

1 **Generating single-sex litters: development of CRISPR-Cas9 genetic tools to**
2 **produce all-male offspring**

3

4 Charlotte Douglas¹, Valdone Maciulyte¹, Jasmin Zohren¹, Daniel M. Snell¹, Obah A.
5 Ojarikre¹, Peter J.I. Ellis^{2*}, James M.A. Turner^{1*}

6 ¹Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom

7 ²School of Biosciences, University of Kent, Kent, United Kingdom

8 *Joint correspondence: james.turner@crick.ac.uk; p.j.i.ellis@kent.ac.uk

9

10

11

12 **Abstract**

13 Animals are extremely useful genetic tools in science and global resources in agriculture.
14 However, a single sex is often required in surplus, and current genetic methods for
15 producing all-female or all-male litters are inefficient. Using the mouse as a model, we
16 developed a synthetic, two-part bicomponent strategy for generating all-male litters. We
17 achieved this using CRISPR-Cas9 genome editing technology to generate large stable
18 knock-ins on the autosomes and X chromosome. The bicomponent system functions via the
19 sex-specific co-inheritance of a Cas9 transgene and an sgRNA transgene targeting the
20 essential *Topoisomerase 1* gene. This technology proved to be highly efficient in generating
21 on-target mutations, resulting in embryonic lethality of the target sex. Our study is the first to
22 successfully generate all-male mammalian litters using a CRISPR-Cas9 bicomponent
23 system and provides great strides towards generating single-sex litters for laboratory or
24 agricultural research.

25

26

27

28 **Introduction**

29 Animals and animal products are utilised globally. However, a single sex is often required at
30 surplus, at the expense of the non-required littermates. Although the “Reduction,
31 Replacement and Refinement” (3Rs) guidelines¹ promote efficient animal use, the
32 production of the unrequired sex is generally unavoidable. The unrequired sex may also
33 exhibit a severe phenotype, thereby precluding its use for other experimental purposes. The
34 generation of male-only litters could be advantageous for research focused on male-specific
35 biology such as testis development, or Y chromosome studies (reviewed in ²), or on
36 behavioural or drug response studies³⁻⁵, where sex is considered an important biological
37 variable. It could also be useful in agriculture, for example the beef-producing industry,
38 which preferentially uses male rather than female cows, because males are faster growing.
39 Moreover, sex-specific selection of all-male broods could potentially greatly contribute to
40 invasive pest control methods. Hypothetically, releasing broods of sterile male-only litters
41 could induce population collapse, as the gametes are non-functional or produce sub-fertile
42 offspring⁶. In this strategy, male-dominated populations could be used for controlling the
43 propagation of malarial parasites, or insects that destroy food crops. Hence, a genetic
44 method to produce all-male litters would be extremely beneficial.

45

46 The production of single-sex litters relies on differences in male and female chromosome
47 complement and gene expression. With rare exceptions⁷⁻⁹, in eutherian mammals, females
48 have two X chromosomes (XX) whilst males have a single X and a single Y chromosome
49 (XY). The heterogametic nature of the XY chromosomes in males ensures the unique
50 inheritance of either sex chromosome in a sex-specific manner. Consequently, sex-
51 chromosome linked transgenes will also be inherited sex-specifically. The advent of
52 CRISPR-Cas9 genome editing, the process of RNA-guided Cas9 endonuclease-driven DNA
53 double strand breaks, provided an unprecedented ease with which to generate mutations in
54 a vast range of cells *in vitro* and *in vivo*¹⁰ and can be used to generate these sex-
55 chromosome linked transgenes.

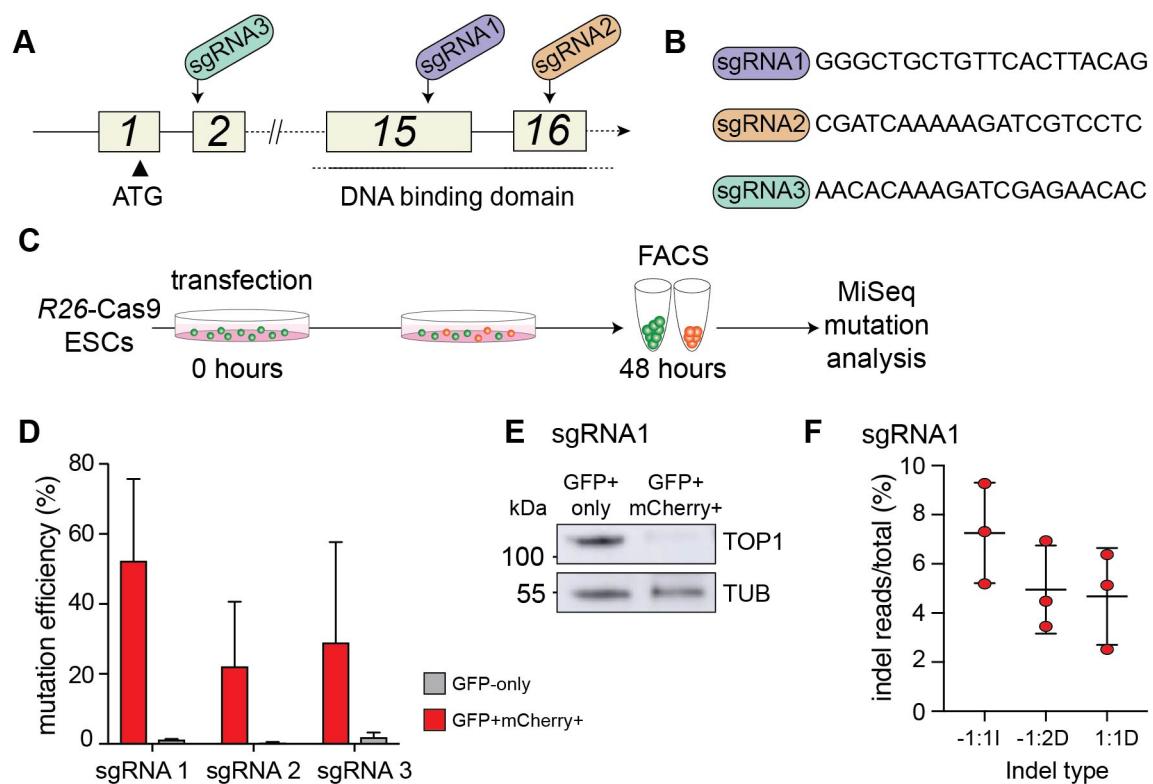
56

57 Co-inheritance of a sex-linked Cas9 transgene, and an autosomal single guide RNA
58 (sgRNA) transgene targeting an essential gene, can induce mutations and non-viability in
59 one sex. Previously, Zhang and colleagues engineered a female-lethal bicomponent system
60 in silkworms by integrating a Cas9 transgene onto the female-specific W chromosome, and
61 an sgRNA transgene targeting essential housekeeping gene *Bmtra2* onto an autosome¹¹.
62 The co-inheritance of the W-Cas9 and *Bmtra2*-targeting sgRNA transgene was therefore
63 uniquely in daughters; inducing *Bmtra2* loss-of-function mutations, and production of all-
64 male litters with 100% efficiency¹¹. In mice, Yosef and colleagues published a variation of
65 this technology by engineering a Y-linked sgRNA transgene targeting essential embryonic
66 genes *Atp5b*, *Casp8* and *Cdc20*¹². Co-inheritance of the Y-linked sgRNA with an autosomal
67 Cas9¹³ resulted in male-specific CRISPR-Cas9 mutations in the target genes, causing male
68 lethality and a female-bias offspring sex ratio skew. However some male pups were born,
69 and some showed severe developmental defects¹².

