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Abstract 

Quantifying response to drug treatment in mouse models of human cancer is important for              
treatment development and assignment, and yet remains a challenging task. A preferred            
measure to quantify this response should take into account as much of the experimental data as                
possible, i.e. both tumor size over time and the variation among replicates. We propose a               
theoretically grounded measure, KuLGaP, to compute the difference between the treatment and            
control arms. KuLGaP is more selective than currently existing measures, reduces the risk of              
false positive calls and improves translation of the lab results to clinical practice. 
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Despite tremendous advances in pharmaceutical research, many cancer patients do not           
respond to the first line of therapy. In oncology, researchers rely on preclinical models to               
investigate drug response to assess whether a drug works against a given cancer type. Of the                
available preclinical models, ​in vivo models tend to capture response to the drugs more faithfully               
than ​in vitro models ​1​. A standard readout from ​in vivo models is the size of the tumor growth                   
over time across multiple experimental replicates compared to a set of untreated controls. As              
with most biological systems,, tumor growth can vary within and between host mice creating              
substantial variance among biological replicates. Determining whether the ​in vivo ​model is            
actually responsive to the given drug from the set of biological experiments is thus a complex                
task. It is essential, however, to make an accurate determination as it has a direct impact on                 
translation to the clinic. 
 
Many measures have been proposed to quantify response to a treatment for ​in vivo ​models​1–3​.               
Commonly used measures include mRECIST, area under the curve (AUC) ​2​, angle of response              
(Angle) ​2 and the tumor growth inhibition (TGI) ​3–5​. Depending on which measure a researcher               
selects, the assessment of response may yield different, often opposite, conclusions, as none of              
the existing measures take full advantage of the data collected across replicates. For example,              
mRECIST ​1 is easy to compute but does not take controls into account and is thus unable to                  
distinguish true disease control (stable disease) from a naturally slow-growing tumor. The angle             
of response and TGI only take into account the last measurement rather than the full trajectory                
of treatment. All of AUC, angle of response and TGI measures ignore variance in the replicate                
experiments, depending only on the mean across replicates. These limitations often lead to an              
over-optimistic assessment of response, therefore failing to faithfully recapitulate clinical          
observations as can be seen from our experiments.  
 
In this work, we show how multiple sources of variation lead to erroneous response calls and                
propose a new response measure, KuLGaP (based on ​Kul​lback-​L​eibler divergence between           
Ga ​ussian ​P​rocesses), which accounts for both experimental controls and variation among           
replicates. We test and compare KuLGaP to four widely-used response measures using 329             
patient-derived xenograft (PDX) models and show that our measure leads to a more             
conservative response call rate with better concordance to clinical response in patients in a              
small trial cohort. Indeed, in a cohort of 13 patients and their xenografts, the mean time to                 
relapse (MTR) in patients we identify as responders from their PDX according to our KuLGaP               
measure is at least twice as high as MTR for responders identified by other measures. Our                
KuLGaP statistic bridges the gap between the potential of PDX data and its clinical application               
by utilizing the full extent of the experimental data. Last but not least, we show that the                 
robustness of KuLGaP allows for experimental designs with fewer animal replicates without            
significant loss in the accuracy of response quantification. 

Results 

To illustrate the benefits and pitfalls of various measures assessing the drug response in PDX,               
we collected tumor growth curves from 329 PDX models (Supplementary Table 1). In the              
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following analysis, schematically captured in Figure 1, we evaluate our new KuLGaP growth             
response measure compared to other commonly used response measures: mRECIST ​1​, area            
under the curve (AUC)​6​, angle of response (Angle) ​2​, and tumor growth inhibition (TGI) ​3–5 and                
show that by using experimental data more comprehensively, we achieve a more selective             
measure that better corresponds to patient treatment response. 

