

1

2 **TITLE**

3

4 Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has
5 sex-biased effects on *Drosophila* body size

6

7 **AUTHORS**

8

9 Jason W. Millington¹, George P. Brownrigg¹, Paige J. Basner-Collins¹, Ziwei Sun¹,
10 Elizabeth J. Rideout^{1§}

11

12 **AFFILIATIONS**

13

14 1 Department of Cellular and Physiological Sciences, Life Sciences Institute, The
15 University of British Columbia, Vancouver, BC, Canada, V6T 1Z3.

16

17 § Corresponding author

18

19 **RUNNING TITLE**

20

21 Sex-biased effects of altered insulin

22

23 **KEYWORDS**

24

25 *Drosophila*, sex, insulin pathway, body size, genetics

26

27 **CORRESPONDING AUTHOR DETAILS**

28

29 Elizabeth J. Rideout, Life Sciences Center, 2350 Health Sciences Mall (RM3308),

30 Vancouver, BC, Canada V6T 1Z3. Email: elizabeth.rideout@ubc.ca Phone: (604) 822-

31 0623. Fax: (604) 822-2316.

32

33

34

35 **ABSTRACT**

36

37 In *Drosophila*, female body size is approximately 30% larger than male body size due to
38 an increased rate of larval growth. While the mechanisms that control this sex difference
39 in body size remain incompletely understood, recent studies suggest that the
40 insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific
41 regulation of growth during development. In larvae, IIS activity differs between the sexes,
42 and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of
43 how changes to IIS activity impact growth in each sex, as the majority of studies on IIS
44 and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of
45 our current study was to clarify the requirement for IIS activity in each sex during the
46 larval growth period. To achieve this goal we used established genetic approaches to
47 enhance, or inhibit, IIS activity, and quantified body size in male and female larvae.
48 Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body
49 size, whereas genotypes that augmented IIS activity caused a male-specific increase in
50 body size. This data extends our current understanding of larval growth by showing that
51 most changes to IIS pathway activity have sex-biased effects on body size, and
52 highlights the importance of analyzing data by sex in larval growth studies.

53

54 **INTRODUCTION**

55

56 Over the past two decades, the *Drosophila* larva has emerged as an important model to
57 study the regulation of growth during development. One important factor that affects
58 body size in most *Drosophila* species is whether the animal is male or female: female
59 flies are typically larger than male flies (Alpatov et al., 1930; Pitnick et al., 1995; French
60 et al., 1998; Huey et al., 2006; Testa et al., 2013; Okamoto et al., 2013; Rideout et al.,
61 2015; Sawala and Gould, 2017; Millington et al., 2020; reviewed in Millington and
62 Rideout, 2018). This increased body size is due to an increased rate of larval growth, as
63 the duration of the larval growth period does not differ between the sexes (Testa et al.,
64 2013; Okamoto et al., 2013; Sawala and Gould, 2017). While the precise molecular
65 mechanisms underlying the male-female difference in body size remain incompletely
66 understood, recent studies have revealed a key role for the insulin/insulin-like growth
67 factor signaling pathway (IIS) in the sex-specific regulation of growth during
68 development (Shingleton et al., 2005; Gronke et al., 2010; Testa et al., 2013; Rideout et
69 al., 2015; Liao et al., 2020; Millington et al., 2020).

70 Normally, IIS activity is higher in female larvae than in age-matched males
71 (Rideout et al 2015; Millington et al., 2020). Given that increased IIS activity is known to
72 promote cell, tissue, and organismal growth (Grewal, 2009; Teleman, 2009), this
73 suggests that elevated IIS activity is one reason that females have an increased rate of
74 growth and a larger body size. Indeed, the sex difference in growth was abolished
75 between male and female flies carrying a mutation that strongly reduced IIS activity
76 (Testa et al., 2013), and between male and female larvae reared on diets that markedly

77 decrease IIS activity (Rideout et al., 2015). In both cases, the sex difference in growth
78 was eliminated by a female-biased decrease in body size (Testa et al., 2013; Rideout et
79 al., 2015). While these findings suggest that IIS plays a role in the sex-specific
80 regulation of growth during development, only one genetic combination was used to
81 reduce IIS activity (Testa et al., 2013). Therefore, it remains unclear whether the sex-
82 biased effect of reduced IIS activity on body size is a common feature of genotypes that
83 alter IIS activity.

84 In the present study, we used multiple genetic approaches to either enhance or
85 inhibit IIS activity, and monitored larval growth in males and females. While previous
86 studies show that these genetic approaches effectively alter IIS activity, the body size
87 effects in each sex remain unclear due to frequent use of mixed-sex or single-sex
88 experimental groups, and a lack of statistical tests to detect sex-by-genotype
89 interactions (Fernandez et al., 1995; Chen et al., 1996; Leever et al., 1996; Böhni et al.,
90 1999; Brogiolo et al., 2001; Cho et al., 2001; Rintelen et al., 2001; Ikeya et al., 2002;
91 Britton et al., 2002; Rulifson et al., 2002; Zhang et al., 2009; Geminard et al., 2009;
92 Gronke et al., 2010). Our systematic examination of IIS revealed most genetic
93 manipulations that reduced IIS activity caused a female-biased reduction in body size.
94 In contrast, most genetic manipulations that enhanced IIS activity increased male body
95 size with no effect in females. Together, these findings provide additional genetic
96 support for IIS as an important regulator of sex-specific growth in *Drosophila*.

97

98 MATERIALS AND METHODS

99

100 **Data Availability.** Original images of pupae are available upon request. Raw values for
101 all data collected and displayed in this manuscript are available in Supplementary file 1.
102 The authors affirm that all data necessary for confirming the conclusions of the article
103 are present within the article, figures, tables, and Supplementary files.

104

105 **Fly husbandry.** *Drosophila* growth medium consisted of: 20.5 g/L sucrose, 70.9 g/L D-
106 glucose, 48.5 g/L cornmeal, 45.3 g/L yeast, 4.55 g/L agar, 0.5g $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 0.5 g
107 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 11.77 mL acid mix (propionic acid/phosphoric acid). Diet data was
108 deposited under “Rideout Lab 2Y diet” in the *Drosophila* Dietary Composition Calculator
109 (Lesperance and Broderick, 2020). Larvae were raised at a density of 50 animals per 10
110 mL food at 25°C, and sexed by gonad size. Adult flies were maintained at a density of
111 twenty flies per vial in single-sex groups.

112

113 **Fly strains.** The following fly strains from the Bloomington *Drosophila* Stock Center
114 were used: w^{1118} (#3605), *UAS-rpr* (#5823), *UAS-lmp-L2-RNAi* (#55855), *InR^{E19}* (#9646),
115 *InR^{PZ}* (#11661), *Df(3R)Pi3K92E^A* (#25900), *chico¹* (#10738), *foxo²¹* (#80943), *foxo²⁵*
116 (#80944), *r4-GAL4* (fat body), *dilp2-GAL4* (IPCs). Additional fly strains include: *UAS-*
117 *Kir2.1* (Baines et al., 2001), *dilp1*, *dilp3*, *dilp4*, *dilp5*, *dilp6⁴¹*, *dilp7*, *Df(3L)ilp2-3,5*,
118 *Df(3L)ilp1-4,5* (Grönke et al., 2010), *Sdr¹* (Okamoto et al., 2013), *Pi3K92E^{2H1}* (Halfar et
119 al., 2001), *Pdk1⁴* (Rintelen et al., 2001), *Akt1³* (Stocker et al., 2002). All fly strains
120 except *dilp6⁴¹* were backcrossed into a w^{1118} background.

121

122 **Body size.** Pupal length and width were determined using an automated detection and
123 measurement system. Segmentation of the pupae for automated analysis was carried
124 out using the “Marker-controlled Watershed” function included in the MorphoJ plugin
125 (Klingenberg, 2011) in ImageJ (Schindelin et al., 2012; Rueden et al., 2017). Briefly, the
126 original image containing the pupae was blurred using the “Gaussian blur” function. A
127 selection of points marking the pupae was then created using the “Find Maxima”
128 function. Next, a new image with the same dimension as the pupae was created, where
129 the individual points were projected onto this original image using the “Draw” function.
130 Then, we labelled each point using the “Connected Components Labeling” function in
131 the MorphoJ plugin (Klingenberg, 2011). This image is now the marker image. Upon
132 completion of the marker image, we used the “Morphological Filters” function in the
133 MorphoJ package with the options “operation=Gradient element=Octagon radius =2” to
134 generate a gradient image of the pupae. Using the “Marker-controlled Watershed”
135 function with the gradient image as the input, and the marker image to identify regions
136 of interest outlining the pupae, the width and length of the pupae were obtained by
137 selecting “Fit ellipse” option under the “Set Measurements” menu in ImageJ. Once
138 length and width were determined using this automated measurement system, pupal
139 volume was calculated as previously described (Delanoue et al., 2010; Rideout et al.,
140 2012, 2015; Marshall et al., 2012; Ghosh et al., 2014). To measure adult weight, 5-day-
141 old virgin male and female flies were collected and weighed in groups of ten on an
142 analytical balance.

143

144 **Statistical analysis and data presentation.** GraphPad Prism (GraphPad Prism
145 version 8.4.2 for Mac OS X) was used to perform all statistical tests and to prepare all
146 graphs in this manuscript. Statistical tests are indicated in figure legends and all *p*-
147 values are listed in Supplementary file 2.

148

149 **RESULTS**

150

151 **Reduced IPC function causes a female-biased decrease in body size**

152

153 In *Drosophila*, the insulin-producing cells (IPCs) located in the brain are an important
154 source of IIS ligands called *Drosophila* insulin-like peptides (Dilps). In larvae, the IPCs
155 synthesize and release Dilp1 ([FBgn0044051](#)), Dilp2 ([FBgn0036046](#)), Dilp3 ([FBgn0044050](#)),
156 and Dilp5 ([FBgn0044048](#)) into the hemolymph (Boggiolo et al., 2001; Ikeya et al., 2002;
157 Rulifson et al., 2002; Lee et al., 2008; Geminard et al., 2009). When circulating Dilps
158 bind to the Insulin-like Receptor (InR; [FBgn0283499](#)) on the surface of target tissues, an
159 intracellular signaling cascade is initiated which ultimately promotes cell, tissue, and
160 organismal growth (Chen et al., 1996; Böhni et al., 1999; Poltilove et al., 2000; Britton et
161 al., 2002; Werz et al., 2009; Almudi et al., 2013). The importance of the IPCs in
162 regulating IIS activity and growth is illustrated by the fact that IPC ablation and silencing
163 both reduce IIS activity and decrease overall body size (Rulifson et al., 2002; Geminard
164 et al., 2009). Yet, the precise requirement for IPCs in regulating growth in each sex
165 remains unclear, as past studies presented data from a mixed-sex population of larvae
166 or reported effects in only a single sex (Rulifson et al., 2002; Geminard et al., 2009).

167 Given that recent studies show that the sex of the IPCs contributes to the sex-specific
168 regulation of larval growth (Sawala and Gould, 2017), we asked how the presence and
169 function of the IPCs affected body size in each sex.

