
van Leeuwen et al 

1 

Computational pharmacogenomics screen identifies synergistic statin-compound combinations 
as anti-breast cancer therapies 

Jenna van Leeuwen1,2, Wail Ba-Alawi1,2, Emily Branchard2, Joseph Longo1,2, Jennifer Silvester1,3, David W. 
Cescon1,4,5, Benjamin Haibe-Kains1,2,6,7,§, Linda Z. Penn1,2,§, Deena M.A. Gendoo8,§ 

 
1Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 
1L7 
2Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, 
M5G 1L7 
3Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2Q 1R7 
4Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G 
2C1 
5Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s 
College Circle, Toronto, ON, Canada, M5S 1A1 
6Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON, Canada, 
M5S 3G4 
7Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, Canada, M5G 0A3 
8Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, 
Birmingham, UK  
 
§ Co-corresponding authors 
  
Address for correspondence: Regarding computational aspects, Dr. Haibe-Kains <Benjamin.Haibe-
Kains@uhnresearch.ca> and Dr. Gendoo <d.gendoo@bham.ac.uk>; regarding statin aspects, Dr. Penn 
<Linda.Penn@uhnresearch.ca>. 
  
 
  
  
  
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/


van Leeuwen et al 

2 

Abstract 
 
Statins are a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the 

metabolic mevalonate pathway, which have been shown to have anti-cancer activity. As therapeutic efficacy 

is increased when drugs are used in combination, we sought to identify agents, like dipyridamole, that 

potentiate statin-induced tumor cell death. As an antiplatelet agent dipyridamole will not be suitable for all 

cancer patients. Thus, we developed an integrative pharmacogenomics pipeline to identify agents that were 

similar to dipyridamole at the level of drug structure, in vitro sensitivity and molecular perturbation. To enrich 

for compounds expected to target the mevalonate pathway, we took a pathway-centric approach towards 

computational selection, which we called mevalonate drug network fusion (MVA-DNF). We validated two 

of the top ranked compounds, nelfinavir and honokiol and demonstrated that, like dipyridamole, they 

synergize with fluvastatin to potentiate tumor cell death by blocking the restorative feedback loop. This is 

achieved by inhibiting activation of the key transcription factor that induces mevalonate pathway gene 

transcription, sterol regulatory element-binding protein 2 (SREBP2). Mechanistically, the synergistic 

response of fluvastatin+nelfinavir and fluvastatin+honokiol was associated with similar transcriptomic and 

proteomic pathways, indicating a similar mechanism of action between nelfinavir and honokiol when 

combined with fluvastatin. Further analysis identified the canonical epithelial-mesenchymal transition (EMT) 

gene, E-cadherin as a biomarker of these synergistic responses across a large panel of breast cancer cell 

lines. Thus, our computational pharmacogenomic approach can identify novel compounds that phenocopy 

a compound of interest in a pathway-specific manner.  

Key words: Drug combinations; cancer therapy; mevalonate pathway; drug similarity; drug perturbations; 

pharmacogenomics; breast cancer;  

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/


van Leeuwen et al 

3 

Significance Statement: 

We provide a rapid and cost-effective strategy to expand a class of drugs with a similar phenotype. Our 

parent compound, dipyridamole, potentiated statin-induced tumor cell death by blocking the statin-triggered 

restorative feedback response that dampens statins pro-apoptotic activity. To identify compounds with this 

activity we performed a pharmacogenomic analysis to distinguish agents similar to dipyridamole in terms 

of structure, cell sensitivity and molecular perturbations. As dipyridamole has many reported activities, we 

focused our molecular perturbation analysis on the pathway inhibited by statins, the metabolic mevalonate 

pathway. Our strategy was successful as we validated nelfinavir and honokiol as dipyridamole-like drugs 

at both the phenotypic and molecular levels. Our pathway-specific pharmacogenomics approach will have 

broad applicability.  
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Background 

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) that has a poorer 

prognosis amongst the major breast cancer subtypes1. This poor prognosis stems from our limited 

understanding of the underlying biology, the lack of targeted therapeutics, and the associated risk of distant 

recurrence occurring predominantly in the first two years after diagnosis2. Cytotoxic anthracycline and 

taxane-based chemotherapy regimens remain the primary option for treating TNBC, with other classes of 

investigational agents in various stages of development. Therefore, novel and effective therapeutics are 

urgently needed to combat this difficult-to-treat cancer.  

 Altered cellular metabolism is a hallmark of cancer3,4 and targeting key metabolic pathways can provide 

new anti-cancer therapeutic strategies. Aberrant activation of the metabolic mevalonate (MVA) pathway is 

a hallmark of many cancers, including TNBC, as the end-products include cholesterol and other non-sterol 

isoprenoids essential for cellular proliferation and survival5–7. The statin family of FDA-approved cholesterol-

lowering drugs are potent inhibitors of the rate-limiting enzyme of the MVA pathway, 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGCR)5. Epidemiological evidence shows that statin-use as a cholesterol 

control agent is associated with reduced cancer incidence8 and recurrence9–13. Specifically, in BC, a 30-

60% reduction in recurrence is evident amongst statin users, and decreased risk is associated with 

increased statin duration9,12,14,15. We and others have shown preclinically that Estrogen Receptor (ER)-

negative BC cell lines, including TNBC, are preferentially sensitive to statin-induced apoptosis16,17. 

Moreover, three preoperative clinical trials investigating lipophilic statins (fluvastatin, atorvastatin) in human 

BC, showed statin use was associated with reduced tumour cell proliferation and increased apoptosis of 

high-grade BCs18,19. Thus, evidence suggests that statins have potential utility in the treatment of BC, 

including TNBC.   

 Drug combinations that overcome resistance mechanisms and maximize efficacy have potential 

advantages as cancer therapy. Blocking the MVA pathway with statins triggers a restorative feedback 

response that significantly dampens the pro-apoptotic activity of statins20,21. Briefly, statin-induced depletion 

of intracellular sterols, triggers the inactive cytoplasmic, precursor form of the transcription factor sterol 

regulatory element-binding protein 2 (SREBP2) to be processed to the active mature nuclear form, which 

induces transcription of MVA genes, including HMGCR and the upstream synthase (HMGCS1)22. We have 
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shown that inhibiting SREBP2 using RNAi, or blocking SREBP2 processing using the drug dipyridamole, 

significantly potentiates the ability of statins to trigger tumor cell death21,23,24.  

