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Abstract

Summary: Epigenetic modifications reflect key aspects of transcriptional regulation, and many
epigenomic data sets have been generated under many biological contexts to provide insights into
regulatory processes. However, the technical noise in epigenomic data sets and the many
dimensions (features) examined make it challenging to effectively extract biologically meaningful
inferences from these data sets. We developed a package that reduces noise while normalizing the
epigenomic data by a novel normalization method, followed by integrative dimensional reduction
by learning and assigning epigenetic states. This package, called S3V2-IDEAS, can be used to
identify epigenetic states for multiple features, or identify signal intensity states and a master peak
list across different cell types for a single feature. We illustrate the outputs and performance of
S3V2-IDEAS using 137 epigenomics data sets from the VISION project that provides Valldated
Systematic IntegratiON of epigenomic data in hematopoiesis.

Availability and implementation: S3V2-IDEAS pipeline is freely available as open source
software released under an MIT license at: https://github.com/guanjue/S3V2 IDEAS ESMP
Contact: rch8@psu.edu, gzx103@psu.edu

Supplementary information: S3V2-IDEAS-bioinfo-supplementary-materials.pdf

1 Introduction

The tens of thousands of epigenomic datasets now available are potentially great resources to
better understand the associations of epigenetic modifications with mechanisms of
transcriptional regulation (ENCODE Project Consortium, 2012; Bernstein et al., 2010;
Stunnenberg et al., 2016; Martens and Stunnenberg, 2013; Xiang, et al., 2020; Yue et al., 2014;
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Moore et al., 2020). However, integrating these resources for global inferences about regulation
is challenging for many reasons. In this project, we focus on two issues. First, technical
differences in procedures and biological samples analyzed in different laboratories introduce
noise and biases that can obscure true biological differences (Shao et al., 2012; Xiang, et al.,
2020; Meyer and Liu, 2014). Second, certain combinations of epigenetic modifications often
appear together, but those combinations of modifications (epigenetic states) need to be learned
from integrative modeling across epigenomic datasets simultaneously across multiple cell types
(Ernst and Kellis, 2012; Zhang et al., 2016; Hoffman et al., 2012).

Here, we introduce a package, named S3V2-IDEAS, that builds upon our prior works and
provides an improved, integrated workflow that will facilitate usability. In this pipeline, we
address the first issue (noise and bias in data) by incorporating an improved version of the
S3norm method (Xiang, et al., 2020), which can simultaneously normalize signals in foreground
and signals in background. In contrast to S3norm, in which each 200bp bin was assessed as
either foreground (peak) or background, in the improved version (S3V2) the reads within each
bin are split into foreground reads and background reads. This strategy has been used in several
previous studies (Mahony et al., 2014; Tarbell and Liu, 2019). After splitting reads, a single
signal track can be converted into a foreground signal track and a background noise track. For
the background noise track, both non-zero mean and non-zero standard deviations are matched
across datasets, which can reduce the noise in some datasets (Fig. 1A, Supplementary Methods,
and Supplementary Fig. 1D and 2). To address the second challenge (integration across multiple
features and cell types), we performed genome segmentation using the Integrative and
Discriminative Epigenome Annotation System (IDEAS), which learns epigenetic state models
from the normalized epigenomic signals simultaneously along the genome and across cell types
to improve consistency of state assignments across different cell types (Zhang et al., 2016);
Zhang and Hardison, 2017). Moreover, the IDEAS model can jointly estimate the state of a
genomic region by using the information in a set of similar cell types, so that the state can be
accurately estimated even for cell types with missing data (Zhang and Mahony, 2019). The
S3V2-IDEAS pipeline incorporates both S3V2 normalization and IDEAS segmentation so that
the advantages of both methods can be used to normalize, denoise, and integrate multi-

dimensional epigenomic datasets across different cell types.
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Figure 1. Overview of S3V2-IDEAS pipeline. (A) Module 1 normalizes and denoises input data using
the S3V2 method. Examples of normal-ized epigenetic signals from the Hba locus in G1E-ER4 cells
(ER4) are shown. (B and C) In Module 2, the normalized data is integrated by IDEAS in one of two
modes. (B) The epigenetic state mode integrates multiple epigenetic features into an epigenetic states
model. (C) The signal intensity state mode finds frequently occurring signal intensity states for a single
epigenetic feature, along with a master peak list derived from those states (D). AVE = average, LSK,
MEP, ER4, ERY = abbreviations for cell types (Xiang, Keller, Heuston, et al., 2020).

