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ABSTRACT

In Drosophila, female body size is approximately 30% larger than male body size due to
an increased rate of larval growth. While the mechanisms that control this sex difference
in body size remain incompletely understood, recent studies suggest that the
insulin/insulin-like growth factor signaling pathway (11S) plays a role in the sex-specific
regulation of growth during development. In larvae, IS activity differs between the sexes,
and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of
how changes to IS activity impact growth in each sex, as the majority of studies on IS
and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of
our current study was to clarify the requirement for 1IS activity in each sex during the
larval growth period. To achieve this goal we used established genetic approaches to
enhance, or inhibit, IS activity, and quantified body size in male and female larvae.
Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body
size, whereas genotypes that augmented IIS activity caused a male-specific increase in
body size. This data extends our current understanding of larval growth by showing that
most changes to IIS pathway activity have sex-biased effects on body size, and

highlights the importance of analyzing data by sex in larval growth studies.
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INTRODUCTION

Over the past two decades, the Drosophila larva has emerged as an important model to
study the regulation of growth during development. One important factor that affects
body size in most Drosophila species is whether the animal is male or female: female
flies are typically larger than male flies (Alpatov et al., 1930; Pitnick et al., 1995; French
et al., 1998; Huey et al., 2006; Testa et al., 2013; Okamoto et al., 2013; Rideout et al.,
2015; Sawala and Gould, 2017; Millington et al., 2020; reviewed in Millington and
Rideout, 2018). This increased body size is due to an increased rate of larval growth, as
the duration of the larval growth period does not differ between the sexes (Testa et al.,
2013; Okamoto et al., 2013; Sawala and Gould, 2017). While the precise molecular
mechanisms underlying the male-female difference in body size remain incompletely
understood, recent studies have revealed a key role for the insulin/insulin-like growth
factor signaling pathway (11S) in the sex-specific regulation of growth during
development (Shingleton et al., 2005; Gronke et al., 2010; Testa et al., 2013; Rideout et
al., 2015; Liao et al., 2020; Millington et al., 2020).

Normally, 11S activity is higher in female larvae than in age-matched males
(Rideout et al 2015; Millington et al., 2020). Given that increased IIS activity is known to
promote cell, tissue, and organismal growth (Grewal, 2009; Teleman, 2009), this
suggests that elevated IIS activity is one reason that females have an increased rate of
growth and a larger body size. Indeed, the sex difference in growth was abolished
between male and female flies carrying a mutation that strongly reduced IIS activity

(Testa et al., 2013), and between male and female larvae reared on diets that markedly
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decrease IIS activity (Rideout et al., 2015). In both cases, the sex difference in growth
was eliminated by a female-biased decrease in body size (Testa et al., 2013; Rideout et
al., 2015). While these findings suggest that IS plays a role in the sex-specific
regulation of growth during development, only one genetic combination was used to
reduce IS activity (Testa et al., 2013). Therefore, it remains unclear whether the sex-
biased effect of reduced IIS activity on body size is a common feature of genotypes that
alter 1S activity.

In the present study, we used multiple genetic approaches to either enhance or
inhibit IIS activity, and monitored larval growth in males and females. While previous
studies show that these genetic approaches effectively alter IS activity, the body size
effects in each sex remain unclear due to frequent use of mixed-sex or single-sex
experimental groups, and a lack of statistical tests to detect sex-by-genotype
interactions (Fernandez et al., 1995; Chen et al., 1996; Leevers et al., 1996; Bohni et al.,
1999; Brogiolo et al., 2001; Cho et al., 2001; Rintelen et al., 2001; lkeya et al., 2002;
Britton et al., 2002; Rulifson et al., 2002; Zhang et al., 2009; Geminard et al., 2009;
Gronke et al., 2010). Our systematic examination of 1IS revealed most genetic
manipulations that reduced IIS activity caused a female-biased reduction in body size.
In contrast, most genetic manipulations that enhanced IIS activity increased male body
size with no effect in females. Together, these findings provide additional genetic

support for IS as an important regulator of sex-specific growth in Drosophila.

MATERIALS AND METHODS
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Data Availability. Original images of pupae are available upon request. Raw values for
all data collected and displayed in this manuscript are available in Supplementary file 1.
The authors affirm that all data necessary for confirming the conclusions of the article

are present within the article, figures, tables, and Supplementary files.

Fly husbandry. Drosophila growth medium consisted of: 20.5 g/L sucrose, 70.9 g/L D-
glucose, 48.5 g/L cornmeal, 45.3 g/L yeast, 4.55 g/L agar, 0.5g CaCl,*2H,0, 0.5 g
MgSO4+7H,0, 11.77 mL acid mix (propionic acid/phosphoric acid). Diet data was
deposited under “Rideout Lab 2Y diet” in the Drosophila Dietary Composition Calculator
(Lesperance and Broderick, 2020). Larvae were raised at a density of 50 animals per 10
mL food at 25°C, and sexed by gonad size. Adult flies were maintained at a density of

twenty flies per vial in single-sex groups.

