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ABSTRACT 

Identifying biomarkers predictive of cancer cells’ response to drug treatment constitutes 

one of the main challenges in precision oncology. Recent large-scale cancer 

pharmacogenomic studies have boosted the research for finding predictive biomarkers 

by profiling thousands of human cancer cell lines at the molecular level and screening 

them with hundreds of approved drugs and experimental chemical compounds. Many 

studies have leveraged these data to build predictive models of response using various 

statistical and machine learning methods. However, a common challenge in these 

methods is the lack of interpretability as to how they make the predictions and which 

features were the most associated with response, hindering the clinical translation of 

these models. To alleviate this issue, we develop a new machine learning pipeline 

based on the recent LOBICO approach that explores the space of bimodally expressed 

genes in multiple large in vitro pharmacogenomic studies and builds multivariate, 

nonlinear, yet interpretable logic-based models predictive of drug response. Using our 

method, we used a compendium of three of the largest pharmacogenomic data sets to 

build robust and interpretable models for 101 drugs that span 17 drug classes with high 

validation rate in independent datasets.   
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INTRODUCTION 

Identifying reliable predictive biomarkers of drug response is a key step in the era of 

personalized medicine. Large scale cancer pharmacogenomic studies have boosted the 

research for finding predictive biomarkers by profiling thousands of human cancer cell 

lines at the molecular level and screening them with hundreds of drugs1–5. Genomic 

features have been so far regarded as the state-of-the-art method for predicting 

patients' response to drugs in the clinic. However, it has been shown that most genomic 

biomarkers are found in small proportions of patients and within that subset, only a few 

have shown response to associated drugs6.  

 

Several studies have investigated alternative sources for predictive biomarkers of drug 

sensitivity in cancer pharmacogenomics7,8. These studies have shown that gene 

expression outperforms other molecular features such as mutations and copy-number-

variations (CNVs) in predicting drug response in human cancer cell lines7,8. Yet, a major 

criticism of gene expression as a source of predictive biomarkers is the lack of 

reproducibility due to dependency on profiling assays and batch effects. To overcome 

such limitations, several studies have focused their analyses on genes that have shown 

bimodal distribution of expression9–11. An advantage of a bimodal gene as a biomarker 

is that its modes can be used to robustly classify samples into two distinct expression 

states, allowing for easier interpretation and translation of the biomarker into the clinic. 

For example, estrogen receptor (ESR1) bimodal expression defines two biological 

states within breast cancer patients. These states have been used to stratify breast 

cancer patients into the clinically-relevant subtypes (ER +/-) and derive treatment 
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decisions. Another example in cancer genomics is the use of 73 bimodal genes within 

ovarian cancer to define molecular subtypes with distinct survival rate12. We also have 

shown that epithelial-to-mesenchymal transition (EMT) related genes were found to be 

bimodal pan-cancer and predictive of response to statin class of drugs13. 

 

Most pharmacogenomic studies that tackled the challenge of finding reliable predictive 

biomarkers for drug sensitivity employed univariate models for simplicity and 

interpretability1–3,14,15. However, such models do not account for dependencies between 

genes yielding suboptimal model predictions. Recent studies have applied more 

sophisticated machine learning techniques that capture dependencies between genes 

and produce more accurate biomarkers predictive of drug sensitivity7,16–18. However, it 

becomes hard to biologically interpret these predicted biomarkers due to the complexity 

of these models and how they define the dependencies between the genes. In this 

study, we developed a machine learning pipeline to explore the large space of bimodally 

expressed genes and build multivariate, nonlinear, yet interpretable logic-based models 

predictive of drug response in large in vitro pharmacogenomic studies (Fig 1A). 

Following our proposed approach, we developed robust and interpretable models 

predictive of drug sensitivity in a large set of more than 500 drugs that were validated 

and yielded high predictive rates (92% and 61% respectively) in two independent large 

test sets. 
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RESULTS 

Bimodality of gene expression 

To comprehensively explore the space of bimodal gene expression, we performed a 

genome-wide characterization of gene expression distribution in large sets of patient 

tumors and immortalized cancer cell lines. Utilizing the gene expression data from the 

Cancer Cell Line Encyclopedia (CCLE; 945 cell lines from 23 tissue types)15,19–21, we 

determined the expression bimodality of a given gene by fitting a mixture of two 

Gaussian distributions across all samples and then calculating the bimodality index 9 