2 Implementations

The inputs to S3V2-IDEAS are (1) average read counts of each epigenetic feature in each cell
type (bigWig), (2) an annotation file that includes the names of the cell types and the epigenetic
features of bigwig files, and (3) information about the mapped genome, such as chromosome
sizes and black-listed regions (Kent et al., 2002, 2010; Amemiya et al., 2019; Boyle et al., 2014;
Yue et al., 2014).

The S3V2-IDEAS incorporates two major modules. First, it uses the S3V2 method to
normalize and denoise the epigenomic datasets (Fig. 1A). The second module of the package
incorporates the IDEAS genome segmentation model to integrate the epigenomic signal into
tracks of epigenetic state assignments for each bin in each cell type (Fig. 1B and C). The second
module can operate in either of two modes. When the input data include multiple epigenetic
features, the module executes an epigenetic states mode (ES mode), which integrates the signals
of multiple epigenomic features into epigenetic states as done previously (Fig. 1B). When the
input data include one epigenetic feature, the module executes a signal intensity state mode (IS

mode) to learn the most frequently occurring states of that one epigenomic feature (Fig. 1C). In
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the IS mode, a master peak list (Fig. 1D) can be extracted from the signal intensity state tracks by
a novel hierarchical method which provide way to integrate the epigenomic information across

cell types (Supplementary Figs. 5 and 6).

3 Results and Discussion

The S3V2-IDEAS produces three outputs: the normalized signal tracks and the -log10 p-value
tracks based on the background model (Fig. 1A); a list of epigenetic states or signal intensity
states and the corresponding state track in each cell type (Fig. 1B and 1C). An additional master
peak list can be produced in the IS mode (Fig. 1D).

To illustrate these results, we applied the S3V2-IDEAS to datasets compiled by the Valldated
and Systematic integratlON of epigenomic data project (VISION) (Xiang, et al., 2020; Heuston
et al., 2018; Hardison et al., 2020). The ES mode can integrate seven epigenetic features to a 27
epigenetic states model (Fig. 1B). Compared with our previous analysis (Xiang et al. 2020), the
genome segmentation tracks from this S3V2-IDEAS are more consistent between biological
replicates (Supplementary Fig. 2C and D).

We illustrate the IS mode by limiting our analysis to only the ATAC-seq. In the IS mode, the
ATAC-seq signal tracks can be first normalized and converted into tracks of signal intensity state
(Fig. 1C). Then, a master peak list can be extracted from these state tracks (Fig. 1D). A master
peak list is a straightforward way to obtain a coherent set of chromatin accessible peaks across
cell types, which can be challenging for larger numbers of cell types (Meuleman et al., 2020).
Comparing with the one produced by simply pooling and merging the MACS2 peaks in all cell
type (Zhang et al., 2008), the IS mode master peak list pinpoints functional elements with higher
accuracy (Supplementary Fig. 6 and 7).

These results indicate that the S3V2-IDEAS should be versatile and effective tool for

integrative analyses of epigenomic datasets.
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1. Overview of the S3V2-IDEAS package

S3V2-IDEAS is an easily applicable package that normalizes, denoises and integrates
epigenomic data sets across different cell types. This package has two modules. The first module
develop an improved version (S3V2) of our previous developed S3norm method to normalize the
epigenomic data sets across different epigenetic features and different cell types (Xiang, Keller,
Giardine, et al., 2020). Comparing with the S3norm, S3V2 can first split the signal track of each
dataset into a foreground signal track and background noise track. For the background noise
track, both non-zero mean and non-zero standard deviation can be equalized across different
datasets, so that some datasets can be denoised. Within the first module, a dynamic negative
binomial model is incorporated to adjust for variation of local background (Zhang et al., 2008;
Xiang, Keller, Giardine, et al., 2020). The second module uses a two-dimensional IDEAS
genome segmentation model to integrate the normalized epigenomic signal tracks into state
tracks (Zhang et al., 2016). To increase the versatility of IDEAS, we incorporated two mode in
the second module. When the data inputs include multiple epigenetic features, the module
integrates those multi-dimensional signals into a list of epigenetic states (ES model), with each
state representing a distinct combination of epigenetic features. When the input data consist of
only one epigenetic feature, the module executes a signal intensity state mode (IS mode) to learn
the frequently occurring states of signal strength. In both modes, a set of genome segmentation
tracks is generated by assigning an epigenetic state or a signal intensity state to each genomic
region in each cell type. To facilitate the downstream analysis, such as analyzing the epigenetic
events across different cell types, we further developed a novel method to extract a master peak
list from the signal intensity state tracks across all cell types. We describe each of these steps in

more details in the following sections.

