

1

2 **TRIM37 prevents formation of centriolar protein assemblies by regulating**
3 **Centrobin stability**

4

5 Fernando R. Balestra^{1,2} Benita Wolf^{3,4}, Andrés Domínguez-Calvo^{1,2}, Alizée Buff³,
6 Tessa Averink³, Marita Lipsanen-Nyman⁵, Coralie Busso³, Pablo Huertas^{1,2}, Rosa
7 M. Ríos², Pierre Gönczy³

8

9 ¹ Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain

10 ² Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER,
11 Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain

12 ³ Swiss Institute for Experimental Cancer Research (ISREC), School of Life
13 Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)
14 Lausanne, Switzerland

15 ⁴ Present address: Department of Oncology, Lausanne University Hospital, and
16 Ludwig Institute for Cancer Research, University of Lausanne, 1066, Lausanne,
17 Switzerland.

18 ⁵ Department of Endocrinology, Children's Hospital, University of Helsinki and
19 Helsinki University Hospital, FI-00290 Helsinki, Finland.

20

21

22

23

24 Correspondence: fernando.balestra@cabimer.es, pierre.gonczy@epfl.ch

25

26

27

28 Keywords: TRIM37 E3 ligase, Mulibrey nanism, centriole, microtubule
29 organizing center (MTOC), CLEM, U-ExM, Centrobin, PLK1, PLK4

30 **ABSTRACT**

31

32 TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease
33 characterized by impaired growth and increased tumorigenesis, whose cellular
34 etiology is poorly understood. TRIM37 depletion from tissue culture cells results
35 in supernumerary foci bearing the centriolar protein Centrin. Here, we
36 characterized these centriolar protein assemblies (Cenpas) to uncover the
37 mechanism of action of TRIM37. We established that an atypical *de novo*
38 assembly pathway is notably involved in forming Cenpas, which can
39 nevertheless trigger further centriole assembly and act as MTOCs. We found also
40 that Cenpas are present and act similarly in Mulibrey patient cells. Through
41 correlative light electron microscopy, we uncovered that Cenpas correspond to
42 centriole related structures and elongated electron-dense structures with
43 stripes. Importantly, we established that TRIM37 regulates the stability and
44 solubility of the centriolar protein Centrobin. Our findings suggest that elongated
45 Centrobin assemblies are a major constituent of the striped electron dense
46 structures. Furthermore, we established that Cenpas formation upon TRIM37
47 depletion requires PLK4 activity, as well as two parallel pathways relying
48 respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37
49 prevents the formation of Cenpas that would otherwise threaten genome
50 integrity, including possibly in Mulibrey patients.

51

52

53

54

55

56

57

58

59 **INTRODUCTION**

60

61 Centrioles are tiny evolutionarily conserved cylindrical organelles
62 characterized by nine triplets of microtubules (MTs) arranged with a striking 9-
63 fold radial symmetry (reviewed in (Gönczy, 2012; Gönczy and Hatzopoulos,
64 2019)). In addition to MTs, centrioles contain multiple copies of tens of distinct
65 proteins that contribute to their assembly, structure and function (Andersen et
66 al., 2003; Jakobsen et al., 2011). Centrioles are essential for the formation of cilia
67 and also recruit pericentriolar material (PCM), including the MT nucleator γ -
68 tubulin ring complex, thus forming the centrosome of animal cells (reviewed in
69 (Bornens, 2012)). Probably because of such important roles, centriole number is
70 tightly regulated, with most cycling cells having two units at the cell cycle onset
71 and four units by the time of mitosis (reviewed in (Sullenberger et al., 2020)).
72 Alterations in centriole number control can have an adverse impact on cell
73 physiology and genome integrity. Thus, supernumerary centrioles lead to extra
74 cilia and centrosomes (Duensing et al., 2007; Habedanck et al., 2005; Mahjoub
75 and Stearns, 2012), which can be observed also in several human disease
76 conditions, including certain cancer types (reviewed in (Bettencourt-Dias et al.,
77 2011; Chavali et al., 2014; Gönczy, 2015; Nigg and Holland, 2018; Nigg and Raff,
78 2009)). Despite their importance, the mechanisms that prevent the formation of
79 excess centriolar structures remain incompletely understood.

80

81 The two centrioles present at the onset of the cell cycle differ in age:
82 whereas the older, mother, centriole is at least two cell generations old, the
83 younger, daughter, centriole was formed in the previous cell cycle. The mother
84 centriole bears distinctive distal and sub-distal appendages that the daughter
85 centriole acquires only later during the cell cycle (reviewed in (Sullenberger et
86 al., 2020)). In human cells, the proximal region of both mother and daughter
87 centrioles in the G1 phase of the cell cycle is encircled by a torus bearing the
88 interacting proteins CEP57/CEP63/CEP152 (Brown et al., 2013; Lukinavicius et
89 al., 2013) (reviewed in (Banterle and Gönczy, 2017)). The Polo-like-kinase PLK4
90 is recruited to this torus, where it focuses to a single location towards the G1/S
91 transition, owing notably to a protective interaction with its substrate STIL, thus
marking the site of procentriole assembly (Klebba et al., 2015; Moyer et al., 2015;

92 Ohta et al., 2014) (reviewed in (Arquint and Nigg, 2016)). The onset of
93 procentriole assembly entails formation of a 9-fold radially symmetric cartwheel
94 thought to act as a scaffold for the organelle (reviewed in (Guichard et al., 2018;
95 Hirono, 2014)). The fundamental building block of the cartwheel is HsSAS-6,
96 which self-assembles *in vitro* into structures akin to those found *in vivo*
97 (Guichard et al., 2017; Kitagawa et al., 2011b; Strnad et al., 2007; van Breugel et
98 al., 2011). During S/G2, the emerging procentriole remains closely associated
99 with the resident centriole and elongates through the contribution notably of the
100 centriolar proteins CPAP/SAS-4, SPICE as well as C2CD3 (Balestra et al., 2013;
101 Comartin et al., 2013; Kohlmaier et al., 2009; Schmidt et al., 2009; Tang et al.,
102 2009; Thauvin-Robinet et al., 2014). During mitosis, the procentriole disengages
103 from the resident centriole in a manner that requires the activity of the Polo-like-
104 kinase PLK1, with increased PLK1 levels during S/G2 leading to premature
105 centriole disengagement and centriole reduplication (Loncarek et al., 2010; Tsou
106 et al., 2009). Normally, disengagement during mitosis generates two centriolar
107 units that are then licensed to recruit PCM and trigger a new round of centriole
108 assembly in the following cell cycle.

109 Centrioles can also assemble independently of a resident centriole. Such
110 *de novo* assembly can occur in physiological conditions, for instance when the
111 protist *Naegleria gruberii* transitions from an acentriolar amoeboid life form to a
112 flagellated mode of locomotion (Fritz-Laylin et al., 2016; Fulton and Dingle,
113 1971). Likewise, centrioles assemble *de novo* at the blastocyst stage in rodent
114 embryos (Courtois et al., 2012). *De novo* assembly of centrioles can also be
115 triggered experimentally in human cells following removal of resident centrioles
116 through laser ablation or chronic treatment with the PLK4 inhibitor Centrinone
117 (Khodjakov et al., 2002; Wong et al., 2015). Therefore, in human cells, *de novo*
118 assembly is normally silenced by resident centrioles. In contrast to the situation
119 in physiological conditions, experimentally provoked *de novo* centriole assembly
120 in human cells is error prone and lacks number control (La Terra et al., 2005;
121 Wong et al., 2015). Moreover, *de novo* assembly of foci that contain some
122 centriolar proteins and which can function as MTOCs forms in human cells upon
123 depletion of the intrinsically disordered protein RMB14 or the Neuralized
124 Homology repeat containing protein Neurl4 (Li et al., 2012; Shiratsuchi et al.,

125 2015). Such extra foci, although not *bona fide* centrioles as judged by electron-
126 microscopy, threaten cell physiology and could conceivably contribute to
127 disease.

128 TRIM37 is a RING-B-box-coiled-coil protein with E3 ubiquitin ligase
129 activity (Kallijarvi et al., 2002; Kallijarvi et al., 2005), which somehow prevents
130 the formation of foci bearing centriolar markers (Balestra et al., 2013).
131 Individuals with loss of function mutations in both alleles of TRIM37 are born
132 with a rare disorder known as Mulibrey nanism (Muscle-liver-brain-eye nanism).
133 The main features of this disorder are growth failure with prenatal onset, as well
134 as characteristic dysmorphic features and impairment in the organs that give
135 rise to the name of the condition (Avela et al., 2000). In addition, Mulibrey
136 patients have a high probability of developing certain tumor types (Karlberg et
137 al., 2009). Mice lacking Trim37 recapitulate several features of Mulibrey nanism,
138 including a higher propensity to form tumors (Kettunen et al., 2016). However,
139 the cellular etiology of Mulibrey nanism remains unclear, partially because of the
140 many roles assigned to this E3 ubiquitin ligase. In tissue culture cells, TRIM37
141 mono-ubiquitnates and thereby stabilizes PEX5, promoting peroxisomal function
142 (Wang et al., 2017). However, Trim37 knock out mice and mouse cell lines
143 depleted of Trim37 do not exhibit peroxisomal associated phenotype (Wang et
144 al., 2017), suggesting that the conserved pathological features exhibited also by
145 the mouse disease model must have a different cellular etiology. Furthermore,
146 the chromosomal region 17q23 where TRIM37 resides is amplified in ~40% of
147 breast cancers (Sinclair et al., 2003). TRIM37 mono-ubiquitinates histone H2A in
148 the MCF-7 breast cancer cell line dampening the expression of thousands of
149 genes, including tumors suppressors, thus offering a potential link between
150 TRIM37 overexpression and tumorigenesis (Bhatnagar et al., 2014).
151 Furthermore, TRIM37 overexpression has been linked to increased cell invasion
152 and metastasis in colorectal and hepatocellular carcinoma (Hu and Gan, 2017;
153 Jiang et al., 2015). Therefore, both the depletion and the excess of TRIM37 are
154 accompanied by detrimental consequences.

155 We previously performed a genome wide siRNA-based screen in human
156 cells to identify regulators of centriole assembly, using the number of foci
157 harboring the centriolar marker Centrin-1:GFP as a readout. In this screen, we

158 identified TRIM37 as a potent negative regulator of Centrin-1:GFP foci number.
159 Our initial characterization of the TRIM37 depletion phenotype revealed that
160 ~50% of cells possess supernumerary foci harboring the centriolar proteins
161 Centrin and CP110, as well as instances of multipolar spindle assembly and
162 chromosome miss-segregation. Additionally, we found that inhibition of PLK1
163 partially suppressed supernumerary foci formation upon TRIM37 depletion,
164 leading to the suggestion that such foci occur through centriole reduplication
165 (Balestra et al., 2013), although the fact that suppression was partial suggested
166 that an additional explanation was to be found. Here, we set out to further
167 explore the nature of such supernumerary foci to uncover the mechanism of
168 action of TRIM37, and perhaps thereby also provide novel insights into Mulibrey
169 nanism.

170
171

172 **RESULTS**

173

174 TRIM37 prevents formation of centriolar protein assemblies (Cenpas)

175 To further decipher the origin of supernumerary foci containing Centrin and
176 CP110 following TRIM37 depletion, we investigated where in the cell they first
177 appeared. We reasoned that appearance of supernumerary foci close to resident
178 centrioles could indicate centriole reduplication, whereby premature
179 disengagement would license resident centrioles and procentrioles to
180 prematurely seed centriole assembly. By contrast, appearance of supernumerary
181 foci away from resident centrioles would suggest some type of *de novo* process.
182 We performed live imaging of HeLa cells expressing Centrin-1:GFP (referred to
183 as HC1 cells hereafter) and depleted of TRIM37 by siRNAs. As shown in Figure
184 1A, we found that extra Centrin-1:GFP foci can appear in the vicinity of resident
185 centrioles (yellow arrows, 8/13 foci), but also far from them (orange arrows,
186 5/13 foci). These results suggest that extra Centrin-1:GFP foci upon TRIM37
187 depletion may form both through centriole reduplication and some type of *de*
188 *novo* process.

189 To further investigate this question, we analyzed fixed S/G2 HC1 cells
190 with antibodies against GFP to monitor Centrin-1:GFP foci, as well as against
191 CEP63 to mark the proximal region of resident centrioles and HsSAS-6 to mark
192 procentrioles. As expected, we found that control cells harbored four Centrin-
193 1:GFP foci, two of which were CEP63 positive and two of which were HsSAS-6
194 positive (Fig. 1B). Strikingly, in cells depleted of TRIM37, we found that in
195 addition to the normal four Centrin-1:GFP foci accompanied by two Cep63 foci
196 and two HsSAS-6 foci, ~90% of extra Centrin-1:GFP foci did not harbor CEP63 or
197 HsSAS-6 (Fig. 1B, 1C). For comparison, we likewise analyzed cells arrested in G2
198 following treatment with the CDK1 inhibitor RO3306, which induces PLK1-
199 dependent centriole reduplication (Loncarek et al., 2010). In this case, >90% of
200 extra Centrin-1:GFP foci harbored CEP63 and/or HsSAS-6 (Fig. 1B, 1C), in
201 contrast to the situation upon TRIM37 depletion, further indicating that TRIM37
202 does not act solely to prevent centriole reduplication.

203 Overall, we conclude that TRIM37 depletion results in extra Centrin-
204 1:GFP foci both near and far from resident centrioles, suggestive of centriole

205 reduplication happening together with some *de novo* process. Moreover, we find
206 that such foci harbor some centriolar proteins but usually not others. We will
207 hence refer hereafter to these entities as Centriolar protein assemblies, or
208 Cenpas in short.

209

210 TRIM37 regulates Cenpas formation from outside the nucleus and localizes to
211 centrosomes

212 TRIM37 can regulate transcription through nuclear association with the
213 polycomb repressive complex 2 (PRC2) (Bhatnagar et al., 2014). To explore
214 whether TRIM37 may function as a transcriptional regulator in preventing
215 Cenpas formation, we addressed whether rescue of the TRIM37 depletion
216 phenotype depended on the presence of the protein in the nucleus. We
217 generated a version of TRIM37 forced to exit the nucleus via fusion to a nuclear
218 export signal (NES), finding that both TRIM37:GFP and TRIM37:NES:GFP equally
219 rescued the TRIM37 depletion phenotype (Fig. 1D, 1E). This indicates that
220 TRIM37 acts outside the nucleus to prevent Cenpas formation.

221 Given the TRIM37 depletion phenotype, we explored whether the protein
222 localizes to centrioles. Since antibodies did not prove suitable to address this
223 question (Balestra et al., 2013; Meitinger et al., 2016), we instead expressed
224 TRIM37:GFP, finding it to be present weakly in the nucleus and more so in the
225 cytoplasm (Fig. S1A, S1B). Intriguingly, in some cells, TRIM37:GFP also localized
226 to centrosomes marked by γ -tubulin (Fig. S1A, S1B). To investigate whether this
227 might reflect a cell cycle restricted distribution, TRIM37:GFP expressing cells
228 were probed with antibodies against GFP and Centrobin, which localizes
229 preferentially to the resident daughter centriole and to procentrioles (Zou et al.,
230 2005). Therefore, G1 cells bear a single Centrobin focus while S/G2 cells bear 2
231 or 3 (Fig. S1C), which enabled us to establish that whereas only \sim 10% of G1 cells
232 harbored centrosomal TRIM37:GFP, \sim 60% of S/G2 cells did so (Fig. S1D). We
233 also localized the fusion protein with respect to CEP63, Centrin-2 and the distal
234 appendage protein CEP164, finding that TRIM37:GFP partially overlapped with
235 CEP164 (Fig. S1E, S1F). Overall, we conclude that TRIM37 localizes to the distal
236 part of centrioles, and it will be interesting to investigate in the future whether

237 TRIM37 acts from this location to prevent the formation of at least some Cenpas,
238 perhaps those in the vicinity of resident centrioles.

239

240 Cenpas can act as MTOCs, are present in Mulibrey patient cells and trigger new
241 rounds of centriolar assembly

242 TRIM37 depleted cells exhibit an increased incidence of multipolar
243 spindles and chromosome miss-segregation (Balestra et al., 2013), suggesting
244 that Cenpas can nucleate microtubules and serve as extra microtubule
245 organizing centers (MTOCs). To thoroughly test this possibility, we performed
246 microtubule depolymerization-regrowth experiments. We found that whereas
247 most control mitotic cells harbored two MTOCs, TRIM37 depletion resulted in an
248 increased frequency of cells with more than two MTOCs, which often differed in
249 size (Fig. 2A, Fig. S2A, Fig. 2B). In addition, we found that ~40% of Cenpas did not
250 nucleate microtubules, indicative of some composition heterogeneity (Fig. 2A,
251 siTRIM37, inset 1). We conclude that microtubules nucleated from Cenpas
252 contribute to the defective spindle assembly and chromosome miss-segregation
253 phenotype of TRIM37 depleted cells.

254 To further explore the importance of Cenpas, we addressed whether they
255 are also present in Mulibrey patient cells. Using healthy donor fibroblasts as
256 controls, we analyzed fibroblasts derived from two patients bearing the Finnish
257 founder mutation, the most frequent TRIM37 disease alteration, which results in
258 a frame shift of the coding sequence generating a premature stop codon (Avela et
259 al., 2000). As shown in Figure 2C, Western blot analysis showed essentially no
260 detectable TRIM37 protein in patient cells. We immunostained control and
261 patients fibroblast with antibodies against Centrin-2 to monitor the presence of
262 Cenpas, as well as against γ -tubulin to probe their ability to recruit PCM and,
263 thereby, to nucleate microtubules. Echoing the results in tissue culture cells
264 depleted of TRIM37, we found that patient cells in mitosis harbored
265 supernumerary Centrin-2 foci, some of which were positive for γ -tubulin (Fig.
266 2D, 2E). Patient cells also exhibited evidence of chromosome miss-segregation,
267 as would be expected from multipolar spindle assembly (Fig. 2D). We conclude
268 that Cenpas are present and active also in Mulibrey patient cells.

