

1 **Lamin A/C functions independently from mechanical signaling during adipogenesis**

2

3 Matthew Goelzer¹, Amel Dudakovic², Melis Olcum^{3, 4}, Buer Sen³, Engin Ozcivici⁴, Janet Rubin³,
4 Andre J van Wijnen², Gunes Uzer¹ [†]

5 ¹Boise State University, ²Mayo Clinic, ³University of North Carolina Chapel Hill, ⁴Izmir Institute of
6 Technology

7

8 **Word count:** 5076

9

10 **Key Words:** Lamin A/C, LINC, Nucleoskeleton, Nuclear Envelope, Adipogenesis, Mechanical
11 Signals, Mesenchymal Stem Cells

12

13 Funding support: NIH AG059923 (GU), NSF 1929188 (GU), P20GM109095 (GU),
14 R01AR049069 (AJvW), AR066616 (JR), Career Development Award in Orthopedics Research
15 (AD), The Scientific and Technological Research Council of Turkey 2214-A (MO)

16

17 ***Corresponding author:**

18 Gunes Uzer PhD

19 Boise State University

20 Department of Mechanical & Biomedical Engineering

21 1910 University Drive, MS-2085

22 Boise, ID 83725-2085

23 Ph. (208) 426-4461

24 **Email:** gunesuizer@boisestate.edu

25 **Abstract**

26 Mesenchymal stem cells (MSC) maintain the musculoskeletal system by differentiating into
27 multiple cell types including osteocytes and adipocytes. Mechanical signals, including strain and
28 low intensity vibration (LIV), are important regulators of MSC differentiation. Lamin A/C is a vital
29 protein for nuclear architecture that supports chromatin organization, as well as mechanical
30 integrity and mechano-sensitivity of the nucleus in MSCs. Here, we investigated whether Lamin
31 A/C and mechano-responsiveness are functionally coupled during adipogenesis. Lamin depletion
32 in MSCs using siRNA increased nuclear area, height and volume and decreased circularity and
33 stiffness, while phosphorylation of focal adhesions and dynamic substrate strain in response to
34 LIV remained intact. Lamin A/C depletion decelerates adipogenesis as reflected by delayed
35 appearance of key biomarkers (e.g., adiponectin/ADIPOQ). Based on RNA-seq data, reduced
36 Lamin A/C levels decrease the activation of the adipocyte transcriptome that is normally observed
37 in response to adipogenic cues mediating differentiation of MSCs. Mechanical stimulation via daily
38 LIV application reduced the expression levels of ADIPOQ in both control and Lamin A/C depleted
39 cells. Yet, treatment with LIV did not induce major transcriptome changes in either control or
40 Lamin A/C depleted MSCs, suggesting that the biological effects of LIV on adipogenesis may not
41 occur at the transcriptional level. We conclude that while Lamin A/C activation is essential for
42 normal adipogenesis, it is dispensible for activation of focal adhesions by dynamic vibration
43 induced mechanical signals.

44

45 **Introduction**

46 As one of the Lamin family proteins that form the nucleoskeleton, Lamin A/C (gene symbol:
47 LMNA) has a vital role in providing the mechanical and structural integrity of the cell nucleus [1-
48 3]. Mutations in LMNA lead to premature aging in Hutchinson Gilford progeria syndrome [2-4],
49 also known as progeria [1-3]. This mutation in LMNA causes alterations at histone methylation
50 sites in heterochromatin [3,4]. In pluripotent embryonic stem cells (ESCs), Lamin A/C protein is

51 expressed at low basal levels in undifferentiated cells, but expression is elevated after
52 differentiation into ESC derivatives [4-6]. Because Lamin A/C supports the formation of
53 transcriptionally suppressed chromatin (i.e., heterochromatin), its low levels in ESCs is consistent
54 with absence of heterochromatin in ESC cells [7]. In contrast, the nucleoskeleton protein Lamin
55 B (encoded by the LMNB1 and LMNB2 genes) was found to be present both before and after
56 differentiation. These studies collectively indicate that Lamin A/C plays a specific role during the
57 differentiation of ESCs.

58

59 Mechanical and structural attributes of the cell and nucleus change during Lamin A/C loss [8].
60 When Lamin A/C is depleted, cellular elasticity and viscosity of the cytoplasm decreases [9]. Such
61 a change in mechanical properties affects the response to external forces: the nucleus of Lamin
62 A/C deficient cells display higher displacement magnitude than that of wild type cells in response
63 to biaxial strain, indicating a lower nuclear stiffness [10]. In contrast, nuclei containing the
64 progeroid farnesylated Lamin A/C (i.e. progerin) show increased stiffness when visualized under
65 strain [11]. Both loss and mutation of Lamin A/C are associated with irregular nuclear morphology,
66 including blebbing and loss of circularity [12, 13]. Additionally, because Lamin A/C is located at
67 the inner nuclear membrane, it acts as an anchoring site for chromatin. Depletion of Lamin A/C
68 has been shown to affect both the dynamics and the organization of the chromatin [14, 15], and
69 may secondarily play a role in chromatin mediated mechanical properties of the cell nuclei [16].
70 Therefore, Lamin A/C plays a vital role in regulating cellular and nuclear mechanical structure and
71 shape.

72

73 Mesenchymal Stem/Stromal Cells (MSCs) are tissue resident multipotent cells that can
74 differentiate into musculoskeletal lineages including osteoblasts and adipocytes [17]. MSCs
75 replace and rejuvenate skeletal and connective tissues in response to environmental mechanical
76 demand, and their differentiation program is responsive to mechanical stimuli [18-21]. For

77 example, application of external mechanical challenge in the form of LIV over 14-days increases
78 proliferation and osteogenic differentiation markers and subsequent mineralization of MSC
79 cultures *in vitro* [22-24]. In contrast to ESCs, MSCs are somatic cells that have the potential to
80 differentiate into distinct mesenchymal lineages and express Lamin A/C in their native state. In
81 this way, depletion of Lamin A/C in MSCs severely impedes osteoblast differentiation. MSCs
82 treated with a siRNA targeting LMNA showed a drastic reduction in osteoblast differentiation
83 transcription factors such as OCN, OSX, and BSP, and an increase in fat droplet formation when
84 induced to differentiate into adipocytes [25]. Mutations of Lamin A/C, specifically the
85 lipodystrophy-associated LMNA p.R482W mutation, can also serve to slow adipogenic
86 differentiation in cells [26]. Additionally, overexpression of Lamin A/C has been shown to induce
87 osteogenesis while inhibiting adipogenesis in human MSCs [27]. Mouse studies have shown that
88 *Lmna* *-/-* mice have a significant reduction in bone mass compared to WT mice reflecting reduced
89 osteoblast numbers [28]. While these findings suggest a role for Lamin A/C in regulating the
90 differentiated state of MSCs, whether Lamin A/C depletion contributes to mechanical regulation
91 of MSC differentiation remains insufficiently explored.

92
93 An important signaling node for mechanical control of MSC are focal adhesions, macromolecule
94 protein complexes located on the cellular membrane, that connect the cytoskeleton to the
95 extracellular matrix (ECM) where the cell is anchored to the extracellular environment through
96 integrins [29]. During dynamic mechanical stimulus, integrin engagement is regulated by
97 activation of Focal Adhesion Kinase (FAK) at tyrosine 397 residue [30]. We have reported both
98 LIV and substrate strain lead to FAK phosphorylation at tyrosine 397[31]. This activation of FAK
99 at focal adhesions both recruits signaling molecules that lead to cytoskeletal restructuring and
100 activates concomitant mechanosignaling events such as the Akt/β-Catenin (AKT1-CTNNB1)
101 pathway [32]. Application of mechanical stimuli with strain, fluid flow, and LIV generates
102 concomitant activation of β-Catenin and RhoA signaling in MSCs [31, 33, 34]. Within the context

103 of MSC adipogenesis, activation of these parallel signaling pathways results in decelerated
104 adipogenic commitment of MSCs as measured by reduced production of adipogenesis related
105 proteins such as adiponectin (encoded by adiponectin gene ADIPOQ) and peroxisome
106 proliferator-activated receptor gamma (PPARG1) [35]. In addition to cytomechanical signaling
107 events initiated at focal adhesions and cytoskeleton, control of MSC differentiation is also
108 dependent on nuclear connectivity within the cytoskeleton. Inhibiting nucleo-cytoskeletal
109 connectivity by disabling the function of Linker of Nucleoskeleton and Cytoskeleton (LINC)
110 complexes impedes the nuclear entry of important molecular transducer mechanical information
111 such as YAP/TAZ and β -Catenin which act as co-transcriptional factors for regulating MSC
112 adipogenesis and osteogenesis [36]. As opposed to LINC complex depletion, Lamin A/C depletion
113 has no effect on mechanically induced nuclear β -Catenin entry [37], suggesting that Lamin A/C
114 may be dispensable for the mechanically-induced activation of focal adhesions that lead to de-
115 phosphorylation and subsequent nuclear entry of β -Catenin.

116

117 These previous studies show that Lamin A/C plays a central role in nuclear organization and
118 structure, as well as contributing to the cell's ability to sense structural qualities of the extracellular
119 matrix to guide differentiation of MSCs. However, the role of Lamin A/C in focal adhesion signaling
120 and mechanically-induced control of MSC fate in response to dynamic mechanical challenges
121 remains incompletely understood. Therefore, we tested the requirement of Lamin A/C for the
122 mechanical response of MSCs. Using LIV, we have investigated the role of Lamin A/C depletion
123 on the mechanical control of MSC adipogenesis.

124

125 **Results**

126 **siRNA depletion of Lamin A/C weakens the nuclear elastic modulus in MSCs**

127 We investigated the effects of Lamin A/C loss on cellular and nuclear morphology as well as
128 mechanical properties. MSCs treated with either a control siRNA (siCtl) or a Lamin A/C specific

129 siRNA (siLMNA) were stained against F-actin and DNA. Compared to the siCtl group, siLMNA
130 treated MSCs showed a more elongated nuclear morphology but no apparent changes in the F-
131 actin cytoskeleton (**Fig. 1A**). Shown in **Fig. 1B**, morphology quantification indicated a 9%
132 decrease of nuclear sphericity in siLMNA treated MSCs when compared to MSCs treated with a
133 control siRNA ($p<0.001$). The nuclear area, volume, and height were increased 32%, 31%, and
134 11% in siLMNA treated MSCs, respectively, compared to control siRNA treated cells (**Fig. 1B**,
135 $p<0.001$). The Young's modulus was measured for both whole cells and extracted nuclei treated
136 with either siLMNA or siCtl. The Young's modulus was measured using a rounded AFM probe
137 tip which was pressed onto the surface of the whole cell directly above the nucleus or on an
138 isolated nucleus (**Fig. 1C** and **1D**). Confocal imaging with DNA and Lamin A/C labeling of a
139 representative isolated nucleus (**Fig. 1E**), indicates that nuclear structure remains intact following
140 isolation. Treatment with siLMNA caused a 45% reduction in whole cell stiffness when compared
141 to siCtl treated MSCs (**Fig. 1F**, $p<0.001$), while extracted nuclei exhibit a 55% reduction in
142 stiffness in Lamin A/C depleted cells compared to siCtl ($p<0.01$) (**Fig. 1G**).
143

144 **siRNA depletion of Lamin A/C (LMNA) Increases Sun-2 (SUN2) Nuclear Levels and Focal 145 Adhesion Proteins**

146 To further characterize the effects of Lamin A/C loss on nuclear envelope and focal adhesions,
147 the LINC complex and focal adhesion proteins were investigated. Confocal images of the siCtl
148 and siLMNA groups indicated that there were no visible changes in the LINC proteins Sun-1
149 (SUN1) and Sun-2 (SUN2) when Lamin A/C was depleted (**Fig. 2A**). Quantitative analysis of the
150 confocal images did not detect any differences in Sun-1 or Sun-2 nuclear envelope localization
151 (**Fig. S1**). We examined the same proteins using cellular fractionation followed by western blotting
152 and densitometry analysis (**Fig 2B**). All the measurements were normalized to whole cell siCtl
153 protein amounts which was set to 1. Comparing siLMNA treatment with siCtl, Lamin A/C
154 significantly decreased in whole cell Lamin A/C (-35%, $p < 0.05$). The relative Lamin A/C

155 concentration was greater in the nuclear fraction and led to larger values, while band intensities
156 of the siLMNA group remained significantly lower compared to siCtl (-11%, $p < 0.05$). Except for
157 a small amount of Sun-1 detection in the cytoplasm, both Sun-1 and Sun-2 were largely restricted
158 to the nucleus. Knocking down Lamin A/C was associated with an increase in nuclear Sun-2
159 (+44%, $p < 0.05$). Focal adhesion proteins also were altered under siLMNA treatment. Total focal
160 adhesion kinase (FAK) adhered to the cell culture plate experienced an increase of 39%
161 compared to control treated cells ($p < 0.05$) (Shown in **Fig. 2D** and **Fig. 2E**). The amount of Akt
162 adhering to cell culture plates also increased by 50% ($p < 0.05$). No changes in vinculin were
163 detected.

164

165 **Focal adhesions maintain response to mechanical stimulus in Lamin A/C depleted MSCs**

166 Basal levels of FAK were increased in Lamin A/C depleted cells. We next asked if mechanical
167 activation of FAK was altered by further quantifying the mechanical activation of FAK via its
168 phosphorylation at Tyrosine 397 residue (pFAK) which is indicative of integrin engagement [30].
169 MSCs were treated with either strain or LIV and compared to non-mechanically stimulated
170 controls. Basal pFAK levels normalized to total FAK (TFAK) were 85% elevated in the siLMNA
171 groups when compared to the siCtl groups ($p < 0.05$) (**Fig.3A** and **Fig.3B**). Phosphorylated FAK
172 levels from both siCtl and siLMNA treated groups increased by 101% ($p < 0.05$) and 87%
173 ($p < 0.001$) in response to 20 min strain (2%, 0.1Hz) when compared to non-strained counterparts.
174 LIV also activated FAK: pFAK increased by 331% ($p < 0.001$) in siCtl and 83% ($p < 0.001$) in
175 siLMNA treated MSCs in response to LIV (0.7g, 90Hz).

176

177 **Application of daily LIV treatment decreases adipogenic differentiation in MSCs**

178 As focal adhesion signaling was intact in siLMNA treated MSCs, we next probed downstream
179 processes to ask whether the LIV application known to slow adipogenesis [38] was effective when
180 Lamin A/C was depleted. In our experiment timeline, cells were first treated with siRNA on day 1

181 and then cultured in adipogenic media concomitant with LIV treatment (**Fig. 4A**). On day 2,
182 adipogenic media was placed on cells and LIV treatment started. LIV treatment occurred twice a
183 day for 20 minutes with two hour rests in between treatments. On day 7, cell protein or RNA
184 samples were collected for either western blotting or RNA-seq analysis. Probing adipogenesis
185 marker adiponectin between non-LIV controls, Lamin A/C depleted cells showed a 39% decrease
186 in adiponectin protein at 7 days (**Fig. 4B** and **Fig. 4C**). Similarly, compared within LIV treated
187 groups, adiponectin levels in the siLMNA group was 51% lower than siCtl treated cells with LIV
188 (p<0.01). Compared to non-LIV controls, daily LIV application decreased adiponectin protein
189 levels by 30% in the siCtl (p<0.01) and 44% in the siLMNA groups (p<0.001).

190

191 **Differential effect of Lamin A/C depletion and LIV on mRNA transcription during**
192 **adipogenic differentiation**

193 RNA-seq was performed to determine the effects of LIV and siLMNA treatment on differential
194 mRNA in MSCs during adipogenesis. Read values were filtered for robust expression by selecting
195 genes with average levels of 0.3 FPKM (Fragments per kilobase of transcript per million mapped
196 reads), t-test p < 0.05, and Log₂ fold change greater than 1.4). Hierarchical clustering of these
197 genes generated a heatmap (**Fig. 5A**) in which siCtl treated samples clustered together in one
198 clade, while undifferentiated and siLMNA treated samples were clustered together in another
199 clade that is visually separated from siCtl treated samples. Principal component analysis (**Fig.**
200 **5B**) shows further grouping of siCtl samples and siLMNA samples. Corresponding LMNA FPKM
201 values were presented in **Fig. S2**. Principal component 1 and component 2 explain 40.4% and
202 15.9% total variance, respectively with prediction ellipses indicating the probability of 0.95 that a
203 new observation of the same group will fall inside the ellipse. Representative RNA-seq data for
204 individual genes shows FPKM levels for a panel of 13 genes associated with the adipogenic
205 pathway, including adiponectin (ADIPOQ), CCAAT/enhancer-binding protein alpha (CEBPA), and
206 peroxisome proliferator-activated receptor gamma (PPARG) and others (**Fig. 5C**).