170 First, we ablated the IPCs by overexpressing proapoptotic gene *reaper* (*rpr*,
171 [FBgn0011706](#)) with the IPC-specific GAL4 driver *dilp2-GAL4* (Brogliolo et al., 2001;
172 Rulifson et al., 2002). This method eliminates the IPCs during development (Rulifson et
173 al., 2002). To quantify body size, we measured pupal volume, as it is a sensitive
174 readout for larval growth (Delanoue et al., 2010). In females, pupal volume was
175 significantly lower in *dilp2>UAS-rpr* larvae compared with *dilp2>+* and *+>UAS-rpr*
176 control larvae (Fig. 1A). In males, pupal volume was also significantly lower in
177 *dilp2>UAS-rpr* larvae compared with control *dilp2>+* and *+>UAS-rpr* larvae (Fig. 1A);
178 however, the magnitude of the decrease in body size was greater in females than in
179 males (sex:genotype interaction $p<0.0001$; two-way ANOVA). Next, to determine how
180 reduced IPC function affected body size in each sex, we overexpressed the inwardly-
181 rectifying potassium channel *Kir2.1* (Baines et al., 2001) using *dilp2-GAL4*. This
182 approach reduces Dilp secretion and lowers IIS activity in a mixed-sex group of larvae
183 (Geminard et al., 2009). We found that pupal volume was significantly reduced in
184 *dilp2>UAS-Kir2.1* females compared with *dilp2>+* and *+>UAS-Kir2.1* control females
185 (Fig. 1B). In males, pupal volume was reduced in *dilp2>UAS-Kir2.1* larvae compared
186 with *dilp2>+* and *+>UAS-Kir2.1* control larvae (Fig. 1B). Because the magnitude of the
187 decrease in female body size was larger than the reduction in male body size
188 (sex:genotype interaction $p<0.0001$; two-way ANOVA), this result indicates that
189 inhibiting IPC function caused a female-biased reduction in growth. Together, these

190 results identify a previously unrecognized sex-biased body size effect caused by
191 manipulating IPC survival and function.

192

193 **Loss of IPC-derived Dilps causes a female-biased reduction in body size**

194

195 Given that the larval IPCs produce Dilp1, Dilp2, Dilp3, and Dilp5 (Brogiolo et al., 2001;
196 Ikeya et al., 2002; Rulifson et al., 2002; Lee et al., 2008; Geminard et al., 2009), we
197 tested whether the loss of some (*Df(3L)ilp2-3,5*), or all (*Df(3L)ilp1-4,5*), of the IPC-
198 derived Dilps affected larval growth in males and females. While a previous study
199 reported how loss of all IPC-derived *dilp* genes affected adult weight, data from both
200 sexes was not available for all genotypes (Gronke et al., 2010). In females, pupal
201 volume was significantly smaller in *Df(3L)ilp2-3,5* larvae compared with *w¹¹¹⁸* control
202 larvae (Fig. 1C). In males, body size was also significantly reduced in *Df(3L)ilp2-3,5*
203 homozygous larvae compared with *w¹¹¹⁸* controls (Fig. 1C); however, the decrease in
204 body size was significantly greater in females than in males (sex:genotype interaction
205 $p < 0.0001$; two-way ANOVA). When we measured body size in males and females
206 lacking all IPC-derived Dilps (*Df(3L)ilp1-4,5*), we reproduced the female-biased
207 reduction in body size (Fig. 1C; sex:genotype interaction $p < 0.0001$; two-way ANOVA).
208 This reveals a previously unrecognized sex-biased body size effect arising from loss of
209 some, or all, IPC-derived Dilps.

210

211 **Loss of individual *dilp* genes causes a female-specific decrease in body size**

212

213 While Dilp1, Dilp2, Dilp3 and Dilp5 are all produced by the IPCs, previous studies have
214 uncovered significant differences in regulation, secretion, and phenotypic effects of
215 these IPC-derived Dilps (Brogiolo et al., 2001; Zhang et al., 2009; Okamoto et al., 2009;
216 Grönke et al., 2010; Cognigni et al., 2011; Stafford et al., 2012; Bai et al., 2012;
217 Linneweber et al., 2014; Cong et al., 2015; Liu et al., 2016; Nässel & Vanden Broeck,
218 2016; Post et al., 2018, 2019; Semaniuk et al., 2018; Ugrankar et al., 2018; Brown et al.,
219 2020). We therefore wanted to determine the individual contributions of IPC-derived
220 Dilps to body size in each sex. Further, given that there are non-IPC-derived Dilps that
221 regulate diverse aspects of physiology and behaviour (*dilp4*, [FBgn0044049](#); *dilp6*,
222 [FBgn0044047](#); and *dilp7*, [FBgn0044046](#)) (Gronke et al., 2010; Castellanos et al., 2013;
223 Garner et al., 2018), we wanted to determine the requirement for these additional Dilps
224 in regulating larval growth in each sex. While a previous study measured adult weight
225 as a read-out for body size in *dilp* mutants (Gronke et al 2010), we measured pupal
226 volume to ensure changes to adult weight were not due to altered gonad size (Green
227 and Extavour, 2014). We found that pupal volume was significantly smaller in female
228 larvae carrying null mutations in *dilp1*, *dilp3*, *dilp4*, *dilp5*, and *dilp7* compared with *w*¹¹¹⁸
229 control females (Fig. 2A). This data aligns well with findings from two recent studies
230 showing a female-specific decrease in larval growth caused by loss of *dilp2* (Liao et al.,
231 2020; Millington et al., 2020). In contrast to most *dilp* mutants; however, there was no
232 significant difference in pupal volume between homozygous *y,w,dilp6*⁴¹ female larvae
233 and control *y,w* females (Fig. 2B). In males, pupal volume was not significantly different
234 between *dilp1*, *dilp3*, *dilp4*, *dilp5*, and *dilp7* mutant larvae and *w*¹¹¹⁸ controls (Fig. 2C);
235 however, pupal volume was significantly reduced in *y,w,dilp6*⁴¹ larvae compared with

236 *y,w* controls (Fig. 2D). Together, these results extend our current understanding of
237 larval growth by revealing sex-specific requirements for all individual *dilp* genes in
238 regulating body size.

239

240 **Loss of Dilp-binding factor Imp-L2 causes a male-specific increase in body size**

241

242 Once released into the circulation, the Dilps associate with proteins that modulate their
243 growth-promoting effects. For example, Dilp1, Dilp2, Dilp5 and Dilp6 form a high-affinity
244 complex with fat body-derived *ecdysone-inducible gene 2* (*Imp-L2*, [FBgn0001257](#)) and
245 *Convoluted/Drosophila Acid Labile Subunit* (Conv/dALS; [FBgn0261269](#)) (Okamoto et al.,
246 2013), whereas Dilp3 interacts with Secreted decoy receptor of Insulin-like Receptor
247 (Sdr; [FBgn0038279](#)) (Okamoto et al., 2013). Binding of the Imp-L2/dALS complex to
248 individual Dilps likely reduces Dilp binding to InR, as reduced fat body levels of either
249 Imp-L2 or dALS augment IIS activity and increase body size (Arquier et al., 2008;
250 Honegger et al., 2008; Alic et al., 2011; Okamoto et al., 2013). Similarly, loss of Sdr
251 increases IIS activity and increases body size (Okamoto et al., 2013). While the Sdr
252 study reported that the magnitude of the increase in adult weight was equivalent in both
253 sexes (Okamoto et al., 2013), which we confirm using pupal volume (Fig. 3A;
254 sex:genotype interaction $p = 0.5261$; two-way ANOVA), it remains unclear how the Imp-
255 L2/dALS complex affects growth in each sex. We found that in females pupal volume
256 was not significantly different between larvae with fat body-specific overexpression of an
257 *Imp-L2-RNAi* transgene (*r4>UAS-Imp-L2-RNAi*) and control *r4>+* and *+>UAS-Imp-L2-*
258 *RNAi* larvae (Fig. 3B). In contrast, pupal volume was significantly larger in *r4>UAS-Imp-*

259 *L2-RNAi* male larvae compared with *r4>+* and *+>UAS-Imp-L2-RNAi* control males (Fig.
260 3B). This result demonstrates a male-specific increase in larval growth caused by
261 reduced *Imp-L2* (sex:genotype interaction $p<0.0001$; two-way ANOVA), revealing a
262 previously unrecognized sex-specific effect of the *Imp-L2/dALS* complex on body size.

263

264 **Altered activity of the intracellular IIS pathway causes sex-biased and non-sex-
265 specific effects on body size**

266

267 In flies, IIS activity is stimulated by Dilp binding the InR on the surface of target cells
268 (Fernandez et al., 1995; Chen et al., 1996). This Dilp-InR interaction induces receptor
269 autophosphorylation and recruitment of adapter proteins such as Chico ([FBgn0024248](#)),
270 the *Drosophila* homolog of mammalian insulin receptor substrate (Bohni et al., 1999;
271 Poltilove et al., 2000; Werz et al., 2009). The recruitment and subsequent activation of
272 the catalytic subunit of *Drosophila* phosphatidylinositol 3-kinase (*Pi3K92E*; [FBgn0015279](#))
273 increases the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP₃) at the
274 plasma membrane (Leevers et al., 1996; Britton et al., 2002), which activates signaling
275 proteins such as Phosphoinositide-dependent kinase 1 (Pdk1; [FBgn0020386](#)) and Akt1
276 ([FBgn0010379](#)) (Alessi et al., 1997). Both Pdk1 and Akt1 phosphorylate many
277 downstream effectors to promote larval growth (Verdu et al., 1999; Cho et al., 2001;
278 Rintelen et al., 2001). The importance of these intracellular IIS components in regulating
279 growth during development is illustrated by studies showing that the loss, or reduced
280 function, of most components decreases body size (Leevers et al., 1996; Chen et al.,
281 1996; Böhni et al., 1999; Weinkove et al., 1999; Brogiolo et al., 2001; Rulifson et al.,

282 2002; Zhang et al., 2009; Geminard et al., 2009; Grönke et al., 2010; Murillo-Maldonado
283 et al., 2011). Yet, the majority of studies on the regulation of growth by intracellular IIS
284 components were performed in a single- or mixed-sex population of larvae and/or adult
285 flies, and lack testing for sex-by-genotype interactions (Fernandez et al., 1995; Chen et
286 al., 1996; Leevers et al., 1996; Böhni et al., 1999; Brogiolo et al., 2001; Cho et al., 2001;
287 Rintelen et al., 2001; Ikeya et al., 2002; Rulifson et al., 2002; Britton et al., 2002;
288 Geminard et al., 2009; Zhang et al., 2009; Gronke et al., 2010). Given that recent
289 studies have demonstrated the sex-specific regulation of IIS components such as Akt1
290 (Rideout et al., 2015), we investigated the requirement for these components in
291 regulating larval growth in males and females. In line with previous results showing a
292 female-biased decrease in adult weight in flies heterozygous for two hypomorphic *InR*
293 alleles (Testa et al., 2013), we observed a female-biased pupal volume reduction in
294 larvae carrying an additional combination of *InR* alleles (Fig. 4A; sex:genotype
295 interaction $p < 0.0001$; two-way ANOVA).

296 To expand these findings beyond *InR*, we measured pupal volume in males and
297 females with whole-body loss of individual intracellular IIS components. Given that we
298 did not obtain viable pupae homozygous for a null mutation in *chico* (*chico*¹), we
299 measured pupal volume in *chico*^{1/+} males and females. In *chico*^{1/+} females, pupal
300 volume was significantly reduced compared with control *w¹¹¹⁸* larvae (Fig. 4B). In
301 *chico*^{1/+} males, pupal volume was reduced compared with control *w¹¹¹⁸* larvae (Fig. 4B).
302 Given that the magnitude of the reduction in pupal volume was similar in males and
303 females (sex:genotype interaction $p = 0.1399$; two-way ANOVA), reduced *chico* did not
304 cause a sex-biased effect on larval growth. In females heterozygous for two mutant

305 alleles of *Pi3K92E* (Df(3R)*Pi3K92E*^A/*Pi3K92E*^{2H1}), pupal volume was significantly
306 reduced compared with control *w*¹¹¹⁸ larvae (Fig. 4C). In Df(3R)*Pi3K92E*^A/*Pi3K92E*^{2H1}
307 males, we observed a significant reduction in pupal volume (Fig. 4C); however, the
308 magnitude of the decrease in body size was larger in females compared with males
309 (sex:genotype interaction $p < 0.0001$; two-way ANOVA). This indicates that loss of
310 *Pi3K92E* caused a female-biased decrease in larval growth. Next, we examined body
311 size in males and females homozygous for a hypomorphic allele of *Pdk1* (*Pdk1*⁴). We
312 observed no effect on pupal volume in either sex in *Pdk1*⁴ homozygotes (Fig. 4D);
313 however, when we measured adult weight we found an equivalent body size reduction
314 in *Pdk1*⁴ males and females compared with sex-matched control *w*¹¹¹⁸ flies (Fig. 4E;
315 sex:genotype interaction $p = 0.5030$; two-way ANOVA). This suggests that reduced
316 *Pdk1* did not cause a sex-biased reduction in larval growth. One important target of
317 *Pdk1* is the serine/threonine kinase *Akt1*. In females homozygous for a hypomorphic
318 allele of *Akt1* (*Akt1*³), pupal volume was significantly reduced compared with control
319 *w*¹¹¹⁸ larvae (Fig. 4F). In *Akt1*³ males, we observed a significant reduction in body size
320 compared with control *w*¹¹¹⁸ larvae (Fig. 4F). Given that the magnitude of the decrease
321 in body size was larger in females than in males (sex:genotype interaction $p < 0.0001$;
322 two-way ANOVA), this indicates that loss of *Akt1* caused a female-biased effect on
323 larval growth. Together, these findings identify previously unrecognized sex-biased
324 body size effects of reduced *Pi3K92E* and *Akt1*.