70

71 Currently, a mammalian bicomponent genetic system for producing all-male litters has not
72 been generated. We therefore utilised CRISPR-Cas9 genome editing to create a synthetic
73 female-lethal bicomponent system in mice. We generated an X-linked Cas9 transgene and a
74 second autosome-linked sgRNA transgene, whereby the sgRNA targets essential
75 housekeeping gene *Topoisomerase 1 (Top1)*. We show that co-inheritance of a paternal X-
76 linked Cas9 transgene and *Top1* sgRNA transgene results in lethality specifically in
77 daughters. Remarkably, the number of offspring derived from this bicomponent approach
78 exceeds the expected 50% of that from control matings. This unexpected finding reveals a
79 buffering system that operates during preimplantation development to maximise offspring
80 number. Our study is the first report of producing all-male litters in the mouse by sex-specific
81 CRISPR-Cas9 genetic methods.

82


83

84 **Results**

85 **An *in vitro* CRISPR-Cas9 bicomponent system induces *Top1* mutations**

86 For our lethal-guide experiments, we chose to target *Top1*, a highly conserved 21-exon gene
87 with essential functions in DNA replication and repair¹⁴. *Top1* loss-of-function results in
88 embryonic lethality at the 4-16 cell stage¹⁵⁻¹⁷. We designed sgRNAs targeting exon 15
89 (sgRNA1) and exon 16 (sgRNA2), which together encode the DNA-binding domain, and a
90 third targeting exon two (sgRNA3), adjacent to the start codon, thereby hypothetically
91 disrupting the *Top1* reading frame early within the coding sequence (Fig 1A,B). Each sgRNA
92 was inserted into a plasmid vector (annotated “pLethal”) driven by a human U6 (hU6)
93 promoter. pLethal also encoded a pCbh promoter-driven mCherry reporter, which acted as a
94 proxy for sgRNA expression.

95

96

97 **Fig 1. sgRNA1 Targeting *Top1* Exon 15 Induces the Greatest Mutation Efficiency.**

98 (A) Schematic of *Top1*, with single guide RNA (sgRNA) targeting essential exons. (B) Sequence of
99 each 20mer sgRNA. (C) Schematic for screening sgRNAs in R26-Cas9 mESCs. (D) Quantification of
100 mutation efficiency. Error bars: s.d. (n=3). (E) Western blot of GFP-only and double-positive mESCs
101 after transfection with sgRNA1. Expected size: 110 kDa (TOP1) and 50 kDa (TUBULIN). (F)
102 Occurrence of mutation types.

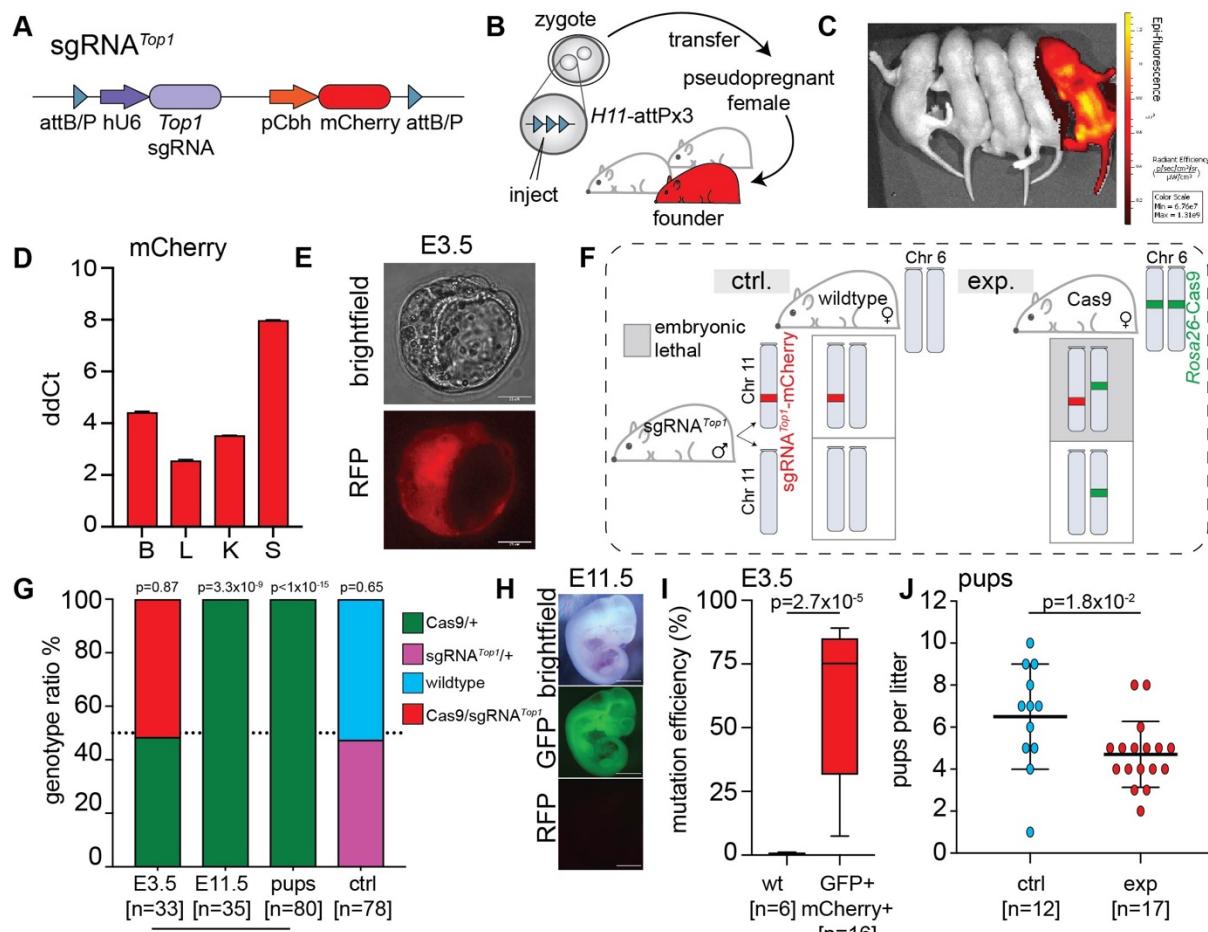
103

104 To screen individual sgRNAs in an *in vitro* bicomponent system, we derived constitutive
105 pCAG promoter driven-Cas9 expressing XY mouse embryonic stem cell (mESC) lines from
106 the *Gt(ROSA)26-Cas9 (R26-Cas9)* transgenic mouse¹³. The Cas9 transgene is linked to an
107 eGFP reporter via a T2A sequence. eGFP expression was confirmed by quantitative PCR
108 (qPCR; Supp Fig 1A), and used as a visual proxy for Cas9 expression.

