).

658 15. V. Gorbunova, C. Hine, X. Tian, J. Ablaeva, A. V. Gudkov, E. Nevo, A. Seluanov, Cancer
659 resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism.
660 *Proceedings of the National Academy of Sciences of the United States of America*. **109**, 19392–
661 6 (2012).

662 16. X. Tian, J. Azpurua, C. Hine, A. Vaidya, M. Myakishev-Rempel, J. Ablaeva, Z. Mao, E. Nevo,
663 V. Gorbunova, A. Seluanov, High molecular weight hyaluronan mediates the cancer resistance
664 of the naked mole-rat. **499** (2013), doi:[10.1038/nature12234](https://doi.org/10.1038/nature12234).

665 17. M. Sulak, L. Fong, K. Mika, S. Chigurupati, L. Yon, N. P. Mongan, R. D. Emes, V. J. Lynch,
666 TP53 copy number expansion is associated with the evolution of increased body size and an
667 enhanced DNA damage response in elephants. *eLife*. **5**, e11994 (2016).

668 18. R. Tacutu, T. Craig, A. Budovsky, D. Wuttke, G. Lehmann, D. Taranukha, J. Costa, V. E.
669 Fraifeld, J. de Magalhães, Human Ageing Genomic Resources: Integrated databases and tools
670 for the biology and genetics of ageing. *Nucleic Acids Research*. **41**, D1027–D1033 (2013).

671 19. G. T. Schwartz, D. T. Rasmussen, R. J. Smith, Body-Size Diversity and Community Structure
672 of Fossil Hyracoids. *Journal of Mammalogy*. **76**, 1088–1099 (1995).

673 20. V. B. Scheffer, The Weight of the Steller Sea Cow. *Journal of Mammalogy*. **53**, 912–914
674 (1972).

675 21. A. Larramendi, Shoulder Height, Body Mass, and Shape of Proboscideans. *Acta
676 Palaeontologica Polonica*. **61** (2015), doi:[10.4202/app.00136.2014](https://doi.org/10.4202/app.00136.2014).

677 22. M. A. O'Leary, J. I. Bloch, J. J. Flynn, T. J. Gaudin, A. Giallombardo, N. P. Giannini, S. L.
678 Goldberg, B. P. Kraatz, Z.-X. Luo, J. Meng, X. Ni, M. J. Novacek, F. A. Perini, Z. S. Randall, G.
679 W. Rougier, E. J. Sargis, M. T. Silcox, N. B. Simmons, M. Spaulding, P. M. Velazco, M. Weksler,
680 J. R. Wible, A. L. Cirranello, The placental mammal ancestor and the post-K-Pg radiation of
681 placentals. *Science (New York, N.Y.)*. **339**, 662–7 (2013).

682 23. M. S. Springer, R. W. Meredith, E. C. Teeling, W. J. Murphy, Technical comment on "The
683 placental mammal ancestor and the post-K-Pg radiation of placentals". *Science (New York, N.Y.)*.
684 **341**, 613 (2013).

685 24. M. A. O'Leary, J. I. Bloch, J. J. Flynn, T. J. Gaudin, A. Giallombardo, N. P. Giannini, S. L.
686 Goldberg, B. P. Kraatz, Z.-X. Luo, J. Meng, X. Ni, M. J. Novacek, F. A. Perini, Z. Randall, G. W.
687 Rougier, E. J. Sargis, M. T. Silcox, N. B. Simmons, M. Spaulding, P. M. Velazco, M. Weksler, J.
688 R. Wible, A. L. Cirranello, Response to comment on "The placental mammal ancestor and the
689 post-K-Pg radiation of placentals". *Science (New York, N.Y.)*. **341**, 613 (2013).

690 25. M. N. Puttik, G. H. Thomas, Fossils and living taxa agree on patterns of body mass evolution:
691 a case study with Afrotheria. *Proceedings. Biological sciences / The Royal Society*. **282**,
692 20152023 (2015).

693 26. L. Nunney, Lineage selection and the evolution of multistage carcinogenesis. *Proceedings of
694 the Royal Society of London. Series B: Biological Sciences*. **266**, 493–498 (1999).

