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Abstract

Statins are a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the
metabolic mevalonate pathway, which have been shown to have anti-cancer activity. As therapeutic efficacy
is increased when drugs are used in combination, we sought to identify agents, like dipyridamole, that
potentiate statin-induced tumor cell death. As an antiplatelet agent dipyridamole will not be suitable for all
cancer patients. Thus, we developed an integrative pharmacogenomics pipeline to identify agents that were
similar to dipyridamole at the level of drug structure, in vitro sensitivity and molecular perturbation. To enrich
for compounds expected to target the mevalonate pathway, we took a pathway-centric approach towards
computational selection, which we called mevalonate drug network fusion (MVA-DNF). We validated two
of the top ranked compounds, nelfinavir and honokiol and demonstrated that, like dipyridamole, they
synergize with fluvastatin to potentiate tumor cell death by blocking the restorative feedback loop. This is
achieved by inhibiting activation of the key transcription factor that induces mevalonate pathway gene
transcription, sterol regulatory element-binding protein 2 (SREBP2). Mechanistically, the synergistic
response of fluvastatin+nelfinavir and fluvastatin+honokiol was associated with similar transcriptomic and
proteomic pathways, indicating a similar mechanism of action between nelfinavir and honokiol when
combined with fluvastatin. Further analysis identified the canonical epithelial-mesenchymal transition (EMT)
gene, E-cadherin as a biomarker of these synergistic responses across a large panel of breast cancer cell
lines. Thus, our computational pharmacogenomic approach can identify novel compounds that phenocopy
a compound of interest in a pathway-specific manner.

Key words: Drug combinations; cancer therapy; mevalonate pathway; drug similarity; drug perturbations;

pharmacogenomics; breast cancer;
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Significance Statement:

We provide a rapid and cost-effective strategy to expand a class of drugs with a similar phenotype. Our
parent compound, dipyridamole, potentiated statin-induced tumor cell death by blocking the statin-triggered
restorative feedback response that dampens statins pro-apoptotic activity. To identify compounds with this
activity we performed a pharmacogenomic analysis to distinguish agents similar to dipyridamole in terms
of structure, cell sensitivity and molecular perturbations. As dipyridamole has many reported activities, we
focused our molecular perturbation analysis on the pathway inhibited by statins, the metabolic mevalonate
pathway. Our strategy was successful as we validated nelfinavir and honokiol as dipyridamole-like drugs
at both the phenotypic and molecular levels. Our pathway-specific pharmacogenomics approach will have

broad applicability.
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Background

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) that has a poorer
prognosis amongst the major breast cancer subtypes'. This poor prognosis stems from our limited
understanding of the underlying biology, the lack of targeted therapeutics, and the associated risk of distant
recurrence occurring predominantly in the first two years after diagnosis?. Cytotoxic anthracycline and
taxane-based chemotherapy regimens remain the primary option for treating TNBC, with other classes of
investigational agents in various stages of development. Therefore, novel and effective therapeutics are
urgently needed to combat this difficult-to-treat cancer.

Altered cellular metabolism is a hallmark of cancer®* and targeting key metabolic pathways can provide
new anti-cancer therapeutic strategies. Aberrant activation of the metabolic mevalonate (MVA) pathway is
a hallmark of many cancers, including TNBC, as the end-products include cholesterol and other non-sterol
isoprenoids essential for cellular proliferation and survival®>~. The statin family of FDA-approved cholesterol-
lowering drugs are potent inhibitors of the rate-limiting enzyme of the MVA pathway, 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR)®. Epidemiological evidence shows that statin-use as a cholesterol
control agent is associated with reduced cancer incidence® and recurrence®'3. Specifically, in BC, a 30-
60% reduction in recurrence is evident amongst statin users, and decreased risk is associated with
increased statin duration®'2'41°_ We and others have shown preclinically that Estrogen Receptor (ER)-
negative BC cell lines, including TNBC, are preferentially sensitive to statin-induced apoptosis'®'’.
Moreover, three preoperative clinical trials investigating lipophilic statins (fluvastatin, atorvastatin) in human
BC, showed statin use was associated with reduced tumour cell proliferation and increased apoptosis of
high-grade BCs'®'°. Thus, evidence suggests that statins have potential utility in the treatment of BC,
including TNBC.

Drug combinations that overcome resistance mechanisms and maximize efficacy have potential
advantages as cancer therapy. Blocking the MVA pathway with statins triggers a restorative feedback
response that significantly dampens the pro-apoptotic activity of statins?®2". Briefly, statin-induced depletion
of intracellular sterols, triggers the inactive cytoplasmic, precursor form of the transcription factor sterol
regulatory element-binding protein 2 (SREBP2) to be processed to the active mature nuclear form, which

induces transcription of MVA genes, including HMGCR and the upstream synthase (HMGCS1)??. We have
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shown that inhibiting SREBP2 using RNAI, or blocking SREBP2 processing using the drug dipyridamole,
significantly potentiates the ability of statins to trigger tumor cell death?'2324,

Dipyridamole is an FDA-approved antiplatelet agent commonly used for secondary stroke
prevention, and since statin-dipyridamole has been co-prescribed for other indications it may be safely used
in the treatment of cancer. However, the exact mechanism of dipyridamole action remains unclear as it has
been reported to regulate several biological processes. Moreover, the antiplatelet activity of dipyridamole
may be a contraindication for some cancer patients. Thus, to expand this dipyridamole-like class of
compounds that can potentiate the pro-apoptotic activity of statins, we employed a pathway-centric
approach to develop a computational pharmacogenomics pipeline to distinguish compounds that are
predicted to behave similarly to dipyridamole in the regulation of MVA pathway genes. Using this strategy,
we identified several potential dipyridamole-like compounds including nelfinavir, an FDA-approved
antiretroviral drug and honokiol, a compound isolated from Magnolia spp., which synergise with statins to
drive tumour cell death by blocking the restorative feedback response. Correlation analysis of the statin-
compound combination synergy score, with basal mRNA expression across a large panel of BC cell lines,
identified CDH1 expression as a predictive biomarker of response to these combination therapies. Taken
together, we provide a new strategy to identify compounds that behave functionally similar to dipyridamole
in an MVA pathway-specific manner, and suggest that this approach will have broad utility for compound

discovery across a wide-variety of drug/pathway interactions.