 Dipyridamole is an FDA-approved antiplatelet agent commonly used for secondary stroke 

prevention, and since statin-dipyridamole has been co-prescribed for other indications it may be safely used 

in the treatment of cancer. However, the exact mechanism of dipyridamole action remains unclear as it has 

been reported to regulate several biological processes. Moreover, the antiplatelet activity of dipyridamole 

may be a contraindication for some cancer patients. Thus, to expand this dipyridamole-like class of 

compounds that can potentiate the pro-apoptotic activity of statins, we employed a pathway-centric 

approach to develop a computational pharmacogenomics pipeline to distinguish compounds that are 

predicted to behave similarly to dipyridamole in the regulation of MVA pathway genes. Using this strategy, 

we identified several potential dipyridamole-like compounds including nelfinavir, an FDA-approved 

antiretroviral drug and honokiol, a compound isolated from Magnolia spp., which synergise with statins to 

drive tumour cell death by blocking the restorative feedback response. Correlation analysis of the statin-

compound combination synergy score, with basal mRNA expression across a large panel of BC cell lines, 

identified CDH1 expression as a predictive biomarker of response to these combination therapies. Taken 

together, we provide a new strategy to identify compounds that behave functionally similar to dipyridamole 

in an MVA pathway-specific manner, and suggest that this approach will have broad utility for compound 

discovery across a wide-variety of drug/pathway interactions.  

 

Results 
Computational pharmacogenomic pipeline identifies dipyridamole-like compounds 

We developed a computational pipeline that harnesses high-throughput pharmacogenomics analysis to 

identify dipyridamole-like compounds that synergise with statins by blocking MVA pathway gene expression 

to inhibit cancer cell viability (Figure 1). The LINCS-L1000 (L1000)25 and NCI-6026 datasets were chosen 

for these studies as they contain cellular drug-response data at the molecular and proliferative levels across 

a panel of cell lines, respectively. From these datasets we extracted drug structure, drug-induced gene 

perturbation data (gene expression changes after drug treatment) and drug-cell line sensitivity profiles for 

the 238 compounds common to both datasets. Treating each level of data as a separate layer, we restricted 
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the drug-gene perturbation layer from the L1000 dataset to only include the six MVA pathway genes present 

in the L1000 landmark gene set to enrich for compounds that phenocopy the MVA pathway-specific activity 

of dipyridamole (Supplemental Figure 1A). With dipyridamole as the reference input, we generated an 

MVA pathway-specific Drug Network Fusion (MVA-DNF) through the integration of 3 distinct data layers: 

drug structure, MVA-specific drug perturbation signatures, and drug-cell line sensitivity profiles. For each 

of the data layers incorporated into MVA-DNF, an 238x238 drug affinity matrix was generated, indicating 

drug similarity for a selected drug against all other drugs. Using the Pearson correlation coefficient, we 

computed the similarity for every pair of drug perturbation profiles and pairs of drug sensitivity profiles 

(Figure 1B). From this, we identified 23 potential dipyridamole-like compounds that scored as significant 

(permutation test p-value <0.05); Methods; Figure 1B and Supplementary Table 1). Represented as a 

network, these hits display strong connectivity to dipyridamole as well as to each other.  

We assessed the contribution of the different data layers (drug structure, drug-gene perturbation, 

and drug-cell line sensitivity) within the MVA-DNF for each of these 23 compounds (Figure 1C). Drug 

perturbation played a significant role in the selection of novel dipyridamole-like compounds compared to 

drug sensitivity and drug structure. This reflects the specificity of the MVA-DNF towards the MVA pathway, 

in comparison to a ‘global’ drug taxonomy that is not MVA pathway-centric. Further assessment of the six 

MVA-pathway gene expression changes within the drug perturbation signatures highlights comparable 

expression profiles between dipyridamole and the novel dipyridamole-like compounds (Supplementary 

Figure 1B).  

To prioritize and further interrogate the identified dipyridamole-like hits we annotated the 23 

compounds by reported mechanism of action and potential clinical utility. Two compounds were excluded 

from further analysis as they were not clinically useful: Chromomycin A3, a reported toxin27, and cadmium 

chloride, an established carcinogen28. The remaining 21 compounds segregated into ten distinct categories, 

demonstrating that dipyridamole-like hits identified through our pharmacogenomics pipeline spanned a 

diverse chemical and biological space (Supplemental Figure 1C, Supplemental Table 1). We sought to 

validate the five hits that scored as most similar to dipyridamole, which belong to four different categories 

(RAF/MEK inhibitor, antiretroviral, anthracycline and natural product). Our lab had previously reported that 

the anthracycline doxorubicin potentiates lovastatin in ovarian cancer cells29 confirming the reliability of our 

approach. Similarly, RAF/MEK inhibitors such as PD98059 and more recently Selumetinib (AZD6244) have 

been reported to synergise with statins to potentiate cancer cell death30,31. Of the top five hits, doxorubicin 
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was an existing BC chemotherapeutic agent32 and therefore removed from further analysis. The molecular 

targeted compound (selumetinib) along with the novel three compounds were advanced for further 

evaluation (nelfinavir, mitoxantrone and honokiol) (Supplemental Table 1).  

 

Dipyridamole-like compounds induce apoptosis in combination with fluvastatin and block the 

sterol-regulated feedback loop of the MVA pathway 

To investigate whether the dipyridamole-like compounds could potentiate fluvastatin-induced cell death 

similar to that of dipyridamole, we first investigated sensitivity to increasing statin exposure in combination 

with a sub-lethal concentration of the novel dipyridamole-like compounds (Supplemental Figure 2) in two 

breast cancer cell line models with differential sensitivity to fluvastatin as a single agent16. As seen with 

dipyridamole, we observed similar potentiation of fluvastatin (lower IC50) when combined with a sub-lethal 

concentration of selumetinib, nelfinavir, or honokiol, but not mitoxantrone (Supplemental Fig 3 and 

Supplemental Fig 4). Therefore, mitoxantrone was no longer pursued as a dipyridamole-like compound. 

To determine the nature of the anti-proliferative activity of the statin-compound combinations, we evaluated 

cell death by fixed propidium iodide staining and PARP cleavage with selumetinib, nelfinavir, or honokiol. 

Our data indicate that all three compounds, at concentrations that have minimal effects as single agents, 

phenocopy dipyridamole and potentiate statin-induced cell death (Figure 2A-C).  