2. Data preprocessing

To illustrate the usage of the S3V2-IDEAS, we used the this package to analyze the epigenomic
data sets compiled by the Valldated and Systematic integratlON of epigenomic data project
(VISION: usevision.org), which includes seven epigenetic features (H3K4me3, H3K4mel,
H3K27ac, H3K36me3, H3K27me3, H3K9me3 and chromatin sensitivity) in 20 hematopoietic
cell types in mice (Xiang, Keller, Heuston, et al., 2020; Heuston et al., 2018; Hardison et al.,

2020). The mapped reads in these data sets were processed by the data preprocessing pipeline in
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the VISION project. We then divided the mm10 mouse genome assembly into ~13 million 200-
bp bins, which have approximately the size of a nucleosome plus spacer (Li and Reinberg, 2011).
The average counts of reads mapping in each 200-bp bin in the genome (bigWig format) were
used as the input for S3V2-IDEAS (Kent ef al., 2010; Ramirez et al., 2016). The package accepts
as input any bigWig files that can be represented as mean of mapped reads per bin. For example,
starting with a set of bigWig files from BLUEPRINT data portal (Martens and Stunnenberg,
2013) or a set of bigWig converted from bam files by deeptools (Ramirez et al., 2016).

3. The S3V2 method for data normalization and denoising

The aim of the data normalization is to reduce the technical noise so that it cannot obscure the
real biological differences. The recently developed S3norm method uses a non-linear
transformation to match both the mean signals in the common peak regions and the non-zero
mean signals in the common background regions between two data sets (Xiang, Keller, Giardine,
et al., 2020). This new method can outperform other common normalization methods in tasks
such as explaining gene expression levels or in consistency of peak calling between replicates
(Xiang, Keller, Giardine, et al., 2020). In this package, we improved the S3norm method to

improve the denoising of the datasets while normalizing them.

The key step of S3norm normalization is to match the mean signals in both the common peak
regions and common background regions. However, for some data sets, we observed that
matching only the mean signal is not sufficient to match the noise of the common background
regions. As shown in Supplementary Figure 1A, the background noise of CTCF ChIP-seq in
MONO cell type has a high standard deviation. As a result, even after matching the common
background mean, the background noise in that data set is still much higher than the reference
data sets (Supplementary Figure 1B and D). An extension of S3norm to simultaneously match
the mean and standard deviation of the background regions would be expected to reduce the

background noise to a similar level across different data sets (Supplementary Figure 1C and D).

The aim of S3norm is to produce data normalized across an entire genome, and thus it must be
able to simultaneously incorporate and process the signal in both peak regions and background

regions. A straightforward way to reduce the background noise without influencing the peak
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regions is to first split the genome into peak regions and background regions, and then normalize
each of the two kinds of regions separately. However, this simple method can potentially create
signal gaps between the two kinds of regions which do not reflect the original data. To overcome
this signal gap issue, we incorporated a concept from the previous methods, in which the mapped
reads in the same genomic region can be split and analyzed as the reads coming from different
epigenetic structures, such as the foreground and background (Mahony et al., 2014) or the
nucleosome free regions and accessible nucleosomes (Tarbell and Liu, 2019). In the improved
version of S3norm (S3V2), we built on this idea by first splitting the reads in each 200-bp bin
into the reads inferred to come from the foreground component and the reads inferred to come
from the background component. Then, we used the two models (foreground and background) to
normalize the two components separately, so that both the non-zero means and non-zero standard

deviations for the background components can be matched.

Let RC;ror and RC; 14, be the observed average read counts in bin 7 in a reference data set and
a target data set. Similar to the quantile normalization (Bolstad et al., 2003), we used the average
read counts of all data sets as the reference data set for each epigenetic feature. The reference
data sets of different epigenetic features were first normalized to a same signal scale by the
original S3norm method which can match the mean signals in the foreground regions and the
non-zero mean signals in the background regions by a nonlinear transformation model (Xiang,

Keller, Giardine, et al., 2020).

