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SUMMARY 
Highly multiplexed imaging technologies enable spatial profiling of dozens of 

biomarkers in situ. Standard data processing pipelines quantify cell-specific features 

and generate object segmentation masks as well as multi-channel images. Therefore, 

multiplexed imaging data can be visualised across two layers of information: pixel-

intensities represent the spatial expression of biomarkers across an image while 

segmented objects visualise cellular morphology, interactions and cell phenotypes in 

their microenvironment.  

Here we describe cytomapper, a computational tool that enables visualisation 

of pixel- and cell-level information obtained by multiplexed imaging. The package is 

written in the statistical programming language R, integrates with the image and 

single-cell analysis infrastructure of the Bioconductor project, and allows visualisation 

of single to hundreds of images in parallel. Using cytomapper, expression of multiple 

markers is displayed as composite images, segmentation masks are coloured based 

on cellular features, and selected cells can be outlined in images based on their cell 

type, among other functions. We illustrate the utility of cytomapper by analysing 100 

images obtained by imaging mass cytometry from a cohort of type 1 diabetes patients 

and healthy individuals. In addition, cytomapper includes a Shiny application that 

allows hierarchical gating of cells based on marker expression and visualisation of 

selected cells in corresponding images. Together, cytomapper offers tools for diverse 

image and single-cell visualisation approaches and supports robust cell phenotyping 

via gating.   
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INTRODUCTION 
Immunohistochemistry and immunofluorescence are common approaches for 

visualisation of proteins in tissues1. Standard techniques are limited by the number of 

markers that can be measured simultaneously, but highly multiplexed 

immunohistochemistry and immunofluorescence methods have recently been 

developed2–6. Sequential staining using fluorescently-labelled antibodies allows high-

resolution multiplexed imaging of tens of proteins simultaneously7,8. Other highly 

multiplexed approaches use antibodies labelled with oligonucleotides9,10 or metal 

tags11,12 to quantify the expression of selected proteins in cell lines and tissues.  

One of the latter approaches is imaging mass cytometry (IMC), a highly 

multiplexed imaging technique that simultaneously measures the spatial expression 

of up to 40 proteins (also referred to as markers) at 1μm resolution. During IMC, tissue 

slices are stained with metal-conjugated antibodies prior to laser-ablation and ion 

detection11. After data acquisition, raw output files are processed to create multi-

channel images where pixel-intensities represent the measured ion counts per marker. 

These images are further processed to create segmentation masks containing object 

identifiers corresponding to each identified cell. Segmentation masks can be used to 

extract cell-specific measurements such as mean ion counts per marker and 

morphological features13.  

Custom scripts4,11,14,15 and image analysis software such as ImageJ16, 

CellProfiler17, ilastik18 and QuPath19 are commonly used to process and analyse 

multiplexed imaging data. More recently, specialised tools based on graphical user 

interfaces (GUIs) have been developed to facilitate the analysis of high-dimensional 

spatial expression data20–23. The GUI toolbox histoCAT was specifically designed for 

IMC data to visualise multi-channel images and segmentation masks, and to link 

cellular phenotypes to their location within tissues24. Furthermore, commercial 

software developed by Visiopharm, Fluidigm (MCD viewer), IONpath (MIBItracker), 

Perkin Elmer (inForm), Indica Labs (Halo), TissueGnostics (StrataQuest) and Leica 

(ImageScope) are available to perform multiplexed image analysis1. While GUI-based 

tools facilitate data analysis for scientists with little experience of scripting languages, 

they are limited to a chosen set of algorithms. With the advent of single-cell RNA 

sequencing and mass cytometry technologies, a multitude of user-friendly analysis 
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tools25–27 have been developed to perform flexible single-cell data analysis using the 

statistical programming language R28. 

 

Here, we combine the image and single-cell data analysis capabilities of 

Bioconductor29 to allow visualisation of pixel- and cell-level information obtained by 

highly multiplexed imaging technologies such as IMC. The R/Bioconductor package 

cytomapper builds upon the SingleCellExperiment data container27 and uses 

EBImage30 functionality to visualise segmentation masks and multi-channel images. 

