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ABSTRACT

Identifying biomarkers predictive of cancer cells’ response to drug treatment constitutes
one of the main challenges in precision oncology. Recent large-scale cancer
pharmacogenomic studies have boosted the research for finding predictive biomarkers
by profiling thousands of human cancer cell lines at the molecular level and screening
them with hundreds of approved drugs and experimental chemical compounds. Many
studies have leveraged these data to build predictive models of response using various
statistical and machine learning methods. However, a common challenge in these
methods is the lack of interpretability as to how they make the predictions and which
features were the most associated with response, hindering the clinical translation of
these models. To alleviate this issue, we develop a new machine learning pipeline
based on the recent LOBICO approach that explores the space of bimodally expressed
genes in multiple large in vitro pharmacogenomic studies and builds multivariate,
nonlinear, yet interpretable logic-based models predictive of drug response. Using our
method, we used a compendium of three of the largest pharmacogenomic data sets to
build robust and interpretable models for 101 drugs that span 17 drug classes with high

validation rate in independent datasets.
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INTRODUCTION

Identifying reliable predictive biomarkers of drug response is a key step in the era of
personalized medicine. Large scale cancer pharmacogenomic studies have boosted the
research for finding predictive biomarkers by profiling thousands of human cancer cell
lines at the molecular level and screening them with hundreds of drugs'™. Genomic
features have been so far regarded as the state-of-the-art method for predicting
patients' response to drugs in the clinic. However, it has been shown that most genomic
biomarkers are found in small proportions of patients and within that subset, only a few

have shown response to associated drugs®.

Several studies have investigated alternative sources for predictive biomarkers of drug
sensitivity in cancer pharmacogenomics’®. These studies have shown that gene
expression outperforms other molecular features such as mutations and copy-number-
variations (CNVSs) in predicting drug response in human cancer cell lines”®. Yet, a major
criticism of gene expression as a source of predictive biomarkers is the lack of
reproducibility due to dependency on profiling assays and batch effects. To overcome
such limitations, several studies have focused their analyses on genes that have shown
bimodal distribution of expression®™*'. An advantage of a bimodal gene as a biomarker
is that its modes can be used to robustly classify samples into two distinct expression
states, allowing for easier interpretation and translation of the biomarker into the clinic.
For example, estrogen receptor (ESR1) bimodal expression defines two biological
states within breast cancer patients. These states have been used to stratify breast

cancer patients into the clinically-relevant subtypes (ER +/-) and derive treatment
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decisions. Another example in cancer genomics is the use of 73 bimodal genes within
ovarian cancer to define molecular subtypes with distinct survival rate'’. We also have
shown that epithelial-to-mesenchymal transition (EMT) related genes were found to be

bimodal pan-cancer and predictive of response to statin class of drugs™.

Most pharmacogenomic studies that tackled the challenge of finding reliable predictive
biomarkers for drug sensitivity employed univariate models for simplicity and
interpretability***'°. However, such models do not account for dependencies between
genes yielding suboptimal model predictions. Recent studies have applied more
sophisticated machine learning techniques that capture dependencies between genes
and produce more accurate biomarkers predictive of drug sensitivity”*®™8. However, it
becomes hard to biologically interpret these predicted biomarkers due to the complexity
of these models and how they define the dependencies between the genes. In this
study, we developed a machine learning pipeline to explore the large space of bimodally
expressed genes and build multivariate, nonlinear, yet interpretable logic-based models
predictive of drug response in large in vitro pharmacogenomic studies (Fig 1A).
Following our proposed approach, we developed robust and interpretable models
predictive of drug sensitivity in a large set of more than 500 drugs that were validated
and yielded high predictive rates (92% and 61% respectively) in two independent large

test sets.
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RESULTS

Bimodality of gene expression

To comprehensively explore the space of bimodal gene expression, we performed a
genome-wide characterization of gene expression distribution in large sets of patient
tumors and immortalized cancer cell lines. Utilizing the gene expression data from the

