

1

2 **Ancient and recent introgression shape the evolutionary history of**
3 **pollinator adaptation and speciation in a model monkeyflower radiation**
4 **(*Mimulus* section *Erythranthe*)**

5

6

7 Thomas C. Nelson^{1*#a}, Angela M. Stathos¹, Daniel D. Vanderpool¹, Findley R. Finseth^{1#b}, Yao-wu Yuan²,
8 and Lila Fishman^{1*}

9

10 ¹Division of Biological Sciences, University of Montana, Missoula, Montana, United States of
11 America

12 ² Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs,
13 Connecticut, United States of America

14

15

16

17 ·corresponding authors: thomas.nelson05@gmail.com (TCN), lila.fishman@umontana.edu (LF)

18

19 ^{#a} current address: Embark Veterinary, Inc., Boston, Massachusetts, United States of America

20 ^{#b} current address: Keck Science Department, Claremont-McKenna, Scripps, and Pitzer Colleges,
21 Claremont, California, United States of America

22

23 Short Title Reticulate evolution in a model monkeyflower radiation

24

25 **Abstract**

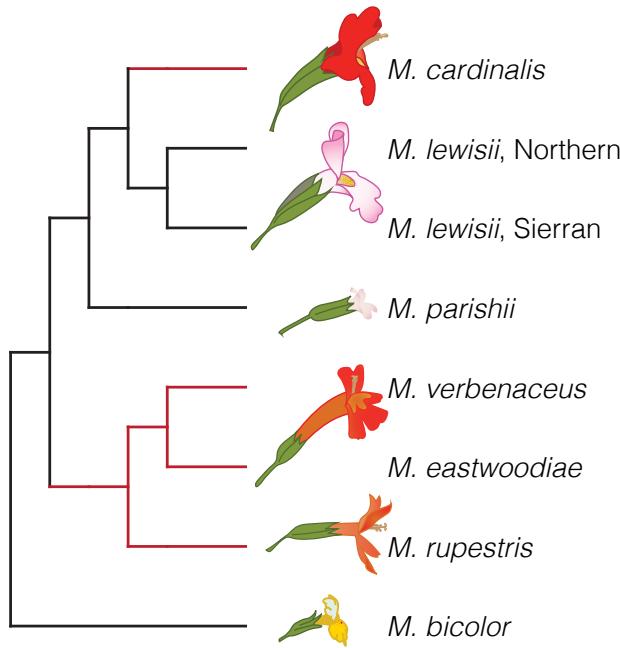
26 Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide
27 understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture
28 of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of
29 monkeyflowers in *Mimulus* section *Erythranthe* (27 accessions from seven species). Taxa within
30 *Erythranthe*, particularly the parapatric and putatively sister species *M. lewisii* (bee-pollinated) and *M.*
31 *cardinalis* (hummingbird-pollinated), have been a model system for investigating the ecological genetics
32 of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a
33 predominant species tree in which *M. cardinalis* groups with other hummingbird-pollinated taxa (37% of
34 gene trees), rather than being sister to *M. lewisii* (32% of gene trees). We independently corroborate a
35 single evolution of hummingbird pollination syndrome in *Erythranthe* by demonstrating functional
36 redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn
37 a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson's
38 D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression
39 rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of
40 divergence, low-recombination and adaptation-associated regions support the new species tree, while
41 high-recombination regions generate phylogenetic evidence for sister status for *M. lewisii* and *M.*
42 *cardinalis*. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with
43 Sierran *M. lewisii* and Southern Californian *M. parishii* each carrying organelle genomes nested within
44 respective sympatric *M. cardinalis* clades. A recent organellar transfer from *M. cardinalis*, an outcrosser
45 where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male
46 sterility effects of selfer *M. parishii* organelles in hybrids with *M. lewisii*. Overall, our phylogenomic results
47 reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation,
48 suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the
49 face of gene flow. Our findings further underline the challenges, even in reproductively isolated species,
50 in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a
51 phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.
52

53 **Author Summary**

54 Adaptive radiations, which involve both divergent evolution of new traits and recurrent trait
55 evolution, provide insight into the processes that generate and maintain organismal diversity.
56 However, rapid radiations also generate particular challenges for inferring the evolutionary
57 history and mechanistic basis of adaptation and speciation, as multiple processes can cause
58 different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the
59 mode and timing of divergence and the causes of parallel trait evolution require a fine-grained
60 understanding of the flow of genomic variation through time. In this study, we used genome-
61 wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant
62 radiation, the monkeyflowers of *Mimulus* section *Erythranthe*. Work over the past half-century
63 has established the parapatric and putatively sister species *M. lewisii* (bee-pollinated) and *M.*
64 *cardinalis* (hummingbird-pollinated, as are three other species in the section) as textbook
65 examples of both rapid speciation via shifts in pollination syndrome and convergent evolution
66 of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing *M.*
67 *cardinalis* in a clade with other hummingbird-pollinated taxa and demonstrating that abundant
68 introgression between ancestral lineages as well as in areas of current sympatry contributes to
69 the real (but misleading) affinities between *M. cardinalis* and *M. lewisii*. This work illustrates the
70 pervasive influence of gene flow and introgression during adaptive radiation and speciation,
71 and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for
72 understanding trait divergence, even among well-established species.
73

74 Introduction

75 Adaptive radiations are engines of biodiversity and thus natural laboratories for understanding
76 its origins [1-5]. During radiations, natural selection can cause both phenotypic divergence as
77 populations move into novel environments and convergence when different populations adapt
78 to similar ecological conditions [6,7]. Divergence provides the opportunity to re-construct the
79 ecological context and genetic basis of adaptive walks, while repeated evolution can reveal the
80 importance of genetic vs. environmental constraints in shaping convergent phenotypes
81 [reviewed in 8]. Furthermore, the processes of adaptation and speciation are tightly intertwined
82 in radiations, and recent radiations help reveal the processes and genes underlying lineage
83 diversification [9-12]. A strong phylogenetic framework is necessary both for understanding the
84 process of speciation and for tracing phenotypic evolution across species (e.g. inferring
85 convergence vs. a single mutational origin for similar phenotypes) [13]. However, the rapid
86 diversification characteristic of adaptive radiations also confounds definition of a single "species
87 tree" [14]. Thus, understanding adaptation and speciation within radiations requires a
88 phylogenomic context that captures the diversity of evolutionary histories across recently
89 diverged genomes [4,15,16].


90

91 Two processes confound the reconstruction of a universal genome-wide "species tree", while
92 also affecting the course of adaptation and speciation [17]. Incomplete lineage sorting (ILS), in
93 which different lineages randomly sample the same alleles polymorphic in their ancestor, can
94 persist after rapid splitting of ancestral populations [18]. In addition, incomplete reproductive
95 isolation between incipient species in areas of sympatry may allow gene flow and introgression
96 that lead to further discordance between the genealogical relationships at any one locus and the
97 deeper species relationships. Both ILS and introgression complicate the inference of species
98 trees, but they have very different impacts on the processes of adaptation. In particular,
99 introgression may cause adaptive alleles, and thus the traits they confer, to be shared among
100 species that are not otherwise closely related [12,19]. Conversely, hybridizing species that are
101 not closely related may appear as sister taxa in phylogenies strongly influenced by introgressed
102 loci (whether those loci are adaptive or not). Such introgression is empirically common, as
103 evidenced by sharp discordance between nuclear and organellar (mitochondrial, chloroplast)
104 phylogenetic trees in many plants [20] and animals [21]. Thus, disentangling the contributions
105 of ILS and introgression to the flow of genetic variation through radiations is important not
106 only to properly characterize the historical process of adaptive evolution, but to reveal its
107 mechanisms. Applying phylogenomic approaches across entire radiations can provide nuanced

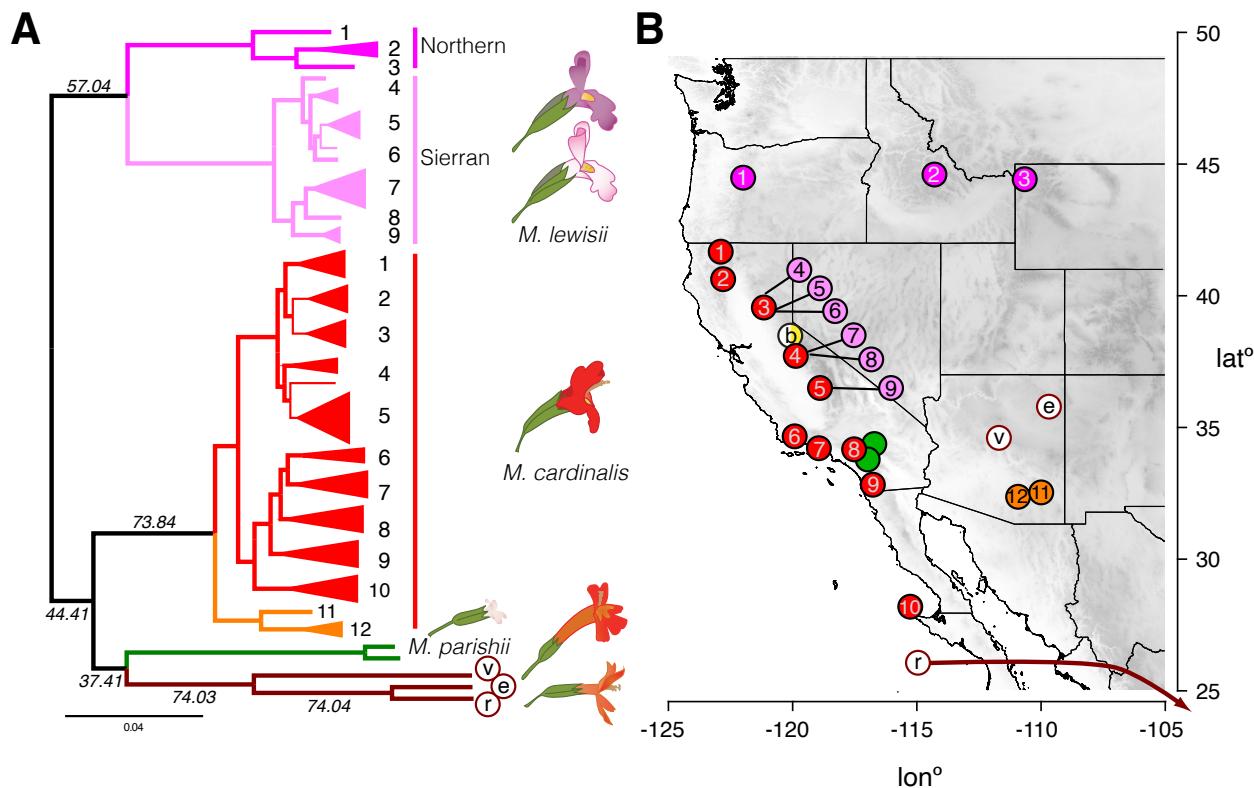
108 insight into the constraints, causes, and consequences of adaptive evolution, as well as the
109 processes that structure sequence evolution across complex genomes.

