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Short Title Reticulate evolution in a model monkeyflower radiation

Abstract

Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide
understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture
of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of
monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within
Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M.
cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics
of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a
predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of
gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a
single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional
redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn
a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s
D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression
rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of
divergence, low-recombination and adaptation-associated regions support the new species tree, while
high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M.
cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with
Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within
respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser
where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male
sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results
reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation,
suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the
face of gene flow. Our findings further underline the challenges, even in reproductively isolated species,
in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a
phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.

Author Summary

Adaptive radiations, which involve both divergent evolution of new traits and recurrent trait
evolution, provide insight into the processes that generate and maintain organismal diversity.
However, rapid radiations also generate particular challenges for inferring the evolutionary
history and mechanistic basis of adaptation and speciation, as multiple processes can cause
different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the
mode and timing of divergence and the causes of parallel trait evolution require a fine-grained
understanding of the flow of genomic variation through time. In this study, we used genome-
wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant
radiation, the monkeyflowers of Mimulus section Erythranthe. Work over the past half-century
has established the parapatric and putatively sister species M. lewisii (bee-pollinated) and M.
cardinalis (hummingbird-pollinated, as are three other species in the section) as textbook
examples of both rapid speciation via shifts in pollination syndrome and convergent evolution
of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing M.
cardinalis in a clade with other hummingbird-pollinated taxa and demonstrating that abundant
introgression between ancestral lineages as well as in areas of current sympatry contributes to
the real (but misleading) affinities between M. cardinalis and M. lewisii. This work illustrates the
pervasive influence of gene flow and introgression during adaptive radiation and speciation,
and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for
understanding trait divergence, even among well-established species.
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Introduction

Adaptive radiations are engines of biodiversity and thus natural laboratories for understanding
its origins [1-5]. During radiations, natural selection can cause both phenotypic divergence as
populations move into novel environments and convergence when different populations adapt
to similar ecological conditions [6,7]. Divergence provides the opportunity to re-construct the
ecological context and genetic basis of adaptive walks, while repeated evolution can reveal the
importance of genetic vs. environmental constraints in shaping convergent phenotypes
[reviewed in 8]. Furthermore, the processes of adaptation and speciation are tightly intertwined
in radiations, and recent radiations help reveal the processes and genes underlying lineage
diversification [9-12]. A strong phylogenetic framework is necessary both for understanding the
process of speciation and for tracing phenotypic evolution across species (e.g. inferring
convergence vs. a single mutational origin for similar phenotypes) [13]. However, the rapid
diversification characteristic of adaptive radiations also confounds definition of a single "species
tree" [14]. Thus, understanding adaptation and speciation within radiations requires a
phylogenomic context that captures the diversity of evolutionary histories across recently

diverged genomes [4,15,16].

Two processes confound the reconstruction of a universal genome-wide "species tree", while
also affecting the course of adaptation and speciation [17]. Incomplete lineage sorting (ILS), in
which different lineages randomly sample the same alleles polymorphic in their ancestor, can
persist after rapid splitting of ancestral populations [18]. In addition, incomplete reproductive
isolation between incipient species in areas of sympatry may allow gene flow and introgression
that lead to further discordance between the genealogical relationships at any one locus and the
deeper species relationships. Both ILS and introgression complicate the inference of species
trees, but they have very different impacts on the processes of adaptation. In particular,
introgression may cause adaptive alleles, and thus the traits they confer, to be shared among
species that are not otherwise closely related [12,19]. Conversely, hybridizing species that are
not closely related may appear as sister taxa in phylogenies strongly influenced by introgressed
loci (whether those loci are adaptive or not). Such introgression is empirically common, as
evidenced by sharp discordance between nuclear and organellar (mitochondrial, chloroplast)
phylogenetic trees in many plants [20]and animals [21]. Thus, disentangling the contributions
of ILS and introgression to the flow of genetic variation through radiations is important not
only to properly characterize the historical process of adaptive evolution, but to reveal its

mechanisms. Applying phylogenomic approaches across entire radiations can provide nuanced
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insight into the constraints, causes, and consequences of adaptive evolution, as well as the

processes that structure sequence evolution across complex genomes.

Here, we present phylogenomic re-assessment of the evolutionary history of a classic adaptive
radiation in flowering plants, the monkeyflowers of Mimulus section Erythranthe [22,23]. [Note:
Many Mimulus, including these taxa, have been re-named as genus Erythranthe [24], and the
species within this section have been split [25]. However, in the absence of a well-resolved
family-level phylogeny, and for consistency with previous work [see 26], we refer to these taxa
as Mimulus section Erythranthe and retain previous species names [23]]. The Erythranthe section
contains five taxa with flowers adapted for hummingbird pollination (narrow red corolla tubes
with little or no landing pad for bees, often abundant nectar; Fig 1). Mimulus cardinalis is
common in riparian habitats across a broad latitudinal range in western North America (Baja
California to Oregon), with disjunct populations occurring in Arizona. The other four
hummingbird taxa (M. eastwoodiae, M. rupestris, M. verbenaceus, M. nelsonii) are each restricted to
much smaller "sky-island" ranges in the southwestern U.S. and Mexico [22,23,25]. The
bumblebee-pollinated high-elevation specialist M. lewisii is also widespread, with a dark-pink
flowered Northern race found in the Rocky and Cascade Mountain ranges [retained as E. lewisii
in 25] and a pale-pink flowered Sierran race broadly parapatric with M. cardinalis in the Sierra
Nevada Mountains of California [renamed E. erubescens in 25]. Both the hummingbird- and
bee-pollinated taxa are primarily perennial, occurring in soils that remain wet throughout the
summer growing season. The eighth taxon, M. parishii, is a routinely self-pollinating small-
flowered annual occurring in seasonally wet habitats in southern California (e.g. desert washes).
Despite their distinct pollination syndromes, all these taxa are at least partially cross-compatible
[27,28] and natural hybrids have been reported between M. cardinalis and the two taxa with
which it co-occurs in California (M. lewisii and M. parishii) [29]. The combination of diversity
and genetic tractability has made the Erythanthe radiation a model for understanding the genetic

basis of both floral trait divergence and species barriers for over half a century [27].

