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SUMMARY

Highly multiplexed imaging technologies enable spatial profiling of dozens of
biomarkers in situ. Standard data processing pipelines quantify cell-specific features
and generate object segmentation masks as well as multi-channel images. Therefore,
multiplexed imaging data can be visualised across two layers of information: pixel-
intensities represent the spatial expression of biomarkers across an image while
segmented objects visualise cellular morphology, interactions and cell phenotypes in
their microenvironment.

Here we describe cytomapper, a computational tool that enables visualisation
of pixel- and cell-level information obtained by multiplexed imaging. The package is
written in the statistical programming language R, integrates with the image and
single-cell analysis infrastructure of the Bioconductor project, and allows visualisation
of single to hundreds of images in parallel. Using cytomapper, expression of multiple
markers is displayed as composite images, segmentation masks are coloured based
on cellular features, and selected cells can be outlined in images based on their cell
type, among other functions. We illustrate the utility of cytomapper by analysing 100
images obtained by imaging mass cytometry from a cohort of type 1 diabetes patients
and healthy individuals. In addition, cytomapper includes a Shiny application that
allows hierarchical gating of cells based on marker expression and visualisation of
selected cells in corresponding images. Together, cytomapper offers tools for diverse
image and single-cell visualisation approaches and supports robust cell phenotyping

via gating.
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INTRODUCTION

Immunohistochemistry and immunofluorescence are common approaches for
visualisation of proteins in tissues'. Standard techniques are limited by the number of
markers that can be measured simultaneously, but highly multiplexed
immunohistochemistry and immunofluorescence methods have recently been
developed?-. Sequential staining using fluorescently-labelled antibodies allows high-
resolution multiplexed imaging of tens of proteins simultaneously’8. Other highly
multiplexed approaches use antibodies labelled with oligonucleotides®'® or metal
tags'! 2 to quantify the expression of selected proteins in cell lines and tissues.

One of the latter approaches is imaging mass cytometry (IMC), a highly
multiplexed imaging technique that simultaneously measures the spatial expression
of up to 40 proteins (also referred to as markers) at 1um resolution. During IMC, tissue
slices are stained with metal-conjugated antibodies prior to laser-ablation and ion
detection'!. After data acquisition, raw output files are processed to create multi-
channel images where pixel-intensities represent the measured ion counts per marker.
These images are further processed to create segmentation masks containing object
identifiers corresponding to each identified cell. Segmentation masks can be used to
extract cell-specific measurements such as mean ion counts per marker and
morphological features’s.

Custom scripts*'1:1415 and image analysis software such as ImageJ's,
CellProfiler'”, ilastik'® and QuPath'® are commonly used to process and analyse
multiplexed imaging data. More recently, specialised tools based on graphical user
interfaces (GUIs) have been developed to facilitate the analysis of high-dimensional
spatial expression data?®-23, The GUI toolbox histoCAT was specifically designed for
IMC data to visualise multi-channel images and segmentation masks, and to link
cellular phenotypes to their location within tissues®*. Furthermore, commercial
software developed by Visiopharm, Fluidigm (MCD viewer), IONpath (MIBltracker),
Perkin Elmer (inForm), Indica Labs (Halo), TissueGnostics (StrataQuest) and Leica
(ImageScope) are available to perform multiplexed image analysis'. While GUI-based
tools facilitate data analysis for scientists with little experience of scripting languages,
they are limited to a chosen set of algorithms. With the advent of single-cell RNA

sequencing and mass cytometry technologies, a multitude of user-friendly analysis
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tools25-27 have been developed to perform flexible single-cell data analysis using the

statistical programming language R?8.