269 We set out to address whether Cenpas in tissue culture cells are also
270 active in triggering further rounds of centriole assembly, potentially in a
271 subsequent cell cycle to the one in which they formed. To this end, we
272 transfected cells with TRIM37 siRNAs and monitored the presence of Cenpas 24,
273 48 and 72 hours thereafter using antibodies against Centrin-2 and CP110.
274 Control cells harbored two individual Centrin-2/CP110 foci in G1 and two pairs
275 of such foci in S/G2, corresponding to two pairs of resident centriole plus
276 procentriole (Fig. S2B). Upon TRIM37 depletion, we found that supernumerary
277 Centrin-2/CP110 foci appeared principally as individual units at the 24 hours
278 time point, but that pairs of foci became more frequent at the 48 and 72 hours
279 time points (Fig. 2F, 2G). We conclude that Cenpas can trigger further rounds of
280 centriole assembly.

281

282 Ultra expansion microscopy and electron microscopy reveal aberrant centriole-
283 related structures upon TRIM37 depletion

284 We set out to address whether Cenpas exhibit further hallmarks of
285 centrioles. We thus tested whether Cenpas harbor microtubules characteristic of
286 centrioles by staining cells depleted of TRIM37 with antibodies against
287 acetylated tubulin, a signature modification of centriolar microtubules, finding
288 that ~23% such cells possessed extra acetylated tubulin foci (Fig. 3A, 3B). To
289 examine this feature at higher resolution, we analyzed cells using ultrastructure
290 expansion microscopy (U-ExM) coupled to confocal imaging (Gambarotto et al.,
291 2019). RPE-1 cells expressing Centrin1:GFP were immunostained for GFP to
292 identify Cenpas, for CEP152 to mark mature centrioles and for acetylated
293 tubulin. Control cells contained two mature centrioles positive for all three
294 markers (Fig. 3C). We found that some Cenpas formed upon TRIM37 depletion
295 harbored merely Centrin1:GFP, but neither acetylated tubulin or CEP152 (Fig.
296 3D-3F, yellow arrows). By contrast, other Cenpas were positive for all three
297 markers (Fig. 3E-3G), with the acetylated tubulin signal being smaller than
298 normal in some cases (Fig. 3E, 3F, white arrows). Moreover, some Cenpas
299 appeared to have matured into entities with regular looking acetylated tubulin
300 and CEP152 signals (Fig. 3G). Together, these findings support the notion that
301 Cenpas are heterogeneous in nature with partially overlapping composition.

302 To uncover the ultrastructure of Cenpas, we conducted correlative light
303 and electron microscopy (CLEM). Using fluorescence microscopy, we screened
304 HeLa and RPE-1 cells expressing Centrin-1:GFP depleted of TRIM37 to identify
305 Cenpas, using a gridded coverslip to acquire information regarding GFP foci
306 position, before proceeding with serial section transmission electron microscopy
307 (TEM). In addition to control cells (Fig. S3A-S3B), we analyzed 8 cells depleted of
308 TRIM37 (Fig. 3H, Fig. S3C-F). From a total of 47 Centrin-1:GFP foci observed by
309 light microscopy in TRIM37 depleted cells, serial section TEM analysis
310 established that in addition to those corresponding to normal looking resident
311 centrioles or procentrioles, 20 corresponded to unusual structures described
312 hereafter (Fig. S3F). We found the expected number of resident centrioles (15
313 found/16 expected, see Fig. S3F; Fig. 3I, 3J), as well as two extra centriole-like
314 structures in one cell (Fig. 3M; Fig. S3D). Eight of the other unusual structures
315 were centriole-related electron-dense assemblies that harbored microtubules
316 but only partially resembled centrioles (Fig. 3K, 3N; Fig. S3C, S3D). Strikingly, the
317 remaining 12 other unusual structures were elongated electron-dense striped
318 entities, hereafter referred as “tiger” structures (Fig. 3L, 3O; Fig. S3C, S3E). We
319 noted also that an individual tiger structure sometimes correlated with more
320 than one Centrin-1:GFP focus (Fig. S3E). Overall, we conclude that Cenpas
321 forming upon TRIM37 depletion are heterogeneous in nature, only sometimes
322 bearing resemblance to centrioles, perhaps reflecting different pathways or
323 steps in their assembly.

324

325 **TRIM37 depletion triggers formation of elongated Centrobin assemblies**

326 Because TRIM37 is an E3 ligase, the activity of which is important for preventing
327 Cenpas formation (Balestra et al., 2013), we reasoned that a protein implicated
328 in centriole assembly might accumulate in an aberrant manner upon TRIM37
329 depletion, causing the observed phenotype. Therefore, we conducted a small
330 screen by immunostaining cells depleted of TRIM37 with antibodies against >20
331 centriolar and centrosomal proteins (Fig. S4A and data not shown). This analysis
332 revealed that Centrobin, which normally localizes tightly to the daughter
333 centriole and to procentrioles (Zou et al., 2005), is present in striking elongated
334 cytoplasmic assemblies upon TRIM37 depletion (Fig. 4A, 4B). We found that

335 ~80% of TRIM37 depleted cells bear usually one or two such Centrobin
336 assemblies (Fig. S4B, S4C). Furthermore, SPICE, which is involved in centriole
337 biogenesis, was also present in Centrobin assemblies upon TRIM37 depletion,
338 even though SPICE was not needed for their formation (Fig. S4D, S4E).
339 Remarkably, all cells with Cenpas were positive for Centrobin assemblies
340 (n=150) with Cenpas often colocalizing with them (Fig. 4A, 4B). In summary,
341 aberrant Centrobin assemblies are invariably present in cells with Cenpas and
342 are often associated with them.

343 How could TRIM37 regulate Centrobin? Performing real time quantitative
344 PCR experiments showed a mere slight diminution in Centrobin mRNA levels
345 upon TRIM37 depletion (Fig. S4F), suggesting that regulation is not at the
346 transcriptional level. By contrast, Western blot analysis uncovered that
347 Centrobin protein levels were increased upon TRIM37 depletion (Fig. 4C). Given
348 the elongated Centrobin assemblies identified by immunostaining, we speculated
349 that the overall increase in Centrobin protein level might reflect an accumulation
350 into such structures, potentially in an insoluble form. Accordingly, fractionating
351 cell lysates into soluble and insoluble fractions, we found that the increase in
352 Centrobin protein levels was most pronounced in the latter (Fig. 4D). We noted
353 also that the insoluble pool of Centrobin migrated slower in the gel upon TRIM37
354 depletion, suggesting that TRIM37 not only restricts Centrobin levels, but also
355 regulates its posttranslational state in some manner.

356 Since TRIM37 is an E3 ubiquitin ligase, we reasoned that its activity might
357 modulate Centrobin protein degradation and, thereby, stability. Therefore, we
358 assayed the stability of the Centrobin protein pool over time in the presence of
359 the translation inhibitor Cycloheximide. As reported in Figure 4E and 4F, we
360 found that TRIM37 depletion significantly increased Centrobin protein stability.
361 One possibility would be that TRIM37 ubiquitinates Centrobin, thus targeting it
362 for degradation, such that increased Centrobin levels upon TRIM37 depletion
363 would trigger formation of Centrobin assemblies and Cenpas. However, although
364 Centrobin overexpression generates aggregates (Jeong et al., 2007), we found
365 that such aggregates did not resemble the elongated Centrobin assemblies nor
366 did they trigger Cenpas formation (Fig. S4G). In addition, TRIM37
367 overexpression did not alter Centrobin centrosomal distribution (Fig. S4H).

368 Moreover, no evidence for TRIM37 mediated Centrobin ubiquitination was found
369 in cell free assays (data not show), such that the detailed mechanisms of
370 Centrobin modulation by TRIM37 remain to be deciphered. Regardless, we
371 conclude that TRIM37 normally regulates Centrobin stability, preventing the
372 protein from forming elongated assemblies invariably present in cells with
373 Cenpas.

374

375 Centrobin assemblies may serve as platforms for Cenpas formation

376 We set out to further characterize the elongated Centrobin assemblies formed
377 upon TRIM37 depletion and assay their role in Cenpas generation. We used U-
378 ExM coupled to STED super-resolution microscopy to analyze the distribution of
379 Centrobin upon TRIM37 depletion at higher resolution. We immunostained RPE-
380 1 cells expressing Centrin-1:GFP with antibodies against GFP, CEP152 and
381 Centrobin. In control conditions, centrioles viewed in cross section exhibited a
382 clear localization of Centrobin between the outer CEP152 and the inner Centrin-
383 1:GFP signals (Fig. 5A). Cells depleted of TRIM37 exhibited analogous
384 distributions at resident centrioles (Fig. 5A), but also harbored elongated
385 Centrobin assemblies often abutting Centrin-1:GFP foci (Fig. 5A, arrows).
386 Strikingly, the superior resolution afforded by U-ExM coupled to STED revealed
387 that such Centrobin assemblies are striated (Fig. 5A). Suggestively, the inter-
388 stripe distances of these Centrobin assemblies were analogous to those of the
389 tiger structures unveiled through CLEM (Fig. 5B). In summary, U-ExM analysis
390 strongly suggests that Centrobin is a constituent of the electron-dense tiger
391 structures observed by TEM upon TRIM37 depletion, and raises the possibility
392 that such structures serve as platforms for Cenpas formation.

393 To investigate the potential role of Centrobin in Cenpas formation, we
394 tested whether Centrobin depletion reduces Cenpas numbers in cells depleted of
395 TRIM37. Although Centrobin depletion was reported initially to impair centriole
396 assembly in HeLa cells (Zou et al., 2005), more recent work with Centrobin
397 knock out cells (Centrobin-ko) demonstrates that the protein is dispensable for
398 this process in RPE-1 cells (Ogungbenro et al., 2018). In our hands, siRNA-
399 mediated depletion of Centrobin did not impact centriole assembly either in
400 HeLa Kyoto cells, despite near-complete protein depletion (Fig. S5A-C). As

401 anticipated, Centrobin assemblies disappeared entirely from cells doubly
402 depleted of Centrobin and TRIM37 (Fig. 5C). Importantly, we found that Cenpas
403 number was significantly lowered in such doubly depleted cells compared to
404 cells depleted of TRIM37 alone (Fig. 5D). Interestingly, however, even if
405 Centrobin depletion was complete as judged by Western blot analysis (Fig. S5C),
406 Cenpas formation upon TRIM37 depletion was only partially prevented by
407 Centrobin siRNA treatment (Fig. 5D). To test whether this might have been due
408 to residual Centrobin or TRIM37 in the double siRNA depletion setting, we
409 performed a similar experiment with RPE-1 Centrobin-ko cells (Ogungbenro et
410 al., 2018), reaching similar conclusions (Fig. 5E, 5F, Fig. S5D). Together, these
411 results support the view that upon TRIM37 depletion Centrobin assemblies act
412 as platform seeding the formation of some, but not all, Cenpas.

413

414 Centrobin and PLK1 together promote Cenpas assembly upon TRIM37 depletion

415 To further understand the mechanisms of Cenpas formation upon
416 TRIM37 depletion, we tested if select centriolar proteins that are critical for
417 canonical centriole duplication were also needed for Cenpas generation. To test
418 the role of PLK4, HeLa cells were grown in the presence of Centrinone for 5 days
419 and then depleted of TRIM37 for 3 days in the continued presence of Centrinone.
420 We found that Cenpas did not form under these conditions, demonstrating an
421 essential role for PLK4 kinase activity (Fig. 6A, 6B). We also tested the
422 requirement for HsSAS-6, STIL, CPAP and SPICE. As anticipated, single depletion
423 of these components resulted in decreased centriole number (Fig. 6A). However,
424 depletion of STIL, CPAP or SPICE did not dramatically modify the number of
425 Cenpas upon TRIM37 depletion (Fig. 6A). By contrast, HsSAS-6 depletion greatly
426 reduced Cenpas number (Fig. 6A). To further explore the impact of HsSAS-6, we
427 depleted TRIM37 from RPE-1 p53-/- HsSAS-6 knock out cells (HsSAS-6-ko)
428 (Wang et al., 2015). Although HsSAS-6-ko cells invariably lacked centrioles (Fig.
429 6A, 6B), some Cenpas nevertheless formed upon TRIM37 depletion, although to a
430 lesser extent than following depletion of TRIM37 alone (Fig. 6A, 6B). Moreover,
431 we found that elongated Centrobin assemblies were generated unabated upon
432 TRIM37 depletion in cells treated with Centrinone or lacking HsSAS-6 (Fig. 6C;

433 Fig. S6). We conclude that PLK4 and HsSAS-6 act downstream of Centrobin in the
434 pathways leading to Cenpas formation upon TRIM37 depletion.

435 To further uncover requirements for Cenpas generation, considering that
436 PLK1 contributes only partially to their formation (Balestra et al., 2013), and that
437 we found here the same to be true for Centrobin, we set out to investigate
438 whether the combined removal of PLK1 and Centrobin may fully prevent Cenpas
439 generation. To avoid the negative impact of PLK1 inhibition on cell cycle
440 progression, we performed these experiments in synchronized cells depleted of
441 TRIM37, and monitor Cenpas appearance during G2 after release from an S
442 phase arrest. These cells were also subjected to Centrobin depletion and/or BI-
443 2536 treatment to inhibit PLK1. Importantly, we found that simultaneous
444 Centrobin depletion and PLK1 inhibition completely prevented Cenpas
445 formation (Fig. 6E), indicating that PLK1 and Centrobin act in parallel to promote
446 Cenpas formation upon TRIM37 depletion.

447 Further evidence supporting the existence of two parallel pathways
448 towards Cenpas generation was obtained by examining the distribution of
449 HsSAS-6 in cells depleted of TRIM37 plus either PLK1 or Centrobin. Indeed, we
450 found that Cenpas generated upon combined TRIM37 depletion and PLK1
451 inhibition, which thus rely strictly on Centrobin, rarely harbored HsSAS-6 (Fig.
452 6F, 6G). By contrast, Cenpas generated upon double depletion of TRIM37 and
453 Centrobin, which thus rely strictly on PLK1, frequently harbored HsSAS-6 (Fig.
454 6F, 6G). Taken together, our findings indicate that two pathways are triggered
455 when TRIM37 is lacking: one that relies on Centrobin assemblies that act as a
456 platform to assemble Cenpas, which at the least is initially independent of
457 HsSAS-6, and another one mediated by PLK1 that operates through HsSAS-6
458 recruitment (Fig. 6G, see discussion).

459

460 **DISCUSSION**

461
462 Centriole number control is critical for proper cell physiology, including
463 genome integrity. Assemblies of centriolar proteins that can recruit PCM and
464 nucleate microtubules despite not being *bona fide* centrioles must likewise be
465 kept in check. Here, we identify the TRIM37 E3 ligase, which is mutated in
466 Mulibrey nanism, as a critical component that prevents the formation of
467 centriolar protein assemblies (Cenpas) through two parallel pathways relying on
468 PLK1 and Centrobin. Of particular interest, we uncover that TRIM37 regulates
469 the stability of Centrobin, which upon TRIM37 depletion forms striated
470 structures that we propose serve as platforms for Cenpas generation.

471

472 **Two pathways together result in Cenpas upon TRIM37 depletion**

473 What are the mechanisms leading to Cenpas formation upon TRIM37 depletion?
474 We previously hypothesized that TRIM37 could act by restricting centriole
475 reduplication in G2, since PLK1 inhibition in TRIM37 depleted cells reduced
476 Cenpas formation (Balestra et al., 2013). However, although blocking PLK1
477 activity in TRIM37 depleted cells reduced Cenpas numbers, some remained
478 despite such inhibition (Balestra et al., 2013). Moreover, while Cenpas form upon
479 TRIM37 depletion as early as 4 h after the G1/S transition (Balestra et al., 2013),
480 PLK1-mediated centriole reduplication occurs only 24 h after G2 arrest
481 (Loncarek et al., 2010). It may even be that the role exerted by PLK1 following
482 TRIM37 depletion is not linked to its known function in regulating licensing.
483 Regardless, we obtained further evidence here that Cenpas do not form solely
484 through a reduplication mechanism. First, some Cenpas appear away from
485 resident centrioles. Second, most Cenpas do not harbor the procentriolar protein
486 HsSAS-6, at the least initially, which is in contrast to the situation during
487 centriole reduplication during G2 arrest. Furthermore, analysis with CLEM
488 revealed that Cenpas are usually either centriole-related structures or novel
489 striped electron-dense structures. Together, these findings indicate that Cenpas
490 do not form solely through centriole reduplication, but also through an
491 alternative novel *de novo* pathway.

492 Our findings indicate that this alternative pathway relies on Centrobin:
493 whereas the sole removal of Centrobin also merely decreases Cenpas number,

494 the joint removal of PLK1 and Centrobin entirely prevent their generation (Fig.
495 6E).

496 The heterogeneity in Cenpas ultrastructure uncovered by CLEM might
497 also reflect the co-existence of these independent assembly pathways. Such
498 heterogeneity may reflect in addition a step-wise nature of the *de novo*
499 generation process. This possibility is in line with the fact that more extra HsSAS-
500 6 foci are present 72 hours after transfection with TRIM37 siRNAs (Balestra et
501 al., 2013), compared to the 48 hours post-transfection analyzed here (Fig. 1C).
502 Therefore, HsSAS-6 might not be present or required for the onset of *de novo*
503 Cenpas formation, but could contribute later to their consolidation. In line with
504 this view, HsSAS-6-k-o cells depleted of TRIM37 can assemble some Cenpas,
505 perhaps more rudimentary ones. Interestingly in addition, this observation
506 further suggests that *de novo* Cenpas generation upon TRIM37 depletion must in
507 some way differ from the classical *de novo* centriole assembly, which is fully
508 reliant on HsSAS-6 (Wang et al., 2015).