KuLGaP, a new measure for in vivo therapy response 
There are two steps to computing KuLGaP. First, two Gaussian Process (GP) models ​7 are fitted                
to the PDX tumor growth curves, one for treated PDXs and another for controls. Second, we                
compute the distance between these two GP models using Kullback-Leibler (KL) divergence ​8​.             
Schematically this process is captured in Figure 1 as well as Supplementary Figure 1. The               
benefit of using the GP models is that they not only model the covariance of measurements                
across time ​7​, but they also model the variance within a group of replicates over time. This, as                  
we show in the paper, is necessary for robust identification of responders. KL divergence that               
we use to compare treated replicates and controls, is often used in machine learning and               
mathematical fields to measure the difference between two distributions, as KL has strong             
theoretical foundation in information theory ​9 and can be quickly computed for many distributions              
10​, including the Gaussian distribution. 
 
We assess the significance of the distance between a treatment and control arms by computing               
an empirical null distribution of distances between all pairs of controls in our dataset. Using this                
empirical distribution, we compute the significance (p-value) of treatment response for each            
PDX model. Models with a p-value less than 0.05 are considered to have a statistically               
significant distance and are classified as responders. The computation of KuLGaP is illustrated             
in Supplementary Figure 1 and is described in depth in Online Methods. 
 
 

 
Figure 1: ​The KuLGaP pipeline overview ​. The human tumor is implanted in a set of mouse replicates                 
(patient derived xenografts; PDX) of which some are treated with a given drug (cases; in red) and some                  
are not (controls; in blue). In addition to KuLGaP we also evaluate four different commonly used                
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measures to assess response status in PDXs. Since none of the existing approaches fully account for                
both variation among replicates and the baseline growth of controls, they tend to over-optimistically              
indicate that a PDX model was a responder. We designed KuLGaP to address these shortcomings: taking                
the variance among replicates into account in a statistically rigorous manner leads to a more accurate                
response categorization. 

Comparison of measures for therapy response 
We performed a comparative analysis of KuLGaP with mRECIST, AUC, Angle and TGI. For              
each pair of measures, we computed the level of agreement between them as the percentage of                
experiments on which both measures give the same classification (responder or non-responder)            
(Figure 2a), the false discovery rate of each measure with respect to each other (Figure 2b) and                 
related the number of compared measures that classified an experiment as a responder to the               
KuLGaP statistic (Figure 2c). 
 
Out of the 329 experiments (with a total of 1437 treatment and 1946 control arms), KuLGaP                
classified 48 as responders (14.6%), compared to 133 (40.4%) for TGI, 187 (56.8%) for              
mRECIST, 186 (56.5%) for AUC and 211 (64.1%) for Angle. Briefly, TGI and Angle depend on                
the ratio of the difference between the first and last growth measurement of treatment and               
control; AUC calculates the cumulative difference at each measurement point between control            
and treatment groups; mRECIST categorises observation of growth in the treatment arm into             
Complete Response (mCR), partial response (mPR), stable disease (mSD) and progressive           
disease (mPD). Following established practice ​11–13​, we consider all PDX with a TGI value of               
more than 0.6 to be responders. Please see Online Methods for a detailed definition of each                
measure. The measures that give the most similar results are AUC and Angle. Our KuLGaP               
measure yields results that are most similar to TGI: the two classifications agree on responders               
and non-responders in 70% of all cases. Overall, KuLGaP is more conservative than all other               
response measures (Figure 2b), indicated by fewer responders called as compared to other             
methods. For example, all but 4 experiments that are classified as responders by KuLGaP              
(92%) are also responders according to mRECIST, whereas only 31 out of 147             
mRECIST-responders are also responders according to KuLGaP. Similarly, all but two of the             
KuLGaP responders are called responders by Angle and AUC, but each of these measures call               
many KuLGaP-nonresponders as responders (141 for AUC, 165 for Angle). Figure 2c shows             
that there is significant disagreement between the different measures. However, KuLGaP           
captures the majority of experiments for which there is a consensus among the other measures. 
 