(Fig 1B). We restricted this analysis to solid tumors as hematopoietic and lymphoid cell 

lines have distinctive molecular profiles and are generally more sensitive to chemical 

perturbations in comparison to solid tumors 4,5,22. Similarly, we computed the bimodality 

index for all genes using the gene expression of the solid tumors in The Cancer 

Genome Atlas (TCGA; 10534 tumors from 30 tissue types) 23. We subsequently 

selected the protein-coding genes that showed high bimodality index (> 80th percentile) 

in both cancer cell lines and patient tumors (2816 out of 21903 genes; Fig 1C). Pathway 

enrichment analysis revealed a significant association of bimodal genes with G protein-

coupled receptor signaling (GPCR) related pathways (Fig S1A), which are involved in 

the modulation of PI3K pathway, MAPK proteins, cAMP-dependent protein kinases, and 

cellular Ca2+24,25. Further characterization of these strongly bimodal genes revealed low 

redundancy (median: 0.03, IQR: 0.08) of their mRNA expression (Fig S1B). 
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Development of interpretable models predictive of drug sensitivity 

We implemented a machine learning approach based on logic-based models to identify 

reliable and interpretable biomarkers of sensitivity to different drugs. Logic-based 

models offer logic formulas using the ‘AND’, ‘OR’ and ‘NOT’ operators to build 

multivariate, nonlinear, yet interpretable predictive models. They overcome the 

limitations of univariate models that do not account for genes’ dependencies. To make 

such models broadly available, we developed RLOBICO, which is an R implementation 

of LOBICO method 26, to find binary rules that predict sensitivity of samples to different 

drugs. To reduce the feature space and consequently the modeling computational cost, 

we used the ensemble minimum redundancy, maximum relevance (mRMRe) feature 

selection strategy 27 (Fig 1A). The resulting models were represented as logic formulas 

including ≤ 10 genes to control the risk of overfitting and facilitate interpretation of the 

models. We assessed the predictive value of the logic models using the concordance 

index (CI; see Methods). 

 

To fit the logic-based models, we used the pharmacogenomic data from the Cancer 

Therapeutics Response Portal (CTRP) by the Broad Institute, which represents the 

largest set of drug response data publicly available to date (version 2, including 544 

drugs) 5,22, extracted from our PharmacoGx (version 1.14.0) 28. We excluded drugs for 

which less than 10% of tested cancer cell lines are sensitive (area above the drug dose-

response curve [AAC] ≥ 0.2). Based on our approach, we were able to build models 

yielding a concordance index greater than 0.6 in a 5-fold cross-validation setting for 

40% of the drugs in CTRPv2 (Fig 2A). The models cover a wide spectrum of drug 
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classes such as EGFR signaling inhibitors and RTK signaling inhibitors (Fig 2B) 

supporting the generalizability of the predictive value of bimodal genes. The top-

performing predictors include drugs targeting growth factor receptors such as EGFR, 

ERBB2 and VEGFR2. As mentioned earlier, the bimodal genes are enriched for several 

GPCR-related pathways. Transactivation of EGFR in cancer cell lines by GPCRs such 

as chemokine and angiotensin II receptors has been reported extensively29–31. 

Persistent transactivation of EGFR and ErbB2/HER2 by Protease-activated receptor-1 

(PAR1), a GPCR activated by extracellular proteases, has been shown to promote 

breast carcinoma cell invasion 32. In addition, a strong complex formation between 

VEGFR2, another major growth factor, and the GPCR β2-Adrenoceptor has been 

reported resulting in VEGFR2 activation33. Among our top-performing models, we found 

that higher expression of fibroblast growth factor-binding protein 1 (FGFBP1) was 

correlated with increased sensitivity to Erlotinib (Fig 2C). FGFBP1 is a secreted 

chaperone that helps release fibroblast-binding factors (FGFs), stored in the 

extracellular matrix, and presents them to their cognate receptors, thereby enhancing 

FGF signaling. FGFBP1 mediated carcinogenesis has been implicated in many studies 

34. According to Verbist et al. 35, FGFBP1 gene expression is downregulated by 

Erlotinib, resulting in decreased cell proliferation in cancer. These studies support our 

findings that high expression of FGFBP1 might be imparting sensitivity to Erlotinib via 

the inhibition of FGFBP1-FGF signaling axis. EGFR expression, a known biomarker for 

