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Abstract    

Summary: Epigenetic modifications reflect key aspects of transcriptional regulation, and many 

epigenomic data sets have been generated under many biological contexts to provide insights into 

regulatory processes. However, the technical noise in epigenomic data sets and the many 

dimensions (features) examined make it challenging to effectively extract biologically meaningful 

inferences from these data sets. We developed a package that reduces noise while normalizing the 

epigenomic data by a novel normalization method, followed by integrative dimensional reduction 

by learning and assigning epigenetic states. This package, called S3V2-IDEAS, can be used to 

identify epigenetic states for multiple features, or identify signal intensity states and a master peak 

list across different cell types for a single feature. We illustrate the outputs and performance of 

S3V2-IDEAS using 137 epigenomics data sets from the VISION project that provides ValIdated 

Systematic IntegratiON of epigenomic data in hematopoiesis.  

Availability and implementation: S3V2-IDEAS pipeline is freely available as open source  

software released under an MIT license at: https://github.com/guanjue/S3V2_IDEAS_ESMP 

Contact: rch8@psu.edu, gzx103@psu.edu 

Supplementary information: S3V2-IDEAS-bioinfo-supplementary-materials.pdf 

 

1 Introduction  

The tens of thousands of epigenomic datasets now available are potentially great resources to 

better understand the associations of epigenetic modifications with mechanisms of  

transcriptional regulation (ENCODE Project Consortium, 2012; Bernstein et al., 2010; 

Stunnenberg et al., 2016; Martens and Stunnenberg, 2013; Xiang, et al., 2020; Yue et al., 2014; 
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Moore et al., 2020). However, integrating these resources for global inferences about regulation 

is challenging for many reasons. In this project, we focus on two issues. First, technical 

differences in procedures and biological samples analyzed in different laboratories introduce 

noise and biases that can obscure true biological differences (Shao et al., 2012; Xiang, et al., 

2020; Meyer and Liu, 2014). Second, certain combinations of epigenetic modifications often 

appear together, but those combinations of modifications (epigenetic states) need to be learned 

from integrative modeling across epigenomic datasets simultaneously across multiple cell types 

(Ernst and Kellis, 2012; Zhang et al., 2016; Hoffman et al., 2012). 

Here, we introduce a package, named S3V2-IDEAS, that builds upon our prior works and 

provides an improved, integrated workflow that will facilitate usability. In this pipeline, we 

address the first issue (noise and bias in data) by incorporating an improved version of the 

S3norm method (Xiang, et al., 2020), which can simultaneously normalize signals in foreground 

and signals in background. In contrast to S3norm, in which each 200bp bin was assessed as 

either foreground (peak) or background, in the improved version (S3V2) the reads within each 

bin are split into foreground reads and background reads. This strategy has been used in several 

previous studies (Mahony et al., 2014; Tarbell and Liu, 2019). After splitting reads, a single 

signal track can be converted into a foreground signal track and a background noise track. For 

the background noise track, both non-zero mean and non-zero standard deviations are matched 

across datasets, which can reduce the noise in some datasets (Fig. 1A, Supplementary Methods, 

and Supplementary Fig. 1D and 2). To address the second challenge (integration across multiple 

features and cell types), we performed genome segmentation using the Integrative and 

Discriminative Epigenome Annotation System (IDEAS), which learns epigenetic state models 

from the normalized epigenomic signals simultaneously along the genome and across cell types 

to improve consistency of state assignments across different cell types  (Zhang et al., 2016); 

Zhang and Hardison, 2017). Moreover, the IDEAS model can jointly estimate the state of a 

genomic region by using the information in a set of similar cell types, so that the state can be 

accurately estimated even for cell types with missing data (Zhang and Mahony, 2019). The 

S3V2-IDEAS pipeline incorporates both S3V2 normalization and IDEAS segmentation so that 

the advantages of both methods can be used to normalize, denoise, and integrate multi-

dimensional epigenomic datasets across different cell types. 
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Figure 1.  Overview of S3V2-IDEAS pipeline. (A) Module 1 normalizes and denoises input data using 
the S3V2 method. Examples of normal-ized epigenetic signals from the Hba locus in G1E-ER4 cells 
(ER4) are shown. (B and C) In Module 2, the normalized data is integrated by IDEAS in one of two 
modes. (B) The epigenetic state mode integrates multiple epigenetic features into an epigenetic states 
model. (C) The signal intensity state mode finds frequently occurring signal intensity states for a single 
epigenetic feature, along with a master peak list derived from those states (D). AVE = average, LSK, 
MEP, ER4, ERY = abbreviations for cell types (Xiang, Keller, Heuston, et al., 2020). 
 

