

1 **Title: CyDAP– A fluorescent probe for cytosolic dopamine detection**
2 Jing-Yi Jeng^{1,2}, Lee Sun^{1,2}, Jia-Chi Wang¹, Cheng-Yuan Lin¹, Chih-Ping Hung¹,
3 Li-An Chu^{2,3}, Hui-Yun Chang^{3,4}, Ann-Shyn Chiang^{3,4} & Tzu-Kang Sang^{1,3*}
4 1. Institute of Biotechnology, Department of Life Science, National Tsing Hua
5 University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
6 2. Department of Biomedical Engineering and Environmental Science,
7 National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013,
8 Taiwan
9 3. Brain Research Center, National Tsing Hua University, 101, Section 2,
10 Kuang-Fu Road, Hsinchu 30013, Taiwan
11 4. Institute of Systems Neuroscience, National Tsing Hua University, 101,
12 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

14. #· equal contribution

15

16 * Correspondence: Tzu-Kang Sang, Ph.D.

17 Institute of Biotechnology and
18 Department of Life Science
19 National Tsing Hua University
20 101, Section 2, Kuang-Fu Road
21 Hsinchu 30013, Taiwan
22 Email: tksang@life.nthu.edu.tw
23 Phone: 886-3-574-2474
24 FAX: 886-3-571-5934

1 **Abstract**

2 Dopamine (DA) is an essential neurotransmitter modulating motor and
3 cognitive functions. Several neurological disorders, including Parkinson's
4 disease (PD) and drug addiction, are the result of DA system dysfunction;
5 however, it remains incomplete understood of why DA neuron is selectively
6 more vulnerable than other neurons. Here we utilize the spectral feature of
7 human MAO B (monoamine oxidase B) to design a genetic-amenable,
8 GFP-based fluorescent probe CyDAP. Upon genetic and pharmacological
9 manipulations to elevate the cytosolic DA levels in cells and *Drosophila* models,
10 CyDAP shows enhanced GFP emission, suggesting this probe is feasible for
11 DA detection. Furthermore, we observe that expressing human α -Synuclein in
12 *Drosophila* elicited GFP emission from CyDAP, suggesting a link between
13 cytosolic DA imbalance and regional vulnerability in PD context. Importantly,
14 CyDAP can detect the change of cytosolic DA in live *Drosophila* brains, as
15 demonstrated by time-lapse and the 4D light-sheet confocal recording. CyDAP
16 may serve as a tool for evaluating metabolic deregulation of DA in brain
17 models of PD and other DA system-related psychiatric disorders.

18

19

20 **Introduction**

21 Neurotransmitter dopamine (DA) modulates motor and cognitive functions,
22 and the impairment of this system causes a wide range of neurological
23 conditions, including Parkinson's disease (PD), psychiatric disorders, and drug
24 addiction (Liss and Roeper, 2008). The precursor of DA is L-DOPA
25 (L-3,4-dihydroxyphenylalanine), which is converted from L-tyrosine by TH
26 (tyrosine hydroxylase) and its cofactor. The subsequent L-DOPA
27 decarboxylation, catalyzed by AADC (aromatic amino acid decarboxylase,
28 also known as dopa decarboxylase, or DDC) yields DA (Carlsson et al., 1958;
29 Christenson et al., 1972; Holtz P, 1938; Nagatsu et al., 1964). The newly made
30 neurotransmitters are transferred into the vesicle by the vesicular monoamine
31 transporter (VMAT) (Liu et al., 1992) to be released upon the fusion of the
32 synaptic vesicle and the cell membrane. The released DA could be recycled
33 through DA transporter (DAT) (Giros et al., 1996), thereby reload the
34 neurotransmitter back into the vesicles. Alternatively, the recycled DA could be
35 catalyzed by monoamine oxidase (MAO) and catechol-O-methyltransferase
36 (Eisenhofer et al., 2004; Hare, 1928; Westlund et al., 1985). Because of the
37 unstable nature of the catechol ring, free cytosolic DA is subject to oxidation,
38 which could produce the toxic DA quinone and other catabolic adducts
39 (Fornstedt et al., 1990; Sulzer and Zecca, 2000).

40 The degeneration of nigrostriatal DA neurons is the pathological hallmark
41 of PD of which impairment vindicates the primary motor symptoms, such as
42 tremor and slow movement in the patients (Przedborski, 2017). While various
43 genetic and environmental factors risk PD pathogenesis, little is known why DA
44 neurons are more vulnerable than others (Surmeier et al., 2017). A plausible
45 scenario proposed is DA itself, which ignites selective vulnerability (Conway et
46 al., 2001; LaVoie et al., 2005). However, experimental support of this
47 suggestion has been limited because monitoring DA dynamics with the
48 subcellular resolution is challenging. The common ways to analyze DA is either
49 by high-performance liquid chromatography (HPLC), which measures DA from
50 tissue homogenates (Hjemdahl, 1984), or by fast-scan cyclic voltammetry,
51 which inserts a carbon fiber electrode (CFE) to read the electrical outputs upon
52 DA chemical reaction (Robinson et al., 2003). However, both approaches
53 quantify DA from tissues as a whole. A modified electrochemical technique
54 applied CFE for intracellular patch recording to report the cytosolic pool of
55 catecholamine in cultured cells and brain slices (Mosharov et al., 2003;
56 Mosharov et al., 2009). Utilization of fluorescent false neurotransmitters could
57 visualize the mimicked DA release from the synapse (Gubernator et al., 2009),

58 yet whether it could be used for analyzing cytosolic DA dynamics is unclear.
59 MAOs catalyze the oxidation of biogenic and dietary amines like DA
60 (Bach et al., 1988; Binda et al., 2002; Miller et al., 2000). The human genome
61 contains two distinct MAO genes, A and B, which encode proteins that share a
62 ~73% sequence identity with a similar structure (Bach et al., 1988; Edmondson
63 et al., 2004). Both enzymes function as homodimers and anchor onto the
64 mitochondrial outer membrane by their C-terminal helices (Binda et al., 2006;
65 Mitoma and Ito, 1992). Despite the high similarity, the geometry and size of
66 their substrate cavities are different (Edmondson et al., 2007), which account
67 for the preferential affinity. For example, MAO A catalyzes serotonin more
68 effectively than MAO B, whereas MAO B performs better than MAO A in
69 catalyzing DA (Edmondson et al., 2009). These flavoproteins require flavin
70 adenine dinucleotide (FAD) as a cofactor to process substrates. Importantly,
71 MAO B has a unique characteristic spectrum (Li et al., 2006). With its cofactor
72 in an oxidized state, MAO B absorbs blue light (400-500 nm). This spectral
73 property is receded when FAD is reduced to FADH₂ upon substrate binding.
74 Therefore, we envisage that the oxidized form of MAO B might absorb GFP
75 emission (~500 nm) but GFP fluorescence can be emitted when MAO B is
76 reduced after substrate binding, i.e., when there is bounded DA. Such shifting
77 may serve as an optical means to report the presence of DA in the subcellular
78 domain.

79 Currently, the available method for detecting cytosolic DA is limited to the
80 electrochemical technique requiring an invasive approach. Here, we show a
81 genetic amenable fluorescent probe made by MAO B and GFP chimera that is
82 capable of detecting cytosolic free DA *in vivo*. We demonstrate the GFP
83 signals emitted from the probe are closely associated with cytosolic DA levels
84 through the genetic and chemical manipulations, and the probe is feasible for
85 detecting DA in living brains. By incorporating this probe in the *Drosophila*
86 model expressing α-Synuclein or its disease-associated allele, we show a
87 significant increase of GFP emission, suggesting this notorious PD gene may
88 alter cytosolic free DA pool. This probe could be a useful tool to decipher the
89 puzzle of regional vulnerability in PD and DA-related disorders.

90

91 **Results**

92 **A DA Probe Uses the Light Absorption Feature of Human MAO B**

93 We initially tested three constructs (MG-s, MG-m, and MG-l) by fusing AcGFP
94 (*Aequorea coerulescens* GFP: ex. 475 nm/ em. 505 nm) to the C-terminal of
95 truncated MAO B (Figure S1A and S1B). Structural simulation of these MG

96 probes estimated that the distance between the chromophore residue of GFP
97 (Tyr62 of AcGFP) and the flavin-binding site of MAO B (Cys397) is ~38 Å,
98 within the range (<100 Å) of intramolecular fluorescence resonance energy
99 transfer (FRET, Figure S1A). We tested the probes in *E. coli* and *rat*
100 *pheochromocytoma* (PC12) cells. A Western analysis using the anti-GFP
101 antibody confirmed all MG probes preserve the GFP epitope (Figure S1C).
102 However, GFP fluorescence was undetectable in cells expressing either MG-s
103 or MG-m and only weak signals shown in MG-l (Figure S1D), suggesting that
104 MAO B might absorb the emitted GFP signals. We thus named this
105 phenomenon the “shielding effect.”

106 To test if the shielding effect could be reversed upon substrate binding,
107 we transfected MG-s into PC12 and examined the GFP signal change before
108 and after DA treatment. To facilitate DA uptake, we followed a previous report
109 by differentiating PC12 cells with nerve growth factor (NGF) (Mudumba et al.,
110 2002) to induce DAT expression (Figure S1E). Flow cytometry analysis
111 revealed approximately eleven folds increase of GFP-positive cells after NGF
112 plus DA treatments compared with untreated control (Figure S1F), supporting
113 that DA supplement could reverse the shielding effect of MG-s. To visualize
114 this effect directly, we injected DA into MG-s-transfected PC12 cells and
115 observed flux of GFP fluorescence (Supplementary Video 1-2 and Figure S2).
116 Together, we demonstrated the unique light-absorption feature of human MAO
117 B applies to engineer a fluorescent probe for DA detection.

118

119 **DA Probe with a Comparable MAO B Activity and Shielding Effect**

120 While MG-s probe enabled DA detection, MAO B activity was low (Figure S3B).
121 As this might affect the fidelity of DA detection, we modified the probe aiming
122 to raise the enzyme activity while still retaining the shielding effect. Within the
123 tested constructs (Figure S3A), MAO B activity assays showed GFP fused to
124 the N-terminus of MAO B (GM5) preserved enzyme activity comparable to
125 normal MAO B (Figure S3B), but lacked the shielding effect (Figure S3C).
126 Constructs with GFP fused to the C-terminus of MAO B (M4G and M5G), on
127 the other hand, encountered low enzyme activity, similar to MG-s (Figure S3B).
128 Guided by structure simulation, we made constructs by replacing a short
129 segment of MAO B C-terminal peptides with GFP (MGM1, MGM2, and MGM3).
130 Despite retaining the mitochondrial anchorage domain, these constructs were
131 essentially lack of MAO B activity (Figure S3B). Together, we postulated that
132 the integrity of the C-terminus of MAO B is critical to the enzyme activity.