110
111 Here, we present phylogenomic re-assessment of the evolutionary history of a classic adaptive
112 radiation in flowering plants, the monkeyflowers of *Mimulus* section *Erythranthe* [22,23]. [Note:
113 Many *Mimulus*, including these taxa, have been re-named as genus *Erythranthe* [24], and the
114 species within this section have been split [25]. However, in the absence of a well-resolved
115 family-level phylogeny, and for consistency with previous work [see 26], we refer to these taxa
116 as *Mimulus* section *Erythranthe* and retain previous species names [23]]. The *Erythranthe* section
117 contains five taxa with flowers adapted for hummingbird pollination (narrow red corolla tubes
118 with little or no landing pad for bees, often abundant nectar; Fig 1). *Mimulus cardinalis* is
119 common in riparian habitats across a broad latitudinal range in western North America (Baja
120 California to Oregon), with disjunct populations occurring in Arizona. The other four
121 hummingbird taxa (*M. eastwoodiae*, *M. rupestris*, *M. verbenaceus*, *M. nelsonii*) are each restricted to
122 much smaller "sky-island" ranges in the southwestern U.S. and Mexico [22,23,25]. The
123 bumblebee-pollinated high-elevation specialist *M. lewisii* is also widespread, with a dark-pink
124 flowered Northern race found in the Rocky and Cascade Mountain ranges [retained as *E. lewisii*
125 in 25] and a pale-pink flowered Sierran race broadly parapatric with *M. cardinalis* in the Sierra
126 Nevada Mountains of California [renamed *E. erubescens* in 25]. Both the hummingbird- and
127 bee-pollinated taxa are primarily perennial, occurring in soils that remain wet throughout the
128 summer growing season. The eighth taxon, *M. parishii*, is a routinely self-pollinating small-
129 flowered annual occurring in seasonally wet habitats in southern California (e.g. desert washes).
130 Despite their distinct pollination syndromes, all these taxa are at least partially cross-compatible
131 [27,28] and natural hybrids have been reported between *M. cardinalis* and the two taxa with
132 which it co-occurs in California (*M. lewisii* and *M. parishii*) [29]. The combination of diversity
133 and genetic tractability has made the *Erythranthe* radiation a model for understanding the genetic
134 basis of both floral trait divergence and species barriers for over half a century [27].

135
136 In ecological genetic work prior to the establishment of molecular phylogenetics, the extensive
137 range overlap and relatively high cross-compatibility Sierran *M. lewisii* and *M. cardinalis*
138 established them as sister taxa locally adapted to distinct elevational and pollinator niches
139 [27,28,30-32]. Groundbreaking QTL mapping studies of species differences and barriers
140 identified the few major loci underlying each aspect of their pollination syndromes, including
141 nectar volume and corolla traits [30,31], and demonstrated that these conferred pollinator
142 specificity and assortative mating between experimental hybrids in sympatry [29,32,33]. It has
143 since become clear that inferring the genetic architecture of adaptation in this pair is

Fig 1. *Mimulus* section *Erythranthe*, with *M. bicolor* as an outgroup, as defined by previous phylogenetic treatments [22,23,41]. The two putative derivations of hummingbird pollination shown in red.

144 complicated by multiple inversions and translocations that suppress free recombination in
145 hybrids [34,35] and also cause underdominant F_1 sterility [36]. However, the inference that
146 major Mendelian genes define and isolate florally-distinct sister monkeyflowers has been
147 strengthened by the molecular dissection of loci underlying pigmentation variants [37,38],
148 contributing to establishment of this group a model system for floral evolution and
149 development [reviewed in 39]
150
151 Sister status for parapatric *M. cardinalis* and *M. lewisii*, and the companion inference of two
152 distinct evolutionary transitions from bee to hummingbird pollination (one in the four sky-
153 island taxa, one more recently in *M. cardinalis*; Fig 1) have remained well-accepted in the post-
154 phylogenetic era. Indeed, after phylogenetic work redefining *Mimulus* [40], re-organizing the
155 North American sections of the genus [41] and re-tracing the evolution of hummingbird
156 pollination in section *Erythranthe* [23], the system became a textbook example of rapid
157 convergent evolution, as well as speciation by large-effect adaptive alleles [e.g. 42]. However,
158 due to low resolution in universal loci used for plant phylogenetics at the time [41], the within-
159 *Erythranthe* tree was primarily based on genome-wide population genetic markers (amplified
160 fragment length polymorphisms, AFLPs) [23]. There are many reasons why either a few slowly-
161 evolving loci or an aggregate of AFLPs might not clearly reflect the true evolutionary history of


162 a given set of species, especially in a recent radiation [15]. Furthermore, while the hummingbird
163 pollination syndrome is one of the most distinct, repeatable, and reproductively-isolating peaks
164 in the adaptive landscape of flowering plants [43-47], inference about the genetic mechanisms of
165 convergence and divergence in pollination syndrome among close relatives requires a well-
166 resolved phylogenetic context. Thus, phylogenomic re-assessment of this group is an essential
167 foundation for the study of micro- and macro-evolutionary processes in this classic system, as
168 well as a window into the complex evolutionary histories possible in even a small radiation.

169 Results and Discussion

170 Whole-genome species trees suggest a single origin of hummingbird pollination

171 We used Illumina sequencing of targeted genic regions (gene-capture; see Methods) to survey
172 genome-wide variation within and among species in *Mimulus* section *Erythranthe*. The capture
173 probes targeted genes 1:1 orthologous among *M. lewisii* (v 1.1; [23]), *M. cardinalis* (v 1.1;
174 www.mimubase.org), and the yellow monkeyflower *M. guttatus* (v2 reference; www.
175 [Phytozome.jgi.doe.gov](http://phytozome.jgi.doe.gov)). We sequenced accessions of *M. lewisii* (n = 19), *M. cardinalis* (n = 34),
176 and *M. parishii* (n = 2) from across their geographic ranges, as well as a single accession each of
177 *M. verbenaceus*, *M. rupestris*, and *M. eastwoodiae* (S1 Table). Across 8,151 sequenced capture
178 regions (7,078,270 bp total) aligned to chromosomes of the v 1.9 *M. cardinalis* reference genome
179 assembly (www.mimulubase.org), we obtained 533,649 single nucleotide variants (SNVs). The
180 bee-pollinated annual *Mimulus bicolor* was used as a close outgroup to section *Erythranthe* [23].
181 Whole-genome pooled population sequencing of *M. bicolor* revealed an additional 207,238 SNVs
182 between *M. bicolor* and section *Erythranthe* within regions defined by the targeted capture
183 sequencing, totaling 740,887 variant sites. This set of SNVs was divided across 8,151 capture
184 regions with at least one informative site (median: 67 variable sites; IQR: 42-100; max: 316) and
185 fully spans the physical and genetic landscape of *Mimulus* section *Erythranthe* chromosomes,
186 thus providing a well-resolved picture of their evolutionary history.

187
188 We inferred phylogenetic relationships among species in Section *Erythranthe* using maximum
189 likelihood inference of the full dataset using IQ-TREE [48] and by assessing variation in gene
190 tree topologies under the multispecies coalescent (MSC) with the software ASTRAL III [49].
191 Both methods produced identical species relationships (Fig 2, S1 Fig). All species-level branches
192 had 100% bootstrap support (IQ-TREE) and local posterior probabilities of 1 (ASTRAL).
193 ASTRAL quartet scores (i.e. the proportion of underlying gene trees that support a branch in the

Fig 2. Genome-wide phylogeny of *Mimulus* section *Erythranthe* reveals a single clade containing all hummingbird-pollinated species. (A) The maximum likelihood phylogeny of section *Erythranthe* rooted to *M. bicolor*. The species level topology is identical to that inferred with ASTRAL 3. Branches with bootstrap support >90% are bold. Quartet scores are also given for branches included in the ASTRAL species tree. Clades representing a single collection location are collapsed (see supplemental Fig S8 for the unrooted phylogeny including the branch to *M. bicolor*). Numbers next to *M. lewisii* and *M. cardinalis* tips refer to collection locations in B. (B) Collections of section *Erythranthe* across the American West. *Sierran M. lewisii* collections are offset due to close overlap with *M. cardinalis* collections in the Sierra Nevada Range. Location of the *M. rupestris* accession from Central Mexico not shown. 'b': *M. bicolor*; v: *M. verbenaceus*; 'e': *M. eastwoodiae*; 'r': *M. rupestris*.

species tree) ranged from 37.4 to 74.0. Branches closer to our inferred root tended to have lower quartet scores, meaning that a smaller proportion of individual gene trees supported these branches. We interpret the high level of discordance between the species tree and individual gene trees on highly supported branches as the combined effect of ILS and introgression (see below) during the early divergence of ancestral populations.

199
200 Phylogenetic and phylogeographic patterns within and between *Mimulus lewisii* and *M.*
201 *cardinalis* are particularly important, given their status as a model system for understanding
202 speciation. Each species formed a monophyletic clade with 100% bootstrap support and
203 phylogeny strongly reflected geography within each. We find a deep split between *M. lewisii*

204 from the Sierra Nevada Range in California (Sierran *M. lewisii*; *E. erubescens*) and *M. lewisii* from
205 the northern Cascade Range and Rocky Mountains (Northern *M. lewisii*; *E. lewisii*). This result
206 supports the long-held designation of these two clades as 'races' [27] or species [25] (hereafter
207 'clades'), based on disjunct ranges, distinct vegetative and floral characters, and partial
208 incompatibility and sterility in some hybrid crosses. *M. cardinalis* was also structured
209 geographically, with accessions from Arizona [named *E. cinnabarina* in 25] forming an outgroup
210 to *M. cardinalis* from the Pacific coast. Within the Pacific clade, *M. cardinalis* from southern
211 California and northern Baja California were monophyletic and sister to a clade containing *M.*
212 *cardinalis* from the Sierra Nevada. Consistent with the trees, genetic diversity within *M. lewisii*
213 was heavily structured between Northern and Sierran *M. lewisii* (median d_{xy} : 0.0117, IQR: 0.0074-
214 0.0170), and Northern *M. lewisii* was substantially more diverse (median π : 0.0037; IQR: 0.0016-
215 0.0071) than *M. lewisii* in the Sierra Nevada Range (median π : 0.0015; IQR: 0.0006-0.0042). *M.*
216 *cardinalis* had levels of nucleotide diversity (median π : 0.0036; IQR: 0.0021-0.0060) similar to
217 Northern *M. lewisii* and was more divergent from Sierran *M. lewisii* (median d_{xy} : 0.0151, IQR:
218 0.0103-0.0203) than the populations of *M. lewisii* were from each other. Observed heterozygosity
219 in *M. cardinalis* decreased with latitude, supporting the hypothesis that the current range of *M.*
220 *cardinalis* is the result of a recent northward expansion [50]. Additional work will be necessary
221 to determine whether the geographical isolates of both *M. lewisii* and *M. cardinalis* represent
222 fully-fledged species. Regardless, these phenotypically subtle geographic clades make
223 *Erythranthe* an interesting model system for understanding the evolution of postzygotic barriers
224 in allopatry, as well as for the radiation of traits involved in pre-mating isolation in sympatry.
225
226 Despite within-species consistency with the previous section *Erythranthe* phylogeny [23], our
227 species tree differs radically in the placement of *M. cardinalis* and *M. parishii*: both are included
228 in a single clade which also contains all other hummingbird-pollinated species (hereafter
229 referred to as Clade H) (Fig 2). The implications for this revision are three-fold. First, the early
230 history of section *Erythranthe* is primarily defined by the split between the ancestor of *M. lewisii*
231 and the common ancestor of all other species in the group. Second, the model pair of *M. lewisii*
232 and *M. cardinalis* do not share recent common ancestry, at least not to the exclusion of any other
233 species in the section. Third, the placement of all red-flowered species in a single clade strongly
234 suggests that the hummingbird pollination syndrome evolved only once in this group and thus
235 is not a case of phenotypic convergence. We therefore address three further questions raised by
236 this inference and its contrast to previous work. Do key hummingbird-associated floral traits in
237 *M. cardinalis* and other red-flowered species share a functional basis? What is the genomic
238 evidence for and against close evolutionary relationships between *M. cardinalis*, *M. lewisii*, and

239 *M. parishii*? What evolutionary processes are responsible for cross-genome heterogeneity of
240 gene trees in this recent radiation?