109

110 To assess whether the CRISPR-Cas9 bicomponent system could generate *Top1* mutations,
111 *R26-Cas9* mESCs were individually transfected with each sgRNA-containing pLethal
112 plasmid and sorted 48 hours later by fluorescence-activated cell sorting (FACS; Fig 1C,
113 Supp Fig 1B). mESCs transfected were eGFP and mCherry double-positive, while those not
114 transfected were eGFP only. We evaluated the occurrence of *Top1* mutations in each
115 population. sgRNA1 had the greatest mutation efficiency, with 52.24% of double-positive
116 mESCs exhibiting *Top1* mutations (Fig 1D). sgRNA2 and sgRNA3 generated *Top1*
117 mutations in 22.05% and 28.93% of double-positive mESCs, respectively (cf. 1.15%, 0.43%
118 and 1.8% for sgRNA1,2 and 3 in eGFP-only cells, respectively; Fig 1D). sgRNA1 was
119 carried forward for future experiments, since this guide exhibited the greatest mutagenic
120 capacity. We confirmed by western blotting that in sgRNA1-transfected double-positive
121 mESCs sgRNA1 TOP1 levels were reduced (Fig 1E). A single nucleotide insertion at the
122 minus 1 position (-1:1I) downstream of the predicted Cas9 DSB site was the most dominant
123 indel mutation, contributing on average 7.3% of all reads (Fig 1F). Moreover, this indel type
124 aligned with the predicted mutational outcome for this sgRNA¹⁸. A -1:1I frame-shift mutation
125 induces the occurrence of a premature stop codon; thereby fulfilling the requirement for a
126 loss-of-function mutation.

127


128 **Co-inheritance of autosomal sgRNA and Cas9 transgenes induces *Top1* mutations
129 and embryonic lethality**

130 sgRNA1 generated frame-shift mutations at *Top1* exon 15, causing loss of TOP1. We
131 therefore generated a transgenic mouse line, hereafter termed sgRNA^{*Top1*}, that carried

132 sgRNA1 together with the mCherry reporter cassette (Fig 2A). The sgRNA-mCherry
133 transgene was integrated into an intergenic *Hipp11* (*H11*) locus on mouse chromosome 11
134 by ϕ C31 integrase, which mediates efficient integration at attB and attP phage attachment
135 sites^{19,20}. For this knock-in, the sgRNA1 plasmid was edited to contain attB sequences
136 flanking the U6-sgRNA1 and pCbh-mCherry, and was co-injected with integrase mRNA into
137 the pronuclei of *H11*-attPx3 zygotes to generate founders (Fig 2B). mCherry expression was
138 confirmed in sgRNA^{Top1} mice by *in vivo* imaging of pups (Fig 2C), qPCR of adult tissues (Fig
139 2D) and fluorescence microscopy of pre-implantation embryos at embryonic day (E)3.5 (Fig
140 2E). The sgRNA^{Top1} transgene did not induce embryonic lethality in isolation: breeding
141 hemizygous sgRNA^{Top1}/+ males with wildtype females (“ctrl”; Fig 2F) produced wildtype and
142 sgRNA^{Top1}/+ embryos in equal proportions (n=78; non-significant deviation from expected
143 Mendelian ratio, p=0.65; Fig 2G).

144

145

146

147 **Fig 2. Characterising the sgRNA knock-in transgene**

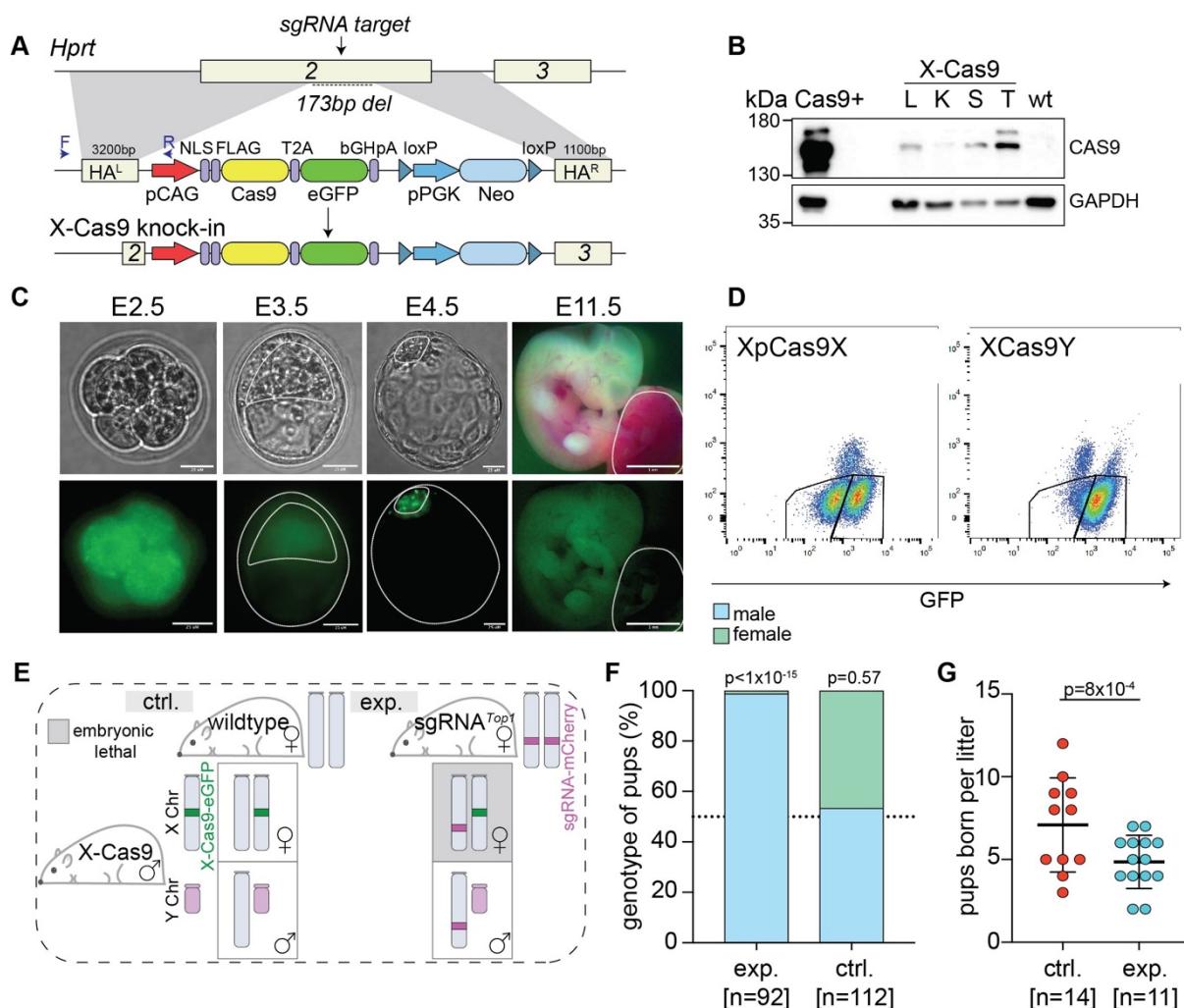
148 (A) Schematic of the *H11* sgRNA knock-in locus. (B) Schematic to generate the sgRNA^{Top1} knock-in.
149 (C) *In vivo* imaging for mCherry. (D) Quantitative PCR for mCherry expression normalised to *Gapdh*
150 in a wildtype sample. B; brain, L; liver, K; kidney, S; spleen. Error bars: s.d. (n=3). (E) Fluorescence
151 imaging of an sgRNA^{Top1} E3.5 embryo. Scale bar; 25 μ M. (F) Schematic of the mating strategies. ctrl;
152 control, exp; experimental, Cas9; R26-Cas9. (G) Offspring genotypes during development from
153 control or experimental matings. Number of offspring in brackets. P value: Chi-squared test, assuming
154 1:1 ratio of 'expected' offspring if co-inheritance of CRISPR-Cas9 alleles was not lethal. (H)
155 Fluorescence imaging of E11.5 Cas9/+ embryo. Scale bar: 1mm. (I) Quantification of mutation
156 efficiency. Error bars: range. Number of samples in brackets. P value: Mann-Whitney test. J) Litter
157 size. Number of litters in brackets. P value: Mann-Whitney test.