Fly strains. The following fly strains from the Bloomington Drosophila Stock Center
were used: w''"® (#3605), UAS-rpr (#5823), UAS-Imp-L2-RNAi (#55855), InRE"® (#9646),
InR"# (#11661), Df(3R)Pi3K92E* (#25900), chico’ (#10738), foxo?’ (#80943), foxo®®
(#80944), r4-GAL4 (fat body), dilp2-GAL4 (IPCs). Additional fly strains include: UAS-
Kir2.1 (Baines et al., 2001), dilp1, dilp3, dilp4, dilp5, dilp6*', dilp7, Df(3L)ilp2-3,5,
Df(3L)ilp1-4,5 (Grénke et al., 2010), Sdr’ (Okamoto et al., 2013), Pi3K92E?""" (Halfar et
al., 2001), Pdk1? (Rintelen et al., 2001), Akt1° (Stocker et al., 2002). All fly strains

except dilp6*’ were backcrossed into a w’"’® background.
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Body size. Pupal length and width were determined using an automated detection and
measurement system. Segmentation of the pupae for automated analysis was carried
out using the “Marker-controlled Watershed” function included in the Morphod plugin
(Klingenberg, 2011) in ImageJ (Schindelin et al., 2012; Rueden et al., 2017). Briefly, the
original image containing the pupae was blurred using the “Gaussian blur” function. A
selection of points marking the pupae was then created using the “Find Maxima”
function. Next, a new image with the same dimension as the pupae was created, where
the individual points were projected onto this original image using the “Draw” function.
Then, we labelled each point using the “Connected Components Labeling” function in
the Morphod plugin (Klingenberg, 2011). This image is now the marker image. Upon
completion of the marker image, we used the “Morphological Filters” function in the
MorphodJ package with the options “operation=Gradient element=0Octagon radius =2" to
generate a gradient image of the pupae. Using the “Marker-controlled Watershed”
function with the gradient image as the input, and the marker image to identify regions
of interest outlining the pupae, the width and length of the pupae were obtained by
selecting “Fit ellipse” option under the “Set Measurements” menu in Imaged. Once
length and width were determined using this automated measurement system, pupal
volume was calculated as previously described (Delanoue et al., 2010; Rideout et al.,
2012, 2015; Marshall et al., 2012; Ghosh et al., 2014). To measure adult weight, 5-day-
old virgin male and female flies were collected and weighed in groups of ten on an

analytical balance.
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Statistical analysis and data presentation. GraphPad Prism (GraphPad Prism
version 8.4.2 for Mac OS X) was used to perform all statistical tests and to prepare all
graphs in this manuscript. Statistical tests are indicated in figure legends and all p-

values are listed in Supplementary file 2.

RESULTS

Reduced IPC function causes a female-biased decrease in body size

In Drosophila, the insulin-producing cells (IPCs) located in the brain are an important
source of IIS ligands called Drosophila insulin-like peptides (Dilps). In larvae, the IPCs
synthesize and release Dilp1 (FBgn0044051), Dilp2 (FBgn0036046), Dilp3 (FBgn0044050),
and Dilp5 (FBgn0044048) into the hemolymph (Brogiolo et al., 2001; lkeya et al., 2002;
Rulifson et al., 2002; Lee et al., 2008; Geminard et al., 2009). When circulating Dilps
bind to the Insulin-like Receptor (InR; FBgn0283499) on the surface of target tissues, an
intracellular signaling cascade is initiated which ultimately promotes cell, tissue, and
organismal growth (Chen et al., 1996; Bohni et al., 1999; Poltilove et al., 2000; Britton et
al., 2002; Werz et al., 2009; Almudi et al., 2013). The importance of the IPCs in
regulating 1S activity and growth is illustrated by the fact that IPC ablation and silencing
both reduce IIS activity and decrease overall body size (Rulifson et al., 2002; Geminard
et al., 2009). Yet, the precise requirement for IPCs in regulating growth in each sex
remains unclear, as past studies presented data from a mixed-sex population of larvae

or reported effects in only a single sex (Rulifson et al., 2002; Geminard et al., 2009).
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Given that recent studies show that the sex of the IPCs contributes to the sex-specific
regulation of larval growth (Sawala and Gould, 2017), we asked how the presence and
function of the IPCs affected body size in each sex.

First, we ablated the IPCs by overexpressing proapoptotic gene reaper (rpr;
FBgn0011706) with the IPC-specific GAL4 driver dilp2-GAL4 (Brogiolo et al., 2001;
Rulifson et al., 2002). This method eliminates the IPCs during development (Rulifson et
al., 2002). To quantify body size, we measured pupal volume, as it is a sensitive
readout for larval growth (Delanoue et al., 2010). In females, pupal volume was
significantly lower in dilp2>UAS-rpr larvae compared with dilp2>+ and +>UAS-rpr
control larvae (Fig. 1A). In males, pupal volume was also significantly lower in
dilp2>UAS-rpr larvae compared with control dilp2>+ and +>UAS-rpr larvae (Fig. 1A);
however, the magnitude of the decrease in body size was greater in females than in
males (sex:genotype interaction p<0.0001; two-way ANOVA). Next, to determine how
reduced IPC function affected body size in each sex, we overexpressed the inwardly-
rectifying potassium channel Kir2.1 (Baines et al., 2001) using dilp2-GAL4. This
approach reduces Dilp secretion and lowers IS activity in a mixed-sex group of larvae
(Geminard et al., 2009). We found that pupal volume was significantly reduced in
dilp2>UAS-Kir2.1 females compared with dilp2>+ and +>UAS-Kir2.1 control females
(Fig. 1B). In males, pupal volume was reduced in dilp2>UAS-Kir2.1 larvae compared
with dilp2>+ and +>UAS-Kir2.1 control larvae (Fig. 1B). Because the magnitude of the
decrease in female body size was larger than the reduction in male body size
(sex:genotype interaction p<0.0001; two-way ANOVA), this result indicates that

inhibiting IPC function caused a female-biased reduction in growth. Together, these
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results identify a previously unrecognized sex-biased body size effect caused by

manipulating IPC survival and function.