In ecological genetic work prior to the establishment of molecular phylogenetics, the extensive
range overlap and relatively high cross-compatibility Sierran M. lewisii and M. cardinalis
established them as sister taxa locally adapted to distinct elevational and pollinator niches
[27,28,30-32]. Groundbreaking QTL mapping studies of species differences and barriers
identified the few major loci underlying each aspect of their pollination syndromes, including
nectar volume and corolla traits [30,31], and demonstrated that these conferred pollinator
specificity and assortative mating between experimental hybrids in sympatry [29,32,33]. It has

since become clear that inferring the genetic architecture of adaptation in this pair is
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A M. cardinalis
— M. lewisii, Northern
— M. lewisii, Sierran

M. parishii

— M. verbenaceus
— M. eastwoodiae
— 7 <M. rupestris

# M. bicolor

Fig 1. Mimulus section Erythranthe, with M. bicolor as an outgroup, as defined by
previous phylogenetic treatments [22,23,41]. The two putative derivations of hummingbird
pollination shown in red.

complicated by multiple inversions and translocations that suppress free recombination in
hybrids [34,35] and also cause underdominant F, sterility [36]. However, the inference that
major Mendelian genes define and isolate florally-distinct sister monkeyflowers has been
strengthened by the molecular dissection of loci underlying pigmentation variants [37,38],
contributing to establishment of this group a model system for floral evolution and

development [reviewed in 39]

Sister status for parapatric M. cardinalis and M. lewisii, and the companion inference of two
distinct evolutionary transitions from bee to hummingbird pollination (one in the four sky-
island taxa, one more recently in M. cardinalis; Fig 1) have remained well-accepted in the post-
phylogenetic era. Indeed, after phylogenetic work redefining Mimulus [40], re-organizing the
North American sections of the genus [41] and re-tracing the evolution of hummingbird
pollination in section Erythranthe [23], the system became a textbook example of rapid
convergent evolution, as well as speciation by large-effect adaptive alleles [e.g. 42]. However,
due to low resolution in universal loci used for plant phylogenetics at the time [41], the within-
Erythranthe tree was primarily based on genome-wide population genetic markers (amplified
fragment length polymorphisms, AFLPs) [23]. There are many reasons why either a few slowly-

evolving loci or an aggregate of AFLPs might not clearly reflect the true evolutionary history of
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a given set of species, especially in a recent radiation [15]. Furthermore, while the hummingbird
pollination syndrome is one of the most distinct, repeatable, and reproductively-isolating peaks
in the adaptive landscape of flowering plants [43-47], inference about the genetic mechanisms of
convergence and divergence in pollination syndrome among close relatives requires a well-
resolved phylogenetic context. Thus, phylogenomic re-assessment of this group is an essential
foundation for the study of micro- and macro-evolutionary processes in this classic system, as

well as a window into the complex evolutionary histories possible in even a small radiation.

Results and Discussion

Whole-genome species trees suggest a single origin of hummingbird pollination

We used Illumina sequencing of targeted genic regions (gene-capture; see Methods) to survey
genome-wide variation within and among species in Mimulus section Erythranthe. The capture
probes targeted genes 1:1 orthologous among M. lewisii (v 1.1; [23]), M. cardinalis (v 1.1;
www.mimubase.org), and the yellow monkeyflower M. guttatus (v2 reference; www.
Phytozome.jgi.doe.gov). We sequenced accessions of M. lewisii (n = 19), M. cardinalis (n = 34),
and M. parishii (n =2) from across their geographic ranges, as well as a single accession each of
M. verbenaceus, M. rupestris, and M. eastwoodiae (S1 Table). Across 8,151 sequenced capture
regions (7,078,270 bp total) aligned to chromosomes of the v 1.9 M. cardinalis reference genome
assembly (www.mimulubase.org), we obtained 533,649 single nucleotide variants (SNVs). The
bee-pollinated annual Mimulus bicolor was used as a close outgroup to section Erythranthe [23].
Whole-genome pooled population sequencing of M. bicolor revealed an additional 207,238 SNV
between M. bicolor and section Erythranthe within regions defined by the targeted capture
sequencing, totaling 740,887 variant sites. This set of SNVs was divided across 8,151 capture
regions with at least one informative site (median: 67 variable sites; IQR: 42-100; max: 316) and
fully spans the physical and genetic landscape of Mimulus section Erythranthe chromosomes,

thus providing a well-resolved picture of their evolutionary history.

We inferred phylogenetic relationships among species in Section Erythranthe using maximum
likelihood inference of the full dataset using IQ-TREE [48] and by assessing variation in gene
tree topologies under the multispecies coalescent (MSC) with the software ASTRAL III [49].
Both methods produced identical species relationships (Fig 2, S1 Fig). All species-level branches
had 100% bootstrap support (IQ-TREE) and local posterior probabilities of 1 (ASTRAL).
ASTRAL quartet scores (i.e. the proportion of underlying gene trees that support a branch in the
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Fig 2. Genome-wide phylogeny of Mimulus section Erythranthe reveals a single clade
containing all hummingbird-pollinated species. (A) The maximum likelihood phylogeny of
section Erythranthe rooted to M. bicolor. The species level topology is identical to that inferred
with ASTRAL 3. Branches with bootstrap support >90% are bold. Quartet scores are also
given for branches included in the ASTRAL species tree. Clades representing a single
collection location are collapsed (see supplemental Fig S8 for the unrooted phylogeny
including the branch to M. bicolor). Numbers next to M. lewisii and M. cardinalis tips refer to
collection locations in B. (B) Collections of section Erythranthe across the American West.
Sierran M. lewisii collections are offset due to close overlap with M. cardinalis collections in
the Sierra Nevada Range. Location of the M. rupestris accession from Central Mexico not
shown. ‘b": M. bicolor; v: M. verbenaceus; ‘e’: M. eastwoodiae; ‘t’: M. rupestris.

species tree) ranged from 37.4 to 74.0. Branches closer to our inferred root tended to have lower
quartet scores, meaning that a smaller proportion of individual gene trees supported these
branches. We interpret the high level of discordance between the species tree and individual
gene trees on highly supported branches as the combined effect of ILS and introgression (see

below) during the early divergence of ancestral populations.