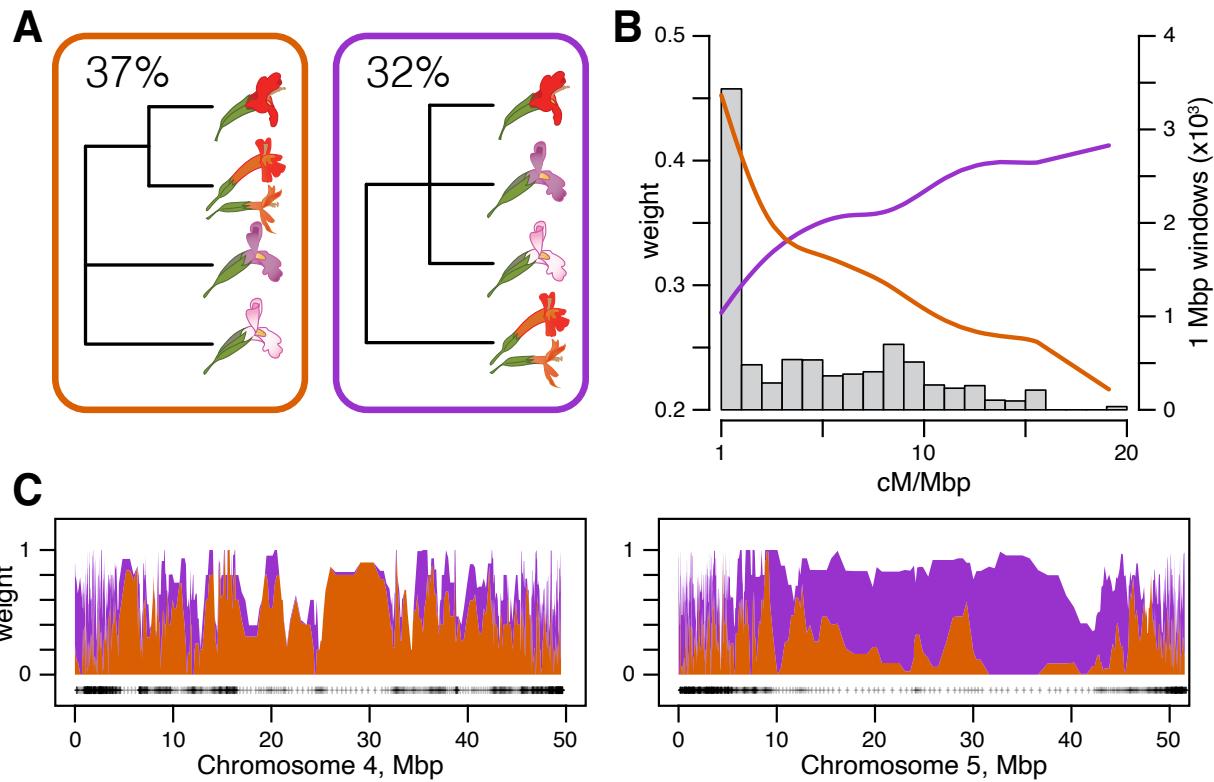
241

242 **Floral traits in red-flowered species share a functional genetic basis, consistent with a single
243 evolutionary origin**

244

245 To further investigate whether *M. cardinalis* and the sky-island endemics plausibly share a
246 functional basis for floral traits associated with hummingbird pollination, we conducted a
247 classic genetic complementation test (see Methods). Key hummingbird syndrome traits of both
248 *M. cardinalis* [30,31,34] and the sky-island taxa (e.g. *M. rupestris*) are recessive to *M. lewisii* (as
249 well as *M. parishii*; data not shown), with F₁ hybrids between bee and hummingbird taxa
250 remarkably *M. lewisii*-like in all floral traits (S2A Fig). Under the historical scenario of
251 convergent evolution from an ancestor resembling bee-pollinated *M. lewisii*, the recessive alleles
252 conferring the hummingbird-associated trait shift (e.g. long styles and anthers, carotenoid
253 pigment) would be independent mutations fixed in each lineage. Thus, unless each series of
254 mutations non-functionalized the same set of target genes, we would expect transgressive
255 segregation in hybrids between the putatively convergent hummingbird taxa. That is, if a causal
256 *a* allele for carotenoid production in *M. cardinalis* (*aaBB*) is not allelic (functionally
257 interchangeable or identical by descent) with the independent *b* allele underlying the phenotype
258 in another taxon (e.g., *M. rupestris* or *M. verbenaceus*; *AAbb*) the recessive carotenoid phenotype
259 should be masked in F₁ hybrids (*AaBb*). We see precisely the opposite—the flowers of both F₁
260 and F₂ hybrids between *M. cardinalis* and *M. rupestris* resemble the parents in all respects, with
261 no transgressive *M. lewisii*-like variation (S2B Fig). Divergence between the hummingbird-
262 pollinated species in their floral shape and size leads to segregation beyond parental and F₁
263 values in F₂s, but there is no evidence of hybrids reverting to the dominant *M. lewisii*-like
264 phenotype expected if the genetic basis for the syndrome is not shared. Redundant loss-of-
265 function mutations or epistatic interactions in highly constrained pigmentation pathways could
266 plausibly produce these patterns for corolla color [44]; however, the complementation of the
267 overall floral morphology is best explained by allelism of multiple mutations underlying the
268 shared aspects of the hummingbird pollination syndrome. This independent line of evidence
269 reinforces the phylogenetic inference that the hummingbird pollination syndrome evolved in
270 the common ancestor of *M. cardinalis* and the sky-island endemics, erasing a classic case of
271 convergence and providing a new framework for understanding adaptation and speciation in
272 this model group.

273


274 Together, our genomic and experimental results underline the necessity of an explicitly
275 phylogenomic context for understanding trait evolution and speciation in rapid radiations.
276 Hummingbird pollination undoubtedly evolves convergently both within [51] and among
277 [2,43,52] genera, but pollination syndromes may be particularly prone to complex evolutionary
278 histories that mimic phenotypic convergence at low phylogenetic resolution. Like anti-predator
279 mimicry phenotypes in *Heliconius* butterflies [12], specialized pollination syndromes (e.g.,
280 hummingbird, moth) evolve to match a pre-existing model [53]. This creates alternative multi-
281 dimensional adaptive peaks separated by valleys of low fitness, although self-pollination may
282 flatten this landscape [54]. Thus, the path from bee to hummingbird pollination appears to be a
283 very narrow and sequential one – that is, a red-flowered mutant without the expected nectar
284 reward or reproductive parts long enough for effective hummingbird pollination may be a poor
285 match for any pollinator [32,55]. Importantly, an intrinsically jagged adaptive landscape may
286 also mean that the joint introgression of multiple traits or their joint retention in the face of
287 homogenizing gene flow (as inferred here) may be common whenever gene exchange occurs
288 during floral diversification. Both processes may mimic true convergence at a coarse
289 phylogenetic scale, but more resemble the repeated re-use of ancient alleles during freshwater
290 adaptation in stickleback populations [56]. As phylogenomic approaches increasingly allow
291 gene-scale investigation of deeper radiations, and more adaptive genes are identified, such
292 sharing of old variation may often be revealed to underlie trait diversification and parallelism,
293 even in otherwise well-resolved species [19,57].

294
295 Given the revision of the species tree, it is also worth revisiting the inference that bee-
296 pollination is ancestral [23], especially given the presence of yellow carotenoid pigments in both
297 outgroup taxa such as (bee-pollinated) *M. bicolor* and the hummingbird-pollinated *Erythranthe*.
298 Across flowering plants, transitions from bee to hummingbird pollination appear far more
299 likely than the reverse [47], due either to genetic constraints [51] and/or the ecology of
300 pollination [55]. Bees tend to ignore red flowers and have nowhere to land on narrowly tubular
301 and reflexed “hummingbird” corollas whereas hummingbirds often visit classic bumblebee
302 flowers; for example, hummingbirds made nearly 20% of the visits to Sierran *M. lewisii* in
303 experimental arrays with *M. cardinalis* and hybrids [33]. Even a low frequency of “mistakes”,
304 especially when hummingbird visits are abundant and bees rare, may select for hummingbird-
305 specialization through increased reward, greater attraction, and more precise pollen placement.
306 In this system, where the bee-specialized pale pink flowers and scent production of Sierran *M.*
307 *lewisii* (*E. erubecens*) appear locally derived [38,58,59], it is plausible that hummingbird visitation
308 to a less-specialized Northern *M. lewisii*-like ancestor precipitating the origin of hummingbird
309 pollination within Clade H. However, ancestral hummingbird pollination remains formally

310 possible and confirming the expected directionality will require reconstruction of the
311 mutational changes contributing to key trait transitions across the entire radiation.
312

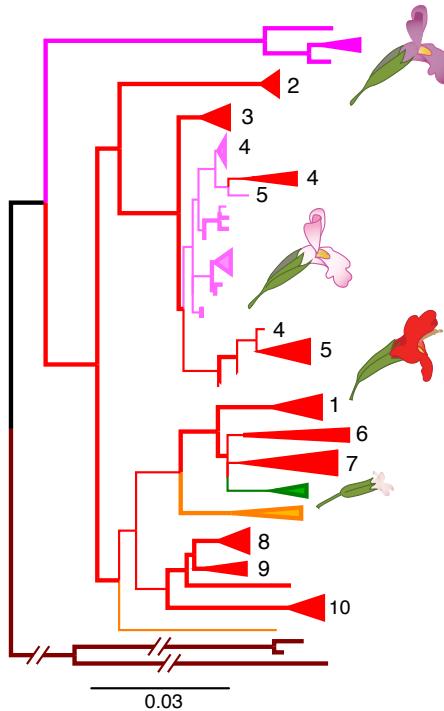
313 **Extensive introgression creates the evidence for a sister relationship between *M. lewisii* and**
314 ***M. cardinalis***

