

1 **PAX8 orchestrates an angiogenic program through interaction with SOX17**

2

3 Daniele Chaves-Moreira¹, Marilyn A. Mitchell¹, Cristina Arruza¹, Priyanka Rawat¹, Simone Sidoli^{2,3},
4 Robbin Nameki^{4,5}, Jessica Reddy^{4,5}, Rosario I. Corona^{4,5}, Sisi Ma⁶, Boris Winterhoff⁷, Gottfried E.
5 Konecny⁸, Benjamin A. Garcia², Donita C. Brady^{9,10}, Kate Lawrenson^{4,11}, Patrice J. Morin¹ and Ronny
6 Drapkin^{1*}.

7

8 ¹Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School
9 of Medicine. Biomedical Research Building II/III, Suite 1224, Philadelphia, PA, USA.

10 ²Epigenetics Institute, Department of Biochemistry and Biophysics, Smilow Center for Translational Research, University of
11 Pennsylvania Perelman School of Medicine, Suite 9-124, Philadelphia, PA, USA.

12 ³Current affiliation: Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

13 ⁴Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los
14 Angeles, CA, USA.

15 ⁵Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles,
16 CA, USA.

17 ⁶Institute for Health Informatics, University of Minnesota, MN, USA.

18 ⁷Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota,
19 Minneapolis, MN, USA.

20 ⁸Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA. USA.

21 ⁹Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine. Biomedical Research Building
22 II/III, Suite 612, Philadelphia, PA, USA.

23 ¹⁰Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine. Biomedical
24 Research Building II/III, Suite 612, Philadelphia, PA, USA.

25 ¹¹Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

26

27 ***Correspondence:** rdrapkin@pennmedicine.upenn.edu

28

29 **Keywords:** PAX8, SOX17, SERPINE1, Transcription factor, Gene regulation, Ovarian Cancer,
30 Fallopian tube, Tumor angiogenesis.

31 **ABSTRACT**

32 Worldwide, the number of new ovarian cancer cases approaches 300,000 with more than
33 180,000 deaths every year. The low survival-rate reflects the limitations of current therapies and
34 highlights the importance of identifying new therapeutic targets. Despite significant recent efforts to
35 identify novel vulnerabilities in ovarian cancer, none have led to effective durable therapies with
36 improvement in overall survival. PAX8, a lineage-transcription factor, whose expression is a major
37 molecular feature of ovarian carcinomas, represents a novel therapeutic target. Herein, we have
38 identified SOX17 as a *bona fide* PAX8-interacting partner and elucidated the impact of this interaction
39 on the development of ovarian cancer. Importantly, we found that PAX8 and SOX17 regulate tumor
40 angiogenesis *in vitro* and *in vivo*. The role of PAX8 and SOX17 in the regulation of angiogenesis reveals
41 a novel function for these factors in regulating the tumor microenvironment and highlight this pathway
42 as a viable therapeutic target.

43 **INTRODUCTION**

44 Epithelial ovarian carcinoma is the most lethal of all gynecologic malignancies, claiming an
45 estimated 14,000 lives annually in the United States of America (1) with worldwide numbers
46 approaching 180,000 deaths annually (2). The lack of effective screening tools result in the majority of
47 cases being diagnosed at an advanced stage and thus translating into a 5-year survival rate of less
48 than 30% (3). The absence of adequate screening is compounded by the propensity of this disease to
49 acquire chemoresistance and relapse of disease in the majority of patients despite initial response to
50 platinum-based chemotherapy and surgical cytoreduction. Although much progress in ovarian cancer
51 disease knowledge has emerged, effective targeted therapies have yet to impact overall survival rates
52 (4).

53 The knowledge of the pathogenesis of high-grade serous ovarian carcinoma (HGSOC), the most
54 common subtype of this disease, has greatly advanced over the past decade. A number of studies
55 support the fallopian tube secretory epithelial cells (FTSEC) as the site of origin of the majority of
56 HGSOC (5-13). The development of female reproductive tract is governed by the PAX8 transcription
57 factor (14), which is a member of the Paired-Box family of transcription factors that play essential roles
58 during embryogenesis and tumorigenesis (15). In normal oviducts, PAX8 expression is restricted to the
59 secretory cells while neighboring ciliated cells show no expression. The sustained expression of PAX8
60 in the adult FTSEC and in nearly all HGSOCs (16), previously led us to use the PAX8 promoter to
61 develop a genetically engineered mouse model of HGSOC (17, 18). Knockdown of PAX8 in ovarian
62 cancer cells leads to apoptosis (19-21) supporting a definitive role for PAX8 in ovarian cancer growth
63 and progression. However, it remains unclear how PAX8 drives the development of the Mullerian
64 reproductive tract or how it supports neoplastic growth.

65 Surprisingly, PAX8 knockdown following transcriptome analysis revealed a negligible impact on
66 the FTSEC cell lines with very few transcripts significantly affected by PAX8 loss (21, 22). In contrast,
67 the range of transcripts altered by PAX8 loss in cancer cell lines was considerably higher. Ontology

68 analysis of the alterations after PAX8 loss showed changes in proliferation, angiogenesis and adhesion
69 pathways that are crucial for tumor progression (22). Chromatin immunoprecipitation-sequencing
70 (ChIP-seq analysis) showed that the PAX8 cistrome is reprogrammed during the process of malignant
71 transformation by the widespread redistribution of PAX8 binding sites in the genome of ovarian cancer
72 cells. Moreover, a recent study showed that non-coding somatic mutations disrupt the PAX8
73 transcriptional program in ovarian cancer (23).

74 To further survey the roles of PAX8 in ovarian carcinomas, we purified the PAX8 protein complex
75 from a panel of different fallopian tube secretory cells, and different ovarian carcinoma cells and
76 identified its components. Our analyses reveal that PAX8 is part of a NuRD chromatin remodeling
77 complex and associates with multiple factors including SOX17. We show that depletion of PAX8 or
78 SOX17 impacts the expression of factors involved in angiogenesis and functionally disrupts capillary
79 formation *in vitro* and in mouse models. Disruption in angiogenesis greatly decreased tumor burden,
80 ascites formation and lead to improved survival. These findings support a role of PAX8 and SOX17 in
81 the regulation of angiogenesis and highlight this pathway as a viable therapeutic target.

82 **RESULTS**

83 **Biochemical purification of the PAX8 complex**

84 To better understand the function of PAX8 in benign compared to malignant fallopian tube
85 secretory cells, we developed a biochemical affinity-purification method (Figure 1A). First, we
86 generated nuclear extracts as previously described (24) and purified the endogenous PAX8 protein
87 complex from three ovarian carcinoma cell lines (OVCAR4, KURAMOCHI, and OVSAHO) and three
88 immortalized fallopian tube secretory cell lines (FT194, FT246, and FT282) using anti-PAX8-specific
89 antibodies. Immunoblotting following affinity chromatography demonstrated the specific enrichment of
90 PAX8 in our system (Figure 1B). When the affinity-purified PAX8 complex was evaluated on size-
91 exclusion chromatography it revealed a size of approximately 600 kDa (Figure 1C). Mass spectrometry
92 analysis of the PAX8-containing fractions identified a number of putative PAX8-interacting proteins
93 (Figure 1D and Table 1).

94 Remarkably, many of the putative PAX8-interacting proteins represent components of
95 chromatin-remodeling complexes. For example, chromodomain-helicase-DNA-binding protein 4
96 (CHD4), Transcriptional repressor p66-alpha (GATAD2A), Metastasis-associated protein 2 (MTA2),
97 histone deacetylases 1 (HDAC1) and Retinoblastoma binding protein 4 (RBBP4) are components of
98 the nucleosome remodeling and deacetylase (NuRD) complex. The NuRD complex is responsible for
99 transcriptional repression through histone deacetylation and nucleosome remodeling (25).
00 Coincidentally, NuRD complex core members, as the helicase CHD4, was also found to be an interactor
01 and epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma (26).

02 To prioritize the putative PAX8-interacting partners for further study, we ranked the peptides by
03 confident identification score (i.e. MaxQuant score), correlation with PAX8 expression in ovarian tumor
04 tissues, and co-dependency in ovarian carcinoma cell lines. SOX17, a member of the Sry-related HMG
05 box transcription factors family, exhibited the strongest correlation, co-dependency with PAX8 in
06 ovarian cancer, and was identified among the top-ranked most abundant putative PAX8-interacting

07 partners (Table 1 and SI 1). We confirmed SOX17 as a *bona fide* PAX8-interacting partner by showing
08 co-immunoprecipitation using agarose beads covalently bound to either a specific anti-PAX8 or anti-
09 SOX17 antibody, compared to rabbit IgG control beads (Figure 1E), indicating that PAX8 and SOX17
10 physically interact. Consistent with this finding, we observed co-elution of PAX8 and SOX17 in the
11 same large molecular size fractions (Figure 1F), indicating that they are part of the same complex. We
12 did not observe monomeric PAX8 or SOX17 in lower molecular weight fractions.

13

14 **PAX8 physically interacts with SOX17 in high-grade serous ovarian carcinoma**

15 We next characterized the location and levels of expression of PAX8 and SOX17 in five normal
16 human fallopian tube tissues compared to five different HGSOC cases by immunohistochemistry. As
17 shown in Figure 2A, we observed the co-expression of PAX8 and SOX17 restricted to the FT secretory
18 epithelial cells. We also observed the over-expression of both PAX8 and SOX17 in all HGSOC cases
19 (Figure 2A). Interestingly, PAX8 and SOX17 gene expression levels are significantly higher in ovarian
20 cancers and in benign fallopian tubes than normal ovaries (SI 2A-2B-2C).

21 Our immunohistochemical findings are supported by high-resolution immunofluorescence
22 analyses showing the nuclear co-localization of PAX8 and SOX17 in three different immortalized
23 fallopian tube secretory cell lines (FT194, FT246, and FT282) and three high-grade serous ovarian
24 carcinoma cell lines (OVCAR4, KURAMOCHI, and OVSAHO) (Figure 2B). To confirm the PAX8-
25 SOX17 physical interaction, we performed an *in situ* proximity ligation assay (PLA), which allows the
26 identification of both stable and transient interactions at native protein levels. We confirmed increased
27 interaction between PAX8 and SOX17 in all tested high-grade serous cells: OVCAR4, KURAMOCHI,
28 and OVSAHO (Figure 2C and SI 2D). As expected for transcription factors, the observed protein-protein
29 interactions were nuclei localized. Moreover, we further explored the PAX8-SOX17 interaction in five
30 different HGSOC tissue samples and again we observed a stronger and higher number of PLA signals
31 in the cancer samples than in the normal fallopian tube samples (Figure 2D), confirming that the PAX8-

32 SOX17 interaction may be important in the process of malignant transformation. Moreover, in the
33 normal fallopian tube cases, the PLA signals (PAX8-SOX17 interaction) were restricted to the secretory
34 cells, reinforcing the hypothesis that these cells are the site of origin for HGSOC.

35

36 **PAX8 and SOX17 are transcription co-regulators**

37 To assess whether SOX17 and PAX8 could mutually regulate each other, we used RNA
38 interference to knockdown each gene individually. After PAX8 knockdown, SOX17 protein levels were
39 significantly reduced, in all tested FTSEC and HGSOC cell lines, and actually became undetectable in
40 some lines (Figure 3A-3B and SI 3). Conversely, SOX17 knockdown also led to a decrease in the PAX8
41 protein level, but the effects were much less pronounced. At the RNA level, PAX8 loss led to a
42 significant decline of SOX17 expression in all cell lines studied (Figure 3C) and SOX17 knockdown
43 similarly led to a decrease of PAX8 expression (Figure 3D). These data suggest that SOX17 and PAX8
44 can transcriptionally regulate each other's mRNA expression and that, in the absence of PAX8, SOX17
45 protein is rapidly depleted.

46 Since the PAX8-SOX17 complex appears to transcriptionally regulate the PAX8 and SOX17
47 promoters, we performed luciferase reporter assay to directly test the transcriptional effect of this
48 complex on minimal promoters containing five times PAX8 binding sites (27). Consistent with the results
49 described above, knockdown of either PAX8 or SOX17 demonstrated a significant decline of luciferase
50 activity mediated by PAX8-binding sites (Figure 3E-3F).

51

52 **PAX8 and SOX17 regulate a common set of genes**

53 To determine which pathways are regulated by the PAX8-SOX17 complex, we first performed
54 RNA-seq following depletion of each factor individually, and in combination (siDUAL). Control cells
55 received a non-targeting siRNA control pool (siNT). The efficiency of the knockdowns was assessed
56 both by the number of sequenced reads, and Western blot (SI 3). Unsupervised analysis of the

v20

57 significantly altered transcripts after the loss of PAX8, SOX17, or both together is shown in Figure 4A
58 and Table 2. PAX8 and SOX17 can both negatively and positively regulate gene expression. PAX8
59 target genes were significantly more likely to be regulated by SOX17 than expected by chance (p
60 <0.00001 , Chi-squared test). Treatment with siRNAs to simultaneously deplete both factors largely
61 phenocopied the maximal effect of either siPAX8 or siSOX17 (Figure 4A). We focused on the 380
62 genes that were commonly up-regulated (Figure 4B) under all three conditions. These genes were
63 enriched in pathways associated with cell adhesion, blood vessel development, and angiogenesis
64 (Figure 4C).

65 In order to further characterize the gene regulation coordinated by PAX8/SOX17, we performed
66 targeted functional proteomic profiling using reverse-phase protein arrays (RPPA)s. Knockdown of
67 PAX8, SOX17 or both resulted in significant changes across 142 proteins (Figure 4D and Table 3).
68 Consistent with our observations made using RNA-seq, ontology analysis of the identified target genes
69 showed that cell adhesion, and angiogenesis were among the pathways most significantly altered after
70 PAX8 and/or SOX17 loss (SI 4C). When examining individual genes, we found that Serpin Family E
71 Member 1 (SERPINE1), also called Plasminogen Activator Inhibitor 1 (PAI1), was the most highly
72 elevated protein following knockdowns (Figure 4E). The protein data corroborate the RNA-seq analysis
73 which also found SERPINE1 mRNA levels the most commonly up-regulated (SI 4A-4B). Interestingly,
74 this gene has been implicated as an inhibitor of the tissue-type plasminogen activator and angiogenesis
75 (28). Using immunoblotting and quantitative-PCR, we confirmed that PAX8 or SOX17 knockdown
76 significantly increased the expression of SERPINE1 and all tested cells (Figure 4F-4G). Moreover,
77 SERPINE1 presented a strong differential expression pattern between benign and malignant cells. All
78 FTSEC lines exhibited higher levels of SERPINE1 compared to isogenic oncogene-transformed lines
79 or ovarian cancer cell lines (SI 4D) and this expression was inversely correlated with the levels of
80 PAX8/SOX17 (SI 4E). This suggests an important role for PAX8-SOX17-mediated SERPINE1
81 suppression in malignant transformation.

82 **SERPINE1 participates in PAX8-SOX17-mediated angiogenesis**

83 Using an angiogenesis antibody array, we further examined the levels of 35 different secreted
84 angiogenesis mediators in a panel of human ovarian carcinoma cells (OVCAR3, OVCAR4,
85 KURAMOCHI, and OVTOKO) and a panel of human fallopian tube secretory cells (FT33, FT194,
86 FT246, and FT282). The FTSEC line-conditioned media exhibited a higher concentration of the
87 angiogenesis inhibitors such as SERPINE1 and THBS1, while the ovarian cancer lines secreted more
88 angiogenesis inducers such as VEGFA, CXCL8, and CXCL16 (Figure 5A and SI 5). We found that
89 some angiogenic factors were regulated by PAX8 and SOX17. Indeed, VEGFA, CXCL8, and CXCL16
90 exhibited reduction after the knockdown of PAX8 or SOX17 in the cancer lines, while their secretion in
91 the normal lines was not detected (Figure 5B). However, the most prominent effect observed in cancer
92 cell lines was a large increase in SERPINE1 secretion following PAX8 knockdown. SERPINE1 is
93 particularly interesting because its secretion levels were also elevated in FTSECs compared to ovarian
94 cancer lines. Indeed, FTSEC-conditioned media presented an average of 20 ng/mL of SERPINE1,
95 which was many times higher than the secretion from ovarian cancer lines, an average of 0.2 ng/mL
96 (Figure 5C-5D). Corroborating our previous findings, the secretion of SERPINE1 was significantly
97 increased in HGSOC conditioned media following PAX8 or SOX17 knockdown (Figure 5E-5F).