Results

Computational pharmacogenomic pipeline identifies dipyridamole-like compounds

We developed a computational pipeline that harnesses high-throughput pharmacogenomics analysis to
identify dipyridamole-like compounds that synergise with statins by blocking MVA pathway gene expression
to inhibit cancer cell viability (Figure 1). The LINCS-L1000 (L1000)?° and NCI-60% datasets were chosen
for these studies as they contain cellular drug-response data at the molecular and proliferative levels across
a panel of cell lines, respectively. From these datasets we extracted drug structure, drug-induced gene
perturbation data (gene expression changes after drug treatment) and drug-cell line sensitivity profiles for

the 238 compounds common to both datasets. Treating each level of data as a separate layer, we restricted
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the drug-gene perturbation layer from the L1000 dataset to only include the six MVA pathway genes present
in the L1000 landmark gene set to enrich for compounds that phenocopy the MVA pathway-specific activity
of dipyridamole (Supplemental Figure 1A). With dipyridamole as the reference input, we generated an
MVA pathway-specific Drug Network Fusion (MVA-DNF) through the integration of 3 distinct data layers:
drug structure, MVA-specific drug perturbation signatures, and drug-cell line sensitivity profiles. For each
of the data layers incorporated into MVA-DNF, an 238x238 drug affinity matrix was generated, indicating
drug similarity for a selected drug against all other drugs. Using the Pearson correlation coefficient, we
computed the similarity for every pair of drug perturbation profiles and pairs of drug sensitivity profiles
(Figure 1B). From this, we identified 23 potential dipyridamole-like compounds that scored as significant
(permutation test p-value <0.05); Methods; Figure 1B and Supplementary Table 1). Represented as a

network, these hits display strong connectivity to dipyridamole as well as to each other.

We assessed the contribution of the different data layers (drug structure, drug-gene perturbation,
and drug-cell line sensitivity) within the MVA-DNF for each of these 23 compounds (Figure 1C). Drug
perturbation played a significant role in the selection of novel dipyridamole-like compounds compared to
drug sensitivity and drug structure. This reflects the specificity of the MVA-DNF towards the MVA pathway,
in comparison to a ‘global’ drug taxonomy that is not MVA pathway-centric. Further assessment of the six
MVA-pathway gene expression changes within the drug perturbation signatures highlights comparable
expression profiles between dipyridamole and the novel dipyridamole-like compounds (Supplementary

Figure 1B).

To prioritize and further interrogate the identified dipyridamole-like hits we annotated the 23
compounds by reported mechanism of action and potential clinical utility. Two compounds were excluded
from further analysis as they were not clinically useful: Chromomycin A3, a reported toxin?’, and cadmium
chloride, an established carcinogen?®. The remaining 21 compounds segregated into ten distinct categories,
demonstrating that dipyridamole-like hits identified through our pharmacogenomics pipeline spanned a
diverse chemical and biological space (Supplemental Figure 1C, Supplemental Table 1). We sought to
validate the five hits that scored as most similar to dipyridamole, which belong to four different categories
(RAF/MEK inhibitor, antiretroviral, anthracycline and natural product). Our lab had previously reported that
the anthracycline doxorubicin potentiates lovastatin in ovarian cancer cells?® confirming the reliability of our
approach. Similarly, RAF/MEK inhibitors such as PD98059 and more recently Selumetinib (AZD6244) have

been reported to synergise with statins to potentiate cancer cell death®’3!. Of the top five hits, doxorubicin
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was an existing BC chemotherapeutic agent®? and therefore removed from further analysis. The molecular
targeted compound (selumetinib) along with the novel three compounds were advanced for further

evaluation (nelfinavir, mitoxantrone and honokiol) (Supplemental Table 1).

Dipyridamole-like compounds induce apoptosis in combination with fluvastatin and block the
sterol-regulated feedback loop of the MVA pathway

To investigate whether the dipyridamole-like compounds could potentiate fluvastatin-induced cell death
similar to that of dipyridamole, we first investigated sensitivity to increasing statin exposure in combination
with a sub-lethal concentration of the novel dipyridamole-like compounds (Supplemental Figure 2) in two
breast cancer cell line models with differential sensitivity to fluvastatin as a single agent'®. As seen with
dipyridamole, we observed similar potentiation of fluvastatin (lower ICs0) when combined with a sub-lethal
concentration of selumetinib, nelfinavir, or honokiol, but not mitoxantrone (Supplemental Fig 3 and
Supplemental Fig 4). Therefore, mitoxantrone was no longer pursued as a dipyridamole-like compound.
To determine the nature of the anti-proliferative activity of the statin-compound combinations, we evaluated
cell death by fixed propidium iodide staining and PARP cleavage with selumetinib, nelfinavir, or honokiol.
Our data indicate that all three compounds, at concentrations that have minimal effects as single agents,
phenocopy dipyridamole and potentiate statin-induced cell death (Figure 2A-C).

Mechanistically, statins induce a feedback response mediated by SREBP2 that has been shown to
dampen cancer cell sensitivity to statin exposure. Moreover, blocking the SREBP2-mediated feedback
response with dipyridamole enhances statin-induced cancer cell death?'?*. We have shown that
dipyridamole blocks the regulatory cleavage and therefore activation of SREBP2, decreasing mRNA
expression of SREBP2-target genes of the MVA pathway. As expected, statin treatment induced the
expression of SREBP2-target genes, INSIG1, HMGCR and HMGCS1 after 16 hr of treatment, which was
blocked by the co-treatment with dipyridamole (Figure 3A, Supplemental Figure 5A). Similarly, nelfinavir
and honokiol both phenocopy dipyridamole and block the statin-induced expression of MVA pathway genes
(Figure 3A, Supplemental Figure 5A). By contrast, co-treatment with selumetinib did not block the
fluvastatin-induced feedback response. Housekeeping gene RPL13A was used as a reference gene for
normalizing mMRNA between samples and was not altered in the presence of the compounds
(Supplemental Figure 5B).