Phylogenetic and phylogeographic patterns within and between Mimulus lewisii and M.
cardinalis are particularly important, given their status as a model system for understanding
speciation. Each species formed a monophyletic clade with 100% bootstrap support and

phylogeny strongly reflected geography within each. We find a deep split between M. lewisii
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from the Sierra Nevada Range in California (Sierran M. lewisii; E. erubescens) and M. lewisii from
the northern Cascade Range and Rocky Mountains (Northern M. lewisii; E. lewisii). This result
supports the long-held designation of these two clades as ‘races’ [27] or species [25] (hereafter
‘clades’), based on disjunct ranges, distinct vegetative and floral characters, and partial
incompatibility and sterility in some hybrid crosses. M. cardinalis was also structured
geographically, with accessions from Arizona [named E. cinnabarina in 25] forming an outgroup
to M. cardinalis from the Pacific coast. Within the Pacific clade, M. cardinalis from southern
California and northern Baja California were monophyletic and sister to a clade containing M.
cardinalis from the Sierra Nevada. Consistent with the trees, genetic diversity within M. lewisii
was heavily structured between Northern and Sierran M. lewisii (median d..: 0.0117, IQR: 0.0074-
0.0170), and Northern M. lewisii was substantially more diverse (median 7: 0.0037; IQR: 0.0016-
0.0071) than M. lewisii in the Sierra Nevada Range (median m: 0.0015; IQR: 0.0006-0.0042). M.
cardinalis had levels of nucleotide diversity (median rt: 0.0036; IQR: 0.0021-0.0060) similar to
Northern M. lewisii and was more divergent from Sierran M. lewisii (median d..: 0.0151, IQR:
0.0103-0.0203) than the populations of M. lewisii were from each other. Observed heterozygosity
in M. cardinalis decreased with latitude, supporting the hypothesis that the current range of M.
cardinalis is the result of a recent northward expansion [50]. Additional work will be necessary
to determine whether the geographical isolates of both M. lewisii and M. cardinalis represent
fully-fledged species. Regardless, these phenotypically subtle geographic clades make
Erythranthe an interesting model system for understanding the evolution of postzygotic barriers

in allopatry, as well as for the radiation of traits involved in pre-mating isolation in sympatry.

Despite within-species consistency with the previous section Erythranthe phylogeny [23], our
species tree differs radically in the placement of M. cardinalis and M. parishii: both are included
in a single clade which also contains all other hummingbird-pollinated species (hereafter
referred to as Clade H) (Fig 2). The implications for this revision are three-fold. First, the early
history of section Erythranthe is primarily defined by the split between the ancestor of M. lewisii
and the common ancestor of all other species in the group. Second, the model pair of M. lewisii
and M. cardinalis do not share recent common ancestry, at least not to the exclusion of any other
species in the section. Third, the placement of all red-flowered species in a single clade strongly
suggests that the hummingbird pollination syndrome evolved only once in this group and thus
is not a case of phenotypic convergence. We therefore address three further questions raised by
this inference and its contrast to previous work. Do key hummingbird-associated floral traits in
M. cardinalis and other red-flowered species share a functional basis? What is the genomic

evidence for and against close evolutionary relationships between M. cardinalis, M. lewisii, and
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M. parishii? What evolutionary processes are responsible for cross-genome heterogeneity of

gene trees in this recent radiation?

Floral traits in red-flowered species share a functional genetic basis, consistent with a single

evolutionary origin

To further investigate whether M. cardinalis and the sky-island endemics plausibly share a
functional basis for floral traits associated with hummingbird pollination, we conducted a
classic genetic complementation test (see Methods). Key hummingbird syndrome traits of both
M. cardinalis [30,31,34] and the sky-island taxa (e.g. M. rupestris) are recessive to M. lewisii (as
well as M. parishii; data not shown), with F, hybrids between bee and hummingbird taxa
remarkably M. lewisii-like in all floral traits (S2A Fig). Under the historical scenario of
convergent evolution from an ancestor resembling bee-pollinated M. lewisii, the recessive alleles
conferring the hummingbird-associated trait shift (e.g. long styles and anthers, carotenoid
pigment) would be independent mutations fixed in each lineage. Thus, unless each series of
mutations non-functionalized the same set of target genes, we would expect transgressive
segregation in hybrids between the putatively convergent hummingbird taxa. That is, if a causal
a allele for carotenoid production in M. cardinalis (aaBB) is not allelic (functionally
interchangeable or identical by descent) with the independent b allele underlying the phenotype
in another taxon (e.g., M. rupestris or M. verbenaceus; AAbb) the recessive carotenoid phenotype
should be masked in F, hybrids (AaBb). We see precisely the opposite—the flowers of both F,
and F. hybrids between M. cardinalis and M. rupestris resemble the parents in all respects, with
no transgressive M. lewisii-like variation (S2B Fig). Divergence between the hummingbird-
pollinated species in their floral shape and size leads to segregation beyond parental and F,
values in Fs, but there is no evidence of hybrids reverting to the dominant M. lewisii-like
phenotype expected if the genetic basis for the syndrome is not shared. Redundant loss-of-
function mutations or epistatic interactions in highly constrained pigmentation pathways could
plausibly produce these patterns for corolla color [44]; however, the complementation of the
overall floral morphology is best explained by allelism of multiple mutations underlying the
shared aspects of the hummingbird pollination syndrome. This independent line of evidence
reinforces the phylogenetic inference that the hummingbird pollination syndrome evolved in
the common ancestor of M. cardinalis and the sky-island endemics, erasing a classic case of
convergence and providing a new framework for understanding adaptation and speciation in

this model group.
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Together, our genomic and experimental results underline the necessity of an explicitly
phylogenomic context for understanding trait evolution and speciation in rapid radiations.
Hummingbird pollination undoubtedly evolves convergently both within [51] and among
[2,43,52] genera, but pollination syndromes may be particularly prone to complex evolutionary
histories that mimic phenotypic convergence at low phylogenetic resolution. Like anti-predator
mimicry phenotypes in Heliconius butterflies [12], specialized pollination syndromes (e.g.,
hummingbird, moth) evolve to match a pre-existing model [53]. This creates alternative multi-
dimensional adaptive peaks separated by valleys of low fitness, although self-pollination may
flatten this landscape [54]. Thus, the path from bee to hummingbird pollination appears to be a
very narrow and sequential one — that is, a red-flowered mutant without the expected nectar
reward or reproductive parts long enough for effective hummingbird pollination may be a poor
match for any pollinator [32,55]. Importantly, an intrinsically jagged adaptive landscape may
also mean that the joint introgression of multiple traits or their joint retention in the face of
homogenizing gene flow (as inferred here) may be common whenever gene exchange occurs
during floral diversification. Both processes may mimic true convergence at a coarse
phylogenetic scale, but more resemble the repeated re-use of ancient alleles during freshwater
adaptation in stickleback populations [56]. As phylogenomic approaches increasingly allow
gene-scale investigation of deeper radiations, and more adaptive genes are identified, such
sharing of old variation may often be revealed to underlie trait diversification and parallelism,

even in otherwise well-resolved species [19,57].