133 To ensure the minimal change of MAO B, we adopted the split-GFP

134 system to modify the probe. By incorporating the 11th β -sheet of the super
135 folder GFP (GFP11, aa. 215-230 of AFC90853 (Pedelacq et al., 2006)) to the
136 C-terminal-end of wild-type MAO B, this construct, MsfG, preserved ~65% of
137 MAO B activity (Figure S3B). We then co-expressed MsfG and GFP1-10 (aa.
138 1-214 of super folder GFP, hereafter refer to sfG110) in cells to test the
139 shielding effect. Although GFP signals were not detected (Figure S3C), we
140 were concerned that this was because split-GFP fails to reconstitute. It is
141 possible that the C-terminal hydrophobic helix of MAO B ends in the
142 mitochondrial intermembrane space as speculated previously (Binda et al.,
143 2004) and thus cannot form full-length GFP with cytosolic sfG110. If the
144 C-terminal GFP11 from MsfG fails to expose the cytosolic side of the
145 mitochondrial outer membrane, it could hinder its reconstitution with cytosolic
146 sfG110 and generating false-positive shielding effect. Therefore, we added the
147 second transmembrane domain of human Mitofusin 2 (Mfn2; aa. 627-648) to
148 the C-terminal end of MAO B, before sticking GFP11 fragment. This modified
149 construct, named MMG1, was predicted to have two hydrophobic domains
150 (Figure 1A). The structural simulation showed the estimated distance between
151 the Tyr residue of GFP11 (RDHMLHEYVNAAGIT) and the flavin-binding site
152 of MAO B (MAO B^{C397}) is ~17.68 Å (Figure 1B), within the permitted distance
153 for FRET to occur.

154 To experimentally validate MMG1 topology, we co-expressed MMG1 and
155 sfG110 in HEK293 cells. Immunostaining of cells expressing sfG110 alone
156 showed ubiquitous anti-GFP signals in the cells; however, we found that
157 anti-GFP signals preferentially labeled mitochondria (marked by MitoTracker),
158 which were also stained by anti-MAO B (Figure 1C), suggesting the
159 reconstitution of the split GFP of MMG1 and sfG110. To confirm the GFP
160 reconstitution occurred in the cytosol, we made a His-tagged MMG1 at its
161 C-terminus (MMG1H) and selectively permeabilized the plasma membrane
162 with 20 μ M digitonin. Unlike acetone, this digitonin concentration does not
163 permeabilize the mitochondrial membrane, thus preventing antibody detection
164 of ATP synthase on the inner-mitochondrial membrane (Figure 1D). We were
165 able to label MMG1H with an anti-His antibody of which signals were
166 co-localized with MAO B in mitochondria (Figure 1E), supporting the
167 C-terminal tail of MMG1 was exposed in the cytosol to enable GFP
168 reconstitution. Importantly, MMG1 preserved a comparable enzyme activity
169 like the native MAO B protein (Figure 1F). Comparing the isolated
170 mitochondria from cells expressing either MMG1 or MAO B revealed similar
171 affinity ($K_m=451.8 \pm 83.88 \mu\text{M}$ for MMG1, and $369.5 \pm 117.9 \mu\text{M}$ for MAO B)

172 toward MAO B substrate benzylamine (BZA, (Sourkes, 1980)), indicating
173 MMG1 functions like MAO B.

174 Next, we tested the shielding effect of MMG1. We generated a split
175 version of GM5 (Figure S3C) by attaching GFP11 to the N-terminus of MAO B
176 (sfGM) to serve as a control for GFP fluorescence. Cells co-expressing sfGM
177 and sfG110 showed robust GFP signals, similar to GM5. On the contrary, GFP
178 signals were virtually undetectable in cells co-expressing MMG1 and sfG110
179 (Figure 1G). Together, these results demonstrated that MMG1 fits the required
180 criteria preserving a comparable enzyme activity of MAO B and the shielding
181 effect.

182

183 **MMG1/sfG110 Detects DA in Culture Cells**

184 To test the probe for DA detection, we co-transfected the corresponded
185 plasmids to PC12 cells. As expected, the shielding effect prohibited GFP
186 emission in cells co-expressing MMG1/sfG110, but not to sfGM/sfG110 control.
187 Upon treating L-DOPA to cells transfected by MMG1/sfG110, we observed
188 GFP signals in a dose-dependent manner, suggesting the reverse of the
189 shielding effect (Figure 2A and 2B). Quantitative analysis by flow cytometry
190 confirmed that more cells were emitting GFP with higher L-DOPA levels
191 (Figure 2C). To validate the reversion of the shielding effect is FAD-dependent,
192 we made a FAD-binding mutant MMG1^{C397A} (Rebrin et al., 2001). Using a
193 DAT-expressing HEK293T cell line, we compared the GFP emission of cells
194 expressing either MMG1/sfG110 or MMG1^{C397A}/sfG110 after treating with MAO
195 B substrate BZA. Consistent with DA-treatment, cells expressing
196 MMG1/sfG110 showed GFP emission, whereas MMG1^{C397A}/sfG110
197 expressing cells did not (Figure 2D). Together, these data support
198 MMG1/sfG110 probe is feasible for DA detection in a FAD-dependent manner.
199

200 **MMG1/sfG110 Detects Endogenous DA in the *Drosophila* Brain**

201 To test the efficacy of MMG1/sfG110 in the brain, we used *Drosophila* as a
202 model. DA neurons in *Drosophila* brain produce, store, and recycle DA similar
203 to the mammal. However, unlike mammals, fly processes DA by acetylation
204 and alanylation (Binda et al., 2003; Hintermann et al., 1996; Tracy L. Paxon,
205 2005; Yamamoto and Seto, 2014). Fly genome lacks MAO orthologous;
206 therefore, the endogenous interference by this enzyme is neglectable.

207 We harnessed the bipartite GAL4/UAS system in which the generated
208 UAS transgenic flies were bearing MMG1 and related transgenes, which could
209 produce the encoded proteins upon introducing the cell type-specific GAL4

210 driver. Using *TH-GAL4* to express either MMG1/sfG110 (*TH>MMG1/sfG110*)
211 or sfGM/sfG110 in DA neurons, we confirmed their localization to the
212 mitochondria where immunostaining of anti-MAO B and anti-ATP5a (a
213 mitochondrial complex V protein) signals were overlapped (Figure 3A).
214 Consistent with the culture cell result, DA neurons expressing sfGM/sfG110
215 showed robust GFP signals, whereas MMG1/sfG110 cells only emitted weak
216 GFP fluorescence (Figure 3A).

217 To test if the weak GFP signals result from the detection of the intrinsic
218 cytosolic DA or other catecholamines by the probe, we co-expressed
219 MMG1^{C397A}/sfG110 in DA neurons. As compared to MMG1/sfG110 cells, GFP
220 signals in MMG1^{C397A}/sfG110 cells were undetectable (Figure 3B), supporting
221 the notion that the weak GFP signal observed in *TH>MMG1/sfG110* was
222 indeed responding to endogenous DA. To further confirm this, we fed
223 *TH>MMG1/sfG110* flies with pargyline, an irreversible MAO B inhibitor that
224 forms covalent adduct to FAD and inhibits oxidase activity (Binda et al., 2003).
225 As compared with untreated flies, pargyline-treated flies showed very low, if
226 any, GFP signals. Notably, increased GFP emission was observed after
227 replacing the inhibitor with ascorbic acid buffer used to prepare pargyline and
228 allow MMG1 protein synthesis (Figure S4). Altogether, these data suggest that
229 the MMG1/sfG110 is feasible to detect cytosolic DA. We name this probe
230 CyDAP for its function as a cytosolic DA probe.

231

232 **CyDAP Reports Cytosolic DA Dynamics**

233 To test CyDAP in responding to the cytosolic DA dynamics, we first compared
234 the intensity of GFP emission from the probe driven by *TH-D'-GAL4*,
235 expressed in a subset of DA neurons (Liu et al., 2012). With TH
236 overexpression, an approach that has been shown to elevate DA production
237 (Franco et al., 2010; Locke et al., 2008; Park et al., 2007; Vecchio et al., 2017),
238 we found an increase in GFP intensity compared to LacZ control (Figure 3C
239 and 3D). Because synthesized DA requires VMAT to transport into a synaptic
240 vesicle, we tested the probe in VMAT heterozygous background (*VMAT^{SH0459/+}*),
241 a condition could hinder DA storage and increase cytosolic DA level (Mosharov
242 et al., 2003; Mosharov et al., 2009; Vergo et al., 2007). Indeed, we found GFP
243 emission from *TH-D'>CyDAP* neurons was enhanced in *VMAT^{SH0459/+}*
244 background as compared to control (Figure 3C and 3D), further support this
245 probe is feasible for detecting cytosolic DA dynamics.

246 L-DOPA therapy is a conventional treatment in PD, as refurbishing DA
247 could relieve the patient's symptoms. Because a similar effect has been

248 demonstrated in some PD fly models (Liu et al., 2008), we asked whether
249 feeding flies with L-DOPA could increase GFP emission in *TH>CyDAP* flies. By
250 co-expressed a reference DsRed marker with CyDAP, we found a
251 dosage-dependent increase of GFP emission (Figure 3E and 3F). Notably, we
252 observed that DA neurons in the so-called PPM3 cluster are most responsive
253 to L-DOPA treatment (arrows, Figure 3E), which results coincided with the
254 observation that PPM3 neurons are more sensitive to the insult of
255 rotenone-treatment in a fly PD model (Coulom and Birman, 2004).

256

257 **Imaging Cytosolic DA fluctuation in Living Brains**

258 Next, we asked whether CyDAP could detect DA fluctuation in live (detail
259 procedure in Materials and Methods). By focusing on the somas of DA neurons
260 in the brains of *TH-D>CyDAP* flies, we found that GFP signals remain
261 unchanged before and after adding the HL3 buffer that was used to dissolve
262 the DA (Supplementary Video 3 and green lines in Figure 4B). In contrast, after
263 adding 1 mM DA, the same DA neurons emitted GFP signals with increased
264 intensity around ~50 folds compared to buffer-treated control (Supplementary
265 Video 4 and Figure 4A, and red lines in 4B). On average, the signals peaked at
266 ~3 min after DA addition and returned to baseline at ~7 min.