98

99 **Roles of SERPINE1 and its regulators, PAX8 and SOX17, on ovarian tumor angiogenesis.**

00 Using the human umbilical vein endothelial cells (HUVEC) tube-formation assay, we found that
01 conditioned media from ovarian carcinoma cells induced the formation of blood vessels *in vitro*,
02 although not to the same extent as recombinant VEGF. This effect was almost abolished in conditioned
03 media from ovarian cancer lines with PAX8 or SOX17 knockdown (Figure 6A). However, no induction
04 of HUVECs tube formation was observed with the FTSEC lines conditioned media, which exhibit a
05 higher concentration of SERPINE1 (Figure 6A-6B). We further investigated the VEGFR2 pathway
06 status and corroborated the inactivation of the downstream effectors PLCy1 and ERK1/2 in endothelial

07 cells exposed to HGSOC conditioned media after the loss of PAX8 or SOX17 when compared with the
08 no-targeting control knockdown (SI 6).

09 To extend these findings to an *in vivo* system, we performed in nude mice the directed *in vivo*
10 angiogenesis assay (DIVAA) (29, 30). The DIVAA assay uses semi-closed small silicone cylinders
11 known as angioreactors. The cylinders can be filled with angiogenic or antiangiogenic compounds of
12 interest. Following subcutaneous implantation in nude mice, host vascular endothelial cells will migrate
13 into the angioreactors and proliferate to form new blood vessels, if the compound of interest is
14 angiogenic. In the presence of VEGF, used as a positive control, a strong induction of angiogenesis
15 was observed (Figure 6C-6D). No significant blood vessels were observed in the vehicle (PBS or Fresh
16 Media) control or with SERPINE1. Cylinders containing HGSOC cell lines conditioned media revealed
17 extensive angiogenesis. The presence of erythrocytes inside the newly developed blood vessels
18 indicated that they were functional. In contrast, conditioned media from HGSOC cell lines with PAX8
19 or SOX17 knocked down showed a significant decrease in ovarian cancer-induced neovascularization.
20 These results show that ovarian cancer cell lines have the capacity to induce angiogenesis *in vivo*, and
21 that PAX8 and SOX17 participate in this process probably through SERPINE1 down-regulation.

22

23 **Knockdown of PAX8 or SOX17 decreases tumor formation in an ovarian cancer xenograft
24 model.**

25 Because we observed significant and reproducible effects of PAX8/SOX17 on angiogenesis, we
26 hypothesized that knockdown of these genes may reduce the capacity of malignant cells to develop
27 tumors *in vivo*. We employed a doxycycline-inducible lentiviral shRNA system in order to express
28 shRNAs against PAX8 or SOX17 to deplete PAX8 or SOX17 levels in 3 different cancer cell lines
29 (OVCAR3, OVCAR4, and OVTKO). Unfortunately, OVCAR3 and OVCAR4 cells appeared to be
30 exquisitely sensitive to the loss of PAX8 and SOX17 and we were unable to identify clones with
31 acceptable levels of down-regulation. However, some OVTKO clones exhibited efficient PAX8 or

v20

32 SOX17 knockdown and up-regulation of SERPINE1 after the induction with doxycycline (Figure 7A).
33 OVTKO-shRNA harboring cells were injected intraperitoneally into NSG mice and incubated for 72
34 hours before doxycycline was added to the diet. After two weeks, control mice exhibited a significant
35 tumor burden (Figure 7B). Doxycycline treatment reduced the tumor burden further to an almost
36 undetectable level with no signs of ascites (Figure 7C-7D-7E), reinforcing our hypothesis that
37 PAX8/SOX17 are modulating tumor angiogenesis by suppressing anti-angiogenesis factors as
38 SERPINE1 and THBS1 (SI 7). These data show that inhibition of PAX8/SOX17 profoundly impairs the
39 growth of ovarian carcinoma cells in mice, part of these effects likely due to suppression of tumor
40 angiogenesis.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 **DISCUSSION**

58 Many studies have implicated PAX8 as an important transcription factor in ovarian cancer.
59 However, its mechanism of action in this regard remains unclear. Here, using a combination of
60 biochemistry, *in vitro* models, and animal studies we make two important observations about how PAX8
61 governs tumor development. We show that PAX8 interacts with another developmental transcription
62 factor, SOX17. PAX8 regulates expression of SOX17 and together they mediate a transcriptional
63 program that drives angiogenesis in the malignant setting. Depletion of these proteins greatly
64 attenuates angiogenesis in multiple systems.

65 Previous studies have shown that benign and malignant cells are distinguished by marked
66 remodeling of the PAX8 cistrome and this implies that PAX8 may acquire new targets or functions in
67 the malignant state (22). To investigate if the PAX8 re-distribution in cancer cells was due to changes
68 in the PAX8 network, and to further clarify its roles in ovarian cancer, and possibly identify novel
69 therapeutic opportunities, we first sought to identify its interacting partners in benign and malignant
70 cells. Interestingly, its crucial role in transcriptional regulation was highlighted by our finding that multiple
71 chromatin remodeling proteins interact with PAX8. Mechanisms of gene regulation by PAX8 are clearly
72 complex as we found that, following PAX8 knockdown, a vast number of genes were up-regulated or
73 down-regulated in these cells. A large number of the nucleosome remodeling molecules identified here
74 are subunits of the NuRD complex, such as CHD4, MTA2, GATAD2A, GATAD2B, HDAC1, and RBBP4
75 suggesting that PAX8 participate in this chromatin-remodeling complex. Reinforcing these findings, a
76 recent drug screen showed that PAX8 levels were strongly decreased by inhibitors of histone
77 deacetylase (HDAC1) (31). Among the interacting partners identified, SOX17 was one of the mostly
78 highly enriched in our mass spectrometry data. In addition, it exhibited a strong correlation and co-
79 dependency with PAX8 in ovarian cancer using TCGA gene expression data. SOX17 is a transcription
80 factor and member of the SOXF family, which has an HMG, β -catenin binding and transactivation
81 domains (32). SOX17 biological function is always dependent on a dimerization partner (33) that is

82 dynamic and specific to the cell context. SOX17-interacting partners can engage differentially in the
83 genome, regulating different sets of genes (34). Therefore, we hypothesized that the PAX8-SOX17
84 transcriptional activity may be crucial in ovarian tumorigenesis. We found that both PAX8 and SOX17
85 exhibit expression in the nuclei of both benign and malignant secretory cells, where they physically and
86 functionally interact. Our findings are in agreement with the current literature showing that PAX and
87 SOX members can engage in transcriptional regulation. Indeed, PAX3 and SOX10 can physically
88 interact and synergistically regulate MITF and c-RET enhancers (35). The PAX3-SOX10 interaction is
89 important for melanoma cells, where these factors regulate cell motility, apoptosis, and proliferation
90 (36). Additionally, PAX6 and SOX2 are also interacting partners in early neural differentiation and are
91 necessary for neural progenitor cell pluripotency (37). Furthermore, PAX6 and SOX2 act as an
92 oncogene and can induce cancer cell stemness (38).

93 We found that PAX8 and SOX17 can mutually regulate each other at the transcriptional level. At
94 the protein level, PAX8 knockdown led to an almost complete disappearance of SOX17, and SOX17
95 knockdown led to a significant decrease in PAX8 levels. These results are reinforced by our recent
96 findings showing that PAX8 and SOX17 were found to be master transcription factors that occupy
97 regulatory elements related to their own encoding genes in ovarian cancer (39). Globally, PAX8 and
98 SOX17 genomic binding sites co-localize within candidate active enhancers in HGSC cell lines. In
99 addition, PAX8 binds with high intensity near SOX17 gene locus, which confirms the co-regulation
00 observed in SOX17 transcript and protein levels (39). Here, using transcriptomic and proteomic
01 analyses we showed that PAX8 and SOX17 commonly regulate a family of genes associated with blood
02 vessel formation, suggesting a cooperative role in orchestrating an important pro-angiogenic
03 transcriptional program in ovarian cancer. In this setting, it is interesting to note that murine Sox17 can
04 promote tumor angiogenesis and is regulated by the Notch pathway, known to contribute to
05 angiogenesis (40-43).

06 Angiogenesis is a dynamic process rigorously regulated during embryogenesis, tissue
07 regeneration, and ovulation. However, angiogenesis can also abnormally occur during malignant
08 transformation (44, 45). Most of the angiogenesis mediators are secreted cytokines, but matrix
09 metalloproteinases and integrins also participate in new blood vessel development (46). The most
10 commonly secreted mediator in tumor angiogenesis is Vascular Endothelial Growth Factor (VEGF).
11 VEGF acts through its receptor (VEGFR2) and downstream effectors such as PLC γ 1 and ERK1/2.
12 Furthermore, VEGF signaling pathway abrogation has emerged as an attractive strategy of new
13 targeted anti-cancer therapy (47). Indeed, we found that PAX8 and SOX17 loss triggered a reduction
14 in angiogenesis both *in vitro* and *in vivo* model. We also observed a drastic decrease in tumor xenograft
15 growth following PAX8/SOX17 knockdown, and while we cannot rule out the roles of other cell intrinsic
16 processes, the decrease in angiogenesis is likely an important factor. It has been reported that patients
17 with high levels of VEGF have the worst prognostic and lower survival rates. Moreover, ovarian cancer
18 cells express on their surface VEGF receptors that contribute to angiogenesis and malignant
19 progression (48). The VEGF pathway is also responsible for the formation of ascites in patients with
20 ovarian tumors due to the elevated vascular permeability within peritoneal lining in the abdominal cavity
21 (49). Consistent with this fact, we found a significant decrease in ascites formation following knockdown
22 of PAX8 and SOX17.

23 In trying to better understand the mechanisms of angiogenesis orchestrated by PAX8 and
24 SOX17, we examined individual genes and identified those that were most affected by the knockdowns.
25 We found SERPINE1 to be the most highly commonly up-regulated gene both at the transcript level
26 (using RNA-seq) and protein level (through RPPA). SERPINE1 is a serine proteinase inhibitor,
27 belonging to the Serpin family, which is an important endothelial plasminogen activator inhibitor and
28 urokinase inhibitor (50). Important roles in coagulation, extracellular matrix remodeling, and
29 angiogenesis have been reported for SERPINE1. The anti-angiogenic effects of SERPINE1 seem to
30 be mediated by binding to vitronectin and blocking α v β 3 and uPAR binding sites (51). Therefore,

31 binding of secreted SERPINE1 to vitronectin blocks cell adhesion, migration, and inhibits angiogenesis
32 (52). Moreover, vitronectin and integrin- $\alpha v\beta 3$ strongly intensify VEGFR2 activation by VEGF (53).
33 SERPINE1 acts as an angiogenesis inhibitor by blocking the vitronectin-integrin-VEGFR2 axis and
34 simultaneous abrogation of the VEGF-signaling pathway. Our set of experiments involving endothelial
35 cell tube formation *in vitro* and the migration of endothelial cells into subcutaneous implants *in vivo*
36 suggest that SERPINE1 is an essential inhibitor of tumor angiogenesis and is under PAX8-SOX17
37 regulation. Based on these experiments, we hypothesize that suppressing SERPINE1 through
38 malignant transformation, triggers VEGFR2 activation *in vivo* and contributes to tumor angiogenesis
39 (SI 7).

40 Our results may also help explain some of the developmental defects described in the *Pax8*
41 knockout mouse (14). *Pax8*^{-/-} mice are infertile because they lack a functional uterus revealing only
42 remnants of myometrial tissue. In addition, the vaginal opening is absent. Folliculogenesis, ovarian
43 hormone production, and transcription of pituitary hormones are in a normal range. Thus, infertility in
44 *Pax8*^{-/-} mice seems to be due to a defect in development of the reproductive tract rather than to
45 hormonal imbalance, pointing to a direct morphogenic role for Pax8 in uterine development. Our
46 observation that Pax8 and Sox17 orchestrate an angiogenic program may help explain the atresia of
47 the reproductive tract seen in the *Pax8*^{-/-} mice. The absence of Pax8 in the developing reproductive
48 tract is likely accompanied by low Sox17 and high Serpine1. These conditions would effectively shut
49 down blood vessel development and prevent the development of the organ. This is reminiscent of the
50 severe embryopathy seen with thalidomide in the early 1960s (54). Thalidomide was marketed as an
51 anti-emetic which was later shown to have anti-angiogenic properties that cause severe birth defects,
52 including phocomelia (limb defects), genital, and internal organ absence or malformation.

53 In summary, we have shown for the first time that PAX8 physically interacts with SOX17 in
54 FTSEC and HGSOC leading to changes in multiple transcriptional programs, including modulation of
55 genes mediating tumor angiogenesis. Further analyses of the genes regulated by PAX8/SOX17

56 identified SERPINE1 as an anti-angiogenic factor that is suppressed by PAX8-SOX17 in cancer cells.
57 Knockdown of PAX8/SOX17 in this setting results in a decrease of blood vessel formation. Using cell-
58 based and animal models, we then functionally demonstrate that PAX8/SOX17 can regulate
59 angiogenesis during tumor development. Inhibition of tumor angiogenesis, perhaps through
60 PAX8/SOX17 pathway inhibition, has potential value as part of an anti-angiogenic approach to the
61 treatment of ovarian cancer (40, 55).

62

63 **METHODS**

64 **Cells and Tissues**

65 Human immortalized fallopian tube secretory cells (FT33, FT194, FT246, and FT282) were
66 maintained in standard conditions as previously described (56) and grown in DMEM/F12 containing 2%
67 Ultroser-G serum substitute. Human ovarian cancer cells were acquired from different sources.
68 OVCAR3 was obtained from ATCC and maintained as recommended. OVCAR4 was acquired from
69 William C. Hahn's lab-CCLE (Dana-Farber Cancer Institute) and grown in RPMI 1640 containing 10%
70 fetal bovine serum. KURAMOCHI, OVSAHO, and OVTOKO were obtained from JCRB and maintained
71 as recommended. The human umbilical vein endothelial cells (HUVEC) were acquired from Sigma-
72 Aldrich and maintained according to manufacturer instructions. All cell lines were sent to the Wistar
73 Institute Genomic Core Facility for authentication using short tandem repeat profiling and for detection
74 of *Corynebacterium bovis* infection. In addition, all cell lines were also tested for *Mycoplasma* sp. at the
75 University of Pennsylvania Cell Center.

76 Following approval by the Hospital of Pennsylvania Institutional Review Board, we obtained
77 human fallopian tube and human high-grade serous ovarian carcinoma formalin-fixed and paraffin-
78 embedded sections from the Department of Pathology at HUP to evaluate the expression of PAX8 and
79 SOX17.

80

81 **Purification of endogenous PAX8**

82 Benign and malignant cells were grown in 15-cm plates until 90% confluence, washed twice with
83 PBS, trypsinized, neutralized and collected. Nuclear fractionation was prepared as previously published
84 (24). Harvested cells were resuspended in hypotonic buffer [20 mM HEPES, pH 7.5, 10 mM KCl, 1 mM
85 EDTA, 1 mM EGTA, 1.5 mM MgCl₂, 2 mM dithiothreitol, protease inhibitors (Sigma-Aldrich: P8340),
86 and phosphatase inhibitors (Sigma-Aldrich: P5726)] and incubated for 30 minutes. Samples were then
87 disrupted through a 22G needle and centrifuged at 10,000 x g for 10 minutes at 4°C. Nuclei-enriched

88 fraction was sonicated with complete RIPA buffer (Cell Signaling: 9806S) containing protease inhibitors
89 (Sigma-Aldrich: P8340), and phosphatase inhibitors (Sigma-Aldrich: P5726), and spun down for 10
90 minutes at 10,000 x g at 4°C. The supernatant (500 µg of nuclear extract) was incubated for 16 hours
91 at 4°C with 105 µg of PAX8-specific antibody (Proteintech: 10336-1-AP) coupled to 1 ml of Protein A
92 agarose resin (Thermo-Fisher: 44893) or with 105 µg of normal rabbit IgG (Proteintech: 30000-0-A)
93 coupled to 1 mL of Protein A agarose resin, as negative control. The columns were washed three times
94 with 10 mL of 0.1 M phosphate and 0.15 M NaCl, pH 7.2 and eluted with 0.5 M NaCl and 0.1 M glycine,
95 pH 2.8. Fractions had their pH equilibrated with 1M Tris, pH 9.5, separated by gel electrophoresis,
96 Coomassie blue-stained and lanes were sent for mass spectrometry analysis.