Here, we combine the image and single-cell data analysis capabilities of
Bioconductor?® to allow visualisation of pixel- and cell-level information obtained by
highly multiplexed imaging technologies such as IMC. The R/Bioconductor package
cytomapper builds upon the SingleCellExperiment data container?” and uses
EBImage®° functionality to visualise segmentation masks and multi-channel images.
Therefore, cytomapper allows high flexibility in terms of image manipulation (e.g.
transformations) and integrates with common single-cell data analysis strategies (e.g.
cell phenotyping). The cytomapper package further includes a Shiny application to
enable hierarchical gating of cells based on their marker expression and visualisation
of selected cells in corresponding images. We demonstrate the utility of cytomapper
by using it for biological exploration of type 1 diabetes progression and quality control

of image segmentation results.

RESULTS

The cytomapper package enables visualisation of pixel- and cell-level
information obtained by highly multiplexed imaging technologies. The main functions
of the package require a data object that stores cell-specific expression and metadata
information, and data objects that contain either segmentation masks or multi-channel

images.

Technical details and implementation

Single-cell expression values and cell-specific metadata such as cell type
information are stored in a SingleCellExperiment class object?” (Fig. 1A). The
cytomapper package provides the CytolmagelList container that stores single- or multi-
channel images of various sizes (Methods and Fig. 1A, B). These objects can contain
segmentation masks represented as single-channel images; or multi-channel images
where each channel contains pixel-intensities of an individual marker. By providing
information regarding a cell’s object identifier and a unique image name, the plotCells

function colours segmentation masks by marker expression or cell-specific metadata
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(Fig. 1A). Multi-channel images are visualised as composites of up to 6 channels using
the plotPixels function (Fig. 1B). Furthermore, by providing a SingleCellExperiment
object and a CytolmageList object containing segmentation masks, individual cells can

be outlined on composite images.
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Figure 1: Technical implementation of the cytomapper package

(A) Single-cell expression and metadata is stored in a SingleCellExperiment object.
Important entries are img_id, which stores unique image names and cell_id, which
stores the cell object identifiers. The img_id entry is linked to metadata stored in the
CytolmagelList object containing segmentation masks. The plotCells function
combines these two objects to visualise marker expression or cell-specific metadata
on segmentation masks. (B) The plotPixels function requires a CytolmageList object
containing multi-channel images to visualise the combined expression of up to six
markers as composite images. In addition, a SingleCellExperiment object and
CytolmagelList object containing segmentation masks can be provided to outline cells
and colour outlines by cell-specific metadata. The data presented here are a toy
dataset provided by the cytomapper package. Scale bars: 20um

safew |auueyO-IINA



https://doi.org/10.1101/2020.09.08.287516
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287516; this version posted September 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Visualising pancreatic cell types during type 1 diabetes progression

To demonstrate the functionality of the cytomapper package we used it to
visualise type 1 diabetes (T1D) samples acquired by 35-plex IMC'3 (Methods). T1D
is characterised by B cell loss caused by autoreactive immune cell infiltration3! and we
previously imaged pancreatic samples from patients with recent-onset and long-
duration, as well as healthy controls’. We ranked images based on the density of
cytotoxic and helper T cells and selected the image with highest density per condition.
Using the cytomapper package, we visualised all islet cell types, and cytotoxic and
helper T cells in selected images (Fig. 2A). To visually confirm cell phenotypes, we
further displayed cell type specific markers (proinsulin (PIN): B cells; CD4: helper T
cells; CD8a: cytotoxic T cells) on segmentation masks (Fig. 2B) and as composite
images (Fig. 2C). By visualising selected images, we observe, as expected, that (i) B
cells and proinsulin expression are lost during T1D progression and (ii) T cells invade

the microenvironment during early onset of T1D3.
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Figure 2: Islet and immune cell dynamics during T1D progression

For each condition (healthy, recent onset and long-duration T1D), images with the
highest density of cytotoxic and helper T cells were selected.