Because SREBP2 is synthesized as an inactive full-length precursor that is activated to the mature

nuclear form upon proteolytic cleavage, we used western blot analysis to assess the protein levels of both
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full-length and mature SREBP2. Nelfinavir and honokiol, but not selumetinib, blocked fluvastatin-induced
SREBP2 processing and cleavage similar to that of dipyridamole (Figure 3B-C). This suggests that while
selumetinib is a strong potentiator of statin induced cell death, it does not mimic the action of dipyridamole

by blocking the restorative feedback response (Figure 3, Supplemental Figure 5).

Novel statin-compound combinations phenocopy synergistic activity of fluvastatin-dipyridamole in
a breast cancer cell line screen

To investigate whether the potentiation of fluvastatin by nelfinavir and honokiol has broad applicability and
examine the determinants of synergy, we further evaluated these statin-compound combinations across a
large panel of 47 breast cancer cell lines. A 5-day cytotoxicity assay (sulfornodamine B assay; SRB) in a
6x10 dose matrix was used to assess fluvastatin-compound efficacy. As expected, dipyridamole treatment
resulted in a dose-dependent decrease in fluvastatin ICso value (Supplemental Figure 6A). Similarly,
nelfinavir and honokiol treatment also resulted in a dose-dependent decrease in fluvastatin ICso values
similar to that of dipyridamole (Supplemental Figure 6A). This suggests that our computational
pharmacogenomic pipeline predicts compounds that potentiate statin activity similarly to dipyridamole
across multiple subtypes of breast cancer cell lines.

Next we evaluated statin-compound synergy using the Bliss Index model derived using
SynergyFinder® across the panel of breast cancer cell lines. Like the dose dependent sensitivity data, we
observed that the trend in synergy between fluvastatin-dipyridamole across the 47 breast cancer cell lines
was also seen with fluvastatin-nelfinavir and fluvastatin-honokiol (Figure 4A). Since we had previously
identified that the basal subtype of breast cancer cell lines were more sensitive to single agent fluvastatin'®,
we evaluated whether basal breast cancer cell lines were similarly more sensitive to the fluvastatin-
compound combinations. Using the SCMOD2 subtyping scheme, we evaluated the basal, HER2 and
luminal B status of each cell line and determined synergy is not dependent on BC subtype (Supplemental
Figure 6B) suggesting that these statin-compound combinations can be applied to multiple breast cancer
subtypes as therapeutic options.

Because the synergy profiles across the three fluvastatin-compound combinations were
significantly similar, we next interrogated whether baseline gene and/or protein expression profiles across
the cell lines for each of the statin-compound combinations was associated with synergy. To further
interrogate the similarity between the statin-compound combinations, we correlated the RNA-seq and

reverse phase protein array (RPPA) profiles of the 47 breast cancer cell lines®* with their synergy scores
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for each of the statin-compound combinations. These represent the transcriptomic and proteomic state
associations with synergy for each combination. We then evaluated the correlation between these
associations across the different combinations (F+DP vs F+NFV; F+DP vs F+HNK; F+NFV vs F+HNK)
(Figure 4B) and found a high positive correlation between the combinations on the basis of similar
transcriptomic associations (F+NFV vs F+DP, R=0.73; F+HNK vs F+DP, R=0.77; F+NFV vs F+HNK,
R=0.87). This high positive correlation was also seen between these combinations using proteomic (RPPA)
and synergy data (Supplemental Figure 6C) suggesting that similar pathways were associated with the
synergistic response to the three statin-compound combinations.

To compare the overlap in pathways associated with sensitivity to fluvastatin alone, and synergy
between the fluvastatin-compound combinations, a Gene Set Enrichment Analysis (GSEA) using the
Hallmark Gene Set Collection was performed?®. These results showed that enriched pathways were highly
similar amongst fluvastatin alone and the fluvastatin-compound combinations with one of the highest
scoring enriched pathways being EMT (Figure 4C). To further support this finding and because of the low
agreement amongst EMT gene sets, we also evaluated four additional GSEA EMT pathways and observed
similar trends between fluvastatin alone and the fluvastatin-compound combinations for each of the EMT
gene sets (Supplemental Figure 6D). As we and others have published that mesenchymal-enriched
cancer cell lines are more sensitive to statin monotherapy¢-%’, this data suggests that fluvastatin is the
primary driver of response to these statin-compound combinations. This is consistent with fluvastatin
inhibiting the MVA pathway, triggering the SREBP-mediated feedback response, which in turn is inhibited
by the second compound (dipyridamole, nelfinavir or honokiol) in these fluvastatin-compound combinations.

We then examined the individual genes within each of the GSEA EMT pathways to identify a
biomarker of synergy to the statin-compound combinations. Within the EMT field, gene set signatures have
low agreement (Supplemental Figure 7). Previously our lab published a binary classifier of five EMT genes
to predict increased sensitivity to statins across 631 cell lines representing multiple cancer types®. We
evaluated whether this binary five-gene classifier could also predict synergy between the different
fluvastatin-compound combinations. The five-gene EMT classifier could predict sensitivity to fluvastatin
alone across the panel of breast cancer cell lines (Supplemental Figure 8A), but failed to predict synergy
to the fluvastatin-compound combinations (Supplemental Figure 8B). We next interrogated each of the
five genes individually. Interestingly, low gene expression and protein levels of E-cadherin (CDH1T), a
canonical epithelial state marker, not only predicted sensitivity to fluvastatin, but also demonstrated synergy

across all three fluvastatin-compound combinations (Figure 5A-B and Supplemental Figure 8C). To
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validate our findings, we probed for basal E-cadherin protein expression across a panel of nine breast
cancer cell lines and showed that synergy to the novel statin-compound combinations is positively
associated with low E-cadherin protein expression (Figure 5C-D). Overall, this data validates that our MVA-
DNF pharmacogenomics strategy can successfully distinguish compounds that, like-dipyridamole, can

synergize with statins to trigger BC tumour cell death.