Further, we compared the continuous measures underlying TGI and KL classifications. We            
found that the Spearman rank correlation coefficient between TGI and the logarithm of the              
Kullback-Leibler divergence is 0.69. However, TGI suffers from some of the drawbacks. We             
identified two main factors contributing to the observed inconsistent calls by the various             
measures: incorporation of the control group information and variance across replicates. We            
use examples from our data in order to illustrate the importance of these factors next. 
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Figure 2: ​Comparison of classifications according to all 5 response measures​. ​a​, Heatmap of              
agreement (fraction of experiments where two measures agree) between the different measures across             
all models. ​b​, Proportion of responders according to the measure in the row that were not considered                 
responders by the measure listed in the column. ​c​, Each row shows a histogram (distribution) of                
KuLGaP KL-values across a group of experiments for which (top to bottom): i) all baseline measures                
(TGI, ​mRECIST, AUC, Angle ​) agreed on responder classification for each experiment in this group              
(top, purple); ii) three out of four baseline measures agreed on responder classification for experiments               
in this group (red); iii-v) 2–0 (green – blue) baseline measures agreed on a responder classification,                
respectively. The solid vertical line indicates the KuLGaP’s threshold for significance (calling an             
experiment a responder) at the 0.05 level, while the dashed lines indicate the 0.1 and 0.001 thresholds,                 
respectively. All experiments to the right of the vertical line are responders according to KuLGaP and all                 
experiments to the left are non-responders according to KuLGaP. 

 

Importance of the control group 
We found that the information contained in the control replicates is crucial for an accurate               
response classification. A downside of the mRECIST classification is that it does not consider              
the control group but makes a classification based on the treatment group alone. The mRECIST               
criterion rates each treatment replicate as either complete response (mCR), partial response            
(mPR), stable disease (mSD) or progressive disease (mPD), and then classifies the experiment             
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by a majority vote of all the replicates where all but mPD ratings are considered a responder ​1​.                  
In Supplementary Figure 2, we show an extreme example of how over-optimistic mRECIST             
would be if mSD were also considered a responder. 
 
Consider the following two NSCLC PDX models ​14​, Model 1 (Figure 3a-c) treated with afatinib               
and Model 2 (Figure 3d-f) treated with erlotinib, respectively. The mRECIST framework reports             
stable disease (mSD) for all replicates of both models, resulting in a “responder” call for both                
models, while KuLGaP called a significant response for Model 2, but not Model 1. Because               
mRECIST does not take into account the control group, it missed the fact that the cancer in the                  
untreated arm grows as fast as in the treated arm in Model 1, but not in Model 2. Therefore the                    
mRECIST classification is the same for both models, despite the clear differences. Both the              
AUC and Angle classifications agree with the KuLGaP classification in both cases, whereas TGI              
classifies both models as non-responders. Because TGI does not consider the length of time for               
which the treated sample is not growing, it fails to detect the tumor arrest in Model 2. In Model 2,                    
the treatment arm of this model took approximately 50 days longer to reach the maximum tumor                
size of its control replicates, and this effect was detected by our KuLGaP approach. 
 

 
Figure 3: ​Importance of the control group ​. ​a​, ​Log-normalized growth curves (afatinib treatment arm in               
red, control arm in blue) of a NSCLC PDX model (Model 1) with five replicates in each arm ​14 ​. ​b​, Means                     
across treatment and control replicates of Model 1 from panel ​a​. ​c​, Classification of Model 1 response to                  
the treatment. ​d, ​Log-normalized growth curves of another NSCLC PDX model (Model 2) with two               
erlotinib treatment replicates and six controls ​14 ​. ​e​,​f ​, Analogous to panels ​b and ​c​, respectively, but for                 
Model 2. The mRECIST measure identifies both models as responders, particularly as stable disease              
(mSD); KulGaP identifies Model 1 as a non-responder and Model 2 as a responder. 
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For Model 1 (Figure 3a-c) we observed a particularly over-optimistic responder call by             
mRECIST; another such example is shown in Supplementary Figure 2. An intuitive way to alter               
the mRECIST classification to be more conservative is to consider only the mCR and mPR               
ratings as a positive response. However this leads to considerable loss of sensitivity, as              
demonstrated in Supplementary Figure 3. The simple alteration cannot fix a fundamental            
mRECIST flaw. 
 
