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Abstract

Quantifying response to drug treatment in mouse models of human cancer is important for
treatment development and assignment, and yet remains a challenging task. A preferred
measure to quantify this response should take into account as much of the experimental data as
possible, i.e. both tumor size over time and the variation among replicates. We propose a
theoretically grounded measure, KuLGaP, to compute the difference between the treatment and
control arms. KuLGaP is more selective than currently existing measures, reduces the risk of
false positive calls and improves translation of the lab results to clinical practice.
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Despite tremendous advances in pharmaceutical research, many cancer patients do not
respond to the first line of therapy. In oncology, researchers rely on preclinical models to
investigate drug response to assess whether a drug works against a given cancer type. Of the
available preclinical models, in vivo models tend to capture response to the drugs more faithfully
than in vitro models '. A standard readout from in vivo models is the size of the tumor growth
over time across multiple experimental replicates compared to a set of untreated controls. As
with most biological systems,, tumor growth can vary within and between host mice creating
substantial variance among biological replicates. Determining whether the in vivo model is
actually responsive to the given drug from the set of biological experiments is thus a complex
task. It is essential, however, to make an accurate determination as it has a direct impact on
translation to the clinic.

Many measures have been proposed to quantify response to a treatment for in vivo models'>.
Commonly used measures include mRECIST, area under the curve (AUC) ?, angle of response
(Angle) 2 and the tumor growth inhibition (TGI) *®°. Depending on which measure a researcher
selects, the assessment of response may vyield different, often opposite, conclusions, as none of
the existing measures take full advantage of the data collected across replicates. For example,
mRECIST " is easy to compute but does not take controls into account and is thus unable to
distinguish true disease control (stable disease) from a naturally slow-growing tumor. The angle
of response and TGI only take into account the last measurement rather than the full trajectory
of treatment. All of AUC, angle of response and TGl measures ignore variance in the replicate
experiments, depending only on the mean across replicates. These limitations often lead to an
over-optimistic assessment of response, therefore failing to faithfully recapitulate clinical
observations as can be seen from our experiments.

In this work, we show how multiple sources of variation lead to erroneous response calls and
propose a new response measure, KuLGaP (based on Kullback-Leibler divergence between
Gaussian Processes), which accounts for both experimental controls and variation among
replicates. We test and compare KuLGaP to four widely-used response measures using 329
patient-derived xenograft (PDX) models and show that our measure leads to a more
conservative response call rate with better concordance to clinical response in patients in a
small trial cohort. Indeed, in a cohort of 13 patients and their xenografts, the mean time to
relapse (MTR) in patients we identify as responders from their PDX according to our KuLGaP
measure is at least twice as high as MTR for responders identified by other measures. Our
KuLGaP statistic bridges the gap between the potential of PDX data and its clinical application
by utilizing the full extent of the experimental data. Last but not least, we show that the
robustness of KuLGaP allows for experimental designs with fewer animal replicates without
significant loss in the accuracy of response quantification.

Results

To illustrate the benefits and pitfalls of various measures assessing the drug response in PDX,
we collected tumor growth curves from 329 PDX models (Supplementary Table 1). In the
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following analysis, schematically captured in Figure 1, we evaluate our new KuLGaP growth
response measure compared to other commonly used response measures: mRECIST ', area
under the curve (AUC)®, angle of response (Angle) 2, and tumor growth inhibition (TGI) **® and
show that by using experimental data more comprehensively, we achieve a more selective
measure that better corresponds to patient treatment response.

KuLGaP, a new measure for in vivo therapy response

There are two steps to computing KuLGaP. First, two Gaussian Process (GP) models ’ are fitted
to the PDX tumor growth curves, one for treated PDXs and another for controls. Second, we
compute the distance between these two GP models using Kullback-Leibler (KL) divergence ®.
Schematically this process is captured in Figure 1 as well as Supplementary Figure 1. The
benefit of using the GP models is that they not only model the covariance of measurements
across time ’, but they also model the variance within a group of replicates over time. This, as
we show in the paper, is necessary for robust identification of responders. KL divergence that
we use to compare treated replicates and controls, is often used in machine learning and
mathematical fields to measure the difference between two distributions, as KL has strong
theoretical foundation in information theory ° and can be quickly computed for many distributions
1% including the Gaussian distribution.