Discussion

By blocking the statin-induced restorative feedback response, dipyridamole potentiates statin efficacy to
drive tumor cell death?'?*, However, due to the polypharmacology of dipyridamole and the potential
contraindication of this platelet-aggregation inhibitor for some cancer patients, it was essential to identify
additional dipyridamole-like compounds and expand this class of agents to provide synergistic
statin+compound treatment options for cancer therapy. To this end, we developed a novel computational
pharmacogenomics pipeline that distinguished compounds that are similar to dipyridamole at the level of
structure, MVA pathway gene expression perturbation, and anti-proliferative activity. We identified 23
potential dipyridamole-like compounds and then evaluated several of the top hits for their ability to
phenocopy dipyridamole. Through this approach, we validated that nelfinavir and honokiol sensitize breast
cancer cell lines to statin-induced cell death by blocking the statin-induced restorative feedback loop.
Analysis of basal RNA and protein expression identified the canonical EMT gene CDH1 (E-cadherin) as a
biomarker of the synergistic response to both statin+nelfinavir and statin+honokiol treatment. Thus, the
computational pharmacogenomics screen described here identified synergistic statin-compound drug
combinations as novel anti-breast cancer therapies.

The integration of a computational pharmacogenomics pipeline and cellular validation to identify
novel compounds with similar biological activities provides a rapid and inexpensive strategy that has
potential broad applicability as it is also adaptable. For example, one issue we had to overcome in
identifying dipyridamole-like compounds was the polypharmacology of dipyridamole itself. Dipyridamole
was originally identified for its anti-platelet aggregation activity and thus the mechanism of action remains
unclear. Several activities of dipyridamole have been described including an inhibitor of

phosphodiesterases (PDEs)%®, nucleoside transport®® and glucose uptake*®. The complexity associated
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with this polypharmacological activity beyond the mevalonate pathway was circumvented by restricting the
gene perturbation layer of the DNF to MVA pathway genes. This shows that the computational
pharmacogenomics pipeline described here is likely tunable to drug-specific structural features, activities
and signaling pathways.

The new statin-sensitizing agents identified here using MVA-DNF include nelfinavir and honokiol,
which like dipyridamole, inhibit statin-induced SREBP2 cleavage and activation?"?4. To date, a number of
SREBP2 inhibitors have been identified that block SREBP2 processing from its precursor to mature form,
including fatostatin, betulin, and xanthohumal (ER-Golgi translocation), PF-429242 (site-1 protease (S1P)
cleavage), and nelfinavir and 1,10-phenanthroline (site-2 protease (S2P) cleavage). Additional SREBP2
inhibitors include BF175 and tocotrienols that target SREBP2 transcriptional activity and protein stability,
respectively. However, other than nelfinavir, these agents have many reported targets and are only used
as tool compounds for research purposes.

The S2P protease inhibitor nelfinavir was approved for use in 1997 as an antiviral for the treatment
of HIV, and in recent years has begun to be evaluated for its utility as an anti-cancer agent*'. While
combination studies of statins and nelfinavir have not been previously reported or investigated in the context
of cancer, open-label, multiple-dose studies have been performed to determine the interactions between
nelfinavir and two statins (atorvastatin and simvastatin) in healthy volunteers. It was stated that co-
administration of nelfinavir and simvastatin should be avoided while atorvastatin should be co-administered
with caution. It should be noted that the family of statin drugs are metabolized by different enzymes.
Therefore, these interactions of nelfinavir with atorvastatin and simvastatin were likely due to drug-drug
interactions leading to the inhibition of CYP3A4. By contrast, fluvastatin is metabolized by CYP2C9
providing additional rationale for our use of fluvastatin in statin-drug combinations as the probability of drug-
drug interactions is significantly reduced.

To the best of our knowledge, this is the first study to report honokiol to synergize with statins in
the context of cancer. Honokiol is a natural product commonly used in traditional medicine and has a
number of reported mechanisms of action. How honokiol inhibits SREBP2 remains unknown, however this
is the first study to interrogate its activity in SREBP2 translocation and gene expression alone and in

combination with statins. As honokiol and its derivatives are presently under development, these data can
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now be incorporated into future structure activity relationship analyses to enrich or lessen this new feature
of honokiol. Two additional predicted dipyridamole-like compounds tested in this study include selumetinib
and mitoxantrone, which did and did not sensitize breast cancer cells to statin-induced apoptosis.
Selumetinib functions through an SREBP2-independent mechanism, suggesting that not only is the
identification of feedback-dependent mechanisms beneficial for cancer treatment but also shows that
additional feedback-independent classes of statin-sensitizers can be identified. This is particularly important
as some multiple myeloma and prostate cancer cell lines have been shown to lack the feedback response.

The data presented here has important clinical implications for statins as anti-cancer agents.
Despite some positive results from window-of-opportunity clinical trials in breast cancer using statins, a
modest effect was seen from statins alone'®'®. Therefore, discovery of novel therapeutic combinations will
be necessary to achieve significant clinical impact. Since nelfinavir is poised for repurposing and statins
have demonstrated anti-cancer activity in early-phase clinical trials'®942-46  clinical studies to further
evaluate the therapeutic benefit of this combination could proceed swiftly. Furthermore, consideration of
available gene and protein expression across our large collection of breast cancer cell lines identified a
mesenchymal-enriched gene expression profile as highly predictive of sensitivity to all three
statintcompound (dipyridamole, nelfinavir or honokiol) combinations. We further showed that CDH1
expression levels served as a biomarker of synergistic response. This reinforces the dipyridamole-like
behaviour of nelfinavir and honokiol, identified by our pharmacogenomics pipeline, and creates
opportunities for biomarker-guided clinical studies. CDH1 expression as a biomarker of predicted response
to the combination of fluvastatin+nelfinavir could be used to identify those patients most likely to benefit.
We also observed this synergistic response to the combination therapies across multiple subtypes of breast
cancer. Previously we had identified the basal-like breast cancer subtype as more sensitive to statins alone;
here, we have expanded the scope of statin treatment to encompass the wider breast cancer population.
These findings can also be explored beyond breast cancer as CDH1 is expressed in most cancers, for
example sarcomas which are fixed in a mesenchymal state and have previously been reported as
responsive to statins as single agents®"4’.