325 One downstream target of IIS that contributes to the regulation of growth is
326 transcription factor *forkhead box, sub-group O* (*foxo*; [FBgn0038197](#)). When IIS activity is
327 high, *Akt1* phosphorylates *Foxo* to prevent *Foxo* from translocating to the nucleus (Puig

328 et al., 2003). Given that Foxo positively regulates mRNA levels of many genes that are
329 involved in growth repression and catabolism (Zinke et al., 2002; Junger et al., 2003;
330 Kramer et al., 2003; Slack et al., 2011; Alic et al., 2011), elevated IIS activity promotes
331 growth in part by inhibiting Foxo (Junger et al., 2003; Kramer et al., 2003). Because
332 previous studies show increased Foxo nuclear localization and elevated Foxo target
333 gene expression in males (Rideout et al., 2015; Millington et al., 2020), we examined
334 how Foxo contributes to larval growth in each sex by measuring body size in females
335 and males heterozygous for two hypomorphic *foxo* alleles (*foxo*²¹/*foxo*²⁵). In
336 *foxo*²¹/*foxo*²⁵ females and males, pupal volume was not significantly different from sex-
337 matched *w*¹¹¹⁸ control larvae (Fig. 4G). In adult females, body weight was not
338 significantly different between *foxo*²¹/*foxo*²⁵ mutants and control *w*¹¹¹⁸ flies (Fig. 4H);
339 however, *foxo*²¹/*foxo*²⁵ adult males were significantly heavier than control *w*¹¹¹⁸ males
340 (Fig. 4H). Because we observed a male-specific increase in body size (sex:genotype
341 interaction $p = 0.0014$; two-way ANOVA), our data suggests that Foxo function normally
342 contributes to the smaller body size of males. This reveals a previously unrecognized
343 sex-specific role for Foxo in regulating body size.

344

345 **DISCUSSION**

346

347 Many studies have demonstrated an important role for IIS in promoting cell, tissue, and
348 organismal growth in response to nutrient input (Fernandez et al., 1995; Chen et al.,
349 1996; Böhni et al., 1999; Britton et al., 2002; Grewal, 2009; Teleman, 2009). More
350 recently, studies suggest that IIS also plays a role in the sex-specific regulation of larval

351 growth (Testa et al., 2013; Rideout et al., 2015; Millington et al., 2020). However, the
352 links between IIS and the sex-specific regulation of growth were made based on a
353 limited number of genotypes that affected IIS activity. The goal of our current study was
354 to determine whether the sex-biased larval growth effects observed in previous studies
355 represent a common feature of genotypes that affect IIS activity. Overall, we found that
356 the loss of most positive regulators of IIS activity caused a female-biased reduction in
357 body size. On the other hand, loss of genes that normally repress IIS activity caused a
358 male-specific increase in body size. Thus, most changes to IIS activity cause sex-
359 biased, or sex-specific, effects on larval growth (summarized in Table 1), highlighting
360 the importance of collecting and analyzing data from both sexes separately in studies
361 that manipulate IIS activity and/or examine IIS-responsive phenotypes (e.g., lifespan,
362 immunity).

363 One important outcome from our study was to provide additional genetic support
364 for IIS as an important regulator of the sex difference in larval growth. Data implicating
365 IIS in the sex-specific regulation of body size first emerged from a detailed examination
366 of the rate and duration of larval growth in both sexes (Testa et al., 2013). In this study,
367 the authors reported a female-biased growth reduction in larvae with decreased InR
368 function (Testa et al 2013). A subsequent study extended this finding by uncovering a
369 sex difference in IIS activity: late third-instar female larvae had higher IIS activity than
370 age-matched males (Rideout et al., 2015). The reasons for this increased IIS activity
371 remain incompletely understood; however, Dilp2 secretion from the IPCs was higher in
372 female larvae than in males (Rideout et al., 2015). Given that Dilp2 overexpression is
373 known to augment IIS activity and enhance body size (Ikeya et al., 2002; Geminard et

374 al., 2009), these findings suggest a model in which high levels of circulating Dilp2 (and
375 possibly other Dilps) are required in females to achieve and maintain increased IIS
376 activity and a larger body size. In males, lower circulating levels of Dilp2 lead to reduced
377 IIS activity and a smaller body size. If this model is accurate, we predict that female
378 body size will be more sensitive to genetic manipulations that reduce Dilp ligands and/or
379 IIS activity. Previous studies provided early support for this model by demonstrating a
380 female-biased reduction in growth due to strong *InR* inhibition and *dilp2* loss (Testa et
381 al., 2013; Liao et al., 2020; Millington et al., 2020). Now, we provide strong genetic
382 support for this model using multiple genetic manipulations to reduce IIS activity,
383 confirming that *Drosophila* females depend on high levels of IIS activity to promote
384 increased body size. One potential reason for this high level of IIS activity in females is
385 to ensure successful reproduction, as IIS activity in females regulates germline stem cell
386 divisions, ovariole number, and egg production (LaFever and Drummond-Barbosa, 2005;
387 Hsu et al., 2008; Hsu and Drummond-Barbosa, 2009; Gronke et al., 2010; Extavour and
388 Green, 2014). Unfortunately, this elevated level of IIS activity shortens lifespan,
389 revealing an important IIS-mediated tradeoff between fecundity and lifespan in females
390 (Broughton et al., 2005).

391 A second prediction of this model is that augmenting either circulating Dilp levels
392 or IIS activity will enhance male body size. Indeed, we demonstrate that loss of *Imp-L2*,
393 which increases free circulating Dilp levels (Arquier et al., 2008; Honegger et al., 2008;
394 Alic et al., 2011; Okamoto et al., 2013), and loss of *foxo*, which mediates growth
395 repression associated with low IIS activity (Junger et al., 2003; Kramer et al., 2003),
396 both cause a male-specific increase in body size. Together, these findings suggest that

397 the smaller body size of male larvae is partly due to low IIS activity. While the reason for
398 lower IIS activity in males remains unclear, studies show that altered IIS activity in either
399 of the two main cell types within the testis compromises male fertility (Ueishi et al., 2009;
400 McLeod et al., 2010; Amoyel et al., 2014; Amoyel et al., 2016). Future studies will
401 therefore need to determine how males and females each maintain IIS activity within the
402 range that maximizes fertility. In addition, it will be important to determine whether the
403 female-biased phenotypic effects of lower IIS activity that we observe, and which are
404 also widespread in aging and lifespan studies (Clancy et al., 2001; Holzenberger et al.,
405 2003; Magwere et al., 2004; Van Heemst et al., 2005; Selman et al., 2008; Regan et al.,
406 2016; Kane et al., 2018) extend to additional IIS-associated phenotypes (e.g., immunity
407 and sleep) (DiAngelo et al., 2009; Cong et al., 2015; Roth et al., 2018; Suzawa et al.,
408 2019; Brown et al., 2020).

409 Another important task for future studies will be to gain deeper insight into sex
410 differences in the IPC function, as one study identified sex-specific Dilp2 secretion from
411 the IPCs (Rideout et al., 2015). Indeed, recent studies have revealed the sex-specific
412 regulation of one factor (*stunted*, [FBgn0014391](#)) that influences Dilp secretion from the
413 IPCs (Millington et al., 2020), and female-specific phenotypic effects of another factor
414 that influences IPC-derived Dilp expression (Woodling et al., 2020). Together, these
415 studies suggest that sex differences in IPC function and circulating Dilp levels exist, and
416 may arise from the combined effects of multiple regulatory mechanisms. Given that our
417 knowledge of IPC function has recently expanded in a series of exciting studies (Meschi
418 et al., 2019; Oh et al., 2019), more work will be needed to test whether these newly
419 discovered modes of IPC regulation operate in both sexes. Further, it will be important

420 to ascertain how sex differences in the IPCs are specified. One recent study showed
421 that *Sex-lethal* (*Sxl*; [FBgn0264270](#)), a key regulator of female sexual development, acts
422 in the IPCs to regulate the male-female difference in body size (Sawala and Gould,
423 2017). By studying how *Sxl* function alters IPC gene expression, activity, and
424 connectivity, it will be possible to gain vital mechanistic insight into the sex-specific
425 regulation of larval growth.

426 Beyond an improved understanding of sex differences in IPC function, it will be
427 essential to study the sex-specific regulation of *dilp* genes and Dilp proteins, as we
428 show female-specific effects on growth in larvae lacking individual *dilp* genes. While
429 previous studies have reported female-biased effects of loss of *dilp2* (Liao et al 2020;
430 Millington et al 2020), this is the first report of a female-specific role for *dilp1*, *dilp3*, *dilp4*,
431 *dilp5*, and *dilp7* in promoting growth. Because loss of individual *dilp* genes reduced
432 body size by ~10%, whereas loss of *InR* reduced body size by ~50%, we propose that
433 increased levels of several Dilps contributes to the increased IIS activity and larger body
434 size in females. While previous studies suggest that circulating Dilp2 levels are higher in
435 female larvae (Rideout et al., 2015), it remains unclear whether other Dilps show similar
436 sex-specific regulation. Interestingly, a recent study showed that in females there are
437 more *dilp7*-positive cells than males due to programmed cell death in a subpopulation of
438 male *dilp7*-positive cells (Castellanos et al., 2013; Garner et al., 2018). Given our finding
439 that loss of *dilp7* causes a female-specific reduction in body size, it is possible that
440 circulating Dilp7 levels also differ between the sexes. In the future, it will therefore be
441 necessary to systematically analyze circulating levels of other Dilps in both sexes.
442 Further, as our knowledge of how individual *dilp* genes affect larval development and

443 physiology continues to grow, continued studies on the sex-specific regulation of *dilp*
444 genes and Dilp proteins will be important to improve our understanding of male-female
445 differences in larval growth, and to extend knowledge of sex differences in other IIS-
446 associated traits.

447 In contrast to the female-biased effects of all genetic manipulations that reduced
448 Dilp availability, we observed both sex-biased and non-sex-biased effects on body size
449 in larvae with reduced function of key intracellular IIS components. For example,
450 reduced InR, Pi3K92E, and Akt1 function caused a female-biased reduction in body
451 size, whereas there was an equivalent reduction in male and female body size due to
452 lower *chico* and *Pdk1* function. While the reasons for the lack of sex-biased effects of
453 these two genes are unclear, one recent study showed that heterozygous loss of *chico*
454 caused insulin hypersecretion (Sanaki et al., 2020). Given that hyperinsulinaemia
455 contributes to insulin resistance, and that insulin resistance decreases *Drosophila* body
456 size (Musselman et al., 2011, 2018; Pasco and Leopold, 2012), more studies will be
457 needed to determine whether the smaller body size of *chico*^{1/+} male and female larvae,
458 and possibly *Pdk1* mutant larvae, can be attributed to insulin resistance. In fact, more
459 knowledge of sex-specific tissue responses to insulin is urgently needed in flies, as
460 studies in mice and humans have identified sex differences in insulin sensitivity
461 (Macotela et al., 2009; Geer and Shen, 2009). Because *Drosophila* is an emerging
462 model to understand the mechanisms underlying the development of insulin resistance
463 (Musselman et al. 2011), this knowledge would help determine whether flies are a good
464 model to investigate the sex-biased incidence of diseases associated with insulin
465 resistance, such as the metabolic syndrome and type 2 diabetes (Mauvais-Jarvis, 2015).