Erlotinib was excluded from our set of bimodal genes because its expression was not 

sufficiently bimodal in the TCGA cohort. Yet, we found a significant correlation between 

predictions based on rules that our method generated for Erlotinib and EGFR 
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expression (PCC: 0.34, P-value: 8.03E-18) suggesting that our method was able to find 

a surrogate mimicking EGFR association with Erlotinib response. Moreover, predictions 

based on our method had better association with Erlotinib response (PCC: 0.36, P-

value: 1.63E-20) than EGFR expression (PCC: 0.29, P-value: 2.17E-13). Another 

example of the top-performing models is that for Axitinib, (VEGFR inhibitor) in which low 

expression of G protein-coupled receptor, class C, group 5, member A (GPRC5A) was 

shown to be predictive of response (Fig 2C). GPRC5A, also known as Retinoic acid-

induced gene 3 (RAI3) has been shown to elicit tissue-specific oncogenic and tumor-

suppressive functions and is involved in the regulation of major cancer-related signaling 

pathways such as cAMP, NF-κB and STAT336–39. Besides STAT3 and NF-κB signaling, 

GPRC5A is reported to impact cell cycle genes such as FEN1, MCM2, CCND1 and 

UBE2C in lung adenocarcinoma40. Knockout of GPRC5A has been reported to reduce 

proliferation and migration ability of PaCa cell lines and suppress the chemotherapy 

drug resistance of gemcitabine, oxaliplatin, and fluorouracil in PaCa cells41. Knockdown 

of GPRC5A has also been found to negatively impact FAK/Src activation, and RhoA 

GTPase activity, the key mediators of VEGF signaling in cancer cell lines42–44. These 

findings support a possible mechanism for Axitinib sensitivity imparted by low 

expression of GPRC5A, via VEGF-activated signaling intermediates. All trained models 

(CI > 0.6) from CTRPv2 and their associated predictive rules are shared in the 

supplementary data (Supplementary File 1).  
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Validation of predictors 

Recognizing that large-scale pharmacogenomic studies employ complex, potentially 

noisy experimental protocols 19,45,46, it is crucial to validate the performance of our new 

predictors in fully independent datasets (using both independent genomic and 

pharmacological profiles of cancer cell lines 47) to assess their generalizability. We, 

therefore, validated our models on two large pancancer pharmacogenomic datasets, 

namely the Genentech Cell Line Screening Initiative14,46 (gCSI, released in 2018) and 

the Genomics of Drug Sensitivity in Cancer2,3 (GDSC2, released in 2019), both included 

in our PharmacoGx package28. Among all the models in common with gCSI, our models 

achieved 92.3% validation rate (CI > 0.6 for 13 out of 27 drugs in common with 

CTRPv2; Fig 3A). On GDSC2, our models achieved a validation rate of 61% (CI > 0.6 

for 16 out of 26 drugs in common with CTRPv2; Fig 3B).  

 

There were 7 out of 9 (78%) predictive models that were validated on both external 

datasets (Fig 3), strongly supporting the generalizability of the logic rules predictive of 

drug response. The logic model predictive of Erlotinib response described previously 

(Fig 2C) yielded high predictive value in both independent datasets (CI of 0.79 and 0.73 

in GDSC2 and gCSI, respectively). Dasatinib, whose predictive logic model was also 

validated in GDSC2 and gCSI, showed association to several genes including High 

Mobility Group AT-Hook 2 (HMGA2). HMGA2 is a member of the high motility group 

(HMG) protein family that binds to the DNA minor groove at sequences rich in A and T 

nucleotides, and acts as a transcriptional regulator. Apart from its role as a 

transcriptional co‐regulator, HMGA2 has been found to induce epithelial-to-
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mesenchymal transition in lung cancer48. HMGA2 also functions as a positive regulator 

of cell proliferation and its expression is implicated as a prospective diagnostic 

biomarker in the assessment of endometrial serous cancer49. According to Turkson J et 

al.50, nuclear Src and p300 associate with HMGA2 promoter and regulate its gene 

expression in PDAC patient samples. Src inhibition by Dasatinib might negatively 

impact HMGA2 mediated cell oncogenesis, resulting in sensitivity in cancers with high 

HMGA2 expression as predicted in our study. Among the other top-performing drugs, 

the sensitivity of Gefitinib, an EGFR inhibitor has been attributed to the expression of 

ARHGAP8, a gene implicated in EGFR-mediated ERK1/2 phosphorylation and 

oncogenesis51–53. The expression of other bimodal genes associated with lapatinib 

sensitivity such as MARVELD3 and EPN3 has been reported to promote migration and 

invasion of cancer cells54–56. 