We assess the significance of the distance between a treatment and control arms by computing
an empirical null distribution of distances between all pairs of controls in our dataset. Using this
empirical distribution, we compute the significance (p-value) of treatment response for each
PDX model. Models with a p-value less than 0.05 are considered to have a statistically
significant distance and are classified as responders. The computation of KuLGaP is illustrated
in Supplementary Figure 1 and is described in depth in Online Methods.
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Figure 1: The KuLGaP pipeline overview. The human tumor is implanted in a set of mouse replicates
(patient derived xenografts; PDX) of which some are treated with a given drug (cases; in red) and some
are not (controls; in blue). In addition to KuLGaP we also evaluate four different commonly used
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measures to assess response status in PDXs. Since none of the existing approaches fully account for
both variation among replicates and the baseline growth of controls, they tend to over-optimistically
indicate that a PDX model was a responder. We designed KuLGaP to address these shortcomings: taking
the variance among replicates into account in a statistically rigorous manner leads to a more accurate
response categorization.

Comparison of measures for therapy response

We performed a comparative analysis of KuLGaP with mRECIST, AUC, Angle and TGI. For
each pair of measures, we computed the level of agreement between them as the percentage of
experiments on which both measures give the same classification (responder or non-responder)
(Figure 2a), the false discovery rate of each measure with respect to each other (Figure 2b) and
related the number of compared measures that classified an experiment as a responder to the
KuLGaP statistic (Figure 2c).

Out of the 329 experiments (with a total of 1437 treatment and 1946 control arms), KuLGaP
classified 48 as responders (14.6%), compared to 133 (40.4%) for TGl, 187 (56.8%) for
mMRECIST, 186 (56.5%) for AUC and 211 (64.1%) for Angle. Briefly, TGl and Angle depend on
the ratio of the difference between the first and last growth measurement of treatment and
control; AUC calculates the cumulative difference at each measurement point between control
and treatment groups; mMRECIST categorises observation of growth in the treatment arm into
Complete Response (MCR), partial response (mMPR), stable disease (mSD) and progressive
disease (mPD). Following established practice "', we consider all PDX with a TGl value of
more than 0.6 to be responders. Please see Online Methods for a detailed definition of each
measure. The measures that give the most similar results are AUC and Angle. Our KuLGaP
measure yields results that are most similar to TGI: the two classifications agree on responders
and non-responders in 70% of all cases. Overall, KuLGaP is more conservative than all other
response measures (Figure 2b), indicated by fewer responders called as compared to other
methods. For example, all but 4 experiments that are classified as responders by KuLGaP
(92%) are also responders according to mRECIST, whereas only 31 out of 147
mRECIST-responders are also responders according to KuLGaP. Similarly, all but two of the
KuLGaP responders are called responders by Angle and AUC, but each of these measures call
many KuLGaP-nonresponders as responders (141 for AUC, 165 for Angle). Figure 2c shows
that there is significant disagreement between the different measures. However, KuLGaP
captures the majority of experiments for which there is a consensus among the other measures.

Further, we compared the continuous measures underlying TGl and KL classifications. We
found that the Spearman rank correlation coefficient between TGI and the logarithm of the
Kullback-Leibler divergence is 0.69. However, TGl suffers from some of the drawbacks. We
identified two main factors contributing to the observed inconsistent calls by the various
measures: incorporation of the control group information and variance across replicates. We
use examples from our data in order to illustrate the importance of these factors next.
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Figure 2: Comparison of classifications according to all 5 response measures. a, Heatmap of
agreement (fraction of experiments where two measures agree) between the different measures across
all models. b, Proportion of responders according to the measure in the row that were not considered
responders by the measure listed in the column. ¢, Each row shows a histogram (distribution) of
KuLGaP KL-values across a group of experiments for which (top to bottom): i) all baseline measures
(TGI, mRECIST, AUC, Angle) agreed on responder classification for each experiment in this group
(top, purple); ii) three out of four baseline measures agreed on responder classification for experiments
in this group (red); iii-v) 2—0 (green — blue) baseline measures agreed on a responder classification,
respectively. The solid vertical line indicates the KuLGaP’s threshold for significance (calling an
experiment a responder) at the 0.05 level, while the dashed lines indicate the 0.1 and 0.001 thresholds,
respectively. All experiments to the right of the vertical line are responders according to KuLGaP and all
experiments to the left are non-responders according to KuLGaP.