(A) The SingleCellExperiment object was subsetted to only contain islet cells, and
cytotoxic and helper T cells allowing the selective visualization of those cell types. The
plotCells function colours selected cells by their cell type and leaves all other cells
white. (B) The selected cells are coloured based on the arsinh-transformed expression
of proinsulin (PIN) in yellow, CD4 in blue and CD8a in red marking B cells, helper T
cells and cytotoxic T cells respectively. (C) These markers are visualised as composite
images by merging pixel-level information of marker expression. Raw pixel-intensities
were multiplied by 10, 8 and 10 for PIN, CD4 and CD8a, respectively to increase the
contrast of the images. Scale bar: 100um
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B cell and proinsulin loss during T1D progression

The analysis performed above highlights the use of cytomapper to visualise a
small subset of images. To avoid a biased representation of biological phenomena,
cytomapper also allows the visualisation of tens to hundreds of images in parallel.
Next, we will highlight the loss of B cells and reduction of proinsulin expression across
100 selected images from the full set of 845 images acquired to profile T1D
progression's.

We first ranked the images based on the percentage of 3 cells out of all islet
cells and then used the plotCells function to visualise islet cell types across all
segmentation masks. By labelling the masks based on T1D stage (healthy, recent
onset and long-duration T1D), we observe a loss of 3 cells along disease progression
(Fig. 3).
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Figure 3: Distribution of islet cell types along T1D progression
A set of 100 segmentation masks was ordered based on the frequency of 3 cells out
of all islet cells. We selected islet cell types for visualisation; all other cells are
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displayed in white. The plotCells function was used to colour cell areas based on their
cell type. Segmentation masks are automatically arranged in a grid-like pattern
supporting differences in image dimensions. Image borders are manually coloured by
T1D stage (healthy, recent onset and long-duration). A progressive loss of B cells
(coloured in yellow) can be observed. Scale bar: 100um

To validate these results, we ranked multi-channel images based on the mean
signal of proinsulin expression (mean pixel-intensity of pixels with a detectable signal,
i.e. a signal > 0 counts). We normalised images in a two-step process. First, we
performed a min-max scaling to normalise pixel intensities to 0 and 1 across all
images. Next, we clipped normalised pixel intensities to 0 and 0.05 removing pixels
with high outlying intensities. This approach allows the qualitative comparison of pixel
intensities across images. Observing image-to-image differences in total pixel
intensities can indicate batch effects in staining efficiency?! or biological features such

as the expected loss of proinsulin signal over T1D progression (Fig. 4).
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Figure 4: Proinsulin expression across T1D progression

A set of 100 multi-channel images was ordered by calculating the mean of all pixels
with detectable proinsulin signal. Images were normalised by first scaling pixel
intensities between the lowest and highest pixel intensity across all images. In the
second normalisation step, normalised pixel intensities were clipped at 0 and 0.05.
Image borders are manually coloured by T1D stage (healthy, recent onset and long-
duration). Scale bar: 100um

Visual quality control of segmentation and cell-phenotyping results
Segmentation and labelling of cell phenotypes are essential steps of most
multiplexed imaging pipelines®2. The cytomapper package provides function settings
to outline cells on composite images based on their segmentation results.
Furthermore, outlines can be coloured based on cell-specific metadata, such as cell
type information. Figure 5 presents results of the plotPixels function, where we
selected specific cell types by subsetting the SingleCellExperiment object and provide
segmentation masks. In that way, the segmentation results (shape of the outline) and
cell-labelling results (colour of outline) can be compared to the spatial expression of
individual or multiple markers. We detect good but not perfect overlap between
outlines and marker expression (Fig. 5), highlighting the challenge of image
segmentation and cell type detection. This visual quality control step is recommended
prior to downstream analyses such as clustering or the testing of associations with

clinical data.
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Figure 5: Visual quality control of segmentation and cell-labelling results

(A) — (B) The image with highest T cell density (helper and cytotoxic T cells) was
selected. The marker H3 indicates nuclear stain, (A) CD4 expression marks helper T
cells (Th) and (B) CD8a expression marks cytotoxic T cells (Tc). Individual channels
were multiplied by a constant to increase the contrast (H3: 1.5, CD4: 6, CD8a: 6). The
SingleCellExperiment was subsetted to only contain helper T cells (A) or cytotoxic T
cells (B). Cells are outlined in white based on their cell type.