466

467 **ACKNOWLEDGEMENTS**

468

469 We would like to thank Chien Chao for developing the automated pupal volume analysis
470 method. We would like to thank Dr. Linda Partridge for sharing the *dilp* mutant strains
471 used in this study, Dr. Takashi Nishimura for sharing *Sdr*¹ flies, and Dr. Ernst Hafen for
472 providing *Akt1*³, *Pdk1*⁴, and *Pi3K92E*^{2H1} mutant strains. Stocks obtained from the
473 Bloomington *Drosophila* Stock Center (NIH P40OD018537) were used in this study. We
474 thank the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) for providing
475 transgenic RNAi fly stocks and/or plasmid vectors used in this study. We acknowledge
476 critical resources and information provided by FlyBase (Thurmond, J. 2019, NAR);
477 FlyBase is supported by a grant from the National Human Genome Research Institute
478 at the U.S. National Institutes of Health ([U41 HG000739](https://www.ncbi.nlm.nih.gov/Traces/study?acc=U41HG000739)) and by the British Medical
479 Research Council ([MR/N030117/1](https://www.brs.ac.uk/research-grants-and-schemes/research-grants-and-schemes/programmes/medical-research-council-mrc-programme)). Funding for this study was provided by grants to
480 EJR from the Canadian Institutes for Health Research (PJT-153072), Natural Sciences
481 and Engineering Research Council of Canada (NSERC, RGPIN-2016-04249), Michael
482 Smith Foundation for Health Research (16876), and the Canadian Foundation for
483 Innovation (JELF-34879). JWM was supported by a 4-year CELL Fellowship from UBC,
484 and ZS was supported by an NSERC Undergraduate Student Research Award. We
485 would like to acknowledge that our research takes place on the traditional, ancestral,
486 and unceded territory of the Musqueam people; a privilege for which we are grateful.
487

488 **REFERENCES**

489

490 Alessi, D.R., Deak, M., Casamayor, A., Caudwell, F.B., Morrice, N. Norman, D.G.,
491 Gaffney, P., *et al.* 1997. “3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1):
492 Structural and Functional Homology with the *Drosophila* DSTPK61 Kinase.” *Curr Biol*
493 7(10): 776–89. [https://doi.org/10.1016/S0960-9822\(06\)00336-8](https://doi.org/10.1016/S0960-9822(06)00336-8)

494

495 Alic, N., Hoddinott, M.P., Vinti, G., Partridge, L. 2011. “Lifespan Extension by Increased
496 Expression of the *Drosophila* Homologue of the IGFBP7 Tumour Suppressor.” *Aging*
497 *Cell* 10(1): 137–47. <https://doi.org/10.1111/j.1474-9726.2010.00653.x>

498

499 Almudi, I., Poernbacher, I., Hafen, E., Stocker, H. 2013. “The Lnk/SH2B Adaptor
500 Provides a Fail-Safe Mechanism to Establish the Insulin Receptor-Chico Interaction.”
501 *Cell Commun Signal* 11(1): 26. <https://doi.org/10.1186/1478-811X-11-26>

502

503 Alpatov, W.W. 1930. “Phenotypical Variation in Body and Cell Size of *Drosophila*
504 *melanogaster*.” *Biological Bulletin* 58(1): 85–103. <https://doi.org/10.2307/1537121>

505

506 Amoyel, M., Simons, B.D., Bach, E.A. 2014. “Neutral competition of stem cells is
507 skewed by proliferative changes downstream of Hh and Hpo.” *EMBO J* 33(20): 2295–
508 313. <https://doi.org/10.15252/embj.201387500>

509

510 Amoyel, M., Hillion, K.H., Margolis, S.R., Bach, E.A. 2016. "Somatic stem cell
511 differentiation is regulated by PI3K/Tor signaling in response to local cues."
512 *Development* 143(21): 3914-25. <https://doi.org/10.1242/dev.139782>

513

514 Arquier, N., Géminard, C., Bourouis, M., Jarretou, G., Honegger, B., Paix, A., and
515 Léopold, P. 2008. "Drosophila ALS Regulates Growth and Metabolism through
516 Functional Interaction with Insulin-like Peptides." *Cell Metab* 7(4): 333–38.
517 <https://doi.org/10.1016/j.cmet.2008.02.003>

518

519 Bai, H., Kang, P., and Tatar, M. 2012. "Drosophila Insulin-like Peptide-6 (Dilp6)
520 Expression from Fat Body Extends Lifespan and Represses Secretion of *Drosophila*
521 Insulin-like Peptide-2 from the Brain." *Aging Cell* 11(6): 978–85.
522 <https://doi.org/10.1111/acel.12000>

523

524 Baines, R. A., Uhler, J.P., Thompson, A., Sweeney, S.T., and Bate, M. 2001. "Altered
525 Electrical Properties in *Drosophila* Neurons Developing without Synaptic Transmission."
526 *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience* 21(5):
527 1523–31. <https://doi.org/10.1523/JNEUROSCI.21-05-01523.2001>

528

529 Böhni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F.,
530 Beckingham, K., Hafen, E. 1999. "Autonomous Control of Cell and Organ Size by
531 CHICO, a *Drosophila* Homolog of Vertebrate IRS1-4." *Cell* 97(7): 865–75.
532 [https://doi.org/10.1016/S0092-8674\(00\)80799-0](https://doi.org/10.1016/S0092-8674(00)80799-0)

533

534 Britton, J. S., Lockwood, W.K., Li, L., Cohen, S.M., Edgar, B.A. 2002. "Drosophila's
535 Insulin/PI3-Kinase Pathway Coordinates Cellular Metabolism with Nutritional
536 Conditions." *Dev Cell* 2(2): 239–49. [https://doi.org/10.1016/s1534-5807\(02\)00117-x](https://doi.org/10.1016/s1534-5807(02)00117-x)

537

538 Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., Hafen, E. 2001. "An
539 Evolutionarily Conserved Function of the *Drosophila* Insulin Receptor and Insulin-like
540 Peptides in Growth Control." *Curr Biol* 11(4): 213–21. [https://doi.org/10.1016/S0960-9822\(01\)00068-9](https://doi.org/10.1016/S0960-9822(01)00068-9)

542

543 Broughton, S.J., Piper, M.D.W., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez,
544 P., Hafen, E., Withers, D.J., Leevers, S.J., *et al.* 2005. "Longer lifespan, altered
545 metabolism, and stress resistance in *Drosophila* from ablation of cells making insulin-
546 like ligands." *Proc Natl Acad Sci USA* 102(8): 3105-10.

547 <https://doi.org/10.1073/pnas.0405775102>

548

549 Brown, E. B., Shah, K.D., Faville, R., Kottler, B., Keene, A.C. 2020. "Drosophila Insulin-
550 like Peptide 2 Mediates Dietary Regulation of Sleep Intensity." *PLoS Genet* 16(3):
551 e1008270. <https://doi.org/10.1371/journal.pgen.1008270>

552

553 Castellanos, M. C., Tang, J.C., Allan, D.W. 2013. "Female-Biased Dimorphism
554 Underlies a Female-Specific Role for Post-Embryonic Ilp7 Neurons in *Drosophila*
555 Fertility." *Development* 140(18): 3915–26. <https://doi.org/10.1242/dev.094714>

556

557 Chen, C., Jack, J., Garofalo, R.S. 1996. "The *Drosophila* Insulin Receptor Is Required
558 for Normal Growth." *Endocrinology* 137(3): 846–56.

559 <https://doi.org/10.1210/endo.137.3.8603594>.

560

561 Cho, K. S., Lee, J.H., Kim, S., Kim, D., Koh, H., Lee, J., Kim, C., Kim, J., Chung, J. 2001.
562 "Drosophila Phosphoinositide-Dependent Kinase-1 Regulates Apoptosis and Growth via
563 the Phosphoinositide 3-Kinase-Dependent Signaling Pathway." *Proc Natl Acad Sci USA*
564 98(11): 6144–49. <https://doi.org/10.1073/pnas.101596998>

565

566 Clancy, D. J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leavers,
567 S.J., Partridge, L. 2001. "Extension of Life-Span by Loss of CHICO, a *Drosophila* Insulin
568 Receptor Substrate Protein." *Science* 292(5514): 104–6.

569 <https://doi.org/10.1126/science.1057991>

570

571 Cognigni, P., Bailey, A.P., and Miguel-Aliaga, I. 2011. "Enteric Neurons and Systemic
572 Signals Couple Nutritional and Reproductive Status with Intestinal Homeostasis." *Cell
573 Metab* 13(1): 92–104. <https://doi.org/10.1016/j.cmet.2010.12.010>

574

575 Cong, X., Wang, H., Liu, Z., He, C., An, C., Zhao, Z. 2015. "Regulation of Sleep by
576 Insulin-like Peptide System in *Drosophila melanogaster*." *Sleep* 38(7): 1075–83.

577 <https://doi.org/10.5665/sleep.4816>

578

579 Delanoue, R., Meschi, R. Agrawal, N., Mauri, A., Tsatskis, Y., McNeill, H., Léopold, P.
580 2016. "Drosophila Insulin Release Is Triggered by Adipose Stunted Ligand to Brain
581 Methuselah Receptor." *Science* 353(6307): 1553–56.

582 <https://doi.org/10.1126/science.aaf8430>

583

584 Delanoue, R., Slaidina, M., Léopold, P. 2010. "The Steroid Hormone Ecdysone Controls
585 Systemic Growth by Repressing dMyc Function in *Drosophila* Fat Cells." *Dev Cell* 18(6):
586 1012–21. <https://doi.org/10.1016/j.devcel.2010.05.007>

587

588 DiAngelo, J.R., Bland, M.L., Bambina, S., Cherry, S., Birnbaum, M.J. 2009. "The
589 Immune Response Attenuates Growth and Nutrient Storage in *Drosophila* by Reducing
590 Insulin Signaling." *Proc Natl Acad Sci USA* 106(49): 20853–58.

591 <https://doi.org/10.1073/pnas.0906749106>

592

593 Fernandez, R., Tabarini, D., Azpiazu, N., Frasch, M., Schlessinger, J. 1995. "The
594 *Drosophila* Insulin Receptor Homolog: A Gene Essential for Embryonic Development
595 Encodes Two Receptor Isoforms with Different Signaling Potential." *EMBO J* 14(14):
596 3373–84.