15,19—21, we

Cancer Cell Line Encyclopedia (CCLE; 945 cell lines from 23 tissue types)
determined the expression bimodality of a given gene by fitting a mixture of two
Gaussian distributions across all samples and then calculating the bimodality index °
(Fig 1B). We restricted this analysis to solid tumors as hematopoietic and lymphoid cell
lines have distinctive molecular profiles and are generally more sensitive to chemical
perturbations in comparison to solid tumors **%. Similarly, we computed the bimodality
index for all genes using the gene expression of the solid tumors in The Cancer
Genome Atlas (TCGA; 10534 tumors from 30 tissue types) 2. We subsequently
selected the protein-coding genes that showed high bimodality index (> 80th percentile)
in both cancer cell lines and patient tumors (2816 out of 21903 genes; Fig 1C). Pathway
enrichment analysis revealed a significant association of bimodal genes with G protein-
coupled receptor signaling (GPCR) related pathways (Fig S1A), which are involved in
the modulation of PI3K pathway, MAPK proteins, CAMP-dependent protein kinases, and

cellular Ca2+%*?>. Further characterization of these strongly bimodal genes revealed low

redundancy (median: 0.03, IQR: 0.08) of their mRNA expression (Fig S1B).
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Development of interpretable models predictive of drug sensitivity

We implemented a machine learning approach based on logic-based models to identify
reliable and interpretable biomarkers of sensitivity to different drugs. Logic-based
models offer logic formulas using the ‘AND’, ‘OR’ and ‘NOT’ operators to build
multivariate, nonlinear, yet interpretable predictive models. They overcome the
limitations of univariate models that do not account for genes’ dependencies. To make
such models broadly available, we developed RLOBICO, which is an R implementation
of LOBICO method ?°, to find binary rules that predict sensitivity of samples to different
drugs. To reduce the feature space and consequently the modeling computational cost,
we used the ensemble minimum redundancy, maximum relevance (mMRMRe) feature
selection strategy 2’ (Fig 1A). The resulting models were represented as logic formulas
including < 10 genes to control the risk of overfitting and facilitate interpretation of the
models. We assessed the predictive value of the logic models using the concordance

index (CI; see Methods).

To fit the logic-based models, we used the pharmacogenomic data from the Cancer
Therapeutics Response Portal (CTRP) by the Broad Institute, which represents the
largest set of drug response data publicly available to date (version 2, including 544

22 extracted from our PharmacoGx (version 1.14.0) 2. We excluded drugs for

drugs)
which less than 10% of tested cancer cell lines are sensitive (area above the drug dose-
response curve [AAC] = 0.2). Based on our approach, we were able to build models

yielding a concordance index greater than 0.6 in a 5-fold cross-validation setting for

40% of the drugs in CTRPv2 (Fig 2A). The models cover a wide spectrum of drug
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classes such as EGFR signaling inhibitors and RTK signaling inhibitors (Fig 2B)
supporting the generalizability of the predictive value of bimodal genes. The top-
performing predictors include drugs targeting growth factor receptors such as EGFR,
ERBB2 and VEGFR2. As mentioned earlier, the bimodal genes are enriched for several
GPCR-related pathways. Transactivation of EGFR in cancer cell lines by GPCRs such
as chemokine and angiotensin Il receptors has been reported extensively?®™!.
Persistent transactivation of EGFR and ErbB2/HER2 by Protease-activated receptor-1
(PAR1), a GPCR activated by extracellular proteases, has been shown to promote

breast carcinoma cell invasion *2

. In addition, a strong complex formation between
VEGFR2, another major growth factor, and the GPCR (2-Adrenoceptor has been
reported resulting in VEGFR2 activation®*. Among our top-performing models, we found
that higher expression of fibroblast growth factor-binding protein 1 (FGFBP1) was
correlated with increased sensitivity to Erlotinib (Fig 2C). FGFBP1 is a secreted
chaperone that helps release fibroblast-binding factors (FGFs), stored in the
extracellular matrix, and presents them to their cognate receptors, thereby enhancing
FGF signaling. FGFBP1 mediated carcinogenesis has been implicated in many studies