Furthermore, in Supplementary Figure 4a-c we show a colorectal cancer PDX with 8 control and               
8 treatment replicates treated with evofosfamide. All measures apart from KuLGaP classified            
this model as a responder. The mRECIST measure fails to take into account the fact that the                 
treatment and control groups grow at a similar pace, whereas Angle and AUC only consider the                
last day of measurement and therefore miss the greater similarity of the treatment and control               
growth curves throughout the experiment. We provide an additional example supporting our            
claims in Supplementary Figure 4d-f.  
 

Accounting for variance among replicates is important 
Accounting for the variance among replicates leads to greater selectivity in declaring a             
response. An illustration of this scenario is given by the breast cancer PDX experiment with 15                
paclitaxel treated and 12 control replicates shown in Figure 4a-c. While there is a substantial               
difference in the means between the control and treatment groups (Figure 4b), there is also               
significant variance among replicates in each group (Figure 4a). TGI, just like mRECIST, AUC              
and Angle measures, classifies this model as a responder. Our KuLGaP takes into account the               
variance among replicates and shows that the variance within control and treatment arms is big               
enough to remove the significance of the mean difference, thus classifying this model as a               
non-responder. 
 
Next, consider the following experiment, where 10 replicates of an NSCLC PDX model were              
treated with dacomitinib (Figure 4d-f). The Angle and AUC measures, which do not take into               
account variance, identify this PDX model as a responder. Our KuLGaP measure picks up on               
the fact that the variance among replicates in the treatment and control groups is larger than the                 
mean difference between the two groups, and therefore declares the experiment a            
non-responder. In other words, incorporation of variance leads to greater selectivity in declaring             
response. The TGI measure concurs with the KuLGaP assessment of a non-responder. The             
mRECIST classification (which does not consider the control group) is stable disease (mSD),             
and thus the model is erroneously considered responsive. 
 
An additional example, provided in Supplementary Figure 5, shows an experiment where even a              
large difference between the mean growth of the treatment and control arms can be deceptive.               
Upon closer inspection of the individual replicates it is clear that any difference in the mean                
behaviour is dwarfed by the large variance, leading to a false positive call by all measures but                 
KuLGaP. 
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Figure 4: ​Importance of accounting for variance​. ​a​, Log-normalized tumor growth curves of a breast               
cancer PDX model ​15 treated with paclitaxel; 15 treatment (in red) and 12 control (in blue) replicates. ​d​,                 
Log-normalized growth curves of a NSCLC PDX model with 10 replicates treated with dacomitinib. ​b​,​e ​,               
Mean treatment and control arm growth curves for each model (​a​,​d ​), respectively. ​c​,​f ​, Computed              
response classifications by all compared response measures for each model (​a​,​d ​), respectively. 

 

Implications of not considering multiple replicates in the study design 
The experimental design of xenograft experiments usually requires the researcher to collect            
responses from multiple replicates of the model treated with the drug comparing them to those               
that are treatment-naive (controls). Since, particularly using PDX, these experiments are           
laborious, a 1x1x1 experimental design was proposed ​1​, where only a single replicate is used               
per drug and model. By testing and publishing a dataset on 1000 PDXs, the NIBR PDXE study                 
greatly contributed to research in this area. Unfortunately, this experimental design has its             
limitations. In this setup the researchers are able to gain insight into the population-level              
response for a given drug. However, this design is not sufficient to draw conclusions for an                
individual patient (that the PDX was derived from) level due to the absence of the variability that                 
can only be derived from the replicates of the same PDX ​16​.  
 
The lack of accounting for the variance in the 1x1x1 design is particularly detrimental for the                
mRECIST classification used in the study​1​. Indeed, it is common for different replicates to have               
different mRECIST classifications. An extreme case is given by an experiment with five             
treatment replicates (see Supplementary Figure 6). Two of the five replicates are classified as              
mPR, two as mSD and one as mPD. Depending on the one randomly chosen replicate in the                 
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n=1 design, the classifications would have been different. This scenario is common since the              
mRECIST classification is often decided early on in the experiment, when the tumors are              
smaller, and therefore more susceptible to measurement errors and noise. In our dataset, we              
find that fewer than 30% (97 out of 329) of the models have the same mRECIST classification                 
across replicates. Almost 60% (197 out of 329) of the models have two different mRECIST               
classifications, of which 39 models (11% of the total) have mRECIST classifications that are not               
adjacent (such as mCR and mSD). In 10% (32 out of 329) of the models, treatment replicates                 
are assigned three different mRECIST classifications. The resulting number is staggering:           
almost half (160 out of 329) of the models have a majority decision that is supported by fewer                  
than 75% of replicates of that model. Consequently, we postulate that the NIBR PDXE study               
using the 1x1x1 design with mRECIST criterion is likely to be unreliable for personalized              
treatment prediction in many clinical scenarios. 