597

598 French, V., Feast, M., and Partridge, L. 1998. "Body Size and Cell Size in *Drosophila*:
599 The Developmental Response to Temperature." *Journal of Insect Physiology* 44(11):
600 1081–89. [https://doi.org/10.1016/S0022-1910\(98\)00061-4](https://doi.org/10.1016/S0022-1910(98)00061-4)

601

602 Garner, S.R.C., Castellanos, M.C., Baillie, K. E., Lian, T., Allan, D.W. 2018. "Female-
603 Specific *llp7* Motoneurons Are Generated by *fruitless*-Dependent Cell Death in Males
604 and by a Double-Assurance Survival Role for *transformer* in Females." *Development*
605 145(1): dev150821. <https://doi.org/10.1242/dev.150821>

606

607 Geer, E.B., Shen, W. 2009. "Gender Differences in Insulin Resistance, Body
608 Composition, and Energy Balance." *Gender Medicine* 6(Suppl 1): 60–75.
609 <https://doi.org/10.1016/j.genm.2009.02.002>

610

611 Géminard, C., Rulifson, E.J., Léopold, P. 2009. "Remote Control of Insulin Secretion by
612 Fat Cells in *Drosophila*." *Cell Metab* 10(3): 199–207.
613 <https://doi.org/10.1016/j.cmet.2009.08.002>

614

615 Ghosh, A., Rideout, E.J., Grewal, S.S. 2014. "TIF-IA-Dependent Regulation of
616 Ribosome Synthesis in *Drosophila* Muscle Is Required to Maintain Systemic Insulin
617 Signaling and Larval Growth." *PLoS Genet* 10(10): e1004750.
618 <https://doi.org/10.1371/journal.pgen.1004750>

619

620 Green, D.A. and Extavour, C.G. 2014. "Insulin Signalling Underlies Both Plasticity and
621 Divergence of a Reproductive Trait in *Drosophila*." *Proceedings of the Royal Society B:
622 Biological Sciences* 281(1779): 20132673. <https://doi.org/10.1098/rspb.2013.2673>

623

624 Grewal, S. S. 2009. "Insulin/TOR Signaling in Growth and Homeostasis: A View from
625 the Fly World." *Int J Biochem Cell Biol* 41(5): 1006–10.
626 <https://doi.org/10.1016/j.biocel.2008.10.010>

627

628 Grönke, S., Clarke, D.F., Broughton, S., Andrews, T.D., Partridge, L. 2010. "Molecular
629 Evolution and Functional Characterization of *Drosophila* Insulin-like Peptides." *PLoS
630 Genet* 6(2): e1000857. <https://doi.org/10.1371/journal.pgen.1000857>

631

632 Van Heemst, D., Beekman, M., Mooijaart, S.P., Heijmans, B.T., Brandt, B.W., Zwaan,
633 B.J., Slagboom, P.E., Westendorp, R.G. 2005. "Reduced Insulin/IGF-1 Signalling and
634 Human Longevity." *Aging Cell* 4(2): 79–85. [https://doi.org/10.1111/j.1474-9728.2005.00148.x](https://doi.org/10.1111/j.1474-
635 9728.2005.00148.x)

636

637 Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P.C., Cervera,
638 P., Le Bouc, Y. 2003. "IGF-1 Receptor Regulates Lifespan and Resistance to Oxidative
639 Stress in Mice." *Nature* 421(6919): 182–87. <https://doi.org/10.1038/nature01298>

640

641 Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Hafen, E., Stocker, H.
642 2008. "Imp-L2, a Putative Homolog of Vertebrate IGF-Binding Protein 7, Counteracts
643 Insulin Signaling in *Drosophila* and Is Essential for Starvation Resistance." *J Biol* 7(3):
644 10. <https://doi.org/10.1186/jbiol72>

645

646 Huey, R.B., Moreteau, B., Moreteau, J.-C., Gibert, P., Gilchrist, G.W., Ives, A.R.,

647 Garland, T. Jr., David, J.R. 2006. "Sexual size dimorphism in a *Drosophila* clade, the *D.*
648 *obscura* group." *Zoology* 109(4): 318-30. <https://doi.org/10.1016/j.zool.2006.04.003>

649

650 Hsu, H.-J. and Drummond-Barbosa, D. 2009. "Insulin levels control female germline
651 stem cell maintenance via the niche in *Drosophila*." *Proc Natl Acad Sci USA* 106(6):
652 1117-21. <https://doi.org/10.1073/pnas.0809144106>

653

654 Hsu, H.-J., LaFever, L., Drummond-Barbosa, D. 2008. "Diet controls normal and
655 tumorous germline stem cells via insulin-dependent and -independent mechanisms in
656 *Drosophila*." *Dev Biol* 313(2): 700-712. <https://doi.org/10.1016/j.ydbio.2007.11.006>

657

658 Ikeya, T., Galic, M., Belawat, P., Nairz, K., Hafen, E. 2002. "Nutrient-Dependent
659 Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes
660 to Growth Regulation in *Drosophila*." *Curr Biol* 12(15): 1293–1300.
661 [https://doi.org/10.1016/s0960-9822\(02\)01043-6](https://doi.org/10.1016/s0960-9822(02)01043-6)

662

663 Jünger, M.A., Rintelen, F., Stocker, H., Wasserman, J.D., Végh, M., Radimerski, T.,
664 Greenberg, M.E., Hafen, E. 2003. "The *Drosophila* Forkhead Transcription Factor
665 FOXO Mediates the Reduction in Cell Number Associated with Reduced Insulin
666 Signaling." *J Biol* 2(3): 20. <https://doi.org/10.1186/1475-4924-2-20>

667

668 Kane, A.E., Sinclair, D.A., Mitchell, J.R., Mitchell, S.J. 2018. "Sex Differences in the
669 Response to Dietary Restriction in Rodents." *Curr Opin in Physiol* 6: 28–34.
670 <https://doi.org/10.1016/j.cophys.2018.03.008>

671

672 Klingenberg, C.P. 2011. "MorphoJ: an integrated software package for geometric
673 morphometrics." *Mol Ecol Resour* 11: 353-57. <https://doi.org/10.1111/j.1755-0998.2010.02924.x>

674

675

676 Kramer, J.M., Davidge, J.T., Lockyer, J.M., Staveley, B.E. 2003. "Expression of
677 *Drosophila* FOXO Regulates Growth and Can Phenocopy Starvation." *BMC Dev Bio*
678 3(1): 5. <https://doi.org/10.1186/1471-213X-3-5>

679

680 Lee, K.S., Kwon, O.Y. Lee, J.H., Kwon, K., Min, K.J., Jung, S.A., Kim, A.K., You, K.H.,
681 Tatar, M., and Yu, K. 2008. "*Drosophila* Short Neuropeptide F Signalling Regulates
682 Growth by ERK-Mediated Insulin Signalling." *Nature Cell Biology* 10(4): 468–75.
683 <https://doi.org/10.1038/ncb1710>

684

685 Leever, S. J., Weinkove, D., MacDougall, L.K., Hafen, E., Waterfield, M.D. 1996. "The
686 *Drosophila* Phosphoinositide 3-Kinase Dp110 Promotes Cell Growth." *EMBO J* 15(23):
687 6584–94.

688

689 LaFever, L. and Drummond-Barbosa, D. 2005. "Direct Control of Germline Stem Cell
690 Division and Cyst Growth by Neural Insulin in *Drosophila*." *Science* 309(5737): 1071-3.
691 <https://doi.org/10.1126/science.1111410>

692

693 Liao, S., Post, S., Lehmann, P., Veenstra, J.A., Tatar, M., Nässel, D.R. 2020.
694 "Regulatory Roles of *Drosophila* Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in
695 Pupal and Adult Stages." *Frontiers in Endocrinology* 11(April).
696 <https://doi.org/10.3389/fendo.2020.00180>

697

698 Linneweber, G.A., Jacobson, J., Busch, K.E., Hudry, B., Christov, C.P., Dormann, D.,
699 Yuan, M., *et al.* 2014. "Neuronal Control of Metabolism through Nutrient-Dependent
700 Modulation of Tracheal Branching." *Cell* 156(1–2): 69–83.
701 <https://doi.org/10.1016/j.cell.2013.12.008>

702

703 Liu, Y., Liao, S., Veenstra, J.A., Nässel, D.R. 2016. "*Drosophila* Insulin-like Peptide 1
704 (DILP1) Is Transiently Expressed during Non-Feeding Stages and Reproductive
705 Dormancy." *Sci Rep* 6: 26620. <https://doi.org/10.1038/srep26620>

706

707 Macotela, Y., Boucher, J., Tran, T.T., Kahn, C.R. 2009. "Sex and Depot Differences in
708 Adipocyte Insulin Sensitivity and Glucose Metabolism." *Diabetes* 58(4): 803–12.
709 <https://doi.org/10.2337/db08-1054>

710

711 Magwere, T., Chapman, T., Partridge, L. 2004. "Sex Differences in the Effect of Dietary
712 Restriction on Life Span and Mortality Rates in Female and Male *Drosophila*
713 *melanogaster*." *J Gerontol A Biol Sci Med Sci* 59(1): 3–9.
714 <https://doi.org/10.1093/gerona/59.1.b3>

715

716 Marshall, L., Rideout, E.J., Grewal, S.S. 2012. "Nutrient/TOR-Dependent Regulation of
717 RNA Polymerase III Controls Tissue and Organismal Growth in *Drosophila*." *EMBO J*
718 31(8): 1916–30. <https://doi.org/10.1038/emboj.2012.33>

719

720 Mauvais-Jarvis, F. 2015. "Sex differences in metabolic homeostasis, diabetes, and
721 obesity." *Biol Sex Differ* 6: 14. <https://doi.org/10.1186/s13293-015-0033-y>

722

723 McLeod, C.J., Wang, L., Wong, C., Jones, D.L. 2010. "Stem cell dynamics in response
724 to nutrient availability." *Curr Biol* 20(23): 2100-5.
725 <https://doi.org/10.1016/j.cub.2010.10.038>

726

727 Meschi, E., Léopold, P., Delanoue, R. 2019. "An EGF-Responsive Neural Circuit
728 Couples Insulin Secretion with Nutrition in *Drosophila*." *Dev Cell* 48(1): 76-86.e5.
729 <https://doi.org/10.1016/j.devcel.2018.11.029>

730

731 Millington, J.W., Chao, C., Sun, Z., Basner-Collins, P.J., Brownrigg, G.P., Wat, L.W.,
732 Hudry, B., Miguel-Aliaga, I., Rideout, E.J. 2020. "Female-Specific Upregulation of Insulin

733 Pathway Activity Mediates the Sex Difference in *Drosophila* Body Size Plasticity.”

734 *bioRxiv*. <https://doi.org/10.1101/2020.04.22.2054239>

735

736 Millington, J.W. and Rideout, E.J. 2018. “Sex Differences in *Drosophila* Development
737 and Physiology.” *Curr Opin Physiol* 6: 46–56.

738 <https://doi.org/10.1016/j.cophys.2018.04.002>

739

740 Murillo-Maldonado, J.M., Sánchez-Chávez, G., Salgado, L.M., Salceda, R., Riesgo-
741 Escobar, J.R. 2011. “*Drosophila* Insulin Pathway Mutants Affect Visual Physiology and
742 Brain Function besides Growth, Lipid, and Carbohydrate Metabolism.” *Diabetes* 60(5):
743 1632–36. <https://doi.org/10.2337/db10-1288>

744

745 Musselman, L.P., Fink, J.L., Grant, A.R., Gatto, J.A., Tuthill, B.F., Baranski, T.J. 2018.
746 “A Complex Relationship between Immunity and Metabolism in *Drosophila* Diet-Induced
747 Insulin Resistance.” *Molecular and Cellular Biology* 38(2).

748 <https://doi.org/10.1128/MCB.00259-17>

749

750 Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani, S.S.,
751 Cagan, R.L., Baranski, T.J. 2011. “A High-Sugar Diet Produces Obesity and Insulin
752 Resistance in Wild-Type *Drosophila*.” *Disease Models & Mechanisms* 4(6): 842–49.

753 <https://doi.org/10.1242/dmm.007948>

754

755 Nässel, D.R. and Vanden Broeck, J. 2016. "Insulin/IGF Signaling in *Drosophila* and
756 Other Insects: Factors That Regulate Production, Release and Post-Release Action of
757 the Insulin-like Peptides." *Cell Mol Life Sci* 73(2): 271–90.

758 <https://doi.org/10.1007/s00018-015-2063-3>

759

760 Oh, Y., Lai, J.S.Y., Mills, H.J., Erdjument-Bromage, H., Giammarinaro, B., Saadipour, K.,
761 Wang, J.G., Abu, F., Neubert, T.A., Suh, G.S.B. 2019. "A Glucose-Sensing Neuron Pair
762 Regulates Insulin and Glucagon in *Drosophila*." *Nature* 574(7779): 559–64.

763 <https://doi.org/10.1038/s41586-019-1675-4>

764

765 Okamoto, N., Nakamori, R., Murai, T., Yamauchi, Y., Masuda, A., Nishimura, T. 2013.
766 "A Secreted Decoy of InR Antagonizes Insulin/IGF Signaling to Restrict Body Growth in
767 *Drosophila*." *Genes Dev* 27(1): 87–97. <https://doi.org/10.1101/gad.204479.112>

768

769 Okamoto, N., Yamanaka, N., Yagi, Y., Nishida, Y., Kataoka, H., O'Connor, M.B.,
770 Mizoguchi, A. 2009. "A Fat Body-Derived IGF-like Peptide Regulates Postfeeding
771 Growth in *Drosophila*." *Dev Cell* 17(6): 885–91.