Given the revision of the species tree, it is also worth revisiting the inference that bee-
pollination is ancestral [23], especially given the presence of yellow carotenoid pigments in both
outgroup taxa such as (bee-pollinated) M. bicolor and the hummingbird-pollinated Erythranthe.
Across flowering plants, transitions from bee to hummingbird pollination appear far more
likely than the reverse [47], due either to genetic constraints [51] and/or the ecology of
pollination [55]. Bees tend to ignore red flowers and have nowhere to land on narrowly tubular
and reflexed “hummingbird” corollas whereas hummingbirds often visit classic bumblebee
tlowers; for example, hummingbirds made nearly 20% of the visits to Sierran M. lewisii in
experimental arrays with M. cardinalis and hybrids [33]. Even a low frequency of “mistakes”,
especially when hummingbird visits are abundant and bees rare, may select for hummingbird-
specialization through increased reward, greater attraction, and more precise pollen placement.
In this system, where the bee-specialized pale pink flowers and scent production of Sierran M.
lewisii (E. erubecens) appear locally derived [38,58,59], it is plausible that hummingbird visitation
to a less-specialized Northern M. lewisii-like ancestor precipitating the origin of hummingbird

pollination within Clade H. However, ancestral hummingbird pollination remains formally
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possible and confirming the expected directionality will require reconstruction of the

mutational changes contributing to key trait transitions across the entire radiation.

Extensive introgression creates the evidence for a sister relationship between M. lewisii and

M. cardinalis

Because they are a decades-old model system for understanding the role of reproductive
adaptation in plant speciation, general inferences about the nature of those processes hinge on
M. cardinalis and M. lewisii being parapatric sister species. Moreover, the initial inference of a
close relationship was plausibly based on similar vegetative morphology, shared geography,
and higher genetic compatibility between the Sierran pair than geographically-disjunct
populations within each species [27], as well as previous phylogenetic reconstructions [23].
Given that our whole-genome species tree robustly rejects close sister status for M. lewisii and
M. cardinalis, placing M. cardinalis within the predominantly hummingbird-pollinated Clade H,
it is important to understand the origins of these confounding affinities. Therefore, we examine
our genomic dataset for evidence of a close relationship, describe the genomic distribution of
regions showing a sister relationship, and infer the processes underlying patterns of gene tree
vs. species tree discordance. We used TWISST [60], which quantifies support for different
species tree topologies among a set of inferred gene trees, to compare support for trees
containing Clade H (all red-flowered species, the ‘species tree’; Fig 3A, orange) to support for
trees where M. lewisii and M. cardinalis form an exclusive clade (the ‘lew-card tree’; Fig 3A,
purple). Because we were primarily interested in the relationships between these two focal
species, we were agnostic to the placement of M. parishii in these analyses. Notably, the lew-
card tree was the second-most common topology observed across the genome, next only to our
inferred species tree (Fig 3A). Across the entire dataset consisting of 8,151 gene trees, 37% of
subtrees identified in TWISST supported the species tree while 32% supported the ‘lew-card’
tree. Substantial incomplete lineage sorting (ILS) at the base of this radiation could produce this
pattern, but we hypothesized that introgression between M. lewisii and M. cardinalis was a more
likely source given current parapatry and cross-compatibility. Therefore, to explore
introgression as source of gene-tree/species-tree discordance, we tested for (1) asymmetries in
patterns of shared, discordant allelic states among species, (2) patterns of absolute genetic
divergence indicative of a reticulate evolutionary history, and (3) a correlation between

recombination rate and support for the ‘lew-card’ tree.
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Fig 3. Introgression has generated the evidence for sisterhood of M. lewisii and M.
cardinalis. (A) Genome-wide TWISST weightings for a simplified species tree (orange) and a
simplified “lew-card” tree (purple). (B) Support for the species and lew-card trees as a
function of recombination rate. Lines show cubic spline fits colored as in A. The gray
histogram shows the frequency of genomic windows at a given recombination rate (bin size:
1 cM/Mbp). (C) Topology weights along M. cardinalis Chromosomes 4 and 5. Polygons are
stacked so that weights across all possible topologies sum to 1. Weights are averaged in
windows of 5 genes; black crosses show locations of window midpoints.

We first tested for genome-wide evidence of the presence, timing, and direction of introgression
between M. lewisii and M. cardinalis using Patterson’s D statistic [61] and D...[a five-taxon
expansion of Patterson’s D; 62]. Patterson’s D (also known as the ABBA-BABA test) detected
significant introgression between M. cardinalis and M. lewisii (block jackknife: z-score = 3150.844;
p ~ 0). The absolute value of D depended on which accessions of M. cardinalis and M. lewisii
were used in the test (range: 0.01 - 0.10), but D was always non-zero (S3 Fig), indicating that
introgression was not restricted to a single portion of the current species ranges. Bolstering this
inference, the predominant introgression signal detected by D... was between M. cardinalis and
ancestral M. lewisii (i.e., prior to divergence of its Sierran and Northern clades) (S4A Fig).
Because the early timing of inferred introgression prevents assessment of its direction with D,
alone [62], we used an additional test, D2 [63], which infers the direction of introgression using
expectations from the multispecies network coalescent. Directional introgression from M.

cardinalis into M. lewisii would result in reduced nucleotide divergence between M. lewisii and
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the other species of Clade H (e.g. M. verbenaceus) at genes following the introgression tree
(S4C,D Fig). This is because these alleles sampled from M. lewisii are historically M. cardinalis
alleles and reflect divergence between M. cardinalis and the rest of Clade H. In contrast,
introgression from M. lewisii into M. cardinalis would not affect sequence divergence between
M. lewisii and non-cardinalis members of Clade H. We detected no difference in sequence
divergence between M. lewisii and third taxon M. verbenaceus at genes whose history matched
the species tree versus the introgression tree (t-test: £...=1.12, p = 0.26; S4D Fig). Therefore, we
infer that introgression during this early period mostly moved genetic material asymmetrically

from ancestral M. lewisii into M. cardinalis.