158

159 To assess transgenic *Top1* sgRNA functionality *in vivo*, we bred hemizygous sgRNA^{Top1}+/+
160 males with homozygous R26-Cas9 females ("exp"; Fig 2F) and genotyped resulting embryos
161 at multiple developmental stages (Fig 2G). In E3.5 blastocysts, the ratio of Cas9/ sgRNA^{Top1}
162 embryos to Cas9/+ was 1:1 (non-significant deviation from expected Mendelian ratio;
163 p=0.87; Fig 2G). However, post-implantation, at E11.5, 100% of embryos were Cas9/+
164 (n=35; significant deviation from expected Mendelian ratio; p=3.3x10⁻⁹; Fig 2G,H). Later, at
165 birth, all embryos were Cas9/+ (n=80; significant deviation from expected Mendelian ratio

166 p<1x10⁻¹⁵; Fig 2G). In E3.5 eGFP/mCherry double-positive E3.5 embryos, the average
167 mutation efficiency was 59.32% (n=16, cf. 0.65% in wildtype, p=2.7x10⁻⁵; Fig 2I). Moreover,
168 all double-positive embryos exhibited the -1:11 mutation. Therefore, co-inheritance of a Cas9
169 and sgRNA transgene induced *Top1* mutations in pre-implantation embryos, and embryonic
170 lethality with 100% efficiency prior to E11.5.

171


172 Due to the embryonic-lethal effect, we expected that the litter size in experimental matings
173 would be 50% of that from control matings. Surprisingly however, this was not the case.
174 Although the litter size in experimental matings was significantly reduced (4.7 versus 6.5;
175 p=1.8x10⁻²), the mean litter size was 72% rather than 50% of controls (Fig 2J). This
176 unexpected finding reveals a compensation mechanism operating *in utero* to maximise
177 embryo number.

178

179 **Co-inheritance of an X-linked Cas9 transgene and autosome-encoded sgRNA^{Top1}**
180 **causes female lethality**

181 To generate all-male litters using the CRISPR-Cas9 bicomponent system, we engineered an
182 X-linked Cas9 transgenic mouse line containing a 3X FLAG-tagged Cas9 and eGFP
183 reporter, linked via a T2A sequence and driven by a constitutive pCAG promoter (Fig 3A).
184 The construct was targeted to the X-linked permissive *Hprt* locus, deletion of which has no
185 effect on viability and fertility in mice²¹⁻²⁴. Targeting in C57BL/6N mESCs generated a 173bp
186 *Hprt* exon 2 deletion and a knock-in PCR product which we observed in 20% of mESC
187 clones (n=9/48; Supp Fig 2A). We carried forward an X-Cas9 clone (“clone 5”) that by low-
188 pass whole genome sequencing²⁵ was confirmed to be euploid (Supp Fig 2B), gave rise to
189 high-contribution chimeras from blastocyst injection, and germline transmitted.

190

191

192 **Fig 3. Generating the X-Cas9 transgenic line**

193 (A) Schematic of X-Cas9 knock-in strategy. HA^L; homology arm left, HA^R; homology arm right, NLS;
194 nuclear localisation signal, F; forward primer, R; reverse primer. (B) Western blot of X-Cas9Y tissues,
195 wildtype and *R26*-Cas9 (Cas9+). L; liver, K; kidney, S; spleen, T; testis. Expected size: 158 kDa
196 (CAS9) and 37 kDa (GAPDH). (C) eGFP expression in female XpCas9X embryos, with different
197 lineages delineated by lines. E2.5 (n=22), E3.5 (n=4), E4.5 (n=3), sb; 25 μ M. E11.5 (n=10) sb; 100
198 μ M. (D) Flow cytometry from XpCas9X embryos (n=9) and XCas9Y embryos (n=2). (E) Schematic of
199 the mating strategies, ctrl; control, exp; experimental. (F) Sex genotyping of pups born from control or
200 experimental mating. Number of pups genotyped in brackets. P value: Chi-squared test, assuming 1:1
201 ratio of 'expected' offspring if co-inheritance of CRISPR-Cas9 alleles was not lethal. (G) Litter size.
202 Number of litters in brackets. P value: Mann-Whitney test.

203

204 X-Cas9Y F2 transgenic males were viable and fertile, with testis weights comparable to
205 wildtype males (102.3mg versus 104.2mg; 11 weeks old; p=0.67 Mann-Whitney test). We
206 established by Southern blotting and digital droplet qPCR that the construct was present as
207 a single copy (Supp Fig 2C;D). Expression of eGFP was observed in adult organs by
208 fluorescence microscopy (Supp Fig 2E) and qPCR (Supp Fig 2F), and Cas9 expression was
209 confirmed in adult organs by western blotting (Fig 3B).

210

211 Before assessing whether a paternally-inherited X-Cas9 (XpCas9) transgene caused
212 lethality in daughters, we examined its expression in female (XpCas9X) pre-implantation
213 embryos. In mice, the paternal X chromosome is initially active, before being silenced from
214 the 4-8 cell stage by imprinted X-chromosome inactivation (XCI)^{26,27}. Imprinted XCI is
215 retained in the trophectoderm, but is reversed in the epiblast, after which random XCI
216 ensues, giving rise to mosaic X-chromosome expression patterns^{26,27}. Expression of eGFP
217 recapitulated the known dynamics of paternal X expression, suggesting that the X-Cas9
218 transgene was subject to imprinted XCI. At E2.5 (8-16 cell stage) eGFP expression was
219 observed (Fig 3C). At E3.5 (blastocyst stage), expression was reduced in the
220 trophectoderm, where imprinted XCI is sustained, but was higher in cells of the inner cell
221 mass, where X-chromosome reactivation takes place (Fig 3C). The reduction in
222 trophectoderm eGFP expression was likely a result of imprinted XCI, because it was not
223 observed in control female embryos carrying the transgene on the maternal X chromosome,
224 which is not subject to XCI (Supp Fig 2G). During later development in XpCas9X embryos,
225 silencing of the X-Cas9 transgene persisted in extraembryonic lineages, with eGFP
226 undetectable in the trophectoderm at E4.5 and the placenta at E11.5 (Fig 3C). However,
227 expression increased in the presumptive epiblast at E4.5, and persisted in the embryo
228 proper at E11.5 (Fig 3C).

229

230 To determine if the X-Cas9 transgene was also subject to random XCI, we performed flow
231 cytometry on cells derived from post-implantation XpCas9X female embryos, with XCas9Y
232 male embryos as controls. If X-Cas9 was subject to random XCI, approximately half the
233 XpCas9X cells should express eGFP, but if it escaped random XCI, all XpCas9X cells
234 should express eGFP. In XpCas9X embryos, 47.3% of cells were eGFP-positive and 52.7%
235 were eGFP-negative (n=9 embryos; Fig 3D). In male XCas9Y embryos (n=2), 86% of cells
236 were eGFP positive (Fig 3D). The X-Cas9 transgene is therefore subject to random XCI.