 

Bimodality of gene expression outperforms genomics as a source of predictive 

biomarkers 

To test whether the gene expressions of the top bimodal genes compose a richer 

feature set for predicting drug response than other data types such as tissue of origin, 

mutation and copy-number-variation (CNV), we systematically analyzed all the data 

types by running them through the same computational pipeline used for bimodal 

genes. Our results indicate that the expression of bimodal genes significantly 

outperformed the other data types (mutations and CNVs) in 72% of the drugs (Fig 4 A 

and B). Tissue type of the sample was found to be the best model predicting sensitivity 

to 16% of the drugs suggesting a strong specificity of drug response57 (Fig 4D). 
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Dabrafenib, for example, is an inhibitor of BRAF serine-threonine kinase that was 

predicted by our model to show a high association with skin cancer (Fig 4D). This drug 

is indeed approved by FDA as a single agent for the treatment of patients with 

unresectable or metastatic melanoma with BRAF V600E58. We also found that 

predictions based on bimodal genes were different than predictions based on tissues 

(Fig 4C). Mutation and CNV features were found to be the best in predicting sensitivity 

in 11.2% of the drugs (Fig 4 E and F). An example of these drugs is Nutlin-3A, an 

MDM2 inhibitor that activates wild-type p53 mutation59,60. TP53 wild-type mutation was 

predicted by our approach to indicate sensitivity to Nutlin-3A (Fig 4E). This 

outperformance of expression data in comparison to other data types conforms with 

previous studies and community efforts that investigated the relevance of different data 

types to predict drug sensitivity and showed that gene expression has more rich 

information and predictive power than other data types7. These results also suggest that 

combining these different data types in a multi-omics model could improve the resultant 

predictors given the heterogeneity of the chosen feature sets we observed for different 

drugs (Fig 4A). 

 

Tissue-specific models 

Heterogeneity within cancer tissues constitutes another layer of complexity. We 

investigated whether bimodal genes within a specific tissue could generate a more 

accurate predictor of sensitivity for samples of that tissue type. Lung cancer was chosen 

as a case study, given the number of samples available in both CCLE and TCGA to 

extract reliable bimodal genes. We applied our pipeline to these samples and developed 
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logic-based models with minimum predictive value (CI > 0.6) for about 30% of drugs in 

CTRPv2. ABT-737, a selective inhibitor of BCL-2 that showed a therapeutic effect in 

lung cancer, was among the best performing models we found (CI = 0.78). We validated 

our predicted rules on an external dataset of lung cancer samples in GDSCv2 screened 

with ABT-737 (CI = 0.73). We then compared the lung-specific rules based on lung-

specific bimodality with pan-cancer rules in predicting drug response in lung samples. 

We compared the pancancer and tissue-specific models on lung samples in gCSI and 

GDSC2 and found that both features sets yielded similar associations with response 

(Fig 5). These results suggest that both sets of rules can be predictive of drug response 

and provide different levels of biomarker granularity.  

 

 

DISCUSSION 

Bimodality of gene expression represents an interesting phenomenon associated with 

several biological processes. One of the advantages of bimodal genes as a biomarker is 

that it can be used to robustly classify samples into two distinct expression states based 

on its modes, allowing for easier interpretation and translation of the biomarker into the 

clinic.  In this study, we showed that top bimodal genes are mostly associated with 

extracellular membrane pathways which have a downstream effect on important cancer-

related processes such as MEK and PI3K signaling. We introduced the largest 

comprehensive set of bimodal genes derived from a large panel of cancer cell lines 

tested against hundreds of drugs and patient data from TCGA. We found a high 

correlation between the bimodality scores of the corresponding genes within the cell line 
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and patient datasets (PCC: 0.695, p < 2.2e-16), which showcases the reliability of the 

chosen genes to be globally bimodal within cancer. We found a subset of genes that 

exhibited a bimodal distribution in one dataset but not the other probably due to 

differences in tissue distribution of samples, or to intrinsic transcriptional differences 

between the in vitro models and the patient tumors. 