772 <https://doi.org/10.1016/j.devcel.2009.10.008>

773

774 Pasco, M.Y. and Léopold, P. 2012. "High Sugar-Induced Insulin Resistance in
775 *Drosophila* Relies on the Lipocalin Neural Lazarillo." *PLoS One* 7(5): e36583.

776 <https://doi.org/10.1371/journal.pone.0036583>

777 Pitnick, S., Markow, T.A., Spicer, G.S. 1995. "Delayed male maturity is a cost of
778 producing large sperm in *Drosophila*." *Proc Natl Acad Sci USA* 92(23): 10614-18.
779 <https://doi.org/10.1073/pnas.92.23.10614>

780 Poltilove, R.M., Jacobs, A.R., Haft, C.R., Xu, P., Taylor, S.I. 2000. "Characterization of
781 *Drosophila* Insulin Receptor Substrate." *J Biol Chem* 275(30): 23346-54.
782 <https://doi.org/10.1074/jbc.M003579200>

783

784 Post, S., Karashchuk, G., Wade, J.D., Sajid, W., De Meyts, P., Tatar, M. 2018. "Insulin-
785 Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen
786 Phosphorylase to Regulate Longevity." *Front Endocrinol (Lausanne)* 9: 245.
787 <https://doi.org/10.3389/fendo.2018.00245>

788

789 Post, S., Liao, S., Yamamoto, R., Veenstra, J.A., Nässel, D.R., Tatar, M. 2019.
790 "Drosophila Insulin-like Peptide Dilp1 Increases Lifespan and Glucagon-like Akh
791 Expression Epistatic to Dilp2." *Aging Cell* 18(1): e12863.
792 <https://doi.org/10.1111/acel.12863>

793

794 Puig, O., Marr, M.T., Ruhf, M.L., Tjian, R. 2003. "Control of Cell Number by *Drosophila*
795 FOXO: Downstream and Feedback Regulation of the Insulin Receptor Pathway." *Genes
796 Dev* 17(16): 2006-20. <https://doi.org/10.1101/gad.1098703>

797

798 Regan, J.C., Khericha, M., Dobson, A.J., Bolukbasi, E., Rattanavirotkul, N., Partridge, L.
799 2016. "Sex Difference in Pathology of the Ageing Gut Mediates the Greater Response

800 of Female Lifespan to Dietary Restriction." *eLife* 5: e10956.

801 <https://doi.org/10.7554/eLife.10956>

802

803 Rideout, E.J., Marshall, L., Grewal, S.S. 2012. "Drosophila RNA Polymerase III

804 Repressor Maf1 Controls Body Size and Developmental Timing by Modulating

805 tRNAiMet Synthesis and Systemic Insulin Signaling." *Proc Natl Acad Sci USA* 109(4):

806 1139–44. <https://doi.org/10.1073/pnas.1113311109>

807

808 Rideout, E.J., Narsaiya, M.S., Grewal, S.S. 2015. "The Sex Determination Gene

809 *transformer* Regulates Male-Female Differences in *Drosophila* Body Size." *PLoS Genet*

810 11(12): e1005683. <https://doi.org/10.1371/journal.pgen.1005683>

811

812 Rintelen, F., Stocker, H., Thomas, G., Hafen, E. 2001. "PDK1 Regulates Growth

813 through Akt and S6K in *Drosophila*." *Proc Natl Acad Sci USA* 98(26): 15020–25.

814 <https://doi.org/10.1073/pnas.011318098>

815

816 Roth, S.W., Bitterman, M.D, Birnbaum, M.J., Bland, M.L. 2018. "Innate Immune

817 Signaling in *Drosophila* Blocks Insulin Signaling by Uncoupling PI(3,4,5)P3 Production

818 and Akt Activation." *Cell Reports* 22(10): 2550–56.

819 <https://doi.org/10.1016/j.celrep.2018.02.033>

820

821 Rueden, C.T., Schindelin, J., Hiner, M.C. DeZonia, B.E., Walter, A.E., Arean, E.T.,
822 Eliceiri, K.W. 2017. "ImageJ2: ImageJ for the next generation of scientific image data."
823 BMC Bioinformatics 18: 529. <https://doi.org/10.1186/s12859-017-1934-z>
824
825 Rulifson, E.J., Kim, S.K., Nusse, R. 2002. "Ablation of Insulin-Producing Neurons in
826 Flies: Growth and Diabetic Phenotypes." *Science* 296(5570): 1118–20.
827 <https://doi.org/10.1126/science.1070058>
828
829 Sanaki, Y., Nagata, R., Kizawa, D., Léopold, P., Igaki, T. 2020. "Hyperinsulinemia
830 Drives Epithelial Tumorigenesis by Abrogating Cell Competition." *Developmental Cell*
831 53(4): 379-389.e5. <https://doi.org/10.1016/j.devcel.2020.04.008>
832
833 Sawala, A. and Gould, A.P. 2017. "The Sex of Specific Neurons Controls Female Body
834 Growth in *Drosophila*." *PLoS Biol* 15(10): e2002252.
835 <https://doi.org/10.1371/journal.pbio.2002252>
836
837 Schindelin, J., Arganda-Careeras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et
838 al. 2012. "Fiji: an open-source platform for biological-image analysis." *Nat Methods* 9 (7):
839 676-82. <https://doi.org/10.1038/nmeth.2019>
840
841 Selman, C., Lingard, S., Choudhury, A.I., Batterham, R.L., Claret, M., Clements, M.,
842 Ramadani, F. et al. 2008. "Evidence for Lifespan Extension and Delayed Age-Related

843 Biomarkers in Insulin Receptor Substrate 1 Null Mice." *FASEB J* 22(3): 807–18.

844 <https://doi.org/10.1096/fj.07-9261com>

845

846 Semaniuk, U.V., Gospodaryov, D.V., Feden'ko, K.M., Yurkevych, I.S., Vaiserman, A.M.,

847 Storey, K.B., Simpson, S.J., Lushchak, O. 2018. "Insulin-Like Peptides Regulate

848 Feeding Preference and Metabolism in *Drosophila*." *Frontiers in Physiol* 9: 1083.

849 <https://doi.org/10.3389/fphys.2018.01083>

850

851 Shingleton, A.W., Das, J., Vinicius, L., Stern, D.L. 2005. "The Temporal Requirements

852 for Insulin Signaling During Development in *Drosophila*." *PLoS Biology* 3(9): e289.

853 <https://doi.org/10.1371/journal.pbio.0030289>

854

855 Slack, C., Giannakou, M.E., Foley, A., Goss, M., Partridge, L. 2011. "dFOXO-

856 Independent Effects of Reduced Insulin-like Signaling in *Drosophila*." *Aging Cell* 10(5):

857 735–48. <https://doi.org/10.1111/j.1474-9726.2011.00707.x>

858

859 Stafford, J.W., Lynd, K.M., Jung, A.Y., Gordon, M.D. 2012. "Integration of Taste and

860 Calorie Sensing in *Drosophila*." *J Neurosci* 32(42): 14767–74.

861 <https://doi.org/10.1523/JNEUROSCI.1887-12.2012>

862

863 Stocker, H., Andjelkovic, M., Oldham, S., Laffargue, M., Wymann, M.P., Hemmings,

864 B.A., Hafen, E. 2002. "Living with lethal PIP3 levels: viability of flies lacking PTEN

865 restored by a PH domain mutation in Akt/PKB." *Science* 295(5562): 2088-91.

866 <https://doi.org/10.1126/science.1068094>

867

868 Suzawa, M., Muhammad, N.M., Joseph, B.S., Bland, M.L. 2019. "The Toll Signaling

869 Pathway Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in *Drosophila*." *Cell Reports* 28(6): 1439-1446.e5. <https://doi.org/10.1016/j.celrep.2019.07.015>

870

871

872 Teleman, A.A. 2009. "Molecular Mechanisms of Metabolic Regulation by Insulin in

873 *Drosophila*." *Biochemical Journal* 425(1): 13–26. <https://doi.org/10.1042/bj20091181>

874

875 Testa, N.D., Ghosh, S.M., Shingleton, A.W. 2013. "Sex-Specific Weight Loss Mediates

876 Sexual Size Dimorphism in *Drosophila melanogaster*." *PLoS One* 8(3): e58936.

877 <https://doi.org/10.1371/journal.pone.0058936>

878

879 Ueishi, S., Shimizu, H., Inoue, Y.H. 2009. "Male germline stem cell division and

880 spermatocyte growth require insulin signaling in *Drosophila*." *Cell Struct Funct* 34(1):

881 61-9. <https://doi.org/10.1247/csf.08042>

882

883 Ugrankar, R., Theodoropoulos, P., Akdemir, F., Henne, W.M., Graff, J.M. 2018.

884 "Circulating Glucose Levels Inversely Correlate with *Drosophila* Larval Feeding through

885 Insulin Signaling and SLC5A11." *Commun Biol* 1: 110. <https://doi.org/10.1038/s42003-018-0109-4>

886

887

888 Verdu, J., Buratovich, M.A., Wilder, E.L., Birnbaum, M.J. 1999. "Cell-Autonomous
889 Regulation of Cell and Organ Growth in *Drosophila* by Akt/PKB." *Nat Cell Biol* 1(8):
890 500–506. <https://doi.org/10.1038/70293>

891

892 Weinkove, D., Neufeld, T.P., Twardzik, T., Waterfield, M.D., Leevers, S.J. 1999.
893 "Regulation of Imaginal Disc Cell Size, Cell Number and Organ Size by *Drosophila*
894 Class I(A) Phosphoinositide 3-Kinase and Its Adaptor." *Curr Biol* 9(18): 1019–29.
895 [https://doi.org/10.1016/s0960-9822\(99\)80450-3](https://doi.org/10.1016/s0960-9822(99)80450-3)

896

897 Werz, C., Köhler, K., Hafen, E., Stocker, H. 2009. "The *Drosophila* SH2B Family
898 Adaptor Lnk Acts in Parallel to Chico in the Insulin Signaling Pathway." *PLoS Genet*
899 5(8): e1000596. <https://doi.org/10.1371/journal.pgen.1000596>

900

901 Woodling, N.S., Aleyakpo, B., Dyson, M.C., Minkley, L.J., Rajasingam, A., Dobson, A.J.,
902 Leung, K.H.C., *et al.* 2020. "The Neuronal Receptor Tyrosine Kinase Alk Is a Target for
903 Longevity." *Aging Cell* 19(5): e13137. <https://doi.org/10.1111/ace.13137>

904

905 Zhang, H., Liu, J., Li, C.R., Momen, B., Kohanski, R.A., Pick, L. 2009. "Deletion of
906 *Drosophila* Insulin-like Peptides Causes Growth Defects and Metabolic Abnormalities."
907 *Proc Natl Acad Sci USA* 106(46): 19617–22. <https://doi.org/10.1073/pnas.0905083106>

908

909 Zinke, I., Schütz, C.S., Katzenberger, J.D., Bauer, M., Pankratz, M.J. 2002. "Nutrient
910 Control of Gene Expression in *Drosophila*: Microarray Analysis of Starvation and Sugar-
911 Dependent Response." *EMBO J* 21(22): 6162–73. <https://doi.org/10.1093/emboj/cdf600>
912

913 **FIGURE LEGENDS**

914 **Figure 1. IPC ablation, loss of IPC function, and loss of IPC-derived Dilp ligands**

915 **all cause a female-biased decrease in growth.** (A) Pupal volume was significantly
916 reduced in *dilp2>UAS-rpr* females and males compared to both *dilp2>+* and *+>UAS-rpr*
917 controls ($p<0.0001$ for all comparisons; two-way ANOVA followed by Tukey HSD test).
918 The magnitude of the reduction in pupal volume was greater in females (sex:genotype
919 interaction $p<0.0001$; two-way ANOVA). $n = 15-71$ pupae. (B) Pupal volume was
920 significantly reduced in *dilp2>UAS-Kir2.1* females and males compared to both *dilp2>+*
921 and *+>UAS-Kir2.1* controls ($p<0.0001$ for all comparisons; two-way ANOVA followed by
922 Tukey HSD test). The magnitude of the reduction in pupal volume was greater in
923 females (sex:genotype interaction $p<0.0001$; two-way ANOVA followed by Tukey HSD
924 test). $n = 31-53$ pupae. (C) Pupal volume was significantly reduced in *Df(3L)ilp2-3,5*
925 homozygous females and males compared with sex-matched *w¹¹¹⁸* controls ($p<0.0001$
926 for all comparisons; two-way ANOVA followed by Tukey HSD test). Similarly, *Df(3L)ilp1-*
927 *4,5* homozygous females and males were significantly smaller than *w¹¹¹⁸* control
928 females and males ($p<0.0001$ for all comparisons; two-way ANOVA followed by Tukey
929 HSD test). The magnitude of the reduction in body size for both *Df(3L)ilp2-3,5* and
930 *Df(3L)ilp1-4,5* was significantly larger in females than in males (sex:genotype interaction
931 $p<0.0001$ for both genotypes; two-way ANOVA followed by Tukey HSD test). $n = 7-74$
932 pupae. **** indicates $p<0.0001$; error bars indicate SEM. For all panels, females are
933 shown on the left-hand side of the graph and males are shown on the right-hand side.