267 To further validate the rise of GFP intensity was due to the uptake of the
268 added DA, we tested the probe in cholinergic photoreceptor or GABAergic
269 neurons by using *panR8-GAL4* (Lin et al., 2016) or *202508-GAL4* (Chi et al.,
270 2020), respectively. By expressing CyDAP, we did not detect an evident
271 change of GFP signals with or without DA treatment in both neuron types
272 (Figure S5). However, by co-expressing DAT in *panR8>CyDAP*, we could
273 observe elevated GFP emission (Supplementary Video 5 and Figure 4C, and
274 gold lines in 4D), albeit the signals did not return to baseline during the
275 recording. The increased GFP signals responded to DA because the probe did
276 not show boosted GFP emission after treating GABA in GABAergic neurons or
277 DA in non-DA neurons (Figure S5).

278 Finally, we analyzed the probe response to DA using the 4D light-sheet
279 fluorescence microscope. We specifically focused on the neurites of
280 *TH-D-GAL4*-expressed dopaminergic neurons. By quantifying the same
281 volume before and after DA treatment, we showed that GFP signals were
282 increased in response to DA treatment (Supplementary Video 7 and Figure 4E,
283 and purple lines in 4F). Altogether, these results substantiate the utility of
284 CyDAP in detecting DA fluctuation in living tissues.

285

286 **Elevated Cytosolic DA in the Brain Expressing α -Synuclein**

287 Expression of α -Synuclein caused selective neurotoxicity towards
288 DA-producing neurons (Xu et al., 2002). While the *Drosophila* genome lacks
289 α -Synuclein ortholog, expressing human α -Synuclein could cause DA neuron
290 loss at 30-day-old flies (Feany and Bender, 2000; Mizuno et al., 2010). To this
291 end, we set to test whether the CyDAP might detect the change when DA
292 neurons were expressing wild-type α -Synuclein and two juvenile-onset PD
293 mutations, A30P and A53T (Kruger et al., 1998; Mizuno et al., 2010;
294 Polymeropoulos et al., 1997). Interestingly, we found that GFP signals of
295 CyDAP were significantly increased in DA neurons co-expressing wild-type
296 α -Synuclein and α -Synuclein^{A30P}, but not for α -Synuclein^{A53T} despite a trend of
297 raising, at 7-day-old flies (Figure 5). This fluorescent probe thus revealed a
298 similar result that the expression of pathogenic or wild-type human α -Synuclein
299 could lead to the elevation of free cytosolic DA observed by the intracellular
300 patch electrochemistry recording (Mosharov et al., 2009; Mosharov et al.,
301 2006). Importantly, this data also suggests that in α -Synuclein-associated PD
302 condition, an aberrant increase of cytosolic free DA may play a pathogenic
303 role.

304

305 **Discussion**

306

307 DA-linked cytotoxicity is an appealing mechanism in PD, particularly when we
308 consider the disease's regional vulnerability. However, validating this
309 pathological prospect requires a readout of the free DA pool in affected
310 neurons. Here, we report a fluorescent probe enabling the detection of
311 cytoplasmic and non-compartmentalized DA. This probe, CyDAP, is a bipartite
312 split-GFP design in which the enzymatic MMG1, modified from human MAO B
313 by tethering an essential membrane-spanning fragment and the 11th β -sheet
314 of GFP with limited disturbance of the enzyme activity, self-assembles with
315 sfG110. Expressing CyDAP in cultured cells reveals the probe could detect the
316 presence of DA. Genetic and drug manipulations of CyDAP-bearing
317 *Drosophila* demonstrate the fluorescent responses from this probe are
318 associated with cytoplasmic free DA dynamics, advancing its usefulness on
319 deciphering the role of free cytosolic DA in selective nigrostriatal neuronal loss
320 in PD.

321 DA is a highly reactive compound. DA synthetic enzymes, TH and DDC,
322 forms a functional complex with VMAT at the synaptic vesicle membrane to
323 transport the newly synthesized DA in the synaptic vesicle (Cartier-Z et al.,

324 2010), suggesting that free cytoplasmic DA is tightly regulated. While
325 non-compartmental DA could be metabolized into the benign homovanillic acid;
326 indeed, free DA could metabolite into highly reactive aldehyde intermediates
327 and generate hydrogen peroxide as by-products (Eisenhofer et al., 2004;
328 Goldstein et al., 2013; Rees et al., 2009). Furthermore, auto-oxidation of DA
329 under the physiological condition could form cysteinyl quinone adducts (LaVoie
330 and Hastings, 1999; Lohr et al., 2017; Lotharius and O'Malley, 2001). Through
331 the direct injection of DA, or via manipulating transporters functions,
332 presumably to control cytosolic DA levels, several studies have demonstrated
333 that those attempted alterations of cytosolic DA link to cytotoxicity (Chen et al.,
334 2008). For instance, VMAT2-deficient in mice depleted vesicular filling of DA,
335 which exacerbated dopaminergic neurodegeneration (Caudle et al., 2007; Fon
336 et al., 1997; Taylor et al., 2014). Similarly, VMAT^{SH0459} loss-of-function mutant
337 used in this study could cause dopaminergic neurons loss in *Drosophila* (Lawal
338 et al., 2010; Simon et al., 2009). However, the link between cytosolic DA and
339 neurotoxicity was only validated until the subcellular electrochemical probe
340 recording (Mosharov et al., 2009). Importantly, our fluorescent probe confirms
341 VMAT deficiency indeed increases cytosolic free DA. Furthermore, we also
342 find that TH overexpression in DA neurons could raise cytosolic free DA levels
343 based on the CyDAP. This data is consistent with the observation in mice
344 because increasing TH levels by expressing multiple copies of functional
345 transgenes could increase cysteinylated catechols and oxidative stress
346 (Vecchio et al., 2017). It will be interesting to test whether the cytosolic free DA
347 was the cause in this model.

348 α -Synuclein is the major component found in Lewy bodies or Lewy
349 neurites, a PD cellular hallmark (Spillantini et al., 1997). Genetic variants of
350 SNCA, the gene that encodes α -Synuclein, have been linked to familial and
351 sporadic PD. This natively unstructured protein is enriched in the presynaptic
352 terminals and may involve different aspects of DA homeostasis (Bridi and Hirth,
353 2018; Burre, 2015; Lotharius and Brundin, 2002). Previous studies found that
354 α -Synuclein could interact with TH and DDC and thereby affecting DA
355 biosynthesis (Perez et al., 2002; Tehranian et al., 2006). Moreover,
356 α -Synuclein and VMAT2 could form a complex, whereas its upregulation
357 inhibited VMAT2 activity and reduced DA uptake (Guo et al., 2008). Such
358 regulation may instigate a harmful feedback circuit as α -Synuclein is prone to
359 be modified by DA adducts and form protofibrils (Conway et al., 2001),
360 ultimately resulting in oxidative stress and neurodegeneration (Lotharius and
361 Brundin, 2002; Park et al., 2007). Our probe detects increased cytosolic free

362 DA upon expressing human α -Synuclein, consistent with the finding using the
363 electrochemical probe (Mosharov et al., 2009).

364 Overall, we have demonstrated that our probe can detect DA dynamic in
365 *Drosophila*, but further investigation is required for its application in mammals.
366 Unlike flies, mammals express MAO B; thus, the cellular impact of this probe
367 requires some pilot tests. Reports in mouse and human showed that MAO B
368 level is associated with Alzheimer's disease (Schedin-Weiss et al., 2017),
369 anxiety (Schalling et al., 1987), and oxidative damage in neurons and hearts
370 (Kaludercic et al., 2014; Kumar et al., 2003). With an appropriate experimental
371 design, we anticipate that CyDAP could be applied to other genetic models to
372 expand the investigation on the impacts of PD risk factors in DA neuron
373 vulnerability.

374

375 **Materials and Methods**

376

377 **DNA constructs**

378 Human MAO B cDNA was obtained from Invitrogen (IOH55406), AcGFP was
379 obtained from Clontech (632489), and mitofusin 2 (Mfn) was obtained from
380 OriGene (SC114726). To generate MG constructs, MAO B of corresponded
381 cDNA fragments were amplified by PCR to generate SacI and AgeI sites and
382 introduced into pET23a. AcGFP was subcloned into the C-terminal of
383 truncated MAO B as AgeI-NotI fragment and the MAO-GFP fragment was
384 subcloned into pPyCAGIP (Chambers et al., 2003) with Xhol and NotI sites.
385 For MG-m and MG-s, AcGFP⁷⁻²³⁸ was amplified by PCR to substitute
386 full-length AcGFP used in MG-I instead.

387 For MMG1, full-length MAO B was PCR amplified as an Xhol-AgeI
388 fragment. The second transmembrane domain of Mfn and split GFP11 were
389 amplified by PCR and subsequently cloned into pPyCAGIP. MMG1^{C397A}
390 mutation was introduced into MMG1 using the QuikChange Lightning
391 Site-Directed Mutagenesis kit (Agilent). For MMGFP, full-length AcGFP was
392 amplified and introduced into MMG1 to replace the GFP11 using BgIII and NotI
393 sites. As for sfGM, split GFP11 was amplified and then subcloned into the
394 N-terminal of MAO B with Xhol and NheI sites. Split GFP110 fragment was
395 PCR amplified and introduced into pPyCAGIP with Xhol and NotI sites.
396 Primers used in the abovementioned constructs are listed in Supplementary
397 Table 1. All constructed were verified by DNA sequencing.

398

399 **Cell culture**

400 PC12 cells were plated on collagen I (BD) coating petri dishes and cultured in
401 DMEM medium (Gibco), supplemented with 10% horse serum, 5% fetal bovine
402 serum, and 1X antibiotics (Gibco). As for HEK293 and HEK293T, cells were
403 cultured in DMEM supplied by 10% fetal bovine serum and 1X antibiotics on
404 uncoated petri dishes. To differentiate PC12 cells, mediums containing 1%
405 horse serum, 0.5% fetal bovine serum, 1X antibiotics, and 80ng β -NGF/ml (BD)
406 were used. Transfection was carried out in culture dish with 80% confluence by
407 using Lipofectamine 2000 (Invitrogen) or jetPRIME (Polyplus) following the
408 manufacturers' instructions.

409

410 **Western blotting**

411 Protein lysates were collected from cells and extracted with lysis buffer (20 mM
412 Tris, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2.5 mM sodium
413 pyrophosphate, 1 mM β -glycerophosphate and 1X protease inhibitor cocktail
414 (Roche). Proteins extracts were resolved on 4-12% Bis-Tris NuPAGE
415 (Invitrogen). Primary antibodies used were rabbit anti-GFP 1:2000 (Invitrogen),
416 rat anti-DAT 1:2000 (Chemicon), and mouse anti-actin 1:10000 (Novus
417 biological). Secondary antibodies conjugated with HRP (Jackson
418 ImmunoResearch Laboratories) were used in 1:10,000 dilutions. All loading
419 controls were prepared by stripping off the reagents from the original
420 membrane and then re-probed by following the standard procedures.