Therefore, cytomapper allows high flexibility in terms of image manipulation (e.g. 

transformations) and integrates with common single-cell data analysis strategies (e.g. 

cell phenotyping). The cytomapper package further includes a Shiny application to 

enable hierarchical gating of cells based on their marker expression and visualisation 

of selected cells in corresponding images. We demonstrate the utility of cytomapper 

by using it for biological exploration of type 1 diabetes progression and quality control 

of image segmentation results.  

 

RESULTS 

The cytomapper package enables visualisation of pixel- and cell-level 

information obtained by highly multiplexed imaging technologies. The main functions 

of the package require a data object that stores cell-specific expression and metadata 

information, and data objects that contain either segmentation masks or multi-channel 

images.   

 

Technical details and implementation 

Single-cell expression values and cell-specific metadata such as cell type 

information are stored in a SingleCellExperiment class object27 (Fig. 1A). The 

cytomapper package provides the CytoImageList container that stores single- or multi-

channel images of various sizes (Methods and Fig. 1A, B). These objects can contain 

segmentation masks represented as single-channel images; or multi-channel images 

where each channel contains pixel-intensities of an individual marker. By providing 

information regarding a cell’s object identifier and a unique image name, the plotCells 

function colours segmentation masks by marker expression or cell-specific metadata 
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(Fig. 1A). Multi-channel images are visualised as composites of up to 6 channels using 

the plotPixels function (Fig. 1B). Furthermore, by providing a SingleCellExperiment 

object and a CytoImageList object containing segmentation masks, individual cells can 

be outlined on composite images.  

 

 
Figure 1: Technical implementation of the cytomapper package 
(A) Single-cell expression and metadata is stored in a SingleCellExperiment object. 
Important entries are img_id, which stores unique image names and cell_id, which 
stores the cell object identifiers. The img_id entry is linked to metadata stored in the 
CytoImageList object containing segmentation masks. The plotCells function 
combines these two objects to visualise marker expression or cell-specific metadata 
on segmentation masks. (B) The plotPixels function requires a CytoImageList object 
containing multi-channel images to visualise the combined expression of up to six 
markers as composite images. In addition, a SingleCellExperiment object and 
CytoImageList object containing segmentation masks can be provided to outline cells 
and colour outlines by cell-specific metadata. The data presented here are a toy 
dataset provided by the cytomapper package. Scale bars: 20μm 
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Visualising pancreatic cell types during type 1 diabetes progression 
To demonstrate the functionality of the cytomapper package we used it to 

visualise type 1 diabetes (T1D) samples acquired by 35-plex IMC13 (Methods). T1D 

is characterised by β cell loss caused by autoreactive immune cell infiltration31 and we 

previously imaged pancreatic samples from patients with recent-onset and long-

duration, as well as healthy controls13. We ranked images based on the density of 

cytotoxic and helper T cells and selected the image with highest density per condition. 

Using the cytomapper package, we visualised all islet cell types, and cytotoxic and 

helper T cells in selected images (Fig. 2A). To visually confirm cell phenotypes, we 

further displayed cell type specific markers (proinsulin (PIN): β cells; CD4: helper T 

cells; CD8a: cytotoxic T cells) on segmentation masks (Fig. 2B) and as composite 

images (Fig. 2C). By visualising selected images, we observe, as expected, that (i) β 

cells and proinsulin expression are lost during T1D progression and (ii) T cells invade 

the microenvironment during early onset of T1D13.    

 
Figure 2: Islet and immune cell dynamics during T1D progression 
For each condition (healthy, recent onset and long-duration T1D), images with the 
highest density of cytotoxic and helper T cells were selected. 
(A) The SingleCellExperiment object was subsetted to only contain islet cells, and 
cytotoxic and helper T cells allowing the selective visualization of those cell types. The 
plotCells function colours selected cells by their cell type and leaves all other cells 
white. (B) The selected cells are coloured based on the arsinh-transformed expression 
of proinsulin (PIN) in yellow, CD4 in blue and CD8a in red marking β cells, helper T 
cells and cytotoxic T cells respectively. (C) These markers are visualised as composite 
images by merging pixel-level information of marker expression. Raw pixel-intensities 
were multiplied by 10, 8 and 10 for PIN, CD4 and CD8a, respectively to increase the 
contrast of the images. Scale bar: 100μm 
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β cell and proinsulin loss during T1D progression 
The analysis performed above highlights the use of cytomapper to visualise a 

small subset of images. To avoid a biased representation of biological phenomena, 

cytomapper also allows the visualisation of tens to hundreds of images in parallel. 