695 27. A. Katzourakis, G. Magiorkinis, A. G. Lim, S. Gupta, R. Belshaw, R. Gifford, Larger
696 Mammalian Body Size Leads to Lower Retroviral Activity. *PLoS Pathogens*. **10**, e1004214 (2014).

697 28. J. D. Nagy, E. M. Victor, J. H. Cropper, Why don't all whales have cancer? A novel hypothesis
698 resolving Peto's paradox. *Integrative and Comparative Biology*. **47**, 317–328 (2007).

699 29. I. García-Cao, M. García-Cao, J. Martín-Caballero, L. M. Criado, P. Klatt, J. M. Flores, J. Weill,
700 M. A. Blasco, M. Serrano, 'Super p53' mice exhibit enhanced DNA damage response, are tumor
701 resistant and age normally. *The EMBO Journal*. **21**, 6225–6235 (2002).

702 30. J. M. Vazquez, M. Sulak, S. Chigurupati, V. J. Lynch, A Zombie LIF Gene in Elephants Is
703 Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage. *Cell Reports*. **24**, 1765–
704 1776 (2018).

705 31. A. F. Caulin, T. A. Graham, L.-S. Wang, C. C. Maley, Solutions to Peto's paradox revealed by
706 mathematical modelling and cross-species cancer gene analysis. *Philosophical transactions of
707 the Royal Society of London. Series B, Biological sciences*. **370**, 20140222 (2015).

708 32. A. Doherty, J. de Magalhães, Has gene duplication impacted the evolution of Eutherian
709 longevity? *Aging Cell*. **15**, 978–980 (2016).

710 33. O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R.
711 Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, A. Purvis, Erratum: The delayed rise of present-
712 day mammals. *Nature*. **456**, 274–274 (2008).

713 34. M. G. Elliot, A. Ø. Mooers, Inferring ancestral states without assuming neutrality or gradualism
714 using a stable model of continuous character evolution. *BMC evolutionary biology*. **14**, 226 (2014).

715 35. J. W. Kent, BLAT—The BLAST-Like Alignment Tool. *Genome Research*. **12**, 656–664 (2002).

716 36. A. M. Altenhoff, C. Dessimoz, Phylogenetic and functional assessment of orthologs inference
717 projects and methods. *PLoS computational biology*. **5**, e1000262 (2009).

718 37. L. Salichos, A. Rokas, Evaluating ortholog prediction algorithms in a yeast model clade. *PloS
719 one*. **6**, e18755 (2011).

720 38. T. U. Consortium, UniProt: the universal protein knowledgebase. *Nucleic Acids Research*. **45**,
721 D158–D169 (2017).

722 39. O. Nishimura, Y. Hara, S. Kuraku, gVolante for standardizing completeness assessment of
723 genome and transcriptome assemblies. *Bioinformatics*. **33**, 3635–3637 (2017).

724 40. G. Parra, K. Bradnam, Z. Ning, T. Keane, I. Korf, Assessing the gene space in draft genomes.
725 *Nucleic Acids Research*. **37**, 289–297 (2008).

726 41. D. Kim, B. Langmead, S. L. Salzberg, HISAT: a fast spliced aligner with low memory
727 requirements. *Nature Methods*. **12**, 357–360 (2015).

728 42. M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, S. L. Salzberg,
729 StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature
730 Biotechnology*. **33**, 290–295 (2015).

731 43. M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, S. L. Salzberg, Transcript-level expression
732 analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nature Protocols*. **11**,
733 1650–1667 (2016).

734 44. B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler,
735 R. Lanfear, IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the
736 Genomic Era. *Molecular Biology and Evolution*. **37**, 1530–1534 (2020).

737 45. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the
738 Ultrafast Bootstrap Approximation. *Molecular Biology and Evolution*. **35**, 518–522 (2017).

739 46. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder:
740 fast model selection for accurate phylogenetic estimates. *Nature Methods*. **14**, 587–589 (2017).