Then, for each epigenetic feature, we split the signals in both the reference data set and all
individual data sets (target data set) into two components. To reduce the computational
complexity, we used a relatively conservative but simple and fast approach in this step.
Specifically, we estimated the number of reads coming from the background component by using

the highest average read count in the non-peak region within 1kb around each 200-bp bin.
RCi,ref = RCi,ref,PK + RCi,ref,BG

RCi,tar = RCi,tar,PK + RCi,tar,BG

10
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where RC; ¢ px and RC; ¢4y pi denote the reads coming from the foreground component, and
RCrer g6 and RC; ¢4y g denote the reads coming from the background component. When there
is a weak false negative peak at the local regions, this method may overestimate the reads in the
background component. But on the other hand, it is less likely to inflate the background noise
which can prevent identifying problematic epigenetic states with epigenetic features that

contradict with each other in the downstream data integration module.

We then applied an exponential regression model to match the RC; ;.cr px and RC; 47 px

between the two data sets.

Y
RCi,tar,PK,norm = (R Ci,tar,PK) ( 1 )

where the y is the parameter learned from the regression model for the foreground component
normalization. Here, we used the exponential regression model because it can guarantee there is

no signal gap created between the peak signal and background signal after the normalization.

For the RC ¢f g and RC; ¢4y pg, We used the following model to match the non-zero means

and non-zero standard deviations between the two data sets.

RCi,tar,BG,norm =a+ ﬁ X RCi,tar,BG (2)

a = non. zero.mean(RCref,BG) - B X non.zero.mean(RCmr,BG) 3)

NON.ZET0.0ref BG

p =TT (g

NON.Zero.Ctqr,BG

where the a and £ are the two parameters for the background component normalization and o
is the standard deviation of the non-zero values in the backgrounds. Since the data sets with
higher background noise usually have higher non-zero standard deviations, matching the non-
zero standard deviations can greatly denoise these data sets. As a result, the overall background
signal can be reduced to a similar level across all data sets (Supplementary Fig. 2A versus B).
One expectation of a substantial reduction in background across the datasets is that the
consistency in signal (including the background) between replicates for an epigenetic feature

would be increased. This expectation was confirmed by the improvement of the consistency of

11
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epigenetic signals between two biological replicates that is measured by R-squared

(Supplementary Fig. 2C).

_ _ 1 _ Z¥(®RC1-RC2)?
R —squared = 1 SN(RC1,~MRC1)2
where the RC1; and RC2; are the S3V2 normalized average read counts in bin i, MRC1 is the whole

genome mean of all RC1;, and N is the number of 200-bp bins.

This improvement in consistency was also observed when comparing the epigenetic states for
each replicate after genome segmentation using IDEASs (Supplementary Fig. 2D). After
normalizing each component (foreground and background) separately, we generated the final

S3V2 signal tracks by adding those two components together in each 200 bp window.

In the S3V2 method, we trained the models by only using information in the common peak
regions and common background regions, thereby learning values for the parameters y, a, and 8
in equations (1)-(4). This is based on two assumptions made in previous studies (Shao et al.,
2012; Xiang, Keller, Giardine, et al., 2020). First, we assumed the common peaks tend to
regulate processes occurring in all cell types, such as the expression of constitutively active
genes, so that their mean signal be similar after normalization. Secondly, the signals in common
background regions are technical noise which should also be equalized after normalization. Then

we applied those trained models to all regions along the whole genome.

In ChIP-seq analysis, the dynamic Negative Binomial (NB) distribution is often used to model
the local background in each data set. Here, we also adjusted the local background in these S3V2
normalized signals by transforming them to -log10 p-value based on a dynamic background

model with NB distribution (Xiang, Keller, Giardine, et al., 2020; Zhang et al., 2008).

ry ~ NB(SlocalJ p)

M

p=1-5
MZ

SZGZ—M
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r.ctrl

i
M ctrl

Slocal = S X

where p denotes the probability of success parameter, and s;,.,; denotes a shape parameter of

the in the dynamic NB model, the rftrl denotes no antibody control signals at 200-bp bin i, and

r.ctrl .
L js used to

the M°%! denotes global mean of no antibody control signals. For each bin i, the e

capture the variation of local background. Here, the non-zero means and non-zero variances of
different no antibody control signals are first scaled to the same level. Since S3V2 can match
both the non-zero mean and non-zero variance of the background regions, the baseline
parameters (M and 62) in the model are estimated by only using the reference data set. Such a
design can guarantee that the relative difference in the normalized average read counts are not

changed in the -log10 p-value transformation.