Assessing a study design with fewer replicates 
There is a significant downside to having only a single replicate per experiment. However, a               
large number of replicates increases the cost, and the use of research animals. We performed a                
further experiment to see whether a smaller number of replicates would achieve reliable results.              
For each experiment, we randomly sampled without replacement three treatment and three            
control replicates and computed the KuLGaP, mRECIST, Angle, AUC and TGI classifications            
based on this sub-sample. This was repeated three times. Thus, for each model, we obtain 3                
sets of experiments with 3 replicates each. By comparing the responses using only 3 replicates               
to those obtained using the full set of replicates we were able to estimate how robust each                 
response measure is to a reduced number of replicates. We found that KuLGaP and TGI               
measures are particularly robust to this form of subsampling, reaching agreements of 95.9%             
and 94.1% between reduced and original sets. The other measures were less robust, reaching              
87.9% (mRECIST), 86.6% (Angle) and 79.9% (AUC), respectively. This suggests that it may be              
possible to reduce the number of replicates to 3 when studying drug response if necessary.               
However, we have seen that good estimates for the inter-replicate variability are important. This              
can be done better with 6 or more replicates and we therefore encourage the experimenters to                
continue PDX experiments with more replicates to maintain higher accuracy when possible. 

Clinical relevance of KuLGaP 
We compared the cisplatin-vinorelbine combination treatment response in PDXs to data from 13             
corresponding non-small cell lung carcinoma (NSCLC) patients receiving adjuvant         
platinum-based chemotherapy. For each of these patients, we considered both the time to             
recurrence and the growth curves of the corresponding PDX. The time to recurrence was              
measured from the time of starting adjuvant chemotherapy to either recurrence or last follow up.  
 
We found that among patients whose corresponding PDX models were classified as responders             
by KuLGaP, the mean time to recurrence was 4.13 years, compared to 1.02 years in the group                 
of non-responders according to KuLGaP. The difference (3.11 years) was the highest compared             
to all other methods (Table 1). We have found significant disagreement between the measures.              
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There was unanimity between the responders in only four cases (three responders, one             
non-responder) .  
 
Due to the small sample size, it is difficult to assess statistical significance of our clinical                
validation, however the fact that there is a substantial difference in survival of the patients we                
predict as PDX responders, compared to other methods, is very encouraging in terms of clinical               
relevance of our measure compared to all other currently used approaches.  
 

Measure Mean time to relapse 
in responders  

Mean time to relapse 
in non-responders  

Difference 
(years) 

KuLGaP 4.13 (3) 1.02 (10) 3.11 

mRECIST 2.62 (7) 0.97 (6) 1.65 

Angle 2.14 (10) 1.53 (3) 0.61 

AUC 2.02 (11) 0.32 (2) 1.70 

TGI 2.22 (7) 1.25 (6) 0.97 
 
Table 1 ​. ​Patient stratification by corresponding PDX response. Mean time to relapse (in years) in the                
group of responders and non-responders according to each measure. The number of patients is indicated               
in parentheses. 