509 We found that one protein that is essential for forming all Cenpas upon
510 TRIM37 depletion is PLK4, which is also required for centriole reduplication and
511 *de novo* centriole assembly following Centrinone treatment (Habedanck et al.,
512 2005; Wong et al., 2015). How could PLK4 be required for Cenpas generation
513 stemming from the Centrobin assemblies formed upon TRIM37 depletion? PLK4
514 condensates forming away from resident centrioles have been observed in RPE-
515 1 TRIM37 knock out (TRIM37-ko) cells (Meitinger et al., 2016). However, we did
516 not detect such PLK4 localization, perhaps reflecting differences between
517 chronic versus acute TRIM37 depletion. Another difference potentially related to
518 distinct depletion regimes is that upon Centrinone treatment, TRIM37-ko cells
519 form centrosome-like structures harboring notably PLK4 and HsSAS-6, and
520 which recruit PCM components, behaving as MTOCs (Meitinger et al., 2016).
521 This is in contrast to our findings whereby no Cenpas forms upon treatment with
522 TRIM37 siRNAs and Centrinone. Regardless, it is interesting to note that in
523 *Xenopus* extracts, PLK4 self-assembles into condensates that recruit γ -tubulin
524 and behave as MTOCs (Montenegro Gouveia et al., 2018), raising the possibility
525 that Centrobin assemblies may serve as platforms to recruit such condensates.

526

527 **Centrobin as a TRIM37 target**

528 What are the targets of TRIM37 that are relevant for restricting Cenpas
529 formation? Our work suggests that a critical target is Centrobin, since upon
530 TRIM37 depletion Centrobin protein levels increase and elongated Centrobin
531 assemblies form in the cytoplasm. U-ExM coupled to STED super-resolution
532 microscopy reveals that these Centrobin assemblies have a striped pattern akin
533 to the structures uncovered by CLEM, and are often intimately linked with
534 Cenpas. Given the cytoplasmic localization of these assemblies, this role of
535 TRIM37 is likely to be exerted by the cytoplasmic protein pool rather than the
536 centrosomal or the nuclear ones. Centrobin contributes to several aspects of
537 centriole assembly and growth, as well as ciliogenesis (Gudi et al., 2011;
538 Ogungbenro et al., 2018; Zou et al., 2005). These functions might be linked to
539 Centrobin's ability to stabilize and promote microtubule nucleation (Gudi et al.,
540 2011; Jeong et al., 2007; Shin et al., 2015). Future work will undoubtedly clarify
541 the molecular connection between TRIM37 and Centrobin. Because Centrobin
542 depletion does not fully prevent Cenpas formation upon TRIM37 depletion, other
543 TRIM37 targets must be invoked, and PLK1 or a protein regulating its activity, is
544 an attractive possibility in this respect.

545

546 **Cenpas form through different routes but similarly threaten cell physiology**

547 Although with different molecular origins, centriolar protein assemblies
548 have been reported in other contexts (Li et al., 2012; Shiratsuchi et al., 2015).
549 Thus, the centriolar protein Neurl4 interacts with CP110 and promotes its
550 destabilization, such that Neurl4 depletion results in increased CP110 protein
551 levels and formation of ectopic MTOCs (Li et al., 2012). Likewise, depletion of
552 RMB14 triggers the formation of centriolar protein complexes that do not
553 initially require HsSAS-6 for their assembly. RBM14 normally limits formation of
554 the STIL/CPAP complex, which upon RMB14 depletion triggers aberrant
555 centriolar protein complex formation (Shiratsuchi et al., 2015). In both cases,
556 however, Centrobin distribution was inspected and no elongated structures as
557 the ones reported here were observed (Li et al., 2012; Shiratsuchi et al., 2015),
558 suggesting different assembly routes. Although these previously reported
559 centriolar protein assemblies and the ones analyzed here do not share a clear

560 common molecular composition or assembly pathway, we propose to group
561 them jointly under the acronym Cenpas, reflecting the fact that they similarly
562 form following a *de novo* process and entail centriole-related structures that
563 behave as active MTOCs.

564 To our knowledge, our work is the first example in which Cenpas have
565 been reported in a human genetic disorder. The fact that Cenpas are present in
566 Mulibrey derived patient cells raises the possibility that some disease features
567 could be due to Cenpas formation, perhaps owing to the extra MTOCs and
568 resulting chromosome miss-segregation phenotype. As one of the characteristics
569 of Mulibrey nanism is the propensity to develop tumors, we speculate that the
570 presence of Cenpas could contribute to this phenotype since extra centrioles can
571 promote tumorigenesis (Ganem et al., 2009; Godinho et al., 2014; Levine et al.,
572 2017; Sercin et al., 2016). We further speculate that some of the instances in
573 which extra centriole numbers are observed in solid and hematological tumors
574 may in reality correspond to Cenpas.

575

576

577 **ACKNOWLEDGMENTS**

578

579 We thank Graham Knott and Marie Croisier (BioEM platform of the School of Life
580 Sciences, EPFL) for assistance with CLEM and TEM, Isabelle Flückiger for
581 technical support, as well as Niccolò Banterle for advice with U-ExM. Anna-Elina
582 Lehesjoki (Department of Medical and Clinical Genetics, University of Helsinki,
583 Finland) is acknowledged for her contribution towards securing patient and
584 control fibroblast, Daniel Gerlich (Vienna BioCenter, Austria), Ciaran Morrison
585 (Centre for Chromosome Biology, Galway, Ireland), Bryan Tsou (Memorial Sloan
586 Kettering Cancer Center, New York, US) and George Hatzopoulos (EPFL,
587 Lausanne, Switzerland) for cell lines, Michel Bornens (Institut Curie, Paris,
588 France), Andrew Holland (Johns Hopkins University School of Medicine,
589 Baltimore, USA) and Laurence Pelletier (Lunenfeld-Tanenbaum Research
590 Institute, Toronto, Canada) for antibodies. We are also grateful to Niccolò
591 Banterle and Fernando Monje Casas for critical reading of the manuscript. This
592 work has been supported in part by the Swiss Cancer league (KFS-3388-02-
593 2014, to P.G.). A.B. was supported by the National Centre for Competence in
594 Research (NCCR) Chemical Biology, funded by the Swiss National Science
595 Foundation. FRB thanks PG for having hosted and supported him at the
596 beginning of the project. F.R.B. was funded by a Marie Curie IEF Postdoctoral
597 Fellowship (PIEF_GA-2013-629414; CSIC-Cabimer, Seville, Spain) and by the
598 University of Seville through a postdoctoral contract of the V PPIT-US (US-
599 Cabimer, Seville, Spain). CABIMER is supported by the regional government of
600 Andalucia (Junta de Andalucía).

601

602

603

604

605

606

607

608

609

610

611 **FIGURE LEGENDS**

612

613 **Figure 1. Supernumerary centriolar protein assemblies (Cenpas) form**
614 **upon TRIM37 depletion**

615 A. Relevant images from wide-field time-lapse recordings of HeLa cells
616 expressing Centrin-1:GFP and depleted of TRIM37 for 48h before imaging onset
617 (10 min. time frame). Yellow arrows point to two foci appearing close to resident
618 centrioles (8/13 extra foci in 11 cells), orange arrow to one focus appearing
619 away from resident centrioles (5/13 extra foci). Solid arrows indicate first
620 occurrence of foci, dashed arrows their continued presence. Time is indicated in
621 h:min since imaging onset. Note that the intensity of extra Centrin-1:GFP foci is
622 typically weaker than that of regular centrioles, especially in the early assembly
623 stages. Note also resident centriole and procentriole appearing in the field of
624 view at the bottom right in Cell 1, 9:20. In this and other Figure panels, scale bars
625 correspond to 5 μ m, unless indicated otherwise.

626 B. HeLa cells expressing Centrin-1:GFP upon treatment with control or TRIM37
627 siRNAs, or upon R03306 addition for 48h. Cells were immunostained for GFP,
628 HsSAS-6 and CEP63. Nuclear contours are drawn with dashed yellow lines. In
629 this and subsequent figures, magnified images from indicated regions are shown.

630 C. Corresponding percentage of cells with extra Centrin-1:GFP foci that also
631 harbor CEP63 and/or HsSAS-6. Unless otherwise indicated, all graphs report
632 averages from two or more independent experiments ($n = 50$ cells each), along
633 with SDs; $P < 0.01$ here. Note that extra Centrin-1:GFP foci could be positive for
634 both Cep63 and HsSAS-6 in R03306 treated cells.

635 D. HeLa cells expressing TRIM37:GFP or TRIM37 tagged with a nuclear export
636 signal and GFP (TRIM37:NES:GFP) immunostained for GFP.

637 E. Quantification of extra number of CP110 foci in HeLa cells treated with control
638 or TRIM37 siRNAs and transfected with indicated plasmids (pcDNA3: parental
639 vector). Cells were immunostained for GFP and CP110. The difference between
640 TRIM37:GFP and TRIM37:NES:GFP is not significant; $P = 0.7327$.

641

642 **Figure 2. Cenpas can behave as extra MTOCs, including in Mulibery patient**
643 **cells, and trigger new rounds of centriole duplication**

644 **A.** Microtubule depolymerization-regrowth experiment in mitotic HeLa cells
645 treated with control or TRIM37 siRNAs. Microtubules were depolymerized by a
646 30 min cold shock followed by 1-2 min at room temperature before fixation of
647 cells and immunostaining for Centrin-2 and α -tubulin.

648 **B.** Corresponding percentage of mitotic cells with >2 MTOCs; $P<0.01$. Note that
649 ~40% of the extra Centrin-2 foci observed in mitosis did not nucleate
650 microtubules, as is the case for two of them in inset 1 (siTRIM37). $N= 40$ Cenpas
651 each scored in three independent experiments, SD 12.6%.

652 **C.** Western blot of cell lysates from control and patient (P-1, P-2) fibroblasts
653 probed with antibodies against TRIM37 (top) or α -tubulin as loading control
654 (bottom). The arrow indicates TRIM37, the asterisk a non-specific band. Select
655 molecular weight markers are indicated in kDa in this and other Western blot
656 panels.

657 **D.** Control and patient-1 (P-1) fibroblasts in mitosis immunostained for Centrin-
658 2 and γ -tubulin.

659 **E.** Corresponding percentage of mitotic cells with extra number of Centrin-2 or
660 γ -tubulin foci in control and patient (P-1 and P-2) fibroblasts. Data from a total of
661 57 (P-1) and 54 (P-2) mitotic cells obtained from three independent
662 experiments.

663 **F.** HeLa cells depleted of TRIM37 and immunostained for Centrin-2 plus CP110,
664 illustrating a case with an extra single focus (left, inset 1) and one with an extra
665 pair of foci (right).

666 **G.** Corresponding percentage of interphase cells with extra single focus or extra
667 pairs of foci.

668

669

670

671

672

673

674 **Figure 3. Cenpas are structures related to centrioles or electron-dense**
675 **striped structures**

676 **A.** RPE-1 cells treated with control or TRIM37 siRNAs, and immunostained for
677 CEP152 plus acetylated tubulin.

678 **B.** Corresponding percentage of cells with extra foci of acetylated tubulin;
679 $P<0.05$.

680 **C-G.** Ultrastructure expansion microscopy (U-ExM) confocal images of control
681 (C) or TRIM37 (D-G) depleted RPE-1 cells expressing Centrin-1:GFP, and
682 immunostained for GFP, CEP152 as well as acetylated tubulin. Yellow arrows
683 point to Cenpas lacking CEP152 and acetylated tubulin, white arrows to those
684 harboring both proteins, but with an unusual distribution. Scale bar 500 nm.

685 **H-L.** CLEM analysis of HeLa cell (cell 3 in Fig. S3F) expressing Centrin-1:GFP and
686 depleted of TRIM37. Maximal intensity projection of wide-field microscopy image
687 covering the entire cell volume (H), and magnified insets from the light
688 microscopy images above the corresponding EM images (I-L), with white arrows
689 pointing to relevant Centrin-1:GFP focus. Scale bars: 5 μ m in F, 500 nm in G. Here
690 and in panels M-O, orange, green and pink dashed lines surround respectively
691 centrioles-like, centriole-related and tiger structures. Filled orange lines
692 surround resident centrioles.

693 **M-O.** Centriole-like (M, cell 7 in Fig. S3F), centriole-related (N, cell 7 in Fig. S3F),
694 and tiger (O, cell 2 in Fig. S3F) structures. Scale bar is 500 nm.

695

696

697

698

699 **Figure 4. TRIM37 regulate Centrobin protein stability and levels**

700 **A.** HeLa cells in G2 or mitosis, as indicated, treated with control or TRIM37
701 siRNAs, and immunostained for CP110 plus Centrobin.

702 **B.** High magnification confocal view of cells treated with control or TRIM37
703 siRNAs immunostained for Centrobin and CP110. Arrow points to elongated
704 Centrobin assembly. Scale bar 1 μ m.

705 **C.** Western blot of lysates from HeLa cells treated with control or TRIM37 siRNAs
706 probed with antibodies against Centrobin (top) or HSP70 as loading control
707 (bottom).

708 **D.** Western blot of soluble (S) or insoluble (P, for pellet) fractions of lysates from
709 HeLa cells treated with control or TRIM37 siRNAs, probed with antibodies
710 against Centrobin (top) or α -tubulin as loading control (bottom). Note that
711 Centrobin present in the insoluble fraction migrates slower upon TRIM37
712 depletion, suggestive of some posttranslational modification.

713 **E.** Western blot of total Centrobin protein levels in control and TRIM37 depleted
714 HeLa cells treated with cycloheximide (CHX) for indicated time in hours (h),
715 probed with antibodies against Centrobin (top) or α -tubulin as loading control
716 (bottom). Note that the amount of lysate loaded for the TRIM37 depleted sample
717 was ~50% of that loaded for the siControl condition.

718 **F.** Quantification of relative Centrobin protein levels from the Western blot
719 shown in E.

720

721

722 **Figure 5. Centrobin promotes Cenpas formation**

723 **A.** U-ExM coupled to STED super-resolution microscopy of RPE-1 cells
724 immunostained for CEP152, Centrin-1 and Centrobin. White arrows point to
725 Cenpas in close proximity to Centrobin assembly. Scale bars are 250nm.

726 **B.** Box-and-whisker plot of inter stripe distances in TEM tiger structures (n = 53
727 from 5 tiger structures) and U-ExM Centrobin structures (n = 30 from 3
728 Centrobin structures); P=0.38, not significant.

729 **C.** HeLa cells depleted of TRIM37 alone or simultaneously of TRIM37 and
730 Centrobin, and immunostained for CP110 plus Centrobin.

731 **D.** Corresponding percentages of mitotic cells treated with the indicated siRNAs
732 harboring >4 CP110 foci. siTRIM37 versus siTRIM37+siCentrobin: P < 0.05.

733 **E.** Control and Centrobin-ko RPE-1 cells transfected with TRIM37 siRNAs
734 immunostained for Centrin-2 and CP110.

735 **F.** Corresponding percentages of mitotic cells with >4 CP110 foci. siTRIM37
736 versus siTRIM37+Centrobin-KO: P < 0.01.

737

738

739

740 **Figure 6. Two pathways contribute to Cenpas formation upon TRIM37**
741 **depletion**

742 **A.** Box-and-whisker Tukey plot of Centrin-2 foci number per cell in indicated
743 conditions. All cells were analyzed in mitosis with the exception of HsSAS-6-ko
744 conditions. Centrinone versus centrinone + siTRIM37: $P < 0.01$, HsSAS-6-ko vs
745 HsSAS-6 ko + siTRIM37: $P < 0.0001$.

746 **B.** HeLa cells grown with centrinone for 8 days (top) or RPE-1 HsSAS-6-ko cells
747 (bottom), both treated with control or TRIM37 siRNA, before immunostaining
748 for CP110 and Centrin-2 and CP110.

749 **C-D.** HeLa cells grown with centrinone for 8 days (C) or RPE-1 HsSAS-6-ko cells
750 (D), both treated with control or TRIM37 siRNA, before immunostaining for
751 Centrobin and Centrin-2.

752 **E.** HeLa cells were synchronized with a double thymidine block, released and
753 transfected with control, TRIM37, Centrobin, or both TRIM37 and Centrobin
754 siRNAs, as indicated. Additionally, DMSO or BI-2536 was added to the cells,
755 which were fixed at time 0 h or 8vh after release, before immunostaining with
756 antibodies against CP110 and Centrobin. The percentage of cells with extra
757 CP110 foci was quantified in each condition. siTRIM37+siCentrobin versus
758 siTRIM37+siCentrobin+BI2536: $P = 0.063$, non significant.

759 **F.** HeLa cells were synchronized with a double thymidine block, released and
760 transfected with control, TRIM37, Centrobin, or both TRIM37 and Centrobin
761 siRNAs, as indicated. Additionally, DMSO or BI-2536 was added to the cells,
762 which were fixed at time 0 h or 8 h after release, before immunostaining with
763 antibodies against CP110 and HsSAS-6.

764 **G.** Corresponding percentage of cells with extra CP110 foci, with an indication of
765 the fraction of them bearing HsSAS-6. The percentage of cells bearing extra
766 HsSAS-6 foci between siTRIM37+siCentrobin versus siTRIM37+BI2536 was
767 significant: P value < 0.05 .

768 **H.** Working model of TRIM37 role in preventing formation of supernumerary
769 MTOCs. Our findings lead us to propose that TRIM37 prevents the formation of
770 supernumerary Centrin foci through two independent pathways mediated by
771 Centrobin (top) and PLK 1 (bottom). The Centrobin pathway relies on the
772 assembly of tiger Centrobin assemblies that act as platforms for PLK4-dependent

773 Cenpas assembly. Thereafter, Cenpas could evolve into centriole-related and
774 then centriole-like structures with the stepwise incorporation of other centriolar
775 proteins such as HsSAS-6. We propose that the PLK1 pathway might reflect its
776 role in promoting centriole disengagement. Note that only extra MTOCs are
777 represented. See text for details.