421

422 **Flow cytometry**

423 The transfected PC12 cells were incubated with or without benzylamine at
424 37°C incubator for 30 min. Cells were harvested and resuspended with 5 ml
425 DMEM. After PBS washes, cells were resuspended in 2% paraformaldehyde
426 and incubated on ice for 20 min. The fixed cells were washed and
427 resuspended in PBS with a final concentration of 0.5×10^6 cells/ml.
428 GFP-positive cells were counted using BD Accuri C6 flow cytometry.

429

430 **Cell injection**

431 Cells were plated on 35 mm coated petri dishes and cultured in medium
432 containing 20 ng/ml NGF for 4 days. The culture medium was replaced by
433 KRH buffer (25 mM HEPES, 125 mM NaCl, 4.8 mM KCl, 1.2 mM KH_2PO_4 , 1.3
434 mM CaCl_2 , 1.2 mM MgSO_4 , 5.5 mM glucose, pH 7.4) before the injection.
435 Fresh prepared DA was delivered by Borosilicate micropipette (O.D.=1.0 mm,
436 I.D.=0.5 mm) under the control of a Pneumatic PicoPump (World Precision
437 Instrument). A CCD camera equipped in ZEISS axioskop2 FS+ inverted

438 microscope with a water immersion lens recorded the videos.

439

440 **Drug treatments**

441 For L-DOPA and BZA treatments, 3,4-Dihydroxy-L-phenylalanine and
442 Benzylamine (Sigma) of the indicated concentrations were freshly prepared in
443 KRH buffer containing 1 mM ascorbic acid as the anti-oxidant before the
444 experiment. Cells subject for the treatment were incubated for 20 min before
445 1X PBS washing and fixation. Flies subject for the treatment were fed with
446 yeast-glucose-agar medium (8% yeast, 8% glucose, and 1.6% agar)
447 containing the indicated final L-DOPA concentrations. The treatment of
448 Pargyline in flies followed the same preparation where the indicated final
449 concentration of pargyline hydrochloride was dissolved in the fly medium. For
450 controls, samples were treated with KRH buffer containing ascorbic acid.

451

452 **Immunohistochemistry**

453 For cultured cells, cells were seeded on Matrigel (BD)-coated coverslips. Cells
454 were rinsed with 1X PBS before the fixation with 4% paraformaldehyde (Sigma)
455 for 10 min, followed by permeabilization with PBST (0.1% Triton X-100). For
456 flies, the brains were dissected and fixed in 4% paraformaldehyde (Sigma) for
457 30 min, followed by permeabilization with PBST (0.3% Triton X-100). The
458 primary antibodies used were rabbit anti-MAO B (1:200, GeneTex), goat
459 anti-GFP (1:500, Abcam), mouse anti-ATP synthases (1:500, Molecular
460 Probes), mouse anti-6xHis (1:600, GeneTex), mouse anti-ATP5a (1:500,
461 Abcam), mouse anti-TH (1:200, Immunostar), and rat anti-DAT (1:200,
462 Millipore). To label mitochondria in culture cells, MitoTracker Red CXRos
463 (Molecular Probes) was used in 1:2500 dilution. Alexa Fluor 488, Cy3, and Cy5
464 conjugated secondary antibodies (Jackson ImmunoResearch Laboratories)
465 were used at 1:1000 (cells) or 1:400 (brains) dilutions. Samples were mounted
466 with antifade mounting medium (Vectashield H-1000, Vector Laboratories). All
467 fluorescent images were collected on a ZEISS LSM510 confocal microscope
468 under the same imaging setting for each set of experiments. Images were
469 processed with Photoshop 2020.

470

471 **MAO B activity assay**

472 MAO B catalytic activity was determined by MAO-Glo Assay (Promega). Briefly,
473 HEK293 cells were seeded on 96-well culture plate and transfected with the
474 indicated plasmids for 24 hrs. The reaction of cultured cells and MAO
475 substrate were performed in MAO B reaction buffer (100 mM HEPES, pH 7.5,

476 5% glycerol, and 10% dimethyl sulfoxide) at 37°C for 30 min. Afterward, 50 μ l
477 of reconstituted Luciferin Detection Reagent was added for each reaction, and
478 the mixtures were incubated at room temperature for 20 min to terminate the
479 reaction. MAO B oxidized the amino group of luminogenic MAO substrate to
480 produce methyl luciferin, which was next converted into light by the esterase
481 and luciferase. The luminescent intensity was measured with VICTOR 3
482 (PerkinElmer), and the values were normalized to the MAO B protein level
483 measured by Western blotting.

484

485 **Mitochondria Isolation and MAO B Kinetics**

486 Approximately 2×10^7 cells were harvested by centrifugation (600 g, 10 min at
487 4°C). After PBS wash with and re-centrifugation, the pellet was resuspended in
488 400 μ l Solution A (250 mM sucrose, 0.1 M KH₂PO₄, 1x protease inhibitor, pH
489 7.4) and homogenized with a loose glass-glass tissue grinder. The
490 homogenate was subsequently centrifuged for 10 min at 800 g to remove the
491 cell debris and nuclei. The supernatant was centrifuged (16,000 g, 20 min at
492 4°C) to yield a pellet of crude mitochondria fraction. The pellet was then
493 resuspended with 100 μ l Solution A and treated with BZA to calculate substrate
494 affinity using a spectrophotometric assay.

495

496 ***Drosophila* genetics**

497 Flies were maintained at 25°C on standard cornmeal media in 12 hr light/dark
498 cycles. *TH-D'-GAL4* was a gift from Dr. Mark Wu (Johns Hopkins University),
499 *panR8-GAL4* was provided by Dr. Chi-Hon Lee (Academia Sinica). *TH-GAL4*,
500 *UAS-DAT*, *VMAT^{SH0459}*, and human α -Synuclein flies were obtained from the
501 Bloomington *Drosophila* stock center. *202508-Gal4* was obtained from the
502 Vienna *Drosophila* Resource Center. *UAS-TH* was a gift from Dr. Tsai-Feng Fu
503 (National Chi Nan University). To generate transgenic flies, the
504 abovementioned pPyCAGIP plasmids of MMG1, MMG1^{C397A}, sfGM, and
505 sfG110 were subcloned into the *Drosophila* transformation vector pUAST
506 using the EcoRI-NotI fragments. All constructs were sequencing verified
507 before transgenic fly production.

508

509 **Live imaging**

510 Fresh dissected fly brains were adhered to slides by worm glue (GluStitch)
511 before soaked in HL3 buffer (70 mM NaCl, 5 mM KCl, 20 mM MgCl₂, 10 mM
512 NaHCO₃, 5 mM trehalose, 115 mM sucrose, 5 mM HEPES, pH 7.3). 40x water
513 immersion lens (ZEISS, 1.2 NA, 421767-9971-711) was used to imaging the

514 tissues. DA was freshly prepared by dissolving dopamine hydrochloride
515 (Abcam) in HL3 buffer with 1 mM ascorbic acid. DA was gently added in the
516 HL3 buffer at the final concentration of 1 mM during the image acquisition. For
517 the brain, we acquired images in a speed of 75 frames/min (TH-D' group) and
518 120 frames/min (R8 and 202508 groups). The time-lapse recordings were
519 assembled into video clips via the onboard Zen software of ZEISS LSM-780
520 confocal microscope. The GFP intensity was determined by ImageJ and
521 plotted by using Prism.

522 For 4D light-sheet imaging, individual flies with an open on the head
523 cuticle that exposes a part of the brain that was sticking to a steel plate and
524 soaking in the observing chamber filled with HL3. The image was taken with
525 customized light-sheet microscopy. The excitation laser is 488 nm (Coherent
526 OBIS 488 nm LS 150 mW). The laser beam used an acousto-optic tunable
527 filter (AOTF; AOTFnC-400.650-TN, AA Quanta Tech, Optoelectronic) to
528 control the exposure time and wavelength selection. The Gaussian intensity
529 distribution of the laser was projecting to an annular ring pattern on the
530 customized aluminum coating mask (thickness of 1,500 angstroms). The
531 masked laser ring image was then projected to a set of galvanometer scanners
532 (6215H, Cambridge Technology), which are composed of a pair of achromatic
533 lenses (Thorlabs, AC254-100-A, Achromat, Ø1", 400–750 nm), aligned in a 4f
534 arrangement. After passing through the scanning mirror set, the ring pattern is
535 magnified through a relay lens (Thorlabs, AC254-250-A and AC254-350-A Ø1"
536 Achromat, 400–750 nm) and conjugated to the back focal plane of the
537 excitation objective (Nikon CFI Plan Fluorite Objective, 0.30 NA, 3.5 mm WD).
538 The annular pattern was projected to the rear focal plane of the excitation
539 objective and forms a self-reconstructive Bessel beam by optical interference.
540 We used a water dipping objective lens (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2
541 mm WD for imaging in PBS) as the detection objective, which orthogonal to the
542 illumination plane. We mounted on a piezo scanner (Physik Instrumente,
543 P-725.4CD PIFOC), used to collect the fluorescence signal, which then passes
544 an emission filter (Semrock Filter: FF01-446/523/600/677-25) onto a
545 complementary scientific metal-oxide-semiconductor (sCMOS) camera
546 (Hamamatsu, Orca Flash 4.0 v3 sCOMS) by a 250 mm tube lens. We imaged
547 30 frames through the SDFP region of the fly brain for each time point, and
548 each frame was taking in 30 ms, 300 um x 300 um. Imaris 9.1.1. (Bitplane AG)
549 was used to generate 4D movies of how DA neurons respond to DA treatment.
550 We converted the 3D tiff files for each time point into 4D time-series data in ims
551 format with Imaris file converter. We then used the Animation function to

552 generate 4D movies.

553

554 **References**

555

556 Bach, A.W., Lan, N.C., Johnson, D.L., Abell, C.W., Bembenek, M.E., Kwan,
557 S.W., Seeburg, P.H., and Shih, J.C. (1988). cDNA cloning of human liver
558 monoamine oxidase A and B: molecular basis of differences in enzymatic
559 properties. *Proc Natl Acad Sci U S A* **85**, 4934-4938.

560 Binda, C., Hubalek, F., Li, M., Castagnoli, N., Edmondson, D.E., and Mattevi, A.
561 (2006). Structure of the human mitochondrial monoamine oxidase B: new
562 chemical implications for neuroprotectant drug design. *Neurology* **67**, S5-7.

563 Binda, C., Hubalek, F., Li, M., Edmondson, D.E., and Mattevi, A. (2004).
564 Crystal structure of human monoamine oxidase B, a drug target enzyme
565 monotypically inserted into the mitochondrial outer membrane. *FEBS letters*
566 **564**, 225-228.