237

238 To assess whether we could generate single-sex litters, X-Cas9Y hemizygous males were
239 mated with either wildtype females (control mating) or homozygous sgRNA^{Top1} females
240 (experimental matings; Fig 3E). From control matings, male and female pups were
241 recovered in approximately equal proportions (60M:52F; n=112 pups; non-significant
242 deviation from Mendelian sex ratio, p=0.57; Fig 3F). In contrast, from the experimental
243 mating, there was a striking sex skew, with 99% of pups being male (n=91/92, statistically
244 significant deviation from Mendelian sex ratio, p<1x10⁻¹⁵, Fig 3F). Genotyping and low-pass
245 whole genome sequencing revealed that the single, exceptional female was XO, a genotype
246 that arises spontaneously in our mouse colony at a frequency of approximately 1:100
247 females. Intriguingly, this XO female had inherited a maternal X chromosome but no
248 paternal X chromosome, and thus lacked the X-Cas9 transgene necessary to induce
249 lethality (Supp Fig 2H). We conclude that co-inheritance of the X-Cas9 and sgRNA^{Top1}
250 induces lethality in all XX females.

251
252 Given the loss of female embryos, we predicted that the litter size in our experimental
253 matings would be 50% of that in control matings. Intriguingly however, while the mean litter
254 size was indeed reduced (4.6 versus 7.5, respectively, p=8x10⁻⁴; Fig 3G), it was 61% rather
255 than 50% of controls. These findings, which were reminiscent of those observed in our R26-
256 Cas9 and sgRNA^{Top1} experimental matings (Fig 2J), again reveal the existence of a
257 compensatory mechanism operating in the pre-implantation period to increase embryo
258 number.

259

260

261 **Discussion**

262 In this study we show that co-inheritance of a paternal X-linked Cas9 transgene and a
263 maternal *Top1*-targeting sgRNA induces embryonic lethality in XX females, thereby
264 generating male-only litters.

265

266 The CRISPR-Cas9 bicomponent system we describe here is superior to some pre-existing
267 methodologies to generate single-sex litters. One of these methods is CRISPR-Cas9 gene
268 drive. First trialled in mosquito models by targeting the female-specific *doublesex* splice
269 variant, female offspring showed an intersex phenotype and were sterile, causing population
270 collapse²⁸. This study was expanded to a sex distorter gene drive technology, whereby a
271 synthetic gene drive was designed to spread the X-shredding I-Ppol endonuclease at above-
272 Mendelian frequency, resulting in male-only populations²⁹. However, proof-of-principle
273 CRISPR-Cas9 gene drives performed in the mouse remain largely inefficient³⁰. We propose
274 that our system has greater functionality for generating all-male litters in mammalian models.

275

276 Our proof-of-principle approach could be readily translated to the laboratory mouse model.
277 The X-linked Cas9 and autosome-linked sgRNA^{Top1} transgenic stocks can be maintained as
278 mono-allelic lines and bred when necessary to generate single-sex litters. Conversely to
279 gene drive CRISPR-Cas9 strategies, the risk of mutational resistance at the sgRNA-target
280 occurring is not problematic, because the mono-transgenic lines are maintained
281 independently and only combined when necessary. The production of single-sex litters using
282 these transgenic lines for studies such as behaviour or reproductive science, will
283 immediately reduce the production of the unrequired sex, transforming laboratory
284 approaches to the 3Rs. The *Top1* sgRNA sequence is highly conserved between mice and
285 many agricultural species and may therefore be adapted for use in the agricultural industry.
286 Moreover, the method could be easily modified, with Cas9 integrated on the Y chromosome
287 rather than the X chromosome. This alternative approach would permit the production of all-
288 female litters. In our strategy, the sex-linked Cas9 transgene is lost in the embryonic-lethal
289 population, producing surviving offspring that carry only the sgRNA. This approach may be
290 preferable to that employed by Yosef et al¹² in which the surviving sex carry and express a
291 potentially harmful Cas9 endonuclease transgene.

292

293 Our data reveal that in mice a compensation mechanism operates during pre-implantation
294 development that increases the number of pups by approximately one per litter. We
295 speculate that this compensation is possible because there is an overproduction of fertilised
296 zygotes compared with uterine capacity³¹. Thus, loss of embryos prior to implantation could
297 be buffered by implantation of embryos from this excess pool. This reveals an unexpected
298 benefit of our targeting system that could increase the number of the desired sex over that
299 derived from control matings

300

301 Finally, our CRISPR-Cas9 bicomponent system could be applied to other scenarios in which
302 mutations are required in a sex-specific manner. Many harmful mutations, e.g. those causing
303 cancer, are assayed preferentially in one biologically-relevant sex^{32,33}, yet the unrequired sex
304 also suffers the ill effects of this mutation. Our technology would reduce suffering in the
305 unrequired sex, in line with the 3Rs.

306

307

308 **Methods**

309 **Maintenance of mouse lines**

310 All mouse lines were maintained with appropriate care according to the United Kingdom
311 Animal Scientific Procedures Act (1986), UK Home Office, and the ethics guidelines of the
312 Francis Crick Institute. All mouse lines used were strain *Mus musculus*. All wildtype mice
313 used were C57BL/6J. X-Cas9 transgenic mice were generated on a C57BL/6N mESC
314 background, and then maintained on a C57BL/6J background, after generating a stable,
315 germline transmitting line. The *H11*-attPX3 mice were backcrossed to at least seven
316 generations of C57BL/6J by Charles River, prior to purchase for zygotic microinjection. The
317 *H11*-sgRNA^{Top1} mouse line was also maintained on a C57BL/6J background. Litter mate
318 controls were used where possible. All mice were kept in IVC cages, with constant access to
319 food, automatic watering systems, and air management systems which control air flow,

320 temperature and humidity. The mouse lines were checked on a daily basis, and were
321 maintained in specific pathogen free (SPF) conditions.

322

323 **Embryonic stem cell derivation and maintenance**

324 All mESC lines were maintained in 2i/LIF conditions on laminin-coated tissue culture grade
325 plasticware³⁴. To derive mESCs, embryos were collected at E3.5 by flushing the uterus with
326 Follicle Holding Medium (FHM) from timed mating 6-8 week old females. Embryos were
327 placed in individual wells of a 24-well plate with 500ul of 2i/LIF. Outgrowths were dissociated
328 and mESCs seeded into a 4-well plate in 2i/LIF. mESCs were passaged by removing 2i/LIF,
329 washing with PBS, followed by trypsinisation with TrypLE (Gibco), quenching with 2i/LIF and
330 pipetting into a single cell suspension. Following centrifugation at 200 g for 3 mins, mESCs
331 were resuspended and seeded in new plates³⁵.

332

333 **Fluorescence activated cell sorting (FACS)**

334 Transfected mESCs were trypsinised using TrypLE into a single cell suspension, centrifuged
335 at 200 g for 3 mins, and resuspended in sorting media (2% FBS in 2i/LIF). mESCS were
336 filtered (40 μ M) and sorted using the Aria Fusion Flow Cytometer with a 100 μ M nozzle.
337 mESCS were firstly gated on forward and side scatter properties, followed by gating on
338 either eGFP+ single-positive only or eGFP+mCherry+ double positive expression. The
339 eGFP-only population acted as the CRISPR-Cas9 negative control.