315
316 Because they are a decades-old model system for understanding the role of reproductive
317 adaptation in plant speciation, general inferences about the nature of those processes hinge on
318 *M. cardinalis* and *M. lewisii* being parapatric sister species. Moreover, the initial inference of a
319 close relationship was plausibly based on similar vegetative morphology, shared geography,
320 and higher genetic compatibility between the Sierran pair than geographically-disjunct
321 populations within each species [27], as well as previous phylogenetic reconstructions [23].
322 Given that our whole-genome species tree robustly rejects close sister status for *M. lewisii* and
323 *M. cardinalis*, placing *M. cardinalis* within the predominantly hummingbird-pollinated Clade H,
324 it is important to understand the origins of these confounding affinities. Therefore, we examine
325 our genomic dataset for evidence of a close relationship, describe the genomic distribution of
326 regions showing a sister relationship, and infer the processes underlying patterns of gene tree
327 vs. species tree discordance. We used TWISST [60], which quantifies support for different
328 species tree topologies among a set of inferred gene trees, to compare support for trees
329 containing Clade H (all red-flowered species, the ‘species tree’; Fig 3A, orange) to support for
330 trees where *M. lewisii* and *M. cardinalis* form an exclusive clade (the ‘lew-card tree’; Fig 3A,
331 purple). Because we were primarily interested in the relationships between these two focal
332 species, we were agnostic to the placement of *M. parishii* in these analyses. Notably, the lew-
333 card tree was the second-most common topology observed across the genome, next only to our
334 inferred species tree (Fig 3A). Across the entire dataset consisting of 8,151 gene trees, 37% of
335 subtrees identified in TWISST supported the species tree while 32% supported the ‘lew-card’
336 tree. Substantial incomplete lineage sorting (ILS) at the base of this radiation could produce this
337 pattern, but we hypothesized that introgression between *M. lewisii* and *M. cardinalis* was a more
338 likely source given current parapatry and cross-compatibility. Therefore, to explore
339 introgression as source of gene-tree/species-tree discordance, we tested for (1) asymmetries in
340 patterns of shared, discordant allelic states among species, (2) patterns of absolute genetic
341 divergence indicative of a reticulate evolutionary history, and (3) a correlation between
342 recombination rate and support for the ‘lew-card’ tree.
343

Fig 3. Introgession has generated the evidence for sisterhood of *M. lewisii* and *M. cardinalis*. (A) Genome-wide TWISST weightings for a simplified species tree (orange) and a simplified “lew-card” tree (purple). (B) Support for the species and lew-card trees as a function of recombination rate. Lines show cubic spline fits colored as in A. The gray histogram shows the frequency of genomic windows at a given recombination rate (bin size: 1 cM/Mbp). (C) Topology weights along *M. cardinalis* Chromosomes 4 and 5. Polygons are stacked so that weights across all possible topologies sum to 1. Weights are averaged in windows of 5 genes; black crosses show locations of window midpoints.

344 We first tested for genome-wide evidence of the presence, timing, and direction of introgression
 345 between *M. lewisii* and *M. cardinalis* using Patterson’s D statistic [61] and D_{FOIL} [a five-taxon
 346 expansion of Patterson’s D; 62]. Patterson’s D (also known as the ABBA-BABA test) detected
 347 significant introgression between *M. cardinalis* and *M. lewisii* (block jackknife: z-score = 3150.844;
 348 $p \sim 0$). The absolute value of D depended on which accessions of *M. cardinalis* and *M. lewisii*
 349 were used in the test (range: 0.01 - 0.10), but D was always non-zero (S3 Fig), indicating that
 350 introgression was not restricted to a single portion of the current species ranges. Bolstering this
 351 inference, the predominant introgression signal detected by D_{FOIL} was between *M. cardinalis* and
 352 ancestral *M. lewisii* (i.e., prior to divergence of its Sierran and Northern clades) (S4A Fig).
 353 Because the early timing of inferred introgression prevents assessment of its direction with D_{FOIL}
 354 alone [62], we used an additional test, D2 [63], which infers the direction of introgression using
 355 expectations from the multispecies network coalescent. Directional introgression from *M.*
 356 *cardinalis* into *M. lewisii* would result in reduced nucleotide divergence between *M. lewisii* and

357 the other species of Clade H (e.g. *M. verbenaceus*) at genes following the introgression tree
358 (S4C,D Fig). This is because these alleles sampled from *M. lewisii* are historically *M. cardinalis*
359 alleles and reflect divergence between *M. cardinalis* and the rest of Clade H. In contrast,
360 introgression from *M. lewisii* into *M. cardinalis* would not affect sequence divergence between
361 *M. lewisii* and non-*cardinalis* members of Clade H. We detected no difference in sequence
362 divergence between *M. lewisii* and third taxon *M. verbenaceus* at genes whose history matched
363 the species tree versus the introgression tree (t-test: $t_{3384,3}=1.12$, $p = 0.26$; S4D Fig). Therefore, we
364 infer that introgression during this early period mostly moved genetic material asymmetrically
365 from ancestral *M. lewisii* into *M. cardinalis*.


366
367 In addition to producing asymmetric allele-sharing on a phylogeny, the distribution of
368 introgressed DNA should vary predictably across the genome. In particular, the extent to which
369 neutral introgressed variation establishes or fixes in a recipient population should be strongly
370 affected by the local recombination rate [reviewed in 16]. At one extreme, adaptive (or selfish)
371 introgression of a mitochondrial sequence variant could carry both the entire mitochondrial
372 genome and linked chloroplast variants to fixation across species boundaries [64]. However, the
373 more plausible assumption is that the vast majority of genomic segments carry variants that are
374 either neutral or deleterious in a heterospecific background. Because low recombination rates
375 extend the effects of selection against deleterious incoming alleles over larger physical regions,
376 such regions may be broadly protected from introgression. In contrast, variants in high-
377 recombination regions are affected by selection on their individual merits, allowing rates of
378 (neutral or beneficial) introgression to be higher.

379
380 To investigate the relationship between recombination rate and introgression in the *Erythranthe*
381 group, we used a dense linkage map of *M. cardinalis* generated from a subset of gene-capture
382 loci [65]. This map supported a chromosome-level scaffolding of *M. cardinalis* and *M. lewisii*
383 genomes (since reinforced with additional data to form the current V2 genomes;
384 www.mimubase.org) and allows confident genetic-physical comparisons (see Methods).
385 Crossovers in *M. cardinalis* occur almost exclusively on the ends of each chromosome, with very
386 little recombination across large, presumably centromeric and pericentromeric, central regions
387 (S5 Fig). The species tree was the most common topology observed in these low- or non-
388 recombining regions, which also covered ~68% the physical expanse of the genome (i.e. contigs
389 scaffolded with the genetic map; 235/345 1Mb windows; Fig 3B; S6 Fig). Support for the lew-
390 card tree was strongly and positively correlated with recombination rate (Spearman's $\rho = 0.136$,
391 $p = 1 \times 10^{-40}$; Fig 3B), with the introgression topology becoming predominant at recombination

392 rates > 2.5 cM/Mb. Indeed, this pattern is so pervasive that when we inferred the maximum
393 likelihood phylogeny using only SNVs in windows with recombination rates greater than 5
394 cM/Mb, *M. lewisii* and *M. cardinalis* came out as sister taxa with 100% bootstrap support (S7
395 Fig). Although elevated introgression only at chromosome ends was the dominant genome-
396 wide pattern, we also observed near-complete replacement of some chromosomes that erased
397 the underlying species tree (Fig 3C,D; S6 Fig). For example, Chromosome 5 consistently
398 supports the 'lew-card' tree, including across its low-recombination central region (Fig 3C). In
399 contrast, Chromosome 4 generally showed high support for the species tree (Fig 3C).
400 Chromosome 4 contains multiple ecologically-relevant quantitative trait loci (QTLs) in crosses
401 between *M. lewisii* and *M. cardinalis*, including the 'yellow upper' (YUP) locus [30], which
402 switches petal color from pink/purple to red via carotenoid deposition. YUP is embedded in a
403 large region of completely suppressed recombination in *M. lewisii* x *M. cardinalis* mapping
404 crosses (likely an inversion), in tight linkage with a major flower length QTL and a putative
405 hybrid lethality factor [34]. Strong selection against heterospecific alleles and low recombination
406 in hybrids may make this entire chromosome particularly resistant to introgression in areas of
407 ancestral or recent contact between *M. lewisii* and *M. cardinalis*.

408
409 Our results corroborate one of most striking results of speciation genomics over the past decade:
410 introgression between closely related species is widespread and can profoundly affect the
411 course of evolution. The extent of introgression ranges from one or a few loci involved in
412 adaptation [12,66] to genome-wide exchange that nearly swamps out past population histories
413 [67-69]. Our phylogenomic results place introgression between *M. lewisii* and *M. cardinalis* near
414 the upper end of this continuum, so it is not surprising that past sampling of loci could infer
415 other histories [23]. Similar patterns have been seen in *Anopheles* mosquitoes [68] and among
416 some cat species [69], where the predominant genome-wide signal derives from hybridization.
417 In those animal cases, strong hybrid F₁ incompatibilities map to the sex chromosomes, giving
418 them extra weight in inferring the likely species tree. Here, we resolve speciation histories only
419 because these *Mimulus* genomes contain large pericentromeric regions that rarely recombine
420 and are generally resistant to gene exchange. The resulting species-tree inference is bolstered by
421 a strong chromosome-scale match from a key adaptive chromosome (Chromosome 4)
422 underlying multiple pollination-syndrome traits. Within the physically small, but highly
423 recombining and gene-dense ends of chromosomes, admixture predominates. The latter pattern
424 strongly supports our inference that introgression, rather than a recent split, creates signals of
425 sisterhood between *M. lewisii* and *M. cardinalis*.

426

Fig 4. The chloroplast phylogeny demonstrates ancient and recent, geographically local, introgression. The maximum likelihood phylogeny rooted to *M. bicolor* is shown. Long branches to *M. verbenaceus*, *M. rupestris*, and *M. eastwoodiae* are abbreviated (See S8 Fig for the unrooted, unabridged tree). Species and populations are numbered as in Fig 2. Branches with >90% bootstrap support are in bold.

