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ABSTRACT 
 
 

High-throughput phenotyping is a modern technology to measure plant traits efficiently and in large scale by imaging systems 

over the whole growth season. Those images provide rich data for statistical analysis of plant phenotypes. We propose a 

pipeline to extract and analyze the plant traits for field phenotyping systems. The proposed pipeline include the following main 

steps: plant segmentation from field images, automatic calculation of plant traits from the segmented images, and functional 

curve fitting for the extracted traits. To deal with the challenging problem of plant segmentation for field images, we propose 

a novel approach on image pixel classification by transform domain neural network models, which utilizes plant pixels from 

greenhouse images to train a segmentation model for field images. Our results show the proposed procedure is able to 

accurately extract plant heights and is more stable than results from Amazon Turks, who manually measure plant heights from 

original images. 

 
 

1 Introduction 
 

2        High-throughput phenotyping is a new technology that takes images for hundred and thousands of plants simultaneous and 

3       continuously during their whole growth stages.  It is constructed to improve the classical labor-intensive and inefficient 

4        hand-measured approach for collecting plant traits.  Substantial advancements have been made by engineers to enable the 

5       large-scale collection of plant images and sensor data both in greenhouse and in field Chéné et al. (2012); Fahlgren et al. (2015); 

6       Hairmansis et al. (2014); Lin (2015); McCormick et al. (2016); Xiong et al. (2017). Figure 1 shows the field facility built by 

7       the Plant Science Institution (PSI) at Iowa State University, from which we can see that cameras are placing in front of each 

8       row of plants in a field. These cameras are designed to take photos with a certain frequency during the whole plant growth 

9       season. From the high-throughput system, we are able to process and extract useful phenotypical features, such as height, 
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10       width and size, from the recorded images, and use those extracted features for plant genomics analysis.  Compared to the 

11     traditional methods, the high-throughput system is able to provide the plant features of interest in a more efficient, accurate and 

12 non-destructive way. 
 

(a) (b) 

Figure 1. Left panel: an overview photo of the Iowa State field phenotyping system; right panel: raw RGB images of maize 
plants captured from the phenotyping facility. 

 
13 Despite high-throughput systems can generate large amount of images per day, image processing is generally needed to 

14       extract numerical measurements of plant traits for downstream analyses (Adams et al., 2020; Choudhury et al., 2018).  In 

15        order to extract phenotypical features from images, plant object segmentation is the fundamental step (Ge et al., 2016; Miao 

16        et al., 2018). However, image segmentation and traits extraction are the current bottlenecks in the area of high-throughput 

17     phenotyping. Separating plants from background is much easier for greenhouse images where the background is homogeneous 

18       (usually white) and a simple thresholding algorithm can provide satisfactory results (Choudhury et al., 2018; Ge et al., 2016). 

19       However, thresholding methods no longer works for field images as the backgrounds in the field are much more noisy than 

20      those in a well controlled greenhouse imaging chamber. See the background in Figure 1 as an example, which is a mixture of 

21 dirt and straws on the ground, pillar and white boxes as part of the phenotyping facility, and plant shadows. 

22 Plant segmentation results in a binary image, where all pixels in the original RGB image are classified into either plant 

23        or background. Thresholding is the simplest and the most commonly used method for image segmentation (Davies, 2012; 

24       Hartmann et al., 2011), which classifies pixels by a cut-off value on pixel intensities. Thresholding could be applied on the 

25      average of red, green and blue channels, or the green-contrast intensity (Ge et al., 2016) obtained by green channel minus the 

26       average of blue and red channels, or both (Wang et al., 2020). Despite the popularity of thresholding methods for greenhouse 

27  images with uniform background color, they fail to work for images with noisy background. See Figure 2 as an illustration for 

28  the thresholding method on ISU field images of maize, where a smaller threshold (0.04) maintains most parts of the plants but 

29     leaves many background noises, and a larger threshold (0.08) removes most of the background noises but misses many pixels of 

30     the plants. Most importantly, the ideal threshold is sensitive to the environment and time of the image, which requires extensive 

31 human power for tuning. 