Discussion 

The problem of drug response prediction is incredibly important for the field of precision              
medicine, but is far from being solved and fraught with many obstacles. Patient derived              
xenografts are certainly a very appealing paradigm for drug response studies due to the ability               
to implant a patient's tumor into a living organism (mouse) where it can potentially act as a                 
realistic simulation of a given patient, and model the spectrum of clinical disease. Among their               
many applications, PDX can be used both for predicting response for individual patients through              
empiric drug treatment, and for identifying biomarker-response relationships across         
heterogenous collections representing the patient populations. In each use case, efficient           
testing of many individual PDX models and drugs, and accurate drug response quantification             
are of critical importance. In the former, false positive or negative predictions have a major               
impact, as patients have a limited opportunity for treatment, and avoidance of ineffective toxic              
therapy is crucial. In the latter, accurate response calls are necessary in order to identify or                
validate predictive biomarkers that can be used to guide patient selection or companion             
diagnostic development in clinical trials. As PDX are not quite the same as a patient and there is                  
variation of response even among identical mice, it is essential to have a robust measure               
quantifying response from these experiments. Our work shows that none of the currently widely              
used response quantification measures take into account the full extent of the available             
experimental data, some ignore controls and others - variation among replicates. In this work we               
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proposed a novel measure, KuLGaP, that provides a theoretically sound solution to this             
problem, which we have shown to be more selective on a large set of PDXs and concordant                 
with patient outcomes in a small study.  
 
Our exploration of real-world examples provides an insight into how we could improve other              
existing measures as well. For example, one way to make the mRECIST measure more              
selective would be to include stable disease (mSD) in the non-responder category.            
Unfortunately, this leads to false negative classifications: an extreme example of this is             
illustrated in Supplementary Figure 3. 
 
The TGI measure is one of the widely used measures in the biomedical literature. Like the most                 
commonly-used measures, TGI is computed based on the mean value of the replicates and              
then thresholded, especially in cases when the number of replicates is small, and therefore fails               
to take into account the variation between replicates. As discussed above, this can have a               
substantial impact on the resulting classification. Moreover, the TGI criterion only takes the first              
and last measurement into account and is therefore highly susceptible to measurement errors             
and fluctuations in the tumor size at the specific timepoints. One way to introduce at least some                 
impact of the variance would be to calculate TGI individually for each control-treatment replicate              
pair and apply a suitable statistical test. However, this approach would not work well in models                
with relatively few replicates per model, since this would lead to a low power in the statistical                 
testing. In order to reduce the impact of a measurement error at the end of the experiment, one                  
could calculate the TGI criterion based on a few of the measurement points and then take a                 
consensus measure. While it may result in an improvement, this solution will still suffer from not                
considering the variance across timepoints.  
 
Overall, in our experience, there is no substitute for a measure that models all of the available                 
data simultaneously, taking advantage of the multiple replicates for cases and controls; KuLGaP             
fulfills these criteria. We expect that introducing such a measure will lead to more faithful               
predictions of clinical outcomes, and biomarker-response relationships. We have thus created a            
simple to use web interface to assess the response for any PDX clinical experiments, kulgap.ca,               
that is equally easy to use for both clinicians, technicians and bio-statisticians, which we hope               
will result in wide uptake and reproducible results across drug response research. 

Online Methods 

Data preparation 
At each measured time point of an experiment, we took tumor volume estimated from the tumor                
dimensions as the observed treatment response. The first day of drug administration was             
designated as the initial point of the experiment and we studied the growth curves from that                
point onwards. Next, the growth curve of each PDX replicate, in both treatment and control               
arms, was log-normalized to the tumor size at the starting day of the treatment. The treatment                
response was then assessed from these truncated log-normalized curves. 
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KuLGaP 
There are two steps to computing KuLGaP. In the first, two Gaussian Process (GP) models ​7 are                 
fitted, one for tumor treated PDX and one for controls. In the second step, we compute a                 
symmetrised integrated version of the Kullback-Leibler (KL) divergence between the two GP            
models called Kullback Leibler (KL) divergence. KL is frequently used to compute the distance              
between two distributions. We assessed the significance of divergence between two models by             
computing KL divergences between all pairs of controls. Using this empirical distribution of             
divergences, we computed p-values of significance of response for each PDX model. Models             
with a p-value less than 0.05 were considered to have a statistically significant KL divergence               
were classified as responders. 