97 The affinity column eluates containing PAX8 were also loaded in 100 ml of Sephadryl S-300
98 column (Sigma-Aldrich: S300HR-100ML) equilibrated with 50mM Tris, pH 7.5, 100 mM KCL, 0.5 M
99 NaCl, 1% NP-40 and 1% glycerol. We collected one hundred and fifty 500 µL fractions and protein
00 peaks were separated by gel electrophoresis, silver-stained (Thermo-Fisher: 24600), checked by WBs
01 for the presence of PAX8, and positive-samples were also sent for mass spectrometry analysis.

02

03 **PAX8 interacting-partners identification**

04 Coomassie blue-stained lanes containing PAX8 were analyzed by nanoLC-MS/MS setup as
05 previously described (57). In summary, HPLC gradient was set between 0-30% of solvent A = 0.1%
06 formic acid and solvent B = 95% acetonitrile, 0.1% formic acid for one hour followed by five minutes of
07 30% to 85% of solvent B and ten minutes of isocratic 85% solvent B. Flow rate of nLC was set to 300
08 nL/min and coupled to Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher, USA) with 2.5 kV
09 spray voltage and 275 °C of capillary temperature. Full mass spectrometry was performed using a
10 resolution of 120,000 and 27 of HCD.

11 DDA files were analyzed with MaxQuant (58) using a SwissProt human database. iBAQ quantification
12 was used for enrichment analysis and data were log2 transformed and normalized by subtracting the
13 average of all valid values for each sample. Statistics analysis was obtained applying a two-tails
14 heteroscedastic t-test.

15

16 **Co-immunoprecipitation.**

17 500 µg of nuclear lysates were incubated with 25 µg of a specific PAX8-antibody (Novus: NBP1-
18 32440), 25 µg of a specific SOX17-antibody (Abcam: ab224637), or 25 µg of a normal rabbit IgG (Cell
19 Signaling: 2729S) covalently-coupled to activated agarose beads (Thermo-Fisher: 26148) as
20 manufacturer's recommended protocol.

21

22 **Conditioned medium**

23 Secretory cells and carcinoma cells were growth in 60 mm dish at 37 °C and 5% CO₂.
24 Conditioned media were retrieved by spinning down at 2,000 x g for 5 minutes at 4 °C then supernatants
25 were passed through 0.22 µm filter (Millipore: SLGP033RS).

26

27 **Immunohistochemistry**

28 Fallopian tube and high-grade ovarian carcinoma sections were processed as previously
29 reported (59). The immunohistochemical staining were performed using a dilution of 1:500 of anti-PAX8
30 antibody (Novus: NBP1-32440) or a dilution of 1:500 of anti-SOX17 antibody (Novus: NBP1-47996).
31 Slides were scanned with Aperio CS2.

32

33 **Immunofluorescence**

34 Ten thousand FTSEC and HGSOC cells were seeded on imaging plates (Eppendorf:
35 0030741030) and allowed to grow for 24 hours. Following cells were washed twice in PBS and fixation

36 was performed for 15 minutes on Paraformaldehyde 4% (Thermo-Fisher: AAJ19943K2) at room
37 temperature. After the incubation period, cells were washed twice in PBS and permeabilized with Triton
38 X-100 0.25% (Boston BioProducts: P-924) for 15 minutes. Aldehydes residues were quenched with a
39 Glycine 100 mM (Sigma-Aldrich: 50046-50G) for 15 minutes. The unspecific sites were blocked with a
40 solution of 1% bovine serum albumin, and 0.1% Tween 20 in PBS for 30 minutes. Samples were
41 incubated for 16 hours with a dilution of 1:500 of anti-PAX8 (Novus: NBP1-32440) or a dilution of 1:500
42 of anti-SOX17 (Novus: NBP1-47996) at 4 °C. Cells were then washed three times of 5 minutes each
43 with a solution of 1% bovine serum albumin, and 0.1% Tween 20 in PBS followed by incubation for one
44 hour with anti-mouse-AlexaFluor488 or anti-rabbit-AlexaFluor594. Cells were washed three time in
45 PBS, mounted in Fluoromount-G with DAPI, and Images were acquired at 60X magnification employing
46 a Nikon Eclipse Ti inverted microscope.

47

48 ***in situ* Protein-protein interaction analysis**

49 Prior to the protein-protein interaction staining by *in situ* proximity ligation assay (PLA), tissue
50 sections and cell lines were processed as described in the IHC and IF sections. PLA signals were
51 determined employing Duolink Probes Anti-Mouse MINUS (Sigma-Aldrich: DUO92004) and Anti-
52 Rabbit PLUS (Sigma-Aldrich: DUO92002) as manufacturer's recommended protocol following
53 overnight incubation with anti-PAX8 mouse antibody 1:250 (Novus: NBP2-29903) and anti-SOX17
54 rabbit antibody 1:250 (Cell Signaling: 81778S) at 4 °C. Red fluorescent signals was obtained using
55 detection reagent red (Sigma-Aldrich: DUO92008) and chromogen signals was acquired using
56 detection reagent brightfield (Sigma-Aldrich: DUO92012).

57

58 **siRNA knockdown**

59 Fallopian tube secretory and ovarian carcinoma cells knockdowns were performed by reverse
60 transfection with a mixture containing of 30 nM of ON-TARGETplus Human PAX8 siRNA

61 (Dharmacon:L-003778-00-0005), ON-TARGETplus Human SOX17 siRNA (Dharmacon: L-013028-01-
62 0005) or non-targeting siRNA as negative control (Dharmacon: D-001810-10-05), 3 x 10⁵ cells, 10 µL
63 of Lipofectamine RNAiMax (Thermo-Fisher: 13778075), and Opti-MEM reduced serum medium (Gibco:
64 31985088) as recommended by the manufacturer's protocol.

65

66 **Western blot analysis**

67 Samples were incubated with RIPA buffer (Cell Signaling: 9806S) for 30 minutes at 4°C followed
68 by centrifugation at 10,000 x g for 5 minutes. Supernatants' protein concentration was estimated by
69 BCA method (Thermo-Fisher: 23227). Thirty micrograms of each sample were mix with sample buffer
70 loaded and separated using Mini-PROTEAN TGX 4-15% polyacrylamide gels (BioRad: 4561083) and
71 Tris/Glycine/SDS buffer (BioRad: 1610732). TURBO transfer system (BioRad: 1704156) was employed
72 to move separated samples from gels to PVDF membranes. Primary antibodies: anti-PAX8 (Novus:
73 NBP1-32440), anti-SOX17 (Abcam: ab224637) or anti-GAPDH (Cell Signaling: 5174) were diluted
74 1:1000 in 5% nonfat milk in TBS containing 0.1% Tween 20 and incubated with the membranes
75 overnight at 4°C. After the period of incubation, membranes were washed three times with TBS
76 containing 0.1% Tween 20 then incubated with anti-Rabbit IgG-HRP conjugated (Cell Signaling: 7074).
77 Images were acquired by chemiluminescence using Clarity ECL (BioRad: 1705062).

78

79 **Real-time PCR**

80 Samples total RNA was purified using the RNeasy Plus Mini Kit (Qiagen: 74134), quantified and
81 used as a template for the synthesis of single-stranded cDNA employing the High Capacity cDNA
82 Reverse Transcription Kit (Thermo-Fisher: 4374966). To access the gene expression changes we
83 employed the TaqMan Assay (Thermo-Fisher: 4331182) using 100 ng of cDNA per 20 µL of final
84 reaction with TaqMan Fast Advanced Master Mix (Thermo-Fisher: 4444557) as recommended by
85 manufacturer's protocol.

86 **RNA-seq**

87 Transcriptome analysis of OVCAR4 cells after PAX8, SOX17 or both knockdown simultaneously
88 was performed as previously described (39, 60). In summary, ovarian carcinoma cells had their RNA
89 chemically purified using the Nucleospin RNA Plus kit (Macherey-Nagel: 740984.50) as recommended
90 by the manufacturer's protocol. Poly-A non-stranded library were prepared using the newly extracted
91 RNA and forty million reads were sequenced by BGI platform. Bioinformatic analyses were executed
92 employing the R package DESeq2 (version 1.24.0). Significant changes were designated as log2 fold
93 change ≥ 1 and adjusted p-value ≤ 0.01 . Metascape tool was employed to identify the differentially
94 enriched pathways.

95

96 **Reverse-phase protein array**

97 Arrays were performed at the Department of Bioinformatics and Computational Biology in MD
98 Anderson Cancer Center as previously described (61, 62). The platforms contains over 300 antibodies
99 exclusively validated with a Pearson coefficient > 0.7 of correlation between RPPA and WB were
00 employed in the proteomic analysis (63). Spots intensities were generated by colorimetric reaction
01 employing the Dako Cytomation-Catalyzed System.

02

03 **Luciferase reporter assay**

04 Briefly, half-million cells were co-transfected with 1 μ g of PAX8-(Firefly) Luciferase reporter
05 vector (27), 0.5 μ g of CMV-(Renilla) Luciferase control vector (Promega: E2261) and 30 nM of PAX8,
06 SOX17 or Non-targeting siRNA, using Lipofectamine 2000 (Thermo-Fisher: 11668027) as
07 recommended by manufacturer's protocol. Plates containing the different transfected cells were
08 incubated for 24 hours at 37°C before the luciferase activity was measured using the Dual-Glo
09 luciferase detection kit (Promega: E2920).

11 **Array and ELISA**

12 Angiogenesis secreted mediators were identified from fallopian tube secretory cells and ovarian
13 carcinoma cells conditioned media employing the Human Angiogenesis Antibody Array (R&D systems:
14 ARY007). ELISA was employed for the precise quantification of VEGF (R&D systems: DVE00) and
15 SERPINE1 (R&D systems: DSE100) also from cells conditioned media as recommended by the
16 manufacturer's protocol. Fresh DMEM/F12 or RMPI media were tested and considered as the negative
17 control.

18

19 ***In vitro* angiogenesis assay**

20 Twenty thousand HUVEC cells were seeded in reduced growth factor basement membrane
21 extract (BME)-coated 96-well plate (R&D systems: 3470-096-K). Endothelial cells were exposed to 100
22 μ l of the different benign or malignant cells conditioned media, 10 ng/ml VEGF (R&D systems: 293-VE-
23 010) or 10 μ g/ml SERPINE1 (R&D systems: 1786-PI-010) for 6 h at 37 °C. HUVEC cells were labeled
24 with 2 μ M Calcein AM as recommended by the manufacturer's protocol to facilitate the image
25 acquisition using a Nikon Eclipse Ti inverted microscope. The number of complete endothelial loops
26 per field were counted and compared.

27

28 ***In vivo* angiogenesis assay**

29 Following IACUC review and approval (Protocol #806687), *in vivo* angiogenic responses were
30 analyzed by directed *in vivo* angiogenesis assay (DIVAA) (R&D systems: 3450-048-K) as
31 recommended by the manufacturer's protocol. Briefly, six-week female nude mice (JAX: 002019) were
32 kept in aseptic condition under the Stem Cell and Xenograft Core barrier at the University of
33 Pennsylvania. Mice cohorts were anesthetized with 2% isoflurane prior the subcutaneously
34 implantation of angioreactors i.e. one-centimeter flexible silicone cylinder. Dorsal-lateral incisions were
35 made on each nude mouse, where angioreactors filled with FTSEC or HGSOC conditioned media, 10

36 ng/ml VEGF (R&D systems: 293-VE-010) or 10 µg/ml SERPINE1 (R&D systems: 1786-PI-010) were
37 subcutaneously inserted under the skin and then sutured to cover the incisions. Angioreactors were
38 retrieved after 14 days of incubation for careful collection of the mouse endothelial cells that were
39 attracted and invaded the cylinders. Neovascularization was quantified by staining the endothelial cells
40 with FITC-lectin and measuring the intensity of fluorescence within a Thermo-Fisher Fluoroskan Ascent
41 FL fluorimeter at 485nm.

42

43 **Doxycycline inducible knockdown**

44 We employed Dharmacon SMARTvector inducible lentiviral shRNA that utilize the Tet-On 3G
45 bipartite induction system and TurboGFP as a fluorescent reporter. This tightly regulated system
46 consists of an inducible RNA polymerase II promoter, Phosphoglycerate kinase (PGK), which has been
47 optimized for both minimal basal expression and potent activation upon induction by doxycycline on the
48 TRE3G. Together, the Tet-On 3G protein and TRE3G promoter permit tight regulation of the shRNA
49 expression, including potent induction, even at the low doxycycline doses that are required for *in vivo*
50 xenograft studies. The selected shPAX8 (Dharmacon: V3IHSPGG-8017023), shSOX17 (Dharmacon:
51 V3IHSPGG-6371478) and Non-Targeting Control (Dharmacon: VSC6580) high-titer lentivirus were
52 used to transduce OVCAR3, OVCAR4 and OVTKO cells as recommended by the manufacturer's
53 protocol.

54

55 **Generation of Luciferase-expressing cells**

56 Ovarian cancer cell lines (5 x 10⁴ cells per 24 well) in complete media containing 8 µg/mL
57 Polybrene (Millipore-Sigma: TR-1003-G) were transduced with high-titer Luc-mCherry lentivirus (64).
58 Lentivirus was produced with 3rd Generation Packaging System Mix (Abcam: LV053) in 293T cells
59 transfected with Lipofectamine 3000 Reagent (Thermo-Fisher: L3000008) in OPTI-MEM medium

60 (Gibco: 31985-062). In order to produce high-titer particles, 293T transfected cells conditioned media
61 were condensed with the Lenti-X Concentrator (Clontech: 631231) at 4°C for 24 hours.

62

63 **Mice xenograft**

64 Following IACUC review and approval (Protocol #806825), one million OVTKO harboring
65 shRNA-luciferase-positive cells were inoculated intraperitoneally into five-six weeks old female
66 immunodeficient NSG mice (JAX: 005557). All NSG mice cohorts were aseptically housed under the
67 Stem Cell and Xenograft Core barrier. After 72 hours post-injections, feeding supplemented with 1g/kg
68 of doxycycline (Teklad: TD.06294) was made continuously available for the mice. Tumor progression
69 was examined by bioluminescence imaging using the Lumina IVIS system and 150 mg/kg of Luciferin
70 (Gold Biotechnology, 115144-35-9) in PBS. Animals were sacrificed when they reached IACUC pre-
71 determined endpoints for ascites and tumor collection.

72

73 **Statistical analysis**

74 Representative graphics are displayed as mean and standard derivation of experiments
75 replicates. Significant changes $P < 0.05$ between controls and knockdowns were acquired applying
76 Student's test (GraphPad Prims 8).