Next, we will highlight the loss of β cells and reduction of proinsulin expression across 

100 selected images from the full set of 845 images acquired to profile T1D 

progression13.  

We first ranked the images based on the percentage of β cells out of all islet 

cells and then used the plotCells function to visualise islet cell types across all 

segmentation masks. By labelling the masks based on T1D stage (healthy, recent 

onset and long-duration T1D), we observe a loss of β cells along disease progression 

(Fig. 3). 

 
Figure 3: Distribution of islet cell types along T1D progression 
A set of 100 segmentation masks was ordered based on the frequency of β cells out 
of all islet cells. We selected islet cell types for visualisation; all other cells are 
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displayed in white. The plotCells function was used to colour cell areas based on their 
cell type. Segmentation masks are automatically arranged in a grid-like pattern 
supporting differences in image dimensions. Image borders are manually coloured by 
T1D stage (healthy, recent onset and long-duration). A progressive loss of β cells 
(coloured in yellow) can be observed. Scale bar: 100μm 
 

 To validate these results, we ranked multi-channel images based on the mean 

signal of proinsulin expression (mean pixel-intensity of pixels with a detectable signal, 

i.e. a signal > 0 counts). We normalised images in a two-step process. First, we 

performed a min-max scaling to normalise pixel intensities to 0 and 1 across all 

images. Next, we clipped normalised pixel intensities to 0 and 0.05 removing pixels 

with high outlying intensities. This approach allows the qualitative comparison of pixel 

intensities across images. Observing image-to-image differences in total pixel 

intensities can indicate batch effects in staining efficiency21 or biological features such 

as the expected loss of proinsulin signal over T1D progression (Fig. 4). 
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Figure 4: Proinsulin expression across T1D progression 
A set of 100 multi-channel images was ordered by calculating the mean of all pixels 
with detectable proinsulin signal. Images were normalised by first scaling pixel 
intensities between the lowest and highest pixel intensity across all images. In the 
second normalisation step, normalised pixel intensities were clipped at 0 and 0.05. 
Image borders are manually coloured by T1D stage (healthy, recent onset and long-
duration). Scale bar: 100μm 
 

Visual quality control of segmentation and cell-phenotyping results 
Segmentation and labelling of cell phenotypes are essential steps of most 

multiplexed imaging pipelines32. The cytomapper package provides function settings 

to outline cells on composite images based on their segmentation results. 

Furthermore, outlines can be coloured based on cell-specific metadata, such as cell 

type information. Figure 5 presents results of the plotPixels function, where we 

selected specific cell types by subsetting the SingleCellExperiment object and provide 

segmentation masks. In that way, the segmentation results (shape of the outline) and 

cell-labelling results (colour of outline) can be compared to the spatial expression of 

individual or multiple markers. We detect good but not perfect overlap between 

outlines and marker expression (Fig. 5), highlighting the challenge of image 

segmentation and cell type detection. This visual quality control step is recommended 

prior to downstream analyses such as clustering or the testing of associations with 