567 Binda, C., Li, M., Hubalek, F., Restelli, N., Edmondson, D.E., and Mattevi, A.
568 (2003). Insights into the mode of inhibition of human mitochondrial monoamine
569 oxidase B from high-resolution crystal structures. *Proc Natl Acad Sci U S A*
570 **100**, 9750-9755.

571 Binda, C., Newton-Vinson, P., Hubalek, F., Edmondson, D.E., and Mattevi, A.
572 (2002). Structure of human monoamine oxidase B, a drug target for the
573 treatment of neurological disorders. *Nat Struct Biol* **9**, 22-26.

574 Bridi, J.C., and Hirth, F. (2018). Mechanisms of alpha-Synuclein Induced
575 Synaptopathy in Parkinson's Disease. *Front Neurosci* **12**, 80.

576 Burre, J. (2015). The Synaptic Function of alpha-Synuclein. *J Parkinsons Dis* **5**,
577 699-713.

578 Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B. (1958). On the
579 presence of 3-hydroxytyramine in brain. *Science* **127**, 471.

580 Cartier-Z, E., Parra-Rivas, L., Cook-Baust, T., Quiroz, M., Salazar, G.,
581 Faundez, V., Egaña, L., and Torres, G. (2010). A Biochemical and Functional
582 Protein Complex Involving Dopamine Synthesis and Transport into Synaptic
583 Vesicles. *Journal of Biological Chemistry* **285**, 1957-1966.

584 Caudle, W.M., Richardson, J.R., Wang, M.Z., Taylor, T.N., Guillot, T.S.,
585 McCormack, A.L., Colebrooke, R.E., Di Monte, D.A., Emson, P.C., and Miller,
586 G.W. (2007). Reduced vesicular storage of dopamine causes progressive
587 nigrostriatal neurodegeneration. *J Neurosci* **27**, 8138-8148.

588 Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and
589 Smith, A. (2003). Functional Expression Cloning of Nanog, a Pluripotency

590 Sustaining Factor in Embryonic Stem Cells. *Cell* 113, 643-655.

591 Chen, L., Ding, Y., Cagniard, B., Van Laar, A.D., Mortimer, A., Chi, W.,

592 Hastings, T.G., Kang, U.J., and Zhuang, X. (2008). Unregulated cytosolic

593 dopamine causes neurodegeneration associated with oxidative stress in mice.

594 *J Neurosci* 28, 425-433.

595 Chi, H., Sun, L., Shiu, R.H., Han, R., Hsieh, C.P., Wei, T.M., Lo, C.C., Chang,

596 H.Y., and Sang, T.K. (2020). Cleavage of human tau at Asp421 inhibits

597 hyperphosphorylated tau induced pathology in a *Drosophila* model. *Sci Rep* 10,

598 13482.

599 Christenson, J.G., Dairman, W., and Udenfriend, S. (1972). On the identity of

600 DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological

601 titration-aromatic L-amino acid

602 decarboxylase-serotonin-dopamine-norepinephrine). *Proc Natl Acad Sci U S A*

603 69, 343-347.

604 Conway, K.A., Rochet, J.C., Bieganski, R.M., and Lansbury, P.T., Jr. (2001).

605 Kinetic stabilization of the alpha-synuclein protofibril by a

606 dopamine-alpha-synuclein adduct. *Science* 294, 1346-1349.

607 Coulom, H., and Birman, S. (2004). Chronic exposure to rotenone models

608 sporadic Parkinson's disease in *Drosophila melanogaster*. *J Neurosci* 24,

609 10993-10998.

610 Edmondson, D.E., Binda, C., and Mattevi, A. (2007). Structural insights into

611 the mechanism of amine oxidation by monoamine oxidases A and B. *Arch*

612 *Biochem Biophys* 464, 269-276.

613 Edmondson, D.E., Binda, C., Wang, J., Upadhyay, A.K., and Mattevi, A. (2009).

614 Molecular and mechanistic properties of the membrane-bound mitochondrial

615 monoamine oxidases. *Biochemistry* 48, 4220-4230.

616 Edmondson, D.E., Mattevi, A., Binda, C., Li, M., and Hubalek, F. (2004).

617 Structure and mechanism of monoamine oxidase. *Curr Med Chem* 11,

618 1983-1993.

619 Eisenhofer, G., Kopin, I.J., and Goldstein, D.S. (2004). Catecholamine

620 metabolism: a contemporary view with implications for physiology and

621 medicine. *Pharmacol Rev* 56, 331-349.

622 Feany, M.B., and Bender, W.W. (2000). A *Drosophila* model of Parkinson's

623 disease. *Nature* 404, 394-398.

624 Fon, E.A., Pothos, E.N., Sun, B.-C., Killeen, N., Sulzer, D., and Edwards, R.H.

625 (1997). Vesicular Transport Regulates Monoamine Storage and Release but Is

626 Not Essential for Amphetamine Action. *Neuron* 19, 1271-1283.

627 Fornstedt, B., Pileblad, E., and Carlsson, A. (1990). In vivo autoxidation of

628 dopamine in guinea pig striatum increases with age. *J Neurochem* 55,
629 655-659.

630 Franco, J.L., Posser, T., Gordon, S.L., Bobrovskaya, L., Schneider, J.J., Farina,
631 M., Dafre, A.L., Dickson, P.W., and Dunkley, P.R. (2010). Expression of
632 tyrosine hydroxylase increases the resistance of human neuroblastoma cells
633 to oxidative insults. *Toxicol Sci* 113, 150-157.

634 Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., and Caron, M.G. (1996).
635 Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking
636 the dopamine transporter. *Nature* 379, 606-612.

637 Goldstein, D.S., Sullivan, P., Holmes, C., Miller, G.W., Alter, S., Strong, R.,
638 Mash, D.C., Kopin, I.J., and Sharabi, Y. (2013). Determinants of buildup of the
639 toxic dopamine metabolite DOPAL in Parkinson's disease. *J Neurochem* 126,
640 591-603.

641 Gubernator, N.G., Zhang, H., Staal, R.G., Mosharov, E.V., Pereira, D.B., Yue,
642 M., Balsanek, V., Vadola, P.A., Mukherjee, B., Edwards, R.H., *et al.* (2009).
643 Fluorescent false neurotransmitters visualize dopamine release from individual
644 presynaptic terminals. *Science* 324, 1441-1444.

645 Guo, J.T., Chen, A.Q., Kong, Q., Zhu, H., Ma, C.M., and Qin, C. (2008).
646 Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein
647 stably transfected SH-SY5Y cells. *Cell Mol Neurobiol* 28, 35-47.

648 Hare, M.L. (1928). Tyramine oxidase: A new enzyme system in liver. *Biochem
649 J* 22, 968-979.

650 Hintermann, E., Grieder, N.C., Amherd, R., Brodbeck, D., and Meyer, U.A.
651 (1996). Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from
652 *Drosophila melanogaster* expressed in the nervous system and the gut. *Proc
653 Natl Acad Sci U S A* 93, 12315-12320.

654 Hjemdahl, P. (1984). Catecholamine measurements by high-performance
655 liquid chromatography. *Am J Physiol* 247, E13-20.

656 Holtz P, H.R., Ludtke K (1938). Fermentativer Abbau von 1- Dioxophenylalanin
657 (DOPA) durch Niere. *Arch Exp Pathol Pharmakol* 191, 87-118.

658 Kaludercic, N., Carpi, A., Nagayama, T., Sivakumaran, V., Zhu, G., Lai, E.W.,
659 Bedja, D., De Mario, A., Chen, K., Gabrielson, K.L., *et al.* (2014). Monoamine
660 oxidase B prompts mitochondrial and cardiac dysfunction in pressure
661 overloaded hearts. *Antioxid Redox Signal* 20, 267-280.

662 Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek,
663 H., Epplen, J.T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the
664 gene encoding alpha-synuclein in Parkinson's disease. *Nat Genet* 18,
665 106-108.

666 Kumar, M.J., Nicholls, D.G., and Andersen, J.K. (2003). Oxidative
667 alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in
668 monoamine oxidase B levels results in loss of spare respiratory capacity:
669 implications for Parkinson's disease. *J Biol Chem* 278, 46432-46439.

670 LaVoie, M.J., and Hastings, T.G. (1999). Dopamine Quinone Formation and
671 Protein Modification Associated with the Striatal Neurotoxicity of
672 Methamphetamine: Evidence against a Role for Extracellular Dopamine. *The
673 Journal of Neuroscience* 19, 1484-1491.

674 LaVoie, M.J., Ostaszewski, B.L., Weihofen, A., Schlossmacher, M.G., and
675 Selkoe, D.J. (2005). Dopamine covalently modifies and functionally inactivates
676 parkin. *Nat Med* 11, 1214-1221.

677 Lawal, H.O., Chang, H.Y., Terrell, A.N., Brooks, E.S., Pulido, D., Simon, A.F.,
678 and Krantz, D.E. (2010). The Drosophila vesicular monoamine transporter
679 reduces pesticide-induced loss of dopaminergic neurons. *Neurobiol Dis* 40,
680 102-112.

681 Li, M., Binda, C., Mattevi, A., and Edmondson, D.E. (2006). Functional role of
682 the "aromatic cage" in human monoamine oxidase B: structures and catalytic
683 properties of Tyr435 mutant proteins. *Biochemistry* 45, 4775-4784.

684 Lin, T.Y., Luo, J., Shinomiya, K., Ting, C.Y., Lu, Z., Meinertzhagen, I.A., and
685 Lee, C.H. (2016). Mapping chromatic pathways in the Drosophila visual
686 system. *J Comp Neurol* 524, 213-227.

687 Liss, B., and Roeper, J. (2008). Individual dopamine midbrain neurons:
688 functional diversity and flexibility in health and disease. *Brain Res Rev* 58,
689 314-321.

690 Liu, Q., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two
691 dopaminergic neurons signal to the dorsal fan-shaped body to promote
692 wakefulness in Drosophila. *Curr Biol* 22, 2114-2123.

693 Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G.G., Eisenberg, D.,
694 Brecha, N., and Edwards, R.H. (1992). A cDNA that suppresses MPP⁺ toxicity
695 encodes a vesicular amine transporter. *Cell* 70, 539-551.

696 Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A.,
697 Moran, T., *et al.* (2008). A Drosophila model for LRRK2-linked parkinsonism.
698 *Proc Natl Acad Sci U S A* 105, 2693-2698.

699 Locke, C.J., Fox, S.A., Caldwell, G.A., and Caldwell, K.A. (2008).
700 Acetaminophen attenuates dopamine neuron degeneration in animal models
701 of Parkinson's disease. *Neurosci Lett* 439, 129-133.