77

78

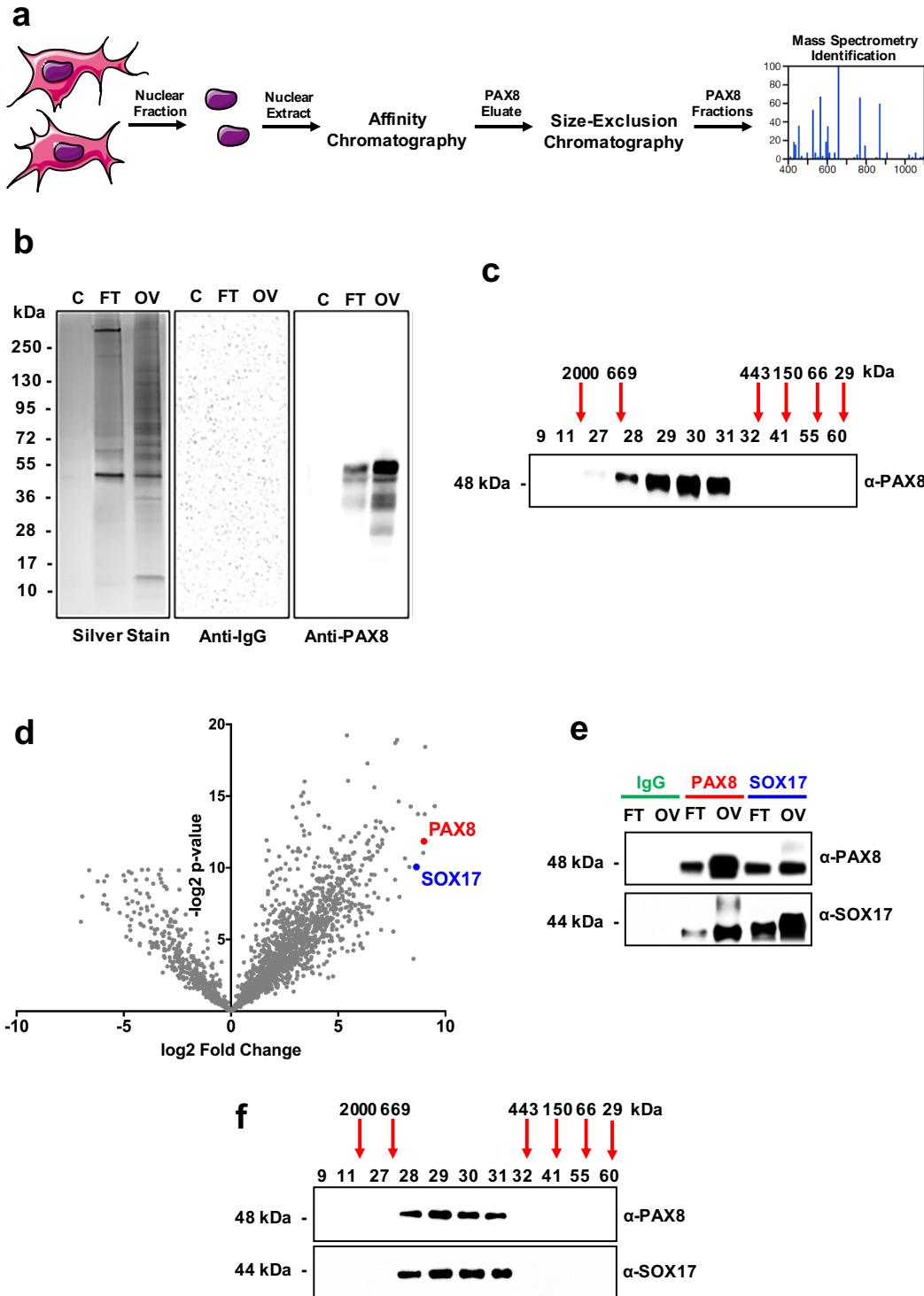
79

80 **ACKNOWLEDGMENTS**

81 We recognize the Drapkin laboratory members for their helpful consideration and support in
82 especially Kai Doberstein. We also acknowledge Cynthia Lopez-Haber for her technical insights,
83 Gregory Dressler for sharing the PAX8-Luciferase reporter vector, and Andrew Kung for donating the
84 FUW-Luc-mCherry vector. In addition, we are very grateful for the Stem Cell & Xenograft Core, the
85 Quantitative Proteomics Resource Core, and the MD Anderson RPPA Core (NCI P30 CA16672) for
86 technical assistance and resource access. We are also very appreciative of Tony Secreto and Lauren
87 Schwartz support and expertise.

88

89 This work was supported by an NIH SPORE in ovarian cancer P50 CA228991 (R.D.), the Dr.
90 Miriam and Sheldon G. Adelson Medical Research Foundation (R.D.), the Honorable Tina Brozman
91 Foundation for Ovarian Cancer Research (R.D.), the Basser Center for BRCA (R.D.), the Claneil
92 Foundation (R.D.), an NIH P01CA196539 (B.A.G), the Ann and Sol Schreiber Mentored Investigator
93 Award (545754) from the Ovarian Cancer Research Alliance (D. C-M), and the Liz Tilberis Early Career
94 Award (599175), also from the Ovarian Cancer Research Alliance (K.L.).


95

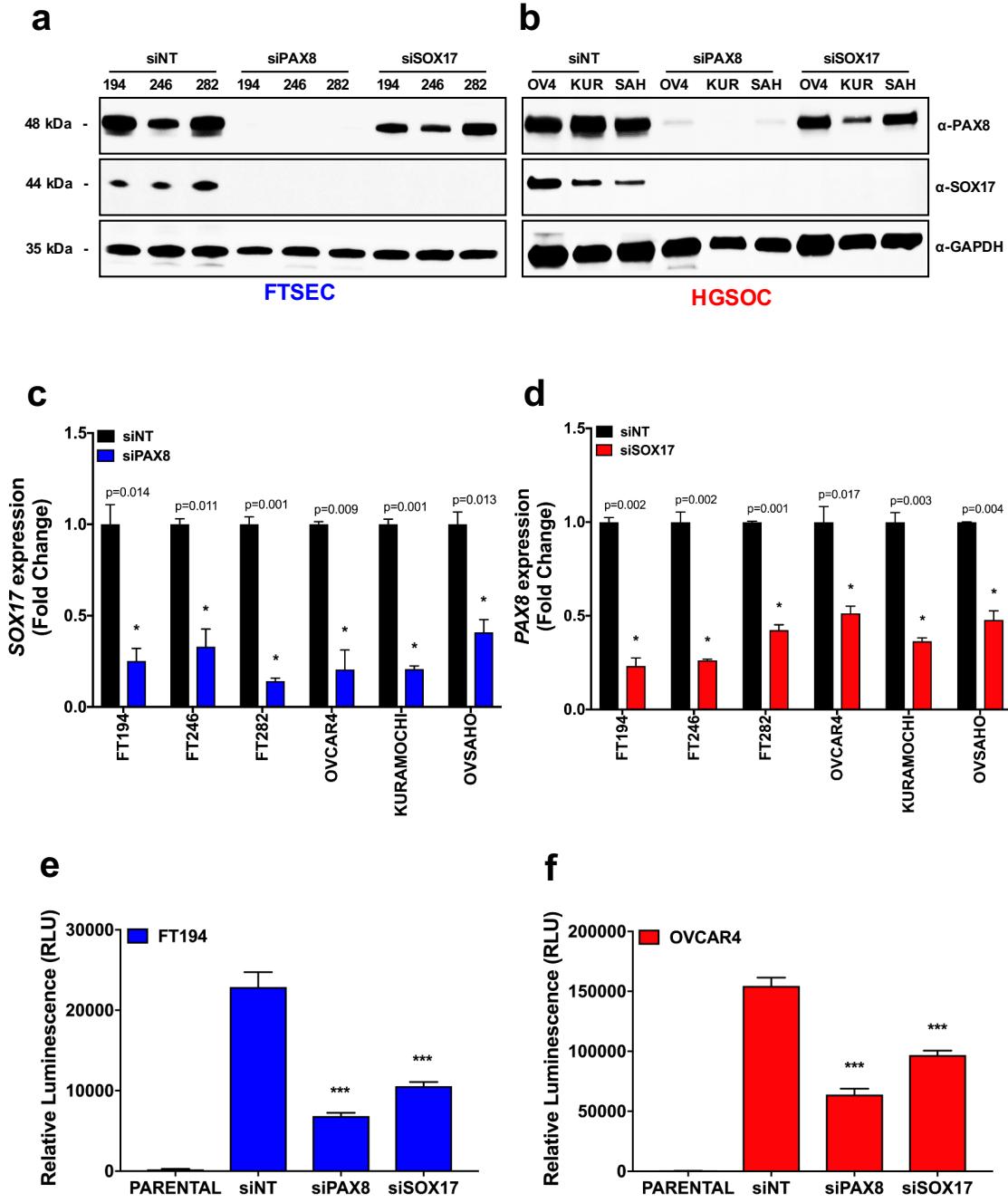
96

97

98 FIGURES

99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
00 Figure 1: Three-step proteomic approach identifies putative PAX8-interacting partners. (a) Schematic of the workflow for the PAX8-interacting partner's identification. (b) Representative examples of endogenous PAX8 immunoprecipitation silver-stained gel and immunoblot from fallopian tube secretory cells (FT) and ovarian carcinoma cells (OV). IMR90 cells, which are PAX8 negative, were used as negative control (C). (c) Immunoblot of size-exclusion fractions showing the presence of PAX8 at 600 kDa size range. PAX8 immunoprecipitates and gel-filtration fractions were sent for mass spectrometry analysis. (d) Volcano plot of identified putative PAX8-interacting partners. (e) Confirmation of PAX8 and SOX17 interaction by co-immunoprecipitation experiments from FTSEC and HGSOC cell lines. (f) PAX8 and SOX17 immunoblots of size exclusion fractions demonstrate co-elution at 600 kDa size range fractions.

53 **Figure 2: PAX8 physically interacts with SOX17 in the fallopian tubes and in ovarian cancer.** (a) Immunohistochemistry
54 showing nuclear co-expression of PAX8 and SOX17 in FTSEC and HGSOC cells. 5 normal samples and 5 ovarian cancer
55 patients were analyzed and one representative case of each is shown. (b) Immunofluorescence showing co-localization of
56 PAX8 and SOX17 in benign cells (FT194, FT246, and FT282) and in malignant cells (OVCAR4, KURAMOCHI, and
57 OVSAHO). (c) Proximity ligation assay signals in secretory cells (FT194, FT246, and FT282) and in carcinoma cells
58 (OVCAR4, KURAMOCHI, and OVSAHO) are shown in red. The nuclei are stained with DAPI (blue). The nuclei were
59 acquired in one z-plane with 60X magnification. (d) *In situ* proximity ligation assay signals in normal fallopian tube sections
60 and high-grade serous ovarian cancer samples shown in brown and the nuclei in orange. The nuclei were acquired in one
61 z-plane with 40x magnification. *Number of PLA signals (PAX8-SOX17 interactions) was determined by counting 100 nuclei
62 per sample (Supplemental information 2).


91
92 **Figure 3: PAX8 and SOX17 are transcription co-regulators. (a-b) Immunoblot analyses following knockdown of PAX8 or**

93 SOX17 in FTSEC (FT194, FT246, and FT282) and in HGSOC (OVCAR4, KURAMOCHI, and OVSAHO) cells showing

94 SOX17 expression dependency on PAX8 regulation. (c-d) Real-time PCR analysis following of PAX8 or SOX17 in FTSEC

95 (FT194, FT246, and FT282) and in HGSOC (OVCAR4, KURAMOCHI, and OVSAHO) cells depicting the transcriptional co-

96 regulation of SOX17 by PAX8. (e-f) Luciferase reporter assay using reporter with 5X PAX8-recognition sequence.

Figure 4: PAX8 and SOX17 regulate a common set of genes. (a) RNA-seq unsupervised clustering of PAX8, SOX17, and commonly regulated target genes. Profiles obtained with OVCAR4 after 72 hr knockdowns; fold change >1 ; $P < 0.05$. (b) Venn diagram representing number of genes up-regulated under each condition. (c) Ontology analysis of the PAX8-SOX17 commonly up-regulated genes. (d) RPPA unsupervised clustering of PAX8-SOX17 commonly regulated proteins. (e) Top-ranked PAX8-SOX17 commonly regulated proteins. (f) Immunoblot showing SERPINE1 up-regulation after PAX8 or SOX17 knockdown. (g) Real-time PCR showing SERPINE1 up-regulation after PAX8 or SOX17 knockdown.