Gaussian Processes 
Recall that a set of random variables is said to be ​jointly Gaussian with mean vector       , ..,X1 . Xk          

and covariance matrix  if the joint density of  is given byμ ∈ ℝk Σ ∈ ℝk×k , ..,X1 . Xk  

.(x , .., ) (2π) Σ exp  fX ,...,X1 k 1 . xk =  −k/2| |−1/2 − ( ) Σ ( )( 2
1 − μ T −1 − μ )  

A ​Gaussian Process ​(​GP​) ​17 on an interval with ​mean process and        0, ][ T     0, ]m : [ T → ℝ   
covariance kernel can be considered as an infinite-dimensional analogue  0, ] 0, ]K : [ T × [ T → ℝ         
of the joint Gaussian distribution and is formally defined as a random function             0, ]X : [ T → ℝ

such that for any the joint distribution of is Gaussian with mean    ..0 < t1 < . < tk < T     X(t ), .., (t )( 1 . X k     
vector and covariance matrix  where  for all .m(t ), .., (t ))( 1 . m k ,Σ K(t , )Σi,j =  i tj ,i j  
 
Given a collection of measurements - such as tumor sizes measured for each replicate in a PDX                 
experiment, separately for treatment and control, and a prior GP, one can use Bayes’ theorem               
to find the posterior distribution given the data, see also Bishop ​18​, Chapter 6.4. This was                
implemented using the GPy package ​19 (http://github.com/SheffieldML/GPy). Due to its          
universality ​20 and for theoretical reasons ​7​, the radial basis function (RBF) was chosen as the                
prior distribution, with a variance of 1 and a length scale of 10. This choice for a prior kernel                   
leads to good fits of the data for the posterior distribution. Hyper parameter selection was               
performed by maximizing the likelihood, using the Broyden-Fletcher-Goldfarb-Shannon        
algorithm provided by the package, with seven restarts for each model. The schematic for our               
data analysis pipeline is given in Figure 1. 

Kullback-Leibler Divergence and KuLGaP 
The ​Kullback-Leibler ​divergence ​8 (also called ​relative entropy​) between two probability           
measures and on a set  is given byP Q  

(P ) og P .  DKL  | |Q = ∫
 
l ( dQ

dP ) d    

This is not symmetric, and it will be more convenient to work with the symmetrised version,  
 + .(P , ) DSKL Q =  (P )DKL  | |Q (Q )DKL  | |P  

12 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287573doi: bioRxiv preprint 

https://paperpile.com/c/dfqxuJ/LU85
https://paperpile.com/c/dfqxuJ/JFt3y
https://paperpile.com/c/dfqxuJ/zKuU
https://paperpile.com/c/dfqxuJ/q1r2
https://paperpile.com/c/dfqxuJ/Q1BE
https://paperpile.com/c/dfqxuJ/LU85
https://paperpile.com/c/dfqxuJ/rDR3
https://doi.org/10.1101/2020.09.08.287573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

For two random processes, that is sequences of probability measures          μ , ν  t 0, ])( t  t :  ∈ [ T
indexed by a time interval, we define the integrated symmetrised KL divergence between them              
as: 

(μ, ) (μ , ) dt. DISKL ν = ∫
T

0
DSKL t ν t  

Consider now a particular PDX experiment with a given drug ​D​, lasting a total of days. We               T   
proceed as follows: First, fit a Gaussian process each to the treatment and the control replicates                
and denoting their distributions by and     μ 0, ])μT = ( t

T : t∈ [ T   (μ 0, ])μC =  t
C : t∈ [ T  

respectively, compute the integrated KL divergence between them. This quantity      (μ , )DISKL
T μC      

can be considered as a continuous estimate of the effect of drug ​D​: the larger the KL                 
divergence, the further away the treatment and control replicates are to one another, and              
therefore the larger an effect by drug ​D. 
 