4. Identifying epigenetic state and signal intensity state by IDEAS

Genome segmentation methods have been widely used to integrate and interpret the multi-
dimensional epigenomic data sets in different cell types (Ernst and Kellis, 2012; Hoffman et al.,
2012; Zhang et al., 2016; Xiang, Keller, Heuston, ef al., 2020; Zhang and Hardison, 2017).
Previous studies have demonstrated a 2-D (along the genome and across cell types) IDEAS
genome segmentation model can perform better than other genome segmentation methods in
both the consistency of state assignment and the ability to handle missing information (Zhang et
al., 2016; Zhang and Mahony, 2019). In this package, we incorporated the IDEAS model as the
second module to integrate the multi-dimensional epigenomic data sets into state tracks which

are more interpretable and applicable.

The states learned in the IDEAS system can reflect multiple or single features, and we
introduced two modes in this module to handle this versatility. The first mode is called
epigenetic state mode (ES mode). When there are multiple epigenetic features in the input, the
package can use the IDEAS model to integrate those multi-dimensional signals into a set of
distinct epigenetic states (Supplementary Fig. 3). In this mode, each epigenetic state is
represented by a unique color that is created by mixing the colors representing each individual

epigenetic feature.

13
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Moreover, since the IDEAS model is designed in a Bayesian framework, the state models can
be easily incorporated as prior information in new IDEAS data integration analysis
(Supplementary Fig. 3). In S3V2-IDEAS GitHub, we saved several epigenetic state models with
different combinations of epigenetic features, so that user can easily use them as prior

information to integrate their own epigenomic data sets.

The second mode is called signal intensity state mode. When only one epigenetic feature is
covered in the input data, the package can use the IDEAS model to discover the commonly
occurring signal intensity states (Supplementary Fig. 4A and B), which can provide detailed
information about the epigenetic modification. To facilitate comparisons across different studies,
we fixed the number of intensity states to 4. As shown in Supplementary Figure. 4C, the signal
intensity states can be used to distinguish the peak region from the peak shoulders which can
facilitate the downstream extraction of master peak list across multiple cell types. In this mode,

we used 50-bp as the bin size because it can facilitate downstream identification of narrow peaks.

After identifying the states, both modes can generate a genome segmentation track by
assigning a state to each genomic location in each cell type based on the signal pattern. In the IS
mode, we also generated an additional signal intensity state track based on the average
normalized signal track. This additional average signal intensity state track can be used to extract

master peak list in the downstream analysis (see next section).

In our previous analysis, we noticed that the IDEAS model can generate an epigenetic state by
merging some rare patterns as one epigenetic state, which we referred as heterogeneous states
(Xiang, Keller, Heuston, et al., 2020). As a result, these heterogeneous states often show the
combinations of epigenetic modifications that are unlikely to exist, e.g. by merging multiple,
rarely-observed combinations. To avoid this confounding information, we followed our previous

work (Xiang, Keller, Heuston, ef al., 2020) and incorporated into the package a script to check
variance

the coefficient of variation (CV:W) of each epigenetic state. For the states with higher CV,

we suggest that the user to remove them and then use the remaining states as prior information to

14
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rerun IDEAS. In this process, those genomic regions with rare patterns can be assigned to a most

similar epigenetic states that occurring frequently.

5. Extracting master peak list across multiple cell types

A consensus master peak list is often used to analyze the epigenetic modifications across
different cell types (Xiang, Keller, Heuston, et al., 2020; Lun and Smyth, 2016; Meuleman et al.,
2019). Although simply pooling and merging the peaks in multiple cell types has been widely
used, the merging step may create broader peaks that do not accurately reflect the positions of
the epigenetic modifications, especially when one or a few data sets have very strong signals. In
the example shown in Supplementary Figure 5, based on the normalized ATAC-seq signal, there
should be one candidate cis-regulatory element (cCCRE) (between the gray dashed lines) at the
promoter of Hba-al gene. However, the master peak generated by pooling and merging the
MACS?2 peaks in all cell types covers the entire Hba-al gene region, thereby obscuring the

separate cCRE at the promoter regions (between the blue dash lines).

To address this issue, several strategies have been developed to extract master peak lists
(Meuleman et al., 2019; Moore et al., 2020). In the S3V2-IDEAS, we introduce a novel
hierarchical method to systematically extract a master peak list that preserves the resolution to

pinpoint positions of the epigenetic modifications in each cell type.