741 47. H.-C. Wang, B. Q. Minh, E. Susko, A. J. Roger, Modeling Site Heterogeneity with Posterior
742 Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. *Systematic
743 Biology*. **67**, 216–235 (2017).

744 48. D. Schrempf, B. Q. Minh, A. von Haeseler, C. Kosiol, Polymorphism-Aware Species Trees
745 with Advanced Mutation Models, Bootstrap, and Rate Heterogeneity. *Molecular Biology and
746 Evolution*. **36**, 1294–1301 (2019).

747 49. J. Soubrier, M. Steel, M. S. Y. Lee, C. D. Sarkissian, S. Guindon, S. Y. W. Ho, A. Cooper, The
748 Influence of Rate Heterogeneity among Sites on the Time Dependence of Molecular Rates.
749 *Molecular Biology and Evolution*. **29**, 3345–3358 (2012).

750 50. Z. Yang, S. Kumar, M. Nei, A new method of inference of ancestral nucleotide and amino acid
751 sequences. *Genetics*. **141**, 1641–50 (1995).

752 51. Y. Liao, J. Wang, E. J. Jaehnig, Z. Shi, B. Zhang, WebGestalt 2019: gene set analysis toolkit
753 with revamped UIs and APIs. *Nucleic Acids Research*. **47**, W199–W205 (2019).

754 52. B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat, K. Sidiropoulos, J. Cook,
755 M. Gillespie, R. Haw, F. Loney, B. May, M. Milacic, K. Rothfels, C. Sevilla, V. Shamovsky, S.
756 Shorser, T. Varusai, J. Weiser, G. Wu, L. Stein, H. Hermjakob, P. D'Eustachio, The reactome
757 pathway knowledgebase. *Nucleic acids research*. **48**, D498–D503 (2020).

758 53. E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R. Clark, A. Ma'ayan,
759 Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC
760 bioinformatics*. **14**, 128 (2013).

761 54. R. Peto, Quantitative implications of the approximate irrelevance of mammalian body size and
762 lifespan to lifelong cancer risk. *Phil. Trans. R. Soc. B*. **370**, 20150198 (2015).

763 55. J. Felsenstein, Phylogenies and the Comparative Method. *The American Naturalist*. **125**, 1–
764 15 (1985).

765 56. E. P. Martins, T. F. Hansen, Phylogenies and the Comparative Method: A General Approach
766 to Incorporating Phylogenetic Information into the Analysis of Interspecific Data. *The American
767 Naturalist*. **149**, 646–667 (1997).

768 57. E. Paradis, K. Schliep, Ape 5.0: An environment for modern phylogenetics and evolutionary
769 analyses in R. *Bioinformatics*. **35**, 526–528 (2019).

770 58. P. Armitage, Multistage models of carcinogenesis. *Environmental health perspectives*. **63**,
771 195–201 (1985).

772 59. P. Armitage, R. Doll, The age distribution of cancer and a multi-stage theory of carcinogenesis.
773 *British Journal of Cancer*. **91**, 6602297 (2004).

774 60. E. Paradis, S. Blomberg, B. Bolker, J. Brown, S. Claramunt, J. Claude, H. S. Cuong, R.
775 Desper, G. Didier, B. Durand, J. Dutheil, R. Ewing, O. Gascuel, T. Guillerme, C. Heibl, A. Ives, B.
776 Jones, F. Krah, D. Lawson, V. Lefort, P. Legendre, J. Lemon, G. Louvel, E. Marcon, R.
777 McCloskey, J. Nylander, R. Opgen-Rhein, A.-A. Popescu, M. Royer-Carenzi, K. Schliep, K.
778 Strimmer, D. de Vienne, *Ape: Analyses of phylogenetics and evolution* (2020; <https://CRAN.R-project.org/package=ape>).

780 61. R Core Team, *R: A language and environment for statistical computing* (R Foundation for
781 Statistical Computing, Vienna, Austria, 2019; <https://www.R-project.org/>).

782 62. Y. Xie, *Bookdown: Authoring books and technical documents with r markdown* (2020;
783 <https://CRAN.R-project.org/package=bookdown>).