 Mechanistically, statins induce a feedback response mediated by SREBP2 that has been shown to 

dampen cancer cell sensitivity to statin exposure. Moreover, blocking the SREBP2-mediated feedback 

response with dipyridamole enhances statin-induced cancer cell death21,24. We have shown that 

dipyridamole blocks the regulatory cleavage and therefore activation of SREBP2, decreasing mRNA 

expression of SREBP2-target genes of the MVA pathway. As expected, statin treatment induced the 

expression of SREBP2-target genes, INSIG1, HMGCR and HMGCS1 after 16 hr of treatment, which was 

blocked by the co-treatment with dipyridamole (Figure 3A, Supplemental Figure 5A). Similarly, nelfinavir 

and honokiol both phenocopy dipyridamole and block the statin-induced expression of MVA pathway genes 

(Figure 3A, Supplemental Figure 5A). By contrast, co-treatment with selumetinib did not block the 

fluvastatin-induced feedback response. Housekeeping gene RPL13A was used as a reference gene for 

normalizing mRNA between samples and was not altered in the presence of the compounds 

(Supplemental Figure 5B). 

Because SREBP2 is synthesized as an inactive full-length precursor that is activated to the mature 

nuclear form upon proteolytic cleavage, we used western blot analysis to assess the protein levels of both 
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full-length and mature SREBP2. Nelfinavir and honokiol, but not selumetinib, blocked fluvastatin-induced 

SREBP2 processing and cleavage similar to that of dipyridamole (Figure 3B-C). This suggests that while 

selumetinib is a strong potentiator of statin induced cell death, it does not mimic the action of dipyridamole 

by blocking the restorative feedback response (Figure 3, Supplemental Figure 5).  

 

Novel statin-compound combinations phenocopy synergistic activity of fluvastatin-dipyridamole in 

a breast cancer cell line screen 

To investigate whether the potentiation of fluvastatin by nelfinavir and honokiol has broad applicability and 

examine the determinants of synergy, we further evaluated these statin-compound combinations across a 

large panel of 47 breast cancer cell lines. A 5-day cytotoxicity assay (sulforhodamine B assay; SRB) in a 

6x10 dose matrix was used to assess fluvastatin-compound efficacy. As expected, dipyridamole treatment 

resulted in a dose-dependent decrease in fluvastatin IC50 value (Supplemental Figure 6A). Similarly, 

nelfinavir and honokiol treatment also resulted in a dose-dependent decrease in fluvastatin IC50 values 

similar to that of dipyridamole (Supplemental Figure 6A). This suggests that our computational 

pharmacogenomic pipeline predicts compounds that potentiate statin activity similarly to dipyridamole 

across multiple subtypes of breast cancer cell lines.  

Next we evaluated statin-compound synergy using the Bliss Index model derived using 

SynergyFinder33 across the panel of breast cancer cell lines. Like the dose dependent sensitivity data, we 

observed that the trend in synergy between fluvastatin-dipyridamole across the 47 breast cancer cell lines 

was also seen with fluvastatin-nelfinavir and fluvastatin-honokiol (Figure 4A). Since we had previously 

identified that the basal subtype of breast cancer cell lines were more sensitive to single agent fluvastatin16, 

we evaluated whether basal breast cancer cell lines were similarly more sensitive to the fluvastatin-

compound combinations. Using the SCMOD2 subtyping scheme, we evaluated the basal, HER2 and 

luminal B status of each cell line and determined synergy is not dependent on BC subtype (Supplemental 

Figure 6B) suggesting that these statin-compound combinations can be applied to multiple breast cancer 

subtypes as therapeutic options. 

Because the synergy profiles across the three fluvastatin-compound combinations were 

significantly similar, we next interrogated whether baseline gene and/or protein expression profiles across 

the cell lines for each of the statin-compound combinations was associated with synergy. To further 

interrogate the similarity between the statin-compound combinations, we correlated the RNA-seq and 

reverse phase protein array (RPPA) profiles of the 47 breast cancer cell lines34 with their synergy scores 
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for each of the statin-compound combinations. These represent the transcriptomic and proteomic state 

associations with synergy for each combination. We then evaluated the correlation between these 

associations across the different combinations (F+DP vs F+NFV; F+DP vs F+HNK; F+NFV vs F+HNK) 

(Figure 4B) and found a high positive correlation between the combinations on the basis of similar 

transcriptomic associations (F+NFV vs F+DP, R=0.73; F+HNK vs F+DP, R=0.77; F+NFV vs F+HNK, 

R=0.87). This high positive correlation was also seen between these combinations using proteomic (RPPA) 

and synergy data (Supplemental Figure 6C) suggesting that similar pathways were associated with the 

synergistic response to the three statin-compound combinations.  

 To compare the overlap in pathways associated with sensitivity to fluvastatin alone, and synergy 

between the fluvastatin-compound combinations, a Gene Set Enrichment Analysis (GSEA) using the 

Hallmark Gene Set Collection was performed35. These results showed that enriched pathways were highly 

similar amongst fluvastatin alone and the fluvastatin-compound combinations with one of the highest 

scoring enriched pathways being EMT (Figure 4C). To further support this finding and because of the low 

agreement amongst EMT gene sets, we also evaluated four additional GSEA EMT pathways and observed 

similar trends between fluvastatin alone and the fluvastatin-compound combinations for each of the EMT 

gene sets (Supplemental Figure 6D). As we and others have published that mesenchymal-enriched 

cancer cell lines are more sensitive to statin monotherapy36,37, this data suggests that fluvastatin is the 

primary driver of response to these statin-compound combinations. This is consistent with fluvastatin 

inhibiting the MVA pathway, triggering the SREBP-mediated feedback response, which in turn is inhibited 

by the second compound (dipyridamole, nelfinavir or honokiol) in these fluvastatin-compound combinations.  

 We then examined the individual genes within each of the GSEA EMT pathways to identify a 

biomarker of synergy to the statin-compound combinations. Within the EMT field, gene set signatures have 

low agreement (Supplemental Figure 7). Previously our lab published a binary classifier of five EMT genes 

to predict increased sensitivity to statins across 631 cell lines representing multiple cancer types36. We 

evaluated whether this binary five-gene classifier could also predict synergy between the different 

fluvastatin-compound combinations. The five-gene EMT classifier could predict sensitivity to fluvastatin 

alone across the panel of breast cancer cell lines (Supplemental Figure 8A), but failed to predict synergy 

to the fluvastatin-compound combinations (Supplemental Figure 8B). We next interrogated each of the 

five genes individually. Interestingly, low gene expression and protein levels of E-cadherin (CDH1), a 

canonical epithelial state marker, not only predicted sensitivity to fluvastatin, but also demonstrated synergy 

across all three fluvastatin-compound combinations (Figure 5A-B and Supplemental Figure 8C). To 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/


van Leeuwen et al 

10 

validate our findings, we probed for basal E-cadherin protein expression across a panel of nine breast 

cancer cell lines and showed that synergy to the novel statin-compound combinations is positively 

associated with low E-cadherin protein expression (Figure 5C-D). Overall, this data validates that our MVA-

DNF pharmacogenomics strategy can successfully distinguish compounds that, like-dipyridamole, can 

synergize with statins to trigger BC tumour cell death. 