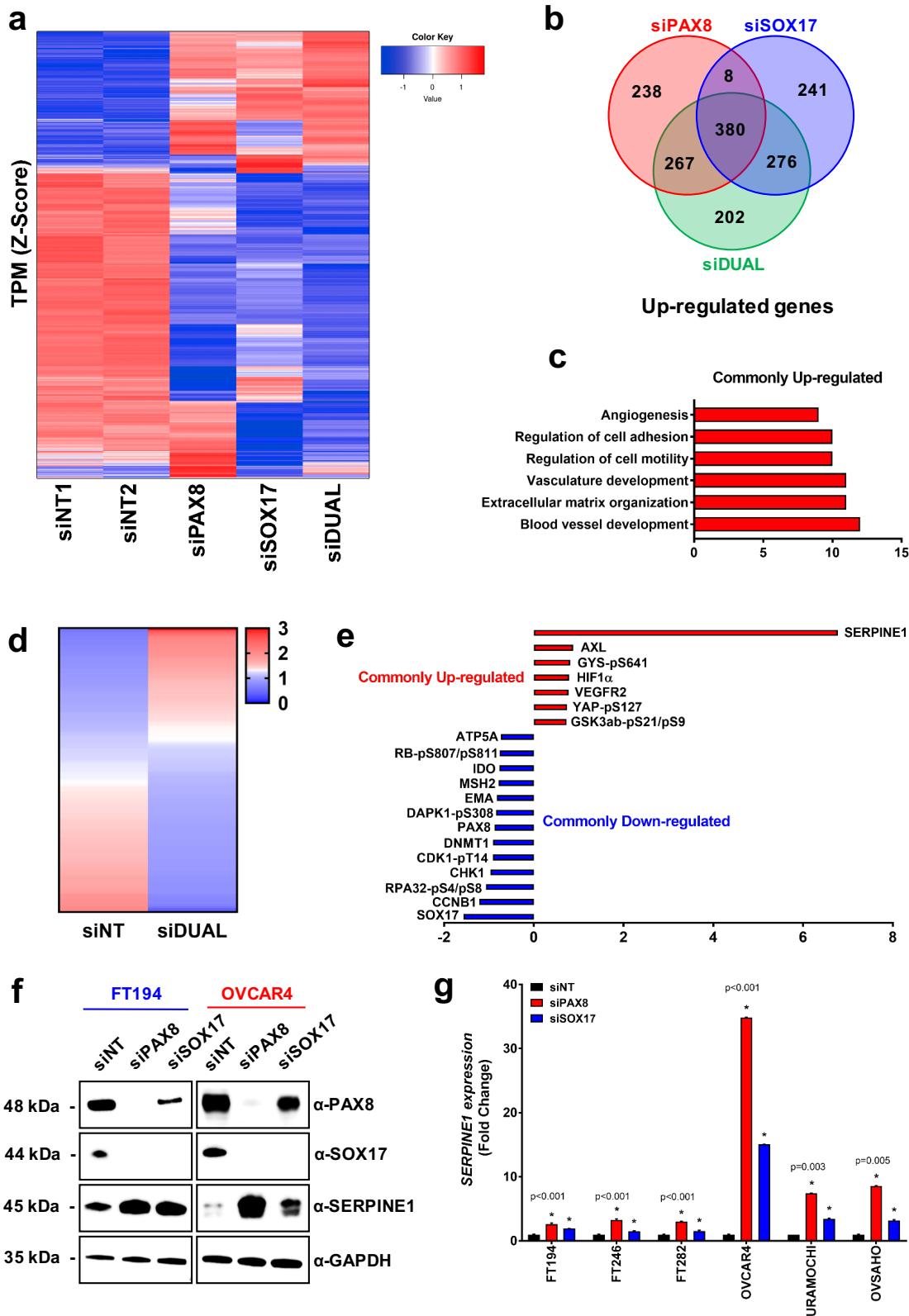
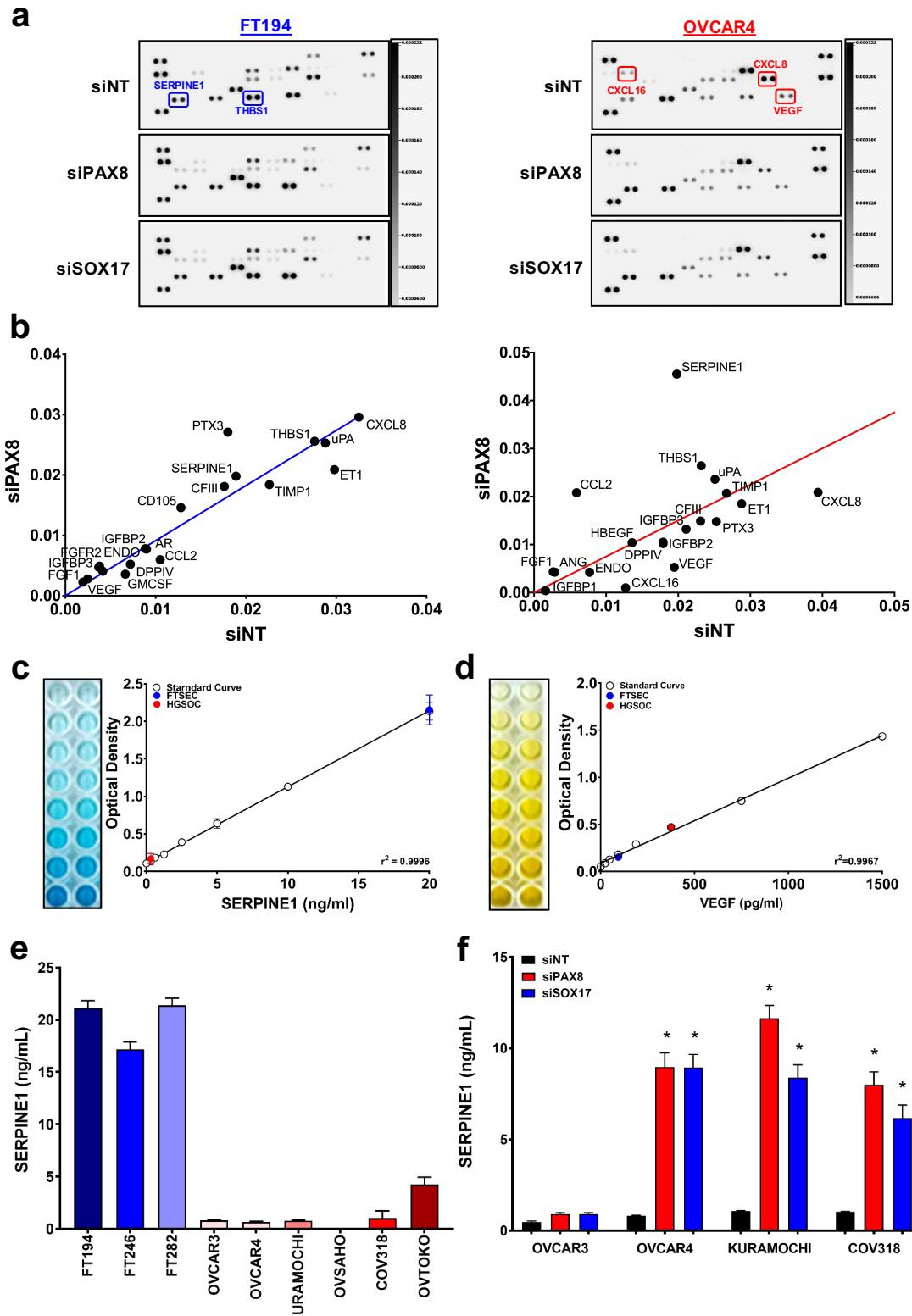
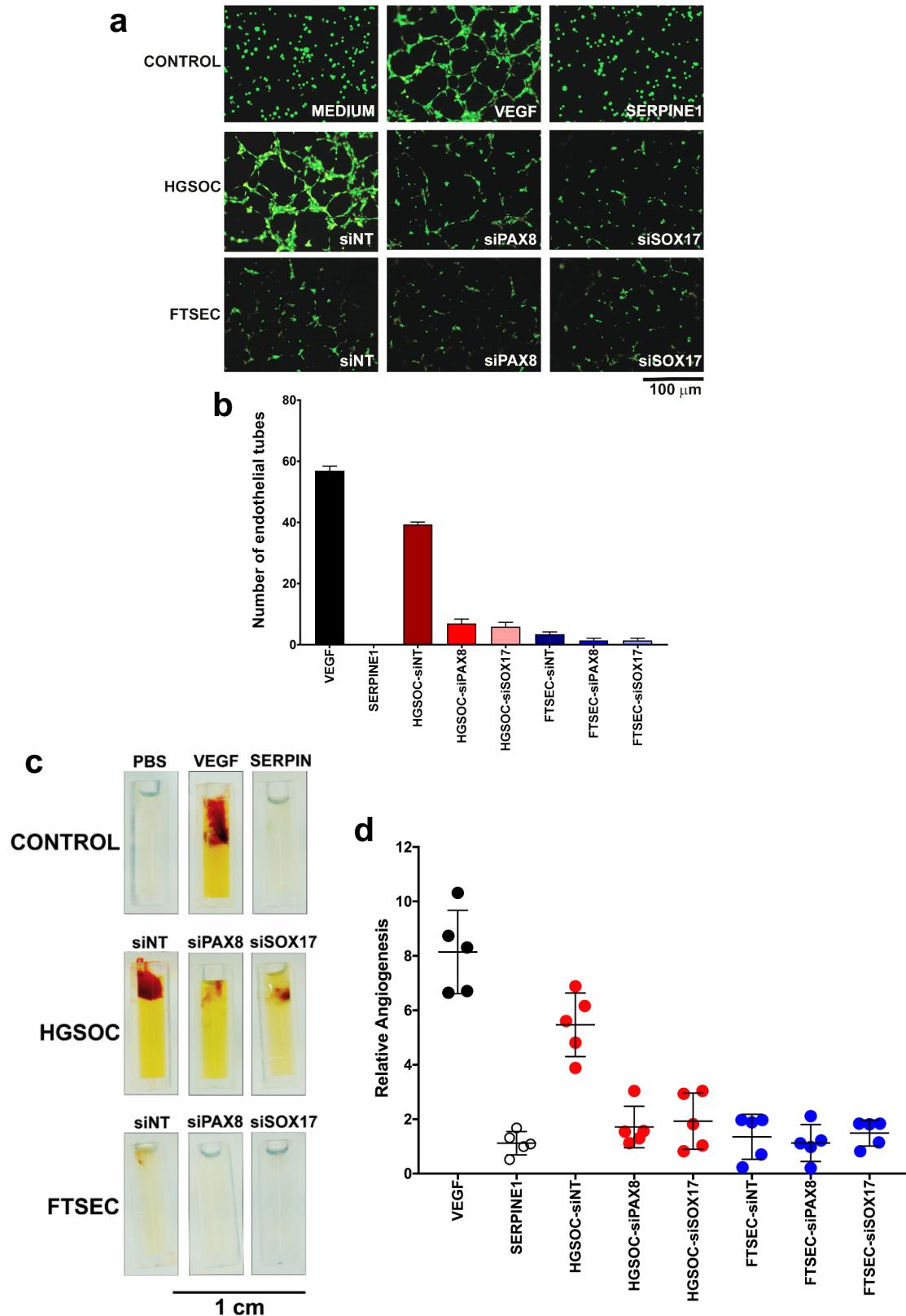
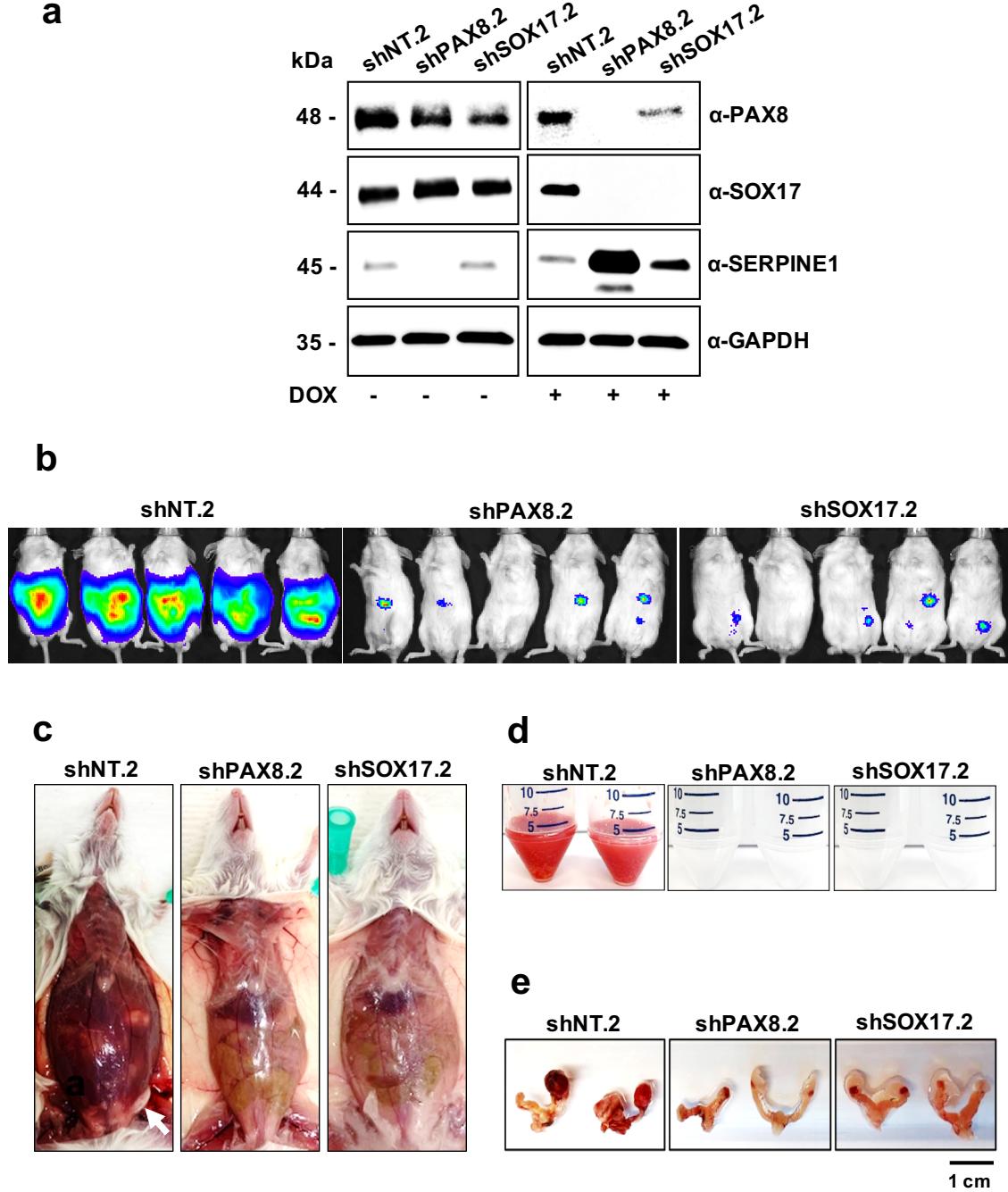
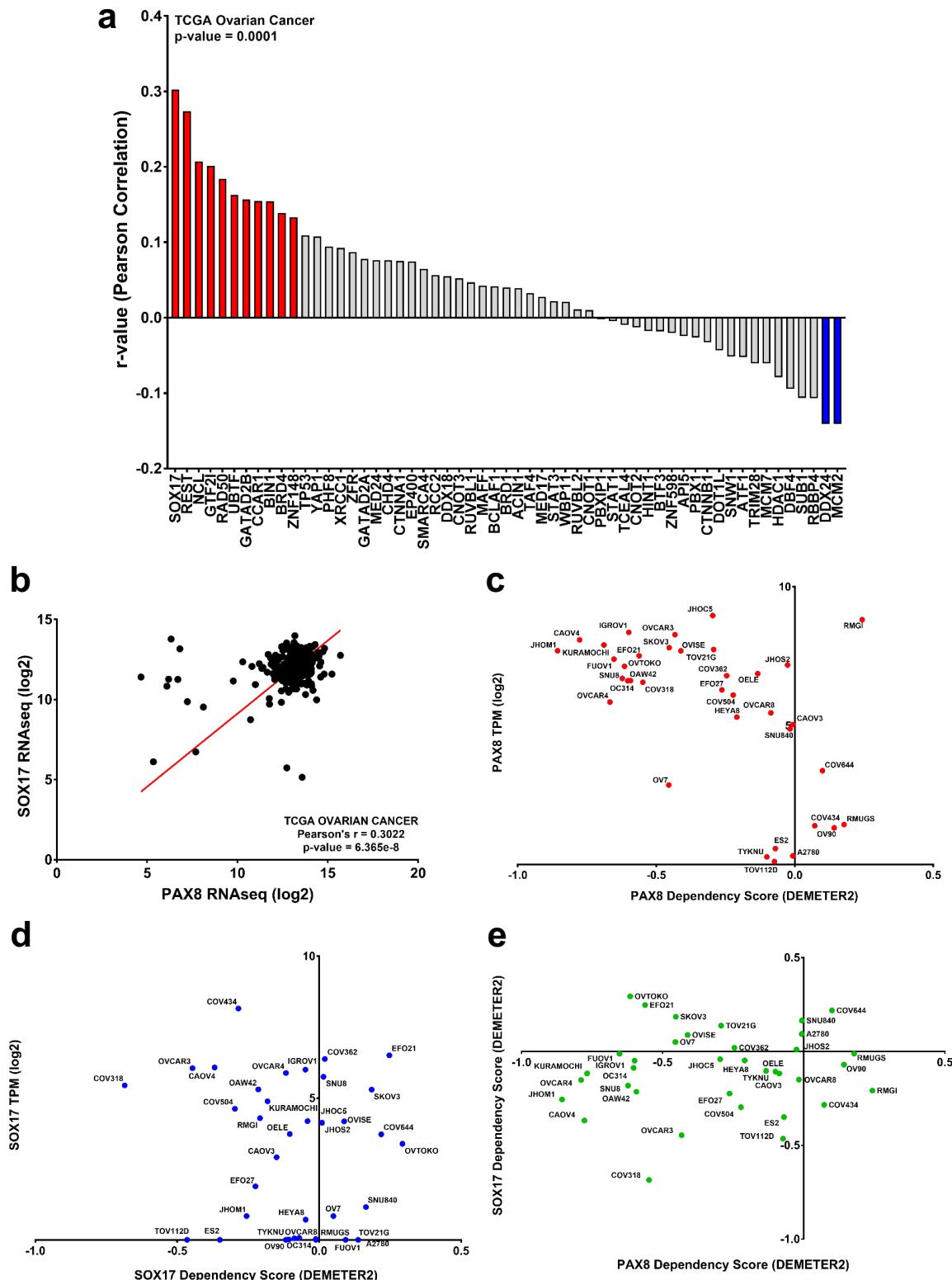




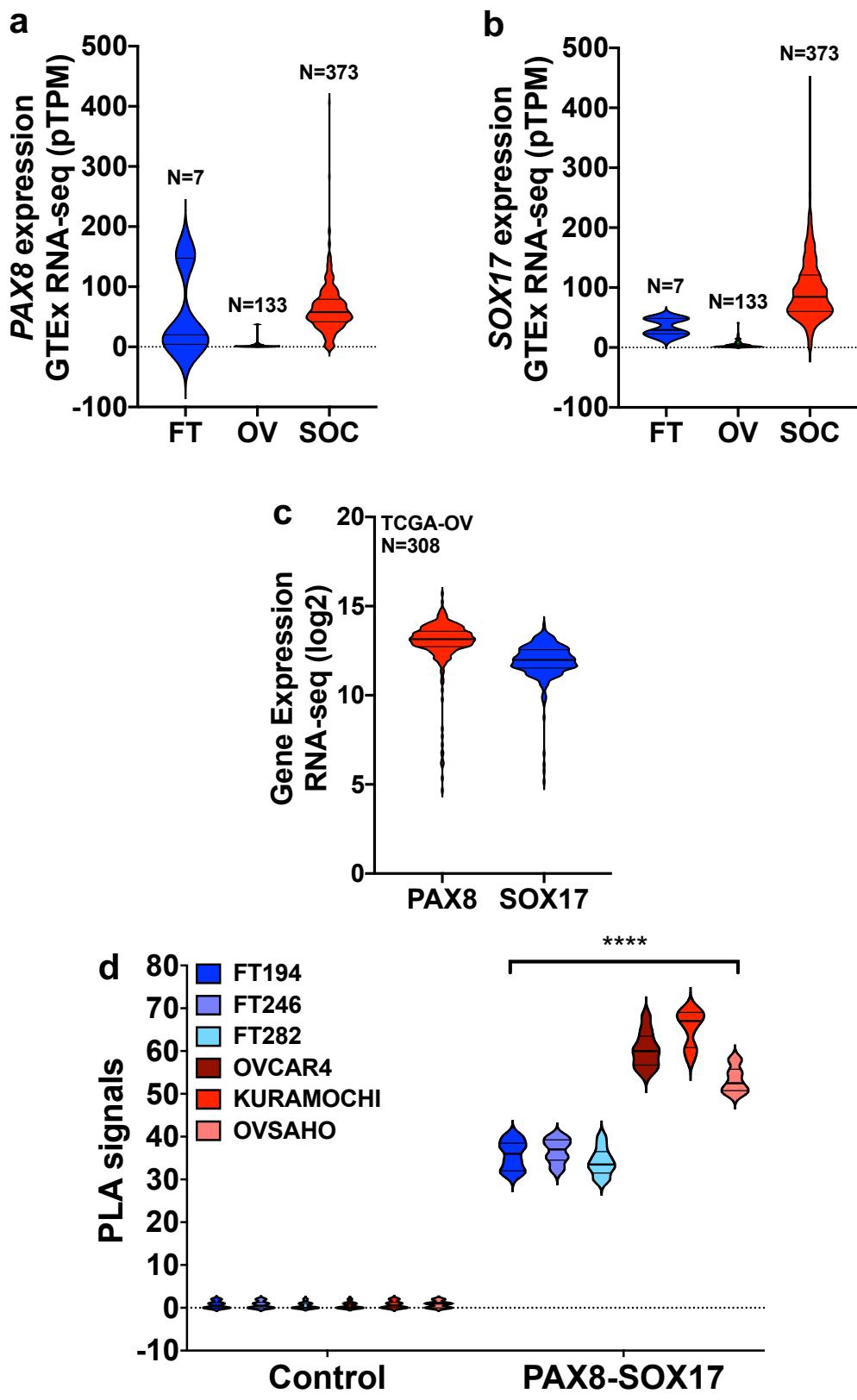
Figure 5: PAX8 and SOX17 regulate the secretion of angiogenesis mediators. (a) Human angiogenesis array of conditioned media from FTSEC and HGSOC cells following PAX8 or SOX17 knockdown. (b) Effect of PAX8 knockdown on specific analytes was produced by quantifying the array membrane spots intensity. (c) ELISA for quantification of secreted SERPINE1 in the FTSEC- and HGSOC-conditioned media. (d) ELISA for the quantitation of secreted VEGF in the FTSEC and HGSOC conditioned media. (e) ELISA showing SERPINE1 secreted by FTSEC and HGSOC. (f) ELISA experiments showing the effects of PAX8 or SOX17 knockdown on levels of SERPINE1 in HGSOC.