2 Implementations 

The inputs to S3V2-IDEAS are (1) average read counts of each epigenetic feature in each cell 

type (bigWig), (2) an annotation file that includes the names of the cell types and the epigenetic 

features of  bigwig files, and (3) information about the mapped genome, such as chromosome 

sizes and black-listed regions (Kent et al., 2002, 2010; Amemiya et al., 2019; Boyle et al., 2014; 

Yue et al., 2014).  

The S3V2-IDEAS incorporates two major modules. First, it uses the S3V2 method to 

normalize and denoise the epigenomic datasets (Fig. 1A). The second module of the package 

incorporates the IDEAS genome segmentation model to integrate the epigenomic signal into 

tracks of epigenetic state assignments for each bin in each cell type (Fig. 1B and C). The second 

module can operate in either of two modes. When the input data include multiple epigenetic 

features, the module executes an epigenetic states mode (ES mode), which integrates the signals 

of multiple epigenomic features into epigenetic states as done previously (Fig. 1B). When the 

input data include one epigenetic feature, the module executes a signal intensity state mode (IS 

mode) to learn the most frequently occurring states of that one epigenomic feature (Fig. 1C). In 
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the IS mode, a master peak list (Fig. 1D) can be extracted from the signal intensity state tracks by 

a novel hierarchical method which provide way to integrate the epigenomic information across 

cell types (Supplementary Figs. 5 and 6). 

 

3 Results and Discussion 

The S3V2-IDEAS produces three outputs: the normalized signal tracks and the -log10 p-value 

tracks based on the background model (Fig. 1A); a list of epigenetic states or signal intensity 

states and the corresponding state track in each cell type (Fig. 1B and 1C). An additional master 

peak list can be produced in the IS mode (Fig. 1D).  

To illustrate these results, we applied the S3V2-IDEAS to datasets compiled by the ValIdated 

and Systematic integratION of epigenomic data project (VISION) (Xiang, et al., 2020; Heuston 

et al., 2018; Hardison et al., 2020). The ES mode can integrate seven epigenetic features to a 27 

epigenetic states model (Fig. 1B). Compared with our previous analysis (Xiang et al. 2020), the 

genome segmentation tracks from this S3V2-IDEAS are more consistent between biological 

replicates (Supplementary Fig. 2C and D).  

We illustrate the IS mode by limiting our analysis to only the ATAC-seq. In the IS mode, the 

ATAC-seq signal tracks can be first normalized and converted into tracks of signal intensity state 

(Fig. 1C). Then, a master peak list can be extracted from these state tracks (Fig. 1D). A master 

peak list is a straightforward way to obtain a coherent set of chromatin accessible peaks across 

cell types, which can be challenging for larger numbers of cell types (Meuleman et al., 2020). 

Comparing with the one produced by simply pooling and merging the MACS2 peaks in all cell 

type (Zhang et al., 2008), the IS mode master peak list pinpoints functional elements with higher 

accuracy (Supplementary Fig. 6 and 7).  