Loss of IPC-derived Dilps causes a female-biased reduction in body size

Given that the larval IPCs produce Dilp1, Dilp2, Dilp3, and Dilp5 (Brogiolo et al., 2001;
Ikeya et al., 2002; Rulifson et al., 2002; Lee et al., 2008; Geminard et al., 2009), we
tested whether the loss of some (Df(3L)ilp2-3,5), or all (Df(3L)ilp1-4,5), of the IPC-
derived Dilps affected larval growth in males and females. While a previous study
reported how loss of all IPC-derived dilp genes affected adult weight, data from both
sexes was not available for all genotypes (Gronke et al., 2010). In females, pupal

1118

volume was significantly smaller in Df(3L)ilp2-3,5 larvae compared with w'"'® control

larvae (Fig. 1C). In males, body size was also significantly reduced in Df(3L)ilp2-3,5

homozygous larvae compared with w'’"®

controls (Fig. 1C); however, the decrease in
body size was significantly greater in females than in males (sex:genotype interaction
p<0.0001; two-way ANOVA). When we measured body size in males and females
lacking all IPC-derived Dilps (Df(3L)ilp1-4,5), we reproduced the female-biased
reduction in body size (Fig. 1C; sex:genotype interaction p<0.0001; two-way ANOVA).

This reveals a previously unrecognized sex-biased body size effect arising from loss of

some, or all, IPC-derived Dilps.

Loss of individual dilp genes causes a female-specific decrease in body size

10
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While Dilp1, Dilp2, Dilp3 and Dilp5 are all produced by the IPCs, previous studies have
uncovered significant differences in regulation, secretion, and phenotypic effects of
these IPC-derived Dilps (Brogiolo et al., 2001; Zhang et al., 2009; Okamoto et al., 2009;
Gronke et al., 2010; Cognigni et al., 2011; Stafford et al., 2012; Bai et al., 2012;
Linneweber et al., 2014; Cong et al., 2015; Liu et al., 2016; Nassel & Vanden Broeck,
2016; Post et al., 2018, 2019; Semaniuk et al., 2018; Ugrankar et al., 2018; Brown et al.,
2020). We therefore wanted to determine the individual contributions of IPC-derived
Dilps to body size in each sex. Further, given that there are non-IPC-derived Dilps that
regulate diverse aspects of physiology and behaviour (dilp4, FBgn0044049; dilp6,
FBgn0044047; and dilp7, FBgn0044046) (Gronke et al., 2010; Castellanos et al., 2013;
Garner et al., 2018), we wanted to determine the requirement for these additional Dilps
in regulating larval growth in each sex. While a previous study measured adult weight
as a read-out for body size in dilp mutants (Gronke et al 2010), we measured pupal
volume to ensure changes to adult weight were not due to altered gonad size (Green
and Extavour, 2014). We found that pupal volume was significantly smaller in female
larvae carrying null mutations in dilp1, dilp3, dilp4, dilp5, and dilp7 compared with w'?8
control females (Fig. 2A). This data aligns well with findings from two recent studies
showing a female-specific decrease in larval growth caused by loss of dilp2 (Liao et al.,
2020; Millington et al., 2020). In contrast to most dilp mutants; however, there was no
significant difference in pupal volume between homozygous y,w,dilp6*' female larvae
and control y,w females (Fig. 2B). In males, pupal volume was not significantly different

1118

between dilp1, dilp3, dilp4, dilp5, and dilp7 mutant larvae and w' ' "° controls (Fig. 2C);

however, pupal volume was significantly reduced in y,w,dilp6*' larvae compared with

11
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y,w controls (Fig. 2D). Together, these results extend our current understanding of
larval growth by revealing sex-specific requirements for all individual dilp genes in

regulating body size.

Loss of Dilp-binding factor Imp-L2 causes a male-specific increase in body size

Once released into the circulation, the Dilps associate with proteins that modulate their
growth-promoting effects. For example, Dilp1, Dilp2, Dilp5 and Dilp6 form a high-affinity
complex with fat body-derived ecdysone-inducible gene 2 (Imp-L2, FBgn0001257) and
Convoluted/Drosophila Acid Labile Subunit (Conv/dALS; FBgn0261269) (Okamoto et al.,
2013), whereas Dilp3 interacts with Secreted decoy receptor of Insulin-like Receptor
(Sdr; FBgn0038279) (Okamoto et al., 2013). Binding of the Imp-L2/dALS complex to
individual Dilps likely reduces Dilp binding to InR, as reduced fat body levels of either
Imp-L2 or dALS augment IS activity and increase body size (Arquier et al., 2008;
Honegger et al., 2008; Alic et al., 2011; Okamoto et al., 2013). Similarly, loss of Sdr
increases |IS activity and increases body size (Okamoto et al., 2013). While the Sdr
study reported that the magnitude of the increase in adult weight was equivalent in both
sexes (Okamoto et al., 2013), which we confirm using pupal volume (Fig. 3A;
sex:genotype interaction p = 0.5261; two-way ANOVA), it remains unclear how the Imp-
L2/dALS complex affects growth in each sex. We found that in females pupal volume
was not significantly different between larvae with fat body-specific overexpression of an
Imp-L2-RNAI transgene (r4>UAS-Imp-L2-RNAIi) and control r4>+ and +>UAS-Imp-L2-