427 **Despite strong reproductive barriers between *M. cardinalis* and *M. lewisii*, recent**
428 **introgression (including chloroplast capture) has occurred in their shared Sierran range**
429
430 Although broadly parapatric, Sierran *Mimulus lewisii* and *M. cardinalis* are reproductively
431 isolated from one another by a series of strong but incomplete barriers [27,29]. Ecogeographic
432 isolation [29], elevational specialization [70] and distinct pollination syndromes [32] result in
433 near-complete pre-mating isolation. In addition, a pair of intrinsically underdominant
434 chromosomal translocations make F_1 hybrids >65% pollen-sterile [34,36]. Despite these strong
435 contemporary barriers, we also find substantial evidence of recent introgression (both nuclear
436 and organellar) where *M. lewisii* and *M. cardinalis* co-occur in the Sierra Nevada Range of
437 California. Sierran *M. lewisii* and *M. cardinalis* formed a monophyletic clade in 14.5% of nuclear
438 subtrees analyzed with TWISST; this clade was fully supported at 5.9% of gene trees (479 of
439 8151). Furthermore, chloroplast haplotypes (genotyped using organellar reads skimmed from
440 the nuclear capture data; see Methods) from Sierran *M. lewisii* and nearby *M. cardinalis*

441 populations form a single clade (100% bootstrap support; Fig 4, S8 Fig). Due to short branch-
442 lengths, we conservatively consider the base of the Sierran *M. lewisii* clade to be a polytomy;
443 however, moderate bootstrap support (62%) for monophyly of the *M. lewisii* haplotypes
444 suggests that a single local *M. cardinalis* cytoplasm may have recently swept through all Sierran
445 *M. lewisii* populations. Importantly, the shared Sierran range where we infer organellar transfer
446 is the source for the accessions of both species used in previous adaptation and speciation
447 genetic studies, phylogenetics [41], and reference genome assemblies.

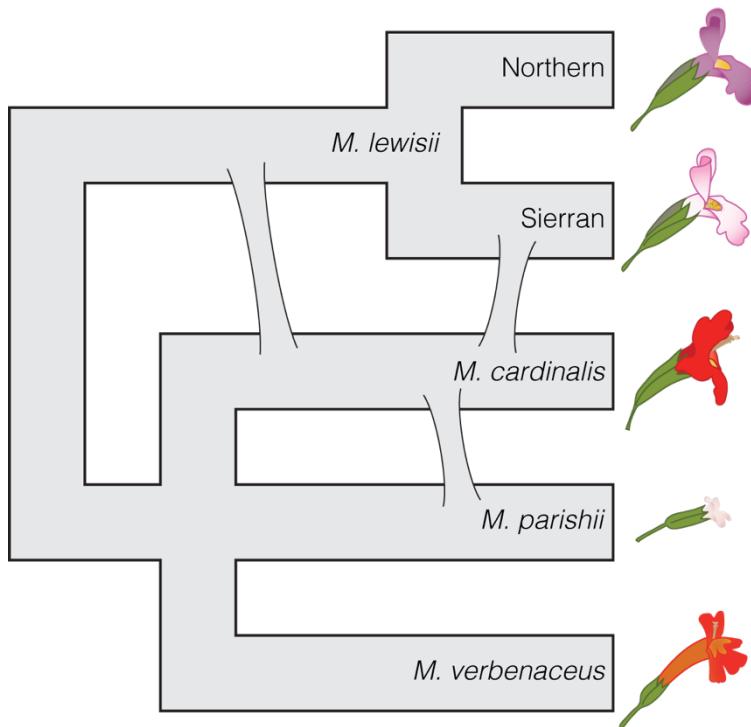
448

449 More work will be necessary to understand whether organellar (and nuclear) introgression in
450 the Sierras represents “surfing” of neutral variation introduced from an expanding *M. cardinalis*
451 range-front [71] or the spread of adaptive or selfish alleles by natural selection. In either case,
452 strong evidence of recent organellar capture [20] reinforces the inference of ancient and recent
453 nuclear introgression in this system, and further suggests that strong ecological and genetic
454 barriers have not been sufficient to isolate the entire genomes of these young taxa upon
455 secondary contact. Although natural hybridization between *M. lewisii* and *M. cardinalis* is rare
456 [29] and costly [29,36], a little gene flow goes a long way [72]. This evidence for recent (as well
457 as ancient) introgression re-iterates the importance of an evolutionary genomic framework for
458 understanding the process of speciation, and also underlines the potential for hybridization
459 (even between highly isolated taxa) as a source of beneficial alleles for contemporary evolution
460 in response to changing environments.

461

462 **Organellar capture by selfer *M. parishii* confirms local hybridization with *M. cardinalis*, and**
463 **may explain cytoplasmic male sterility in its hybrids with *M. lewisii***

464


465 In a second case of recent introgression, the chloroplast tree shows that selfing species *M.*
466 *parishii* has captured the cytoplasmic genomes of the outcrossing *M. cardinalis* (Fig 4).
467 Specifically, *M. parishii* chloroplast haplotypes are nested within *M. cardinalis* variation from
468 their region of range overlap in Southern California. As with the transfer of local *M. cardinalis*
469 organelles into Sierran *M. lewisii*, this geographical signal strongly supports recent introgression
470 over alternative sources of phylogenetic discordance. Despite *M. parishii*’s floral adaptations for
471 self-pollination (tiny pale-pink flowers with little nectar and no separation of male and female
472 organs; Fig 1, Fig S2A), hybrids between the selfer and *M. cardinalis* have been reported where
473 they co-occur along ephemeral waterways. Given the difference in mating system, we might
474 expect that F₁ hybrids would have selfer seed parents and would backcross primarily to the
475 outcrossing species, causing introgression of nuclear genes from *M. parishii* into *M. cardinalis*, as

476 seen in the yellow monkeyflower pair, *M. nasutus* (selfer) and *M. guttatus* (outcrosser) [73,74].
477 Instead, the highly selfing species appears to have captured the organellar genome of the
478 outcrossing species. This may have been made more likely by the general dominance of *M.*
479 *parishii* for floral traits (Fig S2A); in a hybrid swarm, selfing (rather than backcrossing to the
480 outcrossing taxon) may be the primary mode of pollination.
481
482 Recent introgression between these highly divergent taxa may also help explain the puzzling
483 cytoplasmic male sterility (CMS; anthers produce no pollen) in hybrids between *M. parishii* and
484 *M. lewisii* [35]. In that study, we found that F₁ hybrids with the *M. parishii* cytoplasm exhibit
485 CMS if they do not also carry *M. parishii* alleles at multiple nuclear restorer loci, whereas
486 reciprocal hybrids do not exhibit anther sterility. CMS is in flowering plant hybrids is common
487 and thought to result from selfish male-sterilizing mitochondrial haplotypes [75] that spread
488 within species by slightly increasing female fitness, in turn favoring the spread of matched
489 nuclear restorers of male fertility [76]. Selfish CMS-restorer dynamics are theoretically plausible
490 and have been empirically demonstrated in other *Mimulus* species [77], but should not occur in
491 highly selfing taxa where individual female fitness also depends on some pollen production
492 [78]. However, conditions for the spread and establishment of an heterospecific CMS variant,
493 which can co-introgress with its (dominant) restorer allele, may be less restrictive than on a *de*
494 *novo* CMS mutation. Thus, while *M. parishii* x *M. lewisii* CMS could still reflect independent
495 neutral divergence at the hybrid-interacting loci, *M. parishii*'s possession of an organellar
496 haplotype recently transferred from neighboring *M. cardinalis* revives the possibility of a selfish
497 history for this asymmetric hybrid incompatibility.

498 Conclusions

499 Our understanding of adaption and speciation is contingent on understanding the demographic
500 and genetic histories of diverging populations, which the genomics era is proving to be
501 remarkably reticulate. We present the first population genomic dataset in the classic model
502 system of *Mimulus* section *Erythranthe* to clarify the history of species divergence and reveal
503 rampant introgression during periods of secondary contact. Definitive work on patterns of
504 reproductive isolation [27,29], abiotic [70] and biotic [32]adaptation, convergence in pollination
505 syndromes [23]and speciation genetics [30,36] have been built on the foundation of close sister
506 status for sympatric *M. lewisii* and *M. cardinalis*. However, these model taxa join a growing
507 number of systems in which introgression shapes trait evolution relevant to speciation and
508 obscures deeper histories of divergence. Our analyses suggest that introgressive hybridization –
509 and not recent parapatric speciation – is primarily responsible for the signals of genetic

510 closeness captured in previous phylogenetic analyses (Fig 5). Gene flow between *M. lewisii* and
511 *M. cardinalis*, both in the past and in their current zone of sympatry in the Sierran Nevada
512 Range, causes much of the nuclear genome to support sister species status. Multiple instances
513 of geographically restricted cytoplasmic introgression reinforce the inference of pervasive
514 hybridization in this system and may also explain the paradoxical cytoplasmic male sterility
515 (CMS) of selfer *M. parishii*. Importantly, our revision of the species tree for *Mimulus* section
516 *Erythranthe* demonstrates that long-term resistance to introgression, rather than convergence,
517 may be important in shaping multi-trait pollination syndromes during adaptive radiation in
518 complex landscapes. While shifting the genetic origin of the hummingbird pollination system to
519 an earlier node, our genome-wide evidence for reticulation during the *Erythranthe* radiation
520 only enriches its value for understanding the origins and maintenance of species barriers. The
521 layers of pre- and post-zygotic isolating mechanisms in current contact zones built up over time
522 and space, thus providing the opportunity to excavate their evolution and interactions across
523 the entire radiation.

Fig 5. A revised evolutionary history of *Mimulus* section *Erythranthe*. The three major introgression events shown contribute to discordance between previous molecular phylogenies and the revised species tree. The 'slope' of each reticulation indicates the inferred direction of introgression. Clade H is shown as a tritomy due to long external branches and short internal branches; however, it is plausible that *M. parishii* and a hummingbird-pollinated ancestor of *M. cardinalis* and *M. verbenaceus* were both separately derived from an (large, potentially structured) ancestral population that phenotypically resembled Northern *M. lewisii*.

524 Materials and Methods

525 Collections and plant material

526 We obtained wild-collected seeds from throughout the geographic range of *Mimulus* section
527 *Erythranthe* with particular focus on *M. lewisii* and *M. cardinalis* populations (Fig 2, Suppl. Table
528 S1). Plants were grown from seed in a greenhouse at the University of Montana and DNA
529 extracted from leaf or flower bud tissue using a customized CTAB-chloroform extraction
530 protocol (dx.doi.org/10.17504/protocols.io.bgv6jw9e). We used *M. bicolor* as an outgroup
531 species to the core *Erythranthe* taxa. Whole *M. bicolor* plants (n = 160) were wild-collected from a
532 large color-polymorphic population in center of its range in the Sierra Nevada Range [79] and
533 dried in coin envelopes, and then DNA was extracted from tissue individually prior to equal-
534 volume pooling.

535

536 Linkage mapping and recombination rates

537 We used the *M. cardinalis* linkage map reported in [65] and CE10 v1.92 genome contigs
538 (www.mimubase.org) to estimate genetic and physical distances along the *M. cardinalis*
539 genome. Briefly, a Sierran (CE10 inbred line) x Southern (WFM) *M. cardinalis* F₁ mapping
540 population (N = 93) was genotyped using the same targeted capture approach as this study.
541 8100 snps (representing 2152 cross-informative capture targets) were ordered with Lep-MAP3
542 [80], resolving the expected 8 linkage groups (2N = 16) spanning 573 centiMorgans (cM) [65].
543 The linkage map was used to scaffold v1.92 contigs with Chromonomer version 1.08 [81]. We
544 were able to scaffold a total of 341.8 Mb of genome sequence, which is 83.6% of the current v2
545 chromosomal assembly (based on both optical mapping and linkage relationships;
546 www.mimubase.org). The genome scaffolding used here for genome scans is largely similar in
547 order to the v2 assembly, but its contig positions and orientation are based solely on
548 intraspecific recombination. Recombination rates were estimated in non-overlapping genomic
549 bins of 1 Mbp. Rates were calculated as the genetic distance (in cM) between the two most distal
550 markers in the bin divided by their physical distance (in Mbp). We removed three bins with
551 extreme recombination rate estimates (>100 cM/Mbp) from further analysis. These estimates
552 were due to many crossovers between putatively physically proximal markers (<5,000 bp) with
553 no other markers present in the bin, and likely represent mislocalization of a marker on the
554 physical sequence (e.g., due to paralogy).