207

208 **Lamin A/C depletion impedes adipogenic transcription in MSCs**

209 Cells treated with siLMNA and siCtl with adipogenesis were compared statistically to determine
210 differential gene expression between siRNA treatments. A volcano plot for the comparison
211 between siLMNA and siCtl treated samples under adipogenic constraints (**Fig. 6A**) revealed
212 there are 52,607 statistically unchanged transcripts between Lamin A/C depleted and control
213 MSCs with Wald values of $p>0.05$ (grey and green data points). Shown in green data points,
214 2,000 of them showed at least a 2-fold difference (i.e. Log_2 fold change ≥ 1). While 749 genes
215 showed statistically significant change between Lamin A/C depleted and control MSCs with Wald
216 values of $p<0.05$ (shown in blue) and 427 of them had a less than 2-fold difference (i.e. Log_2 fold
217 change ≤ 1). The remaining 322 genes showed at least a 2-fold difference (i.e. Log_2 fold change
218 ≥ 1), which represents significant and differentially expressed genes. Up-regulated (red genes on
219 the right side, $n = 173$) and down-regulated genes (red genes on the left side, $n = 149$) upon
220 LMNA depletion were then assessed by a clustering analysis using ClustVis [39]. Upregulated
221 genes upon Lamin A/C depletion are associated with cellular processes such as (i) Tissue Repair
222 (e.g., genes generally involved in angiogenesis, hematopoiesis, and mechanical stress shielding),
223 (ii) ECM remodeling (e.g. genes generally involved in take-up and intra-cellular transport of ECM
224 debris as well as suppression of apoptosis), (iii) cell surface transporters (e.g., genes that mediate
225 the trafficking of compounds across membranes) (**Fig.6B**). Collectively, the biological function of
226 these genes appear to be related to tissue repair, inflammation and extracellular matrix
227 homeostasis. Downregulated gene groups upon LMNA knock-down included (i) Cell adhesion
228 and cytoskeletal organization, (ii) interferon signaling and regulation of gene expression (e.g.,
229 DNA and RNA binding, and protein degradation), (iii) G protein coupled receptor signaling (e.g.,
230 diverse range of cell surface receptors and components of the angiotension system), (iv) lipid
231 metabolism and paracrine inflammatory signaling, and (v) adipogenic phenotype (**Fig.6C**). These
232 down regulated genes together are generally involved in cell migration, energy metabolism and

233 adipogenic differentiation. The results from gene ontology and gene network analysis revealed
234 that Lamin A/C depletion has pleiotropic effects on gene expression, yet many gene pathways
235 converge on cell surface related biochemical events, interactions with the extracellular matrix and
236 internal metabolic pathways.

237

238 **LIV Decreases Interferon Signaling Pathway in siLMNA and siCtl Treated Cells**

239 To determine the effects of LIV with siCtl and siLMNA controls under adipogenic constraints
240 were compared against their LIV treated counterparts. The volcano plot comparing the siCtl
241 adipogenesis with or without LIV treatment (siCtl ± LIV) is shown in **Fig. 7A**. There were 53,326
242 statistically unchanged genes between with Wald values of $p>0.05$ (grey and green data points)
243 with, 1,939 of them showed at least 2-fold difference (green). While 76 genes showed statistically
244 significant change between LIV treated and control MSCs with Wald values of $p<0.05$, shown in
245 blue, 26 of them had a less than 2-fold difference. Remaining 53 genes showed at least 2-fold
246 difference (red). Assessing down-regulated genes via clustering revealed an interferon-related
247 cluster in the LIV treatment group (**Fig. 7B**). Similarly, LIV treatment upon LMNA depletion also
248 revealed an interferon-related cluster when assessing gene clustering by ClustVis in the
249 significant and highly down-regulated genes (**Fig. 7D**). Together, cells treated with siCtl had 11
250 genes that are part of interferon pathway while cells treated with siLMNA had 16 genes associated
251 with interferon pathway signaling (**Fig. 7E**). While interferons have been reported to have effects
252 on adipogenesis of mouse embryonic fibroblasts [40], the physiological relevance of the interferon
253 pathway is uncertain, because this pathway may be linked to cellular responses to events
254 precipitated by siRNA transfection as well. Excluding this latter finding, it appears that while
255 LMNA loss has a dramatic impact on gene expression programs, LIV has very minimal effects on
256 the transcriptome of differentiating MSCs.

257

258 **Materials and Methods**

259

260 *MSC Isolation*

261 Bone marrow derived MSC (mdMSC) from 8-10 wk male C57BL/6 mice were isolated as
262 described [41]. Briefly, tibial and femoral marrow were collected in RPMI-1640, 9% FBS, 9% HS,
263 100 µg/ml pen/strep and 12µM L-glutamine. After 24 hours, non-adherent cells were removed by
264 washing with phosphate-buffered saline and adherent cells cultured for 4 weeks. Passage 1 cells
265 were collected after incubation with 0.25% trypsin/1 mM EDTA × 2 minutes, and re-plated in a
266 single 175-cm² flask. After 1-2 weeks, passage 2 cells were re-plated at 50 cells/cm² in expansion
267 medium (Iscove modified Dulbecco's, 9% FBS, 9% HS, antibiotics, L-glutamine). mdMSC were
268 re-plated every 1-2 weeks for two consecutive passages up to passage 5 and tested for
269 osteogenic and adipogenic potential, and subsequently frozen.

270

271 *Cell Culture, Pharmacological Reagents, and Antibodies*

272 Fetal calf serum (FCS) was obtained from Atlanta Biologicals (Atlanta, GA). Culture media,
273 trypsin-EDTA, antibiotics, and Phalloidin-Alexa-488 were from Invitrogen (Carlsbad, CA). MSCs
274 were maintained in IMDM with FBS (10%, v/v) and penicillin/streptomycin (100µg/ml). For
275 phosphorylation measurements, seeding cell density was 10,000 cells per square centimeter. For
276 immunostaining experiments, seeding cell density was 3,000 cells per square centimeter. For
277 phosphorylation measurements and immunostaining experiments, all groups were cultured for
278 48h before beginning experiments and were serum starved overnight in serum free medium.

279

280 For adipogenic differentiation experiments, the seeding cell density was 21,000 cells per square
281 centimeter. Cells were transfected 24 hours after cell seeding with siRNA targeting Lamin A/C
282 (siLMNA) or a control sequence (siCtl) using RNAiMax from Invitrogen. Adipogenic media and
283 L1V treatment followed previously published protocol, where twenty four hours after the
284 transfection, the adipogenic media was added which contained dexamethasone (0.1µM) and

285 insulin (5 µg/ml) [18]. Cell cultures were incubated with the combined transfection media and
286 adipogenic differentiation media for 7 days after adipogenic media was added with or without LIV
287 treatment (2 X 20 minutes per day separated by 2 hours).

288

289 The following antibodies were purchased: Cell Signaling (Danvers, MA): Akt (#4685), p-Akt
290 Ser473 (#4058L), β-Tubulin (D3U1W), and p-FAK Tyr397 (#328 3). ThermoFischer Scientific
291 (Rockford, IL): Adiponectin (PA1-054). Santa Cruz Biotechnology (Dallas, TX): FAK (sc-558),
292 Lamin A/C (sc-7292).

293

294 LIV and Strain

295 Vibrations were applied at peak magnitudes of 0.7g at 90Hz twice for 20min separated by 2h rest
296 period at room temperature. Uniform 2% biaxial strain was delivered at 10 cycles per minute for
297 20 min using the Flexcell FX-5000 system (Flexcell International, Hillsborough, NC). Controls
298 were sham handled. During adipogenesis experiments, LIV was applied 24 hours after initial
299 transfection, a regimen we previously shown be effective [31].

300

301 Isolation of Focal Adhesions

302 Cells were incubated with triethanolamine (TEA)-containing low ionic-strength buffer (2.5 mM
303 TEA, pH 7.0) for 3 minutes at RT, 1× PBS containing protease/phosphatase inhibitors. A Waterpik
304 (Fort Collins, CO, www.waterpik.com) nozzle held 0.5 cm from the plate surface at approximately
305 90° supplied the hydrodynamic force to flush away cell bodies, membrane-bound organelles,
306 nuclei, cytoskeleton, and soluble cytoplasmic materials so that residual focal adhesions could be
307 isolated as we have reported previously[31] .

308

309 siRNA Silencing Sequences

310 For transient silencing of MSCs, cells were transfected with gene-specific small interfering RNA
311 (siRNA) or control siRNA (20 nM) using RNAiMax (ThermoFischer) according to manufacturer's
312 instructions. The following Stealth Select siRNAs (Invitrogen) were used in this study: LaminA/C
313 5'-UGGGAGAGGCUAAGAAGCAGCUUCA-3' and negative control for LaminA/C 5'-
314 UGGGAGUCGGAAGAAGACUCGAUCA-3'.

315

316 *Isolation of Nuclei for Young's modulus*

317 MSCs were plated at 10,000 cell/cm² cell density. For mechanical and structural testing, nuclei
318 were isolated by scraping cells in PBS and then suspending cells in hypotonic solution followed
319 by centrifugation at 3000xg. Nuclei were then extracted by using percol (81% percol, 19%
320 hypotonic buffer) and centrifugation at 10,000xg. Nuclei were then diluted in PBS and plated.
321 Nuclei Young's modulus was determined using Atomic Force Microscopy (AFM). For strain
322 experiments, cells were plated on Bioflex Collagen-I coated silicone plates.

323

324 *RNA-seq*

325 RNA extraction and sequencing were done by Novogene. Quality control of raw data was done
326 using FASTQC. Read Alignment of the genome to the raw reads was done using STAR [42].
327 Read count generation was generated using feature Counts and Differential gene expression
328 analysis was done using DESEQ2 [43]. For analysis using fragments per kilobase of transcript
329 per million mapped reads (FPKM), data were assessed as previously described [44-47]. Briefly,
330 RNA-Seq data were analyzed by a Mayo Bioinformatics Core called MAPRSeq v.1.2.1 [48], which
331 includes TopHat 2.0.6 alignment [49] with gene expression quantification using HTSeq
332 software [50]. Normalized gene counts were obtained from MAPRSeq as FPKM. Hierarchical
333 clustering and principal component analysis were assessed and visualized using ClustVis [39].
334 RNA-Seq data were deposited in the Gene Expression Omnibus of the National Institute for
335 Biotechnology Information (GSE157056).

336

337 Immunofluorescence

338 Twenty four hours after the siRNA treatment against Lamin A/C protein, cells were fixed with 4%
339 paraformaldehyde. Cells were permeabilized by incubation with 0.3% Triton X-100. Cells were
340 incubated in a blocking serum in PBS with 5% Donkey Serum (017-000-121, Jackson Immuno
341 Research Laboratories). Primary antibody solution were incubated on the cells for 1h at 37°C,
342 followed by secondary antibody incubation of either Alexa Flour 594 goat anti-rabbit (Invitrogen)
343 or Alexa Fluor 647 donkey anti-mouse. For nuclear staining cells were incubated with NucBlue
344 Hoescht stain (Fischer Scientific). For actin staining, cells were incubated in Alexa Fluor 488
345 Phalloidin (Life Technologies). Primary and secondary concentrations were both 1:300.

346

347 Nuclear Morphology

348 To test the nuclear morphology that will show the level of mechanical constraint on nucleus, MSCs
349 seeded at 3000cell/cm² on plastic slide chambers (iBIDI µslide # 80421). 72h after the siRNA
350 treatment against Lamin A/C protein, DNA (Hoechst 33342, Life Technologies), and or
351 immunostained against actin (Alexa Fluor 488 Phalloidin, Life Technologies). Z-stack confocal 3D
352 images were obtained with a Zeiss LSM 710 with a separation interval of 0.15µm. Z-stack images
353 were analyzed using IMARIS software.

354

355 Western Blotting

356 Whole cell lysates were prepared using an radio immunoprecipitation assay (RIPA) lysis buffer
357 (150mM NaCl, 50mM Tris HCl, 1mM EDTA, 0.24% sodium deoxycholate,1% Igepal, pH 7.5) to
358 protect the samples from protein degradation NaF (25mM), Na3VO4 (2mM), aprotinin, leupeptin,
359 pepstatin, and phenylmethylsulfonylfluoride (PMSF) were added to the lysis buffer. Whole cell
360 lysates (15µg) were separated on 10% polyacrylamide gels and transferred to polyvinylidene
361 difluoride (PVDF) membranes. Membranes were blocked with milk (5%, w/v) diluted in Tris-

362 buffered saline containing Tween20 (TBS-T, 0.05%). Blots were then incubated overnight at 4°C
363 with appropriate primary antibodies. Following primary antibody incubation, blots were washed
364 and incubated with horseradish peroxidase-conjugated secondary antibody diluted at 1: 5,000
365 (Cell Signaling) at RT for 1h in 5% milk in TBST-T. Chemiluminescence was detected with ECL
366 plus (Amersham Biosciences, Piscataway, NJ). At least three separate experiments were used
367 for densitometry analyses of western blots and densitometry was performed via NIH ImageJ
368 software.

369

370 **Statistical analysis**

371 Results for densitometry were presented as mean \pm SEM. Densitometry and other analyses were
372 performed on at least three separate experiments. Differences between groups were identified by
373 two-tailed Student's T-test. Analysis of nuclear morphology and Young's modulus were done
374 using Whitney-Mann test and results were presented as mean \pm STD. Differential gene
375 expression analysis was done using Wald test. P-values of less than 0.05 were considered
376 significant.

377

378 **Discussion**

379 In this study, we have found that Lamin A/C depleted MSCs were able to activate focal adhesion
380 signaling and decrease the output of adipogenic biomarkers (e.g., adiponectin) as efficiently as
381 MSCs with intact Lamin A/C in response to LIV. Our findings indicate that the global adipogenic
382 mRNA repression in Lamin A/C depleted MSCs occurred independent of LIV. RNA-seq analysis
383 showed that LIV had negligible effects on mRNA levels compared to Lamin A/C depletion,
384 suggesting that LIV effects on adipogenesis is likely caused by post-translational mechanisms or
385 other downstream effects.

386

387 Lamin A/C depletion interfered with adipogenic differentiation but not with biomechanical
388 responses. Not only was Lamin A/C dispensable for the LIV and strain mediated activation of
389 focal adhesions, but LIV decreased levels of adiponectin protein. Consistent with repression of
390 adipogenesis, in a Lamin A/C independent fashion. Adipogenic mRNA levels determined by
391 RNA-seq were unaffected by LIV suggesting that LIV-induced repression of adipogenesis was
392 post-transcriptional or post-translational.

393

394 In Lamin A/C depleted cells, microscopic observations of increased blebbing, elongated nuclear
395 shape, and ruffled nuclear membrane [8, 12, 51] indicates a compromised nuclear structure.
396 Quantification of 3D nuclear structure of Lamin A/C depleted cells were supportive of these
397 previous observations and showed reduced sphericity and increased planar nuclear area while
398 nuclear height and volume were increased compared to controls. It has been reported that Lamin
399 A/C depletion increases nuclear height and volume in-part due to reduced recruitment of
400 perinuclear and apical F-actin cables [52]. While reduction of apical F-actin may contribute to a
401 decrease in elastic modulus in Lamin A/C depleted intact MSCs, a similar decrease was observed
402 in Lamin A/C depleted isolated live nuclei. The similarities in decreased stiffness in both intact
403 cells and isolated nuclei suggests that nuclear softening is the primary driver of decreased cell
404 stiffness upon Lamin A/C loss of function.

405

406 Our data suggest that MSCs compensate for Lamin A/C mediated nuclear softening by increasing
407 their focal adhesions. Not only was total FAK (PTK2) and Akt (AKT1) accumulation at the focal
408 adhesions more robust in Lamin A/C depleted MSCs, Tyrosine 397 phosphorylated FAK was also
409 higher which suggests increased integrin engagement [30]. These findings are not surprising as
410 both depletion of Lamin A/C [53] and nucleo-cytoskeletal connector Nesprin-1 [54] were shown
411 to increase substrate traction in cells. Tracking with increased basal pFAK levels, application of
412 either LIV or strain pushed acute FAK phosphorylation of Lamin A/C depleted cells higher than

413 control cells. These results indicate that the focal adhesion signaling remains intact in Lamin A/C
414 depleted MSCs.

415

416 Similar to focal adhesions, nucleo-cytoskeletal connectivity provided by LINC complex remained
417 intact under Lamin A/C depletion. Previous studies have shown that LINC proteins Sun-1 and
418 Sun-2 bind to the Lamin A/C in order to mediate a connection from the inner nucleus to the
419 cytoskeleton and ultimately to the focal adhesions that make a physical connection to the extra
420 cellular matrix [55, 56]. Quantification of confocal images of Sun-1 and Sun-2 revealed no
421 changes compared to controls while Sun-2 had an increase in proteins levels in both the whole
422 cell and nuclear fractions. These observed protein changes under loss of the Lamin A/C could be
423 in parallel to increased focal adhesion presence. Therefore, the cell may be increasing the levels
424 of Sun-2 that is connected to actin, which in turn are connected to a higher number of focal
425 adhesions. Localization of Sun-1 and Sun-2 proteins to the nuclear envelope are not entirely
426 dependent upon Lamin A/C, but loss of Lamin A/C still results in some alteration of Sun-1
427 localization and no alteration for Sun-2 supporting previous literature as seen in **Fig. 2C** in the
428 whole cell and nuclear fractions [56, 57] . While noted changes in the Sun proteins under Lamin
429 A/C depletion suggests a putative relationship, loss of Lamin A/C did not negatively impact the
430 structural Sun-mediated integrity of the LINC complex.

431

432 Adipogenesis has recently been shown to decrease with mutated Lamin A/C, specifically in cells
433 expressing the lipodystrophy-associated LMNA p.R482W mutation [26]. Our data supports this
434 previous observation as MSCs treated with siLMNA experienced slower adipogenic differentiation
435 compared to siCtl treated cells (**Fig. 4C**). This observation is in contrast to studies that showed
436 increased adipogenesis in Lamin depleted MSCs [25, 27, 58]. While cell culture conditions vary
437 from experiment to experiment, this study did not utilize strong adipogenic inducers such as
438 indomethacin and IBMX [27, 58]. Instead, we used a milder adipogenic media incorporating

439 insulin and dexamethasone. This selection was based on previous work where LIV was unable
440 overcome the adipogenesis induced by indomethacin and IBMX [18]. RNA-seq data indicate that
441 upon MSCs display an undifferentiated phenotype upon Lamin A/C depletion, as reflected by
442 reduced expression of genes associated with adipogenic and lipid related metabolic pathways. In
443 contrast, LIV treatment did not have a significant impact on adipogenic gene expression indicating
444 that Lamin A/C and not low intensity vibration is critical for adipogenic differentiation.