3 According to Verbist et al. *°

, FGFBP1 gene expression is downregulated by
Erlotinib, resulting in decreased cell proliferation in cancer. These studies support our
findings that high expression of FGFBP1 might be imparting sensitivity to Erlotinib via
the inhibition of FGFBP1-FGF signaling axis. EGFR expression, a known biomarker for
Erlotinib was excluded from our set of bimodal genes because its expression was not

sufficiently bimodal in the TCGA cohort. Yet, we found a significant correlation between

predictions based on rules that our method generated for Erlotinib and EGFR
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expression (PCC: 0.34, P-value: 8.03E-18) suggesting that our method was able to find
a surrogate mimicking EGFR association with Erlotinib response. Moreover, predictions
based on our method had better association with Erlotinib response (PCC: 0.36, P-
value: 1.63E-20) than EGFR expression (PCC: 0.29, P-value: 2.17E-13). Another
example of the top-performing models is that for Axitinib, (VEGFR inhibitor) in which low
expression of G protein-coupled receptor, class C, group 5, member A (GPRC5A) was
shown to be predictive of response (Fig 2C). GPRC5A, also known as Retinoic acid-
induced gene 3 (RAI3) has been shown to elicit tissue-specific oncogenic and tumor-
suppressive functions and is involved in the regulation of major cancer-related signaling
pathways such as cAMP, NF-kB and STAT3*°. Besides STAT3 and NF-kB signaling,
GPRCH5A is reported to impact cell cycle genes such as FEN1, MCM2, CCND1 and
UBE2C in lung adenocarcinoma®. Knockout of GPRC5A has been reported to reduce
proliferation and migration ability of PaCa cell lines and suppress the chemotherapy
drug resistance of gemcitabine, oxaliplatin, and fluorouracil in PaCa cells**. Knockdown
of GPRC5A has also been found to negatively impact FAK/Src activation, and RhoA
GTPase activity, the key mediators of VEGF signaling in cancer cell lines**™**. These
findings support a possible mechanism for Axitinib sensitivity imparted by low
expression of GPRC5A, via VEGF-activated signaling intermediates. All trained models
(Cl > 0.6) from CTRPv2 and their associated predictive rules are shared in the

supplementary data (Supplementary File 1).
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Validation of predictors
Recognizing that large-scale pharmacogenomic studies employ complex, potentially

noisy experimental protocols *%4°4°

, it is crucial to validate the performance of our new
predictors in fully independent datasets (using both independent genomic and
pharmacological profiles of cancer cell lines *’) to assess their generalizability. We,
therefore, validated our models on two large pancancer pharmacogenomic datasets,
namely the Genentech Cell Line Screening Initiative'**® (gCSlI, released in 2018) and
the Genomics of Drug Sensitivity in Cancer®® (GDSC2, released in 2019), both included
in our PharmacoGx package®. Among all the models in common with gCSlI, our models
achieved 92.3% validation rate (CI > 0.6 for 13 out of 27 drugs in common with

CTRPVZ2; Fig 3A). On GDSC2, our models achieved a validation rate of 61% (Cl > 0.6

for 16 out of 26 drugs in common with CTRPVvZ2; Fig 3B).

There were 7 out of 9 (78%) predictive models that were validated on both external
datasets (Fig 3), strongly supporting the generalizability of the logic rules predictive of
drug response. The logic model predictive of Erlotinib response described previously
(Fig 2C) yielded high predictive value in both independent datasets (Cl of 0.79 and 0.73
in GDSC2 and gCSl, respectively). Dasatinib, whose predictive logic model was also
validated in GDSC2 and gCSl, showed association to several genes including High
Mobility Group AT-Hook 2 (HMGAZ2). HMGAZ2 is a member of the high motility group
(HMG) protein family that binds to the DNA minor groove at sequences richin Aand T
nucleotides, and acts as a transcriptional regulator. Apart from its role as a

transcriptional co-regulator, HMGA2 has been found to induce epithelial-to-


https://doi.org/10.1101/2020.09.08.288688
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.288688; this version posted September 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

mesenchymal transition in lung cancer®®. HMGAZ2 also functions as a positive regulator
of cell proliferation and its expression is implicated as a prospective diagnostic
biomarker in the assessment of endometrial serous cancer*. According to Turkson J et
al.*®, nuclear Src and p300 associate with HMGA2 promoter and regulate its gene
expression in PDAC patient samples. Src inhibition by Dasatinib might negatively
impact HMGA2 mediated cell oncogenesis, resulting in sensitivity in cancers with high
HMGAZ2 expression as predicted in our study. Among the other top-performing drugs,
the sensitivity of Gefitinib, an EGFR inhibitor has been attributed to the expression of
ARHGAPS8, a gene implicated in EGFR-mediated ERK1/2 phosphorylation and
oncogenesis® 3. The expression of other bimodal genes associated with lapatinib
sensitivity such as MARVELD3 and EPN3 has been reported to promote migration and

invasion of cancer cells®>°.