clinical data.   
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Figure 5: Visual quality control of segmentation and cell-labelling results 
(A) – (B) The image with highest T cell density (helper and cytotoxic T cells) was 
selected. The marker H3 indicates nuclear stain, (A) CD4 expression marks helper T 
cells (Th) and (B) CD8a expression marks cytotoxic T cells (Tc). Individual channels 
were multiplied by a constant to increase the contrast (H3: 1.5, CD4: 6, CD8a: 6). The 
SingleCellExperiment was subsetted to only contain helper T cells (A) or cytotoxic T 
cells (B). Cells are outlined in white based on their cell type.  
(C) – (D) All images of healthy donors were ranked based on their β cell or α cell 
density. The image with the lowest rank sum was selected for visualisation. The 
marker glucagon (GCG) indicates α cells (C) while proinsulin (PIN) is expressed in β 
cells (D). Individual channels were multiplied by a constant to increase the contrast 
(H3: 6, GCG: 6, PIN: 6). The SingleCellExperiment was subsetted to only contain α 
cells (C) or β cells (D). Cells are outlined in white based on their cell type. 
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A Shiny application for gating and visualization of cells 
Cell phenotyping is commonly performed by clustering and cluster annotation. 

However, a number of classification strategies have recently been developed to label 

cells based on a given reference33. In the case of highly multiplexed imaging data, 

images are usually annotated (e.g. nucleus, cytoplasm, background) on a pixel-level 

using tools such as ilastik13,18. Alternatively, cells can be labelled based on their 

averaged pixel intensity. 

To facilitate cell labelling, we developed the cytomapperShiny function, which 

opens a shiny GUI that allows hierarchical gating on the expression levels of up to 24 

markers. Gating is performed on the raw or transformed expression counts stored in 

any assay slot of the SingleCellExperiment (Fig. 6A). Selected cells are either 

visualised as coloured objects on segmentation masks (Fig. 6B) or as outlines on 

composite images (Fig. 6C). Furthermore, selected cells can be downloaded in form 

of a SingleCellExperiment object and for use in downstream processes such as 

training and cell type classification. 
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Figure 6: The cytomapperShiny GUI 
(A) The shiny GUI provided by cytomapper allows gating of cells based on their raw 
or transformed expression counts. (B) If only segmentation masks are supplied, 
selected cells are coloured as filled objects on their corresponding segmentation 
mask. (C) If the user provides multi-channel images, selected cells are outlined on 
their corresponding composite image.  
Here, we first gated cells based on low E-cadherin (CDH) and high CD3e expression 
to select T cells. These cells were further sub-gated for high CD8a and low CD4 
expression to select cytotoxic T cells.  
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DISCUSSION 
 The cytomapper package offers a set of functions to visualise cell- and pixel-

level information obtained using highly multiplexed imaging technologies. By 

combining the SingleCellExperiment container with the newly developed 

CytoImageList class object, segmentation masks are coloured based on cell-specific 

features. Furthermore, pixel-intensities from multiple channels are merged to be 

displayed as composite images. 

We demonstrated the use of cytomapper with IMC data. However, data 

obtained using other multiplexed imaging technologies such as MIBI12, 4i8, CODEX9 

and t-CyCIF7 and spatial transcriptomics methods including MERFISH34 and 

seqFISH35 could be visualised using the cytomapper package. The only requirements 

are single-cell read-outs, multi-channel tiff stacks and/or segmentation masks.  

The cytomapper package is built upon EBImage30, which offers image analysis 

functionality in R. Furthermore, by using the SingleCellExperiment object as a data 

container, cytomapper integrates with an extensive set of single-cell data analysis 

tools as well as other R packages designed for spatial data analysis23,36. 

We have demonstrated some use cases for the plotCells and plotPixels 

function to visualise the cellular heterogeneity within images. By subsetting the 

SingleCellExperiment object, cytomapper supports selected visualisation of specific 

cell types within tissues. This approach can be of interest when confirming 

segmentation and cell labelling results. Furthermore, the specific interaction of two or 

more cell types can be highlighted by first selecting the cells of interest. 

One key advantage of cytomapper is the visualisation of tens to hundreds of 

images in parallel. The grid-like visualisation is not restricted to uniform image 

dimensions and signal intensities can be qualitatively compared across images. This 

approach is crucial to identify technical or biological staining differences between 

images, batches or conditions21. 

The cytomapper package further offers a shiny GUI by calling the 

cytomapperShiny function. The application is based on a hierarchical gating strategy, 

which is widely used in flow cytometry. We extended this approach with an additional 

layer of information by visualising imaging data and displaying gated cells. This allows 

to easily monitor the result of the applied gating strategy and increases the quality of 
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labelled data. The shiny application provided by cytomapper is unique as it combines 

hierarchical gating with image visualisation and integrates seamlessly with the 

Bioconductor infrastructure for single-cell analyses. The ease of generating and 

improved quality of training data will meet the growing demand for supervised 

classification methods33.  