(C) — (D) All images of healthy donors were ranked based on their 8 cell or a cell
density. The image with the lowest rank sum was selected for visualisation. The
marker glucagon (GCG) indicates a cells (C) while proinsulin (PIN) is expressed in 3
cells (D). Individual channels were multiplied by a constant to increase the contrast
(H3: 6, GCG: 6, PIN: 6). The SingleCellExperiment was subsetted to only contain a
cells (C) or B cells (D). Cells are outlined in white based on their cell type.
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A Shiny application for gating and visualization of cells

Cell phenotyping is commonly performed by clustering and cluster annotation.
However, a number of classification strategies have recently been developed to label
cells based on a given reference®. In the case of highly multiplexed imaging data,
images are usually annotated (e.g. nucleus, cytoplasm, background) on a pixel-level
using tools such as ilastik'318, Alternatively, cells can be labelled based on their
averaged pixel intensity.

To facilitate cell labelling, we developed the cytomapperShiny function, which
opens a shiny GUI that allows hierarchical gating on the expression levels of up to 24
markers. Gating is performed on the raw or transformed expression counts stored in
any assay slot of the SingleCellExperiment (Fig. 6A). Selected cells are either
visualised as coloured objects on segmentation masks (Fig. 6B) or as outlines on
composite images (Fig. 6C). Furthermore, selected cells can be downloaded in form
of a SingleCellExperiment object and for use in downstream processes such as

training and cell type classification.
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Figure 6: The cytomapperShiny GUI

(A) The shiny GUI provided by cytomapper allows gating of cells based on their raw
or transformed expression counts. (B) If only segmentation masks are supplied,
selected cells are coloured as filled objects on their corresponding segmentation
mask. (C) If the user provides multi-channel images, selected cells are outlined on
their corresponding composite image.

Here, we first gated cells based on low E-cadherin (CDH) and high CD3e expression
to select T cells. These cells were further sub-gated for high CD8a and low CD4
expression to select cytotoxic T cells.
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DISCUSSION

The cytomapper package offers a set of functions to visualise cell- and pixel-
level information obtained using highly multiplexed imaging technologies. By
combining the SingleCellExperiment container with the newly developed
CytolmagelList class object, segmentation masks are coloured based on cell-specific
features. Furthermore, pixel-intensities from multiple channels are merged to be
displayed as composite images.

We demonstrated the use of cytomapper with IMC data. However, data
obtained using other multiplexed imaging technologies such as MIBI'2, 4i8, CODEX?®
and t-CyCIF7 and spatial transcriptomics methods including MERFISH3** and
segFISH?3® could be visualised using the cytomapper package. The only requirements
are single-cell read-outs, multi-channel tiff stacks and/or segmentation masks.

The cytomapper package is built upon EBImage®, which offers image analysis
functionality in R. Furthermore, by using the SingleCellExperiment object as a data
container, cytomapper integrates with an extensive set of single-cell data analysis
tools as well as other R packages designed for spatial data analysis?3-36.

We have demonstrated some use cases for the plotCells and plotPixels
function to visualise the cellular heterogeneity within images. By subsetting the
SingleCellExperiment object, cytomapper supports selected visualisation of specific
cell types within tissues. This approach can be of interest when confirming
segmentation and cell labelling results. Furthermore, the specific interaction of two or
more cell types can be highlighted by first selecting the cells of interest.

One key advantage of cytomapper is the visualisation of tens to hundreds of
images in parallel. The grid-like visualisation is not restricted to uniform image
dimensions and signal intensities can be qualitatively compared across images. This
approach is crucial to identify technical or biological staining differences between
images, batches or conditions?!.