These results indicate that the S3V2-IDEAS should be versatile and effective tool for 

integrative analyses of epigenomic datasets. 
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1. Overview of the S3V2-IDEAS package 
S3V2-IDEAS is an easily applicable package that normalizes, denoises and integrates 

epigenomic data sets across different cell types. This package has two modules. The first module 

develop an improved version (S3V2) of our previous developed S3norm method to normalize the 

epigenomic data sets across different epigenetic features and different cell types (Xiang, Keller, 

Giardine, et al., 2020). Comparing with the S3norm, S3V2 can first split the signal track of each 

dataset into a foreground signal track and background noise track. For the background noise 

track, both non-zero mean and non-zero standard deviation can be equalized across different 

datasets, so that some datasets can be denoised. Within the first module, a dynamic negative 

binomial model is incorporated to adjust for variation of local background (Zhang et al., 2008; 

Xiang, Keller, Giardine, et al., 2020). The second module uses a two-dimensional IDEAS 

genome segmentation model to integrate the normalized epigenomic signal tracks into state 

tracks (Zhang et al., 2016). To increase the versatility of IDEAS, we incorporated two mode in 

the second module. When the data inputs include multiple epigenetic features, the module 

integrates those multi-dimensional signals into a list of epigenetic states (ES model), with each 

state representing a distinct combination of epigenetic features. When the input data consist of 

only one epigenetic feature, the module executes a signal intensity state mode (IS mode) to learn 

the frequently occurring states of signal strength. In both modes, a set of genome segmentation 

tracks is generated by assigning an epigenetic state or a signal intensity state to each genomic 

region in each cell type. To facilitate the downstream analysis, such as analyzing the epigenetic 

events across different cell types, we further developed a novel method to extract a master peak 

list from the signal intensity state tracks across all cell types. We describe each of these steps in 

more details in the following sections.  

 

2. Data preprocessing 
To illustrate the usage of the S3V2-IDEAS, we used the this package to analyze the epigenomic 

data sets compiled by the ValIdated and Systematic integratION of epigenomic data project 

(VISION: usevision.org), which includes seven epigenetic features (H3K4me3, H3K4me1, 

H3K27ac, H3K36me3, H3K27me3, H3K9me3 and chromatin sensitivity) in 20 hematopoietic 

cell types in mice (Xiang, Keller, Heuston, et al., 2020; Heuston et al., 2018; Hardison et al., 

2020). The mapped reads in these data sets were processed by the data preprocessing pipeline in 
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the VISION project. We then divided the mm10 mouse genome assembly into ∼13 million 200-

bp bins, which have approximately the size of a nucleosome plus spacer (Li and Reinberg, 2011). 

The average counts of reads mapping in each 200-bp bin in the genome (bigWig format) were 

used as the input for S3V2-IDEAS (Kent et al., 2010; Ramírez et al., 2016). The package accepts 

as input any bigWig files that can be represented as mean of mapped reads per bin. For example, 

starting with a set of bigWig files from BLUEPRINT data portal (Martens and Stunnenberg, 

2013) or a set of bigWig converted from bam files by deeptools (Ramírez et al., 2016). 

 

3. The S3V2 method for data normalization and denoising 
The aim of the data normalization is to reduce the technical noise so that it cannot obscure the 

real biological differences. The recently developed S3norm method uses a non-linear 

transformation to match both the mean signals in the common peak regions and the non-zero 

mean signals in the common background regions between two data sets (Xiang, Keller, Giardine, 

et al., 2020). This new method can outperform other common normalization methods in tasks 

such as explaining gene expression levels or in consistency of peak calling between replicates 

(Xiang, Keller, Giardine, et al., 2020).  In this package, we improved the S3norm method to 

improve the denoising of the datasets while normalizing them.  

 

The key step of S3norm normalization is to match the mean signals in both the common peak 

regions and common background regions. However, for some data sets, we observed that 

matching only the mean signal is not sufficient to match the noise of the common background 

regions. As shown in Supplementary Figure 1A, the background noise of CTCF ChIP-seq in 

MONO cell type has a high standard deviation. As a result, even after matching the common 

background mean, the background noise in that data set is still much higher than the reference 

data sets (Supplementary Figure 1B and D). An extension of S3norm to simultaneously match 

the mean and standard deviation of the background regions would be expected to reduce the 

background noise to a similar level across different data sets (Supplementary Figure 1C and D). 