Importance of the control group

We found that the information contained in the control replicates is crucial for an accurate
response classification. A downside of the mRECIST classification is that it does not consider
the control group but makes a classification based on the treatment group alone. The mRECIST
criterion rates each treatment replicate as either complete response (mCR), partial response
(mPR), stable disease (mSD) or progressive disease (mPD), and then classifies the experiment
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by a majority vote of all the replicates where all but mPD ratings are considered a responder .
In Supplementary Figure 2, we show an extreme example of how over-optimistic mMRECIST
would be if mSD were also considered a responder.

Consider the following two NSCLC PDX models ™, Model 1 (Figure 3a-c) treated with afatinib
and Model 2 (Figure 3d-f) treated with erlotinib, respectively. The mRECIST framework reports
stable disease (mSD) for all replicates of both models, resulting in a “responder” call for both
models, while KuLGaP called a significant response for Model 2, but not Model 1. Because
mMRECIST does not take into account the control group, it missed the fact that the cancer in the
untreated arm grows as fast as in the treated arm in Model 1, but not in Model 2. Therefore the
mRECIST classification is the same for both models, despite the clear differences. Both the
AUC and Angle classifications agree with the KuLGaP classification in both cases, whereas TGl
classifies both models as non-responders. Because TGI does not consider the length of time for
which the treated sample is not growing, it fails to detect the tumor arrest in Model 2. In Model 2,
the treatment arm of this model took approximately 50 days longer to reach the maximum tumor
size of its control replicates, and this effect was detected by our KuLGaP approach.
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Figure 3: Importance of the control group. a, Log-normalized growth curves (afatinib treatment arm in
red, control arm in blue) of a NSCLC PDX model (Model 1) with five replicates in each arm . b, Means
across treatment and control replicates of Model 1 from panel a. ¢, Classification of Model 1 response to
the treatment. d, Log-normalized growth curves of another NSCLC PDX model (Model 2) with two
erlotinib treatment replicates and six controls . e,f, Analogous to panels b and c, respectively, but for
Model 2. The mRECIST measure identifies both models as responders, particularly as stable disease
(mSD); KulGaP identifies Model 1 as a non-responder and Model 2 as a responder.
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For Model 1 (Figure 3a-c) we observed a particularly over-optimistic responder call by
MRECIST; another such example is shown in Supplementary Figure 2. An intuitive way to alter
the mRECIST classification to be more conservative is to consider only the mCR and mPR
ratings as a positive response. However this leads to considerable loss of sensitivity, as
demonstrated in Supplementary Figure 3. The simple alteration cannot fix a fundamental
mRECIST flaw.

Furthermore, in Supplementary Figure 4a-c we show a colorectal cancer PDX with 8 control and
8 treatment replicates treated with evofosfamide. All measures apart from KuLGaP classified
this model as a responder. The mMRECIST measure fails to take into account the fact that the
treatment and control groups grow at a similar pace, whereas Angle and AUC only consider the
last day of measurement and therefore miss the greater similarity of the treatment and control
growth curves throughout the experiment. We provide an additional example supporting our
claims in Supplementary Figure 4d-f.

Accounting for variance among replicates is important

Accounting for the variance among replicates leads to greater selectivity in declaring a
response. An illustration of this scenario is given by the breast cancer PDX experiment with 15
paclitaxel treated and 12 control replicates shown in Figure 4a-c. While there is a substantial
difference in the means between the control and treatment groups (Figure 4b), there is also
significant variance among replicates in each group (Figure 4a). TG, just like mRECIST, AUC
and Angle measures, classifies this model as a responder. Our KuLGaP takes into account the
variance among replicates and shows that the variance within control and treatment arms is big
enough to remove the significance of the mean difference, thus classifying this model as a
non-responder.

Next, consider the following experiment, where 10 replicates of an NSCLC PDX model were
treated with dacomitinib (Figure 4d-f). The Angle and AUC measures, which do not take into
account variance, identify this PDX model as a responder. Our KuLGaP measure picks up on
the fact that the variance among replicates in the treatment and control groups is larger than the
mean difference between the two groups, and therefore declares the experiment a
non-responder. In other words, incorporation of variance leads to greater selectivity in declaring
response. The TGl measure concurs with the KuLGaP assessment of a non-responder. The
mMRECIST classification (which does not consider the control group) is stable disease (mSD),
and thus the model is erroneously considered responsive.