RNA:I larvae (Fig. 3B). In contrast, pupal volume was significantly larger in r4>UAS-Imp-

12
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L2-RNAi male larvae compared with r4>+ and +>UAS-Imp-L2-RNAi control males (Fig.
3B). This result demonstrates a male-specific increase in larval growth caused by
reduced Imp-L2 (sex:genotype interaction p<0.0001; two-way ANOVA), revealing a

previously unrecognized sex-specific effect of the Imp-L2/dALS complex on body size.

Altered activity of the intracellular IIS pathway causes sex-biased and non-sex-

specific effects on body size

In flies, 1IS activity is stimulated by Dilp binding the InR on the surface of target cells
(Fernandez et al., 1995; Chen et al., 1996). This Dilp-InR interaction induces receptor
autophosphorylation and recruitment of adapter proteins such as Chico (FBgn0024248),
the Drosophila homolog of mammalian insulin receptor substrate (Bohni et al., 1999;
Poltilove et al., 2000; Werz et al., 2009). The recruitment and subsequent activation of
the catalytic subunit of Drosophila phosphatidylinositol 3-kinase (Pi3K92E; FBgn0015279)
increases the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the
plasma membrane (Leevers et al., 1996; Britton et al., 2002), which activates signaling
proteins such as Phosphoinositide-dependent kinase 1 (Pdk1; FBgn0020386) and Akt1
(FBgn0010379) (Alessi et al., 1997). Both Pdk1 and Akt1 phosphorylate many
downstream effectors to promote larval growth (Verdu et al., 1999; Cho et al., 2001;
Rintelen et al., 2001). The importance of these intracellular 1IS components in regulating
growth during development is illustrated by studies showing that the loss, or reduced
function, of most components decreases body size (Leevers et al., 1996; Chen et al.,

1996; Bohni et al., 1999; Weinkove et al., 1999; Brogiolo et al., 2001; Rulifson et al.,

13
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282  2002; Zhang et al., 2009; Geminard et al., 2009; Gronke et al., 2010; Murillo-Maldonado
283 etal, 2011). Yet, the majority of studies on the regulation of growth by intracellular IS
284  components were performed in a single- or mixed-sex population of larvae and/or adult
285 flies, and lack testing for sex-by-genotype interactions (Fernandez et al., 1995; Chen et
286 al., 1996; Leevers et al., 1996; Bohni et al., 1999; Brogiolo et al., 2001; Cho et al., 2001;
287 Rintelen et al., 2001; Ikeya et al., 2002; Rulifson et al., 2002; Britton et al., 2002;

288 Geminard et al., 2009; Zhang et al., 2009; Gronke et al., 2010). Given that recent

289 studies have demonstrated the sex-specific regulation of 1IS components such as Akt1
290 (Rideout et al., 2015), we investigated the requirement for these components in

291 regulating larval growth in males and females. In line with previous results showing a
292 female-biased decrease in adult weight in flies heterozygous for two hypomorphic /InR
293 alleles (Testa et al., 2013), we observed a female-biased pupal volume reduction in

294  larvae carrying an additional combination of InR alleles (Fig. 4A; sex:genotype

295 interaction p<0.0001; two-way ANOVA).

296 To expand these findings beyond InR, we measured pupal volume in males and
297 females with whole-body loss of individual intracellular IIS components. Given that we
298  did not obtain viable pupae homozygous for a null mutation in chico (chico’), we

299 measured pupal volume in chico’/+ males and females. In chico’/+ females, pupal

300 volume was significantly reduced compared with control w’’"® larvae (Fig. 4B). In

301 chico'/+ males, pupal volume was reduced compared with control w'’*® larvae (Fig. 4B).
302 Given that the magnitude of the reduction in pupal volume was similar in males and

303 females (sex:genotype interaction p = 0.1399; two-way ANOVA), reduced chico did not

304 cause a sex-biased effect on larval growth. In females heterozygous for two mutant
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alleles of Pi3K92E (Df(3R)Pi3K92E"/Pi3K92E?"""), pupal volume was significantly
reduced compared with control w’'’® larvae (Fig. 4C). In Df(3R)Pi3K92E*/Pi3K92E*"
males, we observed a significant reduction in pupal volume (Fig. 4C); however, the
magnitude of the decrease in body size was larger in females compared with males
(sex:genotype interaction p<0.0001; two-way ANOVA). This indicates that loss of
PiBK92E caused a female-biased decrease in larval growth. Next, we examined body
size in males and females homozygous for a hypomorphic allele of Pdk1 (Pdk1?). We
observed no effect on pupal volume in either sex in Pdk1* homozygotes (Fig. 4D);
however, when we measured adult weight we found an equivalent body size reduction
in Pdk1* males and females compared with sex-matched control w'’’® flies (Fig. 4E;
sex:genotype interaction p = 0.5030; two-way ANOVA). This suggests that reduced
Pdk1 did not cause a sex-biased reduction in larval growth. One important target of
Pdk1 is the serine/threonine kinase Akt1. In females homozygous for a hypomorphic
allele of Akt1 (Akt1°), pupal volume was significantly reduced compared with control
w'""8 larvae (Fig. 4F). In Akt1° males, we observed a significant reduction in body size
compared with control w’'’® larvae (Fig. 4F). Given that the magnitude of the decrease
in body size was larger in females than in males (sex:genotype interaction p<0.0001;
two-way ANOVA), this indicates that loss of Akt1 caused a female-biased effect on
larval growth. Together, these findings identify previously unrecognized sex-biased
body size effects of reduced Pi3K92E and Akt1.