 

Discussion 
By blocking the statin-induced restorative feedback response, dipyridamole potentiates statin efficacy to 

drive tumor cell death21,24. However, due to the polypharmacology of dipyridamole and the potential 

contraindication of this platelet-aggregation inhibitor for some cancer patients, it was essential to identify 

additional dipyridamole-like compounds and expand this class of agents to provide synergistic 

statin+compound treatment options for cancer therapy. To this end, we developed a novel computational 

pharmacogenomics pipeline that distinguished compounds that are similar to dipyridamole at the level of 

structure, MVA pathway gene expression perturbation, and anti-proliferative activity. We identified 23 

potential dipyridamole-like compounds and then evaluated several of the top hits for their ability to 

phenocopy dipyridamole. Through this approach, we validated that nelfinavir and honokiol sensitize breast 

cancer cell lines to statin-induced cell death by blocking the statin-induced restorative feedback loop. 

Analysis of basal RNA and protein expression identified the canonical EMT gene CDH1 (E-cadherin) as a 

biomarker of the synergistic response to both statin+nelfinavir and statin+honokiol treatment. Thus, the 

computational pharmacogenomics screen described here identified synergistic statin-compound drug 

combinations as novel anti-breast cancer therapies. 

The integration of a computational pharmacogenomics pipeline and cellular validation to identify 

novel compounds with similar biological activities provides a rapid and inexpensive strategy that has 

potential broad applicability as it is also adaptable. For example, one issue we had to overcome in 

identifying dipyridamole-like compounds was the polypharmacology of dipyridamole itself. Dipyridamole 

was originally identified for its anti-platelet aggregation activity and thus the mechanism of action remains 

unclear. Several activities of dipyridamole have been described including an inhibitor of 

phosphodiesterases (PDEs)38, nucleoside transport39 and glucose uptake40. The complexity associated 
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with this polypharmacological activity beyond the mevalonate pathway was circumvented by restricting the 

gene perturbation layer of the DNF to MVA pathway genes. This shows that the computational 

pharmacogenomics pipeline described here is likely tunable to drug-specific structural features, activities 

and signaling pathways.  

The new statin-sensitizing agents identified here using MVA-DNF include nelfinavir and honokiol, 

which like dipyridamole, inhibit statin-induced SREBP2 cleavage and activation21,24. To date, a number of 

SREBP2 inhibitors have been identified that block SREBP2 processing from its precursor to mature form, 

including fatostatin, betulin, and xanthohumal (ER-Golgi translocation), PF-429242 (site-1 protease (S1P) 

cleavage), and nelfinavir and 1,10-phenanthroline (site-2 protease (S2P) cleavage). Additional SREBP2 

inhibitors include BF175 and tocotrienols that target SREBP2 transcriptional activity and protein stability, 

respectively. However, other than nelfinavir, these agents have many reported targets and are only used 

as tool compounds for research purposes.  

The S2P protease inhibitor nelfinavir was approved for use in 1997 as an antiviral for the treatment 

of HIV, and in recent years has begun to be evaluated for its utility as an anti-cancer agent41. While 

combination studies of statins and nelfinavir have not been previously reported or investigated in the context 

of cancer, open-label, multiple-dose studies have been performed to determine the interactions between 

nelfinavir and two statins (atorvastatin and simvastatin) in healthy volunteers. It was stated that co-

administration of nelfinavir and simvastatin should be avoided while atorvastatin should be co-administered 

with caution. It should be noted that the family of statin drugs are metabolized by different enzymes. 

Therefore, these interactions of nelfinavir with atorvastatin and simvastatin were likely due to drug-drug 

interactions leading to the inhibition of CYP3A4. By contrast, fluvastatin is metabolized by CYP2C9 

providing additional rationale for our use of fluvastatin in statin-drug combinations as the probability of drug-

drug interactions is significantly reduced.  

To the best of our knowledge, this is the first study to report honokiol to synergize with statins in 

the context of cancer. Honokiol is a natural product commonly used in traditional medicine and has a 

number of reported mechanisms of action. How honokiol inhibits SREBP2 remains unknown, however this 

is the first study to interrogate its activity in SREBP2 translocation and gene expression alone and in 

combination with statins. As honokiol and its derivatives are presently under development, these data can 
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now be incorporated into future structure activity relationship analyses to enrich or lessen this new feature 

of honokiol. Two additional predicted dipyridamole-like compounds tested in this study include selumetinib 

and mitoxantrone, which did and did not sensitize breast cancer cells to statin-induced apoptosis. 

Selumetinib functions through an SREBP2-independent mechanism, suggesting that not only is the 

identification of feedback-dependent mechanisms beneficial for cancer treatment but also shows that 

additional feedback-independent classes of statin-sensitizers can be identified. This is particularly important 

as some multiple myeloma and prostate cancer cell lines have been shown to lack the feedback response. 

The data presented here has important clinical implications for statins as anti-cancer agents. 

Despite some positive results from window-of-opportunity clinical trials in breast cancer using statins, a 

modest effect was seen from statins alone18,19. Therefore, discovery of novel therapeutic combinations will 

be necessary to achieve significant clinical impact. Since nelfinavir is poised for repurposing and statins 

have demonstrated anti-cancer activity in early-phase clinical trials18,19,42–46, clinical studies to further 

evaluate the therapeutic benefit of this combination could proceed swiftly. Furthermore, consideration of 

available gene and protein expression across our large collection of breast cancer cell lines identified a 

mesenchymal-enriched gene expression profile as highly predictive of sensitivity to all three 

statin+compound (dipyridamole, nelfinavir or honokiol) combinations. We further showed that CDH1 

expression levels served as a biomarker of synergistic response. This reinforces the dipyridamole-like 

behaviour of nelfinavir and honokiol, identified by our pharmacogenomics pipeline, and creates 

opportunities for biomarker-guided clinical studies. CDH1 expression as a biomarker of predicted response 

to the combination of fluvastatin+nelfinavir could be used to identify those patients most likely to benefit. 