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Figure 6: PAX8 and SOX17 promote ovarian cancer angiogenesis. (a) Endothelial cells tube formation assay. Representative images depict negative control, VEGF, SERPINE1, FTSEC, and HGSOC conditioned media after PAX8 or SOX17 knockdown. (b) Quantitation of the HUVEC neo-vessels loops. (c) Neovascularization in angioreactors containing conditioned media from HGSOC cells, but not from FTSEC after implantation in nude mice. (d) Quantitation of endothelial cell invasion into angioreactors.

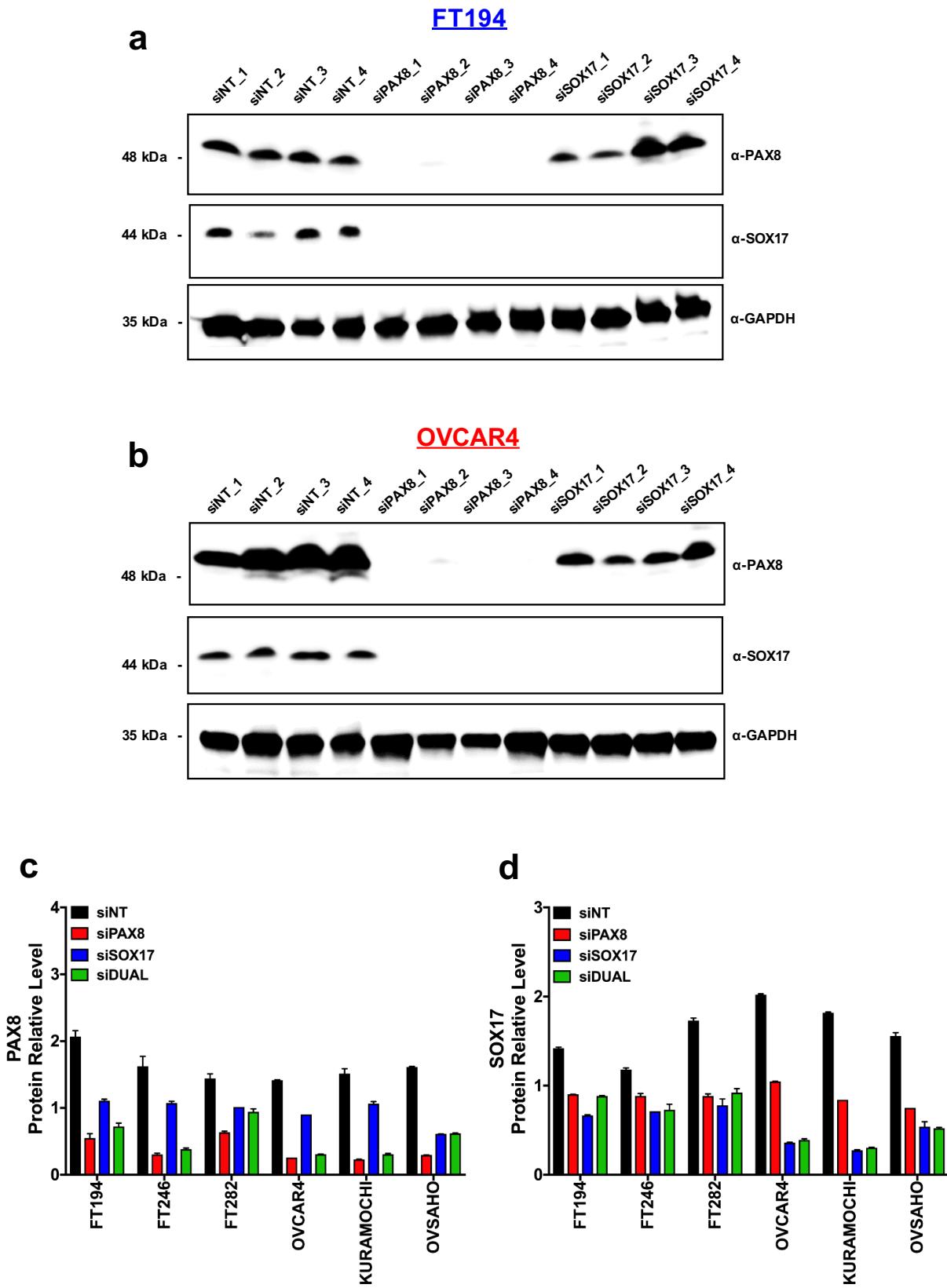
v20

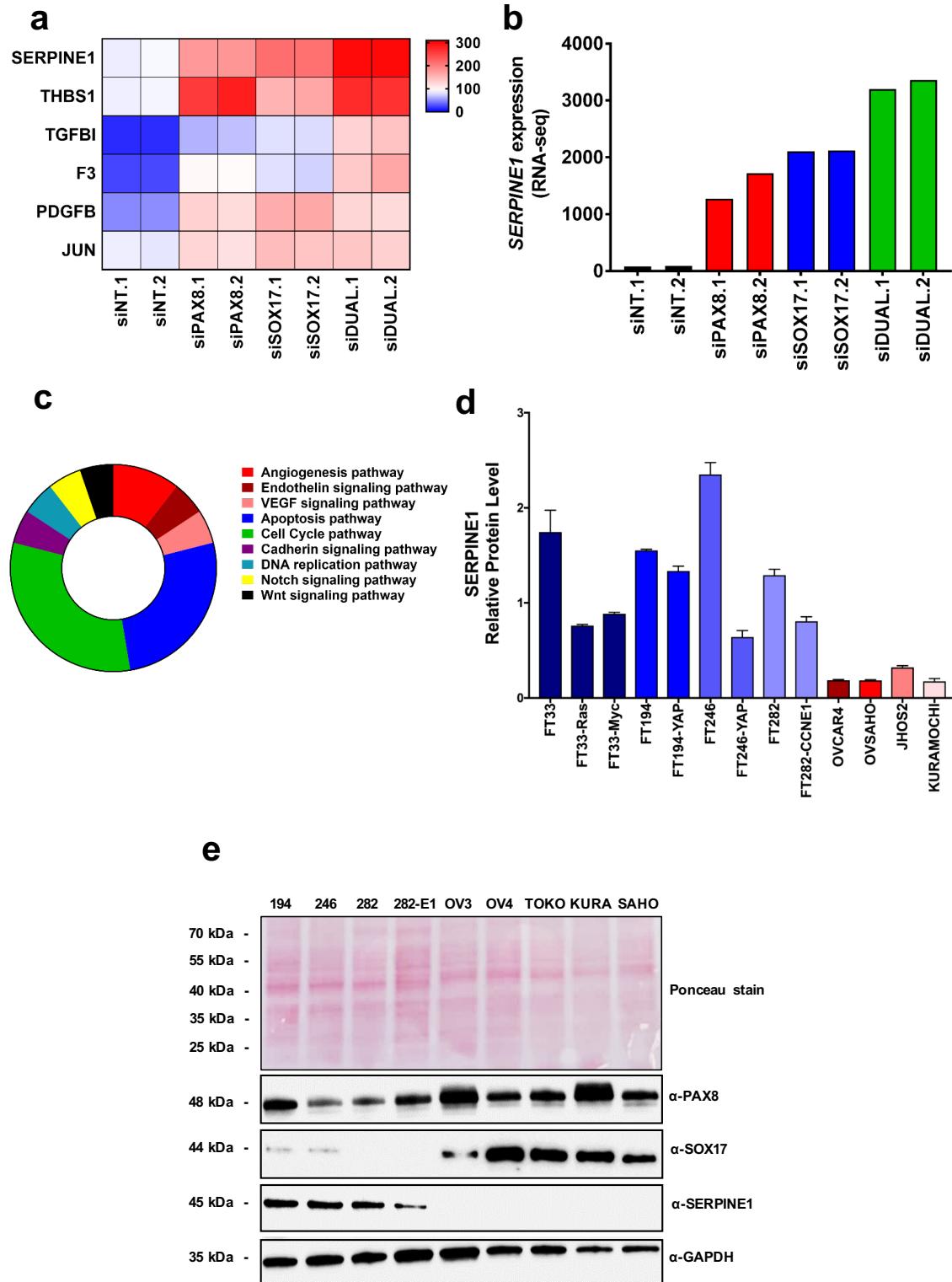

53 **Figure 7:** PAX8 or SOX17 doxycycline-inducible knockdown inhibits ovarian cancer progression. (a) Immunoblot of
54 OVTOKO cells harboring inducible shPAX8 or shSOX17 before and after the induction with 1 μ g/ml of doxycycline. (b) *In*
55 vivo imaging of OVTOKO tumors in NSG female mice. Animals were imaged after two weeks of doxycycline
56 supplementation. (c) Necropsy of animals depicting ascites and tumors (white arrow) only in the non-targeting control group.
57 (d) The volume of ascites collected from mice after two weeks of doxycycline supplementation. (e) NSG mice reproductive
58 system depicting ovarian cancer volume.

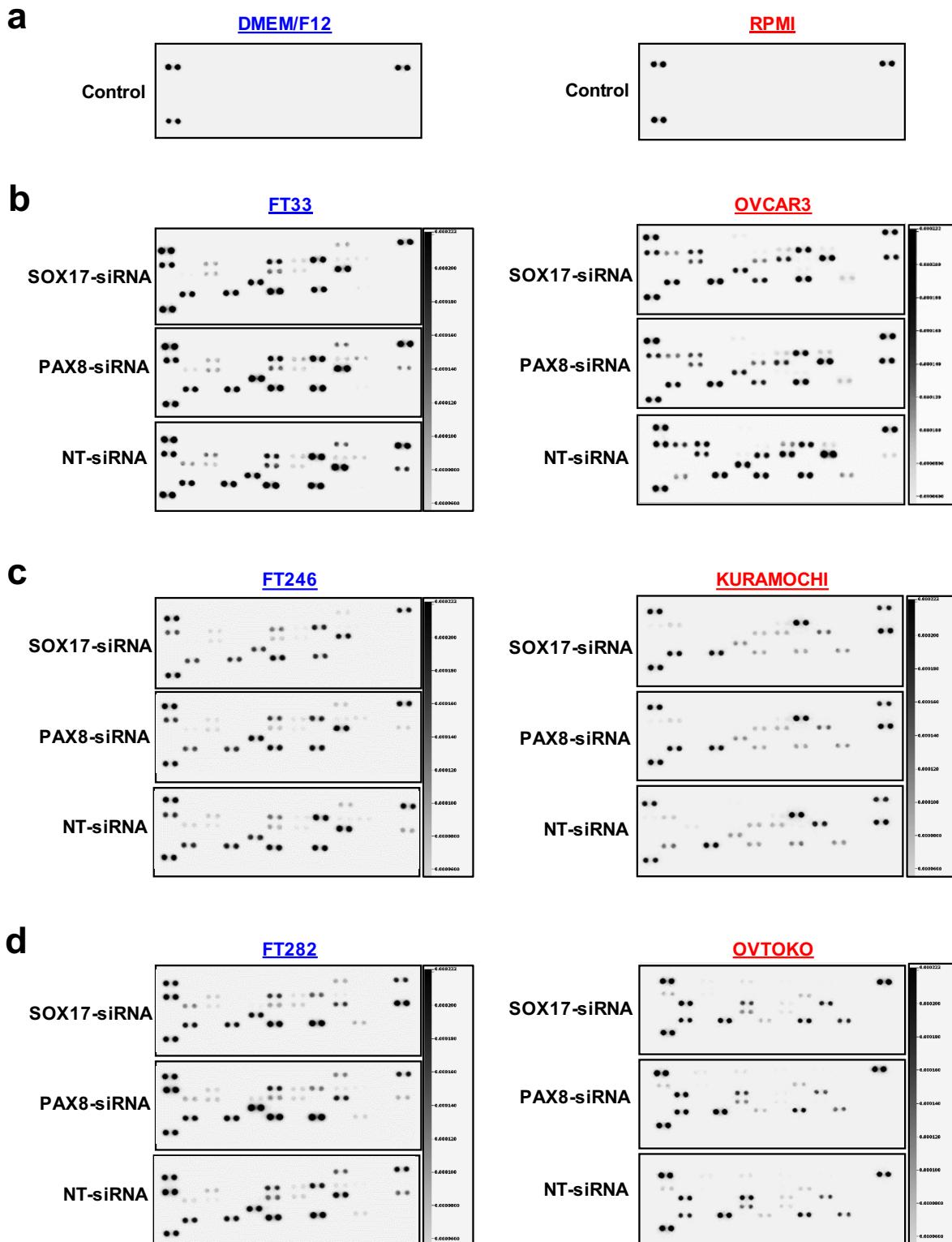
59

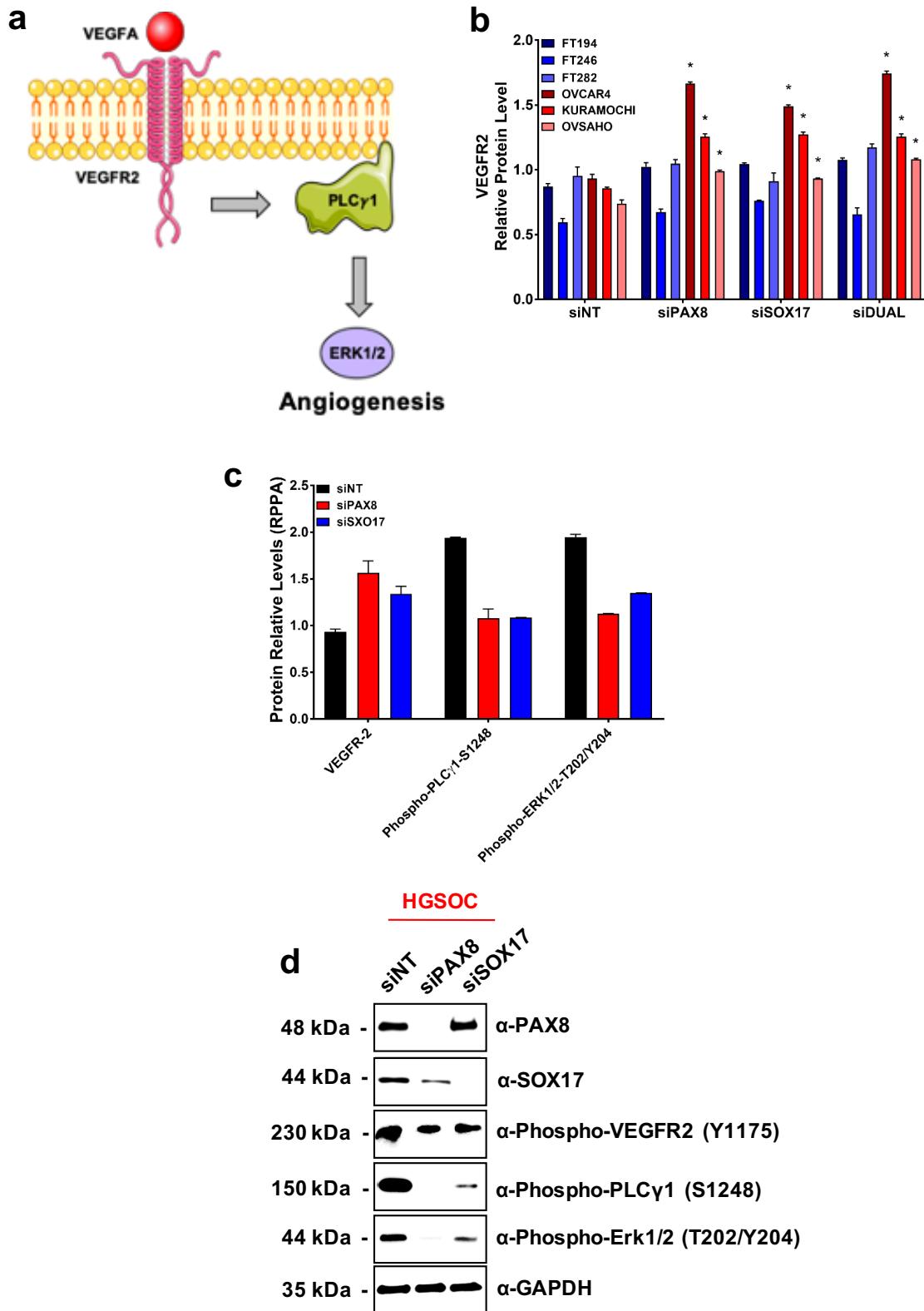


SUPPLEMENTAL INFORMATION


90 **SI 1: PAX8 and SOX17 have a strong correlation and dependency on ovarian cancer.** (a) TCGA ovarian cancer Pearson
91 correlation of PAX8 with the newly identified PAX8-interacting partners. (b) SOX17 has the strongest correlation with PAX8
92 in ovarian cancer. (c) Ovarian carcinoma cells PAX8 dependency. (d) Ovarian carcinoma cells SOX17 dependency and (e)
93 Ovarian carcinoma cells PAX8-SOX17 co-dependency.