340

341 **Embryo dissociation and flow cytometry**

342 E11.5-E12.5 embryos were dissociated and prepared for flow cytometry according to
343 previously published protocols³⁶. Dissociated cells were filtered (40 μ M) and maintained on
344 ice in sterile PBS with 2% FBS prior to flow cytometry and analysis on the MACSQuant VYB.
345 Single cells were analysed on forward and side scatter properties, followed by gating on
346 GFP expression.

347

348 **sgRNA design**

349 All sgRNAs were designed using publicly available *in silico* tools³⁷. Single sgRNAs with a
350 predicted high on-target activity and low off-target activity were selected. Oligonucleotides
351 with BbsI overhangs were annealed and ligated into the relevant vector, according to
352 published protocols³⁸.

353

354 **Generating the pLethal/TARGATT mouse line**

355 The pLethal targeting vector was generated using pX333 (addgene #64073)³⁹; replacing the
356 Cas9 cassette with an mCherry reporter. Individual sgRNAs were cloned into pLethal using
357 BbsI³⁸. The knock-in targeting vector was generated by cloning the pLethal U6-sgRNA
358 cassettes and pCbh-mCherry reporter into the TARGATT MCS vector #3^{19,20} (Applied
359 StemCell). The TARGATT vector was microinjected into attPx3 embryo pronuclei with φC31
360 integrase, and embryos were surgically transferred into pseudopregnant females. Founders
361 were screened by *in vivo* fluorescence imaging at 3-4 days post birth using the IVIS Lumina
362 XR (Caliper LifeSciences) with “Living Image 4.4” software, excitation filter at 535nm and
363 emission filter dsRed.

364

365 **Generating the X-Cas9 mouse line**

366 X-Cas9 targeting vectors were generated using the pX330 (addgene #42230)⁴⁰ plasmid
367 backbone, containing a pCAG driven 3X FLAG-NLS-Cas9-T2A-eGFP construct. X
368 chromosome homology arms, amplified from C57BL/6J DNA, and a LoxP-flanked pPGK-
369 Neomycin cassette were inserted using directional cloning or Gibson Assembly (NEBuilder
370 HiFi DNA Assembly Cloning Kit). C57BL/6N mESCs were maintained in serum/LIF
371 conditions and transfected with X-Cas9 targeting vector plasmid and an sgRNA targeting
372 *Hprt* exon 2 using lipofectamine 2000, according to manufacturer’s instructions. Targeted
373 mESC clones were selected by G418 (270 mg/ml) for 8-10 days. Surviving clones were
374 picked into a 96-well plate and expanded. Expanded mESC lines were lysed by the addition

375 of Bradley Lysis buffer (1 M Tris-HCl, 0.5 M EDTA, 10% SDS, 5M NaCl) and proteinase K (1
376 mg/ml) digestion. DNA was precipitated by the addition of ice cold EtOH/NaCl (100% EtOH,
377 5M NaCl). PCR genotyping was performed on extracted DNA in a total volume of 25 µl (12.5
378 µl NEB Q5 High-Fidelity Master Mix, 10 mM each primer), utilising primer forward and
379 reverse pairs aligning to the endogenous *Hprt* locus and to the transgene construct.
380 Resultant PCR amplicons were analysed by gel electrophoresis for corresponding to the
381 expected amplicon size, and by Sanger sequencing. Targeted mESC clones were injected
382 into albino C57BL/6J blastocysts, surgically transferred into pseudopregnant females, and
383 left to litter. X-Cas9 mESC contribution to founders was assessed by coat colour. High
384 contribution transgenic males were bred with C57BL/6 albino females, and offspring with
385 black coat colour were genotyped for the transgene, to confirm germline transmission.
386

387 **Genotyping offspring from breeding CRISPR-Cas9 stocks**

388 Pups born from the control and/or experimental breeding programmes were genotyped
389 using assays for the Cas9-eGFP transgene, the mCherry transgene, and sexed by the
390 presence of Y-linked gene *Sry*. X-Cas9 hemizygous versus homozygous females were
391 distinguished by genotyping for the *Hprt* exon 2 deletion. The XmO female generated from
392 breeding X-Cas9 males with *H11-sgRNA*^{Top1} homozygous females, was characterised by
393 DNA extraction from ear biopsy tissue; X-chromosome and transgene copy number
394 analyses, and low-pass whole genome Nanopore sequencing.
395

396 **Primer design**

397 All primer pairs used in this study were designed using the publicly available tool Primer3
398 (<http://bioinfo.ut.ee/primer3/>). To amplify the target *Top1* exons for sequencing,
399 oligonucleotide forward and reverse primers were edited to contain MiSeq adaptor
400 sequences.
401

402 **DNA extraction, MiSeq high throughput sequencing and indel analysis**

403 Samples, e.g. mESCs, embryos or tissue, were lysed by the addition of lysis buffer (10X KT
404 buffer, 10% NP40) with proteinase K (1 mg/ml) digestion. Correct amplification of *Top1*
405 exons was confirmed by gel electrophoresis. The PCR amplicons were purified using solid-
406 phase reversible immobilisation beads⁴¹, and underwent library preparation (Illumina
407 Nextera Index Kit V2), following by a second purification using Agencourt AMPure beads.
408 The purified DNA library was quantified, normalised and pooled prior to sequencing on the
409 Illumina MiSeq platform to generate paired-end (2 x 250 bp) sequencing reads. Resultant
410 reads were demultiplexed and fastq files were collapsed using FastX Toolkit (v0.0.13;
411 https://github.com/agordon/fastx_toolkit). To assess the rate of indel-production by CRISPR-
412 Cas9, the reads were aligned to the mouse reference genome mm10 with the Burrows-
413 Wheeler Alignment tool (BWA, v0.7.170)⁴² using the *mem* algorithm with default settings and
414 then analysed using the R package CrispRVariants (v1.14.0)⁴³. Scripts are deposited on
415 github (<https://github.com/jzohren/crispr-miseq>).

416

417 **Low-pass whole genome sequencing and low-pass whole genome Nanopore
418 sequencing**

419 DNA was extracted by the phenol-chloroform method, as described previously⁴⁴. Samples
420 underwent library preparation using the Illumina Nextera Flex protocol, according to
421 manufacturer's instructions. Libraries were sequenced to achieve approximately 0.1X
422 coverage per sample. Low-pass whole genome sequencing reads were aligned to *mm10*
423 using BWA, with the number of reads mapped extracted from the data. For Nanopore
424 sequencing, DNA was extracted by the phenol-chloroform method. Samples were prepared
425 according to the Oxford Nanopore Technologies (ONT) SQK-LSK109 library preparation
426 protocol. Libraries were sequenced on a FLO-MIN106D flow cell on the MinION. Basecalling
427 was performed using ONT-Guppy v3.2, and data was mapped using minimap2⁴⁵ and
428 SAMtools⁴⁶.