784 63. B. Bolker, D. Robinson, *Broom.mixed: Tidying methods for mixed models* (2020;
785 <https://CRAN.R-project.org/package=broom.mixed>).

786 64. M. Dowle, A. Srinivasan, *Data.table: Extension of 'data.frame'* (2019; <https://CRAN.R->
787 [project.org/package=data.table](https://CRAN.R-project.org/package=data.table)).

788 65. H. Wickham, R. François, L. Henry, K. Müller, *Dplyr: A grammar of data manipulation* (2020;
789 <https://CRAN.R-project.org/package=dplyr>).

790 66. H. Wickham, *Forcats: Tools for working with categorical variables (factors)* (2020;
791 <https://CRAN.R-project.org/package=forcats>).

792 67. L. Harmon, M. Pennell, C. Brock, J. Brown, W. Challenger, J. Eastman, R. FitzJohn, R. Glor,
793 G. Hunt, L. Revell, G. Slater, J. Uyeda, J. Weir, *Geiger: Analysis of evolutionary diversification*
794 (2020; <https://CRAN.R-project.org/package=geiger>).

795 68. H. Yutani, *Gghighlight: Highlight lines and points in 'ggplot2'* (2020; <https://CRAN.R->
796 [project.org/package=gghighlight](https://CRAN.R-project.org/package=gghighlight)).

797 69. G. Yu, *Ggimage: Use image in 'ggplot2'* (2020; <https://CRAN.R->
798 [project.org/package=ggimage](https://CRAN.R-project.org/package=ggimage)).

799 70. E. Campitelli, *Ggnewscale: Multiple fill and colour scales in 'ggplot2'* (2020; <https://CRAN.R->
800 [project.org/package=ggnewscale](https://CRAN.R-project.org/package=ggnewscale)).

801 71. H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, H. Yutani,
802 D. Dunnington, *Ggplot2: Create elegant data visualisations using the grammar of graphics* (2020;
803 <https://CRAN.R-project.org/package=ggplot2>).

804 72. G. Yu, *Ggplotify: Convert plot to 'grob' or 'ggplot' object* (2020; <https://CRAN.R->
805 [project.org/package=ggplotify](https://CRAN.R-project.org/package=ggplotify)).

806 73. A. Kassambara, *Ggpubr: 'Ggplot2' based publication ready plots* (2020; <https://CRAN.R-project.org/package=ggpubr>).

808 74. K. Slowikowski, *Ggrepel: Automatically position non-overlapping text labels with 'ggplot2'* (2020; <https://CRAN.R-project.org/package=ggrepel>).

810 75. N. Xiao, *Ggsci: Scientific journal and sci-fi themed color palettes for 'ggplot2'* (2018; <https://CRAN.R-project.org/package=ggsci>).

812 76. G. Yu, T. T.-Y. Lam, *Ggtree: An r package for visualization of tree and annotation data* (2020; <https://yulab-smu.github.io/treedata-book/>).

814 77. H. Zhu, *KableExtra: Construct complex table with 'kable' and pipe syntax* (2019; <https://CRAN.R-project.org/package=kableExtra>).

816 78. J. Ooms, *Magick: Advanced graphics and image-processing in r* (2020; <https://CRAN.R-project.org/package=magick>).

818 79. S. M. Bache, H. Wickham, *Magrittr: A forward-pipe operator for r* (2014; <https://CRAN.R-project.org/package=magrittr>).

820 80. J. Pinheiro, D. Bates, R-core, *Nlme: Linear and nonlinear mixed effects models* (2020; <https://CRAN.R-project.org/package=nlme>).

822 81. C. Sievert, C. Parmer, T. Hocking, S. Chamberlain, K. Ram, M. Corvellec, P. Despouy, *Plotly: Create interactive web graphics via 'plotly.js'* (2020; <https://CRAN.R-project.org/package=plotly>).

824 82. L. Henry, H. Wickham, *Purrr: Functional programming tools* (2020; <https://CRAN.R-project.org/package=purrr>).