778

779

780

781

782 **MATERIAL AND METHODS**

783

784 Cell culture, cell lines and cell treatments

785 HeLa Kyoto (generous gift from Daniel Gerlich) and U2OS (ATCC) cells were
786 grown in high glucose DMEM medium (Sigma-Aldrich), hTERT-RPE-1(ATCC)
787 cells in high glucose DMEM/F-12 medium (Sigma-Aldrich). Fibroblast cultures
788 were established from skin biopsy samples of two Mulibrey nanism patients
789 homozygous for the Finnish founder mutation, as well as a control individual,
790 with approval by the Institutional Review Board of the Helsinki University
791 Central Hospital (183/13/03/2009). The patients signed an informed
792 consent for the use of fibroblast cultures. Fibroblasts were grown in RPMI
793 medium (Sigma-Aldrich). Other cell lines used were HeLa cells carrying an
794 integrated plasmid expressing Centrin-1:GFP (Piel et al., 2000), RPE-1 p53 -/-
795 cells carrying an integrated plasmid (pCW57.1) expressing Centrin-1:eGFP under
796 a doxycycline inducible promoter (generous gift from George Hatzopoulos), RPE-
797 1 p53 -/- Centrobin knock out cells (Ogungbenro et al., 2018) (generous gift from
798 Ciaran Morrison), and RPE-1 p53 -/- HsSAS-6 knock out cells (Wang et al., 2015)
799 (generous gift from Bryan Tsou). All media were supplemented with 10% fetal
800 bovine serum, 2 mM L-glutamine, 100 units/ml penicillin and 100 μ g/ml
801 streptomycin (all from Sigma-Aldrich) and grown at 37°C in 5% CO₂. HeLa Kyoto
802 cells were synchronized using a double-thymidine block and release protocol as
803 follows: cells were incubated in medium with 2 mM thymidine (Sigma Aldrich,
804 T9250) for 17 h, released for 8 h and again incubated with 2 mM Thymidine for
805 17 h. For single transfection experiments, control or TRIM37 siRNAs
806 transfections were performed during the 8 h period between the two thymidine
807 treatments. For double transfection experiments, in addition to the above, either
808 control or Centrobin siRNAs were transfected before the first Thymidine
809 treatment. Drugs used in this work were 10 μ M BI-2536 (S1109, Selleck
810 Chemicals), 10 μ M RO-3306 (Sigma-Aldrich, SML0569), 125 nM Centrinone
811 (MCE, Hy-18682) and 150 μ g/ml Cycloheximide (Sigma-Aldrich, C7698).

812

813 Transfections, plasmids and siRNAs

814 For siRNA treatments, cells were typically transfected in a 6 well plate format
815 with 20 μ M siRNAs and 4 μ L Lipofectamine RNAiMAX (Thermo Fisher Scientific);
816 the depletion phenotype was inspected 72 h after transfection unless otherwise
817 indicated in the text or the legends. siRNAs sequences were as follows: TRIM37
818 (5'-UUAGGACCGGA GCAGUAUAGAAAA-3') (Balestra et al., 2013), Centrobin (5'-
819 AGUGCAGACUGCAGCACGGAAA-3') (Zou et al., 2005), SPICE (5'-
820 GCAGCUGAGAACAAUAGAGUCAUUA-3') (Archinti et al., 2010), HsSAS6 (5'-
821 GCACGUUAAUCAGCUACAAUU-3') (Strnad et al., 2007), STIL (5'-
822 AACGUUUACCAUACAAAGAAA-3') (Kitagawa et al., 2011a), CPAP (5'-
823 AGAAUUAGCUCGAAUAGAA-3') (Kitagawa et al., 2011a), and Stealth RNAiTM
824 siRNA Negative Control Lo GC (Ref: 12935200; Invitrogen). For plasmid
825 transient transfection, FuGENE 6 Transfection Reagent (Promega) was used
826 according to the manufacturer's protocol and the phenotype inspected 24 or 48
827 h after transfection. Transfected plasmids were as follows: pEBTet-TRIM37:GFP
828 (Balestra et al., 2013), pGFP-Centrobin:GFP (pGFP-NIP2) (Shin et al., 2015)
829 (generous gift from Kunsoo Rhee, Seoul National University, Korea) pEGFP:SPICE
830 (Archinti et al., 2010) (generous gift from Jens Lüders, IRB, Barcelona, Spain)
831 pcDNA3-TRIM37:GFP and pcDNA3-TRIM37:NES:GFP were generated by cloning
832 the TRIM37 ORF (964 aa) fused to GFP or to the HIV-Rev NES sequence
833 (LQLPPLERLTL) (Wen et al., 1995) and GFP.

834

835 Immunoblotting and Cycloheximide chase assay

836 For Western blot analysis, cells were lysed either in 2 \times Laemmli buffer (4% SDS,
837 20% glycerol, 125 mM Tris-HCl, pH 6.8) and passed 10 times through a 0.5 mm
838 needle-mounted syringe to reduce viscosity, or in NP40 lysis buffer [10 mM
839 Tris/HCl (pH 7.4)/150 mM NaCl/10% (v/v) glycerol/1% (v/v) Nonidet P40/1
840 mM PMSF and 1 μ g/ml of each pepstatin, leupeptin, and aprotinin (Sigma-
841 Aldrich) for 20 min at 4°C and then for 3 min at 37°C, before centrifugation at
842 20,000 g for 20 min. In this manner, the soluble fraction was separated from the
843 insoluble pellet, which was then solubilized in 1x Laemmli buffer. Protein
844 concentration was determined with a NanoDrop Spectrophotometer. Lysates
845 were resolved by SDS-PAGE on a 10% polyacrylamide gel and immunoblotted on
846 Immobilon-P transfer membrane (IPVH00010; 21 Millipore Corporation).

847 Membranes were first blocked with TBS containing 0.05% Tween-20 (TBST) and
848 5% non-fat dry milk (TBST-5% milk) for 1h at room temperature, and then
849 incubated with primary antibodies diluted in PBST-5% milk. Primary antibodies
850 were 1:1000 rabbit anti-TRIM37 (A301-174A; Bethyl Laboratories), 1:30,000
851 mouse anti- α -tubulin (DM1a; Sigma-Aldrich), 1:500 rabbit anti-Centrobin
852 (HPA023321; Atlas), and 1:20,000 anti-HSP70 (sc-24; Santa Cruz). Membranes
853 were washed and incubated for 1h in secondary antibodies prepared also in
854 TBST-5% milk. Secondary antibodies were 1:5,000 HRP-conjugated anti-rabbit
855 (W4011; Promega) or mouse (W4021; Promega) IgGs. The signal was detected
856 by standard chemiluminescence (34077; Thermo Scientific). Alternatively,
857 polyacrylamide gels were immunoblotted on low fluorescence PVDF membranes
858 (Immobilon-FL, Millipore), membranes blocked with Odyssey Blocking Buffer
859 (LI-COR) and blotted with appropriate primary antibodies and 1:5,000
860 secondary antibodies IRDye 680RD anti-mouse IgG (H+L) Goat LI-COR (926-
861 68070) and IRDye 800CW anti-rabbit IgG (H+L) Goat LI-COR (926-32211).
862 Membranes were then air-dried in the dark and scanned in an Odyssey Infrared
863 Imaging System (LI-COR), and images analyzed with ImageStudio software (LI-
864 COR). In all cases, membrane washes were in TBST. For the cycloheximide chase
865 experiment, HeLa Kyoto cells were treated with fresh DMEM containing 150
866 μ g/ml cycloheximide (CHX). Cells were collected 0, 2, 4, 6 and 8 h after CHX
867 addition, and protein extracts prepared in 2 \times Laemmli buffer as described above.
868 40 μ g of siControl lysate and 20 μ g of siTRIM37 lysate were resolved by SDS-
869 PAGE, analyzed by immunoblotting with Centrobin and α -tubulin antibodies
870 before quantification with ImageStudio. The siControl and siTRIM37 conditions
871 at time 0 were normalized as 100%, and the other conditions for the same siRNA
872 treatment expressed relative to this. Centrobin expression was quantified as the
873 Centrobin signal divided by the α -tubulin signal.

874

875 RNA isolation, reverse transcription and real-time PCR

876 RNA was extracted using the RNeasy Mini kit according to the manufacturer's
877 instruction (QIAGEN), including DNase I to avoid potential contaminations with
878 DNA. 3 μ g of total RNA, random hexamers and SuperScript III Reverse
879 Transcriptase (InvitrogenTM) were used to obtain complementary DNA (cDNA).

880 Quantitative PCR from cDNA was performed to assess siRNA-mediated knock-
881 down of TRIM37 and Centrobin, using iTaq Universal SYBR Green Supermix
882 following the manufacturer's instructions (Bio-Rad) in an Applied Biosystems
883 7500 Fast Real-time PCR System (Thermo Fisher Scientific). Relative mRNA
884 levels of the indicated genes were calculated by the 2-DDCT method (Bulletin
885 5279, Real-Time PCR Applications Guide, Bio-Rad), using GAPDH expression as
886 endogenous control. The primer sequences used were: Centrobin: CNTROB-FW
887 5'-GTCTCCATCTAGCTCAGCCC-3', CNTROB-RV 5'-AGGCTCTGAATATGGCGCT C-3',
888 TRIM37: TRIM37-FW 5'-TGCCATCTTACGATTCAAGCTAC-3', TRIM37-RV 5'-
889 CGCACAACTCCATTCCATC-3'. GAPDH: GAPDH-FW 5'-GGAAGGTGA
890 AGGTGGAGTC-3', GAPDH-RV 5'-GTTGAGGTCAATGAAGGGGTC-3'

891

892 Indirect immunofluorescence and microtubule-regrowth assay

893 Cells were grown on glass coverslips and fixed for 7 min in -20°C methanol,
894 washed in PBS, and blocked for 30 min in PBS 0.05% Tween 20 (PBST) with 1%
895 bovine serum albumin. Cells were incubated overnight at 4°C with primary
896 antibodies, washed three times for 5 min with PBST, incubated for 1 h at room
897 temperature with secondary antibodies, washed three times for 5 min in PBST
898 and mounted in Vectashield mounting medium with DAPI (H-1200; Vector
899 Laboratories). Primary antibodies used for immunofluorescence were: 1:50
900 human anti-GFP from the recombinant antibody platform of Institut Curie (hVHH
901 antiGFP-hFc, A-R-H#11), 1:1000 rabbit anti-GFP (RGFP-45ALY-Z; ICL), 1:500
902 mouse anti-HsSAS-6 (sc-81431; Santa Cruz), 1:1000 rabbit anti-CEP63 (06-1292;
903 Millipore), 1:2000 rabbit anti-CEP152 (HPA039408; Sigma-Aldrich), 1:1000
904 mouse anti-acetylated tubulin (T6793; Sigma-Aldrich), 1:1000 mouse anti- γ -
905 tubulin (GTU88, T5326; Sigma-Aldrich), 1:1000 mouse anti-Centrin2 (20H5;
906 Sigma-Aldrich), 1:2000 rabbit anti-CEP164 (45330002; Novus Biologicals),
907 1:1000 mouse anti- α -tubulin (T6199; Sigma-Aldrich), 1:1000 rabbit anti-CP110
908 (12780-1-AP; Proteintech), 1:1000 mouse anti-Centrobin (ab70448; Abcam),
909 1:1000 rabbit anti-Centrobin (HPA023321; Atlas Antibodies), 1:1000 rabbit anti-
910 CEP135 (ab75005; Abcam), 1:500 rabbit anti-CPAP (Kohlmaier et al., 2009),
911 1:500 rabbit anti-SPICE (HPA064843, Sigma-Aldrich), 1:8,000 rabbit anti-Ninein
912 (L77), 1:1000 rabbit anti-hPOC5 (Azimzadeh et al., 2009) and 1:1000 rabbit anti-

913 PLK4(KD) (Sillibourne et al., 2010) (both generous gifts from Michel Bornens,
914 Institut Curie, Paris, France), 1:1000 rabbit anti-P-PLK4 (Moyer and Holland,
915 2019) (generous gifts from Andrew Holland), 1:400 mouse anti-C-Nap (611374;
916 BD Biosciences) 1:2000 rabbit anti-STIL (ab222838; Abcam), 1:1000 rabbit anti-
917 PCNT (ab4448; Abcam), 1:1000 mouse anti-AKAP450 (611518; BD Biosciences),
918 1:1000 rabbit anti-CDK5Rap2 (06-1398; Millipore), 1:1000 rabbit anti-CEP192
919 (a generous gift from Laurence Pelletier), 1:1000 rabbit anti-CEP170
920 (HPA042151; Sigma-Aldrich), 1:1000 mouse anti-P-T210-PLK1 (558400; BD
921 Bioscience). Secondary antibodies were 1:500 mouse Alexa-488, 1:3000 rabbit
922 Cy3, 1:3000 human Alexa-633, 1:1000 mouse Alexa-649, and 1:500 human
923 Alexa-488, all from Jackson ImmunoResearch. For microtubule
924 depolymerization-regrowth experiments, cells were first incubated at 4°C for 30
925 min, then rinsed in pre-warmed medium (37°C), followed by incubation at room
926 temperature for 1-2 min to allow microtubule regrowth. Thereafter, cells were
927 fixed and stained as described above.

928

929 Live imaging, ultrastructure expansion microscopy and confocal microscopy
930 HeLa Centrin-1:GFP cells were transfected with control or TRIM37 siRNAs for 48
931 hours, transferred to 35mm imaging dishes (Ibidi, cat.no 81156), and imaged at
932 37°C and 5% CO₂ in medium supplemented with 25mM HEPES (Thermofisher)
933 and 1% PenStrep (Thermofisher). Combined DIC and GFP-epifluorescence time-
934 lapse microscopy was performed on a motorized Zeiss Axio Observer D1 using a
935 63x 1.4 NA plan-Apochromat oil immersion objective, equipped with an Andor
936 Zyla 4.2 sCMOS camera, a piezo controlled Z-stage (Ludl Electronic Products),
937 and an LED light source (Lumencor SOLA II). Imaging was conducted every 10
938 minutes, capturing Z-stacks of optical sections 0.5um apart, covering a total
939 height of 8 um. Ultrastructure expansion microscopy was conducted essential as
940 reported (Gambarotto et al., 2019). For imaging, the sample was mounted on a
941 25 mm round poly-D-lysine coated precision coverslip. STED imaging was
942 performed on a Leica TCS SP8 STED 3X microscope with a 100x 1.4 NA oil-
943 immersion objective. Secondary antibodies were 1:500 Alexa-488 (A-11039;
944 Thermofisher) Alexa-594 (ab150072; Abcam) and Atto647N (2418; Hypermol).
945 Confocal images were captured on a Leica TCS SP5 with a HCX PL APO Lambda

946 blue 63 \times 1.4 NA oil objective. All images shown are maximal intensity
947 projections. Image processing was carried out using Image J and Adobe
948 Photoshop (Adobe).

949

950 Correlative light electron microscopy (CLEM)

951 HeLa and RPE-1 cells expressing Centrin-1:GFP were cultured in glass-bottom
952 Petri dishes (MatTek, Cat. No. P35G-1.5-14-CGRD), with an alpha-numeric grid
953 pattern, and transfected with control or TRIM37 siRNAs. Cells were chemically
954 fixed 72 h after transfection with a buffered solution of 1 % glutaraldehyde 2 %
955 paraformaldehyde in 0.1 M phosphate buffer at pH 7.4. Dishes were then
956 screened with a wide-field fluorescent microscope (Zeiss Observer D1, using a
957 63 \times 1.4 NA oil objective) to identify cells of interest, which were imaged with
958 both transmitted and fluorescence microscopy to register the position of each
959 cell on the grid, as well as the location of their GFP foci, capturing optical slices
960 500 nm apart. The cells were then washed thoroughly with cacodylate buffer
961 (0.1M, pH 7.4), postfixed for 40 min in 1.0 % osmium tetroxide 1.5% potassium
962 ferrocyanide, and then for 40 min in 1.0% osmium tetroxide alone. Finally, cells
963 were stained for 40 min in 1% uranyl acetate in water before dehydration
964 through increasing concentrations of alcohol and then embedding in Durcupan
965 ACM resin (Fluka, Switzerland). The coverslips were then covered with 1 mm of
966 resin, which was hardened for 18 hours in a 65° C oven. The coverslips were
967 removed from the cured resin by immersing them alternately into hot (60° C)
968 water followed by liquid nitrogen until the coverslips parted. Regions of resin
969 containing the cells of interest were then identified according to their position on
970 the alpha-numeric grid, cut away from the rest of the material and glued to blank
971 resin block. Ultra-thin (50 nm thick) serial sections were cut through the entire
972 cell with a diamond knife (Diatome) and ultramicrotome (Leica Microsystems,
973 UC7), and collected onto single slot grids with a pioloform support film. Sections
974 were further contrasted with lead citrate and uranyl acetate and images taken in
975 a transmission electron microscope (FEI Company, Tecnai Spirit) with a digital
976 camera (FEI Company, Eagle). To correlate the light microscopy images with the
977 EM images and identify the exact position of the Centrin-1:GFP foci, fluorescent

978 images were overlaid onto the electron micrographs of the same cell using
979 Photoshop.

980

981 Statistical analysis

982 Statistical significance was determined with a Student's t-test using PRISM
983 software (Graphpad Software Inc.). Statistically significance of pair-wise
984 comparisons are indicated in the figure legends with $P < 0.05$, $P < 0.01$ or $P <$
985 0.001 .

986

987

988

989

990 **BIBLIOGRAPHY**

991

992 Andersen, J.S., Wilkinson, C.J., Mayor, T., Mortensen, P., Nigg, E.A., and Mann, M.
993 (2003). Proteomic characterization of the human centrosome by protein
994 correlation profiling. *Nature* 426, 570-574.

995 Archinti, M., Lacasa, C., Teixido-Travesa, N., and Luders, J. (2010). SPICE--a
996 previously uncharacterized protein required for centriole duplication and
997 mitotic chromosome congression. *Journal of cell science* 123, 3039-3046.

998 Arquint, C., and Nigg, E.A. (2016). The PLK4-STIL-SAS-6 module at the core of
999 centriole duplication. *Biochemical Society transactions* 44, 1253-1263.

1000 Avela, K., Lipsanen-Nyman, M., Idanheimo, N., Seemanova, E., Rosengren, S.,
1001 Makela, T.P., Perheentupa, J., Chapelle, A.D., and Lehesjoki, A.E. (2000). Gene
1002 encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism.
1003 *Nature genetics* 25, 298-301.

1004 Azimzadeh, J., Hergert, P., Delouvee, A., Euteneuer, U., Formstecher, E.,
1005 Khodjakov, A., and Bornens, M. (2009). hPOC5 is a centrin-binding protein
1006 required for assembly of full-length centrioles. *The Journal of cell biology* 185,
1007 101-114.