32 A well separated plant image is the key to accurate feature extraction as traits like plant height and width are most sensitive to 
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(a) (b) 

Figure 2. Thresholding segmentation method for Figure 1 by green-contrast intensity with weights (− √1  , √2  , − √1  ), and 
   

threshold level 0.04 (left panel) and 0.08 (right panel). 
6 6 6 

 
 

33     background noises. To improve thresholding methods for greenhouse images, Adams et al. (2020) made a thorough comparison 

34        for self-supervised learning methods trained on pixel intensities of plant RGB images from greenhouse, where the training 

35        data were obtained by unsupervised K-means clustering Johnson et al. (2002); Klukas et al. (2014). It is demonstrated that 

36 self-supervised neural network models are more accurate and robust than the traditional thresholding methods at segmentation. 

37        It is also worth to mention there have been an increasing number of applications of convolutional neural networks (CNN) to 

38        plant phenotype extraction from images in recent years. Miao et al. (2019) considered leaf counting of maize by a relatively 

39        shallow CNN; Lu et al. (2017) employed deep CNN structures to count the number of tassels on maize plants in field;  Aich 

40 et al. (2018) used CNNs for estimating emergence and biomass of wheat plants. 

41 In this paper, we develop an automatic and robust procedure to extract plant traits from field images generated by a 

42       high-throughput phenotyping system as shown in Figure 1, and fit an non-decreasing curve for the extracted traits over the 

43       plant growth period. The fitting is non-parametric and free of model assumptions, which can be used in any stage of plant 

44      growth. The first step of the proposed procedure is to obtain an accurate segmentation of plants from field images. Motivated 

45     by the idea in Adams et al. (2020), we construct a transform domain self-supervised neural network model, which use the plant 

46       pixels obtained by the K-means clustering algorithm from greenhouse images to train models for field images. The proposed 

47       method is built on neighborhood pixel intensities to separate the plant class from the background class for each pixel. We 

48      propose a novel self-supervised method to efficiently generate a large amount of training data for building the neural network 

49       model, which combines background pixels from field images and plant pixels from greenhouse images. The advantages of 

50      self-supervised learning are its easy implementation and efficient and automatic generation of data supervision, which avoids 

51        the time and labor intensive labelling process for preparing training data. Post-processing (Davies, 2012; Gehan et al., 2017; 

52     Hamuda et al., 2016; Vibhute and Bodhe, 2012) of the segmented image from the neural network model could be applied, such 

53  as median blur, erosion and dilation operations. Using the segmented images, we design a computationally efficient algorithm 

54  to identify and separate the target plants. Plant features can then be measured for each separated plant based on the segmented 

55       image.  We also propose a refined feature extraction algorithm by pooling information of plant locations from a sequence 
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56       of images taken over time in the same row of an experiment. In the last step, we fit a non-parametric and non-decreasing 

57        functional curve for the extract plant trait. The advantage of non-parametric functional fitting over parametric modeling and 

58  point-wise analysis of variance for plant growth dynamics are discussed in Xu et al. (2018). The proposed method restricts the 

59     fitted curve to be non-decreasing which leads to a more accurate estimation for growth curve comparing to the approach used in 

60       Xu et al. (2018). Comparing to the crowdsourcing height measurements by Amazon Turk workers, our method is  automatic, 

61      more efficient and free of human labor. We also find that the proposed method produces more stable and consistent plant traits 

62        compared to the crowdsourcing results.  Although we mainly focus on plant height measurement in this paper, the proposed 

63 procedure can be easily extended to extract other plant traits such as size and width. 
 
 

64 Method 
 

65       The primary interest of this paper is to automatically extract heights of all the plants in the front row in Figure 1 for all the 

66      cameras in the field, and use the heights obtained in a sequence of photos taken over time to estimate plant growth curves. The 

67     proposed work flow from the original RGB image to the fitted growth curve for each plant is summarized in Figure 3. The main 

68 steps are enumerated in the following. The detailed procedures for each step are explained in the subsections. 
 

69 1. Construct the train data set for plant and background pixels, where the plant pixels are obtained by K-Means clustering 

70 algorithm applied on plant images from greenhouse. 
 