In addition to producing asymmetric allele-sharing on a phylogeny, the distribution of
introgressed DNA should vary predictably across the genome. In particular, the extent to which
neutral introgressed variation establishes or fixes in a recipient population should be strongly
affected by the local recombination rate [reviewed in 16]. At one extreme, adaptive (or selfish)
introgression of a mitochondrial sequence variant could carry both the entire mitochondrial
genome and linked chloroplast variants to fixation across species boundaries [64]. However, the
more plausible assumption is that the vast majority of genomic segments carry variants that are
either neutral or deleterious in a heterospecific background. Because low recombination rates
extend the effects of selection against deleterious incoming alleles over larger physical regions,
such regions may be broadly protected from introgression. In contrast, variants in high-
recombination regions are affected by selection on their individual merits, allowing rates of

(neutral or beneficial) introgression to be higher.

To investigate the relationship between recombination rate and introgression in the Erythranthe
group, we used a dense linkage map of M. cardinalis generated from a subset of gene-capture
loci [65]. This map supported a chromosome-level scaffolding of M. cardinalis and M. lewisii
genomes (since reinforced with additional data to form the current V2 genomes;
www.mimubase.org) and allows confident genetic-physical comparisons (see Methods).
Crossovers in M. cardinalis occur almost exclusively on the ends of each chromosome, with very
little recombination across large, presumably centromeric and pericentromeric, central regions
(S5 Fig). The species tree was the most common topology observed in these low- or non-
recombining regions, which also covered ~68% the physical expanse of the genome (i.e. contigs
scaffolded with the genetic map; 235/345 1IMb windows; Fig 3B; S6 Fig). Support for the lew-

card tree was strongly and positively correlated with recombination rate (Spearman’s p = 0.136,

p= 1x10+; Fig 3B), with the introgression topology becoming predominant at recombination
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rates > 2.5 cM/Mb. Indeed, this pattern is so pervasive that when we inferred the maximum
likelihood phylogeny using only SNVs in windows with recombination rates greater than 5
cM /Mb, M. lewisii and M. cardinalis came out as sister taxa with 100% bootstrap support (57
Fig). Although elevated introgression only at chromosome ends was the dominant genome-
wide pattern, we also observed near-complete replacement of some chromosomes that erased
the underlying species tree (Fig 3C,D; S6 Fig). For example, Chromosome 5 consistently
supports the ‘lew-card’ tree, including across its low-recombination central region (Fig 3C). In
contrast, Chromosome 4 generally showed high support for the species tree (Fig 3C).
Chromosome 4 contains multiple ecologically-relevant quantitative trait loci (QTLs) in crosses
between M. lewisii and M. cardinalis, including the “yellow upper’ (YUP) locus [30], which
switches petal color from pink/purple to red via carotenoid deposition. YUP is embedded in a
large region of completely suppressed recombination in M. lewisii x M. cardinalis mapping
crosses (likely an inversion), in tight linkage with a major flower length QTL and a putative
hybrid lethality factor [34]. Strong selection against heterospecific alleles and low recombination
in hybrids may make this entire chromosome particularly resistant to introgression in areas of

ancestral or recent contact between M. lewisii and M. cardinalis.

Our results corroborate one of most striking results of speciation genomics over the past decade:
introgression between closely related species is widespread and can profoundly affect the
course of evolution. The extent of introgression ranges from one or a few loci involved in
adaptation [12,66] to genome-wide exchange that nearly swamps out past population histories
[67-69]. Our phylogenomic results place introgression between M. lewisii and M. cardinalis near
the upper end of this continuum, so it is not surprising that past sampling of loci could infer
other histories [23]. Similar patterns have been seen in Anopheles mosquitoes [68] and among
some cat species [69], where the predominant genome-wide signal derives from hybridization.
In those animal cases, strong hybrid F, incompatibilities map to the sex chromosomes, giving
them extra weight in inferring the likely species tree. Here, we resolve speciation histories only
because these Mimulus genomes contain large pericentromeric regions that rarely recombine
and are generally resistant to gene exchange. The resulting species-tree inference is bolstered by
a strong chromosome-scale match from a key adaptive chromosome (Chromosome 4)
underlying multiple pollination-syndrome traits. Within the physically small, but highly
recombining and gene-dense ends of chromosomes, admixture predominates. The latter pattern
strongly supports our inference that introgression, rather than a recent split, creates signals of

sisterhood between M. lewisii and M. cardinalis.
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Fig 4. The chloroplast phylogeny demonstrates ancient and recent, geographically local,
introgression. The maximum likelihood phylogeny rooted to M. bicolor is shown. Long
branches to M. verbenaceus, M. rupestris, and M. eastwoodiae are abbreviated (See S8 Fig for
the unrooted, unabbreviated tree). Species and are colored and populations are numbered
as in Fig 2. Branches with >90% bootstrap support are in bold.

Despite strong reproductive barriers between M. cardinalis and M. lewisii, recent

introgression (including chloroplast capture) has occurred in their shared Sierran range

Although broadly parapatric, Sierran Mimulus lewisii and M. cardinalis are reproductively
isolated from one another by a series of strong but incomplete barriers [27,29]. Ecogeographic
isolation [29], elevational specialization [70] and distinct pollination syndromes [32] result in
near-complete pre-mating isolation. In addition, a pair of intrinsically underdominant
chromosomal translocations make F, hybrids >65% pollen-sterile [34,36]. Despite these strong
contemporary barriers, we also find substantial evidence of recent introgression (both nuclear
and organellar) where M. lewisii and M. cardinalis co-occur in the Sierra Nevada Range of
California. Sierran M. lewisii and M. cardinalis formed a monophyletic clade in 14.5% of nuclear
subtrees analyzed with TWISST; this clade was fully supported at 5.9% of gene trees (479 of
8151). Furthermore, chloroplast haplotypes (genotyped using organellar reads skimmed from

the nuclear capture data; see Methods) from Sierran M. lewisii and nearby M. cardinalis
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441  populations form a single clade (100% bootstrap support; Fig 4, S8 Fig). Due to short branch-
442  lengths, we conservatively consider the base of the Sierran M. lewisii clade to be a polytomy;
443  however, moderate bootstrap support (62%) for monophyly of the M. lewisii haplotypes

444  suggests that a single local M. cardinalis cytoplasm may have recently swept through all Sierran
445 M. lewisii populations. Importantly, the shared Sierran range where we infer organellar transfer
446  is the source for the accessions of both species used in previous adaptation and speciation

447  genetic studies, phylogenetics [41], and reference genome assemblies.