An additional example, provided in Supplementary Figure 5, shows an experiment where even a
large difference between the mean growth of the treatment and control arms can be deceptive.
Upon closer inspection of the individual replicates it is clear that any difference in the mean
behaviour is dwarfed by the large variance, leading to a false positive call by all measures but
KuLGaP.
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Figure 4: Importance of accounting for variance. a, Log-normalized tumor growth curves of a breast
cancer PDX model' treated with paclitaxel; 15 treatment (in red) and 12 control (in blue) replicates. d,
Log-normalized growth curves of a NSCLC PDX model with 10 replicates treated with dacomitinib. b,e,
Mean treatment and control arm growth curves for each model (a,d), respectively. ¢,f, Computed
response classifications by all compared response measures for each model (a,d), respectively.

Implications of not considering multiple replicates in the study design

The experimental design of xenograft experiments usually requires the researcher to collect
responses from multiple replicates of the model treated with the drug comparing them to those
that are treatment-naive (controls). Since, particularly using PDX, these experiments are
laborious, a 1x1x1 experimental design was proposed ', where only a single replicate is used
per drug and model. By testing and publishing a dataset on 1000 PDXs, the NIBR PDXE study
greatly contributed to research in this area. Unfortunately, this experimental design has its
limitations. In this setup the researchers are able to gain insight into the population-level
response for a given drug. However, this design is not sufficient to draw conclusions for an
individual patient (that the PDX was derived from) level due to the absence of the variability that
can only be derived from the replicates of the same PDX °.

The lack of accounting for the variance in the 1x1x1 design is particularly detrimental for the
mRECIST classification used in the study’. Indeed, it is common for different replicates to have
different mRECIST classifications. An extreme case is given by an experiment with five
treatment replicates (see Supplementary Figure 6). Two of the five replicates are classified as
mPR, two as mSD and one as mPD. Depending on the one randomly chosen replicate in the
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n=1 design, the classifications would have been different. This scenario is common since the
MRECIST classification is often decided early on in the experiment, when the tumors are
smaller, and therefore more susceptible to measurement errors and noise. In our dataset, we
find that fewer than 30% (97 out of 329) of the models have the same mRECIST classification
across replicates. Almost 60% (197 out of 329) of the models have two different mRECIST
classifications, of which 39 models (11% of the total) have mRECIST classifications that are not
adjacent (such as mCR and mSD). In 10% (32 out of 329) of the models, treatment replicates
are assigned three different mRECIST classifications. The resulting number is staggering:
almost half (160 out of 329) of the models have a majority decision that is supported by fewer
than 75% of replicates of that model. Consequently, we postulate that the NIBR PDXE study
using the 1x1x1 design with mRECIST criterion is likely to be unreliable for personalized
treatment prediction in many clinical scenarios.

Assessing a study design with fewer replicates

There is a significant downside to having only a single replicate per experiment. However, a
large number of replicates increases the cost, and the use of research animals. We performed a
further experiment to see whether a smaller number of replicates would achieve reliable results.
For each experiment, we randomly sampled without replacement three treatment and three
control replicates and computed the KuLGaP, mRECIST, Angle, AUC and TGI classifications
based on this sub-sample. This was repeated three times. Thus, for each model, we obtain 3
sets of experiments with 3 replicates each. By comparing the responses using only 3 replicates
to those obtained using the full set of replicates we were able to estimate how robust each
response measure is to a reduced number of replicates. We found that KuLGaP and TGl
measures are particularly robust to this form of subsampling, reaching agreements of 95.9%
and 94.1% between reduced and original sets. The other measures were less robust, reaching
87.9% (mRECIST), 86.6% (Angle) and 79.9% (AUC), respectively. This suggests that it may be
possible to reduce the number of replicates to 3 when studying drug response if necessary.
However, we have seen that good estimates for the inter-replicate variability are important. This
can be done better with 6 or more replicates and we therefore encourage the experimenters to
continue PDX experiments with more replicates to maintain higher accuracy when possible.