826 83. H. Wickham, J. Hester, R. Francois, *Readr: Read rectangular text data* (2018; <https://CRAN.R-project.org/package=readr>).

828 84. M. Hlavac, *Stargazer: Well-formatted regression and summary statistics tables* (2018; <https://CRAN.R-project.org/package=stargazer>).

830 85. H. Wickham, *Stringr: Simple, consistent wrappers for common string operations* (2019; <https://CRAN.R-project.org/package=stringr>).

832 86. K. Müller, H. Wickham, *Tibble: Simple data frames* (2020; <https://CRAN.R-project.org/package=tibble>).

833

834 87. H. Wickham, L. Henry, *Tidyr: Tidy messy data* (2020; <https://CRAN.R-project.org/package=tidyr>).

835

836 88. G. Yu, *Tidytree: A tidy tool for phylogenetic tree data manipulation* (2020; <https://yulab-smu.github.io/treedata-book/>).

837

838 89. H. Wickham, *Tidyverse: Easily install and load the 'tidyverse'* (2019; <https://CRAN.R-project.org/package=tidyverse>).

839

840 90. G. Yu, *Treeio: Base classes and functions for phylogenetic tree input and output* (2020).

841 91. N. Gehlenborg, *UpSetR: A more scalable alternative to venn and euler diagrams for visualizing intersecting sets* (2019; <https://CRAN.R-project.org/package=UpSetR>).

842

843 92. Y. Xie, *Bookdown: Authoring books and technical documents with R markdown* (Chapman; Hall/CRC, Boca Raton, Florida, 2016; <https://github.com/rstudio/bookdown>).

844

845 93. M. Alfaro, F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. Rabosky, G. Carnevale, L. Harmon, Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. *Proceedings of the National Academy of Sciences of the United States of America*. **106**, 13410–13414 (2009).

846

847

848

849 94. J. Eastman, M. Alfaro, P. Joyce, A. Hipp, L. Harmon, A novel comparative method for identifying shifts in the rate of character evolution on trees. *Evolution*. **65**, 3578–3589 (2011).

850

851 95. G. Slater, L. Harmon, D. Wegmann, P. Joyce, L. Revell, M. Alfaro, Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate bayesian computation. *Evolution*. **66**, 752–762 (2012).

852

853

854 96. L. Harmon, J. Weir, C. Brock, R. Glor, W. Challenger, GEIGER: Investigating evolutionary radiations. *Bioinformatics*. **24**, 129–131 (2008).

855

856 97. M. Pennell, J. Eastman, G. Slater, J. Brown, J. Uyeda, R. Fitzjohn, M. Alfaro, L. Harmon, Geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. *Bioinformatics*. **30**, 2216–2218 (2014).

857

858

859 98. H. Wickham, *Ggplot2: Elegant graphics for data analysis* (Springer-Verlag New York, 2016;
860 <https://ggplot2.tidyverse.org>).

861 99. G. Yu, Using ggtree to visualize data on tree-like structures. *Current Protocols in*
862 *Bioinformatics*. **69**, e96 (2020).

863 100. G. Yu, T. T.-Y. Lam, H. Zhu, Y. Guan, Two methods for mapping and visualizing associated
864 data on phylogeny using ggtree. *Molecular Biology and Evolution*. **35**, 3041–3043 (2018).

865 101. G. Yu, D. Smith, H. Zhu, Y. Guan, T. T.-Y. Lam, Ggtree: An r package for visualization and
866 annotation of phylogenetic trees with their covariates and other associated data. *Methods in*
867 *Ecology and Evolution*. **8**, 28–36 (2017).

868 102. C. Sievert, *Interactive web-based data visualization with r, plotly, and shiny* (Chapman;
869 Hall/CRC, 2020; <https://plotly-r.com>).

870 103. H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund,
871 A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms,
872 D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, H. Yutani,
873 Welcome to the tidyverse. *Journal of Open Source Software*. **4**, 1686 (2019).