445
446 In contrast to large shifts in transcription under Lamin A/C depletion, RNA-seq data indicates that
447 only 21 genes for siCtl and 74 genes for siLMNA treated cells were differentially expressed as a
448 result of LIV treatment. Despite the lack of changes at mRNA level, Lamin A/C depleted MSCs
449 retain their ability to respond to mechanical signals and exhibit decelerated adipogenesis reflected
450 by reduced adiponectin protein in LIV treated cells. Although mechanical stimulation using LIV is
451 not causing widespread alteration in mRNA expression, we did observe a distinct LIV-dependent
452 signature characteristic of interferon responsive genes. Changes in interferon responses could
453 be expected, because siRNA transfection affects single and double-stranded RNA accumulation
454 within cells that may provoke interferon responses by mimicking viral RNA transfection. As such,
455 this finding could perhaps be dismissed as technical artefact. However, this interferon related
456 differentially expressed gene changes were seen as compared to non-LIV siRNAs. Hence, a
457 biological cause may also be entertained. A possible relationship between type 1 interferon
458 signaling pathway and the known mechanosensitive Wnt/β-catenin signaling pathway has been
459 proposed [59]. GSK-3β is known to activate type 1 interferon signaling pathway [60] and inhibit
460 the Wnt/β-catenin pathway by causing the degradation of β-catenin [37]. Activation of the Wnt/β-
461 catenin signaling pathway via mechanical stimulus causes GSK-3β to be inhibited, promoting β-
462 catenin translocation to the nucleus to inhibit adipogenesis [37], and potentially inhibit the type 1
463 interferon signaling pathway. Additionally, mechanical forces, specifically low intensity forces
464 such as shear strain and vibration, have been shown to inactivate interferons [61]. Thus, there

465 may be secondary mechanisms by which interferons respond to mechanical forces. The more
466 important finding is the absence of major transcriptome changes during adipogenesis in response
467 to LIV which points to post-transcriptional or post-translational regulatory events. While the
468 mechanism of the observed mechanoregulation of adipogenesis is beyond of scope of this paper,
469 further research will be needed to fully understand the potential mechanoregulation of
470 adipogenesis during or after transcription.

471

472 **Conclusion**

473 Lamin A/C depletion resulted in decreased nuclear integrity, more robust focal adhesions, and
474 reduced adiponectin protein levels. Neither Sun-mediated LINC connectivity nor focal adhesion
475 signaling in response to acute mechanical challenge were negatively impacted by Lamin A/C
476 depletion. This independence of mechanical signaling from Lamin A/C was further highlighted by
477 the significant reduction in adiponectin protein levels in response to LIV. The small transcriptional
478 response under LIV was dwarfed by large transcriptional changes and blunted adipogenesis
479 under Lamin A/C depletion. Findings of this study indicate that Lamin A/C is required for proper
480 adipogenic commitment of MSCs into the adipogenic lineage and that the mechanical regulation
481 of adipogenesis may not utilize similar pathways to elicit a response in MSCs.

482

483 **Data availability**

484 The datasets generated and/or analyzed during the current study are available from the
485 corresponding author on reasonable request.

486

487 **Acknowledgements**

488 This study was supported by NIH AG059923 (GU), NSF 1929188 (GU), P20GM109095 (GU),
489 R01AR049069 (AJvW), AR066616 (JR), Career Development Award in Orthopedics Research
490 (AD), The Scientific and Technological Research Council of Turkey 2214-A (MO).

491

492 **Competing interests**

493 The author(s) declare no competing interests financial or otherwise.

494

495 **Contributions**

496 Matthew Goelzer: concept/design, data analysis/interpretation, manuscript writing

497 Amel Dudakovic: manuscript writing, data analysis, final approval of manuscript

498 Melis Olcum: concept/design, data analysis/interpretation, final approval of manuscript

499 Buer Sen: data analysis, final approval of manuscript

500 Engin Ozcivici: final approval of manuscript

501 Janet Rubin: data analysis, final approval of manuscript Andre van Wijnen: manuscript writing,

502 data analysis, final approval of manuscript

503 Gunes Uzer: concept/design, data analysis/interpretation, financial support, manuscript writing,

504 final approval of manuscript

505

506 **References**

507 1. Shumaker DK, Dechat T, Kohlmaier A et al. Mutant nuclear lamin A leads to progressive
508 alterations of epigenetic control in premature aging. **Proceedings of the National
509 Academy of Sciences**. 2006;103:8703-8708.

510 2. Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. **Cell**.
511 2013;152:1365-1375.

512 3. De Sandre-Giovannoli A, Bernard R, Cau P et al. Lamin a truncation in Hutchinson-
513 Gilford progeria. **Science (New York, NY)**. 2003;300:2055.

514 4. Constantinescu D, Gray HL, Sammak PJ et al. Lamin A/C expression is a marker of
515 mouse and human embryonic stem cell differentiation. **STEM CELLS**. 2006;24:474-474.

- 516 5. Rober RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the
517 various organs of the mouse embryo and the young animal: a developmental study.
518 **Development (Cambridge, England)**. 1989;105:365-378.
- 519 6. Stewart C, Burke B. Teratocarcinoma stem cells and early mouse embryos contain only
520 a single major lamin polypeptide closely resembling lamin B. **Cell**. 1987;51:383-392.
- 521 7. Underwood JM, Becker KA, Stein GS et al. The Ultrastructural Signature of Human
522 Embryonic Stem Cells. **J Cell Biochem**. 2017;118:764-774.
- 523 8. Lammerding J, Fong LG, Ji JY et al. Lamins A and C but not lamin B1 regulate nuclear
524 mechanics. **The Journal of biological chemistry**. 2006;281:25768-25780.
- 525 9. Lee JS, Hale CM, Panorchan P et al. Nuclear lamin A/C deficiency induces defects in
526 cell mechanics, polarization, and migration. **Biophysical journal**. 2007;93:2542-2552.
- 527 10. Lammerding J, Schulze PC, Takahashi T et al. Lamin A/C deficiency causes defective
528 nuclear mechanics and mechanotransduction. **The Journal of Clinical Investigation**.
529 2004;113:370-378.
- 530 11. Verstraeten VL, Ji JY, Cummings KS et al. Increased mechanosensitivity and nuclear
531 stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors.
532 **Aging cell**. 2008;7:383-393.
- 533 12. Sullivan T, Escalante-Alcalde D, Bhatt H et al. Loss of A-type lamin expression
534 compromises nuclear envelope integrity leading to muscular dystrophy. **J Cell Biol**.
535 1999;147:913-920.
- 536 13. Sabatelli P, Lattanzi G, Ognibene A et al. Nuclear alterations in autosomal-dominant
537 Emery-Dreifuss muscular dystrophy. **Muscle & Nerve**. 2001;24:826-829.
- 538 14. Bronshtein I, Kepten E, Kanter I et al. Loss of lamin A function increases chromatin
539 dynamics in the nuclear interior. **Nature Communications**. 2015;6:8044.

- 540 15. Ranade D, Pradhan R, Jayakrishnan M et al. Lamin A/C and Emerin depletion impacts
541 chromatin organization and dynamics in the interphase nucleus. **BMC Molecular and**
542 **Cell Biology**. 2019;20:11.
- 543 16. Stephens AD, Banigan EJ, Marko JF. Separate roles for chromatin and lamins in nuclear
544 mechanics. **Nucleus (Austin, Tex)**. 2018;9:119-124.
- 545 17. Moghadam FH, Tayebi T, Dehghan M et al. Differentiation of bone marrow
546 mesenchymal stem cells into chondrocytes after short term culture in alkaline medium.
547 **International journal of hematology-oncology and stem cell research**. 2014;8:12-
548 19.
- 549 18. Sen B, Xie Z, Case N et al. Mechanical signal influence on mesenchymal stem cell fate
550 is enhanced by incorporation of refractory periods into the loading regimen. **Journal of**
551 **biomechanics**. 2011;44:593-599.
- 552 19. Sen B, Xie Z, Case N et al. Mechanical strain inhibits adipogenesis in mesenchymal
553 stem cells by stimulating a durable beta-catenin signal. **Endocrinology**. 2008;149:6065-
554 6075.
- 555 20. Sen B, Guilluy C, Xie Z et al. Mechanically induced focal adhesion assembly amplifies
556 anti-adipogenic pathways in mesenchymal stem cells. **Stem Cells**. 2011;29:1829-1836.
- 557 21. Baskan O, Mese G, Ozcivici E. Low-intensity vibrations normalize adipogenesis-induced
558 morphological and molecular changes of adult mesenchymal stem cells. **Proceedings**
559 **of the Institution of Mechanical Engineers Part H, Journal of engineering in**
560 **medicine**. 2017;954411916687338.
- 561 22. Uzer G, Pongkitwitoon S, Ete Chan M et al. Vibration induced osteogenic commitment of
562 mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear.
563 **Journal of biomechanics**. 2013;46:2296-2302.

- 564 23. Bas G, Loisate S, Hudon SF et al. Low Intensity Vibrations Augment Mesenchymal Stem
565 Cell Proliferation and Differentiation Capacity during in vitro Expansion. **Scientific**
566 **reports**. 2020;10:9369.
- 567 24. Karadas O, Mese G, Ozcivici E. Low magnitude high frequency vibrations expedite the
568 osteogenesis of bone marrow stem cells on paper based 3D scaffolds. **Biomedical**
569 **Engineering Letters**. 2020;10:431-441.
- 570 25. Akter R, Rivas D, Geneau G et al. Effect of lamin A/C knockdown on osteoblast
571 differentiation and function. **Journal of bone and mineral research : the official**
572 **journal of the American Society for Bone and Mineral Research**. 2009;24:283-293.
- 573 26. Oldenburg A, Briand N, Sørensen AL et al. A lipodystrophy-causing lamin A mutant
574 alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. **The**
575 **Journal of cell biology**. 2017;216:2731-2743.
- 576 27. Bermeo S, Vidal C, Zhou H et al. Lamin A/C Acts as an Essential Factor in
577 Mesenchymal Stem Cell Differentiation Through the Regulation of the Dynamics of the
578 Wnt/β-Catenin Pathway. **Journal of Cellular Biochemistry**. 2015;116:2344-2353.
- 579 28. Li W, Yeo LS, Vidal C et al. Decreased bone formation and osteopenia in lamin a/c-
580 deficient mice. **PLoS one**. 2011;6:e19313.
- 581 29. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions.
582 **Nature Reviews Molecular Cell Biology**. 2009;10:21-33.
- 583 30. Hamadi A, Bouali M, Dontenwill M et al. Regulation of focal adhesion dynamics and
584 disassembly by phosphorylation of FAK at tyrosine 397. **Journal of Cell Science**.
585 2005;118:4415-4425.
- 586 31. Uzer G, Thompson WR, Sen B et al. Cell Mechanosensitivity to Extremely Low-
587 Magnitude Signals Is Enabled by a LINCed Nucleus. **STEM CELLS**. 2015;33:2063-
588 2076.

- 589 32. Uzer G, Fuchs RK, Rubin J et al. Concise Review: Plasma and Nuclear Membranes
590 Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. **Stem**
591 **Cells**. 2016;34:1455-1463.
- 592 33. Sen B, Xie Z, Case N et al. mTORC2 regulates mechanically induced cytoskeletal
593 reorganization and lineage selection in marrow-derived mesenchymal stem cells.
594 **Journal of bone and mineral research : the official journal of the American Society**
595 **for Bone and Mineral Research**. 2014;29:78-89.
- 596 34. Thompson WR, Yen SS, Uzer G et al. LARG GEF and ARHGAP18 orchestrate RhoA
597 activity to control mesenchymal stem cell lineage. **Bone**. 2018;107:172-180.
- 598 35. Tontonoz P, Spiegelman BM. Fat and Beyond: The Diverse Biology of PPAR γ . **Annual**
599 **Review of Biochemistry**. 2008;77:289-312.
- 600 36. Pagnotti GM, Styner M, Uzer G et al. Combating osteoporosis and obesity with exercise:
601 leveraging cell mechanosensitivity. **Nature reviews Endocrinology**. 2019;15:339-355.
- 602 37. Uzer G, Bas G, Sen B et al. Sun-mediated mechanical LINC between nucleus and
603 cytoskeleton regulates β catenin nuclear access. **Journal of biomechanics**. 2018;74:32-
604 40.
- 605 38. Sen B, Xie Z, Case N et al. Mechanical signal influence on mesenchymal stem cell fate
606 is enhanced by incorporation of refractory periods into the loading regimen. **Journal of**
607 **biomechanics**. 2011;44:593-599.
- 608 39. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using
609 Principal Component Analysis and heatmap. **Nucleic acids research**. 2015;43:W566-
610 570.
- 611 40. Lee K, Um SH, Rhee DK et al. Interferon-alpha inhibits adipogenesis via regulation of
612 JAK/STAT1 signaling. **Biochimica et biophysica acta**. 2016;1860:2416-2427.

- 613 41. Peister A, Mellad JA, Larson BL et al. Adult stem cells from bone marrow (MSCs)
614 isolated from different strains of inbred mice vary in surface epitopes, rates of
615 proliferation, and differentiation potential. **Blood**. 2004;103:1662-1668.
- 616 42. Dobin A, Davis CA, Schlesinger F et al. STAR: ultrafast universal RNA-seq aligner.
617 **Bioinformatics (Oxford, England)**. 2013;29:15-21.
- 618 43. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
619 RNA-seq data with DESeq2. **Genome biology**. 2014;15:550.
- 620 44. Dudakovic A, Camilleri E, Riester SM et al. High-resolution molecular validation of self-
621 renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human
622 mesenchymal stem cells. **J Cell Biochem**. 2014;115:1816-1828.
- 623 45. Wang H, Rodríguez A. Identifying pediatric cancer clusters in Florida using loglinear
624 models and generalized lasso penalties. **Stat Public Policy (Phila)**. 2014;1:86-96.
- 625 46. Dudakovic A, Camilleri ET, Paradise CR et al. Enhancer of zeste homolog 2 (Ezh2)
626 controls bone formation and cell cycle progression during osteogenesis in mice. **The**
627 **Journal of biological chemistry**. 2018;293:12894-12907.
- 628 47. Dennison E, Cooper C. Epidemiology of osteoporotic fractures. **Horm Res**. 2000;54
629 Suppl 1:58-63.
- 630 48. Kalari KR, Nair AA, Bhavsar JD et al. MAP-RSeq: Mayo Analysis Pipeline for RNA
631 sequencing. **BMC bioinformatics**. 2014;15:224.
- 632 49. Kim D, Pertea G, Trapnell C et al. TopHat2: accurate alignment of transcriptomes in the
633 presence of insertions, deletions and gene fusions. **Genome biology**. 2013;14:R36.
- 634 50. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
635 sequencing data. **Bioinformatics (Oxford, England)**. 2015;31:166-169.
- 636 51. Raharjo WH, Enarson P, Sullivan T et al. Nuclear envelope defects associated with
637 LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy.
638 **J Cell Sci**. 2001;114:4447-4457.

- 639 52. Kim J-K, Louhghalam A, Lee G et al. Nuclear lamin A/C harnesses the perinuclear apical
640 actin cables to protect nuclear morphology. **Nature communications**. 2017;8:2123.
- 641 53. Corne TDJ, Sieprath T, Vandenbussche J et al. Dereulation of focal adhesion formation
642 and cytoskeletal tension due to loss of A-type lamins. **Cell Adh Migr**. 2017;11:447-463.
- 643 54. Chancellor TJ, Lee J, Thodeti CK et al. Actomyosin tension exerted on the nucleus
644 through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic
645 strain-induced reorientation. **Biophysical journal**. 2010;99:115-123.
- 646 55. Wang W, Shi Z, Jiao S et al. Structural insights into SUN-KASH complexes across the
647 nuclear envelope. **Cell Research**. 2012;22:1440-1452.
- 648 56. Haque F, Lloyd DJ, Smallwood DT et al. SUN1 Interacts with Nuclear Lamin A and
649 Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina
650 and the Cytoskeleton. **Molecular and Cellular Biology**. 2006;26:3738-3751.
- 651 57. Liang Y, Chiu PH, Yip KY et al. Subcellular Localization of SUN2 Is Regulated by Lamin
652 A and Rab5. **PLoS one**. 2011;6:e20507.
- 653 58. Naito M, Omoteyama K, Mikami Y et al. Suppression of lamin A/C by short hairpin RNAs
654 promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26.
655 **Histochemistry and cell biology**. 2012;137:235-247.
- 656 59. Khan KA, Dô F, Marineau A et al. Fine-Tuning of the RIG-I-Like Receptor/Interferon
657 Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen
658 Synthase Kinase 3/β-Catenin Pathway. **Molecular and Cellular Biology**. 2015;35:3029-
659 3043.
- 660 60. Smith JL, Jeng S, McWeeney SK et al. A MicroRNA Screen Identifies the Wnt Signaling
661 Pathway as a Regulator of the Interferon Response during Flavivirus Infection. **Journal**
662 **of Virology**. 2017;91:e02388-02316.

663 61. Cartwright T, Senussi O, Grady MD. The Mechanism of the Inactivation of Human
664 Fibroblast Interferon by Mechanical Stress. **Journal of General Virology**. 1977;36:317-
665 321.