Taken together, our computational pharmacogenomics pipeline reveals that starting with

compounds that act within or on a specific pathway, it is possible to identify additional compounds to
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increase a class of inhibitors and/or better help understand compound mechanism of action. Our study also
provides a strong preclinical rationale to warrant further investigation of the fluvastatin+nelfinavir
combination, as well as the CDH1 biomarker (Figure 5E). The ready availability of these well-tolerated
drugs as well as simple methods for assessing CDH1 expression could enable rapid translation of these

findings to improve breast cancer outcomes.
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Methods

Our analysis design encompasses both computational identification and refinement of dipyridamole-like

compounds, as well as experimental validation of the most promising candidates.

MVA-specific Drug Network Fusion (MVA-DNF).

We developed a computational pharmacogenomic pipeline (MVA-DNF) that facilitates identification of
analogues to dipyridamole, by elucidating drug-drug relationships specific to the mevalonate (MVA)
pathway. MVA-DNF briefly extends upon some principles of the drug network fusion algorithm we had
described previously*8, by utilizing the similarity network fusion algorithm across three drug taxonomies
(drug structures, drug perturbation, and drug sensitivity). Drug structure annotations and drug perturbation
signatures are obtained from the LINCS-L1000 dataset?>#°, and drug sensitivity signatures are obtained
from the NCI-60 drug panel?®. Drug structure annotations were converted into drug similarity matrices by
calculating tanimoto similarity measures® and extended connectivity fingerprints®' across all compounds,
as described previously*8. We extracted calculated Z-scores from drug-dose response curves for the NCI-
60 drug sensitivity profiles, and computed Pearson correlation across these profiles to generate a drug
similarity matrix based on sensitivity?. We used our PharmacoGx package (version 1.6.1) to compute drug
perturbation signatures for the L1000 dataset using a linear regression model, as described previously®2.
The regression model adjusts for cell specific differences, batch effects and experiment duration, to
generate a signature for the effect of drug concentration on the transcriptional state of a cell. This facilitates
identification of gene expression which has been significantly perturbed due to drug treatment. These
signatures indicate transcriptional changes that are induced by compounds on cancer cell lines. We further
refined the drug perturbation profiles to a set of six MVA-pathway genes (Supplementary Figure 1A) that
had been obtained from the literature as well as repositories of pathway-specific gene sets including
MSigDB?®3, HumanCyc® and KEGG*%%°, These gene sets include ‘mevalonate pathway’ and ‘superpathway
of geranylgeranyldiphosphate biosynthesis | (via mevalonate)’ from the HumanCyc®®, and ‘Kegg Terpenoid
Backbone Biosynthesis’ from KEGG®%". The filtered drug-induced gene perturbation signatures were
subsequently used to generate a drug perturbation similarity matrix that elucidates drug-drug relationships
based on common transcriptional changes across the six MVA-pathway genes. We calculated similarity

between estimated standardized coefficients of drug perturbation signatures using the Pearson correlation
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coefficient. Finally, we used the similarity network fusion algorithm® to integrate drug structure, drug
sensitivity, and MVA-pathway specific drug perturbation profiles, to generate an MVA-pathway specific drug

taxonomy (MVA-DNF) spanning 238 compounds.

Identification of analogues to dipyridamole

We interrogated the MVA-DNF taxonomy using a variety of approaches to identify a candidate set of
dipyridamole-like compounds. Using MVA-DNF similarity scores, we first generated a ranking of all
compounds closest to dipyridamole. We then conducted a perturbation test, to assess the statistical
relationship of each ranked drug against dipyridamole. Briefly, drug fusion networks were generated 1000
times across perturbation, sensitivity, and drug structure profiles, each time using a random set of six genes
to generate a ‘pathway-centric’ drug perturbation similarity matrix. Z-scores and p-values were calculated
to determine the statistical relevance of a given dipyridamole-like analog in MVA-DNF, compared to the
randomly generated networks. From this, we further ranked a list of dipyridamole-like candidate compounds
by their statistical significance within MVA-DNF (p-value<0.05), resulting in identification of 23 candidate

dipyridamole analogs.

For each of the dipyridamole analogues we identified, we conducted a similar assessment of
significance to identify the relationships of these compounds to dipyridamole and to themselves. A network
of dipyridamole-like analogues was rendered using iGraph R package®. Using MVA-DNF similarity scores,
we further computed the contribution of each of the drug layers (structure, sensitivity and perturbation) in

the identification of dipyridamole-like compounds.

We assessed the regulation of gene expression for genes involved in the mevalonate pathway
across all of the top-selected dipyridamole analogues, by analyzing the drug-induced transcriptional profiles
(described above) of the selected analogues. To prioritize the dipyridamole analogues, the candidate
compounds were categorized, and compounds that were known toxins or carcinogens were excluded from
the analysis (Supplemental Table 1, Supplemental Figure 1C). Top hits from the largest categories were

selected for further validation.
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Cell culture and compounds

All cell lines were cultured as described previously'®?4. Briefly, MDA-MB-231 and HCC1937 cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) and Roswell Park Memorial Institute medium
(RPMI), respectively. All media was supplemented with 10% fetal bovine serum (FBS), 100 units/mL
penicillin and 100 pg/mL streptomycin. Cell lines were routinely confirmed to be mycoplasma-free using the
MycoAlert Mycoplasma Detection Kit (Lonza), and their authenticity was verified by short-tandem repeat
(STR) profiling at The Centre for Applied Genomics (Toronto, ON, Canada). Fluvastatin (US Biological
F5277-76) was dissolved in ethanol and dipyridamole (Sigma), nelfinavir (Sigma), honokiol (Sigma),

mitoxantrone (Sigma) and selumetinib (Selleckchem) were dissolved in DMSO.