 

METHODS 

Type 1 Diabetes dataset 

 We highlight the functionality of cytomapper by re-analysing a dataset acquired 

by imaging mass cytometry. We previously profiled 1,581 pancreatic islets from 12 

donors, 4 of which were non-diabetic, 4 had recently been diagnosed with T1D (< 0.5 

years) and 4 had long-standing T1D (> 8 years)13. For this, we developed an antibody 

panel consisting of 35 markers, 2 nuclear stains and PD-1, which was excluded from 

analysis in the original paper, to profile the interactions between immune and 

pancreatic islet cells during disease progression. A total of 845 images were acquired 

where each image captures an individual or few pancreatic islets. 

 Cells and pancreatic islets were segmented using CellProfiler37 and ilastik18 by 

selecting informative channels 

(https://github.com/BodenmillerGroup/ImcSegmentationPipeline). Multi-channel tiff 

files were directly created using the imctools python package 

(https://github.com/BodenmillerGroup/imctools)13. Ilastik was further used to classify 

cells into four categories: islet, immune, exocrine and “other”. Islet cells were further 

classified into α, β, δ and γ cells; immune cells were classified into B cells, cytotoxic 

and helper T cells, monocytes/macrophages, and neutrophils; exocrine cells were 

sub-divided into acinar and ductal cells and “other” cells were classified into 

endothelial, stroma and unknown13. 

 

As an example dataset, we selected one representative donor per disease 

stage (non-diabetic, recent onset, long-duration) and randomly selected 100 images 

(33 non-diabetic, 33 recent-onset, 34 long-duration) from these three donors, 

containing a total of 252,059 cells. 
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A SingleCellExperiment object was created to store cell-specific expression 

values and metadata. Mean pixel intensities per cell and marker were loaded into the 

counts assay slot and arsinh-transformed counts were stored in the exprs assay slot. 

Cell-specific (e.g. cell identifier, cell type information, location, area, islet- and 

neighbour relationships), patient (e.g. case identifier, disease stage, age, gender) and 

image (e.g. image identifier, slide identifier, dimensions) metadata were stored in the 

colData entry of the SingleCellExperiment object. Marker-specific metadata such as 

metal isotope, marker name, stock concentration and channel identifier were loaded 

into the rowData slot. Attention needs to be paid to the correct ordering of the channels 

and cells in the SingleCellExperiment object. 

 

 We used the loadImages function provided by cytomapper to read in the multi-

channel tiff stacks and segmentation masks into CytoImageList objects. The correct 

image identifier was added to the metadata entry of both CytoImageList objects to link 

them to information stored in the SingleCellExperiment object. Furthermore, the 

CytoImageList object storing segmentation masks was scaled by a factor of 65535 to 

account for 16-bit scaling.  

 
The CytoImageList container 

The CytoImageList container provides an S4 class object to store multiple 

single- or multi-channel images. We created helper functions to get and set the 

channel names for multi-channel images and provide a number of functions for 

consistent subsetting. In places where segmentation masks are needed for 

visualisation, cytomapper will test if the supplied CytoImageList object only stores 

single-channel images that contain integer values or 0. The integer values indicate the 

numeric identifier of each cell while 0 labels the background of the image. 

Furthermore, the CytoImageList container stores metadata for each image (e.g. 

disease type) and supports easy subsetting. When using the cytomapper functionality, 

unique image identifiers must be provided in the CytoImageList metadata (see below).  

The CytoImageList class supports storing images with different x- and y-

dimensions in individual slots. However, each image needs to have the same z-

dimension (same number of channels).   

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287516doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287516
http://creativecommons.org/licenses/by-nd/4.0/


For convenience, we have created the loadImages function that reads a single 

image or multiple images (in .tiff, .png or .jpeg format) into R while creating a 

CytoImageList object. The user can further provide a pattern argument to selectively 

read in a subset of images. 