702 Lohr, K.M., Masoud, S.T., Salahpour, A., and Miller, G.W. (2017). Membrane
703 transporters as mediators of synaptic dopamine dynamics: implications for

704 disease. *Eur J Neurosci* 45, 20-33.

705 Lotharius, J., and Brundin, P. (2002). Pathogenesis of Parkinson's disease:
706 dopamine, vesicles and alpha-synuclein. *Nat Rev Neurosci* 3, 932-942.

707 Lotharius, J., and O'Malley, K.L. (2001). Role of mitochondrial dysfunction and
708 dopamine-dependent oxidative stress in amphetamine-induced toxicity. *Ann
709 Neurol* 49, 79-89.

710 Miller, J.R., Guan, N., Hubalek, F., and Edmondson, D.E. (2000). The FAD
711 binding sites of human liver monoamine oxidases A and B: investigation of the
712 role of flavin ribityl side chain hydroxyl groups in the covalent flavinylation
713 reaction and catalytic activities. *Biochim Biophys Acta* 1476, 27-32.

714 Mitoma, J., and Ito, A. (1992). Mitochondrial targeting signal of rat liver
715 monoamine oxidase B is located at its carboxy terminus. *J Biochem* 111,
716 20-24.

717 Mizuno, H., Fujikake, N., Wada, K., and Nagai, Y. (2010). alpha-Synuclein
718 Transgenic Drosophila As a Model of Parkinson's Disease and Related
719 Synucleinopathies. *Parkinsons Dis* 2011, 212706.

720 Mosharov, E.V., Gong, L.W., Khanna, B., Sulzer, D., and Lindau, M. (2003).
721 Intracellular patch electrochemistry: regulation of cytosolic catecholamines in
722 chromaffin cells. *J Neurosci* 23, 5835-5845.

723 Mosharov, E.V., Larsen, K.E., Kanter, E., Phillips, K.A., Wilson, K., Schmitz, Y.,
724 Krantz, D.E., Kobayashi, K., Edwards, R.H., and Sulzer, D. (2009). Interplay
725 between cytosolic dopamine, calcium, and alpha-synuclein causes selective
726 death of substantia nigra neurons. *Neuron* 62, 218-229.

727 Mosharov, E.V., Staal, R.G., Bove, J., Prou, D., Hananiya, A., Markov, D.,
728 Poulsen, N., Larsen, K.E., Moore, C.M., Troyer, M.D., *et al.* (2006).
729 Alpha-synuclein overexpression increases cytosolic catecholamine
730 concentration. *J Neurosci* 26, 9304-9311.

731 Mudumba, S., Menezes, A., Fries, D., and Blankenship, J. (2002).
732 Differentiation of PC12 cells induced by N8-acetylspermidine and by
733 N8-acetylspermidine deacetylase inhibition. *Biochem Pharmacol* 63,
734 2011-2018.

735 Nagatsu, T., Levitt, M., and Udenfriend, S. (1964). Tyrosine Hydroxylase. The
736 Initial Step in Norepinephrine Biosynthesis. *J Biol Chem* 239, 2910-2917.

737 Park, S.S., Schulz, E.M., and Lee, D. (2007). Disruption of dopamine
738 homeostasis underlies selective neurodegeneration mediated by
739 alpha-synuclein. *Eur J Neurosci* 26, 3104-3112.

740 Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C., and Waldo, G.S.
741 (2006). Engineering and characterization of a superfolder green fluorescent

742 protein. *Nat Biotechnol* 24, 79-88.

743 Perez, R.G., Waymire, J.C., Lin, E., Liu, J.J., Guo, F., and Zigmund, M.J.

744 (2002). A Role for α -Synuclein in the Regulation of Dopamine Biosynthesis.

745 *The Journal of Neuroscience* 22, 3090-3099.

746 Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A.,

747 Pike, B., Root, H., Rubenstein, J., Boyer, R., *et al.* (1997). Mutation in the

748 alpha-synuclein gene identified in families with Parkinson's disease. *Science*

749 276, 2045-2047.

750 Przedborski, S. (2017). The two-century journey of Parkinson disease

751 research. *Nat Rev Neurosci* 18, 251-259.

752 Rebrin, I., Geha, R.M., Chen, K., and Shih, J.C. (2001). Effects of

753 carboxyl-terminal truncations on the activity and solubility of human

754 monoamine oxidase B. *J Biol Chem* 276, 29499-29506.

755 Rees, J.N., Florang, V.R., Eckert, L.L., and Doorn, J.A. (2009). Protein

756 reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is

757 dependent on both the aldehyde and the catechol. *Chem Res Toxicol* 22,

758 1256-1263.

759 Robinson, D.L., Venton, B.J., Heien, M.L., and Wightman, R.M. (2003).

760 Detecting subsecond dopamine release with fast-scan cyclic voltammetry in

761 vivo. *Clin Chem* 49, 1763-1773.

762 Schalling, D., Asberg, M., Edman, G., and Orelund, L. (1987). Markers for

763 vulnerability to psychopathology: temperament traits associated with platelet

764 MAO activity. *Acta Psychiatr Scand* 76, 172-182.

765 Schedin-Weiss, S., Inoue, M., Hromadkova, L., Teranishi, Y., Yamamoto, N.G.,

766 Wiehager, B., Bogdanovic, N., Winblad, B., Sandebring-Matton, A., Frykman,

767 S., *et al.* (2017). Monoamine oxidase B is elevated in Alzheimer disease

768 neurons, is associated with gamma-secretase and regulates neuronal amyloid

769 beta-peptide levels. *Alzheimers Res Ther* 9, 57.

770 Simon, A.F., Daniels, R., Romero-Calderon, R., Grygoruk, A., Chang, H.Y.,

771 Najibi, R., Shamouelian, D., Salazar, E., Solomon, M., Ackerson, L.C., *et al.*

772 (2009). Drosophila vesicular monoamine transporter mutants can adapt to

773 reduced or eliminated vesicular stores of dopamine and serotonin. *Genetics*

774 181, 525-541.

775 Sourkes, M.M.K.a.T.L. (1980). Monoamine Oxydase of Rat Skeletal Muscle:

776 Substrate Specificity and Half-life *Life Sciences*, 27, 2327-2331.

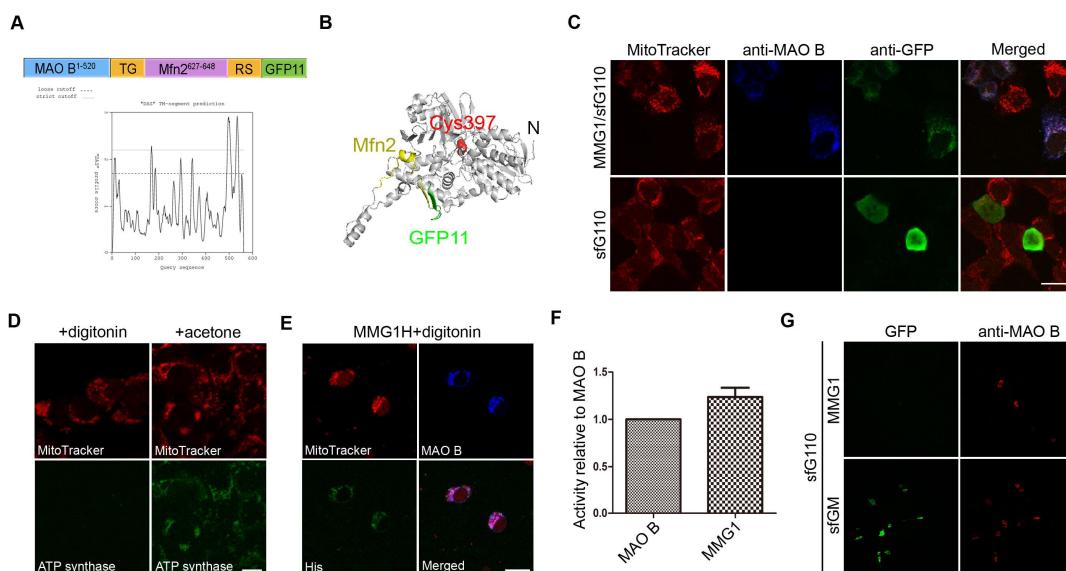
777 Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R., and

778 Goedert, M. (1997). Alpha-synuclein in Lewy bodies. *Nature* 388, 839-840.

779 Sulzer, D., and Zecca, L. (2000). Intraneuronal dopamine-quinone synthesis: a

780 review. *Neurotox Res* 1, 181-195.
781 Surmeier, D.J., Obeso, J.A., and Halliday, G.M. (2017). Selective neuronal
782 vulnerability in Parkinson disease. *Nat Rev Neurosci* 18, 101-113.
783 Taylor, T.N., Alter, S.P., Wang, M., Goldstein, D.S., and Miller, G.W. (2014).
784 Reduced vesicular storage of catecholamines causes progressive
785 degeneration in the locus ceruleus. *Neuropharmacology* 76 Pt A, 97-105.
786 Tehranian, R., Montoya, S.E., Van Laar, A.D., Hastings, T.G., and Perez, R.G.
787 (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in
788 dopaminergic cells. *J Neurochem* 99, 1188-1196.
789 Tracy L. Paxon, P.R.P., Hyun-Gwan Lee, Kyung-An Han and Andrew G. Ewing
790 (2005). Microcolumn Separation of Amine Metabolites in
791 the Fruit Fly. *Anal Chem* 77, 5349-5355.
792 Vecchio, L.M., Bermejo, M.K., Dunn, A., Milenkovic, M., Urs, N., Ramsey, A.,
793 Miller, G.W., and Salahpour, A. (2017).
794 Vergo, S., Johansen, J.L., Leist, M., and Lotharius, J. (2007). Vesicular
795 monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons
796 to disturbed cytosolic dopamine levels. *Brain Res* 1185, 18-32.
797 Westlund, K.N., Denney, R.M., Kochersperger, L.M., Rose, R.M., and Abell,
798 C.W. (1985). Distinct monoamine oxidase A and B populations in primate brain.
799 *Science* 230, 181-183.
800 Xu, J., Kao, S.Y., Lee, F.J., Song, W., Jin, L.W., and Yankner, B.A. (2002).
801 Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for
802 selective neurodegeneration in Parkinson disease. *Nat Med* 8, 600-606.
803 Yamamoto, S., and Seto, E.S. (2014). Dopamine dynamics and signaling in
804 *Drosophila*: an overview of genes, drugs and behavioral paradigms. *Exp Anim*
805 63, 107-119.
806