 

The aim of S3norm is to produce data normalized across an entire genome, and thus it must be 

able to simultaneously incorporate and process the signal in both peak regions and background 

regions. A straightforward way to reduce the background noise without influencing the peak 
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regions is to first split the genome into peak regions and background regions, and then normalize 

each of the two kinds of regions separately. However, this simple method can potentially create 

signal gaps between the two kinds of regions which do not reflect the original data. To overcome 

this signal gap issue, we incorporated a concept from the previous methods, in which the mapped 

reads in the same genomic region can be split and analyzed as the reads coming from different 

epigenetic structures, such as the foreground and background (Mahony et al., 2014) or the 

nucleosome free regions and accessible nucleosomes (Tarbell and Liu, 2019). In the improved 

version of S3norm (S3V2), we built on this idea by first splitting the reads in each 200-bp bin 

into the reads inferred to come from the foreground component and the reads inferred to come 

from the background component. Then, we used the two models (foreground and background) to 

normalize the two components separately, so that both the non-zero means and non-zero standard 

deviations for the background components can be matched.  

 

Let 𝑅𝐶$,&'( and 𝑅𝐶$,)*& be the observed average read counts in bin i in a reference data set and 

a target data set. Similar to the quantile normalization (Bolstad et al., 2003), we used the average 

read counts of all data sets as the reference data set for each epigenetic feature. The reference 

data sets of different epigenetic features were first normalized to a same signal scale by the 

original S3norm method which can match the mean signals in the foreground regions and the 

non-zero mean signals in the background regions by a nonlinear transformation model (Xiang, 

Keller, Giardine, et al., 2020). 

 

Then, for each epigenetic feature, we split the signals in both the reference data set and all 

individual data sets (target data set) into two components. To reduce the computational 

complexity, we used a relatively conservative but simple and fast approach in this step. 

Specifically, we estimated the number of reads coming from the background component by using 

the highest average read count in the non-peak region within 1kb around each 200-bp bin. 

𝑅𝐶$,&'( = 𝑅𝐶$,&'(,,- + 𝑅𝐶$,&'(,/0	

𝑅𝐶$,)*& = 𝑅𝐶$,)*&,,- + 𝑅𝐶$,)*&,/0	
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where 𝑅𝐶$,&'(,,- and 𝑅𝐶$,)*&,,- denote the reads coming from the foreground component, and 

𝑅𝐶$,&'(,/0  and 𝑅𝐶$,)*&,/0  denote the reads coming from the background component. When there 

is a weak false negative peak at the local regions, this method may overestimate the reads in the 

background component. But on the other hand, it is less likely to inflate the background noise 

which can prevent identifying problematic epigenetic states with epigenetic features that 

contradict with each other in the downstream data integration module.   

 

    We then applied an exponential regression model to match the 𝑅𝐶$,&'(,,- and 𝑅𝐶$,)*&,,- 

between the two data sets.  

𝑅𝐶$,)*&,,-,23&4 = 5𝑅𝐶$,)*&,,-6
7 (1) 

where the 𝛾 is the parameter learned from the regression model for the foreground component 

normalization. Here, we used the exponential regression model because it can guarantee there is 

no signal gap created between the peak signal and background signal after the normalization. 

 

    For the 𝑅𝐶$,&'(,/0  and 𝑅𝐶$,)*&,/0 , we used the following model to match the non-zero means 

and non-zero standard deviations between the two data sets.  

𝑅𝐶$,)*&,/0,23&4 = 𝛼 + 𝛽 × 𝑅𝐶$,)*&,/0   (2) 

𝛼 = 	𝑛𝑜𝑛. 𝑧𝑒𝑟𝑜.𝑚𝑒𝑎𝑛5𝑅𝐶&'(,/06 − 𝛽 × 𝑛𝑜𝑛. 𝑧𝑒𝑟𝑜.𝑚𝑒𝑎𝑛5𝑅𝐶)*&,/06 (3) 

𝛽 = 232.E'&3.FGHI,JK
232.E'&3.FLMG,JK

 (4) 

where the 𝛼 and 𝛽 are the two parameters for the background component normalization and 𝜎 

is the standard deviation of the non-zero values in the backgrounds. Since the data sets with 

higher background noise usually have higher non-zero standard deviations, matching the non-

zero standard deviations can greatly denoise these data sets. As a result, the overall background 

signal can be reduced to a similar level across all data sets (Supplementary Fig. 2A versus B). 