One downstream target of 1IS that contributes to the regulation of growth is
transcription factor forkhead box, sub-group O (foxo; FBgn0038197). When IIS activity is

high, Akt1 phosphorylates Foxo to prevent Foxo from translocating to the nucleus (Puig
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328 etal., 2003). Given that Foxo positively regulates mRNA levels of many genes that are
329 involved in growth repression and catabolism (Zinke et al., 2002; Junger et al., 2003;
330 Kramer et al., 2003; Slack et al., 2011; Alic et al., 2011), elevated IIS activity promotes
331 growth in part by inhibiting Foxo (Junger et al., 2003; Kramer et al., 2003). Because
332  previous studies show increased Foxo nuclear localization and elevated Foxo target
333 gene expression in males (Rideout et al., 2015; Millington et al., 2020), we examined
334  how Foxo contributes to larval growth in each sex by measuring body size in females
335 and males heterozygous for two hypomorphic foxo alleles (foxo?’/foxo®®). In

336 foxo?'/foxo®® females and males, pupal volume was not significantly different from sex-

1118

337 matched w'''° control larvae (Fig. 4G). In adult females, body weight was not

338 significantly different between foxo?’/foxo?® mutants and control w'’*® flies (Fig. 4H);

1118 males

339  however, foxo?'/foxo? adult males were significantly heavier than control w
340 (Fig. 4H). Because we observed a male-specific increase in body size (sex:genotype
341 interaction p = 0.0014; two-way ANOVA), our data suggests that Foxo function normally
342  contributes to the smaller body size of males. This reveals a previously unrecognized
343  sex-specific role for Foxo in regulating body size.

344

345 DISCUSSION

346

347 Many studies have demonstrated an important role for 1S in promoting cell, tissue, and
348 organismal growth in response to nutrient input (Fernandez et al., 1995; Chen et al.,

349  1996; Bohni et al., 1999; Britton et al., 2002; Grewal, 2009; Teleman, 2009). More

350 recently, studies suggest that 1IS also plays a role in the sex-specific regulation of larval

16
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growth (Testa et al., 2013; Rideout et al., 2015; Millington et al., 2020). However, the
links between 1S and the sex-specific regulation of growth were made based on a
limited number of genotypes that affected 1S activity. The goal of our current study was
to determine whether the sex-biased larval growth effects observed in previous studies
represent a common feature of genotypes that affect IIS activity. Overall, we found that
the loss of most positive regulators of IIS activity caused a female-biased reduction in
body size. On the other hand, loss of genes that normally repress IS activity caused a
male-specific increase in body size. Thus, most changes to IIS activity cause sex-
biased, or sex-specific, effects on larval growth (summarized in Table 1), highlighting
the importance of collecting and analyzing data from both sexes separately in studies
that manipulate IS activity and/or examine 11S-responsive phenotypes (e.g., lifespan,
immunity).

One important outcome from our study was to provide additional genetic support
for 1S as an important regulator of the sex difference in larval growth. Data implicating
IIS in the sex-specific regulation of body size first emerged from a detailed examination
of the rate and duration of larval growth in both sexes (Testa et al., 2013). In this study,
the authors reported a female-biased growth reduction in larvae with decreased InR
function (Testa et al 2013). A subsequent study extended this finding by uncovering a
sex difference in 1IS activity: late third-instar female larvae had higher IIS activity than
age-matched males (Rideout et al., 2015). The reasons for this increased IIS activity
remain incompletely understood; however, Dilp2 secretion from the IPCs was higher in
female larvae than in males (Rideout et al., 2015). Given that Dilp2 overexpression is

known to augment IS activity and enhance body size (Ikeya et al., 2002; Geminard et
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al., 2009), these findings suggest a model in which high levels of circulating Dilp2 (and
possibly other Dilps) are required in females to achieve and maintain increased IIS
activity and a larger body size. In males, lower circulating levels of Dilp2 lead to reduced
[IS activity and a smaller body size. If this model is accurate, we predict that female
body size will be more sensitive to genetic manipulations that reduce Dilp ligands and/or
[IS activity. Previous studies provided early support for this model by demonstrating a
female-biased reduction in growth due to strong /nR inhibition and dilp2 loss (Testa et
al., 2013; Liao et al., 2020; Millington et al., 2020). Now, we provide strong genetic
support for this model using multiple genetic manipulations to reduce IS activity,
confirming that Drosophila females depend on high levels of IIS activity to promote
increased body size. One potential reason for this high level of IIS activity in females is
to ensure successful reproduction, as IIS activity in females regulates germline stem cell
divisions, ovariole number, and egg production (LaFever and Drummond-Barbosa, 2005;
Hsu et al., 2008; Hsu and Drummond-Barbosa, 2009; Gronke et al., 2010; Extavour and
Green, 2014). Unfortunately, this elevated level of IIS activity shortens lifespan,
revealing an important 11S-mediated tradeoff between fecundity and lifespan in females
(Broughton et al., 2005).