The cytomapper package further offers a shiny GUI by calling the
cytomapperShiny function. The application is based on a hierarchical gating strategy,
which is widely used in flow cytometry. We extended this approach with an additional
layer of information by visualising imaging data and displaying gated cells. This allows

to easily monitor the result of the applied gating strategy and increases the quality of
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labelled data. The shiny application provided by cytomapper is unique as it combines
hierarchical gating with image visualisation and integrates seamlessly with the
Bioconductor infrastructure for single-cell analyses. The ease of generating and
improved quality of training data will meet the growing demand for supervised

classification methodss3.

METHODS
Type 1 Diabetes dataset

We highlight the functionality of cytomapper by re-analysing a dataset acquired
by imaging mass cytometry. We previously profiled 1,581 pancreatic islets from 12
donors, 4 of which were non-diabetic, 4 had recently been diagnosed with T1D (< 0.5
years) and 4 had long-standing T1D (> 8 years)'3. For this, we developed an antibody
panel consisting of 35 markers, 2 nuclear stains and PD-1, which was excluded from
analysis in the original paper, to profile the interactions between immune and
pancreatic islet cells during disease progression. A total of 845 images were acquired
where each image captures an individual or few pancreatic islets.

Cells and pancreatic islets were segmented using CellProfiler’” and ilastik'® by
selecting informative channels

(https://github.com/BodenmillerGroup/ImcSegmentationPipeline). Multi-channel tiff

fles were directly created using the imctools python package

(https://github.com/BodenmillerGroup/imctools)'3. llastik was further used to classify

cells into four categories: islet, immune, exocrine and “other”. Islet cells were further
classified into a, B, d and y cells; immune cells were classified into B cells, cytotoxic
and helper T cells, monocytes/macrophages, and neutrophils; exocrine cells were
sub-divided into acinar and ductal cells and “other” cells were classified into

endothelial, stroma and unknown'3.

As an example dataset, we selected one representative donor per disease
stage (non-diabetic, recent onset, long-duration) and randomly selected 100 images
(33 non-diabetic, 33 recent-onset, 34 long-duration) from these three donors,

containing a total of 252,059 cells.
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A SingleCellExperiment object was created to store cell-specific expression
values and metadata. Mean pixel intensities per cell and marker were loaded into the
counts assay slot and arsinh-transformed counts were stored in the exprs assay slot.
Cell-specific (e.g. cell identifier, cell type information, location, area, islet- and
neighbour relationships), patient (e.g. case identifier, disease stage, age, gender) and
image (e.g. image identifier, slide identifier, dimensions) metadata were stored in the
colData entry of the SingleCellExperiment object. Marker-specific metadata such as
metal isotope, marker name, stock concentration and channel identifier were loaded
into the rowData slot. Attention needs to be paid to the correct ordering of the channels

and cells in the SingleCellExperiment object.

We used the loadlmages function provided by cytomapper to read in the multi-
channel tiff stacks and segmentation masks into CytolmageList objects. The correct
image identifier was added to the metadata entry of both CytoImageList objects to link
them to information stored in the SingleCellExperiment object. Furthermore, the
CytolmagelList object storing segmentation masks was scaled by a factor of 65535 to

account for 16-bit scaling.

The CytolmagelList container

The CytolmageList container provides an S4 class object to store multiple
single- or multi-channel images. We created helper functions to get and set the
channel names for multi-channel images and provide a number of functions for
consistent subsetting. In places where segmentation masks are needed for
visualisation, cytomapper will test if the supplied CytolmageList object only stores
single-channel images that contain integer values or 0. The integer values indicate the
numeric identifier of each cell while 0 labels the background of the image.
Furthermore, the CytolmagelList container stores metadata for each image (e.g.
disease type) and supports easy subsetting. When using the cytomapper functionality,
unigue image identifiers must be provided in the CytolmageList metadata (see below).

The CytolmagelList class supports storing images with different x- and y-
dimensions in individual slots. However, each image needs to have the same z-

dimension (same number of channels).
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For convenience, we have created the loadlmages function that reads a single
image or multiple images (in .tiff, .png or .jpeg format) into R while creating a
CytolmagelList object. The user can further provide a pattern argument to selectively

read in a subset of images.