 

Although the bimodality of expression provides multiple advantages in biomarker 

discovery, restricting the modeling to only bimodal genes filters out many known drug 

biomarkers because their expressions do not follow a bimodal distribution. EGFR 

expression, for example, is a known biomarker for Erlotinib. However, it is not bimodal 

in TCGA which excluded it from our set of bimodal genes that we used for training the 

models. Yet, we found a high concordance between predictions based on rules our 

method generated for Erlotinib and EGFR expression (PCC: 0.34, P-value: 8.03E-18) 

suggesting that our method was able to find a surrogate mimicking EGFR association 

with Erlotinib response. Moreover, predictions based on our method had better 

association with Erlotinib response (PCC: 0.36, P-value: 1.63E-20) than EGFR (PCC: 

0.29, P-value: 2.17E-13). Despite the constraint on the number of bimodal genes we 

use, we have shown that this set of features along with our novel method of applying 

logic-based models were able to predict sensitivity to 101 drugs from 17 different drug 

classes suggesting global utility of these features (Fig 2B).  

 

We also showed that bimodal genes outperformed other data types, mutations and copy 

number variations, in predicting sensitivity to different drugs. An interesting follow-up to 
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this analysis would be to investigate the complementary effect of merging these data 

types in building more accurate models. Challenges that we anticipate are the 

availability of data types across datasets, data normalization and computational 

complexity to query the larger search space for candidate rules.  

 

Finally, investigating the bimodality as a source for biomarkers within tissues showed 

promising results that suggest a more in-depth association within tissue-specific cancer 

subtypes that would not be captured in pan-cancer studies. This variation in defining 

bimodal genes is mostly due to the difference in the distributions of genes within tissues 

and across different cancer types. A challenge that we anticipate is the lack of sufficient 

samples within different tissue types to generate a reliable and robust set of bimodal 

genes within each tissue type. 

 

CONCLUSION 

Finding reliable and interpretable biomarkers that can predict patients’ response to 

drugs remains a formidable challenge. We showed that bimodally expressed genes 

represent an interesting subset of features for biomarker discovery and that they cover 

important cancer-associated pathways. Our results, utilizing logic-based models to 

generate rules that predict sensitivity to drugs, show that we can predict biomarkers 

based on bimodal genes with high accuracy and validation rate across datasets. These 

bimodal predictive biomarkers have a high potential of clinical translatability given the 

clear separation they provide between patient cohorts who would and would not benefit 
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from different drugs, and the practicality of measuring few genes for treatment planning

using various low-throughput assays instead of whole-genome sequencing. 

 

METHODS 

Datasets 

CCLE, CTRPv2, gCSI, GDSC and TCGA were all processed using the same pipeline

utilizing the PharmacoGx R package pipeline. Gene expression profiles were generated

using Kallisto pipeline61 with GRCh38 as human reference. 

 

Bimodality of gene expression profiles 

Gene expression profiles, obtained from CCLE dataset, were used to characterize the

bimodality feature of each gene in the set by fitting its distribution into a mixture of two

Gaussian distributions. For those genes with a good fit, a bimodality score was

calculated using the following formula: 

 

 

 

where  is the proportion of samples in one group, μ1 and μ2 are the means of the

expression level of the two modes; and 1 and 2 are the variances. Similar

characterization was done using TCGA dataset. Genes, then, were ranked according to

their bimodality scores and the common protein-coding genes in the top 80th percentile
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of bimodality scores distribution in both CCLE and TCGA were chosen as top bimodal 

genes feature set. A binarization cutoff for each gene distinguishing relatively low vs 

high expression was calculated by taking the average point between the modes of the 

two fitted gaussian distributions.  

 

Logic-based models  

Logic-based models are machine learning models aiming at constructing boolean logic 

functions that model the relationship between a binary set of features and a class label. 

Interpretability of the modeled associations is a key advantage of these types of models 

in comparison to other traditional machine learning models, which is an important 

feature for clinical translation of biomarkers. We developed RLOBICO, which is an R 

implementation of LOBICO method 26, to find binary rules that predict sensitivity of 

samples to different drugs. Our proposed pipeline starts with a binarized expression 

matrix followed by a feature selection method (mRMRe) to choose highly relevant and 

complementary features that are then fed into RLOBICO to search the space of 

possible rules and associate these rules with a drug effect.  