A second prediction of this model is that augmenting either circulating Dilp levels
or IIS activity will enhance male body size. Indeed, we demonstrate that loss of Imp-L2,
which increases free circulating Dilp levels (Arquier et al., 2008; Honegger et al., 2008;
Alic et al., 2011; Okamoto et al., 2013), and loss of foxo, which mediates growth
repression associated with low IIS activity (Junger et al., 2003; Kramer et al., 2003),

both cause a male-specific increase in body size. Together, these findings suggest that
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the smaller body size of male larvae is partly due to low IIS activity. While the reason for
lower IS activity in males remains unclear, studies show that altered IIS activity in either
of the two main cell types within the testis compromises male fertility (Ueishi et al., 2009;
McLeod et al., 2010; Amoyel et al., 2014; Amoyel et al., 2016). Future studies will
therefore need to determine how males and females each maintain IIS activity within the
range that maximizes fertility. In addition, it will be important to determine whether the
female-biased phenotypic effects of lower IIS activity that we observe, and which are
also widespread in aging and lifespan studies (Clancy et al., 2001; Holzenberger et al.,
2003; Magwere et al., 2004; Van Heemst et al., 2005; Selman et al., 2008; Regan et al.,
2016; Kane et al., 2018) extend to additional lIS-associated phenotypes (e.g., immunity
and sleep) (DiAngelo et al., 2009; Cong et al., 2015; Roth et al., 2018; Suzawa et al.,
2019; Brown et al., 2020).

Another important task for future studies will be to gain deeper insight into sex
differences in the IPC function, as one study identified sex-specific Dilp2 secretion from
the IPCs (Rideout et al., 2015). Indeed, recent studies have revealed the sex-specific
regulation of one factor (stunted, FBgn0014391) that influences Dilp secretion from the
IPCs (Millington et al., 2020), and female-specific phenotypic effects of another factor
that influences IPC-derived Dilp expression (Woodling et al., 2020). Together, these
studies suggest that sex differences in IPC function and circulating Dilp levels exist, and
may arise from the combined effects of multiple regulatory mechanisms. Given that our
knowledge of IPC function has recently expanded in a series of exciting studies (Meschi
et al., 2019; Oh et al., 2019), more work will be needed to test whether these newly

discovered modes of IPC regulation operate in both sexes. Further, it will be important
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420 to ascertain how sex differences in the IPCs are specified. One recent study showed
421 that Sex-lethal (SxI; FBgn0264270), a key regulator of female sexual development, acts
422 in the IPCs to regulate the male-female difference in body size (Sawala and Gould,

423  2017). By studying how Sx/ function alters IPC gene expression, activity, and

424  connectivity, it will be possible to gain vital mechanistic insight into the sex-specific

425  regulation of larval growth.

426 Beyond an improved understanding of sex differences in IPC function, it will be
427  essential to study the sex-specific regulation of dilp genes and Dilp proteins, as we

428 show female-specific effects on growth in larvae lacking individual dilp genes. While

429 previous studies have reported female-biased effects of loss of dilp2 (Liao et al 2020;
430 Millington et al 2020), this is the first report of a female-specific role for dilp1, dilp3, dilp4,
431  dilp5, and dilp7 in promoting growth. Because loss of individual dilp genes reduced

432  body size by ~10%, whereas loss of InR reduced body size by ~50%, we propose that
433 increased levels of several Dilps contributes to the increased IIS activity and larger body
434  size in females. While previous studies suggest that circulating Dilp2 levels are higher in
435 female larvae (Rideout et al., 2015), it remains unclear whether other Dilps show similar
436  sex-specific regulation. Interestingly, a recent study showed that in females there are
437  more dilp7-positive cells than males due to programmed cell death in a subpopulation of
438 male dilp7-positive cells (Castellanos et al., 2013; Garner et al., 2018). Given our finding
439 that loss of dilp7 causes a female-specific reduction in body size, it is possible that

440 circulating Dilp7 levels also differ between the sexes. In the future, it will therefore be
441 necessary to systematically analyze circulating levels of other Dilps in both sexes.

442  Further, as our knowledge of how individual dilp genes affect larval development and
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physiology continues to grow, continued studies on the sex-specific regulation of dilp
genes and Dilp proteins will be important to improve our understanding of male-female
differences in larval growth, and to extend knowledge of sex differences in other IIS-
associated traits.