Breast cancer cell lines panel

The breast cancer cell line** panel was a generous gift from Dr. Benjamin Neel. RNAseq quantification was
done using Kallisto pipeline®® using human transcriptome reference hg38.gencodeV23%'. RPPA processed
data was downloaded from**. SCMOD2°%2 breast cancer subtypes of these cell lines were obtained using

genefu R package®.

Breast cell-line combination viability screen

We used the sulforhodamine B colorimetric (SRB) proliferation assay®* in 96-well plates to determine the
dose-response curves. To test the combinations in the panel of BC cell lines (See Breast cancer cell lines
panel), the fluvastatin/dipyridamole, fluvastatin/nelfinavir and fluvastatin/honokiol drug combinations were
tested in a 6x10 dose matrix format covering a range of decreasing concentrations of each drug (highest
drug dose was 20 uM fluvastatin, 20 pM dipyridamole, 10 uM nelfinavir and 20 uM honokiol), along with all
their pairwise combinations, as well as the negative control (EtOH and DMSO). We subtracted the average
phosphate-buffer saline (PBS) wells value from all wells and computed the standard deviation and
coefficient for each replicate. All individually treated well values were normalized to the control well values.
We used Prism (v8.2.0, GraphPad Software) to compute dose-response curves with a bottom constraint

equal to 0.
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Cell viability assays

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed as previously
described®. Briefly, BC cells were seeded in 750-15,000 cells/well in 96-well plates overnight, then treated
in triplicate with 0-400 puM fluvastatin for 72 hours. Half-maximal inhibitory concentrations (ICso) values were
computed from dose-response curves using Prism (v8.2.0, GraphPad Software) with a bottom constraint

equal to 0.

Cell death assays
Cells were seeded at 2.5x10° cells/plates and treated the next day as indicated. After 72 hours, cells were
fixed in 70% ethanol for >24 h, stained with propidium iodide and analyzed by flow cytometry for the sub-

diploid (% pre-G1) DNA population as a measure of cell death as previously described®.

Immunoblotting

Cell lysates were prepared by washing cells twice with cold PBS and lysing cells in RIPA buffer (50 mM
Tris-HCI pH 8.0, 150 mM NacCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS, 1 mM EDTA, protease
inhibitors) on ice for 30 min. Lysates were cleared by centrifugation and protein concentrations were
determined using the Pierce 660 nm Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of protein
were diluted in Laemmli sample buffer, boiled for 5 min and resolved by SDS-polyacrylamide gel
electrophoresis. The resolved proteins were then transferred onto nitrocellulose membranes. Membranes
were then blocked for 1 hr in 5% milk in tris-buffered saline/0.1 % Tween-20 (TBS-T) at room temperature,
then probed with the following primary antibodies in 5% milk/TBS-T overnight at 4 °C: SREBP-2 (1:250; BD
Biosciences, 557037), p44/42 MAPK (ERK1/2) (1:1000, Cell Signaling Technology, 4695), PARP (1:1000,
Cell Signaling Technology, 9542L), a-Tubulin (1:3000, Calbiochem, CP06) and E-cadherin (1:1000, Cell
Signaling Technology, 3195). Primary antibodies were detected using IRDye-conjugated secondary
antibodies and the Odyssey Classic Imaging System (LI-COR Biosciences). Densitometric analysis was

performed using ImageJ 1.47v software.
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RNA expression analyses

Total RNA was harvested from sub-confluent cells using TRIzol Reagent (Invitrogen). cDNA was
synthesized from 500 ng RNA using SuperScript Ill (Invitrogen). Quantitative reverse transcription PCR
(gRT-PCR) was performed using the ABI Prism 7900HT sequence detection system and TagMan probes
(Applied Biosystems) for HUGCR (Hs00168352), HMGCS1 (Hs00266810), INSIG1 (Hs01650979) and

RPL13A (Hs01578913).

Drug combinations synergy analysis

Viability scores were calculated using standard pipelines from PharmacoGx R package® and synergy
scores represented by Bliss Index were calculated using SynergyFinder R package 3. Pearson correlation
coefficient was used to measure the associations between the transcriptomic and proteomic states of cell
lines and the corresponding synergy scores for each of the combinations. The transcriptomic associations
were then used to rank genes for GSEAS2. Hallmark gene set collection®® was downloaded from MSigDB®°.
Piano R package was used to run GSEA analysis®. Other EMT related pathways, namely “GO Positive
Regulation of Epithelial To Mesenchymal Transition™®”, “GO Epithelial To Mesenchymal Transition’,
“SARRIO Epithelial Mesenchymal Transition DN"%, and “SARRIO Epithelial Mesenchymal Transition Up”,

were also downloaded from MSigDB.
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Figure Legends

Fig. 1. A schematic of the mevalonate (MVA) pathway and overview of the computational
pharmacogenomics workflow. (A) In response to fluvastatin treatment (labelled with 1), MVA pathway
end-product levels decrease, triggering an SREBP-mediated feedback response that activates MVA
pathway-associated gene expression to restore cholesterol and other non-sterol end-product levels.
Dipyridamole (DP) (labelled with 2) blocks the SREBP-mediated feedback response, thereby potentiating
fluvastatin-induced cancer cell death. (B) An overview of the computational pharmacogenomics workflow,
MVA-DNF, used to identify the top 23 “dipyridamole-like” candidates and visualized as a compound
network. MVA-DNF combines drug structure, drug-induced gene perturbation datasets restricted to six MVA
pathway-specific genes and drug sensitivity. Permutation specificity testing was performed to select
compounds that have a degree of specificity to the mevalonate pathway and dipyridamole. Statistical
significance of compounds similar to dipyridamole was assessed by comparing to 1000 networks generated
from random selection of six genes within the drug perturbation layer. A network representation of
dipyridamole and top 23 statistically-significant (p-value <0.05) “dipyridamole-like” compounds are shown.
Each node represents a compound and edges connect compounds based on statistical significance of p-
value <0.01. Darker blue nodes and orange edges represent the compounds connected to dipyridamole,
and edge thickness represents the associated p-value between the compounds. (C) Radar plot of the top
23 dipyridamole-like compounds (p-value <0.05), where the contribution of each individual layer of the
MVA-DNF (drug structure, sensitivity, and perturbation) is depicted. Percent contribution of each layer is

shown from the center (0%) to the outer edges (100%).