448

449  More work will be necessary to understand whether organellar (and nuclear) introgression in
450  the Sierras represents “surfing” of neutral variation introduced from an expanding M. cardinalis
451  range-front [71] or the spread of adaptive or selfish alleles by natural selection. In either case,
452  strong evidence of recent organellar capture [20] reinforces the inference of ancient and recent
453  nuclear introgression in this system, and further suggests that strong ecological and genetic
454  barriers have not been sufficient to isolate the entire genomes of these young taxa upon

455  secondary contact. Although natural hybridization between M. lewisii and M. cardinalis is rare
456  [29] and costly [29,36], a little gene flow goes a long way [72]. This evidence for recent (as well
457  as ancient) introgression re-iterates the importance of an evolutionary genomic framework for
458  understanding the process of speciation, and also underlines the potential for hybridization
459  (even between highly isolated taxa) as a source of beneficial alleles for contemporary evolution

460  in response to changing environments.

461

462  Organellar capture by selfer M. parishii confirms local hybridization with M. cardinalis, and
463  may explain cytoplasmic male sterility in its hybrids with M. lewisii

464

465 Inasecond case of recent introgression, the chloroplast tree shows that selfing species M.

466  parishii has captured the cytoplasmic genomes of the outcrossing M. cardinalis (Fig 4).

467  Specifically, M. parishii chloroplast haplotypes are nested within M. cardinalis variation from
468  their region of range overlap in Southern California. As with the transfer of local M. cardinalis
469  organelles into Sierran M. lewisii, this geographical signal strongly supports recent introgression
470  over alternative sources of phylogenetic discordance. Despite M. parishii’s floral adaptations for
471  self-pollination (tiny pale-pink flowers with little nectar and no separation of male and female
472  organs; Fig 1, Fig S2A), hybrids between the selfer and M. cardinalis have been reported where
473  they co-occur along ephemeral waterways. Given the difference in mating system, we might
474  expect that F, hybrids would have selfer seed parents and would backcross primarily to the

475  outcrossing species, causing introgression of nuclear genes from M. parishii into M. cardinalis, as
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476  seen in the yellow monkeyflower pair, M. nasutus (selfer) and M. guttatus (outcrosser) [73,74].
477  Instead, the highly selfing species appears to have captured the organellar genome of the

478  outcrossing species. This may have been made more likely by the general dominance of M.

479  parishii for floral traits (Fig S2A); in a hybrid swarm, selfing (rather than backcrossing to the
480  outcrossing taxon) may be the primary mode of pollination.

481

482  Recent introgression between these highly divergent taxa may also help explain the puzzling
483  cytoplasmic male sterility (CMS; anthers produce no pollen) in hybrids between M. parishii and
484 M. lewisii [35]. In that study, we found that F. hybrids with the M. parishii cytoplasm exhibit
485  CMS if they do not also carry M. parishii alleles at multiple nuclear restorer loci, whereas

486  reciprocal hybrids do not exhibit anther sterility. CMS is in flowering plant hybrids is common
487  and thought to result from selfish male-sterilizing mitochondrial haplotypes [75] that spread
488  within species by slightly increasing female fitness, in turn favoring the spread of matched

489  nuclear restorers of male fertility [76]. Selfish CMS-restorer dynamics are theoretically plausible
490  and have been empirically demonstrated in other Mimulus species [77], but should not occur in
491  highly selfing taxa where individual female fitness also depends on some pollen production
492  [78]. However, conditions for the spread and establishment of an heterospecific CMS variant,
493  which can co-introgress with its (dominant) restorer allele, may be less restrictive than on a de
494  novo CMS mutation. Thus, while M. parishii x M. lewisii CMS could still reflect independent
495  neutral divergence at the hybrid-interacting loci, M. parishii’s possession of an organellar

496  haplotype recently transfered from neighboring M. cardinalis revives the possibility of a selfish
497 history for this asymmetric hybrid incompatibility.

198 Conclusions

499  Our understanding of adaption and speciation is contingent on understanding the demographic
500  and genetic histories of diverging populations, which the genomics era is proving to be

501  remarkably reticulate. We present the first population genomic dataset in the classic model

502  system of Mimulus section Erythranthe to clarify the history of species divergence and reveal

503  rampant introgression during periods of secondary contact. Definitive work on patterns of

504  reproductive isolation [27,29], abiotic [70] and biotic [32]adaptation, convergence in pollination
505  syndromes [23]and speciation genetics [30,36] have been built on the foundation of close sister
506  status for sympatric M. lewisii and M. cardinalis. However, these model taxa join a growing

507  number of systems in which introgression shapes trait evolution relevant to speciation and

508  obscures deeper histories of divergence. Our analyses suggest that introgressive hybridization —

509  and not recent parapatric speciation — is primarily responsible for the signals of genetic
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closeness captured in previous phylogenetic analyses (Fig 5). Gene flow between M. lewisii and
M. cardinalis, both in the past and in their current zone of sympatry in the Sierran Nevada
Range, causes much of the nuclear genome to support sister species status. Multiple instances
of geographically restricted cytoplasmic introgression reinforce the inference of pervasive
hybridization in this system and may also explain the paradoxical cytoplasmic male sterility
(CMS) of selfer M. parishii. Importantly, our revision of the species tree for Mimulus section
Erythranthe demonstrates that long-term resistance to introgression, rather than convergence,
may be important in shaping multi-trait pollination syndromes during adaptive radiation in
complex landscapes. While shifting the genetic origin of the hummingbird pollination system to
an earlier node, our genome-wide evidence for reticulation during the Erythranthe radiation
only enriches its value for understanding the origins and maintenance of species barriers. The
layers of pre- and post-zygotic isolating mechanisms in current contact zones built up over time
and space, thus providing the opportunity to excavate their evolution and interactions across

the entire radiation.