In contrast to the female-biased effects of all genetic manipulations that reduced
Dilp availability, we observed both sex-biased and non-sex-biased effects on body size
in larvae with reduced function of key intracellular IIS components. For example,
reduced InR, Pi3K92E, and Akt1 function caused a female-biased reduction in body
size, whereas there was an equivalent reduction in male and female body size due to
lower chico and Pdk1 function. While the reasons for the lack of sex-biased effects of
these two genes are unclear, one recent study showed that heterozygous loss of chico
caused insulin hypersecretion (Sanaki et al., 2020). Given that hyperinsulinaemia
contributes to insulin resistance, and that insulin resistance decreases Drosophila body
size (Musselman et al., 2011, 2018; Pasco and Leopold, 2012), more studies will be
needed to determine whether the smaller body size of chico’/+ male and female larvae,
and possibly Pdk1 mutant larvae, can be attributed to insulin resistance. In fact, more
knowledge of sex-specific tissue responses to insulin is urgently needed in flies, as
studies in mice and humans have identified sex differences in insulin sensitivity
(Macotela et al., 2009; Geer and Shen, 2009). Because Drosophila is an emerging
model to understand the mechanisms underlying the development of insulin resistance
(Musselman et al. 2011), this knowledge would help determine whether flies are a good
model to investigate the sex-biased incidence of diseases associated with insulin

resistance, such as the metabolic syndrome and type 2 diabetes (Mauvais-Jarvis, 2015).
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FIGURE LEGENDS

Figure 1. IPC ablation, loss of IPC function, and loss of IPC-derived Dilp ligands
all cause a female-biased decrease in growth. (A) Pupal volume was significantly
reduced in dilp2>UAS-rpr females and males compared to both dilp2>+ and +>UAS-rpr
controls (p<0.0001 for all comparisons; two-way ANOVA followed by Tukey HSD test).
The magnitude of the reduction in pupal volume was greater in females (sex:genotype
interaction p<0.0001; two-way ANOVA). n = 15-71 pupae. (B) Pupal volume was
significantly reduced in dilp2>UAS-Kir2.1 females and males compared to both dilp2>+
and +>UAS-Kir2.1 controls (p<0.0001 for all comparisons; two-way ANOVA followed by
Tukey HSD test). The magnitude of the reduction in pupal volume was greater in
females (sex:genotype interaction p<0.0001; two-way ANOVA followed by Tukey HSD
test). n = 31-53 pupae. (C) Pupal volume was significantly reduced in Df(3L)ilp2-3,5
homozygous females and males compared with sex-matched w’’’® controls (p<0.0001
for all comparisons; two-way ANOVA followed by Tukey HSD test). Similarly, Df(3L)ilp1-

18 control

4,5 homozygous females and males were significantly smaller than w
females and males (p<0.0001 for all comparisons; two-way ANOVA followed by Tukey
HSD test). The magnitude of the reduction in body size for both Df(3L)ilp2-3,5 and
Df(3L)ilp1-4,5 was significantly larger in females than in males (sex:genotype interaction
p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD test). n = 7-74

pupae. **** indicates p<0.0001; error bars indicate SEM. For all panels, females are

shown on the left-hand side of the graph and males are shown on the right-hand side.
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Figure 2. Loss of individual dilp genes causes sex-biased effects on growth. (A) In

118 controls in larvae

females, pupal volume was significantly reduced compared with w
carrying individual mutations in each of the following genes: dilp1, dilp3, dilp4, dilp5, and
dilp7 (p<0.0001, p = 0.0003, p = 0.0136, p<0.0001, and p<0.0001, respectively; one-
way ANOVA followed by Dunnett’'s multiple comparison test). n = 59-74 pupae. (B)
Pupal volume was not significantly different between y,w control female larvae and
dilp6*" mutant females (p = 0.7634, Student’s t test). n = 41-74 pupae. (C) In males,

118 controls in larvae

pupal volume was not significantly reduced compared with w
carrying individual mutations in each of the following genes: dilp1, dilp3, dilp4, dilp5, and
dilp7 (p = 0.7388, p = 0.2779, p = 0.1977, p = 0.9535, and p = 0.4526, respectively;
one-way ANOVA followed by Dunnett’'s multiple comparison test). n = 66-79 pupae. (D)
Pupal volume was significantly reduced in male dilp6*' larvae compared with y,w control
males (p = 0.0017, Student’s ¢ test). n = 64-70 pupae. * indicates p<0.05; ** indicates
p<0.01; *** indicates p<0.001; **** indicates p<0.0001; ns indicates not significant; error

bars indicate SEM. Panels A and B display female data; panels C and D show male

data.
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953 Figure 3. Fat body loss of Dilp-binding protein Imp-L2 has sex-biased effects on
954  growth. (A) Pupal volume was significantly increased in Sdr’ mutant females and males

955  compared with w'’"8

control females and males (p<0.0001 for both sexes; two-way

956 ANOVA followed by Tukey HSD test). There was no sex difference in the magnitude of
957 the increase in body size (sex:genotype interaction p = 0.5261; two-way ANOVA

958 followed by Tukey HSD test). n = 52-88 pupae. (B) In females, pupal volume was not
959 significantly different between larvae with fat body-specific knockdown of Imp-L2

960 (r4>UAS-Imp-L2-RNAi) compared with r4>+ and +>UAS-Imp-L2-RNAi control larvae (p
961 =0.9948 and p<0.0001, respectively; two-way ANOVA followed by Tukey HSD test). In
962  contrast, pupal volume was significantly larger in r4>UAS-Imp-L2-RNAi males

963 compared with r4>+ and +>UAS-Imp-L2-RNAi control males (p<0.0001 for both

964  comparisons; two-way ANOVA followed by Tukey HSD test). The magnitude of the

965 increase in pupal volume was higher in males than in females (sex:genotype interaction
966 p<0.0001; two-way ANOVA). n = 70-92 pupae. **** indicates p<0.0001; ns indicates not
967 significant; error bars indicate SEM. For all panels, females are shown on the left-hand

968 side of the graph and males are shown on the right-hand side.