429

430 **Quantitative PCR analysis**

431 RNA was extracted using TRI Reagent (Sigma-Aldrich), according to manufacturer's
432 protocol. cDNA was synthesised using the Thermo Scientific First Strand cDNA Synthesis
433 Kit, according to manufacturer's protocol. Samples were analysed in triplicate, in 10 μ l total
434 volume (5 μ l TaqMan 2X Universal PCR Master Mix, 0.5 μ l TaqMan probe, 2.5 μ l nuclease-
435 free water, 2 μ l cDNA). Resulting ddCt values were calculated by normalising to *Gapdh*
436 expression from C57BL/6 samples.

437

438 **Digital Droplet qPCR**

439 DNA was extracted by phenol-chloroform precipitation. Digital droplet qPCR (ddPCR)
440 reactions were performed in 20 μ l total volume with 20 ng DNA, according to manufacturer's
441 instructions (Bio Rad ddPCR Supermix for Probes). The ddPCR was performed in a Bio Rad
442 PCR machine, and analysed using QuantSoft.

443

444 **Protein extraction and western blot**

445 Protein was extracted from samples using 1X RIPA buffer with additional phosphatase and
446 protease inhibitors, and PMSF. Upon adding protein extraction buffer to samples, samples
447 were kept on ice for 30 minutes, following centrifugation at 8,000 rpm at 4 °C for 10 minutes.
448 Supernatant was collected and protein quantified using a bicinchoninic acid (BCA) assay
449 and analysed using Kaleido 2.0. Proteins were separated using PAGE system and
450 transferred to 0.45 μ m pore Nitrocellulose membrane (Amersham Protran). Membranes
451 were blocked with 5% skimmed milk/TBST for 1h at room temperature and incubated with
452 primary antibodies overnight at 4°C. CAS9 and TOP1 antibodies were used at 1:500, α -
453 Tubulin at 1:2000, GAPDH at 1:3000 dilutions. Appropriate secondary antibodies conjugated
454 to HRP were used and signals were detected using Clarity Western ECL Substrate (Bio-
455 Rad).

456

457 **Southern blot**

458 DNA was extracted by phenol-chloroform precipitation, digested using appropriate restriction
459 enzymes, and phenol-chloroform precipitation repeated. DNA was loaded onto a 1%
460 agarose gel and gel electrophoresis run overnight at 29V, followed by addition of
461 bromophenol blue, and further running at 50V for 2-3 hours. Following gel electrophoresis,
462 the agarose gel was treated by washing in depurination (0.25M HCl), denaturation (1.5M
463 NaCl, 0.5M NaOH) and neutralisation (1.5M NaCl, 0.5M Tris pH 7.5) buffers and overnight
464 blotting onto a positively-charged nylon membrane. After blotting, the DNA was fixed by UV
465 crosslinking (1200U joules, 2 minutes) and drying. The membrane then underwent
466 hybridisation to the Neomycin probe, produced according to manufacturer's instructions
467 (Roche DIG probe synthesis kit) and incubation overnight in a hybridisation oven at the
468 optimal temperature (48 °C for Neomycin). Post-hybridisation, the membrane was washed
469 (2X SSC, 0.1% SDS) at room temperature, and at 65 °C (0.1X SSC, 0.1% SDS). Following
470 this, the membrane was blocked with blocking buffer and incubated with anti-DIG antibody
471 (Roche detection kit), washed (maleic acid, 0.3% tween-20), and exposed to CSPD in
472 detection buffer under darkness before film development.

473

474 **Acknowledgements**

475 The authors thank the Francis Crick Institute Genetic Modification Service (GeMS), Flow
476 Cytometry, Thomas Snoeks (*In Vivo Imaging*), Biological Research and Advanced
477 Sequencing facilities for their expertise; Tatyana Nesterova and Neil Brockdorff (University
478 of Oxford) for stem cell targeting advice, and members of the J.M.A.T lab for comments and
479 discussion on the manuscript.

480

481 **Author Contributions**

482 J.M.A.T and P.J.I.E conceived the project. J.M.A.T and C.D. designed the project. C.D.
483 performed the molecular biology, Southern blotting, embryonic stem cell experiments,

484 embryo experiments, fluorescence imaging, mouse colony genotyping and phenotyping, and
485 wrote the manuscript. V.M. performed the western blotting. J.Z. performed bioinformatic
486 analysis. D.M.S performed the low-pass Nanopore whole genome sequencing, and provided
487 advice on experimental design . O.A.O. managed mouse colonies and performed
488 genotyping.

489

490 **Competing Interests**

491 The authors have no competing interests.

492

493 **Funding**

494 Work in the Turner lab is supported by the European Research Council (CoG 647971) and
495 the Francis Crick Institute, which receives its core funding from Cancer Research UK
496 (FC001193), UK Medical Research Council (FC001193) and Wellcome Trust (FC001193).
497 The funders had no role in study design, data collection and analysis, decision to publish, or
498 preparation of the manuscript.

499

500

501 **References**

- 502 1 Russell, W. M. S. & Burch, R. L. *The principles of humane experimental technique*.
503 (London: Methuen & Co. Ltd., 1959).
- 504 2 Douglas, C. & Turner, J. M. A. Advances and challenges in genetic technologies to
505 produce single-sex litters. *PLoS Genet* **16**, e1008898,
506 doi:10.1371/journal.pgen.1008898 (2020).
- 507 3 Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. *Neurosci
508 Biobehav Rev* **35**, 565-572, doi:10.1016/j.neubiorev.2010.07.002 (2011).
- 509 4 Shansky, R. M. Are hormones a “female problem” for animal research? *Science* **364**,
510 825, doi:10.1126/science.aaw7570 (2019).
- 511 5 Shansky, R. M. & Woolley, C. S. Considering Sex as a Biological Variable Will Be
512 Valuable for Neuroscience Research. *The Journal of Neuroscience* **36**, 11817-11822,
513 doi:10.1523/jneurosci.1390-16.2016 (2016).
- 514 6 Knipling, E. F. Possibilities of Insect Control or Eradication Through the Use of
515 Sexually Sterile Males1. *Journal of Economic Entomology* **48**, 459-462,
516 doi:10.1093/jee/48.4.459 (1955).

517 7 Just, W. *et al.* Absence of Sry in species of the vole *Ellobius*. *Nature Genetics* **11**, 117-
518 118, doi:10.1038/ng1095-117 (1995).

519 8 Soullier, S., Hanni, C., Catzeffis, F., Berta, P. & Laudet, V. Male sex determination in
520 the spiny rat *Tokudaia osimensis* (Rodentia: Muridae) is not Sry dependent.
Mammalian Genome **9**, 590-592, doi:10.1007/s003359900823 (1998).

521 9 Sutou, S., Mitsui, Y. & Tsuchiya, K. Sex determination without the Y Chromosome in
522 two Japanese rodents *Tokudaia osimensis osimensis* and *Tokudaia osimensis* spp.
Mammalian Genome **12**, 17-21, doi:10.1007/s003350010228 (2001).

523 10 Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome
524 engineering with CRISPR-Cas9. *Science* **346**, 1258096, doi:10.1126/science.1258096
(2014).

525 11 Zhang, Z. *et al.* Silkworm genetic sexing through W chromosome-linked, targeted
526 gene integration. *Proc Natl Acad Sci U S A* **115**, 8752-8756,
527 doi:10.1073/pnas.1810945115 (2018).

528 12 Yosef, I. *et al.* A genetic system for biasing the sex ratio in mice. *EMBO Rep*, e48269,
529 doi:10.15252/embr.201948269 (2019).