666 **Fig. 1 siRNA depletion of Lamin A/C weakens the nuclear elastic modulus in MSCs: (A)**
667 Confocal Image of F-actin (phalloidin, green) and nucleus (DAPI, blue). Scale bar: 10 μ m. **(B)**
668 Geometric parameters of siCtrl and siLMNA groups quantified and presented as a % difference
669 compared to siCtrl group (green line). Nuclear sphericity decreased by 8% in MSCs treated with
670 Lamin A/C specific siRNA (siLMNA) compared to MSCs treated with a non-specific control
671 siRNA (siCtrl) ($p<0.05$, $n=342$). Nuclear area of siLMNA treated cells showed a 32% increase
672 when compared to siCtrl ($p<0.05$, $n=342$). Nuclear volume siLMNA treated cells increased by
673 31% compared to siCtrl ($p<0.05$, $n=342$). Nuclear height of siCtrl and siLMNA treated cells.
674 When compared to the nuclear height of siCtrl MSCs, siLMNA treated cells had increased
675 nuclear height of 12% ($p<0.05$, $n=342$). **(C)** Schematic of AFM probe tip testing whole cell
676 Young's modulus in live MSCs. **(D)** Depiction of AFM probe tip testing live extracted nucleus.
677 **(E)** Confocal image of extracted nucleus depicting its orthogonal views from X-Y, X-Z, Y-Z
678 planes (DAPI, blue; Lamin A/C, Red) Scale bar: 5 μ m. **(F)** Whole cell Young's modulus of the
679 siLMNA group was 45% lower when compared to the siCtrl group. **(G)** Young's modulus of
680 extracted live nucleus in siLMNA MSCs remained 55% lower when compared to siCtrl MSCs
681 ($p<0.01$, $n=13$). Results are presented as mean \pm STD. Group comparisons were made via non-
682 parametric Mann Whitney U-test. $p<0.05$, ** $p<0.01$, *** $p<0.001$, against control.
683

684 **Fig. 2 siRNA depletion of Lamin A/C affects the Sun-1 and Sun-2 elements of the LINC**
685 **Complex and Focal Adhesion Proteins: (A)** Confocal images of cells treated with the siCtrl
686 and siLMNA siRNA groups. Primary antibodies targeted Lamin A/C, Sun-1, and Sun-2. **(B)**
687 Representative western blots of cell fractionations (whole cell, cytosol and nucleus) with cells

688 treated with either siCtl or siLMNA. Primary antibodies targeted Lamin A/C, Sun-1, Sun-2,
689 PARP, and LDHA. Line represents removal of protein ladder marker lane, uncropped blots are
690 provided in Fig.S1. **(C)** Analysis of western of cell fractionation western blots (n=3/grp). siLMNA
691 treated cells had 29% increase of Sun-2 in whole cells, 122% in cytoplasm, and 44% increase in
692 nucleus fraction (p<0.05) compared to siCtl samples. Sun-1 levels saw a decrease of 28% in
693 whole cell, 10% increase in cytoplasm, and 15% increase in nucleus fraction compared to siCtl
694 samples. ND represents non-detectable levels. **(D)** Representative western blot of focal
695 adhesion proteins following a cell washout. Primary antibodies targeted of FAK, Akt, and
696 Vinculin in siCtl and siLMNA siRNA treated cells. **(E)** Densitometry analysis showed that, when
697 compared to siCtl levels siLMNA treated MSCs showed increased levels of total FAK (39%,
698 p<0.05) and total Akt (50%, p<0.05), no change in Vinculin was detected (n=3/grp). Results are
699 presented as mean \pm STE. Scale bar: 21 μ m. Group comparisons were made via parametric
700 two-tailed Student T-test (C) or one-way ANOVA followed by a Newman-Keuls post-hoc test
701 (E). p<0.05, ** p<0.01, *** p<0.001, against control.

702

703 **Fig. 3 Focal adhesions maintain response to mechanical stimulus in Lamin A/C depleted**
704 **MSCs:** **(A)** Representative western blots for pFAK (Tyr 397), TFAK, and Lamin A/C in siCtl
705 and siLMNA treated cells groups treated with 2 bouts of LIV (20min, 90Hz, 0.7g) separated by 2
706 hour rest period. LIV treated sample had a 2-fold increase of pFAK compared to non-LIV. **(B)**
707 Analysis of western image of pFAK, TFAK, and Lamin A/C during LIV (n=4/grp). The non-LIV
708 siLMNA group had a 92% (p<0.05) increased basal pFAK compared to the non-LIV siCtl
709 group. In response to LIV, both siCtl and siLMNA treated MSCs elicited 101% (p<0.05) and
710 87% increases in pFAK, respectively. **(C)** Representative western blots for pFAK (Tyr 397),
711 TFAK, and Lamin A/C of the siCtl and siLMNA groups treated with a single bout strain (20 min,
712 0.1 Hz, 2% strain). **(D)** Analysis of pFAK, TFAK, and Lamin A/C immediately after strain
713 application (n=4/grp). The non-strain siLMNA group had a 79% (p<0.05) increased basal pFAK

714 compared to the non-strain siCntl group. In response to strain, pFAK levels were elevated by
715 331% (p<0.001) and 83% (p<0.001) in siCntl and siLmn treated MSCs respectively. Results are
716 presented as mean \pm STE. Group comparisons were made via one-way ANOVA followed by a
717 Newman-Keuls post-hoc test. p<0.05, ** p<0.01, *** p<0.001, against control or against each
718 other.

719

720 **Fig. 4 Application of daily LIV treatment decreases adipogenic differentiation in MSCs:**
721 **(A)** Timeline of experiments. On day 0 cells were plated on 10cm dishes. Then, on day 1 cells
722 were transfected with siRNA. On day 2 adipogenic media was placed on cells and cells were
723 treated with LIV for 20 minutes, twice daily. Once cells differentiated cells were pulled off for
724 either western analysis or RNA-seq. **(B)** Representative western blots of cells treated with siCntl
725 and siLMNA after 7 days of adipogenic induction with and without LIV treatment. Adiponectin
726 protein, Lamin A/C, and β -Tubulin were targeted. Lamin A/C and β – Tubulin were imaged on
727 the same plot. Red line represents western blot cropped for alignment; uncropped blots were
728 provided in Fig.S4. **(C)** Relative levels of adiponectin of the siCntl and the siLMNA groups.
729 Compared to siCntl MSCs with no LIV, adiponectin protein levels in siLMNA treated MSCs with
730 no LIV were decreased by 39% (p<0.01, n=4). Compared to non-LIV controls for siCntl treated
731 cells, LIV treated samples had 30% reduction in adiponectin protein levels (p < 0.001, n=3/grp).
732 SiLMNA treated cells treated with LIV had a 44% reduction of Adiponectin protein compared to
733 non-LIV samples (p<0.01, n=3/grp). Compared to siCntl cells with LIV treatment, siLMNA cells
734 treated with LIV had a 51% reduction in adiponectin (p<0.01, n=3/grp). Results are presented as
735 mean \pm STE. Group comparisons were made via one-way ANOVA followed by a Newman-
736 Keuls post-hoc test. p<0.05, ** p<0.01, *** p<0.001, against control or against each other.

737

738

739 **Fig. 5 Differential effect of Lamin A/C depletion and LIV on MSCs transcription during**
740 **adipogenic differentiation: (A)** Heat map of genes with average expression of 0.3 FPKM, t-
741 test $p < 0.05$, and fold change greater than 1.4. Unit variance scaling is applied to rows. **(B)**
742 Principle component plot where principal component 1 and principal component 2 that explain
743 40.4% and 15.9% of the total variance, respectively. Prediction ellipses are such that with
744 probability 0.95, a new observation from the same group will fall inside the ellipse. N = 14 data
745 points. **(C)** Average FPKM values of genes related to adipogenic phenotype. Results are
746 presented as mean \pm STE. Group comparisons were made via one-way ANOVA. * $p < 0.05$, **
747 $p < 0.01$ were against control or against each other.

748
749 **Fig. 6 Lamin A/C depletion impedes adipogenic transcription in MSCs: (A)** Volcano plot of
750 siLMNA compared to siCtl under adipogenic conditions. Genes with Wald values of $p > 0.05$ are
751 colored in grey. Genes with 2-fold differential gene expression but have Wald values of $p > 0.05$
752 are colored in green. Genes colored with blue have Wald values of $p < 0.05$, but less than 2-fold
753 differential gene expression. Genes with Wald values of $p < 0.05$ and greater than 2-fold gene
754 expression are colored in red. Grouping of five or more associated genes were highlighted and
755 subsequently subjected to a supervised analysis of biologic function. **(B)** Upregulated genes
756 were associated with cellular processes included tissue repair, ECM remodeling and cell
757 surface transporters. Full size image is presented in Fig. S3 **(C)** Downregulated gene groups
758 included, cell adhesion and cytoskeletal organization, interferon signaling and regulation of gene
759 expression, G-protein coupled receptor signaling, lipid metabolism and paracrine inflammatory
760 signaling and adipogenic phenotype. Full size image is presented in Fig. S4

761
762 **Fig. 7 LIV Decreases Interferon Signaling Pathway in siLMNA and siCtl Treated Cells:**
763 **(A)** Volcano plot comparing the siCtl adipogenesis with or without LIV treatment (siCtl \pm LIV).
764 **(B)** Volcano plot comparing the siLMNA adipogenesis with or without LIV treatment (siLMNA \pm

765 LIV). Genes with Wald values of $p>0.05$ are colored in grey. Genes with 2-fold differential gene
766 expression but have Wald values of $p>0.05$ are colored in green. Genes colored with blue have
767 Wald values of $p<0.05$, but less than 2-fold differential gene expression. Genes with Wald
768 values of $p<0.05$ and greater than 2-fold gene expression are colored in red. Both siCtrl (**C**) and
769 siLMNA (**D**) showed downregulation of genes closely associated with interferon signaling
770 pathway. Full size images are presented in Fig. S5A and S5B. (**E**) Cells treated with siCntrl had
771 11 genes associated with interferon signaling pathway while siLMNA treated cells had 16 genes
772 associated with interferon pathway. **Bolded** gene names (Gvin, Ifit1, Ifit3, and Oas2) names
773 were found in both siCntrl and siLMNA treated samples.

774

775 **Fig. S1 (A)** Intensity profile of Lamin A/C staining along a rectangular region of interest on the
776 nucleus. The middle plot shows the representative intensity distribution of Lamin A/C over the
777 nucleus (blue, Hoechst 33342). Lamin A/C intensity peaked at the nuclear rim in siCntrl cells
778 while no peaks were observed in siLMNA cells. Comparison of peak intensity values at the
779 nuclear envelope show 80% ($p<0.001$, $n=25/\text{grp}$) decrease with siLMNA treatment. (**B**)
780 Intensity profile of Sun-1 staining along a rectangular region of interest on the nucleus. The
781 middle plot shows the representative intensity distribution of Sun-1 (red) over the nucleus (blue,
782 Hoechst 33342). Comparison of peak intensity values at the nuclear envelope show 15%
783 ($p<0.05$, $n=19/\text{grp}$) decrease with siLMNA treatment. (**C**) Intensity profile of Sun-2 staining
784 along a rectangular region of interest on the nucleus. The middle plot shows the representative
785 intensity distribution of Sun-2 (red) over the nucleus (blue, Hoechst 33342). No difference
786 between siCntrl and siLMNA was detected. Images were quantified using ImageJ. Results are
787 presented as mean \pm SD. Group comparisons were made via non-parametric Mann Whitney U-
788 test. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

789

790 **Fig. S2.** Lamin A/C (LMNA) FPKM levels for RNA-seq samples.

791

792 **Fig. S3** Full size, annotated gene cluster for Fig.6B

793

794 **Fig. S4** Full size, annotated gene cluster for Fig.6D

795

796 **Fig. S5** Full size, annotated gene cluster for (A) Fig.7C and (B) Fig.7D

797

798 **Fig. S6** Gene lists for (A) Fig.6B and (B) Fig.6C

799

800 **Fig. S7.** Unprocessed blots used in Figure 2 as obtained by LiCor C-DiGit blot scanner.

801

802 **Fig. S8.** Unprocessed blots used in Figure 3 as obtained by LiCor C-DiGit blot scanner.

803

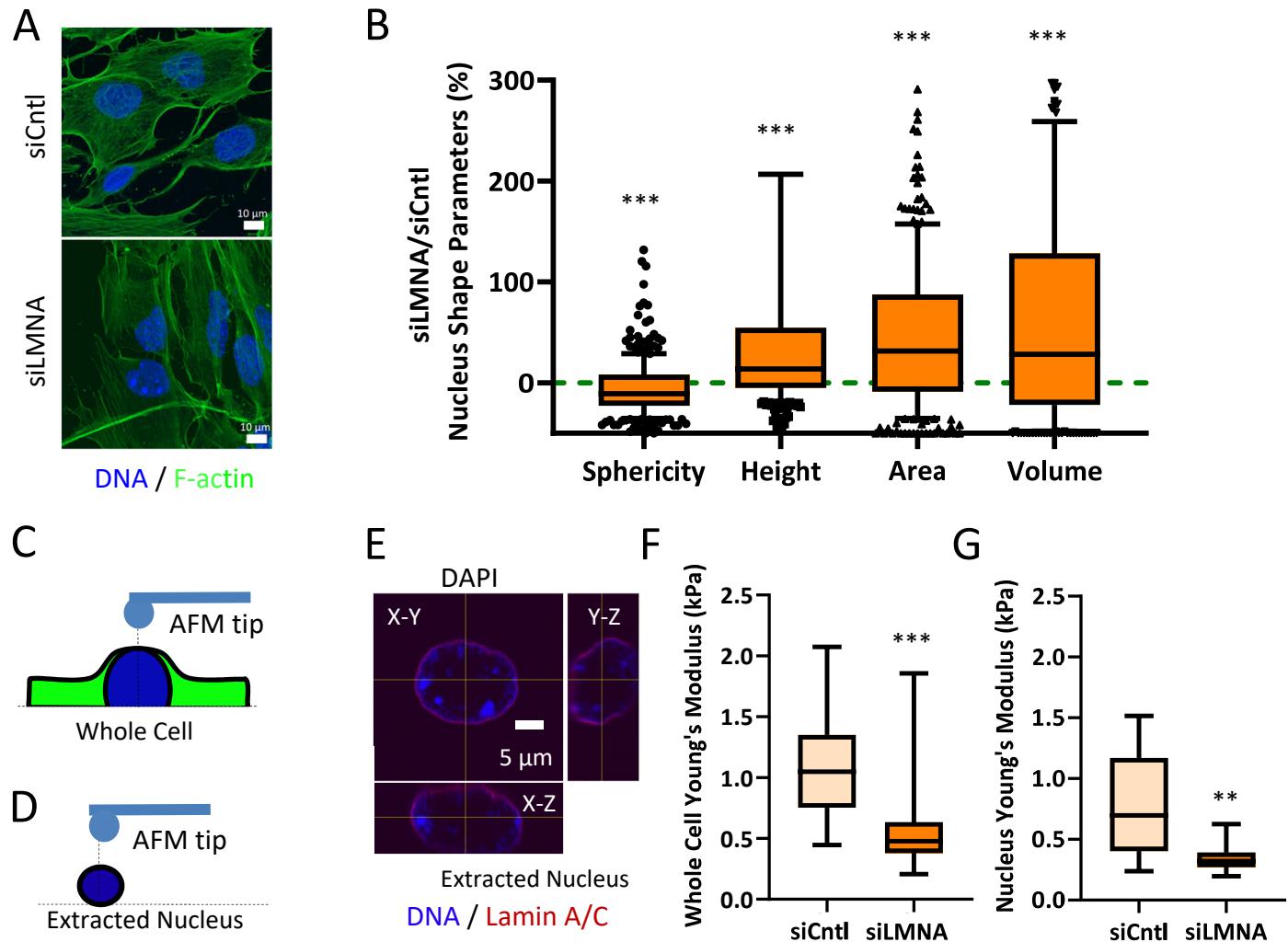
804 **Fig. S9.** Unprocessed blots used in Figure 4 as obtained by LiCor C-DiGit blot scanner.