1008 Balestra, F.R., Strnad, P., Fluckiger, I., and Gönczy, P. (2013). Discovering
1009 regulators of centriole biogenesis through siRNA-based functional genomics in
1010 human cells. *Developmental cell* 25, 555-571.

1011 Banterle, N., and Gönczy, P. (2017). Centriole Biogenesis: From Identifying the
1012 Characters to Understanding the Plot. *Annual review of cell and developmental
1013 biology* 33, 23-49.

1014 Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G., and Godinho, S.A.
1015 (2011). Centrosomes and cilia in human disease. *Trends Genet* 27, 307-315.

1016 Bhatnagar, S., Gazin, C., Chamberlain, L., Ou, J., Zhu, X., Tushir, J.S., Virbasius, C.M.,
1017 Lin, L., Zhu, L.J., Wajapeyee, N., *et al.* (2014). TRIM37 is a new histone H2A
1018 ubiquitin ligase and breast cancer oncoprotein. *Nature* 516, 116-120.

1019 Bornens, M. (2012). The centrosome in cells and organisms. *Science* 335, 422-
1020 426.

1021 Brown, N.J., Marjanovic, M., Luders, J., Stracker, T.H., and Costanzo, V. (2013).
1022 Cep63 and cep152 cooperate to ensure centriole duplication. *PloS one* 8, e69986.

1023 Chavali, P.L., Putz, M., and Gergely, F. (2014). Small organelle, big responsibility:
1024 the role of centrosomes in development and disease. *Philosophical transactions of the Royal Society of London Series B, Biological sciences* 369.

1025 Comartin, D., Gupta, G.D., Fussner, E., Coyaud, E., Hasegan, M., Archinti, M.,
1026 Cheung, S.W., Pinchev, D., Lawo, S., Raught, B., *et al.* (2013). CEP120 and SPICE1
1027 cooperate with CPAP in centriole elongation. *Current biology : CB* 23, 1360-1366.

1028 Courtois, A., Schuh, M., Ellenberg, J., and Hiiragi, T. (2012). The transition from
1029 meiotic to mitotic spindle assembly is gradual during early mammalian
1030 development. *The Journal of cell biology* 198, 357-370.

1031 Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S.
1032 (2007). Centriole overduplication through the concurrent formation of multiple
1033 daughter centrioles at single maternal templates. *Oncogene* 26, 6280-6288.

1034

1035 Fritz-Laylin, L.K., Levy, Y.Y., Levitan, E., Chen, S., Cande, W.Z., Lai, E.Y., and Fulton,
1036 C. (2016). Rapid centriole assembly in *Naegleria* reveals conserved roles for both
1037 de novo and mentored assembly. *Cytoskeleton* 73, 109-116.

1038 Fulton, C., and Dingle, A.D. (1971). Basal bodies, but not centrioles, in *Naegleria*.
1039 *The Journal of cell biology* 51, 826-836.

1040 Gambarotto, D., Zwettler, F.U., Le Guennec, M., Schmidt-Cernohorska, M., Fortun,
1041 D., Borgers, S., Heine, J., Schloetel, J.G., Reuss, M., Unser, M., *et al.* (2019). Imaging
1042 cellular ultrastructures using expansion microscopy (U-ExM). *Nature methods*
1043 16, 71-74.

1044 Ganem, N.J., Godinho, S.A., and Pellman, D. (2009). A mechanism linking extra
1045 centrosomes to chromosomal instability. *Nature* 460, 278-282.

1046 Godinho, S.A., Picone, R., Burute, M., Dagher, R., Su, Y., Leung, C.T., Polyak, K.,
1047 Brugge, J.S., Thery, M., and Pellman, D. (2014). Oncogene-like induction of
1048 cellular invasion from centrosome amplification. *Nature* 510, 167-171.

1049 Gönczy, P. (2012). Towards a molecular architecture of centriole assembly.
1050 *Nature reviews Molecular cell biology* 13, 425-435.

1051 Gönczy, P. (2015). Centrosomes and cancer: revisiting a long-standing
1052 relationship. *Nature reviews Cancer* 15, 639-652.

1053 Gönczy, P., and Hatzopoulos, G.N. (2019). Centriole assembly at a glance. *Journal*
1054 *of cell science* 132.

1055 Gudi, R., Zou, C., Li, J., and Gao, Q. (2011). Centrobin-tubulin interaction is
1056 required for centriole elongation and stability. *The Journal of cell biology* 193,
1057 711-725.

1058 Guichard, P., Hamel, V., and Gonczy, P. (2018). The Rise of the Cartwheel: Seeding
1059 the Centriole Organelle. *BioEssays : news and reviews in molecular, cellular and*
1060 *developmental biology* 40, e1700241.

1061 Guichard, P., Hamel, V., Le Guennec, M., Banterle, N., Iacovache, I., Nemcikova, V.,
1062 Fluckiger, I., Goldie, K.N., Stahlberg, H., Levy, D., *et al.* (2017). Cell-free
1063 reconstitution reveals centriole cartwheel assembly mechanisms. *Nat Commun*
1064 8, 14813.

1065 Habedanck, R., Stierhof, Y.D., Wilkinson, C.J., and Nigg, E.A. (2005). The Polo
1066 kinase Plk4 functions in centriole duplication. *Nature cell biology* 7, 1140-1146.

1067 Hirono, M. (2014). Cartwheel assembly. *Philosophical transactions of the Royal*
1068 *Society of London Series B, Biological sciences* 369.

1069 Hu, C.E., and Gan, J. (2017). TRIM37 promotes epithelialmesenchymal transition
1070 in colorectal cancer. *Molecular medicine reports* 15, 1057-1062.

1071 Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby,
1072 L.G., Bennetzen, M., Westendorf, J., Nigg, E.A., *et al.* (2011). Novel asymmetrically
1073 localizing components of human centrosomes identified by complementary
1074 proteomics methods. *The EMBO journal* 30, 1520-1535.

1075 Jeong, Y., Lee, J., Kim, K., Yoo, J.C., and Rhee, K. (2007). Characterization of
1076 NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule
1077 stabilization. *Journal of cell science* 120, 2106-2116.

1078 Jiang, J., Yu, C., Chen, M., Tian, S., and Sun, C. (2015). Over-expression of TRIM37
1079 promotes cell migration and metastasis in hepatocellular carcinoma by
1080 activating Wnt/beta-catenin signaling. *Biochemical and biophysical research*
1081 *communications* 464, 1120-1127.

1082 Kallijarvi, J., Avela, K., Lipsanen-Nyman, M., Ulmanen, I., and Lehesjoki, A.E.
1083 (2002). The TRIM37 gene encodes a peroxisomal RING-B-box-coiled-coil

1084 protein: classification of mulibrey nanism as a new peroxisomal disorder.
1085 American journal of human genetics 70, 1215-1228.

1086 Kallijarvi, J., Lahtinen, U., Hamalainen, R., Lipsanen-Nyman, M., Palvimo, J.J., and
1087 Lehesjoki, A.E. (2005). TRIM37 defective in mulibrey nanism is a novel RING
1088 finger ubiquitin E3 ligase. *Exp Cell Res* 308, 146-155.

1089 Karlberg, N., Karlberg, S., Karikoski, R., Mikkola, S., Lipsanen-Nyman, M., and
1090 Jalanko, H. (2009). High frequency of tumours in Mulibrey nanism. *The Journal of
1091 pathology* 218, 163-171.

1092 Kettunen, K.M., Karikoski, R., Hamalainen, R.H., Toivonen, T.T., Antonenkov, V.D.,
1093 Kulesskaya, N., Voikar, V., Holtta-Vuori, M., Ikonen, E., Sainio, K., *et al.* (2016).
1094 Trim37-deficient mice recapitulate several features of the multi-organ disorder
1095 Mulibrey nanism. *Biology open*.

1096 Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. (2002).
1097 De novo formation of centrosomes in vertebrate cells arrested during S phase.
1098 *The Journal of cell biology* 158, 1171-1181.

1099 Kitagawa, D., Kohlmaier, G., Keller, D., Strnad, P., Balestra, F.R., Fluckiger, I., and
1100 Gönczy, P. (2011a). Spindle positioning in human cells relies on proper centriole
1101 formation and on the microcephaly proteins CPAP and STIL. *Journal of cell
1102 science* 124, 3884-3893.

1103 Kitagawa, D., Vakonakis, I., Olieric, N., Hilbert, M., Keller, D., Olieric, V., Bortfeld,
1104 M., Erat, M.C., Fluckiger, I., Gönczy, P., *et al.* (2011b). Structural basis of the 9-fold
1105 symmetry of centrioles. *Cell* 144, 364-375.

1106 Klebba, J.E., Buster, D.W., McLamarrah, T.A., Rusan, N.M., and Rogers, G.C. (2015).
1107 Autoinhibition and relief mechanism for Polo-like kinase 4. *Proceedings of the
1108 National Academy of Sciences of the United States of America* 112, E657-666.

1109 Kohlmaier, G., Loncarek, J., Meng, X., McEwen, B.F., Mogensen, M.M., Spektor, A.,
1110 Dynlacht, B.D., Khodjakov, A., and Gönczy, P. (2009). Overly long centrioles and
1111 defective cell division upon excess of the SAS-4-related protein CPAP. *Current
1112 biology : CB* 19, 1012-1018.

1113 La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A.
1114 (2005). The de novo centriole assembly pathway in HeLa cells: cell cycle
1115 progression and centriole assembly/maturation. *The Journal of cell biology* 168,
1116 713-722.

1117 Levine, M.S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., Spierings, D.C.,
1118 Lansdorp, P.M., Cleveland, D.W., Lambrechts, D., *et al.* (2017). Centrosome
1119 Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals.
1120 *Developmental cell* 40, 313-322 e315.

1121 Li, J., Kim, S., Kobayashi, T., Liang, F.X., Korzeniewski, N., Duensing, S., and
1122 Dynlacht, B.D. (2012). Neurl4, a novel daughter centriole protein, prevents
1123 formation of ectopic microtubule organizing centres. *EMBO reports* 13, 547-553.

1124 Loncarek, J., Hergert, P., and Khodjakov, A. (2010). Centriole reduplication during
1125 prolonged interphase requires procentriole maturation governed by Plk1.
1126 *Current biology : CB* 20, 1277-1282.

1127 Lukinavicius, G., Lavogina, D., Orpinell, M., Umezawa, K., Reymond, L., Garin, N.,
1128 Gonczi, P., and Johnsson, K. (2013). Selective chemical crosslinking reveals a
1129 Cep57-Cep63-Cep152 centrosomal complex. *Current biology : CB* 23, 265-270.

1130 Mahjoub, M.R., and Stearns, T. (2012). Supernumerary centrosomes nucleate
1131 extra cilia and compromise primary cilium signaling. *Current biology : CB* 22,
1132 1628-1634.

1133 Meitinger, F., Anzola, J.V., Kaulich, M., Richardson, A., Stender, J.D., Benner, C.,
1134 Glass, C.K., Dowdy, S.F., Desai, A., Shiao, A.K., *et al.* (2016). 53BP1 and USP28
1135 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic
1136 duration. *The Journal of cell biology* **214**, 155-166.

1137 Montenegro Gouveia, S., Zitouni, S., Kong, D., Duarte, P., Ferreira Gomes, B., Sousa,
1138 A.L., Tranfield, E.M., Hyman, A., Loncarek, J., and Bettencourt-Dias, M. (2018).
1139 PLK4 is a microtubule-associated protein that self-assembles promoting de novo
1140 MTOC formation. *Journal of cell science* **132**.

1141 Moyer, T.C., Clutario, K.M., Lambrus, B.G., Daggubati, V., and Holland, A.J. (2015).
1142 Binding of STIL to Plk4 activates kinase activity to promote centriole assembly.
1143 *The Journal of cell biology* **209**, 863-878.

1144 Moyer, T.C., and Holland, A.J. (2019). PLK4 promotes centriole duplication by
1145 phosphorylating STIL to link the procentriole cartwheel to the microtubule wall.
1146 *eLife* **8**.

1147 Nigg, E.A., and Holland, A.J. (2018). Once and only once: mechanisms of centriole
1148 duplication and their deregulation in disease. *Nature reviews Molecular cell
1149 biology*.

1150 Nigg, E.A., and Raff, J.W. (2009). Centrioles, centrosomes, and cilia in health and
1151 disease. *Cell* **139**, 663-678.

1152 Ogungbenro, Y.A., Tena, T.C., Gaboriau, D., Lalor, P., Dockery, P., Philipp, M., and
1153 Morrison, C.G. (2018). Centrobin controls primary ciliogenesis in vertebrates.
1154 *The Journal of cell biology* **217**, 1205-1215.

1155 Ohta, M., Ashikawa, T., Nozaki, Y., Kozuka-Hata, H., Goto, H., Inagaki, M., Oyama,
1156 M., and Kitagawa, D. (2014). Direct interaction of Plk4 with STIL ensures
1157 formation of a single procentriole per parental centriole. *Nat Commun* **5**, 5267.

1158 Piel, M., Meyer, P., Khodjakov, A., Rieder, C.L., and Bornens, M. (2000). The
1159 respective contributions of the mother and daughter centrioles to centrosome
1160 activity and behavior in vertebrate cells. *The Journal of cell biology* **149**, 317-330.

1161 Schmidt, T.I., Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Lavoie, S.B., Stierhof,
1162 Y.D., and Nigg, E.A. (2009). Control of centriole length by CPAP and CP110.
1163 *Current biology : CB* **19**, 1005-1011.

1164 Sercin, O., Larsimont, J.C., Karambelas, A.E., Marthiens, V., Moers, V., Boeckx, B., Le
1165 Mercier, M., Lambrechts, D., Basto, R., and Blanpain, C. (2016). Transient PLK4
1166 overexpression accelerates tumorigenesis in p53-deficient epidermis. *Nature cell
1167 biology* **18**, 100-110.

1168 Shin, W., Yu, N.K., Kaang, B.K., and Rhee, K. (2015). The microtubule nucleation
1169 activity of centrobin in both the centrosome and cytoplasm. *Cell cycle* **14**, 1925-
1170 1931.

1171 Shiratsuchi, G., Takaoka, K., Ashikawa, T., Hamada, H., and Kitagawa, D. (2015).
1172 RBM14 prevents assembly of centriolar protein complexes and maintains mitotic
1173 spindle integrity. *The EMBO journal* **34**, 97-114.

1174 Sillibourne, J.E., Tack, F., Vloemans, N., Boeckx, A., Thambirajah, S., Bonnet, P.,
1175 Ramaekers, F.C., Bornens, M., and Grand-Perret, T. (2010). Autophosphorylation
1176 of polo-like kinase 4 and its role in centriole duplication. *Molecular biology of the
1177 cell* **21**, 547-561.

1178 Sinclair, C.S., Rowley, M., Naderi, A., and Couch, F.J. (2003). The 17q23 amplicon
1179 and breast cancer. *Breast cancer research and treatment* **78**, 313-322.

1180 Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., and Gönczy, P.
1181 (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per

1182 centriole during the centrosome duplication cycle. *Developmental cell* **13**, 203-
1183 213.

1184 Sullenberger, C., Vasquez-Limeta, A., Kong, D., and Loncarek, J. (2020). With Age
1185 Comes Maturity: Biochemical and Structural Transformation of a Human
1186 Centriole in the Making. *Cells* **9**.

1187 Tang, C.J., Fu, R.H., Wu, K.S., Hsu, W.B., and Tang, T.K. (2009). CPAP is a cell-cycle
1188 regulated protein that controls centriole length. *Nature cell biology* **11**, 825-831.

1189 Thauvin-Robinet, C., Lee, J.S., Lopez, E., Herranz-Perez, V., Shida, T., Franco, B.,
1190 Jego, L., Ye, F., Pasquier, L., Loget, P., *et al.* (2014). The oral-facial-digital
1191 syndrome gene C2CD3 encodes a positive regulator of centriole elongation.
1192 *Nature genetics* **46**, 905-911.

1193 Tsou, M.F., Wang, W.J., George, K.A., Uryu, K., Stearns, T., and Jallepalli, P.V.
1194 (2009). Polo kinase and separase regulate the mitotic licensing of centriole
1195 duplication in human cells. *Developmental cell* **17**, 344-354.

1196 van Breugel, M., Hirono, M., Andreeva, A., Yanagisawa, H.A., Yamaguchi, S.,
1197 Nakazawa, Y., Morgner, N., Petrovich, M., Ebong, I.O., Robinson, C.V., *et al.* (2011).
1198 Structures of SAS-6 suggest its organization in centrioles. *Science* **331**, 1196-
1199 1199.

1200 Wang, W., Xia, Z.J., Farre, J.C., and Subramani, S. (2017). TRIM37, a novel E3 ligase
1201 for PEX5-mediated peroxisomal matrix protein import. *The Journal of cell
1202 biology* **216**, 2843-2858.

1203 Wang, W.J., Acehan, D., Kao, C.H., Jane, W.N., Uryu, K., and Tsou, M.F. (2015). De
1204 novo centriole formation in human cells is error-prone and does not require SAS-
1205 6 self-assembly. *eLife* **4**.

1206 Wen, W., Meinkoth, J.L., Tsien, R.Y., and Taylor, S.S. (1995). Identification of a
1207 signal for rapid export of proteins from the nucleus. *Cell* **82**, 463-473.

1208 Wong, Y.L., Anzola, J.V., Davis, R.L., Yoon, M., Motamedi, A., Kroll, A., Seo, C.P.,
1209 Hsia, J.E., Kim, S.K., Mitchell, J.W., *et al.* (2015). *Cell biology*. Reversible centriole
1210 depletion with an inhibitor of Polo-like kinase 4. *Science* **348**, 1155-1160.

1211 Zou, C., Li, J., Bai, Y., Gunning, W.T., Wazer, D.E., Band, V., and Gao, Q. (2005).
1212 Centrobin: a novel daughter centriole-associated protein that is required for
1213 centriole duplication. *The Journal of cell biology* **171**, 437-445.