530 13 Platt, R. J. *et al.* CRISPR-Cas9 knockin mice for genome editing and cancer modeling.
531 *Cell* **159**, 440-455, doi:10.1016/j.cell.2014.09.014 (2014).

532 14 Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their
533 poisoning by anticancer and antibacterial drugs. *Chem Biol* **17**, 421-433,
534 doi:10.1016/j.chembiol.2010.04.012 (2010).

535 15 Kobayashi, M. *et al.* Decrease in topoisomerase I is responsible for activation-
536 induced cytidine deaminase (AID)-dependent somatic hypermutation. *Proc Natl
537 Acad Sci U S A* **108**, 19305-19310, doi:10.1073/pnas.1114522108 (2011).

538 16 Morham, S. G., Kluckman, K. D., Voulomanos, N. & Smithies, O. Targeted disruption
539 of the mouse topoisomerase I gene by camptothecin selection. *Mol Cell Biol* **16**,
540 6804-6809 (1996).

541 17 Wright, C. M., van der Merwe, M., DeBrot, A. H. & Bjornsti, M. A. DNA
542 topoisomerase I domain interactions impact enzyme activity and sensitivity to
543 camptothecin. *J Biol Chem* **290**, 12068-12078, doi:10.1074/jbc.M114.635078 (2015).

544 18 Chakrabarti, A. M. *et al.* Target-Specific Precision of CRISPR-Mediated Genome
545 Editing. *Mol Cell* **73**, 699-713 e696, doi:10.1016/j.molcel.2018.11.031 (2019).

546 19 Tasic, B. *et al.* Site-specific integrase-mediated transgenesis in mice via pronuclear
547 injection. *Proc Natl Acad Sci U S A* **108**, 7902-7907, doi:10.1073/pnas.1019507108
(2011).

548 20 Zhu, F. *et al.* DICE, an efficient system for iterative genomic editing in human
549 pluripotent stem cells. *Nucleic Acids Res* **42**, e34, doi:10.1093/nar/gkt1290 (2014).

550 21 Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-
551 Nyhan) mouse embryos derived from germline colonization by cultured cells. *Nature*
552 **326**, 292-295, doi:10.1038/326292a0 (1987).

553 22 Jinnah, H. A., Gage, F. H. & Friedmann, T. Animal models of Lesch-Nyhan syndrome.
554 *Brain Research Bulletin* **25**, 467-475, doi:[https://doi.org/10.1016/0361-9230\(90\)90239-V](https://doi.org/10.1016/0361-9230(90)90239-V) (1990).

555 23 Koller, B. H. *et al.* Germ-line transmission of a planned alteration made in a
556 hypoxanthine phosphoribosyltransferase gene by homologous recombination in
557 embryonic stem cells. *Proceedings of the National Academy of Sciences of the United
558 States of America* **86**, 8927-8931, doi:10.1073/pnas.86.22.8927 (1989).

564 24 Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. J. A potential animal model for
565 Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. *Nature*
566 **326**, 295-298, doi:10.1038/326295a0 (1987).

567 25 Wells, D. *et al.* Clinical utilisation of a rapid low-pass whole genome sequencing
568 technique for the diagnosis of aneuploidy in human embryos prior to implantation. *J*
569 *Med Genet* **51**, 553-562, doi:10.1136/jmedgenet-2014-102497 (2014).

570 26 Mak, W. *et al.* Reactivation of the paternal X chromosome in early mouse embryos.
571 *Science* **303**, 666-669, doi:10.1126/science.1092674 (2004).

572 27 Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of
573 imprinted X inactivation during early mouse development. *Science* **303**, 644-649,
574 doi:10.1126/science.1092727 (2004).

575 28 Kyrou, K. *et al.* A CRISPR–Cas9 gene drive targeting doublesex causes complete
576 population suppression in caged *Anopheles gambiae* mosquitoes. *Nature*
577 *Biotechnology* **36**, 1062-1066, doi:10.1038/nbt.4245 (2018).

578 29 Simoni, A. *et al.* A male-biased sex-distorter gene drive for the human malaria vector
579 *Anopheles gambiae*. *Nature Biotechnology*, doi:10.1038/s41587-020-0508-1 (2020).

580 30 Grunwald, H. A. *et al.* Super-Mendelian inheritance mediated by CRISPR-Cas9 in the
581 female mouse germline. *Nature* **566**, 105-109, doi:10.1038/s41586-019-0875-2
582 (2019).

583 31 Wimsatt, W. A. Some Comparative Aspects of Implantation. *Biology of Reproduction*
584 **12**, 1-40, doi:10.1095/biolreprod12.1.1 (1975).

585 32 Hutchinson, J. N. & Muller, W. J. Transgenic mouse models of human breast cancer.
586 *Oncogene* **19**, 6130-6137, doi:10.1038/sj.onc.1203970 (2000).

587 33 Sakamoto, K., Schmidt, J. W. & Wagner, K.-U. Mouse models of breast cancer.
588 *Methods Mol Biol* **1267**, 47-71, doi:10.1007/978-1-4939-2297-0_3 (2015).

589 34 Mulas, C. *et al.* Correction: Defined conditions for propagation and manipulation of
590 mouse embryonic stem cells (doi:10.1242/dev.173146). *Development* **146**,
591 doi:10.1242/dev.178970 (2019).

592 35 Hayashi, K. & Saitou, M. Generation of eggs from mouse embryonic stem cells and
593 induced pluripotent stem cells. *Nature Protocols* **8**, 1513,
594 doi:10.1038/nprot.2013.090 (2013).

595 36 Dupont, C., Loos, F., Kong, A. S. J. & Gribnau, J. FGF treatment of host embryos
596 injected with ES cells increases rates of chimaerism. *Transgenic Res* **26**, 237-246,
597 doi:10.1007/s11248-016-9997-6 (2017).

598 37 Haeussler, M. *et al.* Evaluation of off-target and on-target scoring algorithms and
599 integration into the guide RNA selection tool CRISPOR. *Genome Biology* **17**, 148,
600 doi:10.1186/s13059-016-1012-2 (2016).

601 38 Ran, F. A. *et al.* Genome engineering using the CRISPR-Cas9 system. *Nat Protoc* **8**,
602 2281-2308, doi:10.1038/nprot.2013.143 (2013).

603 39 Maddalo, D. *et al.* In vivo engineering of oncogenic chromosomal rearrangements
604 with the CRISPR/Cas9 system. *Nature* **516**, 423-427, doi:10.1038/nature13902
605 (2014).

606 40 Cong, L. *et al.* Multiplex genome engineering using CRISPR/Cas systems. *Science* **339**,
607 819-823, doi:10.1126/science.1231143 (2013).

608 41 DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization
609 for the isolation of PCR products. *Nucleic acids research* **23**, 4742-4743,
610 doi:10.1093/nar/23.22.4742 (1995).

611 42 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
612 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
613 43 Lindsay, H. *et al.* CrispRVariants charts the mutation spectrum of genome
614 engineering experiments. *Nat Biotechnol* **34**, 701-702, doi:10.1038/nbt.3628 (2016).
615 44 Russell, J. S. a. D. Molecular Cloning: A Laboratory Manual. *Cold Spring Harbor, NY:*
616 *Cold Spring Harbor Laboratory Press. 3rd edition* (2001).
617 45 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
618 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).
619 46 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
620 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
621