805 **Table S1:** Cell culture and pharmacological reagents and their final concentrations

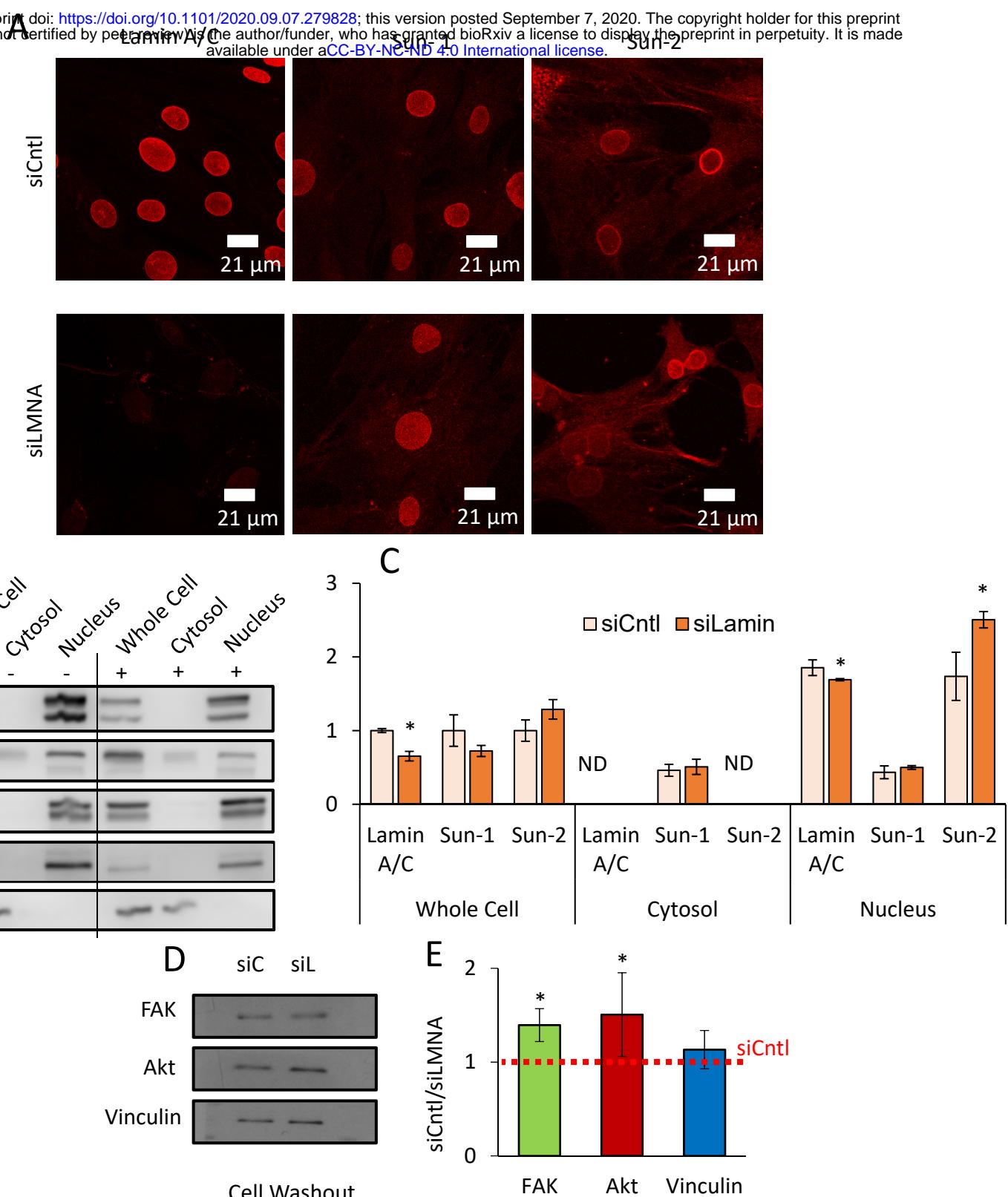
Cell Culture and Pharmacological Reagents		Final Concentration
IMDM	GIBCO	-
DMEM	Caisson Laboratories	-
FCS	Atlanta Biologicals	10% v/v
Penicillin/streptomycin	GIBCO	1% v/v
Dexamethasone	Sigma Aldrich	0.1uM
Insulin	Sigma Aldrich	5 µg/mL

806

807 **Table S2:** Antibodies used and their final concentrations for western blots.


Antibodies		Final Concentration
p-FAK Tyr397 (3283)	Cell Signaling	1/1000
FAK (sc-558)	Santa Cruz Biotechnology	1/500
LDHA (2012S)	Cell Signaling Technology	1/1000
Vinculin (E1E9V)	Cell Signaling Technology	1/1000
PARP (9542S)	Cell Signaling Technology	1/1000
Lamin A/C (sc-7292)	Santa Cruz Biotechnology	1/1000
Sun-1 (HPA008346)	Sigma Aldrich	1/1000
Sun-2 (ab87036)	Abcam	1/1000
Adiponectin (ADIPOQ) (PA1-054)	ThermoFischer Scientific	1/1000
β-Tubulin (D3U1W)	Cell Signaling Technology	1/1000

808


809 **Table S3:** Immunostaining antibodies and reagents and their final concentrations.

Immunostaining antibodies and Reagents		Final Concentration
Hoechst 33342	Thermo Scientific	1 μ g/mL
Alexa Fluor 488 Phalloidin	Life Technologies	0.1 μ M
Lamin A/C (sc-7292)	Santa Cruz Biotechnology	1:300
Sun-1 (MABT892)	EMD Millipore	1:300
Sun-2 (IQ444)	Immuquest	1:300

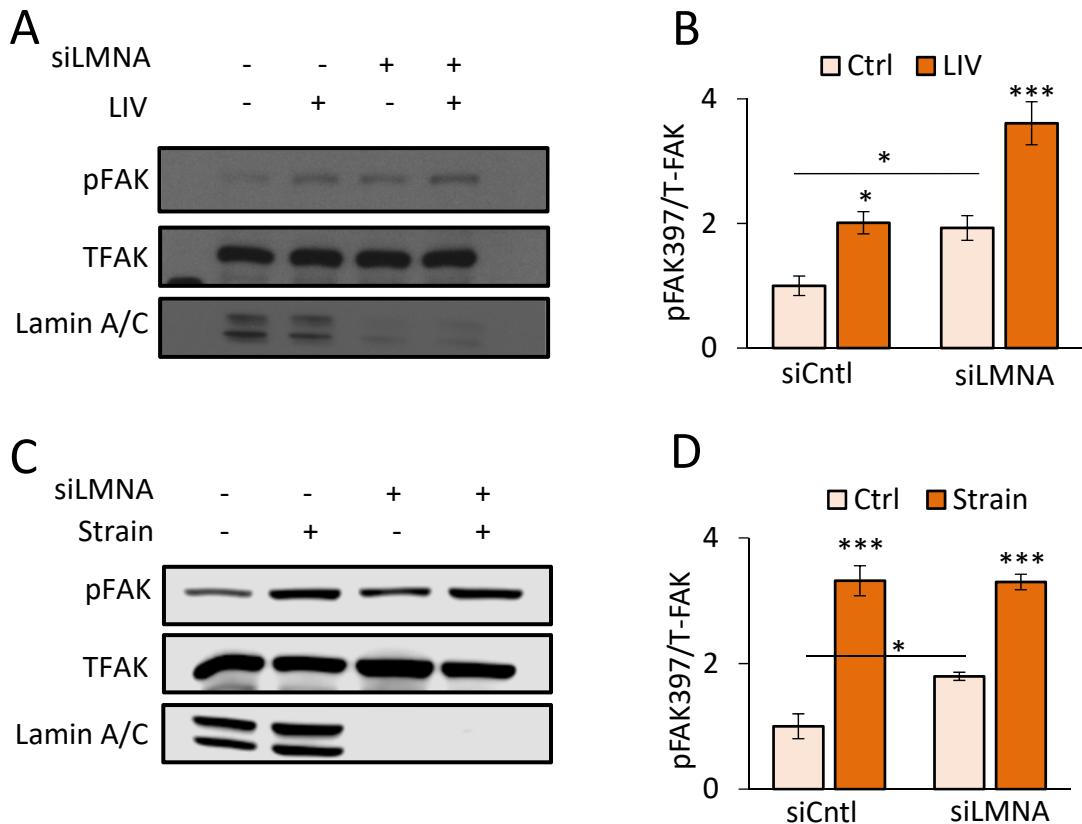

810

Fig. 1 siRNA depletion of Lamin A/C weakens the nuclear elastic modulus in MSCs : (A) Confocal Image of F-actin (phalloidin, green) and nucleus (DAPI, blue). Scale bar: 10μm. (B) Geometric parameters of siCtrl and siLMNA groups quantified and presented as a % difference compared to siCtrl group (green line). Nuclear sphericity decreased by 8% in MSCs treated with Lamin A/C specific siRNA (siLMNA) compared to MSCs treated with a non-specific control siRNA (siCtrl) ($p<0.05$, $n=342$). Nuclear area of siLMNA treated cells showed a 32% increase when compared to siCtrl ($p<0.05$, $n=342$). Nuclear volume siLMNA treated cells increased by 31% compared to siCtrl ($p<0.05$, $n=342$). Nuclear height of siCtrl and siLMNA treated cells. When compared to the nuclear height of siCtrl MSCs, siLMNA treated cells had increased nuclear height of 12% ($p<0.05$, $n=342$). (C) Schematic of AFM probe tip testing whole cell Young's modulus in live MSCs. (D) Depiction of AFM probe tip testing live extracted nucleus. (E) Confocal image of extracted nucleus depicting its orthogonal views from X-Y, X-Z, Y-Z planes (DAPI, blue; Lamin A/C, Red) Scale bar: 5μm. (F) Whole cell Young's modulus of the siLMNA group was 45% lower when compared to the siCtrl group. (G) Young's modulus of extracted live nucleus in siLMNA MSCs remained 55% lower when compared to siCtrl MSCs ($p<0.01$, $n=13$). Results are presented as mean \pm STD. Group comparisons were made via non-parametric Mann Whitney U-test. $p<0.05$, ** $p<0.01$, *** $p<0.001$, against control.

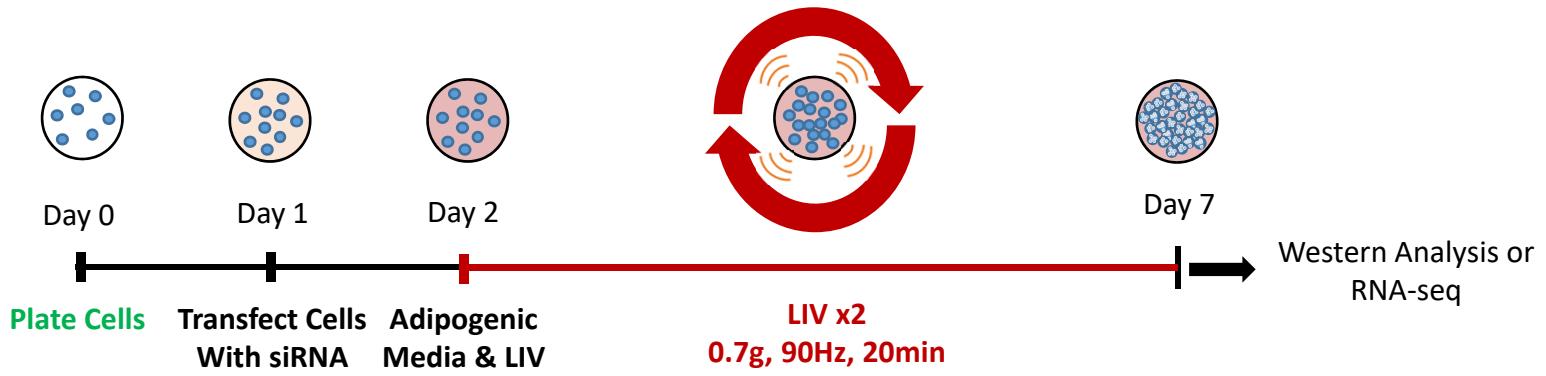


Fig. siRNA depletion of Lamin A/C (LMNA) Increases Sun-2 (SUN2) Nuclear Levels and Focal Adhesion Proteins: (A) Confocal images of cells treated with the siCtrl and siLMNA siRNA groups. Primary antibodies targeted Lamin A/C, Sun-1, and Sun-2. (B) Representative western blots of cell fractionations (whole cell, cytosol and nucleus) with cells treated with either siCtrl or siLMNA. Primary antibodies targeted Lamin A/C, Sun-1, Sun-2, PARP, and LDHA. Line represents removal of protein ladder marker lane, uncropped blots are provided in Fig.S1. (C) Analysis of western of cell fractionation western blots (n=3/grp). siLMNA treated cells had 29% increase of Sun-2 in whole cells, 122% in cytoplasm, and 44% increase in nucleus fraction ($p<0.05$) compared to siCtrl samples. Sun-1 levels saw a decrease of 28% in whole cell, 10% increase in cytoplasm, and 15% increase in nucleus fraction compared to siCtrl samples. ND represents non-detectable levels. (D) Representative western blot of focal adhesion proteins following a cell washout. Primary antibodies targeted of FAK, Akt, and Vinculin in siCtrl and siLMNA siRNA treated cells. (E) Densitometry analysis showed that, when compared to siCtrl levels siLMNA treated MSCs showed increased levels of total FAK (39%, $p<0.05$) and total Akt (50%, $p<0.05$), no change in Vinculin was detected (n=3/grp). Results are presented as mean \pm SEM. Scale bar: 21 μ m. Group comparisons were made via parametric two-tailed Student T-test (C) or one-way ANOVA followed by a Newman-Keuls post-hoc test (E). $p<0.05$, ** $p<0.01$, *** $p<0.001$, against control.