71 2. Perform image segmentation by neural network to transform the original RGB field image to a black and white image 

72 where white denotes the plants and black denotes backgrounds. 
 

73 3. Identify the plants of interests and measure their heights from the segmented image. 
 

74 4. Calculate the heights of plants from a sequence of images over the growth period. 
 

75 5. Fit the plant growth curve using nonparametric regression with non-decreasing mean functions. 
 
 

76 Image data 

77  In this paper, the image data we use were taken from a dry field in Nebraska in 2017. Two replications with 103 and 101 rows 

78     of maize plants were designed, where each row included six plants and one camera. The photos were taken with a frequency of 

79     15 minutes, and the average number of photos taken by one camera is 1, 719 and 1, 650 respectively for the two replications. By 

80       only including the photo taken in the growth season, deleting problematic images (in dark environment or rainy and foggy 

81     weather, etc), and selecting the images taken around 10am everyday, there are on average a hundred of images per camera used 

82        in our analysis. For an illustration purpose, we randomly choose 10 cameras for each replication, and apply our algorithm to 

83       obtain the growth curves for all the plants taken by these 20 cameras. The raw field photos are high resolution (5152 × 3864) 

84       RGB images with intensity values of red, green, and blue channels between 0 and 255 for each pixel. We normalize the pixel 
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Figure 3. The diagram of the proposed method. From top left to bottom left are the algorithm workflow from the original 
RGB image to the fitted growth curves. 

 
 

85 intensities by dividing 255, producing floating point numbers between 0 and 1. To increase the computation efficiency, we also 

86 re-scale the image resolution to 1000 × 750. 
 
 

87 Self-supervised learning 

88        We  consider self-supervised learning to classify each pixel of the field image into either plant class or background class.  In 

89        supervised learning, collecting and preparing accurate training data is the most labor intensive and time consuming step.  To 

90     overcome this major obstacle, we proposed an efficient self-supervised learning method to automatically construct training data 

91     with labeled pixels for field images. To prepare training data for background, it is straightforward to crop the image into pieces 

92       that only include the background. All the pixels in those pieces of images are labeled as background. For example, see the 

93      second panel in Figure 3, where the crops of background images include the dirt and straws on the ground, sky, shadows, and 

94 the phenotyping facilities. 

95 To obtain training data for the plant class, however, it is time-consuming to accurately crop the field image to contain only 

96       the plants because of the irregular shapes of plants and noisy backgrounds in field images. We consider to borrow the plant 

97       pixels in greenhouse images, where plants are photoed in a well controlled imaging chamber, and the backgrounds are much 

98      less noisy than field images. Through cropping the greenhouse images, it is easy to obtain part of the plant under background 

99       with a universal color; see panels (a) and (c) in Figure 4 as an example. Motivated by the procedure proposed in Adams et al. 
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100       (2020) for extracting plant pixels, we apply K-Means clustering algorithm with Euclidean distance metric on all the pixels in 

101     those cropped greenhouse images, and obtain the pixels in plant class; see panels (b) and (d) in Figure 4 as the clustering results 

102     from the original images in panels (a) and (c), respectively. All the extracted plant pixels from K-Means algorithm are collected 

103        as training samples of the plant class for the field images. The key idea is to use the pixels from  greenhouse plant images to 

104      train the plant pixels in the field under the assumption that the intensities of the plant pixel are similar in the greenhouse and in 

105     the field. Note that there is no need to have a perfect segmentation of the whole plant from the greenhouse, as we only need part 

106 of the plant pixels where separation from the background is easy and can be done by K-Means clustering. Both the procedures 

107 to construct training sample for the background and plant classes are easy to implement without human labeling and annotation. 

108 This makes the supervise learning for plant segmentation possible at the pixel level. 
 

(a) (b) (c) (d) 

Figure 4. An example of training data (plant class) acquisition. Panels (a) and (c) are two cropped greenhouse images; panels 
(b) and (d) are the clustering results of K-Means algorithm (K = 3), the white parts are used as training data for the plant class. 