One expectation of a substantial reduction in background across the datasets is that the 

consistency in signal (including the background) between replicates for an epigenetic feature 

would be increased. This expectation was confirmed by the improvement of the consistency of 
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epigenetic signals between two biological replicates that is measured by R-squared 

(Supplementary Fig. 2C).  

R − squared = 1 − ∑ (Z[\]^Z[_])a	b
c

∑ (Z[\]^dZ[\)a	b
c

, 

where the RC1$ and RC2$ are the S3V2 normalized average read counts in bin i, MRC1 is the whole 

genome mean of all RC1$, and N is the number of 200-bp bins.  

 

This improvement in consistency was also observed when comparing the epigenetic states for 

each replicate after genome segmentation using IDEASs (Supplementary Fig. 2D). After 

normalizing each component (foreground and background) separately, we generated the final 

S3V2 signal tracks by adding those two components together in each 200 bp window.  

      

     In the S3V2 method, we trained the models by only using information in the common peak 

regions and common background regions, thereby learning values for the parameters 𝛾, 𝛼, and 𝛽 

in equations (1)-(4).  This is based on two assumptions made in previous studies (Shao et al., 

2012; Xiang, Keller, Giardine, et al., 2020). First, we assumed the common peaks tend to 

regulate processes occurring in all cell types, such as the expression of constitutively active 

genes, so that their mean signal be similar after normalization. Secondly, the signals in common 

background regions are technical noise which should also be equalized after normalization. Then 

we applied those trained models to all regions along the whole genome. 

 

In ChIP-seq analysis, the dynamic Negative Binomial (NB) distribution is often used to model 

the local background in each data set. Here, we also adjusted the local background in these S3V2 

normalized signals by transforming them to -log10 p-value based on a dynamic background 

model with NB distribution (Xiang, Keller, Giardine, et al., 2020; Zhang et al., 2008).  

	rh ∼ NB(sklmnk, p)	

p = 1 −
M
σ_	

s =
M_

σ_ − M 
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sklmnk = s ×	
rhmqrk

Mmqrk	

where p denotes the probability of success parameter, and sklmnk denotes a shape parameter of 

the in the dynamic NB model, the rhmqrk denotes no antibody control signals at 200-bp bin i, and 

the  Mmqrk denotes global mean of no antibody control signals. For each bin i, the rs
tuvw

dtuvw is used to 

capture the variation of local background. Here, the non-zero means and non-zero variances of 

different no antibody control signals are first scaled to the same level. Since S3V2 can match 

both the non-zero mean and non-zero variance of the background regions, the baseline 

parameters (M and σ_) in the model are estimated by only using the reference data set. Such a 

design can guarantee that the relative difference in the normalized average read counts are not 

changed in the -log10 p-value transformation. 

 

4. Identifying epigenetic state and signal intensity state by IDEAS  

Genome segmentation methods have been widely used to integrate and interpret the multi-

dimensional epigenomic data sets in different cell types (Ernst and Kellis, 2012; Hoffman et al., 

2012; Zhang et al., 2016; Xiang, Keller, Heuston, et al., 2020; Zhang and Hardison, 2017). 

Previous studies have demonstrated a 2-D (along the genome and across cell types) IDEAS 

genome segmentation model can perform better than other genome segmentation methods in 

both the consistency of state assignment and the ability to handle missing information (Zhang et 

al., 2016; Zhang and Mahony, 2019). In this package, we incorporated the IDEAS model as the 

second module to integrate the multi-dimensional epigenomic data sets into state tracks which 

are more interpretable and applicable. 

 

The states learned in the IDEAS system can reflect multiple or single features, and we 

introduced two modes in this module to handle this versatility. The first mode is called 

epigenetic state mode (ES mode). When there are multiple epigenetic features in the input, the 

package can use the IDEAS model to integrate those multi-dimensional signals into a set of 

distinct epigenetic states (Supplementary Fig. 3). In this mode, each epigenetic state is 

represented by a unique color that is created by mixing the colors representing each individual 

epigenetic feature.  
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Moreover, since the IDEAS model is designed in a Bayesian framework, the state models can 

be easily incorporated as prior information in new IDEAS data integration analysis 

(Supplementary Fig. 3). In S3V2-IDEAS GitHub, we saved several epigenetic state models with 

different combinations of epigenetic features, so that user can easily use them as prior 

information to integrate their own epigenomic data sets. 