555

556 Targeted capture sequencing and genotyping

557

558 Targeted sequence capture was used to high-coverage, high-quality genotyping within and
559 among species in *Mimulus* section *Erythranthe*. Capture baits were designed to tile 9,126 genes
560 that are 1:1 orthologous between *M. cardinalis*, *M. lewisii*, and *M. guttatus*. Details of bait design
561 and library preparation can be found in [65]. All libraries were sequenced on a single lane of
562 Illumina HiSeq 2500 (PE 125). Raw Illumina reads were quality filtered and trimmed for
563 sequencing adaptors using Trimmomatic [82] and aligned to the v1.9g draft *M. cardinalis*
564 genome (<http://mimubase.org/FTP/Genomes/>) using bwa-mem v0.7.15 [83]. Alignments
565 were filtered for minimum quality scores of 29 using samtools v1.3 [84]. We then removed
566 potential PCR duplicates and realigned around indels using Picard Tools (
567 <http://broadinstitute.github.io/picard>) and GATK (v3.3-0-g37228af) [85] following GATK best
568 practices.

569
570

571 **Pooled population sequencing of *M. bicolor***

572 *Mimulus bicolor* DNA (N = 160 wild plants from a large population) was pooled into a single
573 sample for this study. Illumina library preparation and sequencing on an Illumina HiSeq 4000
574 were performed by Novogene Corporation (Stockton, CA, USA) following manufacturer
575 protocols. Genotypes were called as above with the exception of two alterations intended to
576 convert pooled genotypes into a single *M. bicolor* reference alignment. First, during GVCF
577 creation, we instructed the GATK tool HaplotypeCaller to attempt to remove 'contaminant'
578 reads at frequencies of up to 10% in order to remove low-frequency polymorphisms present in
579 the pool. After VCF creation, we converted remaining heterozygous sites to homozygotes by
580 randomly selecting one of the two alternate alleles. Multi-allelic sites were all ignored in the
581 final analyses. Observed sequence divergence between *M. bicolor* and *M. cardinalis* (median d_{xy} :
582 0.0277) was similar to levels of synonymous site diversity observed within a single population
583 of the genus's flagship species, *M. guttatus* [86] aligned and genotyped using the similar
584 parameters. Additionally, observed *M. bicolor*—*M. cardinalis* sequence divergence was nearly
585 identical to *M. bicolor*—*M. lewisii* divergence (median d_{xy} : 0.0282). These results indicate that
586 reference bias is of relatively low concern in this largely genic dataset, despite its phylogenetic
587 scope.

588

589 **Gene tree and species tree inference**

590 To generate a set of genomic regions representing individual protein-coding genes, we aligned
591 capture bait sequences to the contig-level *M. cardinalis* v 1.9g genome assembly
592 (<http://mimubase.org/FTP/Genomes/>) using BLAST v2.2.31 [87] to determine the beginning

593 and end coordinates of each aligned bait. We then used bedtools-merge v2.26.0 [88] to merge
594 bait alignments tiling the same gene into a single region, resulting in 8151 genomic regions.
595 Because each capture region was designed to target a protein-coding gene, we refer to these
596 targeted genomic regions as “genes”.

597

598 Gene tree inference and partitioned maximum likelihood (ML) phylogenetic analysis were
599 performed on individual alignments representing each gene. We created individual alignments
600 by extracting genotypes within the boundaries of each gene from the phased VCF using tabix
601 [89]. Alignments thus consisted of variable sites only, and a single haplotype for each sample
602 was included. We inferred ML phylogenies for each gene individually and the entire genome
603 using IQ-TREE v1.7-beta14 (cite) [48] under the GTR+ASC+G4 substitution model to correct for
604 the absence of invariant sites. This dataset included 8,151 genes in which we observed
605 parsimony-informative sites. For the whole-genome phylogeny we also generated branch
606 support by performing 1000 ultrafast bootstrap replicates [90]. To further ensure that the
607 resulting phylogeny was robust to model assumptions and tree search strategies, we inferred
608 ML trees using PhyML v20120412 [91] and RAXML v8.2.12 [92] on a concatenated super-matrix
609 consisting of 600,267 variable sites under the GTR+gamma substitution model with four rate
610 categories.

611

612 In addition to whole-genome concatenation, we used ASTRAL-III v5.6.3 [49] to generate a
613 species tree under the multispecies coalescent. ASTRAL uses variation in gene tree topologies to
614 infer a species tree under the assumption that topological discordance among gene trees is due
615 to incomplete lineage sorting during population divergence. We ran ASTRAL on the full dataset
616 of 8,151 gene trees inferred from IQ-TREE, using quartet scores and local posterior probabilities
617 as branch supports. Quartet scores measure how often a given quartet (unrooted, four-taxon
618 tree) observed in the species tree is present in the underlying gene trees. Under the assumption
619 of no gene flow post-speciation, quartet scores are also indicative of the degree of incomplete
620 lineage sorting along the inferred branch [93].

621

622 **Tree topology weighting with TWISST**

623 We quantified this variation in species relationships throughout the genome using TWISST [60].
624 Given a gene tree and a set of species designations for all tips in the tree, TWISST quantifies
625 support for all possible (rooted) species trees through iterative sampling of subtrees where each
626 species is represented by a single tip. We ran TWISST on each gene tree grouping all accessions
627 by species except *M. verbenaceus*, *M. rupestris*, and *M. eastwoodiae*, which we grouped into a

628 single 'species.' We did this for three reasons: (1) these species formed a single, highly
629 supported clade in our ML and ASTRAL trees, (2) we were primarily interested in the
630 relationships between *M. lewisii* and *M. cardinalis*, and (3) collapsing these species limited our
631 analysis to five taxa (105 unique rooted trees) and made analysis of the entire dataset feasible
632 (vs. seven taxa: 10,395 unique rooted trees). To quantify support among generalized species
633 relationships (e.g. Fig 3A), topology weightings for each unique tree topology were summed
634 across all topologies that included a clade of interest. For instance, we calculated support for the
635 'species tree' as the sum of weightings across all topologies that place *M. cardinalis* in a clade
636 with the other red-flowered species. We also visualized support for different species
637 relationships across the *M. cardinalis* genome by updating genome coordinates of capture
638 regions to match the chromosome-level v2 reference assembly (www.mimubase.org). To aid in
639 visualization, we averaged topology weights in overlapping five-gene windows.
640

641 **Genome-wide tests for introgression**

642 We used Patterson's D [61] and related statistics to identify aggregate genomic signatures of
643 introgression, assuming our inferred species tree accurately reflects historical relationships
644 within section *Erythranthe*. All tests were implemented in Python v3.5.5.
645 Patterson's D statistics tested for introgression on the four-taxon tree of (*M. bicolor*, (*M. lewisii*,
646 (*M. cardinalis*, *M. verbenaceus*))). Calculating D using *M. parishii* instead of *M. verbenaceus*
647 produced qualitatively similar results. We used all pairwise combinations of individual
648 accessions of *M. lewisii* and *M. cardinalis*, allowing for heterozygosity but not missing data.
649 While D can be calculated from allele frequencies, our accessions represent multiple
650 populations that may have experienced variable histories of introgression; pairwise calculation
651 gave us the potential to detect geographically-limited introgression. To test for genome-wide
652 statistical significance, we implemented the genomic window jackknife procedure suggested in
653 [94].
654

655 D_{FOIL} statistics [62] were used to identify the timing and, potentially, the direction of introgression
656 on the five-taxon tree (*M. bicolor*, ((*M. verbenaceus*, *M. cardinalis*), (*Sierran lewisii*, Northern
657 *lewisii*))). As with Patterson's D, we implemented D_{FOIL} in Python using individual accessions and
658 allowing for heterozygosity but not missing data. Because the D_{FOIL} patterns we observed
659 prevented us from inferring the direction of introgression, we calculated Hahn and Hibbins' D2
660 [63]. D2 uses expectations from the network coalescent to infer the direction of introgression on
661 a three-taxon tree. We defined the species tree as ((*M. verbenaceus*, *M. cardinalis*), *M. lewisii*) and
662 the introgression tree as (*M. verbenaceus*, (*M. cardinalis*, *M. lewisii*)). Introgression from *M.*

663 *cardinalis* into *M. lewisii* will also result in *M. lewisii* and *M. verbenaceus* sharing more recent
664 common ancestry than at gene trees concordant with the species tree, while introgression from
665 *M. lewisii* into *M. cardinalis* will not. We tested for this difference ($[d_{xy_{\text{lev-verb}}} \mid \text{species tree}] - [d_{xy_{\text{lev-verb}}} \mid \text{introgression tree}]$) using a t-test on genes with full TWISST weighting for either the
666 simplified species tree or the simplified introgression tree (see Fig 3).
667

668

669 **Nucleotide diversity and divergence**

670 Population genetic statistics were all calculated with the Python module scikit-allel v1.2.1
671 <https://scikit-allel.readthedocs.io/en/stable/index.html>. As input, VCF files were created that
672 included invariant sites using the flag “--includeNonVariantSites” in the GATK tool
673 GenotypeGVCFs. We calculated statistics on our pre-defined capture regions (“genes”).
674 Nucleotide diversity (π) at each gene was calculated at the species and regional levels (e.g. *M.*
675 *lewisii* and *Sierran lewisii*) and nucleotide divergence (d_{xy}) was calculated among regions and
676 species. In the absence of a complete reference annotation for *M. cardinalis*, we did not
677 differentiate among codon positions or between coding and noncoding diversity.
678

679

Floral trait complementation test

680 As a rough test for allelism of genetic variation contributing to the hummingbird pollination
681 floral syndrome of *M. cardinalis* and the other red-flowered taxa (specifically *M. verbenaceus* and
682 *M. rupestris*) within the frame of the historical phylogeny, we used a classic complementation
683 approach. First, we generated F_1 hybrids by crossing *M. rupestris* and *M. verbenaceus* lines (Table
684 S1) to the putative ancestral bee-pollinated phenotype represented by *M. lewisii* (Sierran LF10
685 line) to verify that these taxa shared recessive inheritance of the hummingbird syndrome
686 phenotype with *M. cardinalis*. Second, we generated F_1 hybrids between the CE10 *M. cardinalis*
687 line and *M. rupestris* and *M. verbenaceus*, and then made F_2 s by selfing a single F_1 of each pair. We
688 grew parents (N= 8-10), F_1 s (N = 10) and F_2 s (N = 100-200) in the greenhouse at the University of
689 Montana. For both sets of hybrids, it was evident that the overall morphology and color of
690 hybrid flowers exhibited non-complementation (Fig S1B). However, severe hybrid breakdown
691 (e.g., deformed corollas, sterile anthers) was also common in both sets of F_2 s. Due to the latter
692 (and the complete absence of obviously *M. lewisii*-like variants), we do not report F_2 quantitative
693 traits.
694

695 Acknowledgments

696 We are grateful to Katie Zarn and Jacob Heiling for assistance with plant care, and to Kayli
697 Anderson and Tamara Max and Deng-hui (David) Xing of the University of Montana Genomics
698 Core Facility for assistance with the laboratory work. Mariah McIntosh created the floral
699 illustrations. Amy Angert, Robert Vickrey, Jay Sobel, Thomas Mitchell-Olds, Margaret
700 Hendrick, Seema Sheth, and Brooke Kern generously provided tissue or seeds. We also thank
701 Paul Beardsley and attendees of the Mimulus Meeting 2019 for lively discussions. Funding was
702 provided by NSF DEB-1407333 to AS and LF, and NSF DEB-1457763 and OIA-1736249 to LF.
703 TCN was supported by an UNVEIL postdoctoral fellowship through OIA-1736249.