874 104. L.-G. Wang, T. T.-Y. Lam, S. Xu, Z. Dai, L. Zhou, T. Feng, P. Guo, C. W. Dunn, B. R. Jones,
875 T. Bradley, H. Zhu, Y. Guan, Y. Jiang, G. Yu, Treeio: An r package for phylogenetic tree input and
876 output with richly annotated and associated data. *Molecular Biology and Evolution*. **37**, 599–603
877 (2020).

878 105. J. Liang, G. B. Mills, AMPK: a contextual oncogene or tumor suppressor? *Cancer research*.
879 **73**, 2929–35 (2013).

880 106. V. Launonen, Mutations in the human LKB1/STK11 gene. *Human Mutation*. **26**, 291–297
881 (2005).

882 107. J. Drost, F. Mantovani, F. Tocco, R. Elkon, A. Comel, H. Holstege, R. Kerkhoven, J. Jonkers,
883 P. M. Voorhoeve, R. Agami, G. D. Sal, BRD7 is a candidate tumour suppressor gene required for
884 p53 function. *Nature Cell Biology*. **12**, 380–389 (2010).

885 108. A. E. Burrows, A. Smogorzewska, S. J. Elledge, Polybromo-associated BRG1-associated
886 factor components BRD7 and BAF180 are critical regulators of p53 required for induction of
887 replicative senescence. *Proceedings of the National Academy of Sciences of the United States
888 of America*. **107**, 14280–5 (2010).

889 109. T. Fukuda, Y. Iino, M. Onuma, B. Gen, M. Inoue-Murayama, T. Kiyono, Expression of human
890 cell cycle regulators in the primary cell line of the African savannah elephant (*loxodonta africana*)
891 increases proliferation until senescence, but does not induce immortalization. *In Vitro Cellular &
892 Developmental Biology - Animal*. **52**, 20–26 (2016).

893 110. N. M. V. Gomes, O. A. Ryder, M. L. Houck, S. J. Charter, W. Walker, N. R. Forsyth, S. N.
894 Austad, C. Venditti, M. Pagel, J. W. Shay, W. E. Wright, Comparative biology of mammalian
895 telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination.
896 *Aging Cell*. **10**, 761–768 (2011).

897 111. R. W. Hart, R. B. Setlow, Correlation Between Deoxyribonucleic Acid Excision-Repair and
898 Life-Span in a Number of Mammalian Species. *Proceedings of the National Academy of Sciences*.
899 **71**, 2169–2173 (1974).

900 112. A. A. Francis, W. H. Lee, J. D. Regan, The relationship of DNA excision repair of ultraviolet-
901 induced lesions to the maximum life span of mammals. *Mechanisms of Ageing and Development*.
902 **16**, 181–189 (1981).

903 113. S. D. Tyner, S. Venkatachalam, J. Choi, S. Jones, N. Ghebranious, H. Igelmann, X. Lu, G.
904 Soron, B. Cooper, C. Brayton, S. H. Park, T. Thompson, G. Karsenty, A. Bradley, L. A.
905 Donehower, p53 mutant mice that display early ageing-associated phenotypes. *Nature*. **415**, 45
906 (2002).

907 114. S. Rastogi, D. A. Liberles, Subfunctionalization of duplicated genes as a transition state to
908 neofunctionalization. *BMC Evolutionary Biology*. **5**, 28 (2005).

909 115. W. Qian, J. Zhang, Genomic evidence for adaptation by gene duplication. *Genome research*.
910 **24**, 1356–62 (2014).

911 116. A. Stoltzfus, On the Possibility of Constructive Neutral Evolution. *Journal of Molecular
912 Evolution*. **49**, 169–181 (1999).

913 117. O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R.
914 Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, A. Purvis, The delayed rise of present-day
915 mammals. *Nature*. **446**, 507–512 (2007).

916 118. O. Dudchenko, S. S. Batra, A. D. Omer, S. K. Nyquist, M. Hoeger, N. C. Durand, M. S.
917 Shamim, I. Machol, E. S. Lander, A. P. Aiden, and E. L. Aiden. De novo assembly of the *Aedes*
918 *aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science*. **356**(6333):92–95,
919 2017.