Clinical relevance of KuLGaP

We compared the cisplatin-vinorelbine combination treatment response in PDXs to data from 13
corresponding non-small cell lung carcinoma (NSCLC) patients receiving adjuvant
platinum-based chemotherapy. For each of these patients, we considered both the time to
recurrence and the growth curves of the corresponding PDX. The time to recurrence was
measured from the time of starting adjuvant chemotherapy to either recurrence or last follow up.

We found that among patients whose corresponding PDX models were classified as responders
by KuLGaP, the mean time to recurrence was 4.13 years, compared to 1.02 years in the group
of non-responders according to KuLGaP. The difference (3.11 years) was the highest compared
to all other methods (Table 1). We have found significant disagreement between the measures.
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There was unanimity between the responders in only four cases (three responders, one
non-responder) .

Due to the small sample size, it is difficult to assess statistical significance of our clinical
validation, however the fact that there is a substantial difference in survival of the patients we
predict as PDX responders, compared to other methods, is very encouraging in terms of clinical
relevance of our measure compared to all other currently used approaches.

Measure Mean time to relapse | Mean time to relapse Difference
in responders in non-responders (years)
KuLGaP 413 (3) 1.02 (10) 3.1
mRECIST 2.62 (7) 0.97 (6) 1.65
Angle 2.14 (10) 1.53 (3) 0.61
AUC 2.02 (11) 0.32 (2) 1.70
TGl 2.22(7) 1.25 (6) 0.97

Table 1. Patient stratification by corresponding PDX response. Mean time to relapse (in years) in the
group of responders and non-responders according to each measure. The number of patients is indicated
in parentheses.

Discussion

The problem of drug response prediction is incredibly important for the field of precision
medicine, but is far from being solved and fraught with many obstacles. Patient derived
xenografts are certainly a very appealing paradigm for drug response studies due to the ability
to implant a patient's tumor into a living organism (mouse) where it can potentially act as a
realistic simulation of a given patient, and model the spectrum of clinical disease. Among their
many applications, PDX can be used both for predicting response for individual patients through
empiric drug treatment, and for identifying biomarker-response relationships across
heterogenous collections representing the patient populations. In each use case, efficient
testing of many individual PDX models and drugs, and accurate drug response quantification
are of critical importance. In the former, false positive or negative predictions have a major
impact, as patients have a limited opportunity for treatment, and avoidance of ineffective toxic
therapy is crucial. In the latter, accurate response calls are necessary in order to identify or
validate predictive biomarkers that can be used to guide patient selection or companion
diagnostic development in clinical trials. As PDX are not quite the same as a patient and there is
variation of response even among identical mice, it is essential to have a robust measure
quantifying response from these experiments. Our work shows that none of the currently widely
used response quantification measures take into account the full extent of the available
experimental data, some ignore controls and others - variation among replicates. In this work we
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proposed a novel measure, KuLGaP, that provides a theoretically sound solution to this
problem, which we have shown to be more selective on a large set of PDXs and concordant
with patient outcomes in a small study.

Our exploration of real-world examples provides an insight into how we could improve other
existing measures as well. For example, one way to make the mRECIST measure more
selective would be to include stable disease (mSD) in the non-responder category.
Unfortunately, this leads to false negative classifications: an extreme example of this is
illustrated in Supplementary Figure 3.

The TGI measure is one of the widely used measures in the biomedical literature. Like the most
commonly-used measures, TGl is computed based on the mean value of the replicates and
then thresholded, especially in cases when the number of replicates is small, and therefore fails
to take into account the variation between replicates. As discussed above, this can have a
substantial impact on the resulting classification. Moreover, the TGI criterion only takes the first
and last measurement into account and is therefore highly susceptible to measurement errors
and fluctuations in the tumor size at the specific timepoints. One way to introduce at least some
impact of the variance would be to calculate TGl individually for each control-treatment replicate
pair and apply a suitable statistical test. However, this approach would not work well in models
with relatively few replicates per model, since this would lead to a low power in the statistical
testing. In order to reduce the impact of a measurement error at the end of the experiment, one
could calculate the TGI criterion based on a few of the measurement points and then take a
consensus measure. While it may result in an improvement, this solution will still suffer from not
considering the variance across timepoints.