A

Northern ﬁ
M. lewisii

A
[

)

Sierran y\) 3
| /

M. parishii /‘

M. verbenaceus

Fig 5. A revised evolutionary history of Mimulus section Erythranthe. The three major
introgression events shown contribute to discordance between previous molecular
phylogenies and the revised species tree. The ‘slope’ of each reticulation indicates the
inferred direction of introgression. Clade H is shown as a tritomy due to long external
branches and short internal branches; however, it is plausible that M. parishii and a
hummingbird-pollinated ancestor of M. cardinalis and M. verbenaceus were both separately
derived from an (large, potentially structured) ancestral population that phenotypically
resembled Northern M. lewisii.
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Materials and Methods

Collections and plant material

We obtained wild-collected seeds from throughout the geographic range of Mimulus section
Erythranthe with particular focus on M. lewisii and M. cardinalis populations (Fig 2, Suppl. Table
S1). Plants were grown from seed in a greenhouse at the University of Montana and DNA
extracted from leaf or flower bud tissue using a customized CTAB-chloroform extraction
protocol (dx.doi.org/10.17504 / protocols.io.bgv6jw9e). We used M. bicolor as an outgroup
species to the core Erythranthe taxa. Whole M. bicolor plants (n = 160) were wild-collected from a
large color-polymorphic population in center of its range in the Sierra Nevada Range [79] and
dried in coin envelopes, and then DNA was extracted from tissue individually prior to equal-

volume pooling.

Linkage mapping and recombination rates
We used the M. cardinalis linkage map reported in [65] and CE10 v1.92 genome contigs

(www.mimubase.org) to estimate genetic and physical distances along the M. cardinalis

genome. Briefly, a Sierran (CE10 inbred line) x Southern (WEM) M. cardinalis F. mapping
population (N = 93) was genotyped using the same targeted capture approach as this study.
8100 snps (representing 2152 cross-informative capture targets) were ordered with Lep-MAP3
[80], resolving the expected 8 linkage groups ( 2N = 16) spanning 573 centiMorgans (cM) [65].
The linkage map was used to scaffold v1.92 contigs with Chromonomer version 1.08 [81]. We
were able to scaffold a total of 341.8 Mb of genome sequence, which is 83.6% of the current v2
chromosomal assembly (based on both optical mapping and linkage relationships;
www.mimubase.org). The genome scaffolding used here for genome scans is largely similar in
order to the v2 assembly, but its contig positions and orientation are based solely on
intraspecific recombination. Recombination rates were estimated in non-overlapping genomic
bins of 1 Mbp. Rates were calculated as the genetic distance (in cM) between the two most distal
markers in the bin divided by their physical distance (in Mbp). We removed three bins with
extreme recombination rate estimates (>100 cM /Mbp) from further analysis. These estimates
were due to many crossovers between putatively physically proximal markers (<5,000 bp) with
no other markers present in the bin, and likely represent mislocalization of a marker on the

physical sequence (e.g., due to paralogy).

Targeted capture sequencing and genotyping
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Targeted sequence capture was used to high-coverage, high-quality genotyping within and
among species in Mimulus section Erythranthe. Capture baits were designed to tile 9,126 genes
that are 1:1 orthologous between M. cardinalis, M. lewisii, and M. guttatus. Details of bait design
and library preparation can be found in [65]. All libraries were sequenced on a single lane of
[llumina HiSeq 2500 (PE 125). Raw Illumina reads were quality filtered and trimmed for
sequencing adaptors using Trimmomatic [82] and aligned to the v1.9g draft M. cardinalis
genome (http:/ /mimubase.org/FTP / Genomes /) using bwa-mem v0.7.15 [83]. Alignments
were filtered for minimum quality scores of 29 using samtools v1.3 [84]. We then removed

potential PCR duplicates and realigned around indels using Picard Tools (
http://broadinstitute.github.io/picard) and GATK (v3.3-0-g37228af) [85] following GATK best

practices.

Pooled population sequencing of M. bicolor

Mimulus bicolor DNA (N = 160 wild plants from a large population) was pooled into a single
sample for this study. Illumina library preparation and sequencing on an Illumina HiSeq 4000
were performed by Novogene Corporation (Stockton, CA, USA) following manufacturer
protocols. Genotypes were called as above with the exception of two alterations intended to
convert pooled genotypes into a single M. bicolor reference alignment. First, during GVCF
creation, we instructed the GATK tool HaplotypeCaller to attempt to remove ‘contaminant’
reads at frequencies of up to 10% in order to remove low-frequency polymorphisms present in
the pool. After VCF creation, we converted remaining heterozygous sites to homozygotes by
randomly selecting one of the two alternate alleles. Multi-allelic sites were all ignored in the
final analyses. Observed sequence divergence between M. bicolor and M. cardinalis (median d.;:
0.0277) was similar to levels of synonymous site diversity observed within a single population
of the genus’s flagship species, M. guttatus [86] aligned and genotyped using the similar
parameters. Additionally, observed M. bicolor —M.cardinalis sequence divergence was nearly
identical to M. bicolor —M. lewisii divergence (median d.: 0.0282). These results indicate that
reference bias is of relatively low concern in this largely genic dataset, despite its phylogenetic

scope.

Gene tree and species tree inference

To generate a set of genomic regions representing individual protein-coding genes, we aligned
capture bait sequences to the contig-level M. cardinalis v 1.9g genome assembly

(http:/ /mimubase.org /FTP/Genomes/) using BLAST v2.2.31 [87] to determine the beginning
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593  and end coordinates of each aligned bait. We then used bedtools-merge v2.26.0 [88] to merge
594  Dait alignments tiling the same gene into a single region, resulting in 8151 genomic regions.

595  Because each capture region was designed to target a protein-coding gene, we refer to these
596  targeted genomic regions as “genes”.

597

598  Gene tree inference and partitioned maximum likelihood (ML) phylogenetic analysis were

599  performed on individual alignments representing each gene. We created individual alignments
600 by extracting genotypes within the boundaries of each gene from the phased VCF using tabix
601  [89]. Alignments thus consisted of variable sites only, and a single haplotype for each sample
602  was included. We inferred ML phylogenies for each gene individually and the entire genome
603  using IQ-TREE v1.7-betal4 (cite) [48] under the GTR+ASC+G4 substitution model to correct for
604  the absence of invariant sites. This dataset included 8,151 genes in which we observed

605  parsimony-informative sites. For the whole-genome phylogeny we also generated branch

606  support by performing 1000 ultrafast bootstrap replicates [90]. To further ensure that the

607  resulting phylogeny was robust to model assumptions and tree search strategies, we inferred
608 ML trees using PhyML v20120412 [91] and RAXML v8.2.12 [92] on a concatenated super-matrix
609  consisting of 600,267 variable sites under the GTR+gamma substitution model with four rate
610  categories.