920 119. E. Palkopoulou, S. Mallick, P. Skoglund, J. Enk, N. Rohland, H. Li, A. Omrak, S. Vartanyan,
921 H. Poinar, A. Götherström, D. Reich, and L. Dalén. Complete genomes reveal signatures of
922 demographic and genetic declines in the woolly mammoth. *Current biology*. **25**(10):1395–1400,
923 May 2015.

924 120. E. Palkopoulou, M. Lipson, S. Mallick, S. Nielsen, N. Rohland, S. Baleka, E. Karpinski, A.
925 Ivancevic, T. To, R. D. Kortschak, J. Raison, Z. Qu, T. Chin, K. Alt, S. Claesson, L. Dalén, R. D.
926 E. MacPheeH. Meller, A. L. Roca, O. A. Ryder, D. Heiman, S. Young, M. Breen, C. Williams, B.
927 L. Aken, M. Ruffier, E. Karlsson, J. Johnson, F. Di Palma, J. Alföldi, D. L. Adelson, T. Mailund, K.
928 Munch, K. Lindblad-Toh, M. Hofreiter, H. Poinar, and D. Reich. A comprehensive genomic history
929 of extinct and living elephants. *Proceedings of the National Academy of Sciences*.
930 **115**(11):E2566–E2574, 2018.

931 121. A. D. Foote, Y. Liu, G. W. C. Thomas, T. Vinař, J. Alföldi, J. Deng, S. Dugan, C. E. van Elk,
932 M. E. Hunter, V. Joshi, Z. Khan, C. Kovar, S. L. Lee, K. Lindblad-Toh, A. Mancia, R. Nielsen, X.
933 Qin, J. Qu, B. J. Raney, N. Vijay, J. B. W. Wolf, M. W. Hahn, D. M. Muzny, K. C. Worley, M. T. P.
934 Gilbert, and R. A. Gibbs. Convergent evolution of the genomes of marine mammals. *Nature*
935 *Genetics*. **47**(3):272–275, 2015.

936 122. K. Lindblad-Toh, M. Garber, O. Zuk, M. F Lin, B. J. Parker, S. Washietl, P. Kheradpour, J.
937 Ernst, G. Jordan, E. Mauceli, L. D. Ward, C. B. Lowe, A. K. Holloway, M. Clamp, S. Gnerre, J.
938 Alföldi, K. Beal, J. Chang, H. Clawson, J. Cuff, F. Di Palma, S. Fitzgerald, P. Flicek, M. Guttman,
939 M. J. Hubisz, D. B. Jaffe, I. Jungreis, W. J. Kent, D. Kostka, M. Lara, A. L Martins, T. Massingham,
940 I. Moltke, B. J. Raney, M. D. Rasmussen, J. Robinson, A. Stark, A. J Vilella, J. Wen, X. Xie, M.
941 C. Zody, Broad Institute Sequencing Platform and Whole Genome Assembly Team, J. Baldwin,
942 T. Bloom, C. W. Chin, D. Heiman, R. Nicol, C. Nusbaum, S. Young, J. Wilkinson, K. C. Worley,
943 C. L. Kovar, D. M. Muzny, R. A. Gibbs, Baylor College of Medicine Human Genome Sequencing

944 Center Sequencing Team, A. Cree, H. H. Dihn, G. Fowler, S. Jhangiani, V. Joshi, S. Lee, L. R.
945 Lewis, L. V. Nazareth, G. Okwuonu, J. Santibanez, W. C. Warren, E. R. Mardis, G. M. Weinstock,
946 R. K. Wilson, Genome Institute at Washington University, K. Delehaunty, D. Dooling, C. Fronik,
947 L. Fulton, B. Fulton, T. Graves, P. Minx, E. Sodergren, E. Birney, E. H. Margulies, J. Herrero, E.
948 D. Green, D. Haussler, A. Siepel, N. Goldman, K. S. Pollard, J. S. Pedersen, E. S. Lander, and
949 M. Kellis. A high-resolution map of human evolutionary constraint using 29 mammals. *Nature*.
950 **478**(7370):476–482, 2011

951