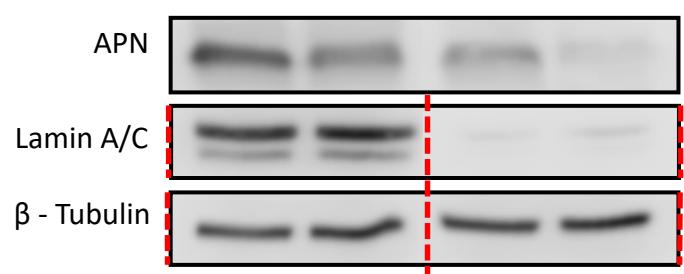
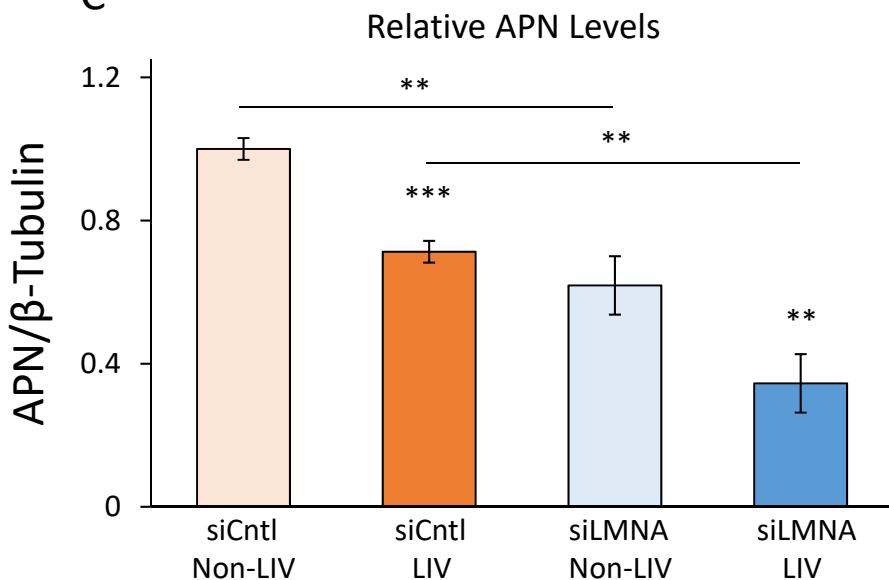
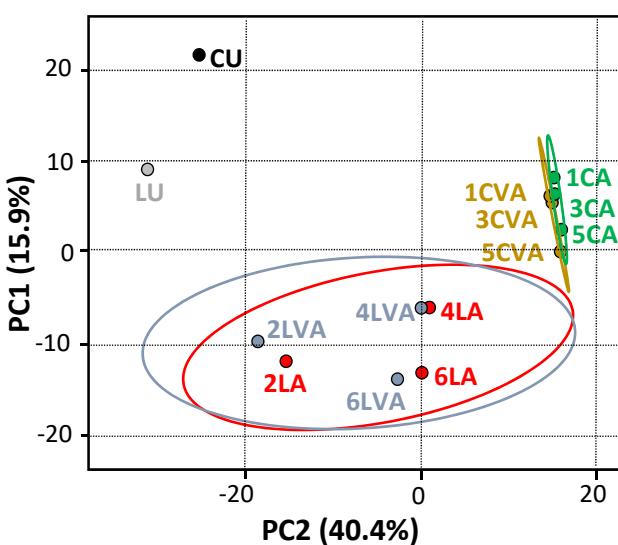
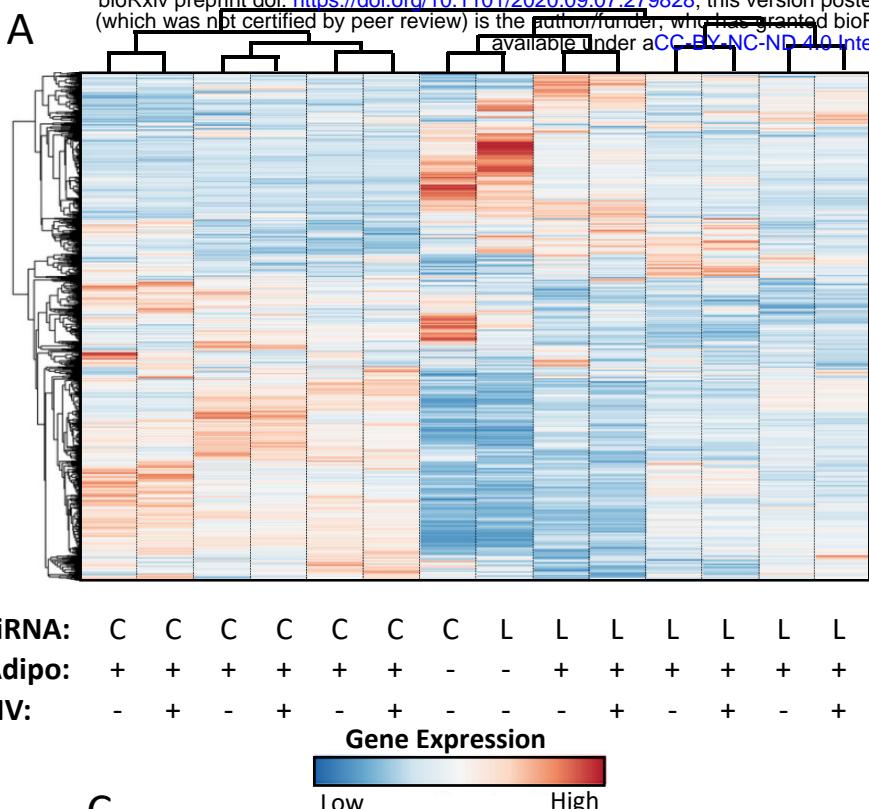
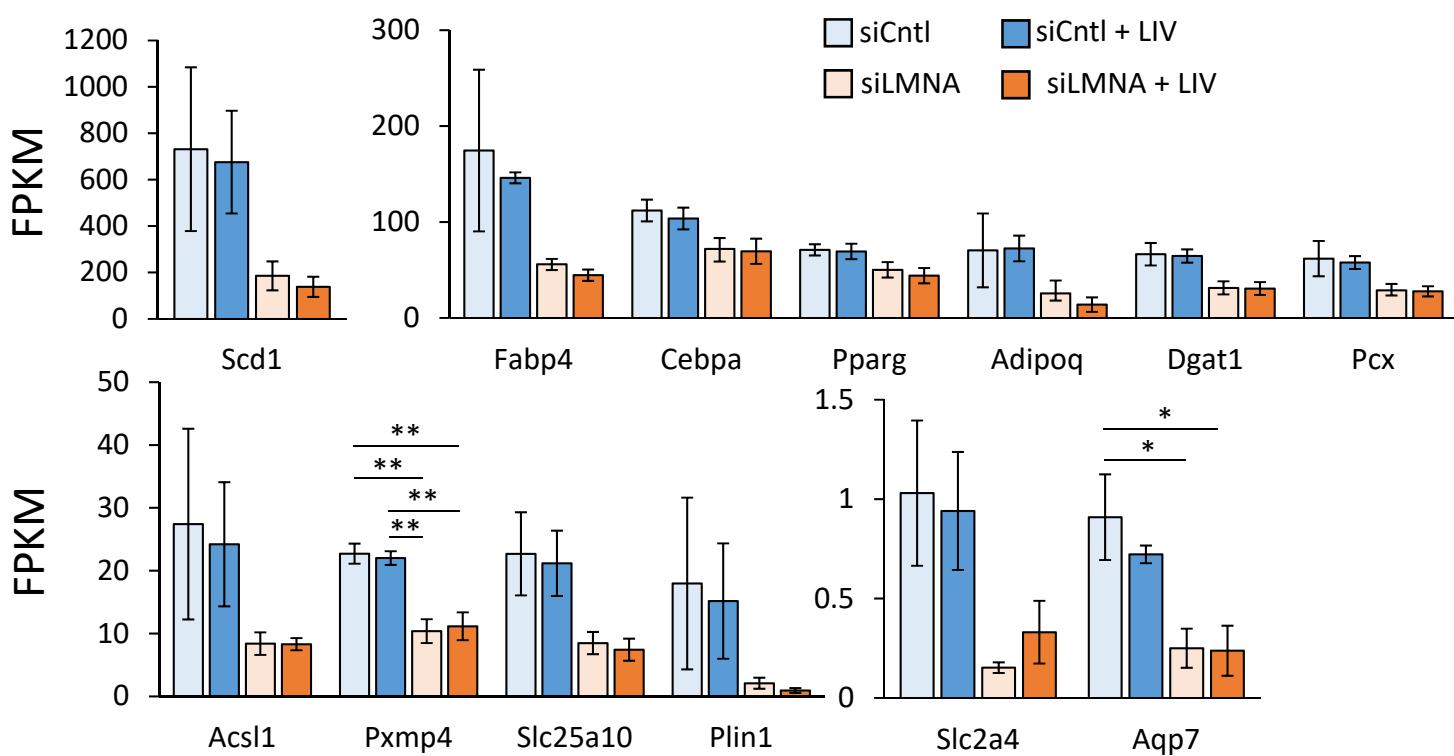
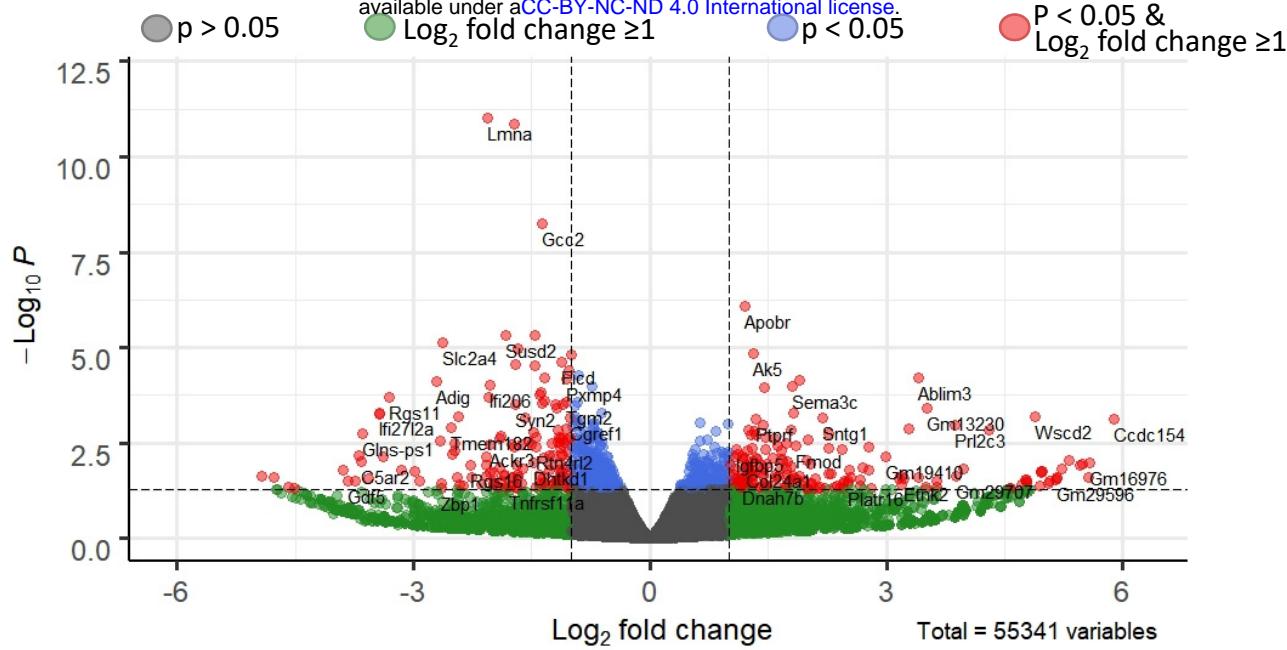


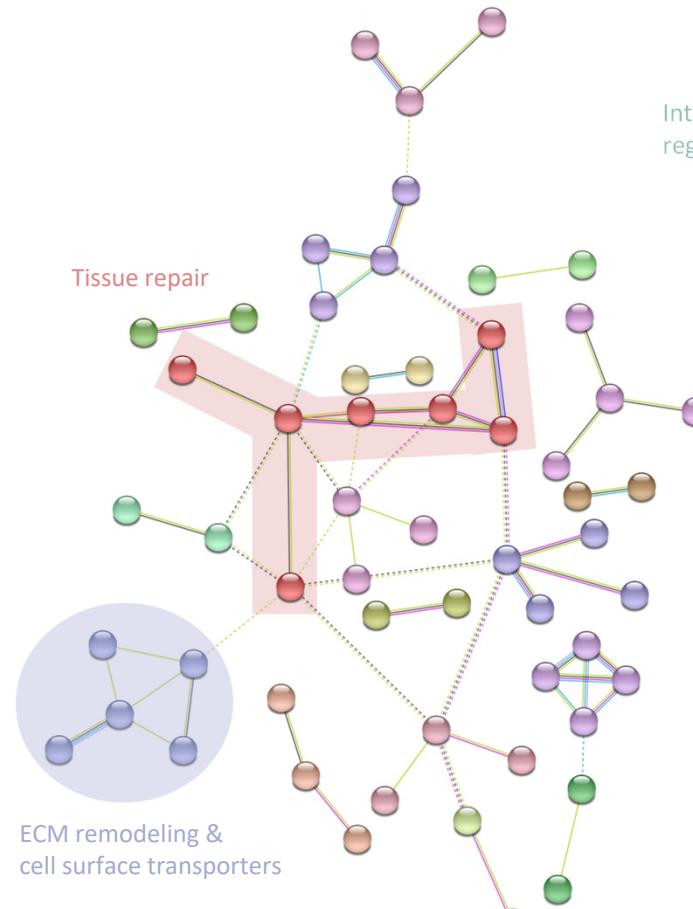
Fig. 3 Focal adhesions maintain response to mechanical stimulus in Lamin A/C depleted MSCs: **(A)** Representative western blots for pFAK (Tyr 397), TFAK, and Lamin A/C in siCtrl and siLMNA treated cells groups treated with 2 bouts of LIV (20min, 90Hz, 0.7g) separated by 2 hour rest period. LIV treated sample had a 2-fold increase of pFAK compared to non-LIV. **(B)** Analysis of western image of pFAK, TFAK, and Lamin A/C during LIV (n=4/grp). The non-LIV siLMNA group had a 92% (p<0.05) increased basal pFAK compared to the non-LIV siCtrl group. In response to LIV, both siCtrl and siLMNA treated MSCs elicited 101% (p<0.05) and 87% increases in pFAK, respectively. **(C)** Representative western blots for pFAK (Tyr 397), TFAK, and Lamin A/C of the siCtrl and siLMNA groups treated with a single bout strain (20 min, 0.1 Hz, 2% strain). **(D)** Analysis of pFAK, TFAK, and Lamin A/C immediately after strain application (n=4/grp). The non-strain siLMNA group had a 79% (p<0.05) increased basal pFAK compared to the non-strain siCtrl group. In response to strain, pFAK levels were elevated by 331% (p<0.001) and 83% (p<0.001) in siCtrl and siLMNA treated MSCs respectively. Results are presented as mean \pm STE. Group comparisons were made via one-way ANOVA followed by a Newman-Keuls post-hoc test. p<0.05, ** p<0.01, *** p<0.001, against control or against each other.

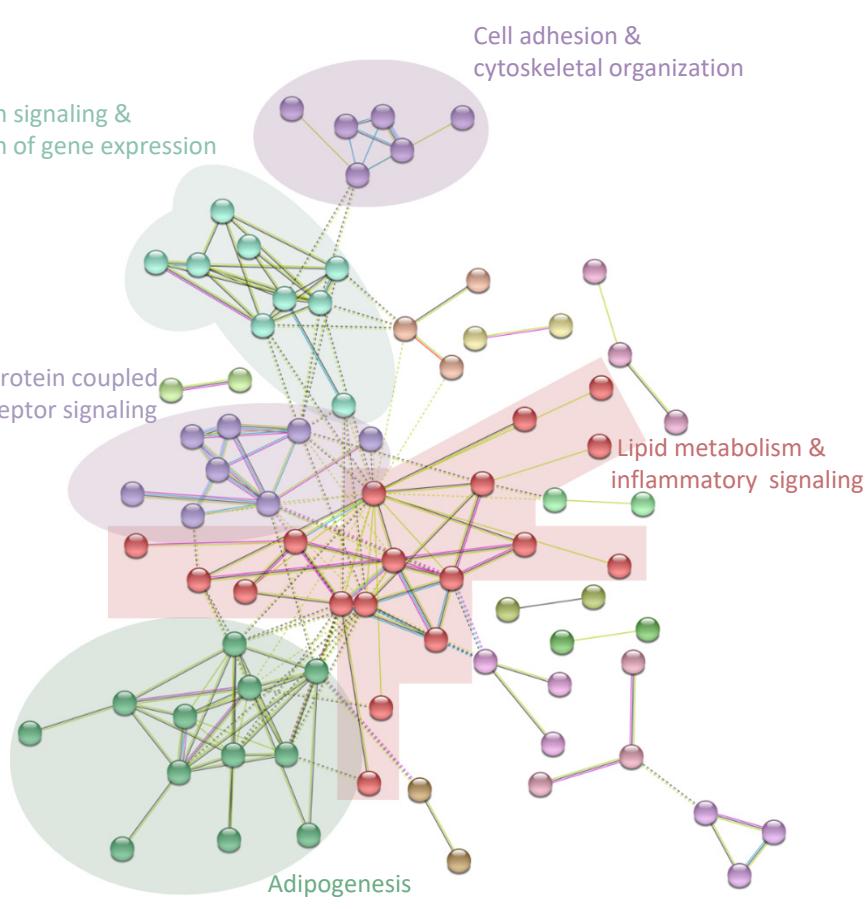

A

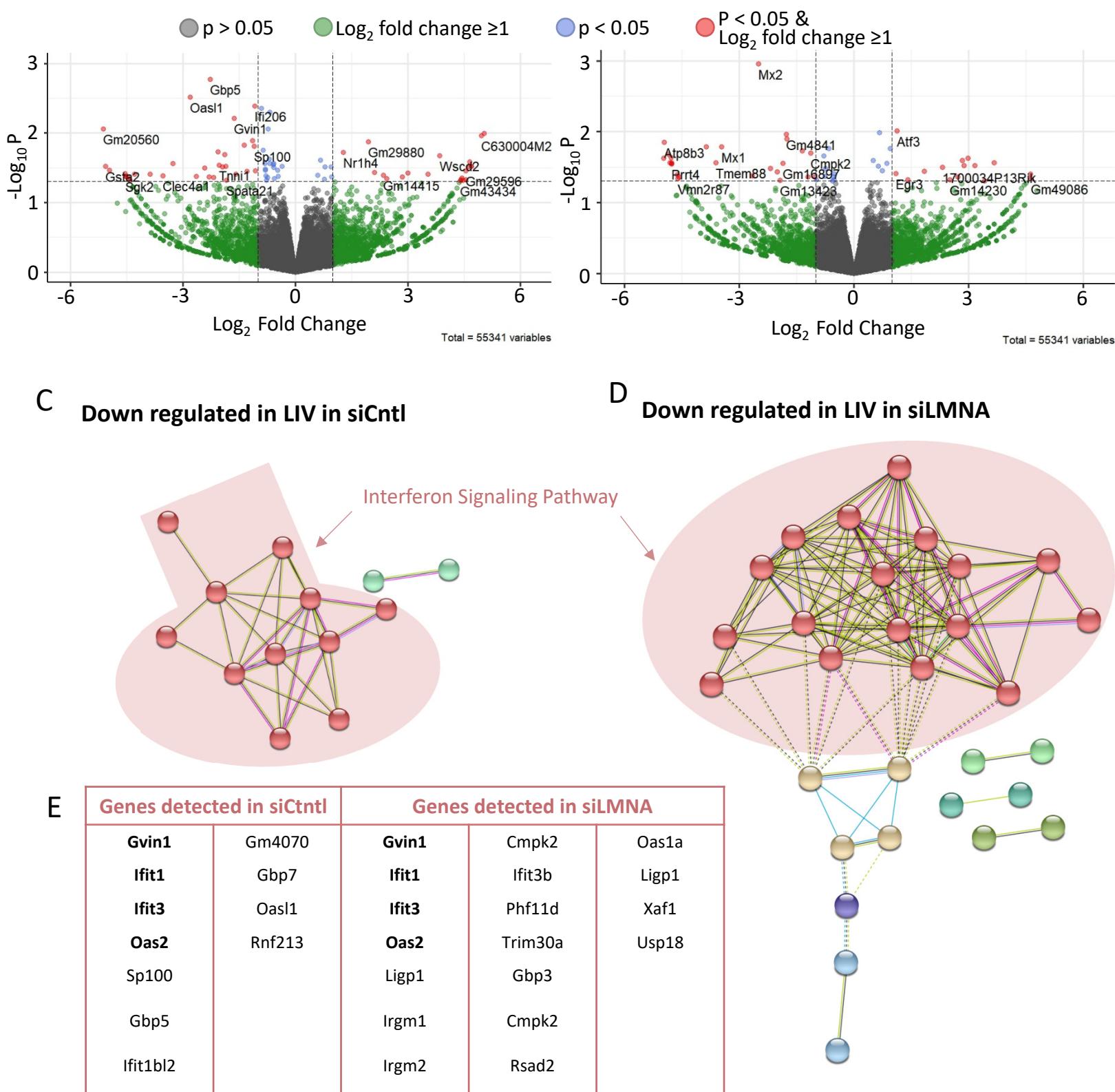


B


C


Fig. 4 Application of daily LIV treatment decreases adipogenic differentiation in MSCs: (A) Timeline of experiments. On day 0 cells were plated on 10cm dishes. Then, on day 1 cells were transfected with siRNA. On day 2 adipogenic media was placed on cells and cells were treated with LIV for 20 minutes, twice daily. Once cells differentiated cells were pulled off for either western analysis or RNA-seq. (B) Representative western blots of cells treated with siCtrl and siLMNA after 7 days of adipogenic induction with and without LIV treatment. Adiponectin protein, Lamin A/C, and β – Tubulin were targeted. Lamin A/C and β – Tubulin were imaged on the same plot. Red line represents western blot cropped for alignment; uncropped blots were provided in Fig.S4. (C) Relative levels of adiponectin of the siCtrl and the siLMNA groups. Compared to siCtrl MSCs with no LIV, adiponectin protein levels in siLMNA treated MSCs with no LIV were decreased by 39% ($p<0.01$, $n=4$). Compared to non-LIV controls for siCtrl treated cells, LIV treated samples had 30% reduction in adiponectin protein levels ($p < 0.001$, $n=3/\text{grp}$). SiLMNA treated cells treated with LIV had a 44% reduction of Adiponectin protein compared to non-LIV samples ($p<0.01$, $n=3/\text{grp}$). Compared to siCtrl cells with LIV treatment, siLMNA cells treated with LIV had a 51% reduction in adiponectin ($p<0.01$, $n=3/\text{grp}$). Results are presented as mean \pm SEM. Group comparisons were made via one-way ANOVA followed by a Newman-Keuls post-hoc test. $p<0.05$, ** $p<0.01$, *** $p<0.001$, against control or against each other.