Overall, in our experience, there is no substitute for a measure that models all of the available
data simultaneously, taking advantage of the multiple replicates for cases and controls; KuLGaP
fulfills these criteria. We expect that introducing such a measure will lead to more faithful
predictions of clinical outcomes, and biomarker-response relationships. We have thus created a
simple to use web interface to assess the response for any PDX clinical experiments, kulgap.ca,
that is equally easy to use for both clinicians, technicians and bio-statisticians, which we hope
will result in wide uptake and reproducible results across drug response research.

Online Methods

Data preparation

At each measured time point of an experiment, we took tumor volume estimated from the tumor
dimensions as the observed treatment response. The first day of drug administration was
designated as the initial point of the experiment and we studied the growth curves from that
point onwards. Next, the growth curve of each PDX replicate, in both treatment and control
arms, was log-normalized to the tumor size at the starting day of the treatment. The treatment
response was then assessed from these truncated log-normalized curves.
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KuLGaP

There are two steps to computing KuLGaP. In the first, two Gaussian Process (GP) models  are
fitted, one for tumor treated PDX and one for controls. In the second step, we compute a
symmetrised integrated version of the Kullback-Leibler (KL) divergence between the two GP
models called Kullback Leibler (KL) divergence. KL is frequently used to compute the distance
between two distributions. We assessed the significance of divergence between two models by
computing KL divergences between all pairs of controls. Using this empirical distribution of
divergences, we computed p-values of significance of response for each PDX model. Models
with a p-value less than 0.05 were considered to have a statistically significant KL divergence
were classified as responders.

Gaussian Processes
Recall that a set of random variables X, ..., X, is said to be jointly Gaussian with mean vector
u € R* and covariance matrix £ € R if the joint density of X,,...X, is given by

F s o) = QP Pexp (4w (- w).
A Gaussian Process (GP) " on an interval [0,T] with mean process m:[0,T] —R and
covariance kernel K :[0,T] *x[0,7] — R can be considered as an infinite-dimensional analogue
of the joint Gaussian distribution and is formally defined as a random function X :[0,7] — R
such that for any 0 <¢ <... <t <T the joint distribution of (X(¢,), ..., X(¢,) is Gaussian with mean
vector (m(t,),...,m(t,))and covariance matrix X, whereX, = K(z;, 1) forall 4,;.

Given a collection of measurements - such as tumor sizes measured for each replicate in a PDX
experiment, separately for treatment and control, and a prior GP, one can use Bayes’ theorem
to find the posterior distribution given the data, see also Bishop '8, Chapter 6.4. This was
implemented using the GPy package ' (http:/github.com/SheffieldML/GPy). Due to its
universality ?° and for theoretical reasons ’, the radial basis function (RBF) was chosen as the
prior distribution, with a variance of 1 and a length scale of 10. This choice for a prior kernel
leads to good fits of the data for the posterior distribution. Hyper parameter selection was
performed by maximizing the likelihood, using the Broyden-Fletcher-Goldfarb-Shannon
algorithm provided by the package, with seven restarts for each model. The schematic for our
data analysis pipeline is given in Figure 1.

Kullback-Leibler Divergence and KuLGaP

The Kullback-Leibler divergence ® (also called relative entropy) between two probability

measures P and Qon a set is given by

Dy, (P|10) =log (4 ) aP.

This is not symmetric, and it will be more convenient to work with the symmetrised version,
Dy (P,Q) = Dy (P[]Q) + Dg, (O] |P).
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For two random processes, that is sequences of probability measures (u,, v, : t € [0,T])

indexed by a time interval, we define the integrated symmetrised KL divergence between them
as:

Dy (1,v) = fDSKL(Ht’Vt) dt.
0

Consider now a particular PDX experiment with a given drug D, lasting a total of T days. We
proceed as follows: First, fit a Gaussian process each to the treatment and the control replicates
and denoting their distributons by p’=u’:7€[0,7)) and pc = (u°:t€[0,7T))
respectively, compute the integrated KL divergence D, (u”,u¢) between them. This quantity
can be considered as a continuous estimate of the effect of drug D: the larger the KL
divergence, the further away the treatment and control replicates are to one another, and
therefore the larger an effect by drug D.