We also observed this synergistic response to the combination therapies across multiple subtypes of breast 

cancer. Previously we had identified the basal-like breast cancer subtype as more sensitive to statins alone; 

here, we have expanded the scope of statin treatment to encompass the wider breast cancer population. 

These findings can also be explored beyond breast cancer as CDH1 is expressed in most cancers, for 

example sarcomas which are fixed in a mesenchymal state and have previously been reported as 

responsive to statins as single agents37,47.  

Taken together, our computational pharmacogenomics pipeline reveals that starting with 

compounds that act within or on a specific pathway, it is possible to identify additional compounds to 
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increase a class of inhibitors and/or better help understand compound mechanism of action. Our study also 

provides a strong preclinical rationale to warrant further investigation of the fluvastatin+nelfinavir 

combination, as well as the CDH1 biomarker (Figure 5E). The ready availability of these well-tolerated 

drugs as well as simple methods for assessing CDH1 expression could enable rapid translation of these 

findings to improve breast cancer outcomes.  
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Methods 
Our analysis design encompasses both computational identification and refinement of dipyridamole-like 

compounds, as well as experimental validation of the most promising candidates.  

MVA-specific Drug Network Fusion (MVA-DNF).  

We developed a computational pharmacogenomic pipeline (MVA-DNF) that facilitates identification of 

analogues to dipyridamole, by elucidating drug-drug relationships specific to the mevalonate (MVA) 

pathway. MVA-DNF briefly extends upon some principles of the drug network fusion algorithm we had 

described previously48, by utilizing the similarity network fusion algorithm across three drug taxonomies 

(drug structures, drug perturbation, and drug sensitivity). Drug structure annotations and drug perturbation 

signatures are obtained from the LINCS-L1000 dataset25,49, and drug sensitivity signatures are obtained 

from the NCI-60 drug panel26. Drug structure annotations were converted into drug similarity matrices by 

calculating tanimoto similarity measures50 and extended connectivity fingerprints51 across all compounds, 

as described previously48. We extracted calculated Z-scores from drug-dose response curves for the NCI-

60 drug sensitivity profiles, and computed Pearson correlation across these profiles to generate a drug 

similarity matrix based on sensitivity26. We used our PharmacoGx package (version 1.6.1) to compute drug 

perturbation signatures for the L1000 dataset using a linear regression model, as described previously52. 

The regression model adjusts for cell specific differences, batch effects and experiment duration, to 

generate a signature for the effect of drug concentration on the transcriptional state of a cell. This facilitates 

identification of gene expression which has been significantly perturbed due to drug treatment. These 

signatures indicate transcriptional changes that are induced by compounds on cancer cell lines. We further 

refined the drug perturbation profiles to a set of six MVA-pathway genes (Supplementary Figure 1A) that 

had been obtained from the literature as well as repositories of pathway-specific gene sets including 

MSigDB53, HumanCyc54 and KEGG49,55. These gene sets include ‘mevalonate pathway’ and ‘superpathway 

of geranylgeranyldiphosphate biosynthesis I (via mevalonate)’ from the HumanCyc56, and ‘Kegg Terpenoid 

Backbone Biosynthesis’ from KEGG55,57. The filtered drug-induced gene perturbation signatures were 

subsequently used to generate a drug perturbation similarity matrix that elucidates drug-drug relationships 

based on common transcriptional changes across the six MVA-pathway genes. We calculated similarity 

between estimated standardized coefficients of drug perturbation signatures using the Pearson correlation 
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coefficient. Finally, we used the similarity network fusion algorithm58 to integrate drug structure, drug 

sensitivity, and MVA-pathway specific drug perturbation profiles, to generate an MVA-pathway specific drug 

taxonomy (MVA-DNF) spanning 238 compounds. 

Identification of analogues to dipyridamole 

We interrogated the MVA-DNF taxonomy using a variety of approaches to identify a candidate set of 

dipyridamole-like compounds. Using MVA-DNF similarity scores, we first generated a ranking of all 

compounds closest to dipyridamole. We then conducted a perturbation test, to assess the statistical 

relationship of each ranked drug against dipyridamole. Briefly, drug fusion networks were generated 1000 

times across perturbation, sensitivity, and drug structure profiles, each time using a random set of six genes 

to generate a ‘pathway-centric’ drug perturbation similarity matrix. Z-scores and p-values were calculated 

to determine the statistical relevance of a given dipyridamole-like analog in MVA-DNF, compared to the 

randomly generated networks. From this, we further ranked a list of dipyridamole-like candidate compounds 

by their statistical significance within MVA-DNF (p-value<0.05), resulting in identification of 23 candidate 

dipyridamole analogs. 

For each of the dipyridamole analogues we identified, we conducted a similar assessment of 

significance to identify the relationships of these compounds to dipyridamole and to themselves. A network 

of dipyridamole-like analogues was rendered using iGraph R package59. Using MVA-DNF similarity scores, 

we further computed the contribution of each of the drug layers (structure, sensitivity and perturbation) in 

the identification of dipyridamole-like compounds.  

We assessed the regulation of gene expression for genes involved in the mevalonate pathway 

across all of the top-selected dipyridamole analogues, by analyzing the drug-induced transcriptional profiles 

(described above) of the selected analogues. To prioritize the dipyridamole analogues, the candidate 

compounds were categorized, and compounds that were known toxins or carcinogens were excluded from 

the analysis (Supplemental Table 1, Supplemental Figure 1C). Top hits from the largest categories were 

selected for further validation.  
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 Cell culture and compounds 

All cell lines were cultured as described previously16,24. Briefly, MDA-MB-231 and HCC1937 cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) and Roswell Park Memorial Institute medium 

(RPMI), respectively. All media was supplemented with 10% fetal bovine serum (FBS), 100 units/mL 

penicillin and 100 μg/mL streptomycin. Cell lines were routinely confirmed to be mycoplasma-free using the 

MycoAlert Mycoplasma Detection Kit (Lonza), and their authenticity was verified by short-tandem repeat 

(STR) profiling at The Centre for Applied Genomics (Toronto, ON, Canada). Fluvastatin (US Biological 

F5277-76) was dissolved in ethanol and dipyridamole (Sigma), nelfinavir (Sigma), honokiol (Sigma), 

mitoxantrone (Sigma) and selumetinib (Selleckchem) were dissolved in DMSO. 