C = Control siRNA **L** = Lamin siRNA
V = L1V **U** = Undifferentiated
A = Adipogenic differentiation


Fig. 5 Differential effect of Lamin A/C depletion and LIV on mRNA transcription during adipogenic differentiation: (A) Heat map of genes with average expression of 0.3 FPKM, t-test $p < 0.05$, and fold change greater than 1.4. Unit variance scaling is applied to rows. **(B)** Principle component plot where principal component 1 and principal component 2 that explain 40.4% and 15.9% of the total variance, respectively. Prediction ellipses are such that with probability 0.95, a new observation from the same group will fall inside the ellipse. $N = 14$ data points. **(C)** Average FPKM values of genes related to adipogenic phenotype. Results are presented as mean \pm STE. Group comparisons were made via one-way ANOVA. * $p < 0.05$, ** $p < 0.01$ were against control or against each other.


B Upregulated in with Lamin A/C depletion

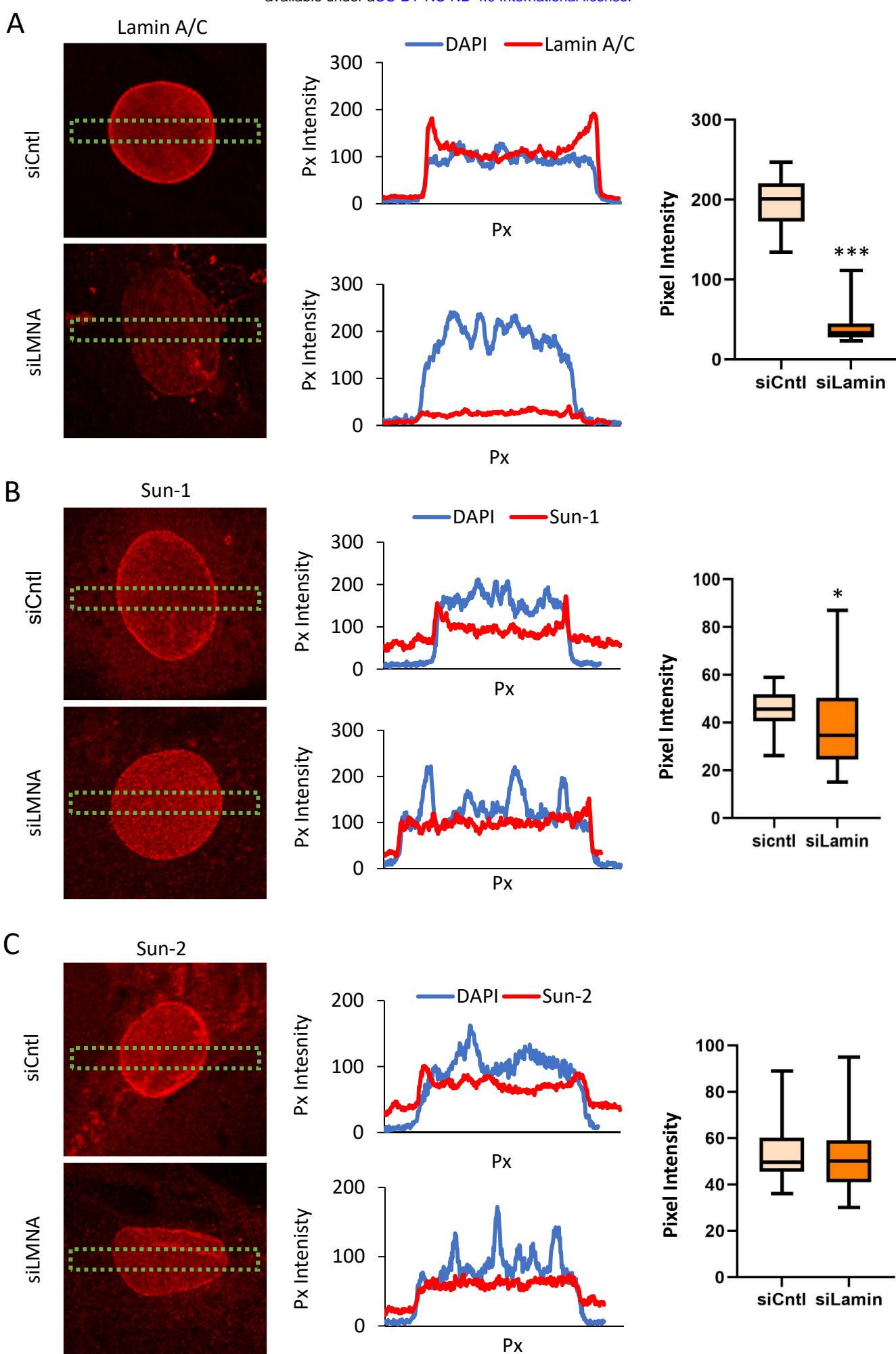
C Downregulated in with Lamin A/C depletion

Fig. 6 Lamin A/C depletion impedes adipogenic transcription in MSCs: (A) Volcano plot comparing the siCtrl adipogenesis with or without LIV treatment (siCtrl \pm LIV). (B) Volcano plot comparing the siLMNA adipogenesis with or without LIV treatment (siLMNA \pm LIV). Genes with Wald values of $p > 0.05$ are colored in grey. Genes with 2-fold differential gene expression but have Wald values of $p > 0.05$ are colored in green. Genes colored with blue have Wald values of $p < 0.05$, but less than 2-fold differential gene expression. Genes with Wald values of $p < 0.05$ and greater than 2-fold gene expression are colored in red. Both siCtrl (C) and siLMNA (D) showed downregulation of genes closely associated with interferon signaling pathway. Full size images are presented in Fig. S5A and S5B. (E) Cells treated with siCtrl had 11 genes associated with interferon signaling pathway while siLMNA treated cells had 16 genes associated with interferon pathway. **Bolded** gene names (Gvin, Ifit1, Ifit3, and Oas2) names were found in both siCtrl and siLMNA treated samples.

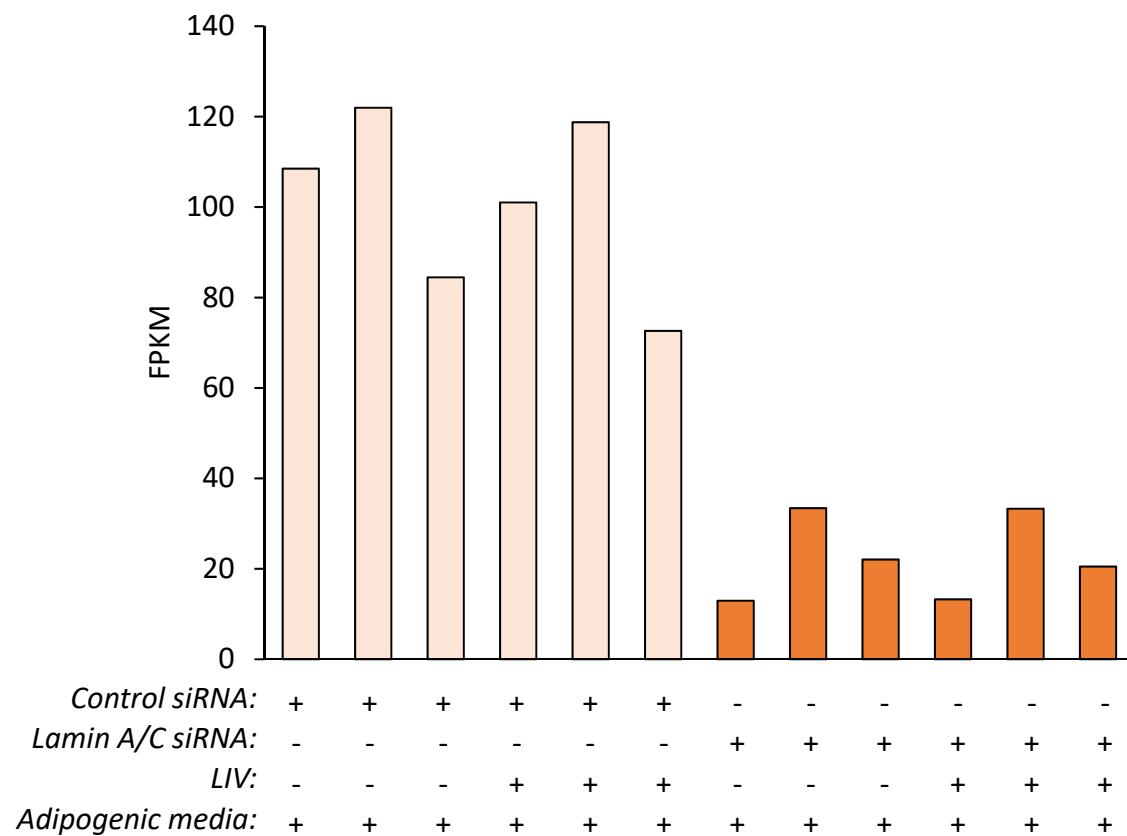
Fig. 7 LIV Decreases Interferon Signaling Pathway in siLMNA and siCtrl Treated Cells : (A) Volcano plot comparing the siCtrl adipogenesis with or without LIV treatment (siCtrl ± LIV). (B) Volcano plot comparing the siLMNA adipogenesis with or without LIV treatment (siLMNA ± LIV). Genes with Wald values of $p > 0.05$ are colored in grey. Genes with differential gene expression log fold 2 change of greater than 1, but have Wald values of $p > 0.05$ are colored in green. Genes colored with blue have Wald values of $p < 0.05$, but differential gene expression log fold 2 change less than 1. Genes with Wald values of $p < 0.05$ and log fold 2 change equal to or greater than 1 are colored in red. Both siCtrl (C) and siLMNA (D) showed downregulation of genes closely associated with interferon signaling pathway.(E) Cells treated with siCtrl had 11 genes associated with interferon signaling pathway while siLMNA treated cells had 16 genes associated with GHJ pathway. **Bolded** gene names (Gvin, Ifit1, Ifit3, and Oas2) names were found in both siCtrl and siLMNA treated samples.

Supplementary Information

Lamin A/C functions independently from mechanical signaling during adipogenesis


Matthew Goelzer¹, Amel Dudakovic², Melis Olcum^{3, 4}, Buer Sen³, Engin Ozcivici⁴, Janet Rubin³, Andre J van Wijnen², Gunes Uzer^{1†}

¹Boise State University, ²Mayo Clinic, ³University of North Carolina Chapel Hill,


⁴Izmir Institute of Technology

† Corresponding Author

Funding support: NIH AG059923 (GU), NSF 1929188 (GU), P20GM109095 (GU), R01AR049069 (AJvW), AR066616 (JR), Career Development Award in Orthopedics Research (AD), The Scientific and Technological Research Council of Turkey 2214-A (MO)

Fig. S1 (A) Intensity profile of Lamin A/C staining along a rectangular region of interest on the nucleus. The middle plot shows the representative intensity distribution of Lamin A/C over the nucleus (blue, Hoechst 33342). Lamin A/C intensity peaked at the nuclear rim in siCtrl cells while no peaks were observed in siLMNA cells. Comparison of peak intensity values at the nuclear envelope show 80% ($p<0.001$, $n=25/\text{grp}$) decrease with siLMNA treatment. **(B)** Intensity profile of Sun-1 staining along a rectangular region of interest on the nucleus. The middle plot shows the representative intensity distribution of Sun-1 (red) over the nucleus (blue, Hoechst 33342). Comparison of peak intensity values at the nuclear envelope show 15% ($p<0.05$, $n=19/\text{grp}$) decrease with siLMNA treatment. **(C)** Intensity profile of Sun-2 staining along a rectangular region of interest on the nucleus. The middle plot shows the representative intensity distribution of Sun-2 (red) over the nucleus (blue, Hoechst 33342). No difference between siCtrl and siLMNA was detected. Images were quantified using ImageJ. Results are presented as mean \pm SD. Group comparisons were made via non-parametric Mann Whitney U-test. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

Fig. S2. Lamin A/C (LMNA) FPKM levels for RNA-seq samples.