611

612  In addition to whole-genome concatenation, we used ASTRAL-III v5.6.3 [49] to generate a

613  species tree under the multispecies coalescent. ASTRAL uses variation in gene tree topologies to
614  infer a species tree under the assumption that topological discordance among gene trees is due
615  to incomplete lineage sorting during population divergence. We ran ASTRAL on the full dataset
616  of 8,151 gene trees inferred from IQ-TREE, using quartet scores and local posterior probabilities
617  as branch supports. Quartet scores measure how often a given quartet (unrooted, four-taxon
618  tree) observed in the species tree is present in the underlying gene trees. Under the assumption
619  of no gene flow post-speciation, quartet scores are also indicative of the degree of incomplete
620  lineage sorting along the inferred branch [93].

621

622  Tree topology weighting with TWISST

623  We quantified this variation in species relationships throughout the genome using TWISST [60].
624  Given a gene tree and a set of species designations for all tips in the tree, TWISST quantifies

625  support for all possible (rooted) species trees through iterative sampling of subtrees where each
626  species is represented by a single tip. We ran TWISST on each gene tree grouping all accessions

627 by species except M. verbenaceus, M. rupestris, and M. eastwoodiae, which we grouped into a
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single ‘species.” We did this for three reasons: (1) these species formed a single, highly
supported clade in our ML and ASTRAL trees, (2) we were primarily interested in the
relationships between M. lewisii and M. cardinalis, and (3) collapsing these species limited our
analysis to five taxa (105 unique rooted trees) and made analysis of the entire dataset feasible
(vs. seven taxa: 10,395 unique rooted trees). To quantify support among generalized species
relationships (e.g. Fig 3A), topology weightings for each unique tree topology were summed
across all topologies that included a clade of interest. For instance, we calculated support for the
‘species tree” as the sum of weightings across all topologies that place M. cardinalis in a clade
with the other red-flowered species. We also visualized support for different species
relationships across the M. cardinalis genome by updating genome coordinates of capture

regions to match the chromosome-level v2 reference assembly (www.mimubase.org). To aid in

visualization, we averaged topology weights in overlapping five-gene windows.

Genome-wide tests for introgression

We used Patterson’s D [61] and related statistics to identify aggregate genomic signatures of
introgression, assuming our inferred species tree accurately reflects historical relationships
within section Erythranthe. All tests were implemented in Python v3.5.5.

Patterson’s D statistics tested for introgression on the four-taxon tree of (M. bicolor, (M. lewisii,
(M. cardinalis, M. verbenaceus))). Calculating D using M. parishii instead of M. verbenaceus
produced qualitatively similar results. We used all pairwise combinations of individual
accessions of M. lewisii and M. cardinalis, allowing for heterozygosity but not missing data.
While D can be calculated from allele frequencies, our accessions represent multiple
populations that may have experienced variable histories of introgression; pairwise calculation
gave us the potential to detect geographically-limited introgression. To test for genome-wide
statistical significance, we implemented the genomic window jackknife procedure suggested in
[94].

D... statistics [62] were used to identify the timing and, potentially, the direction of introgression
on the five-taxon tree (M. bicolor, (M. verbenaceus, M. cardinalis), (Sierran lewisii, Northern
lewisii))). As with Patterson’s D, we implemented D.,, in Python using individual accessions and
allowing for heterozygosity but not missing data. Because the D.., patterns we observed
prevented us from inferring the direction of introgression, we calculated Hahn and Hibbins’ D2
[63]. D2 uses expectations from the network coalescent to infer the direction of introgression on
a three-taxon tree. We defined the species tree as (M. verbenaceus, M. cardinalis), M. lewisii) and

the introgression tree as (M. verbenaceus, (M. cardinalis, M. lewisii)). Introgression from M.
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cardinalis into M. lewisii will also result in M. lewisii and M. verbenaceus sharing more recent
common ancestry than at gene trees concordant with the species tree, while introgression from
M. lewisii into M. cardinalis will not. We tested for this difference ([dxy.....| species tree] - [dxy..
. | introgression tree]) using a t-test on genes with full TWISST weighting for either the

simplified species tree or the simplified introgression tree (see Fig 3).

Nucleotide diversity and divergence
Population genetic statistics were all calculated with the Python module scikit-allel v1.2.1
https:/ /scikit-allel.readthedocs.io/en/stable /index.html. As input, VCF files were created that

included invariant sites using the flag “--includeNonVariantSites” in the GATK tool
GenotypeGVCFs. We calculated statistics on our pre-defined capture regions (‘genes’).

Nucleotide diversity (1) at each gene was calculated at the species and regional levels (e.g. M.

lewisii and Sierran lewisii) and nucleotide divergence (d,) was calculated among regions and
species. In the absence of a complete reference annotation for M. cardinalis, we did not

differentiate among codon positions or between coding and noncoding diversity.

Floral trait complementation test

As a rough test for allelism of genetic variation contributing to the hummingbird pollination
floral syndrome of M. cardinalis and the other red-flowered taxa (specifically M. verbenaceus and
M. rupestris) within the frame of the historical phylogeny, we used a classic complementation
approach. First, we generated F, hybrids by crossing M. rupestris and M. verbenaceus lines (Table
S1) to the putative ancestral bee-pollinated phenotype represented by M. lewisii (Sierran LF10
line) to verify that these taxa shared recessive inheritance of the hummingbird syndrome
phenotype with M. cardinalis (. Second, we generated F, hybrids between the CE10 M. cardinalis
line and M. rupestris and M. verbenaceus, and then made F:s by selfing a single F, of each pair. We
grew parents (N= 8-10), F;s (N = 10) and F:s (N = 100-200) in the greenhouse at the University of
Montana. For both sets of hybrids, it was evident that the overall morphology and color of
hybrid flowers exhibited non-complementation (Fig S1B). However, severe hybrid breakdown
(e.g., deformed corollas, sterile anthers) was also common in both sets of E,s. Due to the latter
(and the complete absence of obviously M. lewisii-like variants), we do not report F, quantitative

traits.
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