Bimodality of gene expression outperforms genomics as a source of predictive
biomarkers

To test whether the gene expressions of the top bimodal genes compose a richer
feature set for predicting drug response than other data types such as tissue of origin,
mutation and copy-number-variation (CNV), we systematically analyzed all the data
types by running them through the same computational pipeline used for bimodal
genes. Our results indicate that the expression of bimodal genes significantly
outperformed the other data types (mutations and CNVs) in 72% of the drugs (Fig 4 A
and B). Tissue type of the sample was found to be the best model predicting sensitivity

to 16% of the drugs suggesting a strong specificity of drug response®’ (Fig 4D).
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Dabrafenib, for example, is an inhibitor of BRAF serine-threonine kinase that was
predicted by our model to show a high association with skin cancer (Fig 4D). This drug
is indeed approved by FDA as a single agent for the treatment of patients with
unresectable or metastatic melanoma with BRAF V600E>®. We also found that
predictions based on bimodal genes were different than predictions based on tissues
(Fig 4C). Mutation and CNV features were found to be the best in predicting sensitivity
in 11.2% of the drugs (Fig 4 E and F). An example of these drugs is Nutlin-3A, an
MDM?2 inhibitor that activates wild-type p53 mutation®*°°. TP53 wild-type mutation was
predicted by our approach to indicate sensitivity to Nutlin-3A (Fig 4E). This
outperformance of expression data in comparison to other data types conforms with
previous studies and community efforts that investigated the relevance of different data
types to predict drug sensitivity and showed that gene expression has more rich
information and predictive power than other data types’. These results also suggest that
combining these different data types in a multi-omics model could improve the resultant
predictors given the heterogeneity of the chosen feature sets we observed for different

drugs (Fig 4A).

Tissue-specific models

Heterogeneity within cancer tissues constitutes another layer of complexity. We
investigated whether bimodal genes within a specific tissue could generate a more
accurate predictor of sensitivity for samples of that tissue type. Lung cancer was chosen
as a case study, given the number of samples available in both CCLE and TCGA to

extract reliable bimodal genes. We applied our pipeline to these samples and developed
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logic-based models with minimum predictive value (Cl > 0.6) for about 30% of drugs in
CTRPv2. ABT-737, a selective inhibitor of BCL-2 that showed a therapeutic effect in
lung cancer, was among the best performing models we found (CI = 0.78). We validated
our predicted rules on an external dataset of lung cancer samples in GDSCv2 screened
with ABT-737 (Cl = 0.73). We then compared the lung-specific rules based on lung-
specific bimodality with pan-cancer rules in predicting drug response in lung samples.
We compared the pancancer and tissue-specific models on lung samples in gCSI and
GDSC2 and found that both features sets yielded similar associations with response
(Fig 5). These results suggest that both sets of rules can be predictive of drug response

and provide different levels of biomarker granularity.

DISCUSSION

Bimodality of gene expression represents an interesting phenomenon associated with
several biological processes. One of the advantages of bimodal genes as a biomarker is
that it can be used to robustly classify samples into two distinct expression states based
on its modes, allowing for easier interpretation and translation of the biomarker into the
clinic. In this study, we showed that top bimodal genes are mostly associated with
extracellular membrane pathways which have a downstream effect on important cancer-
related processes such as MEK and PI3K signaling. We introduced the largest
comprehensive set of bimodal genes derived from a large panel of cancer cell lines
tested against hundreds of drugs and patient data from TCGA. We found a high

correlation between the bimodality scores of the corresponding genes within the cell line
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and patient datasets (PCC: 0.695, p < 2.2e-16), which showcases the reliability of the
chosen genes to be globally bimodal within cancer. We found a subset of genes that
exhibited a bimodal distribution in one dataset but not the other probably due to
differences in tissue distribution of samples, or to intrinsic transcriptional differences

between the in vitro models and the patient tumors.