The SingleCellExperiment container

The SingleCellExperiment container is a popular S4 class used in Bioconductor
workflows and tools to store information of individual cells?’. The main slots of the
object store raw and transformed expression data (assays), cell-specific metadata
(colData), gene/marker-specific metadata (rowData) and low-dimensional
embeddings (reducedDims). Here, we store the mean pixel intensities per cell in the
counts assay slot and the arsinh-transformed (using a co-factor of 1) mean pixel
intensities in the exprs assay slot. The cytomapper package combines CytolmagelList
and SingleCellExperiment objects to visualise information contained in the

SingleCellExperiment object on images contained in the CytolmageList object.

Linking images and cell-specific data

As explained above, the CytolmageList object contains multiple single- or multi-
channel images. The unique image IDs need to be stored within the metadata of the
object. In the case of segmentation masks, integer pixel values represent the cells’
object identifiers. This information is used to link cells and images to data stored in the
SingleCellExperiment object. Both, the unique image ID and cell ID, are stored in the
cell-specific colData slot of the SingleCellExperiment object and matching to the
images stored in the CytolmageList object is done internally. In that way, the
SingleCellExperiment object can be subsetted to only contain a specific selection of

cells (see Fig. 2).

The plotCells function

The plotCells function visualises cell-specific marker expression or metadata
on segmentation masks. The main input to the plotCells function is a CytolmageList
object containing the segmentation masks, a SingleCellExperiment object containing

the cell-specific information, and the image ID and cell ID slot entries. Furthermore,
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the user can specify which markers or metadata to visualise, chose the colour scale
per marker or metadata entry and which expression data slot to use (raw or
transformed counts).

The combined expression of up to six markers can be visualised on the
segmentation masks using additive colour mixing. However, we do not recommend
displaying multiple markers with overlapping expression patterns on the segmentation
masks. The user can specify two or more colours for each marker that are interpolated
to generate a marker-specific colour scale. When displaying marker expression on
segmentation masks, colours are scaled between the minimum and maximum
expression count across all cells contained in the SingleCellExperiment object. This is
also true when subsetting images prior to plotting.

Furthermore, individual metadata entries such as cell phenotype can be
visualised on the segmentation mask using automatic or manual colouring. Cells can

either be filled or outlined by metadata entries.

The plotPixels function

The plotPixels function visualises marker expression by displaying a pseudo-
colour representation of pixel-intensities. When visualising single channels, the viridis
colour scale is used to display low intensities as blue and high intensities as yellow.
Between two and six channels can be additively merged to display a pseudo-colour
composite image. The default colours for displaying high intensities are red, green,
blue, cyan, magenta and yellow. However, colours can be changed by providing at
least two colours per channel (minimum and maximum) to generate a continuous
colour scale. Colours are scaled between the minimum and maximum pixel-intensity
across all displayed images. Therefore, when subsetting images before plotting, the
range of pixel-intensities can change.

The user can control the brightness (b), contrast (c) and gamma value (g) of
the displayed image by setting the bcg parameter. The bcg parameters used for the
current figures are listed in the figure legends. Only the contrast parameter was set in
the presented analyses.

Furthermore, the user can provide an additional SingleCellExperiment and

CytolmagelList object containing segmentation masks (see above). By doing so, cells
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can be outlined based on metadata features stored in the SingleCellExperiment object

(see Fig. 5).

Image normalisation

The EBImage R/Bioconductor package®® provides a normalize function that
scales pixel-intensities between 0 and 1 either channel-wise or across all channels.
The user can further provide a clipping range to set pixel-intensities to either O or 1 if
outside of the range. We have adapted this scaling normalization to multiple multi-
channel images. By default, the cytomapper normalize function scales pixel intensities
channel-wise across all images contained in the CytolmageList object. This default
setting is chosen to display staining differences between images?'. The user can also
choose to perform the scaling normalisation per image by setting separatelmages =
TRUE. We further provide a scalelmages function that multiplies the pixel intensities
per image with a constant value. This is useful when read-in pixel intensities are not

correctly scaled.