 

The SingleCellExperiment container 

 The SingleCellExperiment container is a popular S4 class used in Bioconductor 

workflows and tools to store information of individual cells27. The main slots of the 

object store raw and transformed expression data (assays), cell-specific metadata 

(colData), gene/marker-specific metadata (rowData) and low-dimensional 

embeddings (reducedDims). Here, we store the mean pixel intensities per cell in the 

counts assay slot and the arsinh-transformed (using a co-factor of 1) mean pixel 

intensities in the exprs assay slot. The cytomapper package combines CytoImageList 

and SingleCellExperiment objects to visualise information contained in the 

SingleCellExperiment object on images contained in the CytoImageList object. 

 

Linking images and cell-specific data 

 As explained above, the CytoImageList object contains multiple single- or multi-

channel images. The unique image IDs need to be stored within the metadata of the 

object. In the case of segmentation masks, integer pixel values represent the cells’ 

object identifiers. This information is used to link cells and images to data stored in the 

SingleCellExperiment object. Both, the unique image ID and cell ID, are stored in the 

cell-specific colData slot of the SingleCellExperiment object and matching to the 

images stored in the CytoImageList object is done internally. In that way, the 

SingleCellExperiment object can be subsetted to only contain a specific selection of 

cells (see Fig. 2). 

 

The plotCells function 

 The plotCells function visualises cell-specific marker expression or metadata 

on segmentation masks. The main input to the plotCells function is a CytoImageList 

object containing the segmentation masks, a SingleCellExperiment object containing 

the cell-specific information, and the image ID and cell ID slot entries. Furthermore, 
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the user can specify which markers or metadata to visualise, chose the colour scale 

per marker or metadata entry and which expression data slot to use (raw or 

transformed counts). 

The combined expression of up to six markers can be visualised on the 

segmentation masks using additive colour mixing. However, we do not recommend 

displaying multiple markers with overlapping expression patterns on the segmentation 

masks. The user can specify two or more colours for each marker that are interpolated 

to generate a marker-specific colour scale. When displaying marker expression on 

segmentation masks, colours are scaled between the minimum and maximum 

expression count across all cells contained in the SingleCellExperiment object. This is 

also true when subsetting images prior to plotting. 

Furthermore, individual metadata entries such as cell phenotype can be 

visualised on the segmentation mask using automatic or manual colouring. Cells can 

either be filled or outlined by metadata entries.    

 

The plotPixels function 

The plotPixels function visualises marker expression by displaying a pseudo-

colour representation of pixel-intensities.  When visualising single channels, the viridis 

colour scale is used to display low intensities as blue and high intensities as yellow. 

Between two and six channels can be additively merged to display a pseudo-colour 

composite image. The default colours for displaying high intensities are red, green, 

blue, cyan, magenta and yellow. However, colours can be changed by providing at 

least two colours per channel (minimum and maximum) to generate a continuous 

colour scale. Colours are scaled between the minimum and maximum pixel-intensity 

across all displayed images. Therefore, when subsetting images before plotting, the 

range of pixel-intensities can change. 

The user can control the brightness (b), contrast (c) and gamma value (g) of 

the displayed image by setting the bcg parameter. The bcg parameters used for the 

current figures are listed in the figure legends. Only the contrast parameter was set in 

the presented analyses. 

Furthermore, the user can provide an additional SingleCellExperiment and 

CytoImageList object containing segmentation masks (see above). By doing so, cells 
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can be outlined based on metadata features stored in the SingleCellExperiment object 

(see Fig. 5).  

 

Image normalisation 

 The EBImage R/Bioconductor package30 provides a normalize function that 

scales pixel-intensities between 0 and 1 either channel-wise or across all channels. 

The user can further provide a clipping range to set pixel-intensities to either 0 or 1 if 

outside of the range. We have adapted this scaling normalization to multiple multi-

channel images. By default, the cytomapper normalize function scales pixel intensities 

channel-wise across all images contained in the CytoImageList object. This default 

setting is chosen to display staining differences between images21. The user can also 

choose to perform the scaling normalisation per image by setting separateImages = 

TRUE. We further provide a scaleImages function that multiplies the pixel intensities 

per image with a constant value. This is useful when read-in pixel intensities are not 

correctly scaled.  