Although the bimodality of expression provides multiple advantages in biomarker
discovery, restricting the modeling to only bimodal genes filters out many known drug
biomarkers because their expressions do not follow a bimodal distribution. EGFR
expression, for example, is a known biomarker for Erlotinib. However, it is not bimodal
in TCGA which excluded it from our set of bimodal genes that we used for training the
models. Yet, we found a high concordance between predictions based on rules our
method generated for Erlotinib and EGFR expression (PCC: 0.34, P-value: 8.03E-18)
suggesting that our method was able to find a surrogate mimicking EGFR association
with Erlotinib response. Moreover, predictions based on our method had better
association with Erlotinib response (PCC: 0.36, P-value: 1.63E-20) than EGFR (PCC:
0.29, P-value: 2.17E-13). Despite the constraint on the number of bimodal genes we
use, we have shown that this set of features along with our novel method of applying
logic-based models were able to predict sensitivity to 101 drugs from 17 different drug

classes suggesting global utility of these features (Fig 2B).

We also showed that bimodal genes outperformed other data types, mutations and copy

number variations, in predicting sensitivity to different drugs. An interesting follow-up to
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this analysis would be to investigate the complementary effect of merging these data
types in building more accurate models. Challenges that we anticipate are the
availability of data types across datasets, data normalization and computational

complexity to query the larger search space for candidate rules.

Finally, investigating the bimodality as a source for biomarkers within tissues showed
promising results that suggest a more in-depth association within tissue-specific cancer
subtypes that would not be captured in pan-cancer studies. This variation in defining
bimodal genes is mostly due to the difference in the distributions of genes within tissues
and across different cancer types. A challenge that we anticipate is the lack of sufficient
samples within different tissue types to generate a reliable and robust set of bimodal

genes within each tissue type.

CONCLUSION

Finding reliable and interpretable biomarkers that can predict patients’ response to
drugs remains a formidable challenge. We showed that bimodally expressed genes
represent an interesting subset of features for biomarker discovery and that they cover
important cancer-associated pathways. Our results, utilizing logic-based models to
generate rules that predict sensitivity to drugs, show that we can predict biomarkers
based on bimodal genes with high accuracy and validation rate across datasets. These
bimodal predictive biomarkers have a high potential of clinical translatability given the

clear separation they provide between patient cohorts who would and would not benefit
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from different drugs, and the practicality of measuring few genes for treatment planning

using various low-throughput assays instead of whole-genome sequencing.

METHODS

Datasets
CCLE, CTRPv2, gCSl, GDSC and TCGA were all processed using the same pipeline
utilizing the PharmacoGx R package pipeline. Gene expression profiles were generated

using Kallisto pipeline® with GRCh38 as human reference.

Bimodality of gene expression profiles

Gene expression profiles, obtained from CCLE dataset, were used to characterize the
bimodality feature of each gene in the set by fitting its distribution into a mixture of two
Gaussian distributions. For those genes with a good fit, a bimodality score was

calculated using the following formula:

Bimodality score (BI) = m* 1 = ol

v+ Vv,
2

where is the proportion of samples in one group, y; and u, are the means of the
expression level of the two modes; and 1 and , are the variances. Similar
characterization was done using TCGA dataset. Genes, then, were ranked according to

their bimodality scores and the common protein-coding genes in the top 80th percentile
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of bimodality scores distribution in both CCLE and TCGA were chosen as top bimodal
genes feature set. A binarization cutoff for each gene distinguishing relatively low vs
high expression was calculated by taking the average point between the modes of the

two fitted gaussian distributions.

Logic-based models

Logic-based models are machine learning models aiming at constructing boolean logic
functions that model the relationship between a binary set of features and a class label.
Interpretability of the modeled associations is a key advantage of these types of models
in comparison to other traditional machine learning models, which is an important
feature for clinical translation of biomarkers. We developed RLOBICO, which is an R
implementation of LOBICO method ?°, to find binary rules that predict sensitivity of
samples to different drugs. Our proposed pipeline starts with a binarized expression
matrix followed by a feature selection method (MRMRe) to choose highly relevant and
complementary features that are then fed into RLOBICO to search the space of

possible rules and associate these rules with a drug effect.