934

935

936 **Figure 2. Loss of individual *dilp* genes causes sex-biased effects on growth.** (A) In
937 females, pupal volume was significantly reduced compared with w^{1118} controls in larvae
938 carrying individual mutations in each of the following genes: *dilp1*, *dilp3*, *dilp4*, *dilp5*, and
939 *dilp7* ($p < 0.0001$, $p = 0.0003$, $p = 0.0136$, $p < 0.0001$, and $p < 0.0001$, respectively; one-
940 way ANOVA followed by Dunnett's multiple comparison test). $n = 59\text{-}74$ pupae. (B)
941 Pupal volume was not significantly different between y,w control female larvae and
942 *dilp6*⁴¹ mutant females ($p = 0.7634$, Student's *t* test). $n = 41\text{-}74$ pupae. (C) In males,
943 pupal volume was not significantly reduced compared with w^{1118} controls in larvae
944 carrying individual mutations in each of the following genes: *dilp1*, *dilp3*, *dilp4*, *dilp5*, and
945 *dilp7* ($p = 0.7388$, $p = 0.2779$, $p = 0.1977$, $p = 0.9535$, and $p = 0.4526$, respectively;
946 one-way ANOVA followed by Dunnett's multiple comparison test). $n = 66\text{-}79$ pupae. (D)
947 Pupal volume was significantly reduced in male *dilp6*⁴¹ larvae compared with y,w control
948 males ($p = 0.0017$, Student's *t* test). $n = 64\text{-}70$ pupae. * indicates $p < 0.05$; ** indicates
949 $p < 0.01$; *** indicates $p < 0.001$; **** indicates $p < 0.0001$; ns indicates not significant; error
950 bars indicate SEM. Panels A and B display female data; panels C and D show male
951 data.

952

953 **Figure 3. Fat body loss of Dilp-binding protein *Imp-L2* has sex-biased effects on**
954 **growth.** (A) Pupal volume was significantly increased in *Sdr*¹ mutant females and males
955 compared with *w*¹¹¹⁸ control females and males ($p < 0.0001$ for both sexes; two-way
956 ANOVA followed by Tukey HSD test). There was no sex difference in the magnitude of
957 the increase in body size (sex:genotype interaction $p = 0.5261$; two-way ANOVA
958 followed by Tukey HSD test). $n = 52$ -88 pupae. (B) In females, pupal volume was not
959 significantly different between larvae with fat body-specific knockdown of *Imp-L2*
960 (*r4>UAS-Imp-L2-RNAi*) compared with *r4>+* and *+>UAS-Imp-L2-RNAi* control larvae (p
961 = 0.9948 and $p < 0.0001$, respectively; two-way ANOVA followed by Tukey HSD test). In
962 contrast, pupal volume was significantly larger in *r4>UAS-Imp-L2-RNAi* males
963 compared with *r4>+* and *+>UAS-Imp-L2-RNAi* control males ($p < 0.0001$ for both
964 comparisons; two-way ANOVA followed by Tukey HSD test). The magnitude of the
965 increase in pupal volume was higher in males than in females (sex:genotype interaction
966 $p < 0.0001$; two-way ANOVA). $n = 70$ -92 pupae. **** indicates $p < 0.0001$; ns indicates not
967 significant; error bars indicate SEM. For all panels, females are shown on the left-hand
968 side of the graph and males are shown on the right-hand side.

969

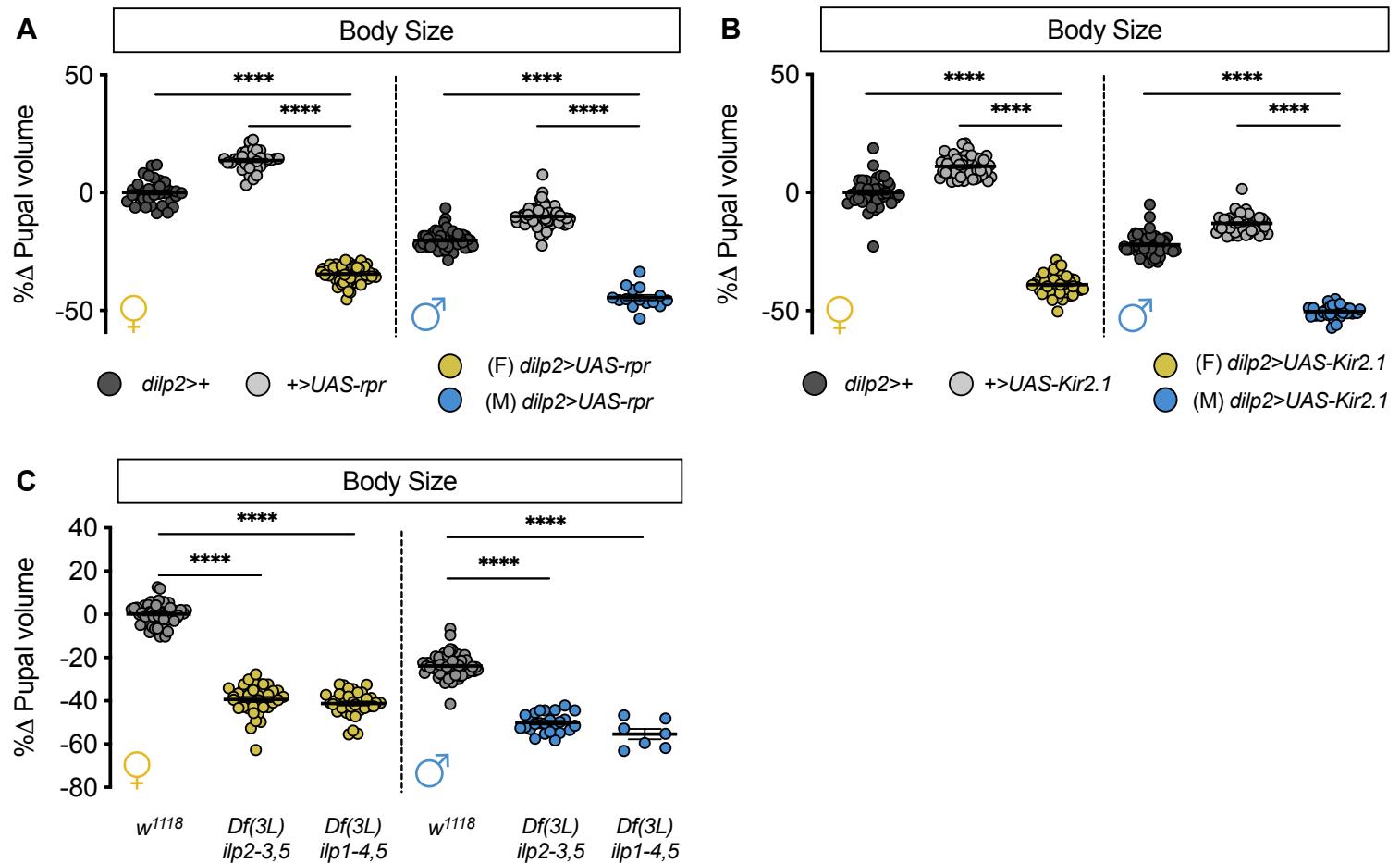
970 **Figure 4. Both sex-biased and non-sex-biased effects on growth arise from loss**
971 **of intracellular IIS pathway components.** (A) Pupal volume was significantly reduced
972 in females and males heterozygous for two hypomorphic *InR* alleles (*InR*^{E19}/*InR*^{PZ})
973 compared with sex-matched *w*¹¹¹⁸ controls ($p < 0.0001$ for both sexes; two-way ANOVA
974 followed by Tukey HSD test). The magnitude of the decrease in larval body size was
975 significantly higher in *InR*^{E19}/*InR*^{PZ} females than in *InR*^{E19}/*InR*^{PZ} males (sex:genotype
976 interaction $p = 0.0029$; two-way ANOVA followed by Tukey HSD test). $n = 32\text{-}133$ pupae.
977 (B) Pupal volume was significantly smaller in females and males heterozygous for a null
978 *chico* allele (*chico*^{1/+}) compared with sex-matched *w*¹¹¹⁸ controls ($p < 0.0001$ for both
979 females and males; two-way ANOVA followed by Tukey HSD test). The magnitude of
980 the reduction in body size was not significantly different between females and males
981 (sex:genotype interaction $p = 0.1399$; two-way ANOVA followed by Tukey HSD test). n
982 = 93-133 pupae. (C) Pupal volume was significantly reduced in females and males
983 heterozygous for a deficiency and hypomorphic allele of *Pi3K92E*
984 (*Df(3R)Pi3K92E*^A/*Pi3K92E*^{2H1}) compared with sex-matched *w*¹¹¹⁸ controls ($p < 0.0001$ for
985 all comparisons in females and males; two-way ANOVA followed by Tukey HSD test).
986 The magnitude of the reduction in body size was significantly larger in
987 *Df(3R)Pi3K92E*^A/*Pi3K92E*^{2H1} females than in *Df(3R)Pi3K92E*^A/*Pi3K92E*^{2H1} males
988 (sex:genotype interaction $p = 0.0029$; two-way ANOVA followed by Tukey HSD test).
989 Note: the *Df(3R)Pi3K92E*^A/*Pi3K92E*^{2H1} pupae were collected and analyzed in parallel
990 with the *InR*^{E19}/*InR*^{PZ} genotype, so the *w*¹¹¹⁸ control genotype data is shared between
991 these experiments. $n = 52\text{-}133$ pupae. (D) Pupal volume was not significant different in
992 either females or males homozygous for a hypomorphic *Pdk1* allele (*Pdk1*⁴) compared