807 Acknowledgements

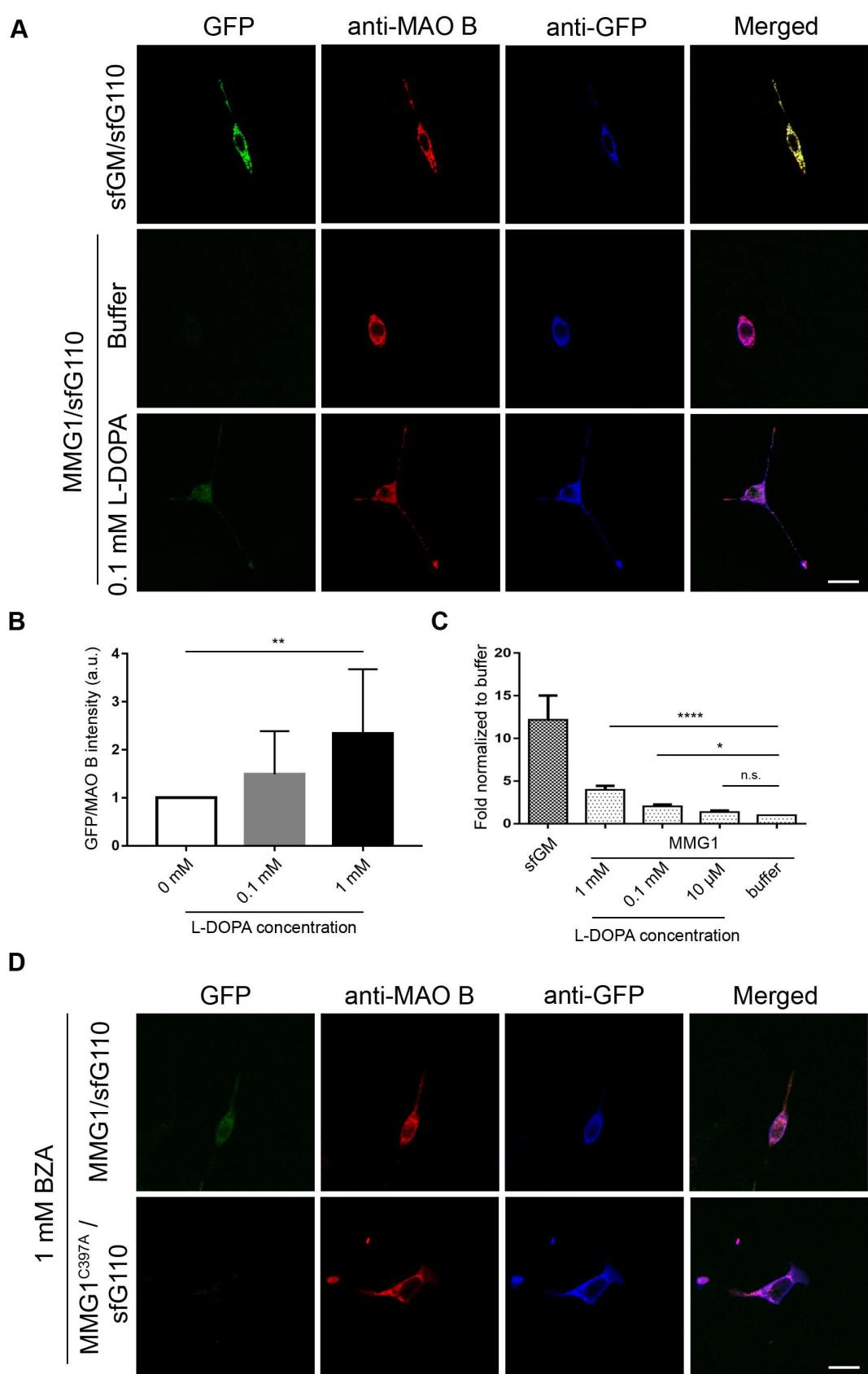

808
809 This study was supported by grants from NTHU-NTUH joint project
810 (103N2778E1 and 104N2276E1) and the Higher Education Sprout Project
811 funded by the Ministry of Science and Technology and the Ministry of
812 Education in Taiwan. We thank Drs. Chi-Hon Lee, Mark Wu, Tsai-Feng Fu,
813 Bloomington *Drosophila* Stock Center, Vienna *Drosophila* Resource Center
814 and Fly Core in Taiwan for generously providing fly strains. We thank Dr.
815 Chuan-Chin Chiao for live-cell imaging and the Image Core of the Brain
816 Research Center at National Tsing Hua University for assistance with confocal
817 and 4D light-sheet microscopy.

818 **Competing interests**

819 The authors declare no competing interests.

820

821 **Figure legends**



822

823 **Figure 1**

824

825 **Figure 1. Characterization of DA probe MMG1.** (A) Schematic depiction of
826 MMG1 with the corresponded fusion components and linker sequences (upper
827 panel). The prediction of MMG1 transmembrane segments, a.a. 490-509 and
828 a.a. 527-540 (lower panel; <http://www.sbc.su.se/~miklos/DAS/>), are
829 corresponded to the C-terminal peaks of the linear protein sequence. (B) The
830 prediction of MMG1 structure by I-TASSER
831 (<https://zhanglab.ccmb.med.umich.edu/I-TASSER/>). PyMOL highlights the
832 Mfn2 (yellow) and GFP11 (green) fragments within MMG1. A red ball-and-stick
833 molecule marks the FAD-binding residue Cys³⁹⁷ of MAO B. (C) Confocal
834 images of HEK293 cells transfected with the indicated constructs stained with
835 MitoTracker (red), anti-MAO B (blue), and anti-GFP (green). Notice the GFP
836 signals in the upper panels are sequestered to the mitochondria. (D, E)
837 Confocal images of HEK293 cells transfected with His-tagged MMG1 (E) and
838 permeabilized with the indicated reagents. Cells are stained with MitoTracker
839 (red), anti-ATP synthase (green in D), anti-MAO B (blue), and anti-His (green
840 in E). (F) MAO B activity of the indicated probes. Data are normalized to MAO
841 B control from three independent assays. (G) Confocal images of PC12 cells
842 co-transfected with sfG110 and the indicated constructs. Cells are stained with
843 anti-MAO B (red). GFP channel shows intrinsic signals. Scale bars: 10 μ m.

844

845

Figure 2

846 **Figure 2. MMG1/sfG110 reacts to MAO B substrates by emitting GFP**
847 **fluorescence.** (A) Confocal images of differentiated PC12 cells transfected
848 with the indicated constructs stained with anti-MAO B (red) and anti-GFP
849 (blue). GFP channels (green) are intrinsic signals. The lower panels show cells
850 expressing the indicated constructs are treated with 0.1 mM L-DOPA. (B)
851 Quantitation of GFP intensity from cells expressing MMG1/sfG110 treated with
852 different concentrations of L-DOPA. GFP pixels are normalized to anti-MAO
853 B-labeled pixel in cells, $n \geq 12$. (C) Flow cytometry analysis of GFP-positive
854 cells co-expressing sfG110 and the indicated constructs. Cells are treated with
855 different concentrations of L-DOPA, $n \geq 4$. Values shown represent mean \pm SE.
856 n.s., not significant; *, $p < 0.05$; **, $p < 0.01$; ****, $p < 0.0001$ as compared to
857 non-treatment (0 for B and Buffer for C) within the MMG1-expressing cells
858 (one-way ANOVA with Dunnett's multiple comparisons test). (D) Confocal
859 images of HEK293T cells co-transfected with sfG110 and the indicated MMG1
860 variants. Cells are treated with 1mM benzylamine (BZA) and stained with
861 anti-MAO B (red) and anti-GFP (blue). GFP channels (green) are intrinsic
862 signals. Notice cells expressing FAD-binding mutant MMG1^{C397A} do not emit
863 intrinsic GFP signals. Scale bars: 10 μ m.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

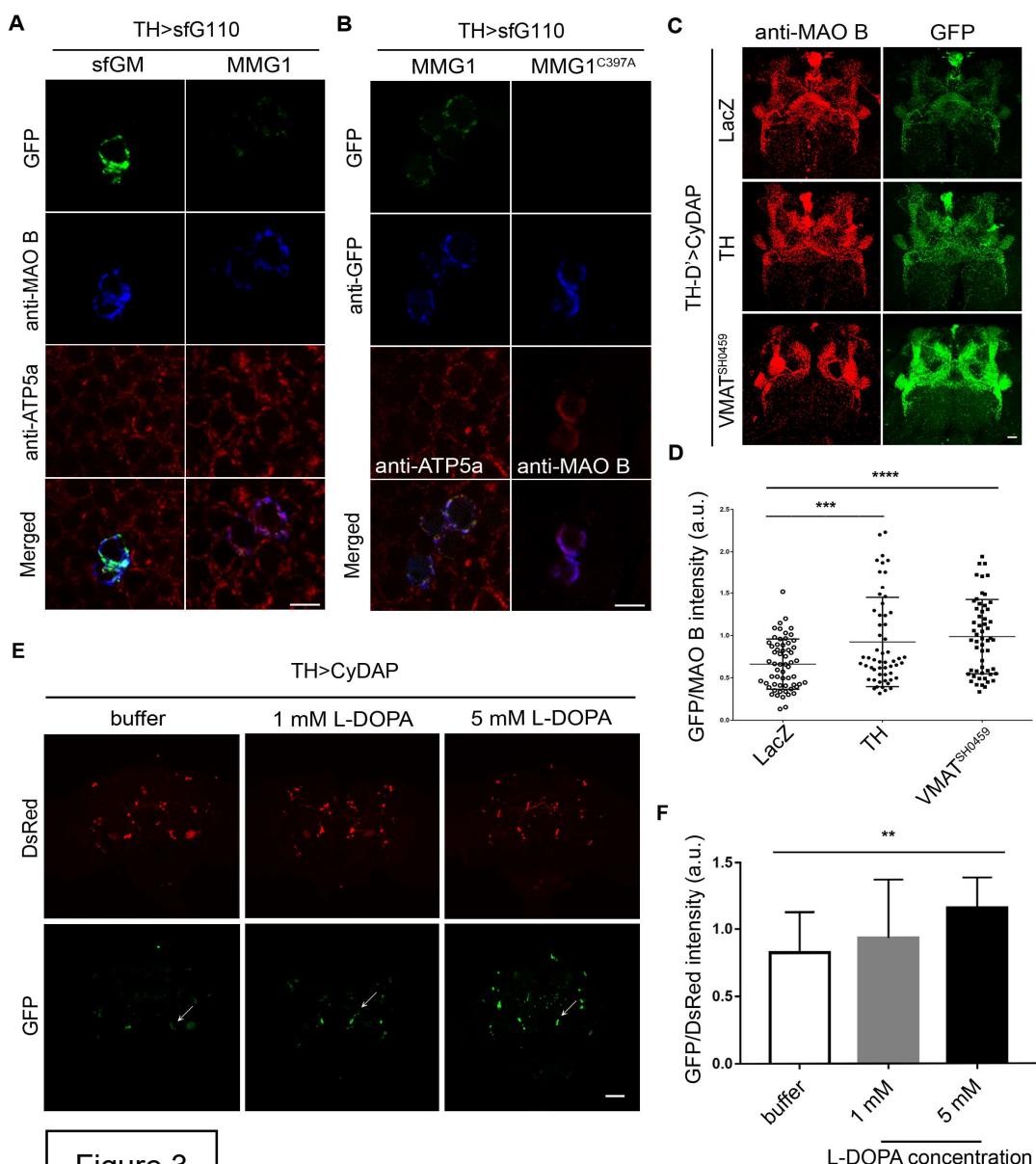


Figure 3

883

884

885 **Figure 3. CyDAP responses to DA dynamics in *Drosophila* brains.** (A, B)
886 Confocal images of *TH>sfG110* flies co-expressing the indicated constructs.
887 Cells are stained with anti-MAO B (blue in A, red in the right panel of B),
888 anti-ATP5a (red in A and the left panel of B), and anti-GFP (blue in B). GFP
889 channels (green) are intrinsic signals. Notice weak intrinsic GFP fluorescence
890 in MMG1-expressing cells, but not in MMG1^{C397A} (B). (C) Confocal images of
891 *TH-D'>CyDAP* flies co-expressing LacZ control (upper panels), TH (middle
892 panels), or in VMAT heterozygous background (VMAT^{SH0459/+}, lower panels)
893 stained with anti-MAO B (red). GFP channels (green) are intrinsic signals. (D)
894 Quantification of GFP intensity after normalized to anti-MAO B signals. Four