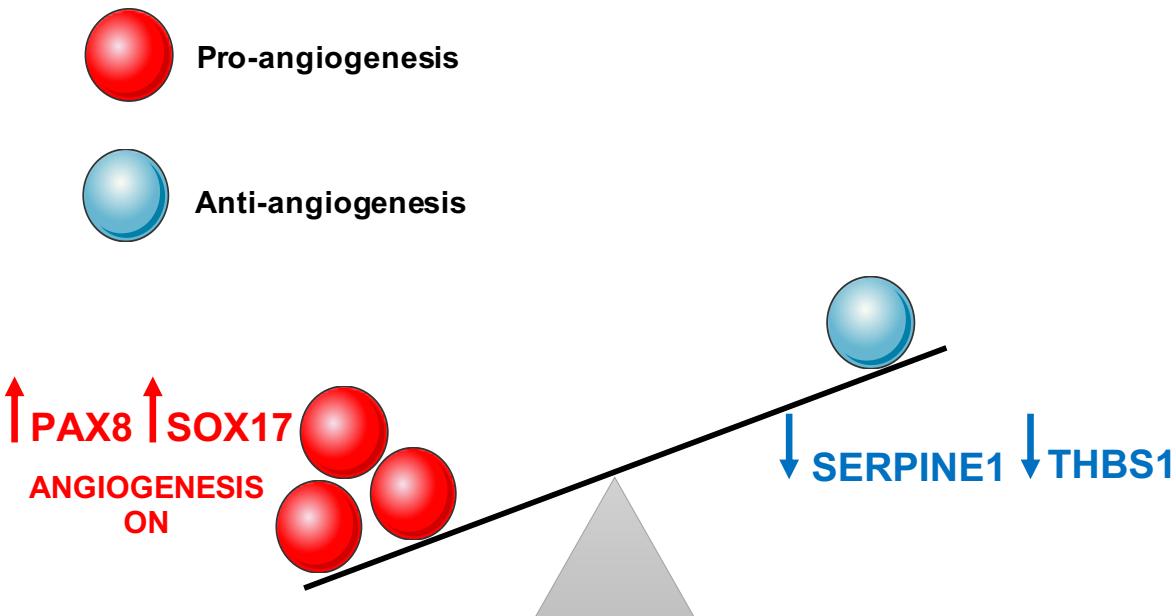

22 **SI 2:** Overexpression of PAX8 and SOX17 in ovarian carcinoma cases. (a) Higher expression of PAX8 in ovarian cancer
 23 samples. (b) Differential expression of SOX17 in ovarian cancer samples. (c) Most of the TCGA ovarian cancer samples
 24 have high PAX8 and SOX17 co-expression. (d) Higher number of PAX8-SOX17 interactions on ovarian cancer cell lines.
 25


SI 3: PAX8-SOX17 expression co-regulation. (a-b) Immunoblot of four deconvoluted siPAX8 and four deconvoluted siSOX17 knockdowns on FTSEC and HGSOC cell lines. (c-d) PAX8 and SOX17 protein levels after knockdowns with four pooled siPAX8, four pooled siSOX17 or then all combined by reverse-phase protein array.


90
91 **SI 4:** PAX8-SOX17 tightly suppresses SERPINE1 expression. (a) RNA-seq analysis depicting *SERPINE1* gene up-
92 regulation after PAX8, SOX17 or DUAL knockdown. (b) *SERPINE1* average expression after PAX8, SOX17 or DUAL
93 knockdown. (c) RPPA ontology analysis corroborating enrichment of angiogenesis and VEGF pathways. (d) *SERPINE1*
94 relative protein levels in different FTSEC lines and HGSC lines, depicting suppression of *SERPINE1* during malignant
95 transformation. (e) Immunoblot of different benign and malignant cell lines showing drastically reduction of *SERPINE1* levels
96 in cell lines with increased SOX17 expression.

25
26
27
28
29
SI 5: PAX8 and SOX17 regulate the secretion of angiogenesis mediators. (a) Human angiogenesis arrays of fresh
30 DMEM/F12 and RPMI media with no detection of angiogenesis mediators, negative controls. (b-c-d) Human angiogenesis
31 array of additional three fallopian tube secretory cells and additional three ovarian carcinoma cells conditioned media after
32 PAX8 or SOX17 knockdown.

59 **SI 6: PAX8-SOX17 regulates angiogenesis through the PLC γ 1 pathway.** (a) Schematic illustration of the PLC γ 1 pathway.
60 (b) RPPA analysis showing up-regulation of VEGFR2 protein levels followed PAX8 and SOX17 knockdown.
61 (c) RPPA analysis showing reduced phosphorylated-PLC γ 1 and phosphorylated-ERK1/2 (active molecules) followed PAX8 and
62 SOX17 knockdown. (d) Confirmation by western blot of the PLC γ 1 pathway inactivation.


93
94
95
96
97

SI 7: PAX8-SOX17 suppress anti-angiogenesis factors. (a) Spearman correlation analysis of TCGA ovarian cancer data set depicting negative inversely correlation between SOX17 and angiogenesis inhibitors (SERPINE1 and THBS1). (b) Schematic diagram of the activation of tumor angiogenesis by PAX8 and SOX17 expression.

a

TCGA-OVARIAN	SOX17 vs. SERPINE1	SOX17 vs. THBS1
Spearman r	-0.3222	-0.2936
95% confidence interval	-0.4216 to -0.2152	-0.3952 to -0.1848
P value		
P (two-tailed)	<0.0001	<0.0001
P value summary	****	****
Significant? (alpha = 0.05)	Yes	Yes
Number of XY Pairs	308	308

b

98 **TABLES**
 99
 00
 01

Table 1: Putative PAX8-interacting partners.

UniProtKB Accession no.	Spot name	Description	Theoretical mass (kDa)	MaxQuant search results			Fold change Cancer vs. Normal [#]
				No. of matched peptides	Sequence coverage (%)	Score	
TRANSCRIPTION FACTORS AND REGULATORS							
Q06710	PAX8	Paired box protein PAX-8	48.2	13	33.8	162.9	+1.38
Q13263	TRIM28	Transcription intermediary factor 1-beta	88.5	5	11.3	79.4	-0.22
Q1MSW8	TP53	Cellular tumor antigen p53	50.2	4	22.2	76.1	+2.79
Q9H6I2	SOX17	Transcription factor SOX-17	44.3	3	11.1	74.8	+1.05
P78347	GTF2I	General transcription factor III	107.9	19	11.3	73.3	+1.06
Q86YP4	GATAD2A	Transcriptional repressor p66-alpha	68.1	7	9.6	45.1	-0.66
P40763	STAT3	Signal transducer and activator of transcription 3	76.1	8	3.9	39.6	+0.01
A5YKK6	CNOT1	CCR4-NOT transcription complex subunit 1	266.4	6	2.5	38.1	-1.13
P17480	UBTF	Nucleolar transcription factor 1	75.9	10	6.3	31.6	-0.96
P51532	SMARCA4	Transcription activator BRG1	184.6	15	3.9	28.8	-0.18
O00268	TAF4	Transcription initiation factor TFIID subunit 4	50.2	3	6.8	20.4	+0.70
O60885	BRD4	Bromodomain-containing protein 4	152.2	3	2.5	18.7	-2.08
Q13573	SNW1	SNW domain-containing protein 1	43.3	3	9.9	18.1	+1.57
O75448	MED24	Mediator of RNA polymerase II transcription subunit 24	91.3	3	4.6	17.8	-0.79
Q9NZN8	CNOT2	CCR4-NOT transcription complex subunit 2	29.9	2	9.1	16.7	-0.97
P20290	BTF3	Transcription factor BTF3	17.7	2	17.3	14.6	+2.02
A0A0U1RRM1	GATAD2B	Transcriptional repressor p66-beta	63.4	4	5.9	14.2	-0.30
E9PJZ4	MED17	Mediator of RNA polymerase II transcription subunit 17	16.3	2	16.1	13.8	+1.94
Q96EI5	TCEAL4	Transcription elongation factor A protein-like 4	21.5	5	11.8	12.5	0.00
H3BQQ2	ZNF598	Zinc finger protein 598	93.3	4	1.5	12.5	+0.34

Q9NYF8	BCLAF1	Bcl-2-associated transcription factor 1	52.9	11	5.4	12.2	-0.23
O75175	CNOT3	CCR4-NOT transcription complex subunit 3	31.2	8	16.3	10.9	-4.48
Q4FD37	ZNF148	Zinc finger protein 148	74.5	4	1.2	9.2	0.00
Q96AQ6	PBXIP1	Pre-B-cell leukemia transcription factor-interacting protein 1	57.5	6	2.2	8.5	+0.65
P42224	STAT1	Signal transducer and activator of transcription 1-alpha/beta	88.3	3	1.7	8.1	-0.93
Q9ULX9	MAFF	Transcription factor MafF	14.5	2	11.9	7.5	0.00
Q13127	REST	RE1-silencing transcription factor	52.2	3	2.1	7.3	+1.02
P46937	YAP1	Transcriptional coactivator YAP1	18.7	9	6.5	6.6	+1.27
P53999	SUB1	Activated RNA polymerase II transcriptional coactivator p15	14.4	3	18.9	6.4	+1.90
P40424	PBX1	Pre-B-cell leukemia transcription factor 1	46.6	1	10.3	5.8	+0.78
P18846	ATF1	Cyclic AMP-dependent transcription factor ATF-1	57.6	23	5.8	2.1	+0.03
RNA PROCESSING							
Q9BQ02	NCL	Nucleolin	76.6	11	30.1	188.9	-0.63
A8K849	ZFR	Zinc finger RNA-binding protein	66.3	3	7.1	16.6	+0.41
Q9NVP1	DDX18	ATP-dependent RNA helicase DDX18	61.6	4	4.4	13.9	+2.24
Q59FS7	DDX24	ATP-dependent RNA helicase DDX24	75.1	1	1.6	8.4	+5.29
Q9Y2W2	WBP11	WW domain-binding protein 11	64.9	1	2.4	7.2	+0.93
DNA PROCESSING							
P33993	MCM7	DNA replication licensing factor MCM7	81.2	11	23.8	114.6	+0.35
Q92878	RAD50	DNA repair protein RAD50	138.4	12	11.5	85.4	+0.49
Q9Y265	RUVBL1	RuvB-like 1	50.2	8	25.4	76.1	+1.46
Q14839	CHD4	Chromodomain-helicase-DNA-binding protein 4	215.2	15	3.6	45.8	+0.18
Q9P258	RCC2	Protein RCC2	56.1	5	14.2	43.2	+1.53
Q9Y230	RUVBL2	RuvB-like 2	51.1	9	13.2	35.4	+0.84
P49736	MCM2	DNA replication licensing factor MCM2	87.4	6	6.1	26.2	-0.09
P18887	XRCC1	DNA repair protein XRCC1	42.8	2	5.8	13.5	-1.03
B7Z8C6	DBF4	Protein DBF4 homolog A	51.8	2	3.1	6.5	+1.75
EPIGENETIC REGULATORS							
Q09028	RBBP4	Histone-binding protein RBBP4	46.9	4	7.9	27.9	-2.96

O94776	MTA2	Metastasis-associated protein MTA2	75.0	3	3	12.5	+0.03
Q6IT96	HDAC1	Histone deacetylase	55.1	2	4.4	11.8	+1.99
Q96L91	EP400	E1A-binding protein p400	335.8	1	0.6	9.4	+0.31
Q8TEK3	DOT1L	Histone-lysine N-methyltransferase, H3 lysine-79 specific	24.1	3	3.4	7.6	-1.60
Q9UPP1	PHF8	Histone lysine demethylase PHF8	33.2	1	4.5	7.2	-0.27
Q13330	MTA1	Metastasis-associated protein MTA1	28.7	8	5.1	6.3	+1.55
Q59G93	BRD1	Bromodomain-containing protein 1	53.8	1	1.9	6.2	+0.30
APOPTOTIC SIGNALING PATHWAY							
Q8N163	CCAR2	Cell cycle and apoptosis regulator protein 2	102.9	8	10.2	57.1	+0.51
Q8IX12	CCAR1	Cell division cycle and apoptosis regulator protein 1	131.4	5	3.1	30.9	+1.56
Q9BZZ5	API5	Apoptosis inhibitor 5	37.5	4	10.0	27.2	+2.22
Q9UKV3	ACIN1	Apoptotic chromatin condensation inducer in the nucleus	122.5	3	3.8	19.9	-2.24
D6RC06	HINT1	Histidine triad nucleotide-binding protein 1	7.3	1	21.5	6.7	+0.84
TRANSFORMATION SIGNALING PATHWAY							
G3XAM7	CTNNA1	Catenin alpha-1	92.7	6	8.8	76.4	-1.01
B4DSW9	CTNNB1	Catenin beta-1	77.5	3	3.9	24.3	+0.13
O00499	BIN1	Myc box-dependent-interacting protein 1	43.2	1	3.6	6.3	-1.12

#Average ratio between the Cancer and Normal cells are reported and significant values indicated (*p < 0.05).

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23 **Table 2:** Top PAX8-SOX17 commonly regulated genes.