704 Author Contributions

705 TCN, AMS, and LF conceived of and designed the project. AMS collected wild accessions,
706 prepared tissue, and performed DNA extraction. AMS, FRF, and LF generated and analyzed M.
707 cardinalis x M. rupestris and M. cardinalis x M. verbenaceus F₁ populations. AMS and DDV
708 designed the targeted capture probes and oversaw sequence library preparation, in consultation
709 with LF and FRF. YY provided the M. cardinalis draft genome sequence. TCN conducted
710 bioinformatic and phylogenomic analyses, with advice from DDV. TCN and LF wrote the
711 manuscript, with input from all authors.

712 Data availability

713 Code required to generate figures and statistics in the text can be found at
714 github.com/thomnelson/MimulusPhylogenomics. Sequence data will be made publicly
715 available on the SRA.

716 References

- 717 1. Gavrilets S, Losos JB. Adaptive radiation: contrasting theory with data. *Science*. 2009;323:
718 732–737. doi:10.1126/science.1157966
- 719 2. Stebbins GL. Adaptive radiation of reproductive characteristics in angiosperms I:
720 Pollination mechanisms. *Annu Rev Ecol Syst*. 1970;1: 307–326.
721 doi:<https://doi.org/10.1146/annurev.es.01.110170.001515>
- 722 3. Berner D, Salzburger W. The genomics of organismal diversification illuminated by
723 adaptive radiations. *Trends Genet*. 2015;31: 491–499. doi:10.1016/j.tig.2015.07.002
- 724 4. Marques DA, Meier JI, Seehausen O. A combinatorial view on speciation and adaptive
725 radiation. *Trends Ecol Evol*. 2019;34: 531–544. doi:10.1016/j.tree.2019.02.008

726 5. Schluter D. *The Ecology of Adaptive Radiation*. Oxford: Oxford University Press; 2000.

727 6. Schluter D, Nagel LM. Parallel Speciation by Natural Selection. *Am Nat*. 1995;146: 292–
728 301. doi:10.2307/2463062

729 7. Mahler DL, Ingram T, Revell LJ, Losos JB. Exceptional convergence on the
730 macroevolutionary landscape in island lizard radiations. *Science*. 2013;341: 292–295.
731 doi:10.1126/science.1232392

732 8. Elmer KR, Meyer A. Adaptation in the age of ecological genomics: insights from
733 parallelism and convergence. *Trends Ecol Evol*. 2011;26: 298–306.
734 doi:10.1016/j.tree.2011.02.008

735 9. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al.
736 Genomics and the origin of species. *Nature Rev Genet*. 2014;15: 176–192.
737 doi:10.1038/nrg3644

738 10. Filiault DL, Ballerini ES, Mandáková T, Aköz G, Derieg NJ, Schmutz J, et al. The *Aquilegia*
739 genome provides insight into adaptive radiation and reveals an extraordinarily
740 polymorphic chromosome with a unique history. *Elife*. 2018;7: e36426.
741 doi:10.7554/elife.36426

742 11. Meier JI, Marques DA, Wagner CE, Excoffier L, Seehausen O. Genomics of Parallel
743 Ecological Speciation in Lake Victoria Cichlids. *Mol Biol Evol*. 2018;35: 1489–1506.
744 doi:10.1093/molbev/msy051

745 12. Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of
746 mimicry adaptations among species. *Nature*. 2012;487: 94–98. doi:10.1038/nature11041

747 13. Glor RE. Phylogenetic insights on adaptive radiation. *Annu Rev Ecol Evol Syst*. 2010;41:
748 251–270. doi:10.1146/annurev.ecolsys.39.110707.173447

749 14. Nichols R. Gene trees and species trees are not the same. *Trends Ecol Evol*. 2001;16: 358–
750 364. doi:10.1016/s0169-5347(01)02203-0

751 15. Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the
752 multispecies coalescent. *Trends Ecol Evol*. 2009;24: 332–340. doi:10.1016/j.tree.2009.01.009

753 16. Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. *Mol
754 Ecol*. 2016;25: 2337–2360. doi:10.1111/mec.13557

755 17. Edwards SV. Is a new and general theory of molecular systematics emerging? *Evolution*.
756 2009;63: 1–19. doi:10.1111/j.1558-5646.2008.00549.x

757 18. Rosenberg NA, Nordborg M. Genealogical trees, coalescent theory and the analysis of
758 genetic polymorphisms. *Nature Rev Genet*. 2002;3: 380–390. doi:10.1038/nrg795

759 19. Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM, Lafferty DJR, et al. Adaptive
760 introgression underlies polymorphic seasonal camouflage in snowshoe hares. *Science*.
761 2018;360: 1355–1358. doi:10.1126/science.aar5273

762 20. Rieseberg LH, Soltis DE. Phylogenetic consequences of cytoplasmic gene flow in plants.
763 *Evol Trends Plants*. 1991;5: 65–84.

764 21. Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in
765 animals. *Mol Ecol*. 2012;21: 3907–3930. doi:10.1111/j.1365-294X.2012.05664.x

766 22. Vickery RK Jr, Wullstein BM. Comparison of six approaches to the classification of
767 *Mimulus* sect. *Erythranthe* (Scrophulariaceae). *Syst Bot*. 1987;12: 339–364.
768 doi:10.2307/2419258

769 23. Beardsley P, Yen A, Olmstead RG. AFLP phylogeny of *Mimulus* section *Erythranthe* and
770 the evolution of hummingbird pollination. *Evolution*. 2003;57: 1397–1410.
771 doi:10.1111/j.0014-3820.2003.tb00347.x

772 24. Barker W, Nesom G, Beardsley P, Fraga NS. A taxonomic conspectus of Phrymaceae: A
773 narrowed circumscription for *Mimulus*, new and resurrected genera, and new names and
774 combinations. *Phytoneuron*. 2012;39: 1–60.

775 25. Nesom GL. Taxonomy of *Erythranthe* sect. *Erythranthe* (Phrymaceae). *Phytoneuron*.
776 2014;31: 1–41.

777 26. Lowry DB, Sobel JM, Angert AL, Ashman T-L, Baker RL, Blackman BK, et al. The case for
778 the continued use of the genus name *Mimulus* for all monkeyflowers. *Taxon*. 2019;68:
779 617–623. doi:10.1002/tax.12122

780 27. Hiesey W, Nobs M, Bjorkman O. Experimental studies on the nature of species: 5.
781 Biosystematics, genetics and physiological ecology of the *Erythranthe* section of *Mimulus*.
782 Washington, D.C.: Carnegie Institution; 1971.

783 28. Vickery RK Jr. Case studies in the evolution of species complexes in *Mimulus*. In: Hecht
784 MK, Steere WC, Wallace B, editors. *Evolutionary Biology*. 3rd ed. Boston, MA. 1978. pp.
785 405–507. doi:10.1007/978-1-4615-6956-5_7

786 29. Ramsey J, Bradshaw HD Jr., Schemske DW. Components of reproductive isolation
787 between the monkeyflowers *Mimulus lewisii* and *M. cardinalis* (Phrymaceae). *Evolution*.
788 2003;57: 1520–1534. doi:10.1111/j.0014-3820.2003.tb00360.x

789 30. Bradshaw HD Jr., Wilbert SM, Otto KG, Schemske DW. Genetic mapping of floral traits
790 associated with reproductive isolation in monkeyflowers (*Mimulus*). *Nature*. 1995;376:
791 762–765. doi:10.1038/376762a0

792 31. Bradshaw HD Jr., Otto KG, Frewen BE, Makowsky R, Schemske DW. Quantitative trait
793 loci affecting differences in floral morphology between two species of monkeyflower
794 (*Mimulus*). *Genetics*. 1998;149: 367–382.

795 32. Bradshaw HD Jr., Schemske DW. Allele substitution at a flower colour locus produces a
796 pollinator shift in monkeyflowers. *Nature*. 2003;426: 176–178. doi:10.1038/nature02106

797 33. Schemske DW, Bradshaw HD Jr. Pollinator preference and the evolution of floral traits in
798 monkeyflowers (*Mimulus*). *Proc Nat Acad Sci USA*. National Academy of Sciences;
799 1999;96: 11910–11915. doi:10.1073/pnas.96.21.11910

800 34. Fishman L, Stathos A, Beardsley P, Williams CF, Hill JP. Chromosomal rearrangements
801 and the genetics of reproductive barriers in *Mimulus* (monkeyflowers). *Evolution*.
802 2013;67: 2547–2560. doi:10.1111/evo.12154

803 35. Fishman L, Beardsley P, Stathos A, Williams CF, Hill JP. The genetic architecture of traits
804 associated with the evolution of self-pollination in *Mimulus*. *New Phytol.* 2015;205: 907–
805 917. doi:10.1111/nph.13091

806 36. Stathos A, Fishman L. Chromosomal rearrangements directly cause underdominant F1
807 pollen sterility in *Mimulus lewisii*–*Mimulus cardinalis* hybrids. *Evolution.* 2014;68: 3109–
808 3119. doi:10.1111/evo.12503

809 37. Yuan Y-W, Rebocho AB, Sagawa JM, Stanley LE, Bradshaw HD Jr. Competition between
810 anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral
811 pigments between *Mimulus* species. *Proc Nat Acad Sci USA.* 2016;113: 2448–2453.
812 doi:10.1073/pnas.1515294113

813 38. Yuan Y-W, Sagawa JM, Young RC, Christensen BJ, Bradshaw HD Jr. Genetic dissection of
814 a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation
815 between sister species of *Mimulus*. *Genetics.* 2013;194: 255–263.
816 doi:10.1534/genetics.112.146852

817 39. Yuan Y-W. Monkeyflowers (*Mimulus*): new model for plant developmental genetics and
818 evo-devo. *New Phytol.* 2019;222: 694–700. doi:10.1111/nph.15560

819 40. Beardsley P, Olmstead RG. Redefining Phrymaceae: the placement of *Mimulus*, tribe
820 Mimuleae, and *Phryma*. *Am J Bot.* 2002;89: 1093–1102. doi:10.3732/ajb.89.7.1093

821 41. Beardsley P, Schoenig SE, Whittall JB, Olmstead RG. Patterns of evolution in western
822 North American *Mimulus* (Phrymaceae). *Am J Bot.* 2004;91: 474–489.
823 doi:10.3732/ajb.91.3.474

824 42. Freeman S, Herron JC. Evolutionary Analysis. 4 ed. Upper Saddle River, NJ:
825 Pearson/Prentice Hall; 2004.