Since merging the peaks in different cell types tends to broaden the inferred peak calls, we
avoided merging while extracting the master peaks, instead taking advantage of the signal
intensity state tracks. Specifically, we first generated an average signal track and the
corresponding signal intensity track by using the S3V2 normalized signals of all cell types
(Supplementary Fig. 6B). Here, this simple averaging step can first reduce the noise in each cell
type. We then collected the genomic regions that are assigned with the strongest signal intensity
states into the list of master peaks (MPs) (Supplementary Fig. 6A-C). This initial list derived
from the analysis of the signal intensity states in the average signal track will reveal primarily the
peaks that are present in many cell types. The average signal track dilutes the strong peak signals
that are present in only one or a few cell types, so to avoid missing the cell type specific peaks,

we also collect the genomic regions with the strongest signal intensity states in each cell type that
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do not intersect with peaks already in the MP list (Supplementary Fig. 6A and C). This
hierarchical design can guarantee the peaks identified based on the average signal track have the
highest priority to be selected as the master peaks. To get the final list of MPs, we repeat this
collection process for each weaker signal intensity states so that the relatively weaker MPs can

also be collected.

Comparing with the MP list identified by pooling and merging the MACS2 peaks in all cell
types, the MPs identified by our package are significant narrower (Wilcox -test p-value < 2.2e-
16), so that they can pinpoint the position of the epigenetic modifications across different cell

types with higher accuracy (Supplementary Fig. 7).
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Supplementary Figure 1. The first version of S3norm does not equalize the background signal in data
sets with higher background variance. The scatterplots of the average read counts before (A) and after (B)
S3norm between the Reference data set and the monocyte in bone marrow (MONO-BM) data set. (C) On
the contrary, the S3V2 can successfully reduce the noise of the same data set to the level of the Reference
data set. (D) The corresponding signal tracks of the Reference data set and the MONO-BM data set. The
red dashed boxes enclose regions with inflated noises after first version of S3norm, but reduced noise

after S3V2.
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Supplementary Figure 2. The ATAC-seq signal before (A) and after S3V2 normalization (B). The
different colors represent different cell types. The two biological replicates were label as rl and 12. (C)
The R-squared is used to measure the consistency of epigenomic signals between biological replicates.
(D) The Adjusted Rand Index is used to measure the consistency of epigenetic states between biological

replicates.
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Supplementary Figure 3. The ES mode can integrate multiple epigenetic features in multiple cell types
as epigenetic states model. (A) The S3V2 normalized epigenomic signals in different cell types. The
missing information in certain cell types can be handled in IDEAS model by borrowing information from
similar cell types. (B) and (C) The IDEAS model can integrate the epigenomic signals as epigenetic states
model and the corresponding genome segmentation tracks. The epigenetic states model generated in

previous studies can be easily incorporated as prior information in the IDEAS model.
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Supplementary Figure 4. The IS mode can integrate the signals of the same epigenetic feature as signal

intensity state tracks. (A) The S3V2 normalized ATAC-seq signal in each replicate of each cell type. (B)

The signal intensity state tracks based on the normalized ATAC-seq signals. The Master Peak (MP) lists

generated by MACS2 peak calling method and the S3V2-IDEAS pipeline are show on top of each figure.

(C) The signal intensity state and the corresponding S3V2 normalized ATAC-seq signals.
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Supplementary Figure 5. The master peaks generated by pooling and merge MACS2 peaks in all cell
types. The region between the dark gray dash lines is the accessible region at the promoter of Hba-al
gene across multiple cell types. The region between the blue dash lines is the master peak identified by

pooling and merging the MACS?2 peaks in all cell types.
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Supplementary Figure 6. The hierarchical method for extracting master peaks from signal intensity state

tracks. (A) The S3V2 normalized signals and the corresponding signal intensity state tracks in multiple

cell types at the Hba-al gene locus. (B) The average signals and the corresponding signal intensity state

tracks generated using the information in all cell types. (C) The peaks are extracted first from the average

signal intensity state track (the peak between the orange dash line) and then from the peaks extracted from

individual cell type (the peak between the blue dash line) that do not intersect with the peaks of the

average signal intensity state track. These sets of peaks are combined to generate the master peak list in

S3V2-IDEAS pipeline.
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Supplementary Figure 7. Comparing the master peak lists generated by S3V2-IDEAS and MACS2. (A)
The distributions of peak lengths of master peaks generated by S3V2-IDEAS pipeline and MACS2 are
shown as box-plots. (B) The master peak at the Hba-al gene locus. The region between the orange dash
lines is the master peak identified by S3V2-pipeline. The region between the blue dash lines is the master
peak identified by pooling and merging the MACS2 peaks in all cell types.
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