  

Breast cancer cell lines panel 

The breast cancer cell line34 panel was a generous gift from Dr. Benjamin Neel. RNAseq quantification was 

done using Kallisto pipeline60 using human transcriptome reference hg38.gencodeV2361. RPPA processed 

data was downloaded from34. SCMOD262 breast cancer subtypes of these cell lines were obtained using 

genefu R package63. 

 

Breast cell-line combination viability screen 

We used the sulforhodamine B colorimetric (SRB) proliferation assay64 in 96-well plates to determine the 

dose-response curves. To test the combinations in the panel of BC cell lines (See Breast cancer cell lines 

panel), the fluvastatin/dipyridamole, fluvastatin/nelfinavir and fluvastatin/honokiol drug combinations were 

tested in a 6x10 dose matrix format covering a range of decreasing concentrations of each drug (highest 

drug dose was 20 μM fluvastatin, 20 μM dipyridamole, 10 μM nelfinavir and 20 μM honokiol), along with all 

their pairwise combinations, as well as the negative control (EtOH and DMSO). We subtracted the average 

phosphate-buffer saline (PBS) wells value from all wells and computed the standard deviation and 

coefficient for each replicate. All individually treated well values were normalized to the control well values. 

We used Prism (v8.2.0, GraphPad Software) to compute dose-response curves with a bottom constraint 

equal to 0.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286922
http://creativecommons.org/licenses/by/4.0/


van Leeuwen et al 

17 

Cell viability assays 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed as previously 

described6. Briefly, BC cells were seeded in 750-15,000 cells/well in 96-well plates overnight, then treated 

in triplicate with 0-400 μM fluvastatin for 72 hours. Half-maximal inhibitory concentrations (IC50) values were 

computed from dose-response curves using Prism (v8.2.0, GraphPad Software) with a bottom constraint 

equal to 0.  

  

Cell death assays 

Cells were seeded at 2.5x105 cells/plates and treated the next day as indicated. After 72 hours, cells were 

fixed in 70% ethanol for >24 h, stained with propidium iodide and analyzed by flow cytometry for the sub-

diploid (% pre-G1) DNA population as a measure of cell death as previously described6. 

 

Immunoblotting 

Cell lysates were prepared by washing cells twice with cold PBS and lysing cells in RIPA buffer (50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS, 1 mM EDTA, protease 

inhibitors) on ice for 30 min. Lysates were cleared by centrifugation and protein concentrations were 

determined using the Pierce 660 nm Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of protein 

were diluted in Laemmli sample buffer, boiled for 5 min and resolved by SDS-polyacrylamide gel 

electrophoresis. The resolved proteins were then transferred onto nitrocellulose membranes. Membranes 

were then blocked for 1 hr in 5% milk in tris-buffered saline/0.1 % Tween-20 (TBS-T) at room temperature, 

then probed with the following primary antibodies in 5% milk/TBS-T overnight at 4 ℃: SREBP-2 (1:250; BD 

Biosciences, 557037), p44/42 MAPK (ERK1/2) (1:1000, Cell Signaling Technology, 4695), PARP (1:1000, 

Cell Signaling Technology, 9542L), ɑ-Tubulin (1:3000, Calbiochem, CP06) and E-cadherin (1:1000, Cell 

Signaling Technology, 3195). Primary antibodies were detected using IRDye-conjugated secondary 

antibodies and the Odyssey Classic Imaging System (LI-COR Biosciences). Densitometric analysis was 

performed using ImageJ 1.47v software. 
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RNA expression analyses 

Total RNA was harvested from sub-confluent cells using TRIzol Reagent (Invitrogen). cDNA was 

synthesized from 500 ng RNA using SuperScript III (Invitrogen). Quantitative reverse transcription PCR 

(qRT-PCR) was performed using the ABI Prism 7900HT sequence detection system and TaqMan probes 

(Applied Biosystems) for HMGCR (Hs00168352), HMGCS1 (Hs00266810), INSIG1 (Hs01650979) and 

RPL13A (Hs01578913). 

 

Drug combinations synergy analysis 

Viability scores were calculated using standard pipelines from PharmacoGx R package52 and synergy 

scores represented by Bliss Index were calculated using SynergyFinder R package 33. Pearson correlation 

coefficient was used to measure the associations between the transcriptomic and proteomic states of cell 

lines and the corresponding synergy scores for each of the combinations. The transcriptomic associations 

were then used to rank genes for GSEA53. Hallmark gene set collection35 was downloaded from MSigDB65. 

Piano R package was used to run GSEA analysis66. Other EMT related pathways, namely “GO Positive 

Regulation of Epithelial To Mesenchymal Transition”67, “GO Epithelial To Mesenchymal Transition”67, 

“SARRIO Epithelial Mesenchymal Transition DN”68, and “SARRIO Epithelial Mesenchymal Transition Up”68, 

were also downloaded from MSigDB. 
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Figure Legends 

Fig. 1. A schematic of the mevalonate (MVA) pathway and overview of the computational 

pharmacogenomics workflow. (A) In response to fluvastatin treatment (labelled with 1), MVA pathway 

end-product levels decrease, triggering an SREBP-mediated feedback response that activates MVA 

pathway-associated gene expression to restore cholesterol and other non-sterol end-product levels. 

Dipyridamole (DP) (labelled with 2) blocks the SREBP-mediated feedback response, thereby potentiating 

fluvastatin-induced cancer cell death. (B) An overview of the computational pharmacogenomics workflow, 

MVA-DNF, used to identify the top 23 “dipyridamole-like” candidates and visualized as a compound 

network. MVA-DNF combines drug structure, drug-induced gene perturbation datasets restricted to six MVA 

pathway-specific genes and drug sensitivity. Permutation specificity testing was performed to select 

compounds that have a degree of specificity to the mevalonate pathway and dipyridamole. Statistical 

significance of compounds similar to dipyridamole was assessed by comparing to 1000 networks generated 

from random selection of six genes within the drug perturbation layer. A network representation of 

dipyridamole and top 23 statistically-significant (p-value <0.05) “dipyridamole-like” compounds are shown. 

Each node represents a compound and edges connect compounds based on statistical significance of p-

value <0.01. Darker blue nodes and orange edges represent the compounds connected to dipyridamole, 

and edge thickness represents the associated p-value between the compounds. (C) Radar plot of the top 

23 dipyridamole-like compounds (p-value <0.05), where the contribution of each individual layer of the 

MVA-DNF (drug structure, sensitivity, and perturbation) is depicted. Percent contribution of each layer is 

shown from the center (0%) to the outer edges (100%). 