826 43. Marais des DL, Rausher MD. Parallel evolution at multiple levels in the origin of
827 hummingbird pollinated flowers in *Ipomoea*. *Evolution.* John Wiley & Sons, Ltd; 2010;64:
828 2044–2054. doi:10.1111/j.1558-5646.2010.00972.x

829 44. Wessinger CA, Rausher MD. Lessons from flower colour evolution on targets of
830 selection. *J Exp Bot.* 2012;63: 5741–5749. doi:10.1093/jxb/ers267

831 45. Chase MA, Stankowski S, Streisfeld MA. Genomewide variation provides insight into
832 evolutionary relationships in a monkeyflower species complex (*Mimulus* sect. *Diplacus*).
833 *Am J Bot.* 2017;104: 1510–1521. doi:10.3732/ajb.1700234

834 46. Ortiz-Barrientos D. The color genes of speciation in plants. *Genetics.* 2013;194: 39–42.
835 doi:10.1534/genetics.113.150466

836 47. Thomson JD, Wilson P. Explaining evolutionary shifts between bee and hummingbird
837 pollination: convergence, divergence, and directionality. *Int J Plant Sci.* 2008;169: 23–38.
838 doi:10.1086/523361

839 48. Nguyen L-T, Schmidt HA, Haeseler von A, Minh BQ. IQ-TREE: a fast and effective
840 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.*
841 2015;32: 268–274. doi:10.1093/molbev/msu300

842 49. Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree
843 reconstruction from partially resolved gene trees. *BMC Bioinformatics*. 2018;19: 153–30.
844 doi:10.1186/s12859-018-2129-y

845 50. Sheth SN, Angert AL. Demographic compensation does not rescue populations at a
846 trailing range edge. *Proc Nat Acad Sci USA*. 2018;115: 2413–2418.
847 doi:10.1073/pnas.1715899115

848 51. Wessinger CA, Rausher MD, Hileman LC. Adaptation to hummingbird pollination is
849 associated with reduced diversification in *Penstemon*. *Evol Lett*. 2019;3: 521–533.
850 doi:10.1002/evl3.130

851 52. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. Pollination syndromes
852 and floral specialization. *Annu Rev Ecol Evol Syst*. 2004;35: 375–403.
853 doi:10.1146/annurev.ecolsys.34.011802.132347

854 53. Bleiweiss R. Mimicry on the QT(L): genetics of speciation in *Mimulus*. *Evolution*. Society
855 for the Study of Evolution; 2001;55: 1706–1709. doi:110.1111/j.0014-3820.2001.tb00690.x

856 54. Wessinger CA, Kelly JK. Selfing can facilitate transitions between pollination syndromes.
857 *Am Nat*. 2018;191: 582–594. doi:10.1086/696856

858 55. Gegear RJ, Burns R, Swoboda-Bhattarai KA. “Hummingbird” floral traits interact
859 synergistically to discourage visitation by bumble bee foragers. *Ecology*. 2017;98: 489–
860 499. doi:10.1002/ecy.1661

861 56. Nelson TC, Cresko WA. Ancient genomic variation underlies repeated ecological
862 adaptation in young stickleback populations. *Evol Lett*. 2018;2: 9–21. doi:10.1002/evl3.37

863 57. Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, et al. Genomic
864 architecture and introgression shape a butterfly radiation. *Science*. 2019;366: 594–599.
865 doi:10.1126/science.aaw2090

866 58. Byers KJRP, Vela JP, Peng F, Riffell JA, Bradshaw HD Jr. Floral volatile alleles can
867 contribute to pollinator-mediated reproductive isolation in monkeyflowers (*Mimulus*).
868 *Plant J*. 2014;80: 1031–1042. doi:10.1111/tpj.12702

869 59. Peng F, Byers KJRP, Bradshaw HD Jr. Less is more: Independent loss-of-function
870 OCIMENE SYNTHASE alleles parallel pollination syndrome diversification in
871 monkeyflowers (*Mimulus*). *Am J Bot*. Wiley-Blackwell; 2017;104: 1055–1059.
872 doi:10.3732/ajb.1700104

873 60. Martin SH, Van Belleghem SM. Exploring evolutionary relationships across the genome
874 using topology weighting. *Genetics*. Genetics; 2017;206: 429–438.
875 doi:10.1534/genetics.116.194720

876 61. Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between
877 closely related populations. *Mol Biol Evol*. 2011;28: 2239–2252.
878 doi:10.1093/molbev/msr048

879 62. Pease JB, Hahn MW. Detection and polarization of introgression in a five-taxon
880 phylogeny. *Syst Biol*. 2015;64: 651–662. doi:10.1093/sysbio/syv023

881 63. Hahn MW, Hibbins MS. A three-sample test for introgression. *Mol Biol Evol*. 2019;36: 882 2878–2882. doi:10.1093/molbev/msz178

883 64. Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between 884 mitochondrial genomes and species boundaries. *Mol Ecol*. 2017;26: 2212–2236. 885 doi:10.1111/mec.13959

886 65. Nelson TC, Muir CD, Stathos AM, Vanderpool DD, Anderson K, Angert AL, et al. 887 Quantitative trait locus mapping reveals an independent genetic basis for joint 888 divergence in leaf function, life-history, and floral traits between scarlet monkeyflower 889 (*snp*) populations. *bioRxiv*. 2020;101: e02924–35. doi:10.1101/2020.08.16.252916

890 66. Stankowski S, Streisfeld MA. Introgressive hybridization facilitates adaptive divergence 891 in a recent radiation of monkeyflowers. *Proc R Soc Lond B*. 2015;282: 20151666. 892 doi:10.1098/rspb.2015.1666

893 67. Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, et al. Genomic 894 and functional approaches reveal a case of adaptive introgression from *Populus* 895 *balsamifera* (balsam poplar) in *P. trichocarpa* (black cottonwood). *Mol Ecol*. 2016;25: 2427– 896 2442. doi:10.1111/mec.13539

897 68. Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. 898 Extensive introgression in a malaria vector species complex revealed by phylogenomics. 899 *Science*. 2015;347: 1258524. doi:10.1126/science.1258524

900 69. Figueiró HV, Li G, Trindade FJ, Assis J, Pais F, Fernandes G, et al. Genome-wide 901 signatures of complex introgression and adaptive evolution in the big cats. *Sci Adv.* 902 American Association for the Advancement of Science; 2017;3: e1700299. 903 doi:10.1126/sciadv.1700299

904 70. Angert AL, Schemske DW. The evolution of species' distributions: reciprocal transplants 905 across the elevation ranges of *Mimulus cardinalis* and *M. lewisii*. *Evolution*. 2005;59: 1671– 906 1684. doi:10.1554/05-107.1

907 71. Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. *Annu Rev Ecol 908 Evol Syst*. 2009;40: 481–501. doi:10.1146/annurev.ecolsys.39.110707.173414

909 72. Wright S. Evolution in Mendelian populations. *Genetics*. 1931;16: 97–159.

910 73. Martin NH, Willis JH. Ecological divergence associated with mating system causes nearly 911 complete reproductive isolation between sympatric *Mimulus* species. *Evolution*. 2007;61: 912 68–82. doi:10.1111/j.1558-5646.2007.00006.x

913 74. Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL. Speciation and introgression 914 between *Mimulus nasutus* and *Mimulus guttatus*. *PLoS Genetics*. 2014;10: e1004410. 915 doi:10.1371/journal.pgen.1004410

916 75. Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male 917 gametophyte development. *Plant Cell*. 2004;16 : S154–69. doi:10.1105/tpc.015966

918 76. Charlesworth D, Ganders FR. The population genetics of gynodioecy with cytoplasmic- 919 genic male-sterility. *Heredity*. 1979;43: 213–218.

920 77. Case AL, Finseth FR, Barr CM, Fishman L. Selfish evolution of cytonuclear hybrid
921 incompatibility in *Mimulus*. Proc R Soc Lond B. 2016;283: 20161493.
922 doi:10.1098/rspb.2016.1493

923 78. Fishman L, Sweigart AL. When two rights make a wrong: the evolutionary genetics of
924 plant hybrid incompatibilities. Annu Rev Plant Biol. 2018;69: 701–737.
925 doi:10.1146/annurev-arplant-042817-040113

926 79. Grossenbacher DL, Stanton ML. Pollinator-mediated competition influences selection for
927 flower-color displacement in sympatric monkeyflowers. Am J Bot. 2014;101: 1915–1924.
928 doi:10.3732/ajb.1400204

929 80. Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome
930 sequencing data. Bioinformatics. 2017;33: 3726–3732. doi:10.1093/bioinformatics/btx494

931 81. Catchen J, Amores A, Bassham S. Chromonomer: a tool set for repairing and enhancing
932 assembled genomes through integration of genetic maps and conserved synteny.
933 bioRxiv. 2020;32: 145–36. doi:10.1101/2020.02.04.934711

934 82. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
935 data. Bioinformatics. 2014;30: 2114–2120. doi:10.1093/bioinformatics/btu170

936 83. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
937 Bioinformatics. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324

938 84. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
939 Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079.
940 doi:10.1093/bioinformatics/btp352

941 85. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
942 Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
943 sequencing data. Genome Res. 2010;20: 1297–1303. doi:10.1101/gr.107524.110

944 86. Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic
945 variation in *Mimulus guttatus*. Mol Ecol. 2017;26: 519–535. doi:10.1111/mec.13922

946 87. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J
947 Mol Biol. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2

948 88. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
949 features. Bioinformatics. 2010;26: 841–842. doi:10.1093/bioinformatics/btq033

950 89. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files.
951 Bioinformatics. 2011;27: 718–719. doi:10.1093/bioinformatics/btq671

952 90. Hoang DT, Chernomor O, Haeseler von A, Minh BQ, Vinh LS. UFBoot2: Improving the
953 Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35: 518–522.
954 doi:10.1093/molbev/msx281

955 91. Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating maximum likelihood
956 phylogenies with PhyML. Methods Mol Biol. Totowa, NJ: Humana Press; 2009;537: 113–
957 137. doi:10.1007/978-1-59745-251-9_6

958 92. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
959 large phylogenies. *Bioinformatics*. 2014;30: 1312–1313. doi:10.1093/bioinformatics/btu033

960 93. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. ASTRAL:
961 genome-scale coalescent-based species tree estimation. *Bioinformatics*. 2014;30: i541–8.
962 doi:10.1093/bioinformatics/btu462

963 94. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence
964 of the Neandertal genome. *Science*. 2010;328: 710–722. doi:10.1126/science.1188021

965