1214
1215
1216

1217 **SUPPLEMENTARY FIGURE LEGENDS**

1218

1219 **Suppl. Figure 1. TRIM37:GFP localizes to centrioles**

1220 **A, B.** HeLa (A) and U2OS (B) cell transfected with TRIM37:GFP, and
1221 immunostained for GFP plus γ -tubulin. In this and other supplementary figure
1222 panels, scale bars correspond to 5 μ m, unless indicated otherwise.

1223 **C.** HeLa cells transfected with TRIM37:GFP, and immunostained for GFP plus
1224 Centrobin. Cells with a single Centrobin focus (left) were classified as being in
1225 G1, cells with two or three Centrobin foci (right) as being in S/G2.

1226 **D.** Corresponding percentage of cells in G1 or S/G2 exhibiting TRIM37:GFP at
1227 centrosomes. n=50 cells, single experiment.

1228 **E, F.** High magnification confocal images of TRIM37:GFP localization with respect
1229 to indicated centriolar markers; HeLa cells were fixed 24h after transfection in
1230 this case. Scale bar 500 nm.

1231

1232

1233 **Suppl. Figure 2. Cenpas can behave as extra MTOCs**

1234 **A.** Microtubule depolymerization-regrowth experiment in mitotic HeLa cells
1235 treated with control or TRIM37 siRNAs. Microtubules were depolymerized by a
1236 30 min cold shock followed by 1-2 min at room temperature before fixation of
1237 cells and immunostaining for Centrin-2 and α -tubulin.

1238 **B.** HeLa cells immunostained for Centrin-2 and CP110. Left: G1 cell, with two
1239 resident centrioles, right: S/G2 cell with two centriole pairs, each with one
1240 resident centriole and one procentriole.

1241

1242

1243

1244 **Supplementary Figure 3. CLEM analysis of Cenpas**

1245 **A-E.** CLEM analysis of HeLa and RPE-1 cells expressing Centrin-1:GFP and
1246 transfected with control (A-B) or TRIM37 (C-E) siRNAs. Left-most images show
1247 maximal intensity projection of wide-field microscopy image covering the entire
1248 cell volume; scale bar: 5 μ m. Magnified insets from the light microscopy images
1249 are shown above the electron microscopy images taken from the corresponding
1250 position. C corresponds to cell 2, D to cell 7, and E to cell 6 in Fig. S3F. When
1251 present, white arrows indicate the Centrin-1:GFP focus that correlates with the
1252 EM imaged shown below. Scale bars in insets are 500 nm. Orange, green and
1253 pink dashed lines surround respectively centriole-like, centriole-related and
1254 tiger structures. Filled orange lines surround resident centrioles.

1255 **F.** Summary of CLEM analysis of HeLa or RPE-1 cells depleted of TRIM37, with
1256 number of GFP foci, as well as corresponding resident centriole/procentriole and
1257 Cenpas ultrastructure identified by CLEM. See main text for further details. Note
1258 that no distinct ultrastructure was found for 5 Centrin-1:GFP foci in cell 4,
1259 perhaps reflecting a technical issue in this case.

1260

1261 **Supplementary Figure 4. Analysis of Centrobin structures formed upon**
1262 **TRIM37 depletion**

1263 **A**, Centriolar and centrosomal proteins analyzed by immunofluorescence upon
1264 TRIM37 depletion. See Materials and Methods for antibodies utilized.

1265 **B, C.** Quantification of frequency (B) and number per cell (C) of Centrobin
1266 assemblies in HeLa cells depleted of TRIM37. Unless otherwise indicated, in this
1267 and subsequent supplementary figures all graphs report averages from two or
1268 more independent experiments ($n = 50$ cells each), along with SDs.

1269 **D.** HeLa cell expressing SPICE:GFP immunostained for GFP and Centrobin.

1270 **E.** HeLa cells treated with control, TRIM37 or double TRIM37 and SPICE siRNAs,
1271 immunostained for SPICE and Centrobin.

1272 **F.** Quantitative real time PCR of TRIM37 and Centrobin mRNA in HeLa cells
1273 treated with control or TRIM37 siRNAs. Average of three independent
1274 experiments.

1275 **G.** HeLa cell (left) and HeLa cell overexpressing Centrobin:GFP (right),
1276 immunostained for GFP and CP110.

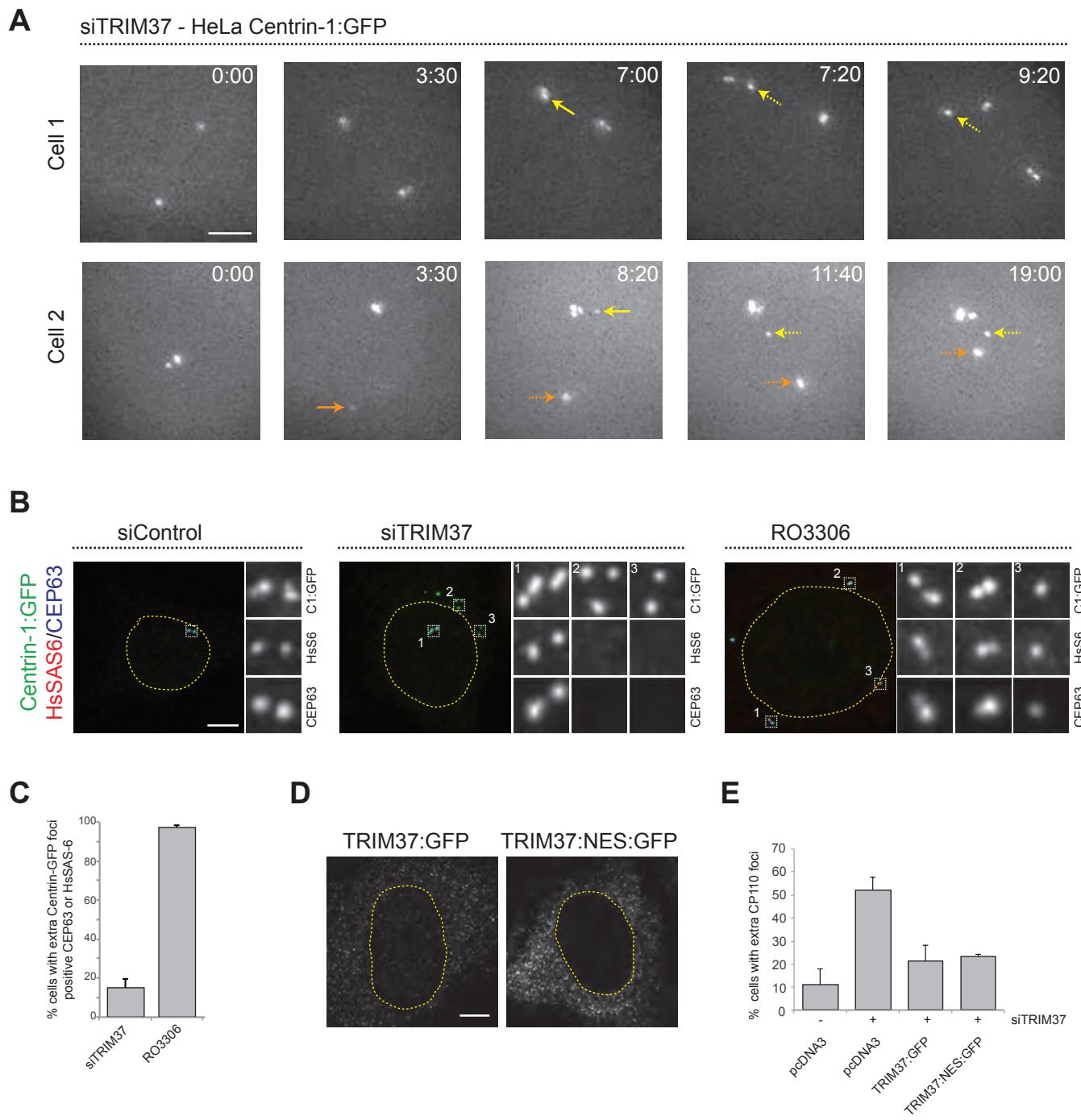
1277 **H.** Confocal images of HeLa cells overexpressing TRIM37:GFP immunostained
1278 with antibodies against GFP and Centrobin.

1279

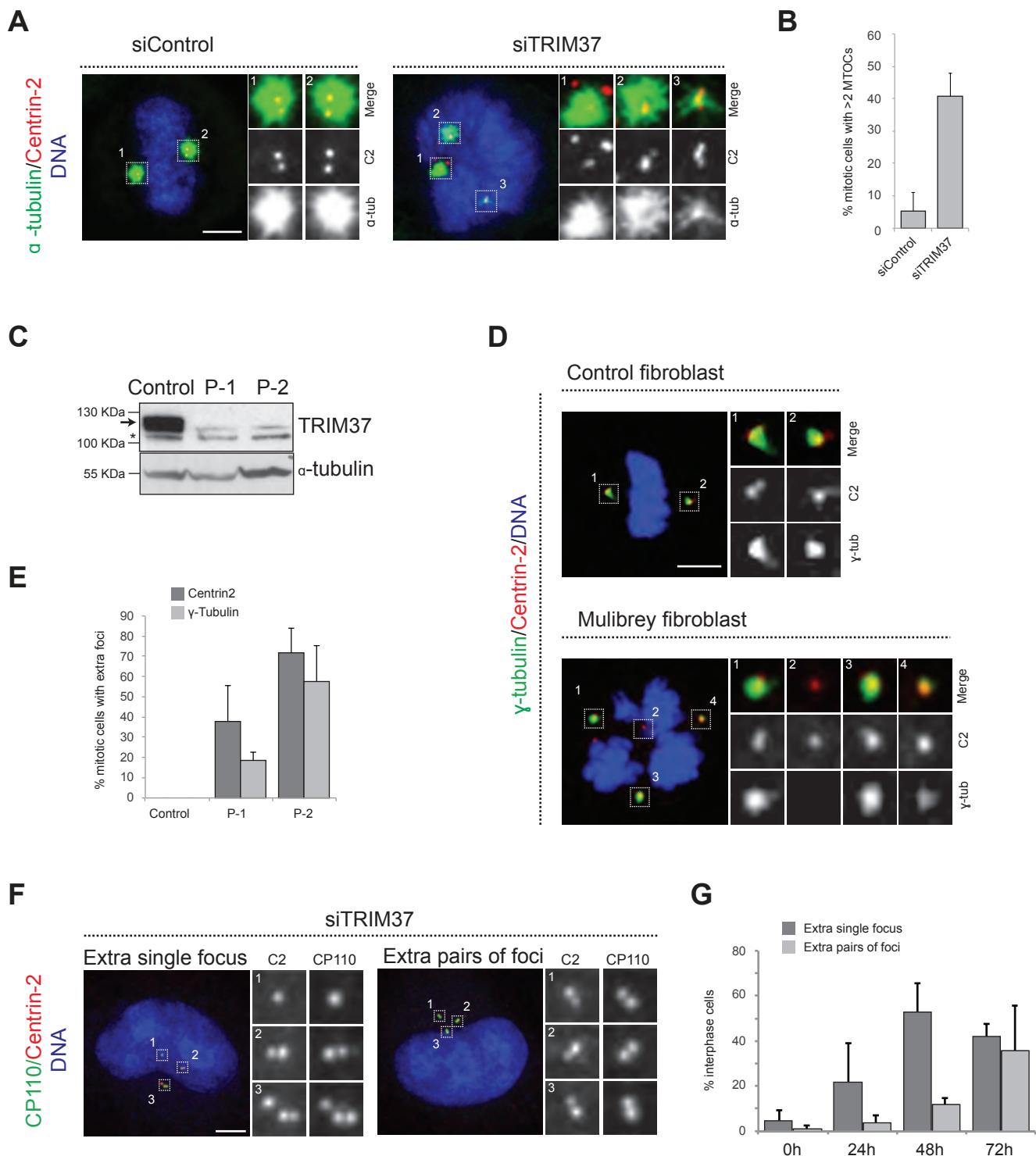
1280 **Supplementary Figure 5. Centrobin is not required for canonical centriole
1281 duplication**

1282 **A.** HeLa cells in G2 or mitosis, as indicated, treated with control or Centrobin
1283 siRNAs, and immunostained for Centrobin plus CP110.

1284 **B.** Corresponding percentage of mitotic cells with indicated number of CP110
1285 foci.


1286 **C.** Western blot of soluble (S) and insoluble (P, for pellet) fractions of lysates
1287 from HeLa cells transfected with siRNAs against TRIM37 or against both TRIM37
1288 and Centrobin, probed with antibodies against Centrobin (top) or α -tubulin as
1289 loading control (bottom).

1290 **D.** Control or Centrobin-ko RPE-1 cells transfected with control siRNAs and
1291 immunostained for Centrin-2 plus CP110.


1292 **Supplementary Figure 6. Two pathways contribute to Cenpas formation**
1293 **upon TRIM37 depletion**

1294 Percentages of cells with Centrobin structures in the indicated conditions. P
1295 value: not significant for both pair-wise comparisons (i.e. siTRIM37 versus
1296 Centrinone + siTRIM37 and siTRIM37 versus HsSAS-6-ko + siTRIM37).