 

The second mode is called signal intensity state mode. When only one epigenetic feature is 

covered in the input data, the package can use the IDEAS model to discover the commonly 

occurring signal intensity states (Supplementary Fig. 4A and B), which can provide detailed 

information about the epigenetic modification. To facilitate comparisons across different studies, 

we fixed the number of intensity states to 4. As shown in Supplementary Figure. 4C, the signal 

intensity states can be used to distinguish the peak region from the peak shoulders which can 

facilitate the downstream extraction of master peak list across multiple cell types. In this mode, 

we used 50-bp as the bin size because it can facilitate downstream identification of narrow peaks. 

 

After identifying the states, both modes can generate a genome segmentation track by 

assigning a state to each genomic location in each cell type based on the signal pattern. In the IS 

mode, we also generated an additional signal intensity state track based on the average 

normalized signal track. This additional average signal intensity state track can be used to extract 

master peak list in the downstream analysis (see next section).  

 

In our previous analysis, we noticed that the IDEAS model can generate an epigenetic state by 

merging some rare patterns as one epigenetic state, which we referred as heterogeneous states 

(Xiang, Keller, Heuston, et al., 2020). As a result, these heterogeneous states often show the 

combinations of epigenetic modifications that are unlikely to exist, e.g. by merging multiple, 

rarely-observed combinations. To avoid this confounding information, we followed our previous 

work (Xiang, Keller, Heuston, et al., 2020) and incorporated into the package a script to check 

the coefficient of variation (CV=x*&$*2y'
4'*2

) of each epigenetic state. For the states with higher CV, 

we suggest that the user to remove them and then use the remaining states as prior information to 
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rerun IDEAS. In this process, those genomic regions with rare patterns can be assigned to a most 

similar epigenetic states that occurring frequently. 

 

5. Extracting master peak list across multiple cell types 
A consensus master peak list is often used to analyze the epigenetic modifications across 

different cell types (Xiang, Keller, Heuston, et al., 2020; Lun and Smyth, 2016; Meuleman et al., 

2019). Although simply pooling and merging the peaks in multiple cell types has been widely 

used, the merging step may create broader peaks that do not accurately reflect the positions of 

the epigenetic modifications, especially when one or a few data sets have very strong signals. In 

the example shown in Supplementary Figure 5, based on the normalized ATAC-seq signal, there 

should be one candidate cis-regulatory element (cCRE) (between the gray dashed lines) at the 

promoter of Hba-a1 gene. However, the master peak generated by pooling and merging the 

MACS2 peaks in all cell types covers the entire Hba-a1 gene region, thereby obscuring the 

separate cCRE at the promoter regions (between the blue dash lines).  

 

To address this issue, several strategies have been developed to extract master peak lists 

(Meuleman et al., 2019; Moore et al., 2020). In the S3V2-IDEAS, we introduce a novel 

hierarchical method to systematically extract a master peak list that preserves the resolution to 

pinpoint positions of the epigenetic modifications in each cell type.  

 

Since merging the peaks in different cell types tends to broaden the inferred peak calls, we 

avoided merging while extracting the master peaks, instead taking advantage of the signal 

intensity state tracks. Specifically, we first generated an average signal track and the 

corresponding signal intensity track by using the S3V2 normalized signals of all cell types 

(Supplementary Fig. 6B). Here, this simple averaging step can first reduce the noise in each cell 

type. We then collected the genomic regions that are assigned with the strongest signal intensity 

states into the list of master peaks (MPs) (Supplementary Fig. 6A-C). This initial list derived 

from the analysis of the signal intensity states in the average signal track will reveal primarily the 

peaks that are present in many cell types. The average signal track dilutes the strong peak signals 

that are present in only one or a few cell types, so to avoid missing the cell type specific peaks, 

we also collect the genomic regions with the strongest signal intensity states in each cell type that 
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do not intersect with peaks already in the MP list (Supplementary Fig. 6A and C). This 

hierarchical design can guarantee the peaks identified based on the average signal track have the 

highest priority to be selected as the master peaks. To get the final list of MPs, we repeat this 

collection process for each weaker signal intensity states so that the relatively weaker MPs can 

also be collected. 