 

Fig. S1, related to Fig. 1. Additional information regarding drug-induced genotype changes and 

categorization of top 23 dipyridamole-like compounds. (A) Simplified schematic of the MVA pathway, 

highlighting the six MVA-pathway genes (in red) in the L1000 database used to restrict the drug-induced 

gene perturbation layer of the DNF method. (B) Drug perturbation signatures for dipyridamole and 

dipyridamole-like compounds, plotted for genes pertaining to the MVA pathway. Similarity between 

compounds based on their overall expression profiles is rendered in the dendrogram. Dipyridamole- and 
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fluvastatin-induced changes shown on the bottom as reference. (C) Categorization of the top 21 

dipyridamole-like compounds excluding toxins and carcinogenic compounds.  

 

Fig. S2. MVA-DNF drug-dose response curves for MDA-MB-231 and HCC1937 breast cancer cell 

lines to identify a sub-lethal dose of top dipyridamole-like compounds. (A) MDA-MB-231 and (B) 

HCC1937 cells were treated with a range of doses for 72 hours, and cell viability was determined using an 

MTT assay. The drug dose-response curves are plotted with a dashed line at 80% MTT activity indicating 

a sub-lethal drug dose. Data for an average of three technical replicates are plotted; data reflect the results 

of a single biological experiment. (C) Table of sub-lethal drug dose and interpolated % MTT activity for both 

MDA-MB-231 and HCC1937. 

 

Fig. S3. MVA-DNF drug-dose response curves, fluvastatin IC50 and solvent control values for MDA-

MB-231 cells. MDA-MB-231 cells were treated with a range of fluvastatin doses alone or in combination 

with a sub-lethal dose of dipyridamole (5 μM), selumetinib (0.4 μM), nelfinavir (3 μM), mitoxantrone (0.01 

μM) or honokiol (12 μM) for 72 hours, and cell viability was determined using an MTT assay. The drug 

dose-response curves, fluvastatin IC50 values and control values are plotted. Error bars represent the mean 

+/- SD, n = 3-5, *p <0.05, **p <0.01 (Student t test, unpaired, two-tailed).  

 

Fig. S4. MVA-DNF drug-dose response curves, fluvastatin IC50 and solvent control values for 

HCC1937 cells. HCC1937 cells were treated with a range of fluvastatin doses alone or in combination with 

a sub-lethal dose of dipyridamole (5 μM), selumetinib (1 μM), nelfinavir (3 μM), mitoxantrone (0.001 μM) or 

honokiol (10 μM) for 72 hours, and cell viability was determined using an MTT assay. The drug dose-

response curves, fluvastatin IC50 values and control values are plotted. Error bars represent the mean +/- 

SD, n = 3-6, *p <0.05, **p <0.01, ***p <0.001 (Student t test, unpaired, two-tailed).  

 

Fig. 2. Dipyridamole-like compounds potentiate fluvastatin-induced cell death. (A) MDA-MB-231 and 

HCC1937 cells were treated with solvent controls or fluvastatin +/- dipyridamole (DP), nelfinavir (NFV), 

honokiol (HNK) or selumetinib (Selu) for 72 hours, fixed in ethanol and assayed for DNA fragmentation (% 
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pre-G1 population) as a marker of cell death by propidium iodide staining. Error bars represent the mean 

+/- SD, n = 3-4, *p < 0.05, **p < 0.01, ****p < 0.0001 (one-way ANOVA with Bonferroni’s multiple 

comparisons test, where each treatment was compared to the solvent control). (B) Cells were treated as in 

(A), protein isolated and immunoblotting was performed to assay for PARP cleavage. (F) represents full-

length PARP and (C) represents cleaved PARP. (C) PARP cleavage (cleaved/full-length) shown in (B) was 

quantified by densitometry and normalized to Tubulin expression. Error bars represent the mean +/- SD, n 

= 3-5, *p < 0.05, **p<0.005, ***p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni’s multiple 

comparisons test, where each group was compared to the solvent control within each experiment). 

 

Fig. 3. Nelfinavir and Honokiol block fluvastatin-induced SREBP activation. (A) MDA-MB-231 and 

HCC1937 cells were exposed to solvent controls, fluvastatin +/- dipyridamole, nelfinavir, honokiol or 

selumetinib for 16 hours, and RNA was isolated to assay INSIG1 expression by qRT-PCR. mRNA 

expression data are normalized to RPL13A expression. Error bars represent the mean +/- SD, n = 3-4, *p 

< 0.05, **p<0.005, ***p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni’s multiple comparisons test, 

where each group was compared to the solvent control group within each experiment). (B) MDA-MB-231 

and HCC1937 cells were treated with fluvastatin +/- dipyridamole, nelfinavir, honokiol or selumetinib for 12 

hours, and protein was harvested to assay for SREBP2 expression and cleavage (activation) by 

immunoblotting. (P) represents precursor, full-length SREBP2 and (M) represents mature, cleaved 

SREBP2. (C) SREBP2 cleavage (cleaved/full-length) was quantified by densitometry and normalized to 

total ERK expression. Error bars represent the mean +/- SD, n = 3-8, *p < 0.05, **p<0.005, ***p<0.001, 

****p<0.0001 (one-way ANOVA with Bonferroni’s multiple comparisons test, where each group was 

compared to the solvent controls group within its experiment). 

 

Fig. S5, related to Fig 3. Nelfinavir and Honokiol block fluvastatin-induced SREBP activation of 

SREBP2 feedback genes. (A) MDA-MB-231 cells were treated with fluvastatin +/- dipyridamole, nelfinavir, 

honokiol or selumetinib for 16 hours, and RNA was isolated to assay for HMGCR and HMGCS1 expression 

by qRT-PCR. mRNA expression data are normalized to RPL13A expression. (B) RPL13A Ct mean values 

plotted as a control. Error bars represent the mean +/- SD, n = 3-4, *p < 0.05, **p<0.005, ***p<0.001, 
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****p<0.0001 (one-way ANOVA with Bonferroni’s multiple comparisons test, where each group was 

compared to the solvent controls group).  