Fig. S3

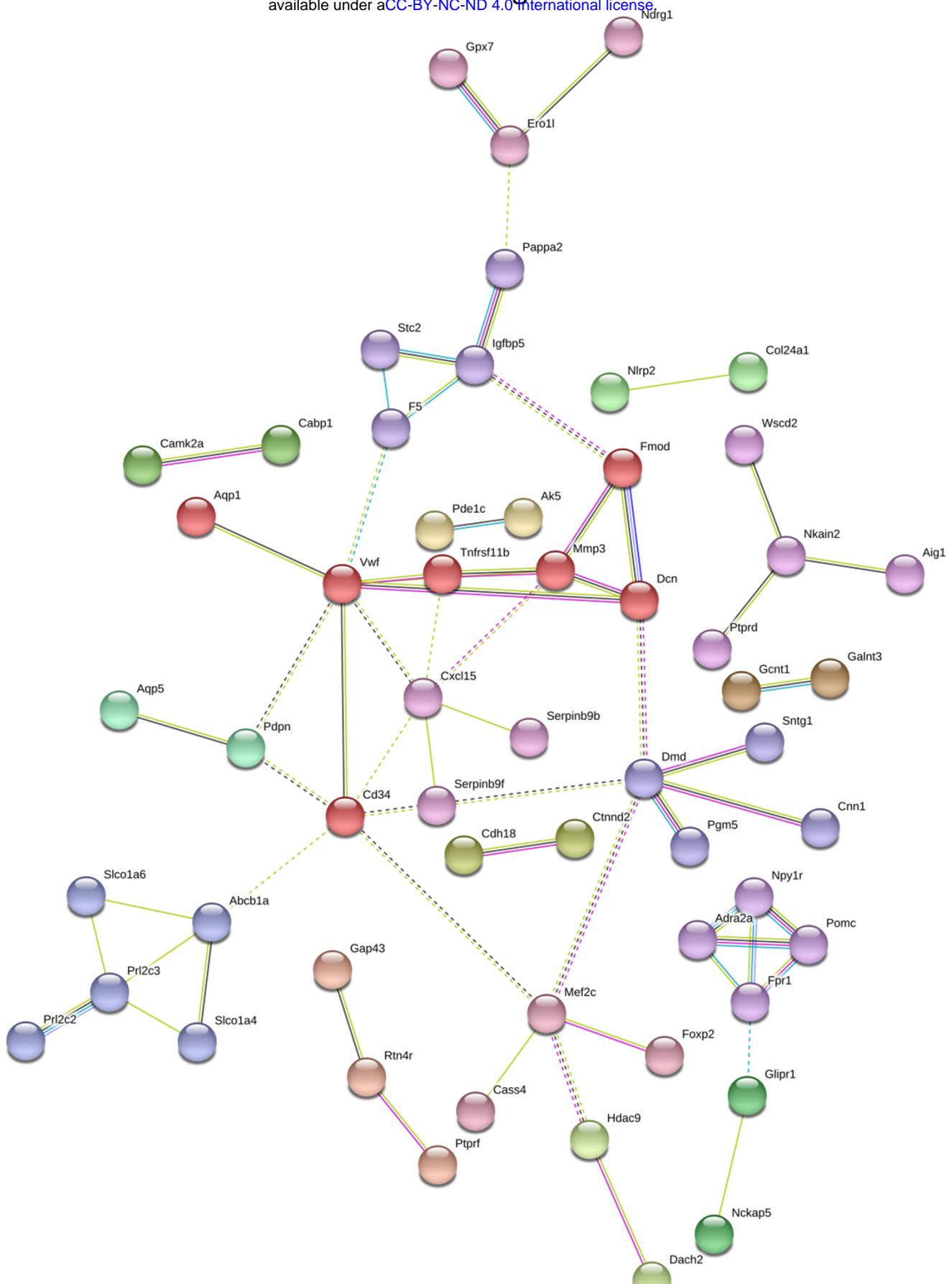


Fig. S3 Full size, annotated gene cluster for Fig.6B

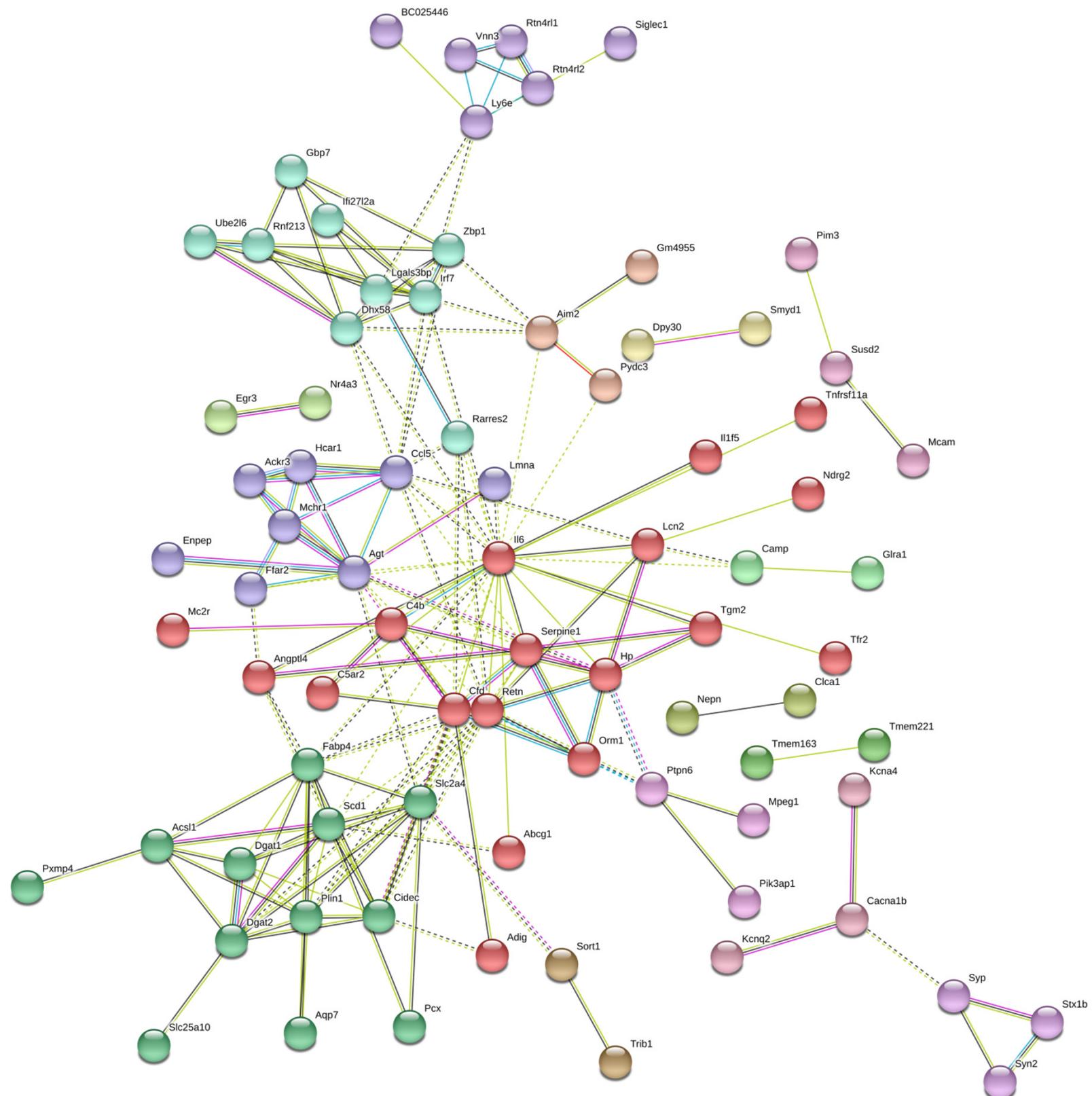
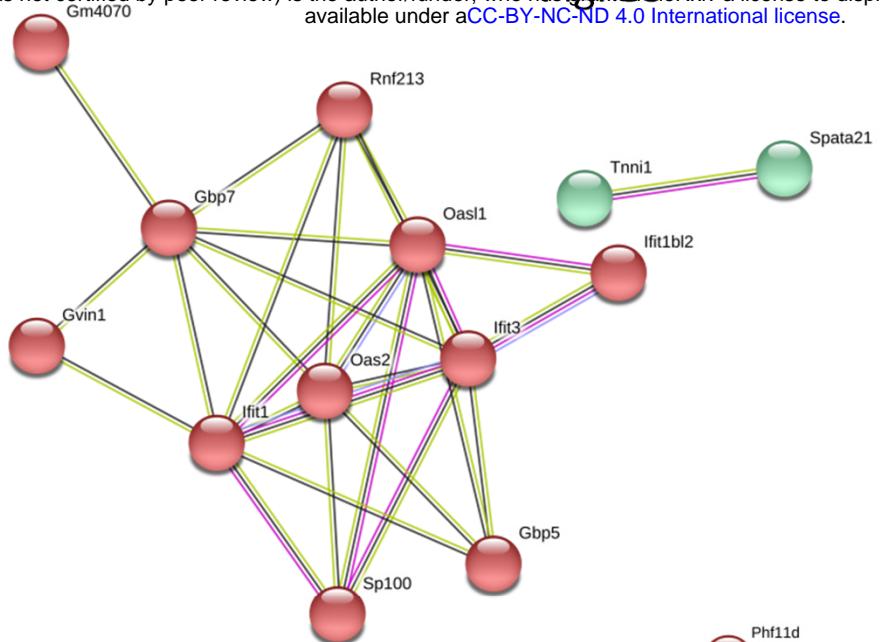



Fig. S4 Full size, annotated gene cluster for Fig.6D

A

B

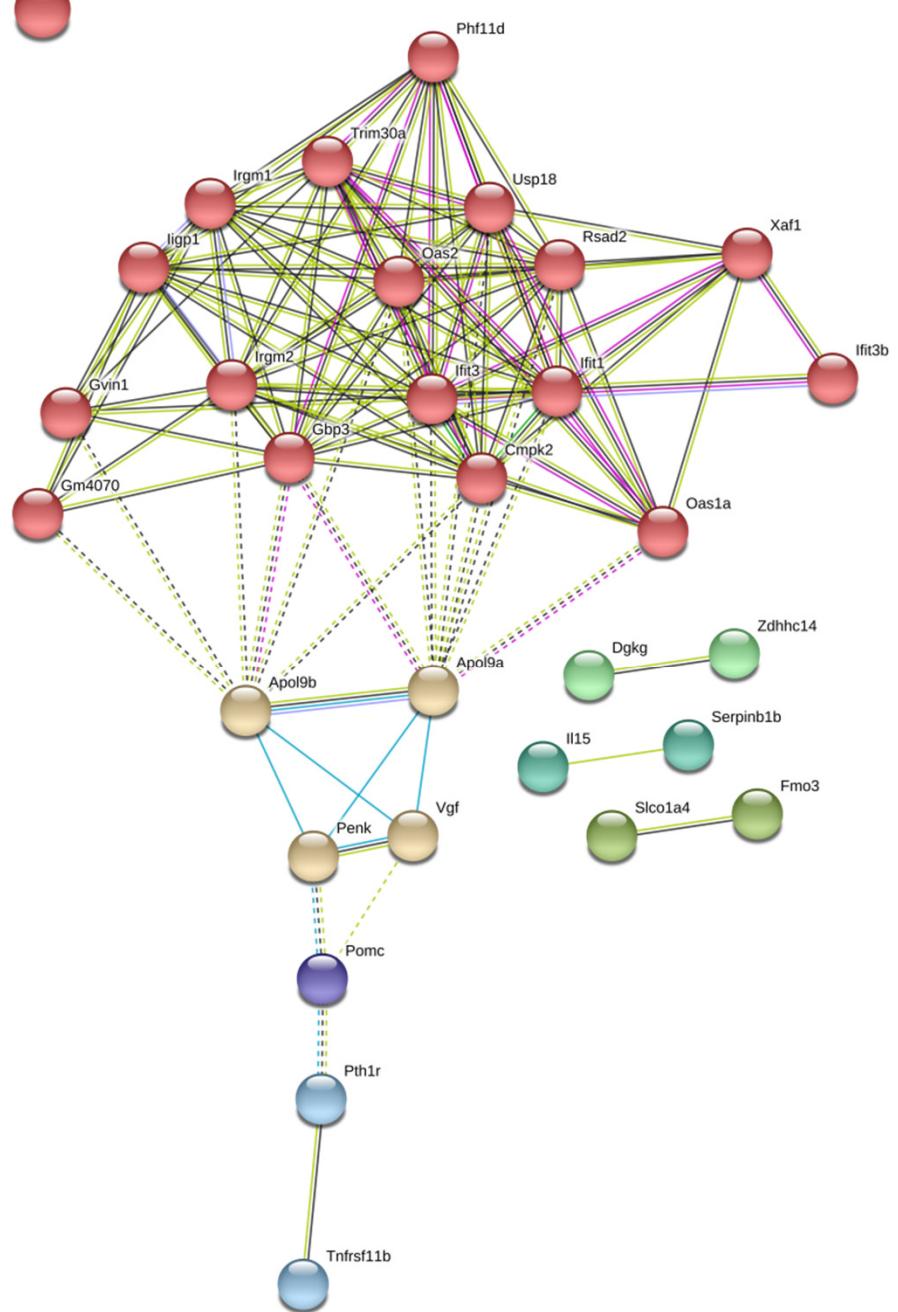


Fig. S5 Full size, annotated gene cluster for (A) Fig.7C and (B) Fig.7D

Fig. S6

A

Tissue repair
Aqp1 Vwf Tnfrsf11b Mmp3 Dcn Cd34 Fmod

ECM remodeling & cell surface transporters
slco1a6 Prl2c2 Prl2c3 Abcb1a slco1a4

B

Cell adhesion & cytoskeletal organization
Bc025446 Vnn3 Ly6e

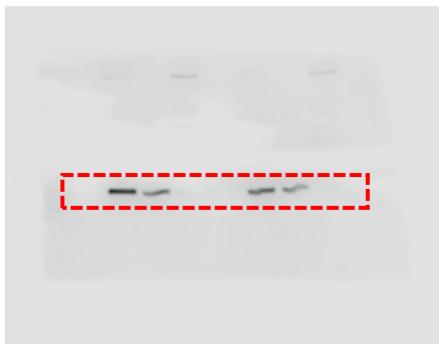
Interferon signaling & regulation of gene expression
Ube2l6 Rnf213 Gbp7 Ifi27l2a

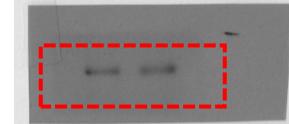
G protein coupled receptor signaling
Hcar1 Ackr3 Ccl5 Mchr1

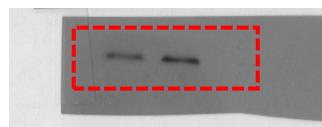
Lipid metabolism & inflammatory signaling
Tnfrsf11a Il1f5 Ndrg2 Lcn2 Tfr2 Tgm2 Hp Orm1

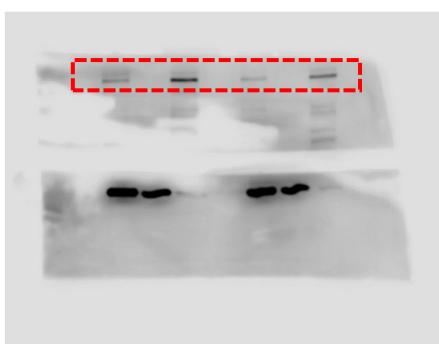
Adipogenesis
Fabp4 Slc2a4 Scd1 Dgat1 Plin1 cidec

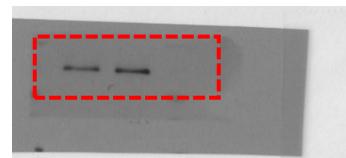
Fig. S6 Gene lists for (A) Fig.6B and (B) Fig.6C

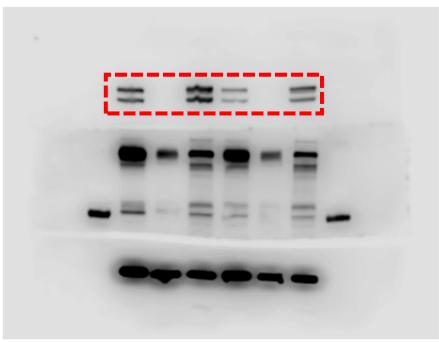

Sun-1

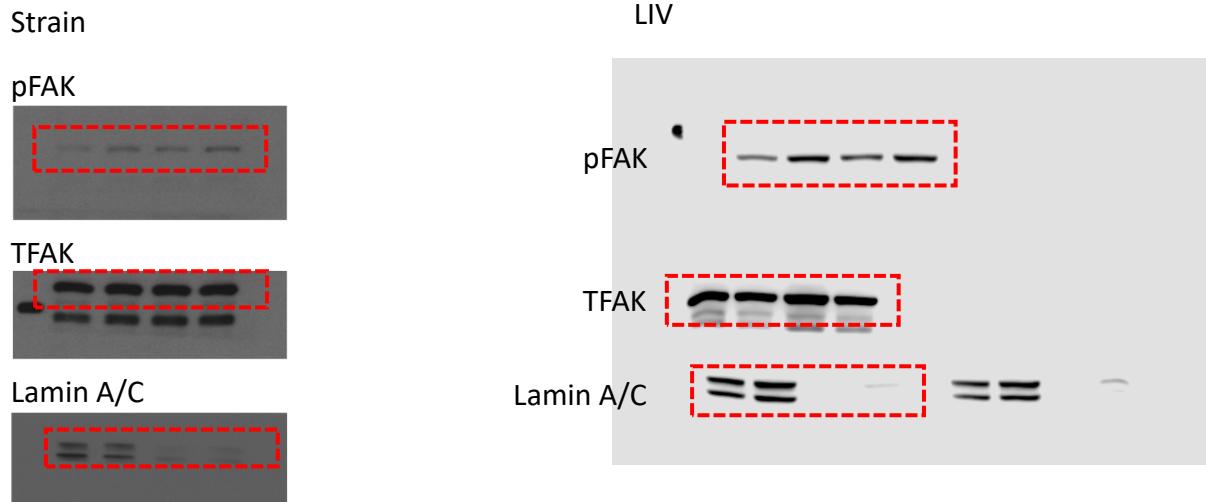

Sun-2


LDHA


FAK


Akt


PARP


Vinculin

Lamin A/C

Figure S7. Unprocessed blots used in Figure 2 as obtained by LiCor C-DiGit blot scanner.

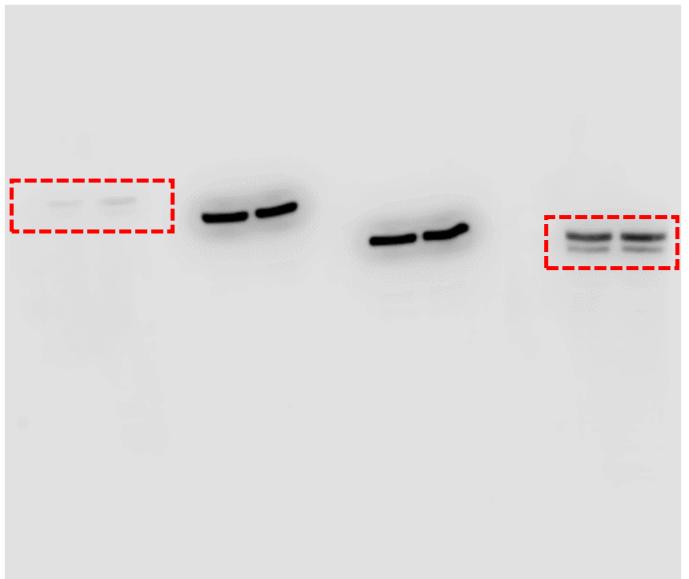
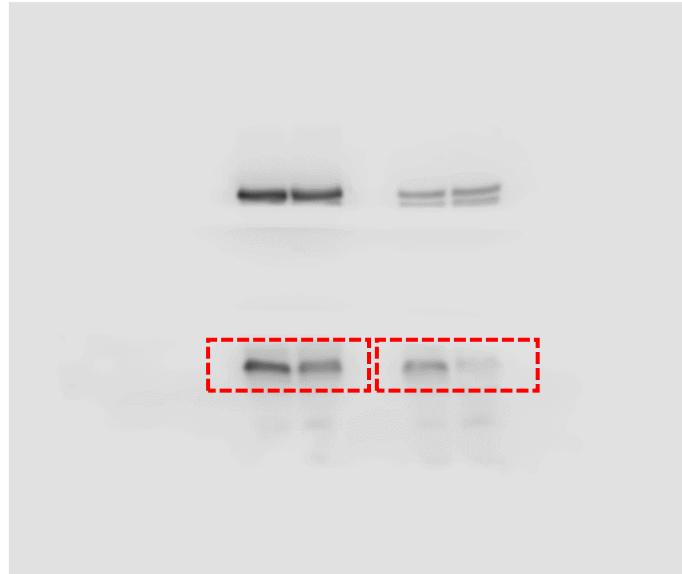

Figure S8. Unprocessed blots used in Figure 3 as obtained by LiCor C-DiGit blot scanner.

Fig. S9


β -tubulin

Lamin A/C

APN

Figure S9. Unprocessed blots used in Figure 4 as obtained by LiCor C-DiGit blot scanner.

Table S1: Cell culture and pharmacological reagents and their final concentrations.

Cell culture and pharmacological reagents		Final Concentration
IMDM	GIBCO	-
DMEM	Caisson Laboratories	-
FCS	Atlanta Biologicals	10% v/v
Penicillin/streptomycin	GIBCO	1% v/v
Dexamethasone		0.1uM
Insulin		5ug/ml

Table S2: Antibodies used and their final concentrations for western blots.

Antibodies		Final Concentration
p-FAK Tyr397 (3283)	Cell Signaling	1/1000
FAK (sc-558)	Santa Cruz Biotechnology	1/500
LDHA (2012S)	Cell Signaling Technology	1/1000
Vinculin (E1E9V)	Cell Signaling Technology	1/1000
PARP (9542S)	Cell Signaling Technology	1/1000
Lamin A/C (sc-7292)	Santa Cruz Biotechnology	1/1000
Sun-1 (HPA008346)	Sigma Aldrich	1/1000
Sun-2 (ab87036)	Abcam	1/1000
Adiponectin (ADIPOQ) (PA1-054)	ThermoFischer Scientific	1/1000
β-Tubulin (D3U1W)	Cell Signaling Technology	1/1000

Table S3: Immunostaining antibodies and reagents and their final concentrations.

Immunostaining antibodies and reagents		Final Concentration
Hoechst 33342	Thermo Scientific	1 µg/mL
Alexa Fluor 488 Phalloidin	Life Technologies	0.1µM
Lamin A/C (sc-7292)	Santa Cruz Biotechnology	0.3 µg/µL
Sun-1 (MABT892)	EMD Millipore	0.3 µg/µL
Sun-2 (IQ444)	Immuquest	0.3 µg/µL