1297
1298

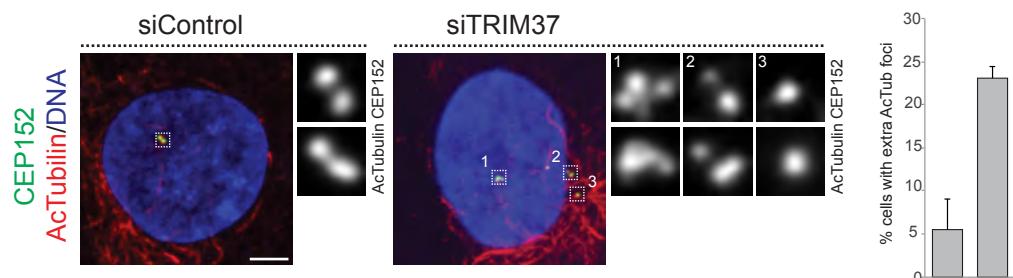


Figure 1

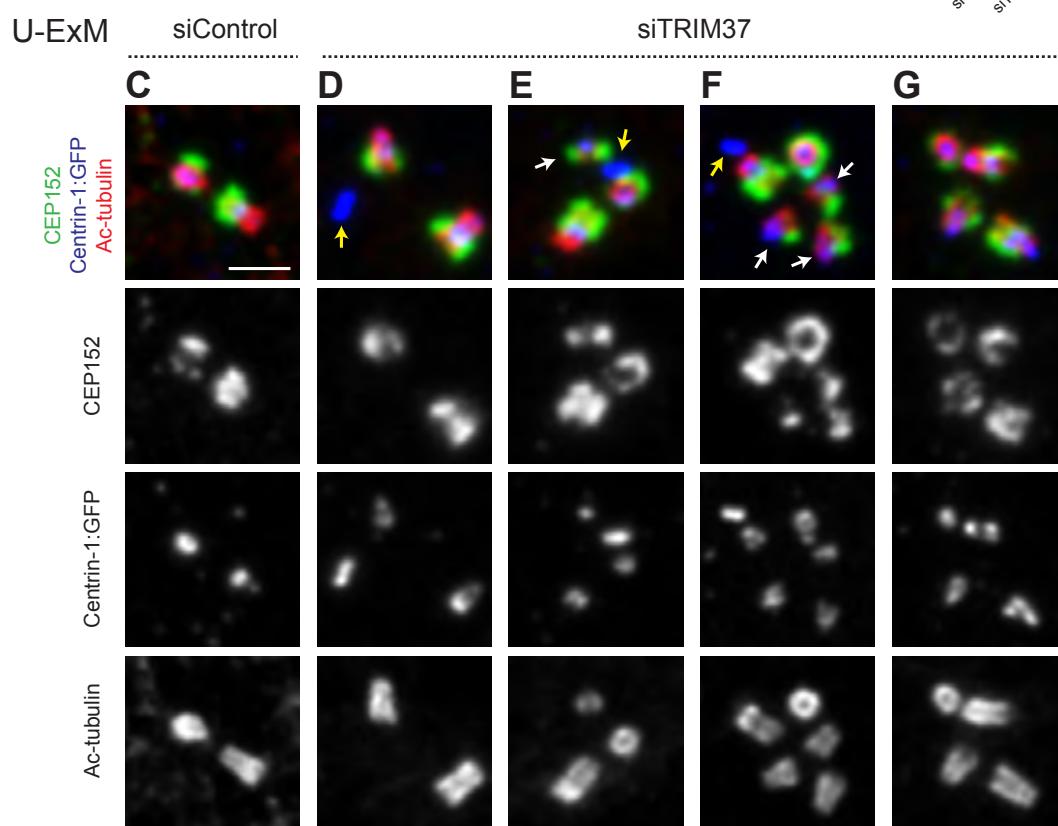
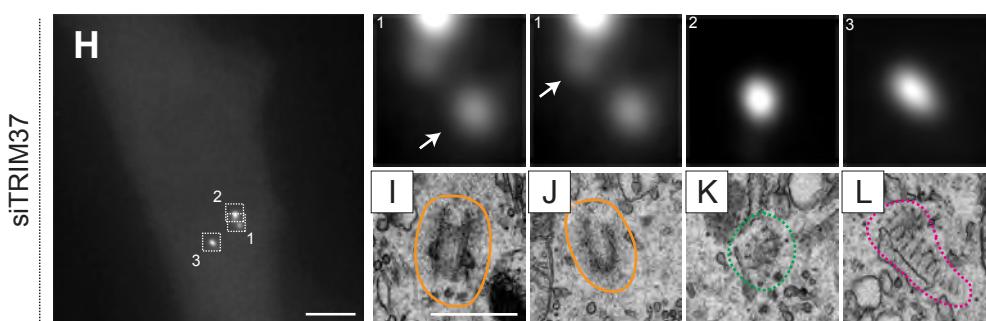
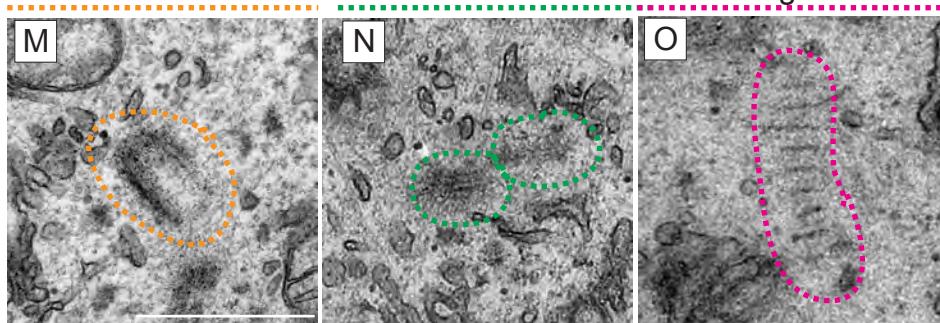
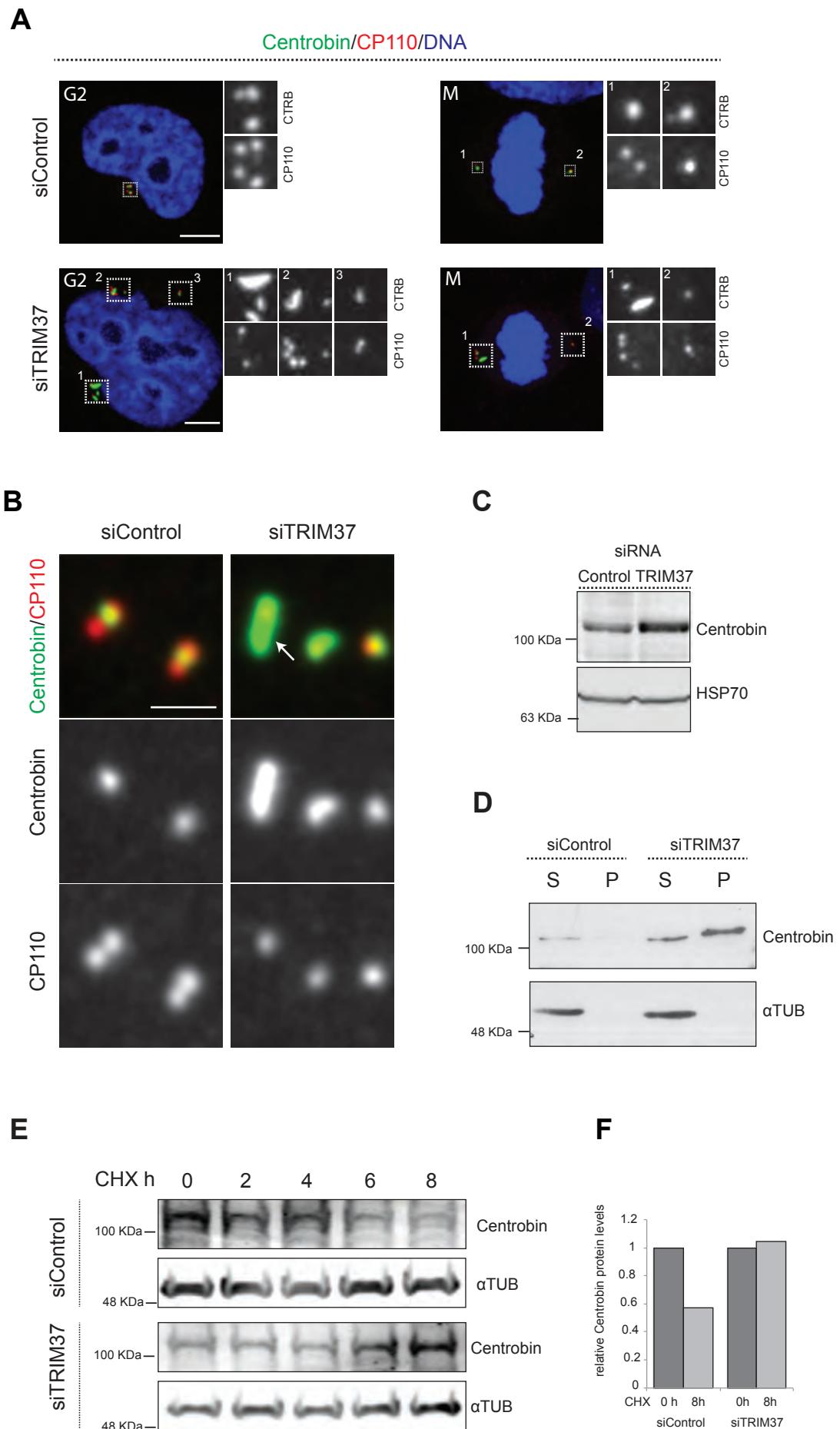


Figure 2


A

B


CLEM HeLa Centrin-1:GFP


Centriole-like

Centriole-related

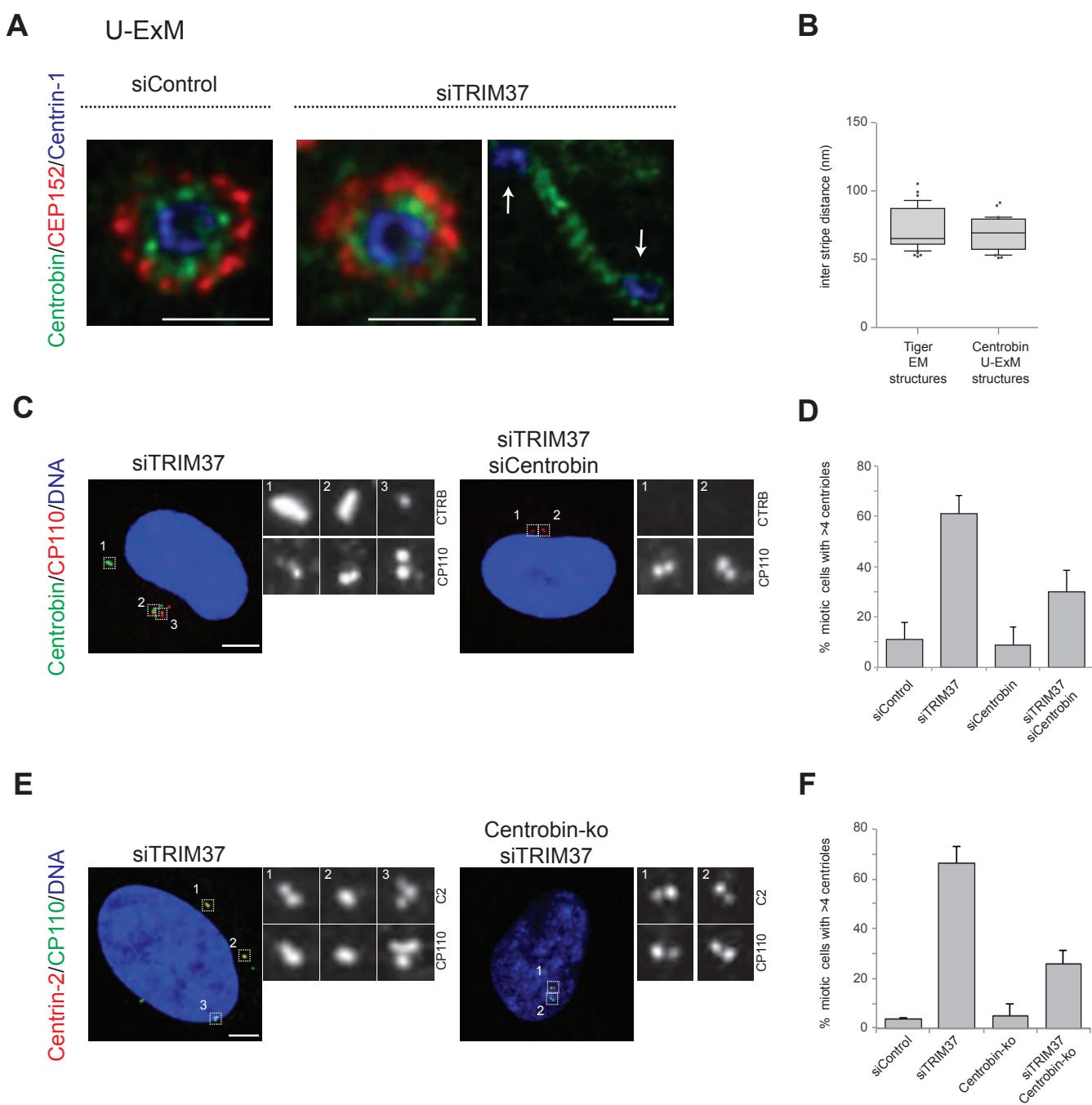

Tiger

Figure 3

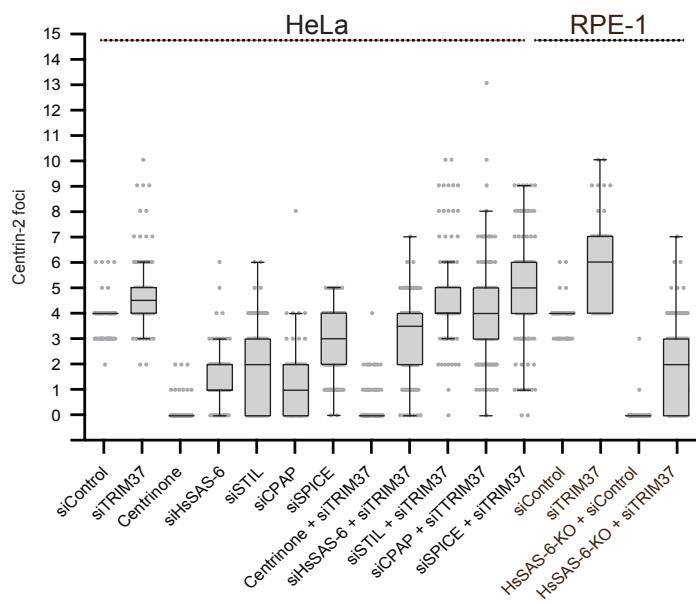


Figure 4

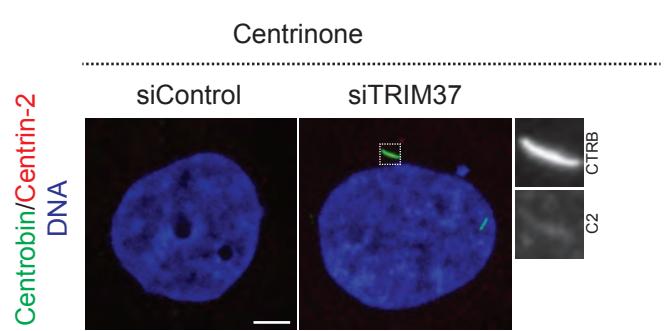
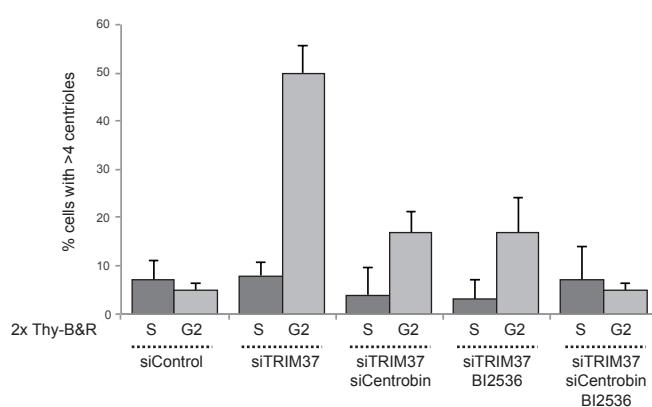
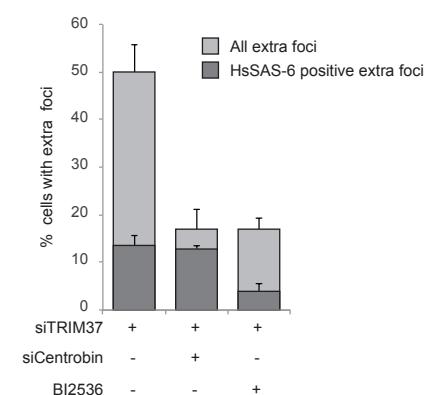
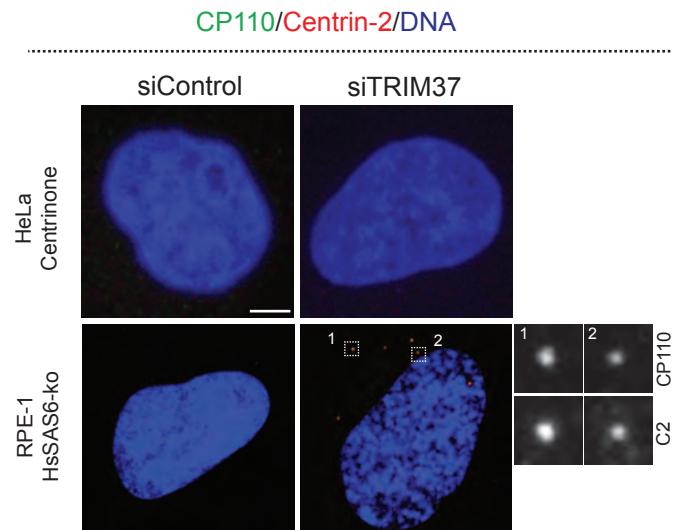
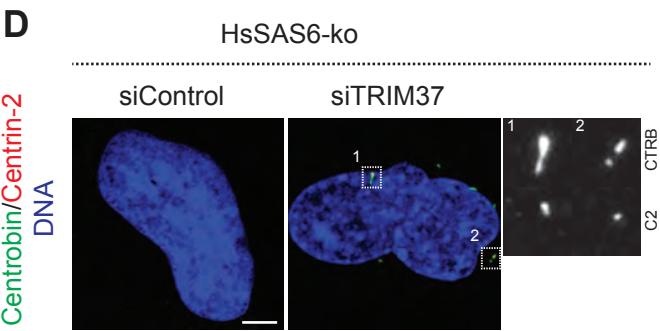