 
 
 

109 Segmentation by neural network 

110       We use the training data containing 598,219 plant pixels and 2,728,415 of background pixels.  For a given pixel, a 3 × 3 

111        neighborhoods of that pixel together with their RGB intensities are used as the input features.  This results in 27 features for 

112     each pixel. A three layer neural network under the API Keras in R is used to train the model. Specifically, the input layer has 27 

113      nodes, and the first and second hidden layers have 1,024 and 512 neurons respectively. The ReLU activation function is used 

114       between the input layer and the first hidden layer as well as between the first and second hidden layers. The output layer had 

115        one neuron which gives the predicted probability of one particular pixel belonging to the plant class. The sigmoid activation 

116       function is used between the second hidden layer and the output layer. The dropout rates at each hidden layer are chosen to 

117       be 0.45 and 0.35 respectively. The binary cross-entropy loss function with the Adam optimization algorithm (learning rate = 

118       0.001) is used to evaluate the network. Finally, we use 20 epochs with batch size 1,024 to train the model. 1% of the training 

119 data in each epoch are held out as validation data. 

120 A cutoff threshold of 0.5 is used to classify the plant pixels, which means a pixel is classified as plant if its output probability 

121    from the neural net model is greater than 0.5. Figure 5 provides an example of the segmentation result by the proposed neural 
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(a) (b) 

Figure 5. Segmentation result (right) of the original image (left) by the proposed self-supervised neural network model. 
 
 

122 network model. We see that most of the plants are precisely segmented with few background noises. 
 
 
 

123 Plant height measurement for a single segmented image 
 

124      Based on the segmented images, we aim to measure the height of the plants in the first row of the image. As an example, there 

125      are six maize plants in the first row of Figure 5. This procedure constitutes identifying the first row by row cut, separating each 

126 plant in the first row by column cuts and measuring the individual height of each plant. 
 
 
 

127 Row cut 
 

128       To separate the first row in the image, we propose a row cut algorithm which consists of local maximum calling and region 

129    identification. Specifically, the row means are calculated for each row of the segmented image, which gives the percentage of 

130    plant pixels in each row. Then a local smoother (loess function in R) is used to smooth the row means. From Figure 6, we can 

131        see multiple peaks in the row mean curve, where the indexes of the bottom peak correspond to the plants in the first row. To 

132   find the local maximum of the bottom peak, we threshold the row means by Rv = 10% percent of their global maximum value. 

133       This results in segments of indices with value above the threshold, where two segments are considered as separate if they are 

134    Sr = 10 rows apart from each other. The maximal of the bottom peak is the largest row mean in the first segment from below. 

135      See the illustration in the top right panel of Figure 6, where the red point denotes the maximum of the bottom peak (colored in 

136     green) identified by the proposed procedure. Finally, to locate the region of the bottom peak, its upper and lower boundaries are 

137    chosen as the first rows smaller than Ru = 7.5% and Rl = 2.5% percentage of its peak maximum when moving away from the 

138   center of the bottom peak from above and below, respectively. See the bottom two panels in Figure 6 as an illustration for this 

139      step of region identification. Our results show that the proposed procedure can accurately separate the first row of plants and it 

140  is robust to the tuning parameters Rv, Ru, Rl and Sr for all the images we analyzed. However, their appropriate values may vary 

141 in a different setting of cameras. 
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p p  

 
 

Figure 6. Diagram of the row cut algorithm. Top left panel: the segmented image of plants from the neural network model; 
top right panel: the step of local maximum calling, which provides a separation of different peaks (illustrated by different 
colors) in the row mean curve and find the maximum of the bottom peak (denoted by the red point); bottom right panel: the 
step of peak region identification, giving the upper and lower boundaries of the bottom peak (denoted by the red solid lines); 
bottom left panel: the segmented first row of plants from the original image. 