 

Comparing with the MP list identified by pooling and merging the MACS2 peaks in all cell 

types, the MPs identified by our package are significant narrower (Wilcox -test p-value < 2.2e-

16), so that they can pinpoint the position of the epigenetic modifications across different cell 

types with higher accuracy (Supplementary Fig. 7). 
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Supplementary Figures 

 
Supplementary Figure 1. The first version of S3norm does not equalize the background signal in data 

sets with higher background variance. The scatterplots of the average read counts before (A) and after (B) 

S3norm between the Reference data set and the monocyte in bone marrow (MONO-BM) data set. (C) On 

the contrary, the S3V2 can successfully reduce the noise of the same data set to the level of the Reference 

data set. (D) The corresponding signal tracks of the Reference data set and the MONO-BM data set. The 

red dashed boxes enclose regions with inflated noises after first version of S3norm, but reduced noise 

after S3V2. 
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Supplementary Figure 2. The ATAC-seq signal before (A) and after S3V2 normalization (B). The 

different colors represent different cell types. The two biological replicates were label as r1 and r2. (C) 

The R-squared is used to measure the consistency of epigenomic signals between biological replicates. 

(D) The Adjusted Rand Index is used to measure the consistency of epigenetic states between biological 

replicates. 
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Supplementary Figure 3. The ES mode can integrate multiple epigenetic features in multiple cell types 

as epigenetic states model. (A) The S3V2 normalized epigenomic signals in different cell types. The 

missing information in certain cell types can be handled in IDEAS model by borrowing information from 

similar cell types. (B) and (C) The IDEAS model can integrate the epigenomic signals as epigenetic states 

model and the corresponding genome segmentation tracks. The epigenetic states model generated in 

previous studies can be easily incorporated as prior information in the IDEAS model. 
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Supplementary Figure 4. The IS mode can integrate the signals of the same epigenetic feature as signal 

intensity state tracks. (A) The S3V2 normalized ATAC-seq signal in each replicate of each cell type. (B) 

The signal intensity state tracks based on the normalized ATAC-seq signals. The Master Peak (MP) lists 

generated by MACS2 peak calling method and the S3V2-IDEAS pipeline are show on top of each figure. 

(C) The signal intensity state and the corresponding S3V2 normalized ATAC-seq signals. 
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Supplementary Figure 5. The master peaks generated by pooling and merge MACS2 peaks in all cell 

types. The region between the dark gray dash lines is the accessible region at the promoter of Hba-a1 

gene across multiple cell types. The region between the blue dash lines is the master peak identified by 

pooling and merging the MACS2 peaks in all cell types. 
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Supplementary Figure 6. The hierarchical method for extracting master peaks from signal intensity state 

tracks. (A) The S3V2 normalized signals and the corresponding signal intensity state tracks in multiple 

cell types at the Hba-a1 gene locus. (B) The average signals and the corresponding signal intensity state 

tracks generated using the information in all cell types. (C) The peaks are extracted first from the average 

signal intensity state track (the peak between the orange dash line) and then from the peaks extracted from 

individual cell type (the peak between the blue dash line) that do not intersect with the peaks of the 

average signal intensity state track. These sets of peaks are combined to generate the master peak list in 

S3V2-IDEAS pipeline. 
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Supplementary Figure 7. Comparing the master peak lists generated by S3V2-IDEAS and MACS2. (A) 

The distributions of peak lengths of master peaks generated by S3V2-IDEAS pipeline and MACS2 are 

shown as box-plots. (B) The master peak at the Hba-a1 gene locus. The region between the orange dash 

lines is the master peak identified by S3V2-pipeline. The region between the blue dash lines is the master 

peak identified by pooling and merging the MACS2 peaks in all cell types. 
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