 

For each drug, we create a binarized expression matrix based on top bimodal genes 

features’ set and represent the effect of the drug on samples using the area above the 

dose-response curve (AAC) metric. LOBICO requires binarizing the effect of the drug 

and so we chose AAC of 0.262 as a threshold classifying samples to be either resistant 

(AAC < 0.2) or sensitive (AAC > 0.2) to each drug. However, the continuous values of 

AACs are still used as weights to optimize the modeling step such that a higher penalty 
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would be incurred if a highly sensitive sample was misclassified as resistant. Generated 

rules by LOBICO are described using the disjunctive normal form, which is a standard 

notation to express logic functions. The disjunctive normal form is parameterized by two 

parameters: K, the number of disjuncts, and M, the number of terms per disjunct. We 

varied K and M to represent models of different complexities, i.e. from single predictors 

(K=1,M=1) to more complex models [(K, M): (1,2), (1,3), (1,4), (2,2), (2,1), (3,1), (4,1)]. 

We use mRMRe to limit the search space of all possible logical combinations of 

features to the top ten highly relevant and complementary features to control the risk of 

overfitting and facilitate interpretation of the model. We then apply RLOBICO to find the 

best rule predicting sensitivity of samples to drugs. Finally, to achieve more robust 

results, we create an ensemble rule based on a majority vote from rules generated by 

three different mRMRe features sets followed by RLOBICO. For evaluation of models, 

we use a modified version of the concordance index (CI) 

[https://github.com/bhklab/wCI]. This modification accounts for noise in the drug 

screening assays as we found that repeating the same drug-cell line experiment in 

CTRPv2 resulted in inconsistencies in terms of measured drug response (AAC). We 

further investigated this observation and found that 95% of the replicates of the same 

drug and cell line experiments showed differences (Δ AAC = | AACreplicate1 - AACreplicate2 

|) within 0.2 range (Fig S2). Hence, we remove the pairs of AACs that have Δ AAC < 0.2 

from the calculation of the regular CI as they can flip directions within that range 

randomly. 
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Research reproducibility 

CCLE, CTRPv2, gCSI and GDSC2 can be downloaded using PharmacoGx R 

package28. Code to reproduce the results and figures is available at 

https://github.com/bhklab/Gene_Expression_Bimodality. RLOBICO R package was 

used to generate the logic-based models (https://github.com/bhklab/RLOBICO). 
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Figure Legends 
 
Fig 1: (a) An overview of the pipeline to create logic predictors of drug response. (b) 
Distribution of bimodality index scores (BIs) for all genes based on RNAseq gene 
expression profiles of cell lines in CCLE. (c) Distribution of BI scores across CCLE and 
TCGA. Genes showing high bimodality (>80thpercentile) in both data sets are chosen 
as global bimodal genes 
 

Fig 2: (a) Performance of developed logical models on the training data set for each drug in 
CTRPv2. Red-dashed line represent cutoff for good and bad models. (b) Distribution of 
good (CI>0.6; dark color) and bad (CI<=0.6; light color) models (outer ring) for each drug 
class in CTRPv2 and distribution of drug classes in CTRPv2 (inner ring). (c) Examples of 
top performing trained logical models along with the rules predicted to assess sensitivity to 
the respective drugs 
 

Fig 3: Validating developed logic models on external datasets; (a) gCSI, (b) GDSCv2. 
Red colored drugs are common between gCSI and GDSCv2. 
 

Fig 4: (a) Distribution of best models across data types. (b) Statistical comparison between 
models across data types. p-values are based on Wilcoxon signed-rank test. (c) 
Comparison between RNAseq-based predictions and Tissue-based predictions (median: 
0.11, IQR: 0,09). (d,e,f) Comparing RNAseq based models with: (d) Tissues, (e) Mutation, 
(f) CNV. color indicates best models across all data types. 
 
 
Fig 5: Comparing lung-specific rules vs pan-cancer rules in predicting drug response 
within lung samples in: (a) gCSI, and (b) GDSCv2. 
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Fig S1: (a) Pathways enriched with the set of bimodal genes. (b) Pairwise correlation 
between all global bimodal genes using Matthews correlation coefficients. (c) correlation 
between all global bimodal genes and tissues. 
 
 
Fig S2: Difference in drug response (AAC) for the same drug-cell line experiments in 
CTRPv2. 
 
 
Supplementary File 1: All models that yielded CI > 0.6 on CTRPv2 data 
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