 
 
 
 

142 Column cuts 
 

143      Once the targeted row of plants is obtained, we separate each plant in that row by a column cuts algorithm. A diagram of this 

144       algorithm is shown in Figure 7 for illustration. Similar to the row cut algorithm, the first step is to compute the column mean 

145        values, which gives the column-wise percentage of the segmented plant pixels.  We  apply a quadratic power transformation 

146    (i.e. f (x) = x2) to the column means, which magnifies the column peak maximal values so that it is easier to separate different 

147  peaks, as illustrated in the third step in Figure 7. Following the same strategy as the row cut algorithm, we find the maximums 

148     for each peak by thresholding the squared column means at Ch = 20% percent of the overall maximum, and obtaining the 

149     column indexes with value larger than this threshold. Then, segments of indexes that are at least Sc = 50 columns apart are 

150      considered as from different peaks. The maximal value for each peak can be obtained as the largest squared column means in 

151     each segment. The cuts between plants are calculated as the middle points between the indexes of two adjacent peak maximums. 
( j) m 

152 Specifically, let {Ip } j=1 be the indexes of the column-mean peak maximum for the m plants. The indexes of the column 
( j) I 

( j)+I( j+1) (1) (1) 
153 cuts are Ic =   2 for j = 2, . . . , m. The left and right margin cuts are defined to be Ic = max{Ip −DI, 1} and 

(m+1) (m) I( j+1)−I( j)  
 154 Ic = min{Ip + DI, nc} respectively, where DI = max j∈{1,...,m−1} 

p
 2 and nc is the total number of columns. p
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Figure 7. Diagram of the column cut algorithm. Top left panel: the segmented first row of plants from the row cut algorithm; 
middle left panel: visualize the plant distribution by the column mean curve; bottom left panel: the step of local maximum 
calling for the column mean curve, providing the maximum of each peak after the power transformation (denoted by red 
points); bottom right panel: the step of plant separation, where the cuts (blue dashes lines) between plants are calculated as the 
middle points of two adjacent peaks; top right panel: the segmented image for each plant. 

 
 

155 Phenotype measurements 

156       After making the row and column cuts, we can measure phenotypic traits for each plant. In this study, we focus on height 

157     measurement. The proposed procedure can be easily adjusted to calculate plant width and size. For the height of each separated 

158  plant, we first compute the column means, find their maximum value and the corresponding index of the maximum. Then, the 

159        left and right cuts are made to retain the center part of the plant, where the two cuts are chosen as the closest columns to the 

160      highest column that are smaller than 10% of the maximum value. The row mean values for the selected center part of the plant 

161     are computed, and the plant height is calculated as the index difference between the first row from below and the first row from 

162       above with mean values larger than 2.5% of the maximal row mean value. The diagram of the proposed procedure for height 

163 measurement is shown in Figure 8. 
 

164 Plant height measurement for time series of images 

165     In this section, we propose a refined height measurement procedure for a sequence of plant photos taken over time by borrowing 

166     information of plant locations across the time series of images. After conducting the above procedures for image segmentation, 

167     row cut and column cuts, we can systematically study the growth trend of each separated plant over time, and refine the column 

168       cuts algorithm that is solely based on one image by considering a sequence of images from the same row, as the camera 

169    positions are roughly kept fixed during the experiment. This can also help to remove the problematic images and images with 

170 overlapping rows of plants from which a clear separation of the plants in the front row is difficult. 
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Figure 8. Diagram of the height measurement algorithm. Top left panel: the segmented image for a single plant from the row 
cut and column cuts algorithms; bottom left panel: extracting the center part of the plant by thresholding (blue line) the column 
mean curve of the segmented image in the top left panel and identifying the left and right cuts (red lines); bottom right panel: 
the extracted center part (marked by two solid red lines) of the segmented image, and the height measurement by thresholding 
(blue line) the row mean curve of the center part of the segmented image; top right panel: the segmented image of a plant with 
the annotated height. 