993 with w^{1118} controls ($p = 0.6739$ and $p = 0.7847$, respectively; two-way ANOVA followed
994 by Tukey HSD test). $n = 61$ -84 pupae. (E) Adult weight was significantly reduced in
995 $Pdk1^4$ females and males compared with w^{1118} controls ($p = 0.0017$ and $p = 0.0491$ for
996 females and males respectively; two-way ANOVA followed by Tukey HSD test). The
997 magnitude of the reduction in body size was not significantly different between females
998 and males (sex:genotype interaction $p = 0.503$; two-way ANOVA followed by Tukey
999 HSD test). $n = 5$ -8 biological replicates of ten adult flies. (F) Pupal volume was
1000 significantly reduced in females and males homozygous for a hypomorphic $Akt1$ allele
1001 ($Akt1^3$) compared with sex-matched w^{1118} controls ($p < 0.0001$ for both sexes; two-way
1002 ANOVA followed by Tukey HSD test). The magnitude of the decrease in body size in
1003 $Akt1^3$ larvae was significantly higher in females than in males (sex:genotype interaction
1004 $p < 0.0001$; two-way ANOVA followed by Tukey HSD test). $n = 44$ -60 pupae. (G) In
1005 females and males heterozygous for two hypomorphic alleles of *foxo* ($foxo^{21}/foxo^{25}$),
1006 pupal volume was not significantly different compared with sex-matched w^{1118} controls
1007 ($p = 0.8841$ and 0.9646 , respectively; two-way ANOVA followed by Tukey HSD test). n
1008 = 110-153 pupae. (H) In $foxo^{21}/foxo^{25}$ females, adult weight was not significantly
1009 different compared with w^{1118} controls ($p = 0.8786$; two-way ANOVA followed by Tukey
1010 HSD test). In males, adult weight was significantly higher in $foxo^{21}/foxo^{25}$ flies compared
1011 with w^{1118} control flies ($p < 0.0001$; two-way ANOVA followed by Tukey HSD test). The
1012 magnitude of the increase in body size was greater in males than in females
1013 (sex:genotype interaction $p = 0.0014$; two-way ANOVA followed by Tukey HSD test). n
1014 = 5-8 biological replicates of 10 adult flies. * indicates $p < 0.05$; ** indicates $p < 0.01$; ****
1015 indicates $p < 0.0001$; ns indicates not significant; error bars indicate SEM. For all panels,

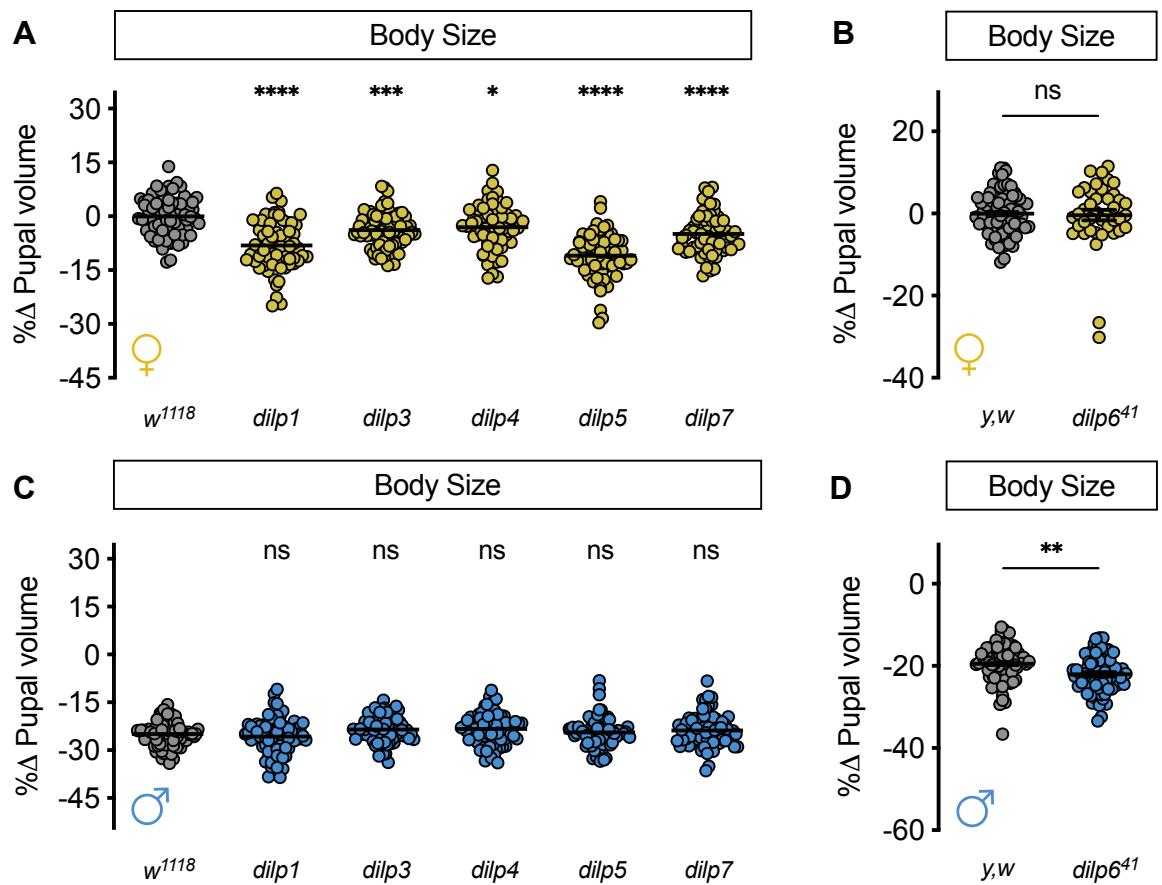
1016 females are shown on the left-hand side of the graph and males are shown on the right-

1017 hand side.

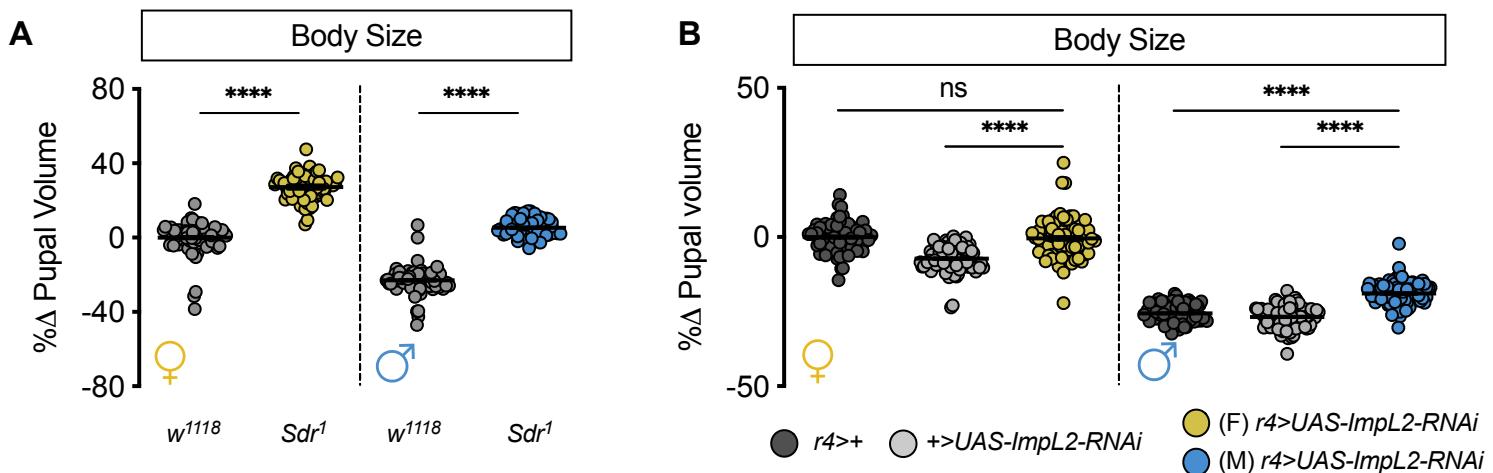
1018


1019 **Table 1. Summary of sex-biased effects of IIS pathway manipulations on body**

1020 **size.**


1021

1022


Figure 1.

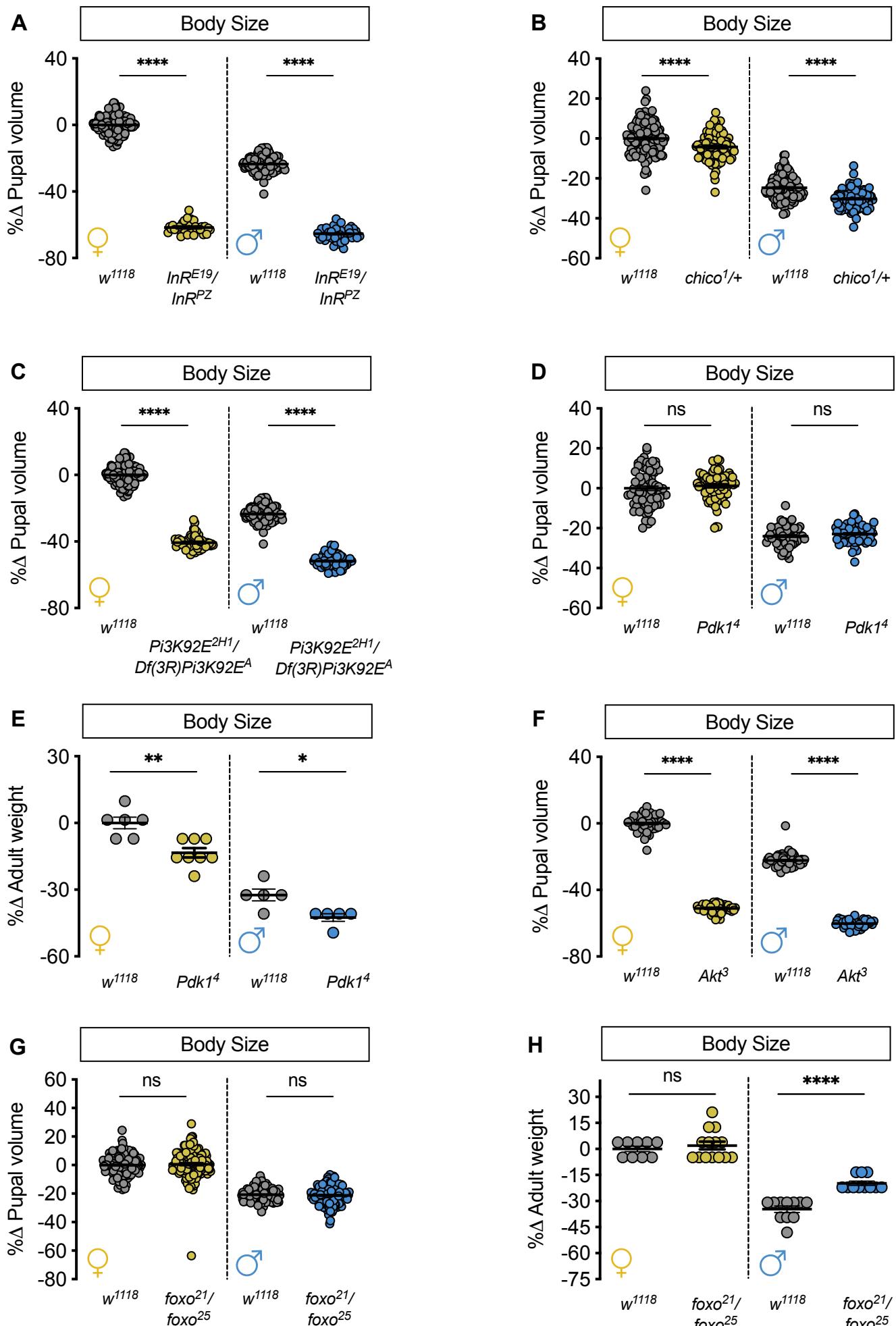

Figure 2.

Figure 3.

Figure 4.

1031 **Table 1.**

1032

	Genetic Manipulation	Female-biased	Male-biased	Non-sex-specific
Reduced circulating Dilps	IPC ablation			
	IPC silencing			
	<i>dilp2-3,5</i>			
	<i>dilp1-4,5</i>			
	<i>dilp1</i>			
	<i>dilp3</i>			
	<i>dilp4</i>			
	<i>dilp5</i>			
	<i>dilp6</i>			
Increased circulating Dilps	<i>dilp7</i>			
	<i>Sdr</i>			
Intracellular IIS pathway	Fat body loss of Imp-L2			
	<i>InR</i>			
	<i>chico^{1/+}</i>			
	<i>Pi3K92E</i>			
	<i>Pdk1</i>			
	<i>Akt</i>			
	<i>foxo</i>			