 

Fig. S6, related to Fig 4. High-throughput compound combination screen. (A) Heatmap of 

Log10(Fluvastatin IC50) values for a high-throughput compound synergy screen against 47 BC cell lines 

visualizing the 15th to 85th percentile. BC cell lines were treated with a dose matrix of fluvastatin (0-20 μM) 

+/- dipyridamole (DP) (0-20 μM), nelfinavir (NFV) (0-10 μM) or honokiol (HNK) (0-20 μM). After 5 days of 

drug treatment, cell viability was assessed by SRB assay. SCMOD2 cell line subtyping was assigned to the 

BC cell line panel. Data presented are the average of 2 biological replicates (fluvastatin +/- dipyridamole 

(DP)) or the mean of 3-6 biological replicates (fluvastatin +/- nelfinavir (NFV) and fluvastatin +/- honokiol 

(HNK)). (B) Comparison of synergy scores stratified by BC subtypes across the combinations using 

wilcoxon paired rank test. Red dash line at synergy threshold. (C) Similarity of proteomic states 

associations34 with synergy scores across the fluvastatin+compound combinations. Similarity of proteomic 

states associations were compared across the combinations (Fluva+DP vs Fluva+NFV; F+DP vs 

Fluva+HNK; Fluva+NFV vs Fluva+HNK) using Pearson correlation coefficient. Top five basally-expressed 

proteins associated with synergy in either direction are annotated in red. (D) Gene set enrichment analysis 

using five EMT gene set collections and genes ranked by basal mRNA correlated to the fluvastatin IC50 

(Fluva) value or synergy score (Fluva+DP, Fluva+NFV and F+HNK). Dot size indicates the difference in 

enrichment scores (ES) of the pathways. Background shading indicates the FDR. X indicates pathway and 

drug combinations that were not significantly enriched (FDR > 0.05). 

 

Fig. 4. Compound combination synergy analysis. (A) Heatmap of synergy scores (Bliss Index model) 

for fluvastatin (Fluva) + dipyridamole (DP), nelfinavir (NFV) or honokiol (HNK) in a panel of 47 breast cancer 

cells lines. Ordered by synergy score of Fluva + DP, from greatest to least synergy. Breast cancer subtype 

of each cell line is shown and is based on the SCMOD2 subtyping scheme. (B) Basal mRNA expression34 

associations with synergy scores between each drug combination (e.g. Fluva+NFV vs. Fluva+DP, 

Fluva+HNK vs. Fluva+DP, and Fluva+NFV vs. Fluva+HNK). Correlations were calculated using Pearson 

correlation coefficient. Top five basally-expressed genes associated with synergy in either direction are 
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annotated in red. (C) Gene set enrichment analysis (GSEA) using the Hallmark gene set collection, where 

genes were ranked according to their correlation to the fluvastatin IC50 (Fluva) value or to the synergy score 

(Fluva+DP, Fluva+NFV and F+HNK). Dot plot was restricted to pathways enriched in two out of four groups. 

Dot size indicates the difference in enrichment scores (ES) of the pathways. Background shading indicates 

the FDR. X indicates pathway and drug combinations that were not significantly enriched (FDR > 0.05). 

 

Fig. S7, related to Fig 4. Overlapping genes within the EMT gene sets. (A) Upset plot to visualize the 

agreement between Yu et al. (2017)36 five-gene classifier and five additional EMT gene sets.  

 

Fig. S8, related to Fig 5. EMT gene expression as a biomarker of sensitivity to fluvastatin and 

synergistic response to fluvastatin+compound combinations. (A) Five-gene fluvastatin sensitivity 

gene classifier36 predicts sensitivity to fluvastatin alone, but (B) does not predict synergy to F+DP, F+NFV 

or F+HNK. (C) Basal Vimentin (VIM), N-Cadherin (CDH2), ZEB1 and fibronectin (FN1) mRNA expression 

do not predict synergy to the drug combinations.  

 

Fig. 5. Basal E-cadherin predicts synergistic response to fluvastatin+compound combinations. (A) 

Basal E-cadherin mRNA expression between cell lines predicted to be synergistic or not to each drug 

combination. Synergy was defined by Bliss Index and significance was measured by wilcoxon rank sum 

test. (B) Basal E-cadherin mRNA expression between cell lines predicted to be respondent or not to 

fluvastatin. Sensitivity was defined by IC50 and significance was measured by wilcoxon rank sum test. (C) 

Protein lysates were isolated from a panel of breast cancer cell lines to assay for basal E-cadherin 

expression by immunoblotting. (D) Densitometry values of normalized E-cadherin expression plotted as a 

heatmap. E-cadherin expression was quantified by densitometry and normalized individually to Tubulin 

expression. (E) Schematic diagram detailing the potential for fluvastatin (labelled with 1) and nelfinavir 

(labelled with 2) to block the SREBP2-mediated feedback response and synergize to potentiate fluvastatin-

induced cell death.  
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Table Legends 

Supplementary Table 1 - Ranked MVA-DNF compounds by Z-score.  
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Honokiol 12 µM 102.99% 10 µM 92.97%
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SUPP TABLE 1

Z-
Sc

or
e

P-
Va

lu
e*

SELUMETINIB -3.57 1.77E-04 + + RAF/MEK inhibitor
NELFINAVIR -3.28 5.18E-04 + + Antiretroviral

MITOXANTRONE -3.20 6.82E-04 + + + Anthracycline
DOXORUBICIN -3.03 1.22E-03 + + + Anthracycline
HONOKIOL -2.96 1.53E-03 + Natural product

CLOTRIMAZOLE -2.95 1.57E-03 + Antifungal
SULFATHIAZOLE -2.89 1.90E-03 + Antibiotic
VEMURAFENIB -2.67 3.79E-03 + + + RAF/MEK inhibitor

CHROMOMYCINA3 -2.64 4.13E-03 + + Toxin Antibiotic
BACCATINIII -2.53 5.69E-03 + Natural product
NOSCAPINE -2.51 6.11E-03 + + Natural product

METHOTREXATE -2.29 1.11E-02 + + + Antimetabolite
CADMIUMCHLORIDE -2.22 1.33E-02 + + Carcinogen Other

RHAMNETIN -2.18 1.45E-02 + Natural product
PENTAMIDINE -2.18 1.46E-02 + + Antifungal

EMODIN -2.16 1.55E-02 + Natural product
FLUOROURACIL -2.11 1.75E-02 + + + Antimetabolite
TRYPTOPHAN -1.92 2.76E-02 + + Other
ALVOCIDIB -1.82 3.44E-02 + + + CDK inhibitor

ABIRATERONE -1.77 3.81E-02 + + + Antiandrogen
THAPSIGARGIN -1.71 4.36E-02 + Other
KINETINRIBOSIDE -1.66 4.84E-02 + Other

ELLIPTICINE -1.65 4.92E-02 + Natural product
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* Table ordered by p-value
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