 
 
 

171 Figure 9 shows a set of field photos from the same row of plants taken by the same camera over time. Notice that the 

172  location of those plants are roughly kept the same across different photos. However, we can not identify all the six plants from 

173        every photo due to technique issue of the camera (panels a and b where the plant on the most right side is outside of vision), 

174       strong wind (panel e where the second and third plants overlap with each other) or death of plants. Meanwhile, the row cut 

175     algorithm requires a separation between the first row and the second row of plants, so that the bottom peak of the row means are 

176  separable from other peaks; see Figure 6. When the plants in the first row overlap with the plants in the background, as shown 

177     in panel (f) of Figure 9, it is challenging to accurately measure plant heights by computer vision methods. The proposed method 

178   is designed for the earlier growth stage of plants in fields. Our algorithm of neural network is not able to separate the first row 

179 from the rest of rows if they are overlapping. We will discuss possible solutions for this problem in the discussion section. 
 

180 To deal with the aforementioned challenges of the dynamic photos of plant growth, we propose method to check quality 

181       of the images in order to obtain reliable plant height estimation. The algorithm includes four steps as follows. Firstly, the 

182     neural network segmentation model and the row cut algorithm are applied to every photo in the sequence, and the heights of the 

183      segmented first row from each image are computed. We apply change point detection methods (via changepoint R package) to 

184   identify jumps in the heights of the segmented rows from the sequence of images. As illustrated in the top left panel of Figure 

185       10, there is a clear jump in the row heights around July 21. This change point, denoted by the red vertical line, corresponds 

186       to the date when the front line of plants overlap with the plants in the background, and become inseparable. We focus on 
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(a) (b) (c) 

(d) (e) (f) 

Figure 9. A sequence of field photos from the same row of plants over the growth period. 
 
 
 
 
 

187     measuring the plant heights of the front row before the change point. Secondly, column cuts algorithm is implemented to count 

188      the number of plants in the front row for the segmented images from step one. The mode of these counts, denoted by m, is used 

189     as an estimate for the true number of plants in a given row over time. As six seeds are planted in each row in this experiment, 

190      the modes for most of the rows are six in the growth period. We only consider the images with the number of plants in the first 

191    row equal to its mode m. This is illustrated in the top right and bottom left panels of Figure 10, where m = 6 and the red points 

192       are the images with 6 identified plants over the time course. We compute the plant heights for those selected images for the 

193 time sequence of photos in the following steps. 
 
 

194 Given a row (camera), let n be the number of the selected images with m identified plants from the first two steps. In the 

195       third step, we refine the column cuts for each plant in a row by pooling information of plant locations from those selected n 

196    images. Let I(i, j) be the column peak index for the jth plant in the ith photo. The average column peak index for the jth plant 
 
 197 can be computed as Ī ( j) = n−1 ∑n I(i, j). Note that the camera might slightly shift horizontally, which affects the position of the 

p i=1 p 

198     column peaks over time in a given row. However, the distance between two adjacent peaks should hold the same. Therefore, it is 

199   reasonable to stabilize the column peak index for the jth plant in the ith photo as Î (i, j) = Ī ( j) + median (I(i, j)) − median (Ī ( j)), 

200     where the term median (I(i, j)) − median (Ī ( j)) adjusts the horizontal shift of the camera. The separation for each plant can 

201        be made at the average index of two adjacent peaks, as discussed in the “Column cuts” section. The red solid lines and blue 

202        dashed lines in the bottom right panel of Figure 10 show the stabilized column peaks and column cuts, respectively. Finally, 

203       given each separated plants, we calculate their heights as discussed in the previous section. The measured heights for the six 

204 plants in Figure 10 are shown in Panel (a) of Figure 11. 
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Figure 10. Refine the height measurements for a sequence of images. Top left panel: change point detection to identify the 
jump in the heights of the segmented rows, where the plants in the first row overlap with the background rows; top right panel: 
the number of identified plants in a given row over time, where 6 is the mode; bottom left: the selected images (marked as red) 
for the growth curve analysis, which have 6 identified plants before row overlapping; bottom right: refining the column cuts for 
each image by pooling information of plants location from other images in the same row over the growth period, where the red 
solid lines are the estimated center of each plant over time, and the blue dashed lines are the refined column cuts. 

 
 

205 Growth curves estimation 
 

206       Based on the extracted heights from the plant images, we can fit a growth curve for each plant by nonparametric regression 

207        (Fan and Gijbels, 1996; Wahba, 1990).  The red curves shown in Figure 11 are the smoothing spline fit for the plant heights. 