In order to test whether an observed KL value corresponds to a successful anticancer therapy               
we consider the null hypothesis that the treatment and control GPs do not differ significantly     H0            
and test it against the alternative hypothesis that they do differ. We have chosen to estimate       H1           
the distribution of a KL divergence under empirically as follows. Since each control group       H0         
does not receive any treatment, it is reasonable to assume that there is no effect. Therefore we                 
have estimated the null distribution by computing empirical distribution by calculating the KL             
divergence between any pair of control groups from the NSCLC and colorectal PDX. This              
discrete distribution was then smoothed using a Gaussian kernel with bandwidth 0.27, which             
was selected via leave-one-out cross-validation by the statsmodels Python module ​21​. Finally,            
the KuLGaP measurement is calculated as the probability of obtaining a KL divergence value at               
least as large as the one obtained in the experiment (right tail probability/one-sided p-value).              
According to the empirical distribution we obtained, the critical values for the 0.1, 0.05 and 0.001                
confidence levels were 5.61, 7.97 and 13.9, respectively. In particular, since we have chosen              
the 0.05 confidence level, an experiment was classified as a responder according to KuLGaP if               
and only if its KL divergence value was higher than 7.97. The observed values and our estimate                 
of the probability distribution are illustrated in Supplementary Figure 7. 

Modified RECIST (mRECIST) 
The Response Evaluation Criteria In Solid Tumors (RECIST) ​22 is a framework of guidelines for               
evaluation of tumor response to anticancer therapies, based on linear dimensions of tumor             
lesions. Four classifications are possible, from the best to the worst outcome: complete             
response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). The             
modified RECIST (mRECIST) ​1​ allows the classification based on tumor volume growth curves.  
 
For each time ​t​, we determined the relative volume change of the tumor with respect to its                 
reference size , that is we calculated The BestResponse is defined ​1 to  V 0      V V )/V .Δ t = ( t − V 0 0        
be the minimal value of for all times after 3 days. Further, the running average of     VΔ t     t          

is calculated. The minimal value of this running average is called ​1V , ΔV , .., VΔ 0  1 . Δ t              
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BestAvgResponse. The quantities BestResponse and BestAvgResponse are then used to          
obtain the mRECIST classification, using the following thresholds ​1​: 

● BestResponse < -95% and BestAvgResponse < -40%: ​mCR​ (modified complete 
response);  

● BestResponse < -50% and BestAvgResponse < -20%: mPR (modified partial response);  
● BestResponse < 35% and BestAvgResponse < 30%: mSD (modified stable disease);  
● BestResponse > 35% or BestAvgResponse >30%: mPD (modified progressive disease). 

Since the mRECIST criterion does not take into account the presence of multiple replicates, an               
mRECIST value is calculated for each replicate and a majority vote among replicate             
classifications is taken. Following Gao et al. ​1​, an mRECIST classification of mPD was              
considered as a non-responder, while all others as responders. It should be noted that by               
definition, mRECIST is not able to take into account the evolution over time (since it only                
considers the smallest observation), nor the variation between replicates. 

Area under the curve (AUC) 
As done by Duan et al. ​2​, the area under the curve (AUC) under each replicate in the treatment                   
and control groups was calculated. Then, p-values for group comparisons based on AUC were              
calculated using a one-tailed non-parametric Mann–Whitney test. A significance level of p<0.05            
was used to classify each PDX model as either a responder (significant difference) or              
non-responder (no significant difference). 

Response angle 
For each replicate in the treatment and control groups, the angle between the OLS best-fit of the                 
normalized tumor curve and the line y=1 was calculated. Then, the same statistical test as               
described for the AUC was applied to compare pairwise mean angles of response ​2​, yielding a                
classification of each PDX model as either a responder (significant difference) or non-responder             
(no significant difference). 

The tumor growth inhibition (TGI) 

The TGI is computed as follows:  ,GI  T = 1 − ΔyT
Δy  C = Δy  C

Δy  −ΔyC T
  

where and denote the mean difference between last and first measurement for the yΔ C  yΔ T            
control and treatment groups respectively ​5​. Following established practice ​11–13​, we consider all             
PDX with a TGI value of more than 0.6 to be responders. 

Research Reproducibility 
Our code and documentation are open-source and publicly available through the KulGaP            
GitHub repository (​https://github.com/bhklab/pyKuLGaP​). A detailed tutorial describing how to         
run our pipeline and reproduce our analysis results is available in the GitHub repository. A               
virtual machine reproducing the full software environment is available on Code Ocean ​23​. Our              
study complies with the guidelines outlined in ​24–26​. All the data are available in the form of                 
XevaSet objects.  
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