Fig. S1, related to Fig. 1. Additional information regarding drug-induced genotype changes and
categorization of top 23 dipyridamole-like compounds. (A) Simplified schematic of the MVA pathway,
highlighting the six MVA-pathway genes (in red) in the L1000 database used to restrict the drug-induced
gene perturbation layer of the DNF method. (B) Drug perturbation signatures for dipyridamole and
dipyridamole-like compounds, plotted for genes pertaining to the MVA pathway. Similarity between

compounds based on their overall expression profiles is rendered in the dendrogram. Dipyridamole- and
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fluvastatin-induced changes shown on the bottom as reference. (C) Categorization of the top 21

dipyridamole-like compounds excluding toxins and carcinogenic compounds.

Fig. S2. MVA-DNF drug-dose response curves for MDA-MB-231 and HCC1937 breast cancer cell
lines to identify a sub-lethal dose of top dipyridamole-like compounds. (A) MDA-MB-231 and (B)
HCC1937 cells were treated with a range of doses for 72 hours, and cell viability was determined using an
MTT assay. The drug dose-response curves are plotted with a dashed line at 80% MTT activity indicating
a sub-lethal drug dose. Data for an average of three technical replicates are plotted; data reflect the results
of a single biological experiment. (C) Table of sub-lethal drug dose and interpolated % MTT activity for both

MDA-MB-231 and HCC1937.

Fig. S3. MVA-DNF drug-dose response curves, fluvastatin ICso and solvent control values for MDA-
MB-231 cells. MDA-MB-231 cells were treated with a range of fluvastatin doses alone or in combination
with a sub-lethal dose of dipyridamole (5 uM), selumetinib (0.4 uM), nelfinavir (3 uM), mitoxantrone (0.01
MM) or honokiol (12 pM) for 72 hours, and cell viability was determined using an MTT assay. The drug
dose-response curves, fluvastatin ICso values and control values are plotted. Error bars represent the mean

+/- SD, n = 3-5, *p <0.05, **p <0.01 (Student t test, unpaired, two-tailed).

Fig. S4. MVA-DNF drug-dose response curves, fluvastatin ICso and solvent control values for
HCC1937 cells. HCC1937 cells were treated with a range of fluvastatin doses alone or in combination with
a sub-lethal dose of dipyridamole (5 uM), selumetinib (1 uM), nelfinavir (3 pM), mitoxantrone (0.001 pM) or
honokiol (10 uM) for 72 hours, and cell viability was determined using an MTT assay. The drug dose-
response curves, fluvastatin ICso values and control values are plotted. Error bars represent the mean +/-

SD, n = 3-6, *p <0.05, **p <0.01, ***p <0.001 (Student ¢ test, unpaired, two-tailed).

Fig. 2. Dipyridamole-like compounds potentiate fluvastatin-induced cell death. (A) MDA-MB-231 and

HCC1937 cells were treated with solvent controls or fluvastatin +/- dipyridamole (DP), nelfinavir (NFV),

honokiol (HNK) or selumetinib (Selu) for 72 hours, fixed in ethanol and assayed for DNA fragmentation (%
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pre-G1 population) as a marker of cell death by propidium iodide staining. Error bars represent the mean
+/- SD, n = 3-4, *p < 0.05, **p < 0.01, ****p < 0.0001 (one-way ANOVA with Bonferroni’'s multiple
comparisons test, where each treatment was compared to the solvent control). (B) Cells were treated as in
(A), protein isolated and immunoblotting was performed to assay for PARP cleavage. (F) represents full-
length PARP and (C) represents cleaved PARP. (C) PARP cleavage (cleaved/full-length) shown in (B) was
quantified by densitometry and normalized to Tubulin expression. Error bars represent the mean +/- SD, n
= 3-5, *p < 0.05, **p<0.005, ***p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni’'s multiple

comparisons test, where each group was compared to the solvent control within each experiment).

Fig. 3. Nelfinavir and Honokiol block fluvastatin-induced SREBP activation. (A) MDA-MB-231 and
HCC1937 cells were exposed to solvent controls, fluvastatin +/- dipyridamole, nelfinavir, honokiol or
selumetinib for 16 hours, and RNA was isolated to assay INSIG1 expression by gRT-PCR. mRNA
expression data are normalized to RPL13A expression. Error bars represent the mean +/- SD, n = 3-4, *p
< 0.05, **p<0.005, ***p<0.001, ****p<0.0001 (one-way ANOVA with Bonferroni’s multiple comparisons test,
where each group was compared to the solvent control group within each experiment). (B) MDA-MB-231
and HCC1937 cells were treated with fluvastatin +/- dipyridamole, nelfinavir, honokiol or selumetinib for 12
hours, and protein was harvested to assay for SREBP2 expression and cleavage (activation) by
immunoblotting. (P) represents precursor, full-length SREBP2 and (M) represents mature, cleaved
SREBP2. (C) SREBP2 cleavage (cleaved/full-length) was quantified by densitometry and normalized to
total ERK expression. Error bars represent the mean +/- SD, n = 3-8, *p < 0.05, **p<0.005, ***p<0.001,
****n<0.0001 (one-way ANOVA with Bonferroni’'s multiple comparisons test, where each group was

compared to the solvent controls group within its experiment).