24

COMMONLY UP-REGULATED TARGET GENES		COMMONLY DOWN-REGULATED TARGET GENES	
Gene	Log-fold change	Gene	Log-fold change
SERPINE1	5.54863858	PYY	-8.0262675
IL11	5.27536243	TMEM101	-5.7263682
NPPB	5.18800181	FGF18	-5.4123449
KLK5	4.50271261	TGM7	-4.9926057
FGF1	4.4055198	CA2	-4.8188457
CPA4	4.32537639	CCNA1	-4.5055642
MYL7	3.80515773	CXCL5	-4.409147
ADAMTSL4	3.79017684	FOXQ1	-4.3460707
FILIP1L	3.64159103	NOTUM	-4.3070766
HBEGF	3.62339664	GBP5	-4.2098481
TGFBI	3.61350996	TMEM171	-4.1579087
RASD2	3.52832382	ZBED6CL	-4.0422849
PMEPA1	3.48254273	BMPER	-3.7191215
SEMA3C	3.43402726	FST	-3.4878197
DYSF	3.32114739	ATP2B2	-3.4437388
ITGA2	3.314082	LRRC61	-3.441764
CYP1B1	3.28587766	RHOC	-3.4246182
NCF2	3.26470577	MYB	-3.4111303
ABCC3	3.21212074	NMU	-3.4026155
DAB2	3.18763588	PRRX2	-3.3958186
CA9	3.17582117	TXK	-3.3917272
CD274	3.17245293	AGMAT	-3.3704743
CSF1R	3.16372011	CTTNBP2	-3.3622138
AKR1B10	3.09123637	IQGAP2	-3.300818
SULT2B1	3.0772257	KLHL14	-3.2936874
PDCD1LG2	3.06482259	LRRC41	-3.290006
PCP4L1	3.05895596	IMPDH1	-3.285422

25
26 # Top significant gene expression changes p-values < 0.01.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 **Table 3: PAX8-SOX17 significantly co-regulated target proteins**

51

UP-REGULATED TARGET PROTEINS			DOWN-REGULATED TARGET PROTEINS		
Protein	Difference	t-ratio	Protein	Difference	t-ratio
SERPINE1	6.772	74.24	SOX17	-1.563	17.13
Axl	0.8736	9.577	Cyclin-B1	-1.211	13.27
Gys_pS641	0.8122	8.903	RPA32_pS4_pS8	-1.069	11.71
Hif-1-alpha	0.7834	8.589	Chk1	-0.9642	10.57
VEGFR-2	0.7769	8.517	CDK1_pT14	-0.9087	9.961
YAP_pS127	0.7397	8.109	DNMT1	-0.9073	9.946
GSK-3a-b_pS21_pS9	0.7283	7.984	PAX8	-0.8738	9.579
ATR	0.7	7.674	DAPK1_pS308	-0.8424	9.235
Connexin-43	0.6899	7.563	EMA	-0.8236	9.029
HSP27_pS82	0.6696	7.34	MSH2	-0.7811	8.563
B7-H4	0.6279	6.884	IDO	-0.766	8.398
GSK-3B	0.6189	6.785	Rb_pS807_pS811	-0.7593	8.323
NDRG1_pT346	0.6089	6.676	ATP5A	-0.7315	8.019
MLKL	0.573	6.281	ENY2	-0.7228	7.924
G6PD	0.5712	6.262	Rheb	-0.7226	7.921
p21	0.5468	5.995	PARP	-0.7224	7.919
Atg7	0.5453	5.978	Ets-1	-0.6919	7.585
MCT4	0.538	5.898	MSH6	-0.6902	7.566
Stat3	0.5376	5.894	Slfn11	-0.6349	6.96
HMHA1	0.515	5.646	RBM15	-0.6324	6.933
PEA-15	0.5141	5.636	PLK1	-0.615	6.743
Rab25	0.5075	5.563	BRD4	-0.5906	6.474
Src_pY416	0.5015	5.498	cdc25C	-0.5894	6.461
A-Raf	0.4957	5.435	Cdc6	-0.575	6.303
INPP4b	0.4906	5.378	FOXM1	-0.5734	6.286
E-Cadherin	0.4877	5.346	p53	-0.5685	6.233
Gys	0.4875	5.344	Chk2	-0.5643	6.186
SHP-2_pY542	0.4854	5.321	UQCRC2	-0.5319	5.831
Merlin	0.4832	5.297	AMPKa_pT172	-0.5024	5.508
TRIM25	0.4789	5.25	Rad50	-0.4901	5.372
Coup-TFII	0.4624	5.069	GATA3	-0.4884	5.354
Paxillin	0.4544	4.981	PYGM	-0.474	5.196
NQO1	0.4418	4.843	KAP1	-0.4675	5.126
S6_pS235_pS236	0.4356	4.775	eEF2	-0.4655	5.103
Mitofusin-2	0.4326	4.742	c-Abl_pY412	-0.4479	4.91
Atg5	0.4267	4.678	Aurora-A	-0.4457	4.886

52

53 # Top significant relative protein changes p-values < 0.01.

54

55

56

57

58

59

60

61

62

63 **REFERENCES**

64

65 1. Siegel RL, Miller KD, and Jemal A. Cancer statistics, 2019. *CA Cancer J Clin.* 2019;69(1):7-34.

66 2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the
67 global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. *Int J Cancer.*
68 2019;144(8):1941-53.

69 3. Reid BM, Permuth JB, and Sellers TA. Epidemiology of ovarian cancer: a review. *Cancer Biol
70 Med.* 2017;14(1):9-32.

71 4. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer
72 statistics, 2018. *CA Cancer J Clin.* 2018;68(4):284-96.

73 5. Perets R, and Drapkin R. It's Totally Tubular....Riding The New Wave of Ovarian Cancer
74 Research. *Cancer Res.* 2016;76(1):10-7.

75 6. DUCIE J, DAO F, CONSIDINE M, OLVERA N, SHAW PA, KURMAN RJ, et al. Molecular analysis of high-
76 grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial
77 carcinoma. *Nat Commun.* 2017;8(1):990.

78 7. LABIDI-GALY SI, PAPP E, HALLBERG D, NIKNAFS N, ADLEFF V, NOE M, et al. High grade serous ovarian
79 carcinomas originate in the fallopian tube. *Nat Commun.* 2017;8(1):1093.

80 8. WU RC, WANG P, LIN SF, ZHANG M, SONG Q, CHU T, et al. Genomic landscape and evolutionary
81 trajectories of ovarian cancer precursor lesions. *J Pathol.* 2019;248(1):41-50.

82 9. ECKERT MA, PAN S, HERNANDEZ KM, LOTH RM, ANDRADE J, VOLCHENBOUM SL, et al. Genomics of
83 Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial
84 Metastasis to the Fallopian Tube. *Cancer Discov.* 2016;6(12):1342-51.

85 10. SHERMAN-BAUST CA, KUHN E, VALLE BL, SHIH LE M, KURMAN RJ, WANG TL, et al. A genetically
86 engineered ovarian cancer mouse model based on fallopian tube transformation mimics human
87 high-grade serous carcinoma development. *J Pathol.* 2014;233(3):228-37.

88 11. McCool KW, Freeman ZT, Zhai Y, Wu R, Hu K, Liu CJ, et al. Murine Oviductal High-Grade
89 Serous Carcinomas Mirror the Genomic Alterations, Gene Expression Profiles, and Immune
90 Microenvironment of Their Human Counterparts. *Cancer Res.* 2020;80(4):877-89.

91 12. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, and Matzuk MM. High-grade serous ovarian
92 cancer arises from fallopian tube in a mouse model. *Proc Natl Acad Sci U S A.*
93 2012;109(10):3921-6.

94 13. Stuckelberger S, and Drapkin R. Precious GEMMs: emergence of faithful models for ovarian
95 cancer research. *J Pathol.* 2018;245(2):129-31.

96 14. Mittag J, Winterhager E, Bauer K, and Grummer R. Congenital hypothyroid female pax8-
97 deficient mice are infertile despite thyroid hormone replacement therapy. *Endocrinology.*
98 2007;148(2):719-25.

99 15. Mayran A, Pelletier A, and Drouin J. Pax factors in transcription and epigenetic remodelling.
00 *Semin Cell Dev Biol.* 2015;44:135-44.

01 16. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis
02 of PAX8 expression in human epithelial tumors. *Am J Surg Pathol.* 2011;35(6):816-26.

03 17. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the
04 fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten
05 models. *Cancer Cell.* 2013;24(6):751-65.

06 18. Maniati E, Berlato C, Gopinathan G, Heath O, Kotantaki P, Lakhani A, et al. Mouse Ovarian
07 Cancer Models Recapitulate the Human Tumor Microenvironment and Patient Response to
08 Treatment. *Cell Rep.* 2020;30(2):525-40 e7.

09 19. Di Palma T, Filippone MG, Pierantoni GM, Fusco A, Soddu S, and Zannini M. Pax8 has a critical
10 role in epithelial cell survival and proliferation. *Cell Death Dis.* 2013;4:e729.

11 20. Ghannam-Shahbari D, Jacob E, Kakun RR, Wasserman T, Korsensky L, Sternfeld O, et al.
12 PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian
13 carcinoma. *Oncogene*. 2018;37(17):2213-24.

14 21. Rodgers LH, E Oh, Young AN, and Burdette JE. Loss of PAX8 in high-grade serous ovarian
15 cancer reduces cell survival despite unique modes of action in the fallopian tube and ovarian
16 surface epithelium. *Oncotarget*. 2016;7(22):32785-95.

17 22. Elias KM, Emori MM, Westerling T, Long H, Budina-Kolomets A, Li F, et al. Epigenetic
18 remodeling regulates transcriptional changes between ovarian cancer and benign precursors.
19 *JCI Insight*. 2016;1(13).

20 23. Corona RI, Seo JH, Lin X, Hazelett DJ, Reddy J, Fonseca MAS, et al. Non-coding somatic
21 mutations converge on the PAX8 pathway in ovarian cancer. *Nat Commun*. 2020;11(1):2020.

22 24. Garcia-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, Molina-Pinelo S, and Carnero A.
23 Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties
24 and resistance to chemotherapy. *Oncotarget*. 2016;7(39):63611-28.

25 25. Allen HF, Wade PA, and Kutateladze TG. The NuRD architecture. *Cell Mol Life Sci*.
26 2013;70(19):3513-24.

27 26. Bohm M, Wachtel M, Marques JG, Streiff N, Laubscher D, Nanni P, et al. Helicase CHD4 is an
28 epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. *J Clin Invest*.
29 2016;126(11):4237-49.

30 27. Grimley E, Liao C, Ranghini EJ, Nikolovska-Coleska Z, and Dressler GR. Inhibition of Pax2
31 Transcription Activation with a Small Molecule that Targets the DNA Binding Domain. *ACS
32 Chem Biol*. 2017;12(3):724-34.

33 28. De Palma M, Biziato D, and Petrova TV. Microenvironmental regulation of tumour angiogenesis.
34 *Nat Rev Cancer*. 2017;17(8):457-74.

35 29. Zhou H, Yang YH, and Basile JR. Characterization of the Effects of Semaphorin 4D Signaling
36 on Angiogenesis. *Methods Mol Biol.* 2017;1493:429-41.

37 30. Zhou H, Yang YH, Binmadi NO, Proia P, and Basile JR. The hypoxia-inducible factor-responsive
38 proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and
39 angiogenesis in oral squamous cell carcinoma. *Exp Cell Res.* 2012;318(14):1685-98.

40 31. Shi K, Yin X, Cai MC, Yan Y, Jia C, Ma P, et al. PAX8 regulon in human ovarian cancer links
41 lineage dependency with epigenetic vulnerability to HDAC inhibitors. *Elife.* 2019;8.

42 32. Grimm D, Bauer J, Wise P, Kruger M, Simonsen U, Wehland M, et al. The role of SOX family
43 members in solid tumours and metastasis. *Semin Cancer Biol.* 2019.

44 33. Hou L, Srivastava Y, and Jauch R. Molecular basis for the genome engagement by Sox proteins.
45 *Semin Cell Dev Biol.* 2017;63:2-12.

46 34. Wilson M, and Koopman P. Matching SOX: partner proteins and co-factors of the SOX family of
47 transcriptional regulators. *Curr Opin Genet Dev.* 2002;12(4):441-6.

48 35. Lang D, and Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved
49 c-RET enhancer. *Hum Mol Genet.* 2003;12(8):937-45.

50 36. Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R, et al. PAX3 and
51 SOX10 activate MET receptor expression in melanoma. *Pigment Cell Melanoma Res.*
52 2010;23(2):225-37.

53 37. Zhang S, Bell E, Zhi H, Brown S, Imran SAM, Azuara V, et al. OCT4 and PAX6 determine the
54 dual function of SOX2 in human ESCs as a key pluripotent or neural factor. *Stem Cell Res Ther.*
55 2019;10(1):122.

56 38. Ooki A, Dinalankara W, Marchionni L, Tsay JJ, Goparaju C, Maleki Z, et al. Epigenetically
57 regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung
58 adenocarcinoma. *Oncogene.* 2018;37(45):5967-81.

59 39. Reddy J, Fonseca MAS, Corona RI, Nameki R, Dezem FS, Klein IA, et al. Predicting master
60 transcription factors from pan-cancer expression data. *bioRxiv* 839142. 2019.

61 40. Yang H, Lee S, Lee S, Kim K, Yang Y, Kim JH, et al. Sox17 promotes tumor angiogenesis and
62 destabilizes tumor vessels in mice. *J Clin Invest.* 2013;123(1):418-31.

63 41. Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, et al. Notch pathway targets
64 proangiogenic regulator Sox17 to restrict angiogenesis. *Circ Res.* 2014;115(2):215-26.

65 42. Ramasamy SK, Kusumbe AP, Wang L, and Adams RH. Endothelial Notch activity promotes
66 angiogenesis and osteogenesis in bone. *Nature.* 2014;507(7492):376-80.

67 43. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, et al. Dll4 and Notch
68 signalling couples sprouting angiogenesis and artery formation. *Nat Cell Biol.* 2017;19(8):915-
69 27.

70 44. Kerbel RS. Tumor angiogenesis: past, present and the near future. *Carcinogenesis.*
71 2000;21(3):505-15.

72 45. Kerbel RS. Tumor angiogenesis. *N Engl J Med.* 2008;358(19):2039-49.

73 46. Saharinen P, Eklund L, Pulkki K, Bono P, and Alitalo K. VEGF and angiopoietin signaling in
74 tumor angiogenesis and metastasis. *Trends Mol Med.* 2011;17(7):347-62.

75 47. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia.
76 *Cancer Cell.* 2014;26(5):605-22.

77 48. Jang K, Kim M, Gilbert CA, Simpkins F, Ince TA, and Slingerland JM. VEGFA activates an
78 epigenetic pathway upregulating ovarian cancer-initiating cells. *EMBO Mol Med.* 2017;9(3):304-
79 18.

80 49. Herr D, Sallmann A, Bekes I, Konrad R, Holzheu I, Kreienberg R, et al. VEGF induces ascites
81 in ovarian cancer patients via increasing peritoneal permeability by downregulation of Claudin
82 5. *Gynecol Oncol.* 2012;127(1):210-6.

83 50. Devy L, Blacher S, Grignet-Debrus C, Bajou K, Masson V, Gerard RD, et al. The pro- or
84 antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. *FASEB J.*
85 2002;16(2):147-54.

86 51. Stefansson S, Petitclerc E, Wong MK, McMahon GA, Brooks PC, and Lawrence DA. Inhibition
87 of angiogenesis in vivo by plasminogen activator inhibitor-1. *J Biol Chem.* 2001;276(11):8135-
88 41.

89 52. Stefansson S, and Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin
90 alpha V beta 3 binding to vitronectin. *Nature.* 1996;383(6599):441-3.

91 53. Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, et al. Plasminogen activator inhibitor-1 inhibits
92 angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-alphaVbeta3
93 integrin cross talk. *Arterioscler Thromb Vasc Biol.* 2015;35(1):111-20.

94 54. Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. *Birth Defects Res*
95 *C Embryo Today.* 2015;105(2):140-56.

96 55. Cortez AJ, Tudrej P, Kujawa KA, and Lisowska KM. Advances in ovarian cancer therapy. *Cancer*
97 *Chemother Pharmacol.* 2018;81(1):17-38.

98 56. Karst AM, and Drapkin R. Primary culture and immortalization of human fallopian tube secretory
99 epithelial cells. *Nat Protoc.* 2012;7(9):1755-64.

00 57. Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z, et al. Histone Acetyltransferase p300 Induces
01 De Novo Super-Enhancers to Drive Cellular Senescence. *Mol Cell.* 2019;73(4):684-98 e8.

02 58. Cox J, and Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-
03 range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol.*
04 2008;26(12):1367-72.

05 59. Doberstein K, Spivak R, Feng Y, Stuckelberger S, Mills GB, Devins KM, et al. Fallopian tube
06 precursor lesions of serous ovarian carcinoma require L1CAM for dissemination and metastasis.
07 *bioRxiv* 2018;270785.

08 60. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape
09 provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat Commun.*
10 2019;10(1):1523.

11 61. Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, et al. SIRT6 haploinsufficiency
12 induces BRAF(V600E) melanoma cell resistance to MAPK inhibitors via IGF signalling. *Nat
13 Commun.* 2018;9(1):3440.

14 62. Bader DA, Hartig SM, Putluri V, Foley C, Hamilton MP, Smith EA, et al. Mitochondrial pyruvate
15 import is a metabolic vulnerability in androgen receptor-driven prostate cancer. *Nat Metab.*
16 2019;1(1):70-85.

17 63. Grote T, Siwak DR, Fritsche HA, Joy C, Mills GB, Simeone D, et al. Validation of reverse phase
18 protein array for practical screening of potential biomarkers in serum and plasma: accurate
19 detection of CA19-9 levels in pancreatic cancer. *Proteomics.* 2008;8(15):3051-60.

20 64. Kimbrel EA, Davis TN, Bradner JE, and Kung AL. In vivo pharmacodynamic imaging of
21 proteasome inhibition. *Mol Imaging.* 2009;8(3):140-7.

22