895 neuropils innervated by TH-D' neurons in each brain from a total of 14 flies of
896 each group are measured. Values shown represent mean \pm SE. ***, p < 0.001;
897 ****, p < 0.0001 as compared to lacZ control (one-way ANOVA with Dunnett's
898 multiple comparisons test). (E) Confocal images of *TH>CyDAP* flies
899 co-expressing DsRed fluorescent protein. Flies are fed with buffer used to
900 dissolve L-DOPA or the indicated levels of L-DOPA. Notice that the raise of
901 GFP intensity is L-DOPA concentration-dependent. Arrows indicate PPM3
902 clusters of TH neurons. Scale bars: (A-C) 10 μ m; (E) 20 μ m. (F) Quantification
903 of GFP intensity after normalized with DsRed signals. PPM3 clusters are
904 selected for measurement from \geq 10 flies. Values shown represent mean \pm SE.
905 **, p < 0.01 as compared to buffer (vesicle) treated control (one-way ANOVA
906 with Dunnett's multiple comparisons test).

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

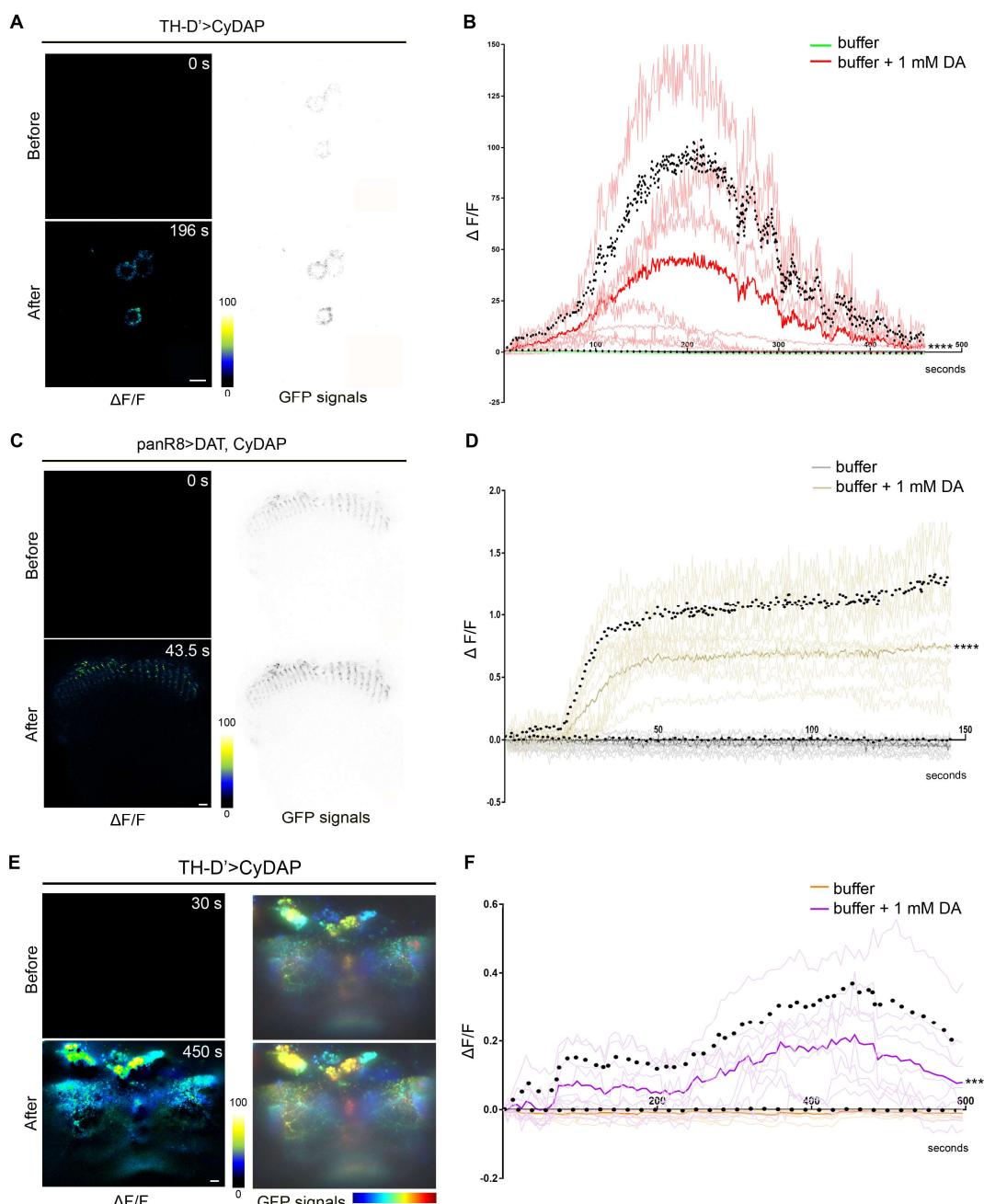
923

924

925

926

927


928

929

930

931

932

933

934

Figure 4

935

936

Figure 4. CyDAP detects DA dynamics in live imaging. (A-D) 2-D live imaging of *TH-D'>CyDAP* (A, B) and *panR8>DAT, CyDAP* (co-expressing probe and DAT; C, D), flies with or without 1 mM DA treatment. Representative images show *TH-D'* neuron soma (A) and *panR8* neuron axonal terminal (C) at the indicated time points, the intensity of the GFP signals is presented in grayscale for clarity (A, C, right panels). (E, F) 4D light-sheet live imaging of *TH-D'>CyDAP* flies with or without 1 mM DA treatment. Representative

943 volumetric GFP intensities show a brain before and after DA treatment. Images
944 are colored-coded with depth indicator processed by ImageJ-Fiji jet hyper
945 stack in projected view (E, right panels). The $\Delta F/F$ is presented in color grading
946 and processed by ImageJ image calculator (A, C, E, left panels); the
947 time-lapse recordings are shown in the diagram and thick lines and black dots
948 are mean + SD (B, D, F). The increase of GFP emission ($\Delta F/F$) from the
949 corresponding treatments is plotted during the recording. Brains are treated
950 with HL3 buffer (green lines in B; n=7, gray lines in D; n=7, and orange lines in
951 F; n=4), 1 mM DA (red lines in B; n=7, gold lines in D; n=7, and purple lines in
952 F; n=5). Thick lines represent the mean value of each group. ****, p < 0.0001
953 as compared to the HL3 buffer control (one-way ANOVA with Dunnett's
954 multiple comparisons test). Scale bars: 10 μ m.

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

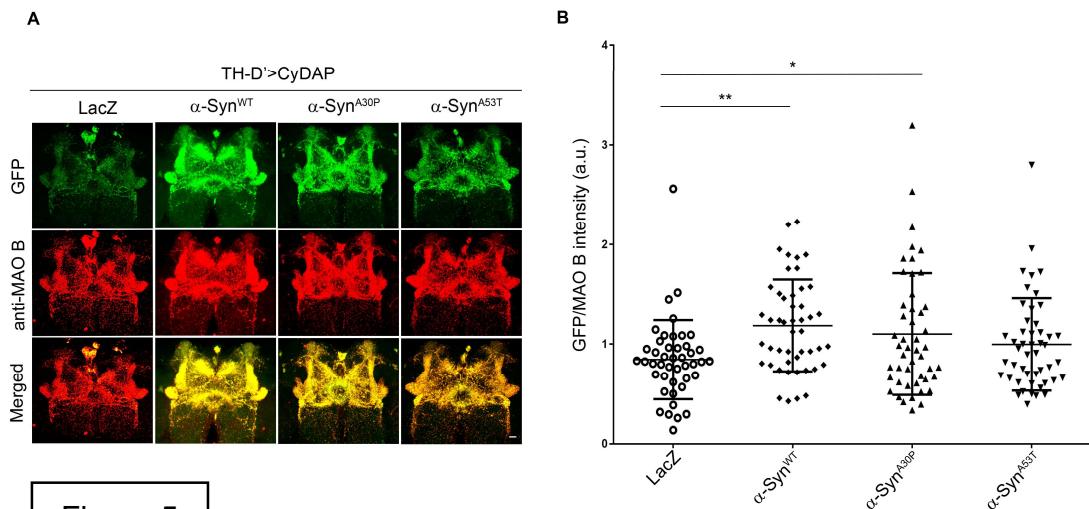
971

972

973

974

975


976

977

978

979

980

981 Figure 5

982

983 **Figure 5. CyDAP reveals increased cytosolic DA in *Drosophila* DA**
984 **neurons expressing human α -Synuclein.** (A) Confocal images of the brains
985 from *TH-D'>CyDAP* flies co-expressing LacZ control or the indicated human
986 α -Synuclein transgenes stained with anti-MAO B (red). The intrinsic GFP
987 signals from MMG1/sfG110 are shown in green. Scale bar: 10 μ m. (B)
988 Quantification of GFP intensity that normalized with anti-MAO B signals. Four
989 neuropil regions are measured in each brain from a total of 12 files in each
990 group. Values shown represent mean \pm SE. *, p < 0.05; **, p < 0.01 as
991 compared to LacZ (one-way ANOVA with Dunnett's multiple comparisons test).

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007