 

Additional plotting parameters 

 The user can modify different features of the displayed images, save the 

images or get them returned in R for further analysis. These options are shared 

between the plotPixels and plotCells function and are documented under the key 

plotting-param in R. The colour of cells on the segmentation masks that are not 

contained in the SingleCellExperiment object can be set using the missing_colour 

parameter. The background colour can be changed by setting background_colour. 

The length, label, size, colour and position of the scale bar can be changed using the 

scale_bar parameter. Image titles can be controlled by setting the image_title 

parameter. All features of the colour legend can be controlled by setting the legend 

parameter. To save the displayed images, the user can specify the save_plot 

parameter. This takes a list containing the filename and a scale scalar x. The later 

scales the resolution of the image x fold. By setting return_plot = TRUE the displayed 

images including image titles and scale bars are returned as a single plot or list of 

plots. When setting return_images = TRUE a list of individual images is returned. 

However, scale bars and image titles are lost when returning composite images. By 
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default, multiple images are plotted on a grid with varying margins between individual 

images depending on the maximum image width and height. To further increase the 

margin between individual images, the margin parameter can be set. The user can 

further set display = “single” to plot individual images in their own graphics device 

instead of on a grid. By default, each channel is scaled between its minimum and 

maximum before creating the composite image. This behaviour can be supressed and 

relative differences between channels can be observed by setting scale = FALSE. By 

default, pseudo-colours are interpolated between neighbouring pixels to smooth the 

image. Interpolation is supressed by setting interpolate = FALSE. 

 To suppress the display of the legend, image title and scale bar, their 

corresponding parameters can be set to NULL.  

 

The Shiny application 

We developed an interactive application using the R packages shiny and 

shinydashboard to gate cells based on their expression values and to visualise 

selected cells on images. The cytomapperShiny function takes a 

SingleCellExperiment object storing cell-specific features and CytoImageList objects 

storing segmentation masks or multi-channel images as input. Upon execution, the 

function opens a graphical user interface with two tabs. In the first tab, hierarchical 

gating can be performed on expression values stored in the SingleCellExperiment 

object. If the user further provides segmentation masks and (optional) multi-channel 

images, cytomapperShiny visualises expression values and gated cells on images in 

the second tab. By using the R packages svglite and svgPanZoom, the cytomapper 

image output is converted to a scalable vector graphic which enables pan and zoom 

functionality. Finally, the user can download gated cells in form of a 

SingleCellExperiment object. For reproducibility purposes, cytomapperShiny stores 

the gates, the gating date and the session information in the metadata slot of the 

downloaded SingleCellExperiment object.  
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CODE AND DATA AVAILABILITY 
All analysis was performed using Bioconductor 3.12, R version 4.0.2 and cytomapper 

version 1.1.2 (available from Github with the tag v1.1.2). 

 

All analysis code and instructions for data analysis are available at:  

https://github.com/BodenmillerGroup/cytomapper_publication 

The exact scripts for the current manuscript have been deposited on Zenodo with the 

DOI 10.5281/zenodo.3994630 version v1.0 

A static website visualising the results can be found at: 

https://bodenmillergroup.github.io/cytomapper_publication/ 

A docker container running the exact software used for the analysis can be obtained 

from: https://hub.docker.com/r/nilseling/bioconductor_cytomapper/tags tag 0.0.1 

 

The release version of the cytomapper package (version 1.0.0) can be installed via 

Bioconductor: 

https://www.bioconductor.org/packages/release/bioc/html/cytomapper.html 

 

The development version of the cytomapper package (version 1.1.2 or higher) 

containing the cytomapperShiny application is available via: 

https://www.bioconductor.org/packages/devel/bioc/html/cytomapper.html or 

https://github.com/BodenmillerGroup/cytomapper 

 

The full dataset and the smaller example dataset used in the present publication are 

available at:  

https://data.mendeley.com/datasets/cydmwsfztj/2 
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