Fig. S5, related to Fig 3. Nelfinavir and Honokiol block fluvastatin-induced SREBP activation of
SREBP2 feedback genes. (A) MDA-MB-231 cells were treated with fluvastatin +/- dipyridamole, nelfinavir,
honokiol or selumetinib for 16 hours, and RNA was isolated to assay for HMGCR and HMGCS1 expression
by gqRT-PCR. mRNA expression data are normalized to RPL13A expression. (B) RPL13A Ct mean values

plotted as a control. Error bars represent the mean +/- SD, n = 34, *p < 0.05, **p<0.005, ***p<0.001,
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****n<0.0001 (one-way ANOVA with Bonferroni’'s multiple comparisons test, where each group was

compared to the solvent controls group).

Fig. S6, related to Fig 4. High-throughput compound combination screen. (A) Heatmap of
Logio(Fluvastatin ICso) values for a high-throughput compound synergy screen against 47 BC cell lines
visualizing the 15" to 85" percentile. BC cell lines were treated with a dose matrix of fluvastatin (0-20 uM)
+/- dipyridamole (DP) (0-20 pM), nelfinavir (NFV) (0-10 pyM) or honokiol (HNK) (0-20 uM). After 5 days of
drug treatment, cell viability was assessed by SRB assay. SCMOD2 cell line subtyping was assigned to the
BC cell line panel. Data presented are the average of 2 biological replicates (fluvastatin +/- dipyridamole
(DP)) or the mean of 3-6 biological replicates (fluvastatin +/- nelfinavir (NFV) and fluvastatin +/- honokiol
(HNK)). (B) Comparison of synergy scores stratified by BC subtypes across the combinations using
wilcoxon paired rank test. Red dash line at synergy threshold. (C) Similarity of proteomic states
associations® with synergy scores across the fluvastatin+compound combinations. Similarity of proteomic
states associations were compared across the combinations (Fluva+DP vs Fluva+NFV; F+DP vs
Fluva+HNK; Fluva+NFV vs Fluva+HNK) using Pearson correlation coefficient. Top five basally-expressed
proteins associated with synergy in either direction are annotated in red. (D) Gene set enrichment analysis
using five EMT gene set collections and genes ranked by basal mRNA correlated to the fluvastatin 1Cso
(Fluva) value or synergy score (Fluva+DP, Fluva+NFV and F+HNK). Dot size indicates the difference in
enrichment scores (ES) of the pathways. Background shading indicates the FDR. X indicates pathway and

drug combinations that were not significantly enriched (FDR > 0.05).

Fig. 4. Compound combination synergy analysis. (A) Heatmap of synergy scores (Bliss Index model)
for fluvastatin (Fluva) + dipyridamole (DP), nelfinavir (NFV) or honokiol (HNK) in a panel of 47 breast cancer
cells lines. Ordered by synergy score of Fluva + DP, from greatest to least synergy. Breast cancer subtype
of each cell line is shown and is based on the SCMOD2 subtyping scheme. (B) Basal mRNA expression3*
associations with synergy scores between each drug combination (e.g. Fluva+NFV vs. Fluva+DP,
Fluva+HNK vs. Fluva+DP, and Fluva+NFV vs. Fluva+HNK). Correlations were calculated using Pearson

correlation coefficient. Top five basally-expressed genes associated with synergy in either direction are
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annotated in red. (C) Gene set enrichment analysis (GSEA) using the Hallmark gene set collection, where
genes were ranked according to their correlation to the fluvastatin ICso (Fluva) value or to the synergy score
(Fluva+DP, Fluva+NFV and F+HNK). Dot plot was restricted to pathways enriched in two out of four groups.
Dot size indicates the difference in enrichment scores (ES) of the pathways. Background shading indicates

the FDR. X indicates pathway and drug combinations that were not significantly enriched (FDR > 0.05).

Fig. S7, related to Fig 4. Overlapping genes within the EMT gene sets. (A) Upset plot to visualize the

agreement between Yu et al. (2017)% five-gene classifier and five additional EMT gene sets.

Fig. S8, related to Fig 5. EMT gene expression as a biomarker of sensitivity to fluvastatin and
synergistic response to fluvastatin+tcompound combinations. (A) Five-gene fluvastatin sensitivity
gene classifier®® predicts sensitivity to fluvastatin alone, but (B) does not predict synergy to F+DP, F+NFV
or F+HNK. (C) Basal Vimentin (VIM), N-Cadherin (CDH2), ZEB1 and fibronectin (FN1) mRNA expression

do not predict synergy to the drug combinations.

Fig. 5. Basal E-cadherin predicts synergistic response to fluvastatintcompound combinations. (A)
Basal E-cadherin mRNA expression between cell lines predicted to be synergistic or not to each drug
combination. Synergy was defined by Bliss Index and significance was measured by wilcoxon rank sum
test. (B) Basal E-cadherin mRNA expression between cell lines predicted to be respondent or not to
fluvastatin. Sensitivity was defined by ICso and significance was measured by wilcoxon rank sum test. (C)
Protein lysates were isolated from a panel of breast cancer cell lines to assay for basal E-cadherin
expression by immunoblotting. (D) Densitometry values of normalized E-cadherin expression plotted as a
heatmap. E-cadherin expression was quantified by densitometry and normalized individually to Tubulin
expression. (E) Schematic diagram detailing the potential for fluvastatin (labelled with 1) and nelfinavir
(labelled with 2) to block the SREBP2-mediated feedback response and synergize to potentiate fluvastatin-

induced cell death.
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Table Legends

Supplementary Table 1 - Ranked MVA-DNF compounds by Z-score.
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+ |+ + |+

+ |+ + |+

treatment

Pre-clinical

Research tool

+

+

Exclude

Toxin

Carcinogen

Classification

RAF/MEK inhibitor
Antiretroviral
Anthracycline
Anthracycline

Natural product
Antifungal
Antibiotic
RAF/MEK inhibitor
Antibiotic
Natural product
Natural product
Antimetabolite
Other
Natural product
Antifungal
Natural product
Antimetabolite
Other
CDK inhibitor
Antiandrogen
Other
Other
Natural product

* Table ordered by p-value