For each drug, we create a binarized expression matrix based on top bimodal genes
features’ set and represent the effect of the drug on samples using the area above the
dose-response curve (AAC) metric. LOBICO requires binarizing the effect of the drug
and so we chose AAC of 0.2%? as a threshold classifying samples to be either resistant
(AAC < 0.2) or sensitive (AAC > 0.2) to each drug. However, the continuous values of

AACs are still used as weights to optimize the modeling step such that a higher penalty
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would be incurred if a highly sensitive sample was misclassified as resistant. Generated
rules by LOBICO are described using the disjunctive normal form, which is a standard
notation to express logic functions. The disjunctive normal form is parameterized by two
parameters: K, the number of disjuncts, and M, the number of terms per disjunct. We
varied K and M to represent models of different complexities, i.e. from single predictors
(K=1,M=1) to more complex models [(K, M): (1,2), (1,3), (1,4), (2,2), (2,1), (3,1), (4,1)].
We use mRMRe to limit the search space of all possible logical combinations of
features to the top ten highly relevant and complementary features to control the risk of
overfitting and facilitate interpretation of the model. We then apply RLOBICO to find the
best rule predicting sensitivity of samples to drugs. Finally, to achieve more robust
results, we create an ensemble rule based on a majority vote from rules generated by
three different mRMRe features sets followed by RLOBICO. For evaluation of models,
we use a modified version of  the concordance index (Ch
[https://github.com/bhklab/wCl]. This modification accounts for noise in the drug
screening assays as we found that repeating the same drug-cell line experiment in
CTRPV2 resulted in inconsistencies in terms of measured drug response (AAC). We
further investigated this observation and found that 95% of the replicates of the same
drug and cell line experiments showed differences (A AAC = | AACepiicate1 - AACrepiicate2
[) within 0.2 range (Fig S2). Hence, we remove the pairs of AACs that have A AAC < 0.2
from the calculation of the regular CI as they can flip directions within that range

randomly.
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Research reproducibility

CCLE, CTRPv2, gCSI and GDSC2 can be downloaded using PharmacoGx R
package?®®. Code to reproduce the results and figures is available at
https://github.com/bhklab/Gene_Expression_Bimodality. RLOBICO R package was

used to generate the logic-based models (https://github.com/bhklab/RLOBICO).
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Figure Legends

Fig 1: (a) An overview of the pipeline to create logic predictors of drug response. (b)
Distribution of bimodality index scores (BIs) for all genes based on RNAseq gene
expression profiles of cell lines in CCLE. (c) Distribution of Bl scores across CCLE and
TCGA. Genes showing high bimodality (>80thpercentile) in both data sets are chosen
as global bimodal genes

Fig 2: (a) Performance of developed logical models on the training data set for each drug in
CTRPv2. Red-dashed line represent cutoff for good and bad models. (b) Distribution of
good (CI>0.6; dark color) and bad (Cl<=0.6; light color) models (outer ring) for each drug
class in CTRPv2 and distribution of drug classes in CTRPv2 (inner ring). (c) Examples of
top performing trained logical models along with the rules predicted to assess sensitivity to
the respective drugs

Fig 3: Validating developed logic models on external datasets; (a) gCSl, (b) GDSCv2.
Red colored drugs are common between gCSI and GDSCv2.

Fig 4: (a) Distribution of best models across data types. (b) Statistical comparison between
models across data types. p-values are based on Wilcoxon signed-rank test. (c)
Comparison between RNAseq-based predictions and Tissue-based predictions (median:
0.11, IQR: 0,09). (d,e,f) Comparing RNAseq based models with: (d) Tissues, (e) Mutation,
(f) CNV. color indicates best models across all data types.

Fig 5: Comparing lung-specific rules vs pan-cancer rules in predicting drug response
within lung samples in: (a) gCSlI, and (b) GDSCv2.
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Fig S1: (a) Pathways enriched with the set of bimodal genes. (b) Pairwise correlation
between all global bimodal genes using Matthews correlation coefficients. (c) correlation
between all global bimodal genes and tissues.

Fig S2: Difference in drug response (AAC) for the same drug-cell line experiments in
CTRPv2.

Supplementary File 1: All models that yielded Cl > 0.6 on CTRPv2 data
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