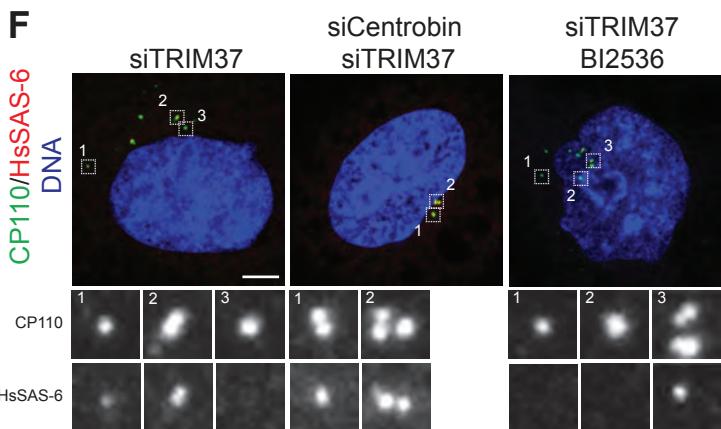
Figure 5

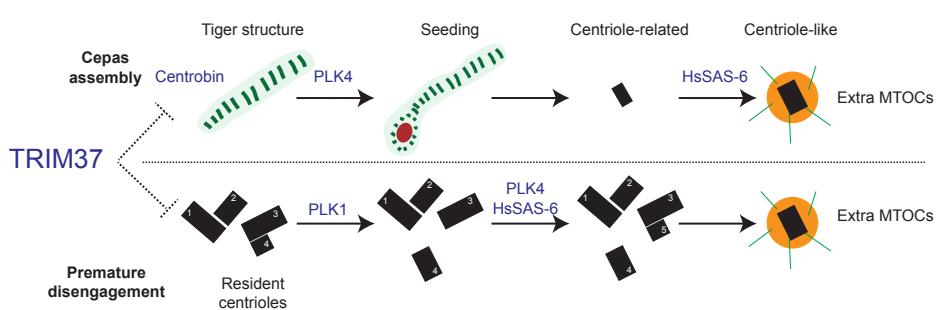

A

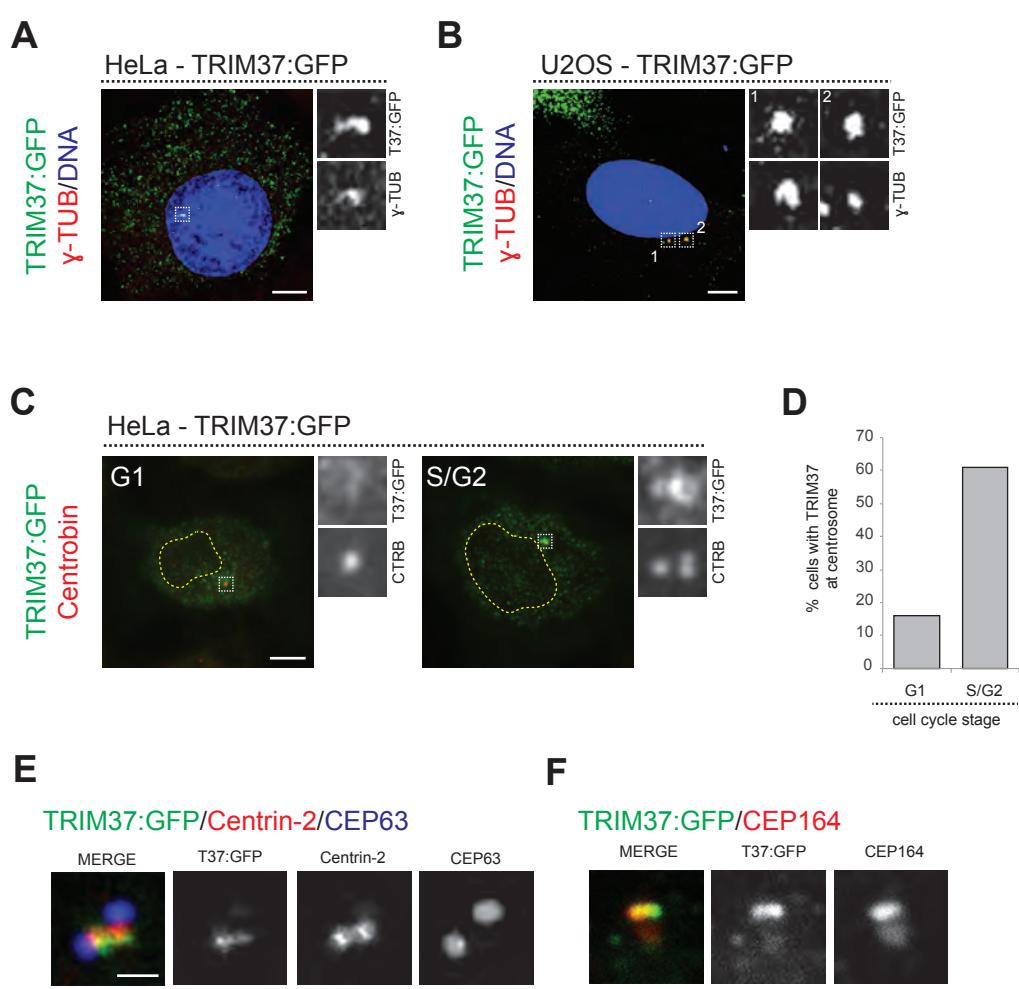

C


E


G


B


D


F

H

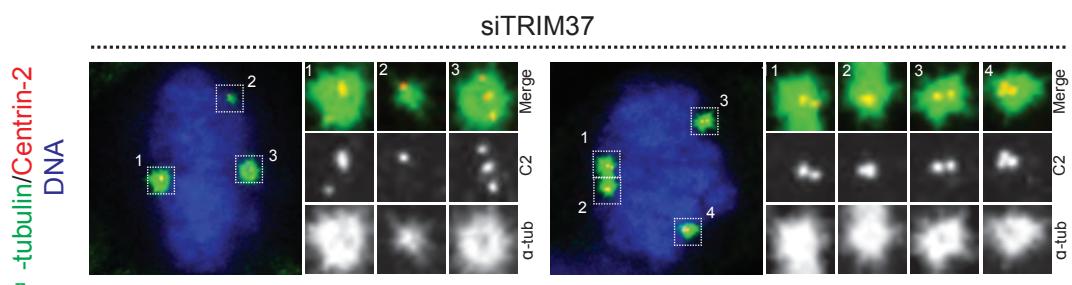
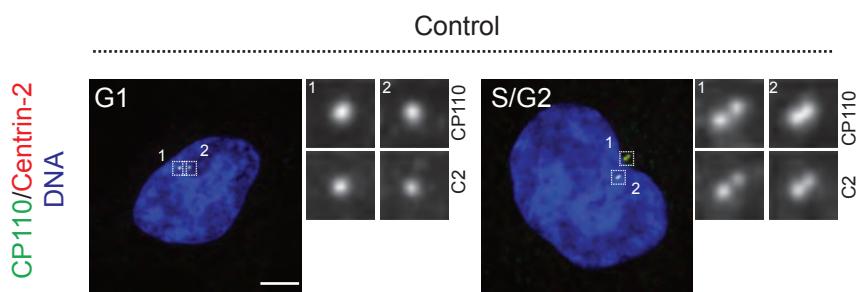
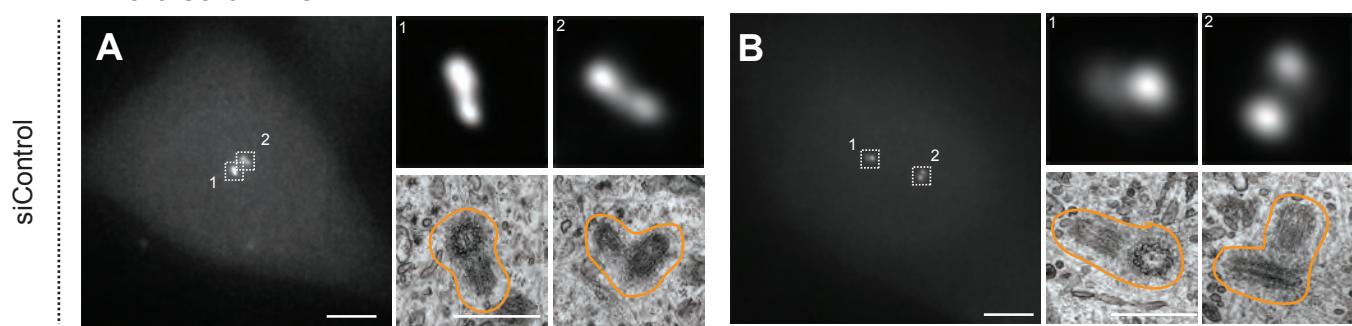


Figure 6

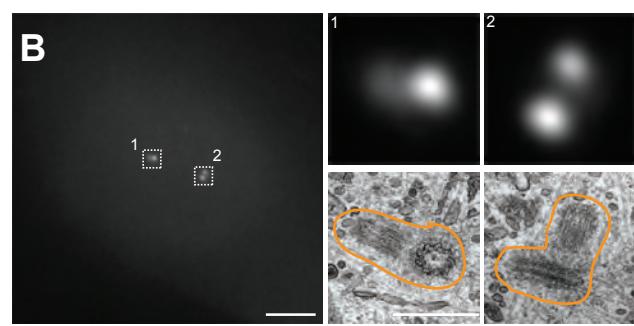


Supplementary Figure 1

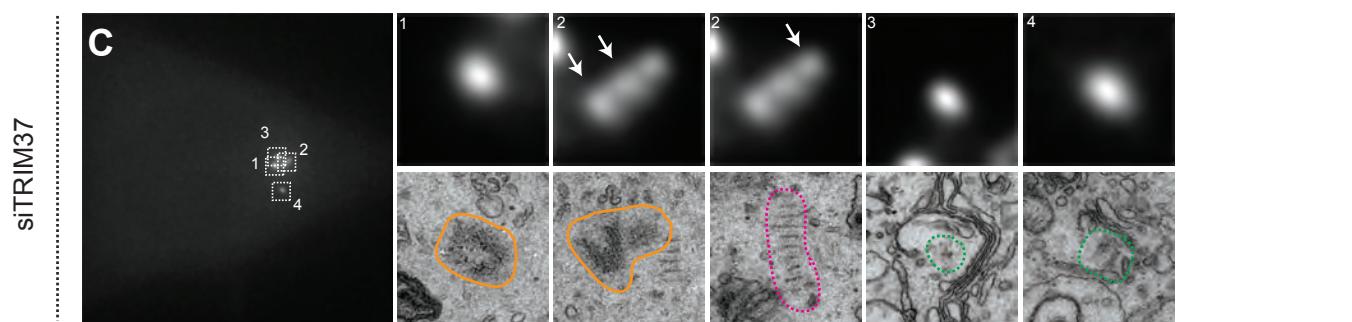
A

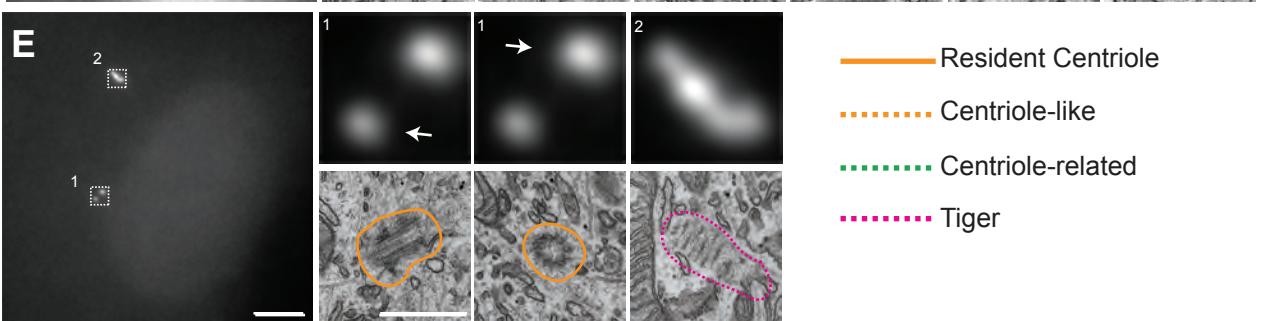
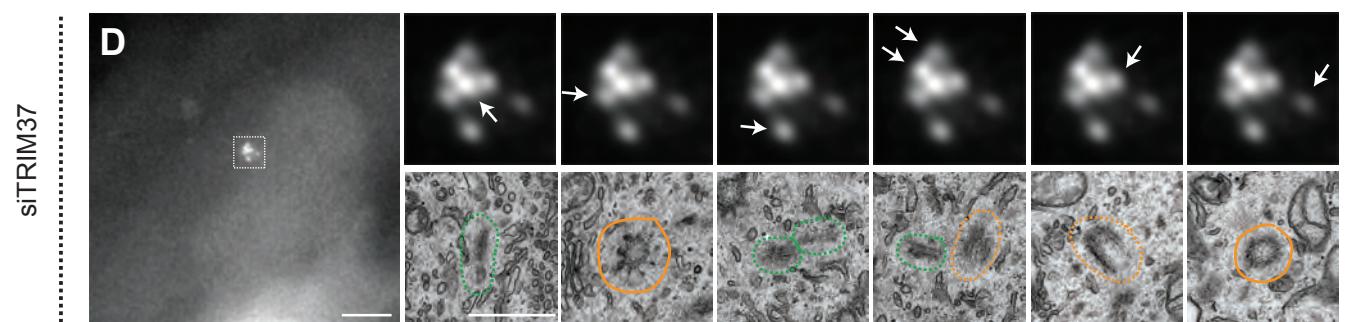


B



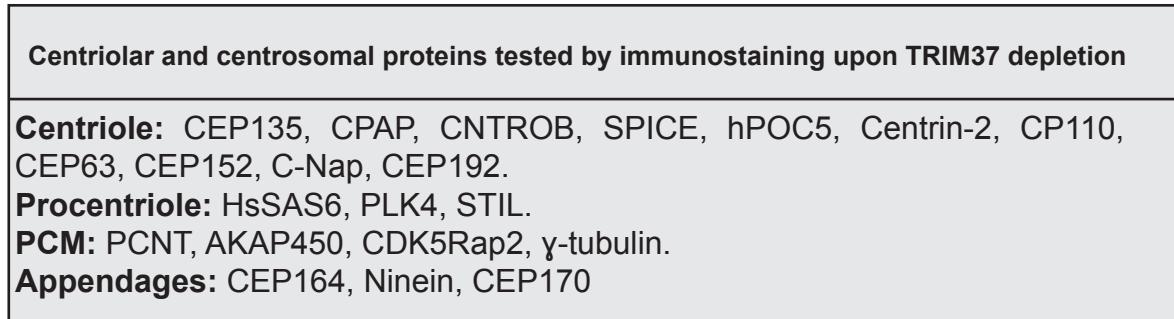
Supplementary Figure 2


HeLa Centrin-1:GFP



RPE-1 Centrin-1:GFP

HeLa Centrin-1:GFP

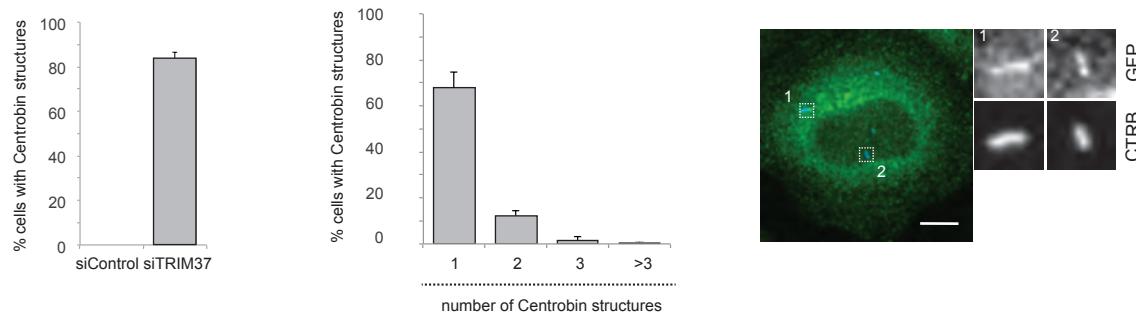
RPE-1 Centrin-1:GFP


- Resident Centriole
- Centriole-like
- Centriole-related
- Tiger

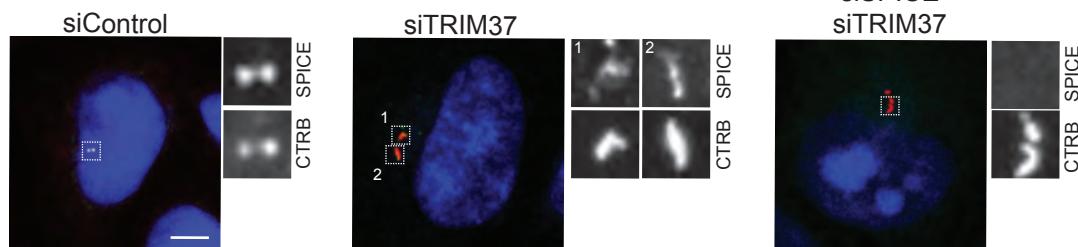
F

Number	Cell	Resident ultrastructures			Cenpas ultrastructures				
		Type	GFP foci	Centrioles	Procentrioles	Centriole-like	Centriole-related	Tiger	
1	HeLa	5	2	0	0	0	0	3	0
2	HeLa	6	2	1	0	0	2	1	0
3	HeLa	5	2	0	0	0	1	2	0
4	HeLa	8	1	1	0	0	1	0	5
5	RPE-1	5	2	2	0	0	1	0	0
6	RPE-1	5	2	0	0	0	0	3	0
7	RPE-1	7	4	0	2	1	0	0	0
8	RPE-1	6	2	0	0	0	0	3	1
Total		47	17	4	2	6	12	6	

Supplementary Figure 3

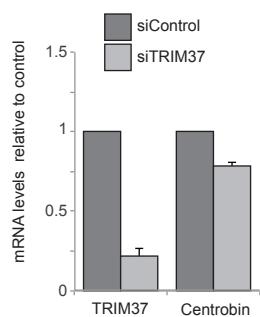

A

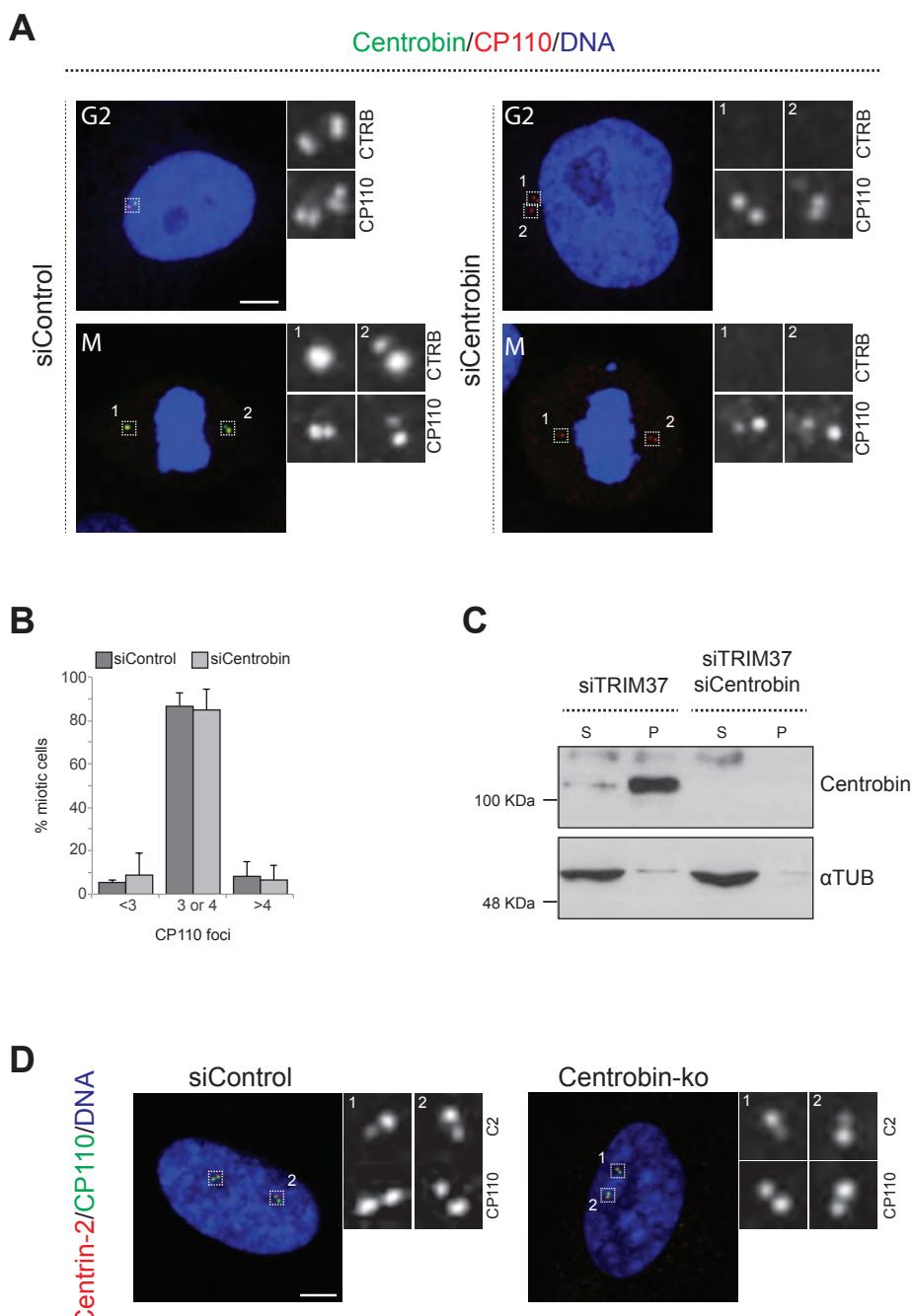
B


C

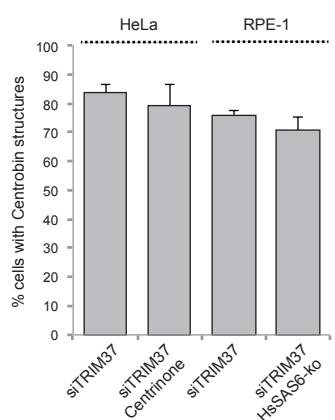
D

E


SPICE/Centrobin/DNA


F

G


H

Supplementary Figure 4

Supplementary Figure 5

Supplementary Figure 6