208       We can see that smoothing spline can capture the growth pattern well for most of the plants, however, it cannot ensure the 

209        non-decreasing property for the growth curve, as shown for plants 3 and 6 in panel (b) of Figure 11. To  fit a non-decreasing 

210       function for the plant growth, following Dette et al. (2006), we first apply a kernel based estimation to fit an unconstrained 

211       growth curve µ̂ (t). Then, we construct a density estimate using the estimated values µ̂ (i/N) for i = 1, . . . , N, where N is the 

212     total number of observations over time. It can be shown that integrating the density estimate from −∞ to t gives a consistent and 

213       non-decreasing estimator for µ−1(t) if µ(t) is a non-decreasing function. Thus, the estimator for µ(t) is also a non-decreasing 

214       function. The blue curves in Figure 11 are the fitted non-decreasing growth curves based on this method. We can see that the 

215    monotone fitting method solves the decreasing pattern of the estimated growth curve for plants 3 and 6 in panel (b) due to the 

216    high variation of measurements near the end points of this study. Meanwhile, the monotone fitting results are almost identical 

217 to the results by smoothing splines for other plants. 
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(a) Growth curves for the 6 plants in row A (b) Growth curves for the 6 plants in row B 

Figure 11. The fitted growth curve plots for each plant in two sets of images from two different rows. The points are the 
extracted plant heights from images; the red curves denote the classic penalized spline regression fit, where non-decreasing 
property is not guaranteed; the blue curves denote the non-decreasing fit we apply in this paper. 

 
 

218 Results 
 
 

(a) The proposed method (b) Amazon turk measurements 

Figure 12. Visual comparison between our method and Amazon Turks measurements. 
 

219      In this section, we compare the plant heights computed by our proposed method to the crowdsourcing height measurements by 

220       Amazon Turk workers. Figure 12 gives one example of these two measurements. The annotated image in panel (a) illustrates 

221    the heights obtained by the proposed method, where the red horizontal and vertical lines denote the row and column cuts, and 

222     the green vertical lines draws the heights at the center of each plant. Panel (b) in Figure 12 gives the bounding boxes for each of 

223     the plants draw by paid Amazon Turks, where the height is calculated as the difference between the top and bottom edges of the 

224      bounding box. It is clear to see that several of those bounding boxes are much higher than the plant, and some of them do not 

225      cover the entire plant. This happens frequently in the crowdsourcing results. The measurements based on Amazon Turks may 

226 lead to inaccurate and over-estimated plant heights. 

227 In panel (a) of Figure 13, we plot a sequence of crowdsourcing height measurements for the 2nd plant (from left to right) in 

he
ig

ht
 

he
ig

ht
 

80
 1

20
 1

60
 

20
0 

50
 1

00
 1

50
 2

00
 2

50
 

he
ig

ht
 

he
ig

ht
 

50
 1

00
 1

50
 

20
0 

10
0 

15
0 

20
0 

25
0 

he
ig

ht
 

he
ig

ht
 

50
 1

00
 1

50
 

20
0 

50
 1

00
 1

50
 2

00
 

he
ig

ht
 

he
ig

ht
 

40
 6

0 
80

 1
00

 
14

0 
40

 6
0 

80
 1

00
 1

40
 

he
ig

ht
 

he
ig

ht
 

40
 6

0 
80

 1
00

 1
20

 1
40

 
20

   
 4

0 
  6

0 
  

80
 

12
0 

he
ig

ht
 

he
ig

ht
 

40
   

  6
0 

  
80

   
10

0 
14

0 
40

   
60

   
80

 
12

0 
16

0 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289769doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289769
http://creativecommons.org/licenses/by-nc-nd/4.0/


14/18

 

 

228        Figure 12.  From Figure 13, we can see high variability of the crowdsourcing measurements, where each image is annotated 

229       by three Amazon Turk workers. Panels (b) and (c) in Figure 13 respectively show the average height for each image over 

230       the three workers and the heights automatically calculated by the proposed method. Compared with panel (c), we can see 