969
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970 Figure 4. Both sex-biased and non-sex-biased effects on growth arise from loss
971 of intracelllular IIS pathway components. (A) Pupal volume was significantly reduced
972  in females and males heterozygous for two hypomorphic InR alleles (InRE"%/InRF?)

973  compared with sex-matched w’"’® controls (p<0.0001 for both sexes; two-way ANOVA
974  followed by Tukey HSD test). The magnitude of the decrease in larval body size was
975  significantly higher in InRE'%/InRF* females than in InRF"/InR"* males (sex:genotype
976 interaction p = 0.0029; two-way ANOVA followed by Tukey HSD test). n = 32-133 pupae.
977  (B) Pupal volume was significantly smaller in females and males heterozygous for a null
978  chico allele (chico’/+) compared with sex-matched w’""® controls (p<0.0001 for both

979 females and males; two-way ANOVA followed by Tukey HSD test). The magnitude of
980 the reduction in body size was not significantly different between females and males
981 (sex:genotype interaction p = 0.1399; two-way ANOVA followed by Tukey HSD test). n
982 =93-133 pupae. (C) Pupal volume was significantly reduced in females and males

983 heterozygous for a deficiency and hypomorphic allele of Pi3K92E

984  (Df(3R)Pi3K92E"/Pi3K92E*"") compared with sex-matched w’’"® controls (p<0.0001 for
985 all comparisons in females and males; two-way ANOVA followed by Tukey HSD test).
986 The magnitude of the reduction in body size was significantly larger in

987  Df(3R)Pi3K92E"/Pi3K92E*"" females than in Df(3R)Pi3K92E"/Pi3K92E*"" males

988 (sex:genotype interaction p = 0.0029; two-way ANOVA followed by Tukey HSD test).
989  Note: the Df(3R)Pi3K92E"/Pi3K92E*""" pupae were collected and analyzed in parallel

990  with the InRF'%/InR™* genotype, so the w'""®

control genotype data is shared between
991 these experiments. n = 52-133 pupae. (D) Pupal volume was not significant different in

992 either females or males homozygous for a hypomorphic Pdk1 allele (Pdk1?) compared
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993  with w'""® controls (p = 0.6739 and p = 0.7847, respectively; two-way ANOVA followed
994 by Tukey HSD test). n = 61-84 pupae. (E) Adult weight was significantly reduced in
995  Pdk1* females and males compared with w'’’® controls (p = 0.0017 and p = 0.0491 for
996 females and males respectively; two-way ANOVA followed by Tukey HSD test). The
997 magnitude of the reduction in body size was not significantly different between females
998 and males (sex:genotype interaction p = 0.503; two-way ANOVA followed by Tukey
999 HSD test). n = 5-8 biological replicates of ten adult flies. (F) Pupal volume was
1000 significantly reduced in females and males homozygous for a hypomorphic Akt1 allele
1001  (Akt1®) compared with sex-matched w'’"® controls (p<0.0001 for both sexes; two-way
1002 ANOVA followed by Tukey HSD test). The magnitude of the decrease in body size in
1003  Akt1’larvae was significantly higher in females than in males (sex:genotype interaction
1004 p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 44-60 pupae. (G) In
1005 females and males heterozygous for two hypomorphic alleles of foxo (foxo?'/foxo?®),

118 controls

1006  pupal volume was not significantly different compared with sex-matched w
1007 (p = 0.8841 and 0.9646, respectively; two-way ANOVA followed by Tukey HSD test). n
1008 = 110-153 pupae. (H) In foxo®'/foxo®® females, adult weight was not significantly

1009  different compared with w’""® controls (p = 0.8786; two-way ANOVA followed by Tukey
1010  HSD test). In males, adult weight was significantly higher in foxo?'/foxo®” flies compared
1011 with w’""® control flies (p<0.0001; two-way ANOVA followed by Tukey HSD test). The
1012 magnitude of the increase in body size was greater in males than in females

1013  (sex:genotype interaction p = 0.0014; two-way ANOVA followed by Tukey HSD test). n

1014 = 5-8 biological replicates of 10 adult flies. * indicates p<0.05; ** indicates p<0.01; ****

1015 indicates p<0.0001; ns indicates not significant; error bars indicate SEM. For all panels,
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1016 females are shown on the left-hand side of the graph and males are shown on the right-

1017 hand side.

1018
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1019 Table 1. Summary of sex-biased effects of IIS pathway manipulations on body
1020 size.
1021

1022
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Table 1.

Genetic Manipulation

Female-biased

Male-biased

Non-sex-specific

Reduced circulating Dilps

IPC ablation

IPC silencing

dilp2-3,5

dilp1-4,5

dilp1

dilp3

dilp4

dilp5

dilp6

dilp7

Increased
circulating

Dilps

Sdr

Fat body loss of Imp-L2

Intracellular IIS pathway

InR

chico’/+

Pi3K92E

Pdk1

Akt

foxo
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