Additional plotting parameters

The user can modify different features of the displayed images, save the
images or get them returned in R for further analysis. These options are shared
between the plotPixels and plotCells function and are documented under the key
plotting-param in R. The colour of cells on the segmentation masks that are not
contained in the SingleCellExperiment object can be set using the missing_colour
parameter. The background colour can be changed by setting background_colour.
The length, label, size, colour and position of the scale bar can be changed using the
scale_bar parameter. Image titles can be controlled by setting the image._title
parameter. All features of the colour legend can be controlled by setting the legend
parameter. To save the displayed images, the user can specify the save_plot
parameter. This takes a list containing the filename and a scale scalar x. The later
scales the resolution of the image x fold. By setting return_plot = TRUE the displayed
images including image titles and scale bars are returned as a single plot or list of
plots. When setting return_images = TRUE a list of individual images is returned.

However, scale bars and image titles are lost when returning composite images. By
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default, multiple images are plotted on a grid with varying margins between individual
images depending on the maximum image width and height. To further increase the
margin between individual images, the margin parameter can be set. The user can
further set display = “single” to plot individual images in their own graphics device
instead of on a grid. By default, each channel is scaled between its minimum and
maximum before creating the composite image. This behaviour can be supressed and
relative differences between channels can be observed by setting scale = FALSE. By
default, pseudo-colours are interpolated between neighbouring pixels to smooth the
image. Interpolation is supressed by setting interpolate = FALSE.

To suppress the display of the legend, image title and scale bar, their

corresponding parameters can be set to NULL.

The Shiny application

We developed an interactive application using the R packages shiny and
shinydashboard to gate cells based on their expression values and to visualise
selected «cells on images. The cytomapperShiny function takes a
SingleCellExperiment object storing cell-specific features and CytolmageList objects
storing segmentation masks or multi-channel images as input. Upon execution, the
function opens a graphical user interface with two tabs. In the first tab, hierarchical
gating can be performed on expression values stored in the SingleCellExperiment
object. If the user further provides segmentation masks and (optional) multi-channel
images, cytomapperShiny visualises expression values and gated cells on images in
the second tab. By using the R packages svglite and svgPanZoom, the cytomapper
image output is converted to a scalable vector graphic which enables pan and zoom
functionality. Finally, the user can download gated cells in form of a
SingleCellExperiment object. For reproducibility purposes, cytomapperShiny stores
the gates, the gating date and the session information in the metadata slot of the

downloaded SingleCellExperiment object.
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CODE AND DATA AVAILABILITY
All analysis was performed using Bioconductor 3.12, R version 4.0.2 and cytomapper

version 1.1.2 (available from Github with the tag v1.1.2).

All analysis code and instructions for data analysis are available at:

https://github.com/BodenmillerGroup/cytomapper publication

The exact scripts for the current manuscript have been deposited on Zenodo with the
DOI 10.5281/zenod0.3994630 version v1.0

A static website visualising the results can be found at:

https://bodenmillergroup.qgithub.io/cytomapper publication/

A docker container running the exact software used for the analysis can be obtained

from: https://hub.docker.com/r/nilseling/bioconductor cytomapper/tags tag 0.0.1

The release version of the cytomapper package (version 1.0.0) can be installed via
Bioconductor:

https://www.bioconductor.org/packages/release/bioc/html/cytomapper.himl

The development version of the cytomapper package (version 1.1.2 or higher)
containing the cytomapperShiny application is available via:

https://www.bioconductor.org/packages/devel/bioc/html/cytomapper.html or

https://github.com/BodenmillerGroup/cytomapper

The full dataset and the smaller example dataset used in the present publication are
available at:

https://data.mendeley.com/datasets/cydmwsfztj/2
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