231       that the Amazon Turks provide a less robust results with higher variation, even after averaging the repeated measures from 

232       different workers. The proposed method can provide better measurements for plant traits due to the accurate segmentation 

233       of plants by the neural network model. Panel (d) in Figure 13 provides a comparison for the two methods on plant height, 

234       where the red dashed line denotes the 45 degree line, and the red solid line is the linear regression fitted line. We can see that 

235     the results produced by the proposed method and Amazon Turk have a high correlation with R2 = 0.8119. But, our method 

236     consistently provides relatively smaller measurements for heights, as the bounding boxes tend to over-estimate the plant heights 

237 as illustrated in Figure 12. 
 
 

(a) Amazon Turk (b) Amazon Turk Average 
 

Jun 28    Jul 03     Jul 08     Jul 13    Jul 18 Jun 28 Jul 03 Jul 08 Jul 13 Jul 18 
 

time time 
 
 

(c) Auto−measured (d) Correlation 
 
 
 
 
 
 
 

Jun 28    Jul 03     Jul 08     Jul 13    Jul 18 100 150 200 250 
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Figure 13. Comparison of height measurements (for one example plant) between the proposed method and Amazon Turks 
(crowdsourcing). Panel (a): crowdsourcing measured heights with each image annotated by 3 workers; (b) average heights 
from Amazon Turks with the fitted growth curve; (c) heights calculated by the proposed method with the fitted growth curve; 
(d) The scatter plot of heights measured by the proposed method versus Amazon Turk averages. 

 

238 To further illustrate the proposed method lead to a more stable estimation for the growth curve, we compare the sum of 

239      square error (SSE) of the fitted curves of plant height between the proposed method and the crowdsourcing measurements. We 

240       calculate the ratios of the SSE from the crowdsourcing heights over that from the proposed method. The boxplots of the SSE 

241       ratios are presented in Figure 14, where panels (a) and (b) give the SSE ratios for 10 cameras (rows) and six plant positions, 

242    respectively. We can see that the proposed method provide a smaller SSE on average for each camera and each plant position, 
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243 as most of the ratios are higher than 1. 
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Figure 14. The SSE ratio of height measurements (for 10 cameras 6 plants) of Amazon Turks over the proposed method: 
(a) the boxplot of SSE ratios for 10 randomly select cameras; (b) the boxplot of SSE ratios for the six plant positions. 

 
 
 

244 Discussion 
 

245     This paper provides a self-supervised method to separate plants from background for field images and a computation pipeline to 

246     extract plant features from the segmented images. Self-supervised learning is advantageous for high-throughput phenotyping as 

247       no human-labelling is needed to construct supervisory training data. This makes the proposed method easy to implement and 

248     broadens its application in plant phenotyping. The idea of transform learning that uses greenhouse images to learn field images 

249        can be applied in various feature extraction problems.  As many plant features, including height and number of leaves, have 

250        been extracted from greenhouse plant images (Miao et al., 2019), we can generate pseudo field images based on greenhouse 

251       images with their extracted plant features, and build machine learning models on those pseudo images to measure plant traits 

252 for field phenotyping facilities. 

253 As shown in Figure 10, the proposed method works for early stages of plant growth, where the first row in the images does 

254      not overlap with plants in background. Self-supervised learning methods can also be developed to separate the first row from 

255     the background plants if they overlap. This can be achieved in a two-step procedure. In the first step, the proposed segmentation 

256      method is applied to segment all plants from background. Training data of plant pixels from the first row and the background 

257     rows can be automatically formed from the images where the first row is separable. In the second step, using the training data, a 

258      CNN model can be constructed based on the pixel intensities from a small neighborhood of each pixel. This idea is to use plant 

259 images in early growth stages to form self-supervisory for separation of plants in late growth stages. 

260 The proposed functional curve smoothing method is applied on each individual plant over time. Functional data analysis for 

261     genotype and treatment effects on plant growth can be conducted based on the fitted values from the non-decreasing functional 

262 curve. The “implant” package (Wang et al., 2020) can be applied on the smoothed plant traits for this purpose. 
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