In order to test whether an observed KL value corresponds to a successful anticancer therapy
we consider the null hypothesis H, that the treatment and control GPs do not differ significantly
and test it against the alternative hypothesis #H, that they do differ. We have chosen to estimate
the distribution of a KL divergence under H, empirically as follows. Since each control group
does not receive any treatment, it is reasonable to assume that there is no effect. Therefore we
have estimated the null distribution by computing empirical distribution by calculating the KL
divergence between any pair of control groups from the NSCLC and colorectal PDX. This
discrete distribution was then smoothed using a Gaussian kernel with bandwidth 0.27, which
was selected via leave-one-out cross-validation by the statsmodels Python module #'. Finally,
the KuLGaP measurement is calculated as the probability of obtaining a KL divergence value at
least as large as the one obtained in the experiment (right tail probability/one-sided p-value).
According to the empirical distribution we obtained, the critical values for the 0.1, 0.05 and 0.001
confidence levels were 5.61, 7.97 and 13.9, respectively. In particular, since we have chosen
the 0.05 confidence level, an experiment was classified as a responder according to KuLGaP if
and only if its KL divergence value was higher than 7.97. The observed values and our estimate
of the probability distribution are illustrated in Supplementary Figure 7.

Modified RECIST (mRECIST)

The Response Evaluation Criteria In Solid Tumors (RECIST) # is a framework of guidelines for
evaluation of tumor response to anticancer therapies, based on linear dimensions of tumor
lesions. Four classifications are possible, from the best to the worst outcome: complete
response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). The
modified RECIST (mRECIST) " allows the classification based on tumor volume growth curves.

For each time t, we determined the relative volume change of the tumor with respect to its
reference size ¥, that is we calculated AV, =(V,—V)/V,. The BestResponse is defined ' to
be the minimal value of A}, for all times ¢ after 3 days. Further, the running average of
AV, AV, ..,AV, is calculated. The minimal value of this running average is called '
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BestAvgResponse. The quantities BestResponse and BestAvgResponse are then used to
obtain the mRECIST classification, using the following thresholds "

e BestResponse < -95% and BestAvgResponse < -40%: mCR (modified complete

response);

e BestResponse < -50% and BestAvgResponse < -20%: mPR (modified partial response);

e BestResponse < 35% and BestAvgResponse < 30%: mSD (modified stable disease);

e BestResponse > 35% or BestAvgResponse >30%: mPD (modified progressive disease).
Since the mRECIST criterion does not take into account the presence of multiple replicates, an
mMRECIST value is calculated for each replicate and a majority vote among replicate
classifications is taken. Following Gao et al. ', an mRECIST classification of mPD was
considered as a non-responder, while all others as responders. It should be noted that by
definition, mRECIST is not able to take into account the evolution over time (since it only
considers the smallest observation), nor the variation between replicates.

Area under the curve (AUC)

As done by Duan et al. %, the area under the curve (AUC) under each replicate in the treatment
and control groups was calculated. Then, p-values for group comparisons based on AUC were
calculated using a one-tailed non-parametric Mann—Whitney test. A significance level of p<0.05
was used to classify each PDX model as either a responder (significant difference) or
non-responder (no significant difference).

Response angle

For each replicate in the treatment and control groups, the angle between the OLS best-fit of the
normalized tumor curve and the line y=1 was calculated. Then, the same statistical test as
described for the AUC was applied to compare pairwise mean angles of response ?, yielding a
classification of each PDX model as either a responder (significant difference) or non-responder
(no significant difference).

The tumor growth inhibition (TGl)

The TGl is computed as follows: 7GI =1— AA—yy;- = ﬂ'—AyzyfAyr ,

where Ay¢and Ay’ denote the mean difference between last and first measurement for the

11-13

control and treatment groups respectively °. Following established practice , we consider all

PDX with a TGI value of more than 0.6 to be responders.

Research Reproducibility

Our code and documentation are open-source and publicly available through the KulGaP
GitHub repository (https://github.com/bhklab/pyKuLGaP). A detailed tutorial describing how to
run our pipeline and reproduce our analysis results is available in the GitHub repository. A
virtual machine reproducing the full software environment is available on Code Ocean #. Our
study complies with the guidelines outlined in 2%, All the data are available in the form of
XevaSet objects.
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