

1 **Alcohol dependence promotes systemic IFN- γ and IL-17 responses in mice**

2 Kayla Frank¹, Shawn Abeynaike¹, Rana Nikzad¹, Reesha R. Patel², Amanda J. Roberts³, Marisa
3 Roberto², and Silke Paust^{1*}

4 ¹ Department of Immunology and Microbiology

5 ² Department of Molecular Medicine

6 ³ Animal Models Core

7 The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.

8 * Silke Paust

9 Department of Immunology and Microbiology

10 The Scripps Research Institute

11 10550 North Torrey Pines Road

12 La Jolla, CA 92037

13 paust@scripps.edu

14 **Abstract**

15 Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability
16 to stop or control alcohol use despite adverse social, occupational, or health consequences. AUD
17 is associated with a variety of physiological changes and is a substantial risk factor for numerous
18 diseases. We aimed to characterize systemic alterations in immune responses using a mouse
19 model of chronic intermittent alcohol exposure to induce alcohol dependence. We exposed mice
20 to chronic intermittent ethanol vapor for 4 weeks and used multiparametric flow cytometry to
21 analyze the expression of cytokines IFN- γ , IL-4, IL-10, IL-12 and IL-17 by different immune
22 cells in the blood, spleen and liver of alcohol dependent and non-dependent control mice. We
23 found increases in IFN- γ and IL-17 expression in a cell type- and organ-specific manner. Often,
24 B cells and neutrophils are primary contributors to increased IFN- γ and IL-17 levels while other
25 cell types play a secondary role. We conclude that chronic alcohol exposure promotes systemic
26 pro-inflammatory IFN- γ and IL-17 responses in mice. These responses are likely important in the
27 development of alcohol-related diseases, but further characterization is necessary to understand
28 the initiation and effects of systemic inflammatory responses to chronic alcohol exposure.

29 **Introduction**

30 Chronic intermittent alcohol exposure is associated with increased risk of cancer, organ
31 damage, and infection [1-3]. At the molecular level, chronic alcohol alters inflammatory
32 processes which regulate immune function. This is often characterized by changes in cytokine
33 expression and immune defense mechanisms of type 1—cell-mediated immunity associated with
34 IFN- γ , IL-12 and TNF- α expression—or type 2—humoral immunity associated with IL-4, IL-10
35 and IgE expression—immune responses [4]. One mechanism through which chronic alcohol
36 exposure leads to adverse clinical outcomes is well characterized: increased expression of TNF- α
37 by liver macrophages promotes inflammation leading to alcoholic liver disease (ALD)
38 development in human alcoholics [5, 6].

39 Work in humans and rodents demonstrates that altered TNF- α expression is not limited to
40 the liver; TNF- α levels also increase in the blood and spleen following chronic alcohol exposure
41 [7, 8]. Furthermore TNF- α is not the only cytokine which exhibits increased expression
42 following chronic alcohol exposure. IFN- γ and IL-17, among others, are increased in systemic
43 pro-inflammatory responses [9-12]. Notably, IL-17 is not a type 1 or type 2 cytokine; it mediates
44 highly inflammatory type 17 responses [13, 14]. Macrophages may play a central role in TNF- α
45 production following chronic alcohol exposure, but a variety of other immune cell types—B
46 cells, T cells, NK cells, NKT cells, neutrophils and dendritic cells—have also been implicated as
47 mediators of alcohol-associated inflammation [10, 11, 15-17].

48 Despite the numerous studies addressing organ-specific inflammatory response
49 mechanisms of individual cell types to chronic alcohol exposure, the field lacks knowledge of
50 the interplay between these responses systemically. Furthermore, most studies analyze
51 differences in the immune response following chronic alcohol exposure in the context of

52 infection or disease progression. Less is known about the effects of alcohol on immune function
53 prior to infection or disease development.

54 Thus, in this study, we aimed to characterize changes in the immune system of alcohol
55 dependent mice at steady state through multiparametric flow cytometry. Looking beyond TNF-
56 α 's established functions, we analyzed changes in other pro- and anti-inflammatory cytokines—
57 IFN- γ , IL-4, IL-12, IL-17 and IL-10—and the cells which produce them—B cells, T cells, NK
58 cells, NKT cells, macrophages, neutrophils and dendritic cells—in the blood, spleen and liver of
59 alcohol dependent mice. We found significant systemic upregulation of IFN- γ and IL-17 and
60 identified B cells and neutrophils as major contributors to these responses. The results add new
61 insight to the systemic effects of alcohol dependence on immunity and the organ-specific
62 properties of the response.

63 **Materials and Methods**

64 ***Animals***

65 Male IL10^{tm1Flv} (stock no: 008379) mice were obtained from The Jackson Laboratory (ME) and
66 bred in-house. Mice were group-housed in a temperature and humidity-controlled vivarium on a
67 12 hour reversed light/dark cycle with food and water available *ad libitum*. All protocols
68 involving the use of experimental animals in this study were approved by The Scripps Research
69 Institute (TSRI) Institutional Animal Care and Use Committee and were consistent with the
70 National Institutes of Health Guide for the Care and Use of Laboratory Animals.

71 ***Chronic-intermittent ethanol vapor exposure***

72 To induce ethanol dependence, mice were exposed to chronic intermittent ethanol inhalation
73 (CIE) as previously described [18]. Briefly, mice in the dependent group (n=8) were i.p. injected
74 with 1.75 g/kg alcohol + 68.1 mg/kg pyrazole (alcohol dehydrogenase inhibitor) and placed in
75 vapor chambers (La Jolla Alcohol Research, La Jolla, CA) for 4 days (16 hours vapor on, 8 hours
76 off) followed by 72 hours of forced abstinence [19, 20]. This regimen was repeated for a total of
77 4 full rounds. Non-dependent mice (n=5) were injected with 68.1 mg/kg pyrazole in saline and
78 received only air in similar chambers for the same intermittent period as the dependent group. On
79 the third day of vapor exposure tail blood was collected to determine blood ethanol levels
80 (BELs). Alcohol drip rates in the vapor chambers were altered such that BELs progressively
81 increased over the vapor rounds to a final target of 200-250 mg/dL. Before euthanasia, dependent
82 mice were exposed to a single alcohol vapor exposure (16 hours), and experiments were
83 conducted from dependent mice directly from the vapor chambers.

84 ***Cell isolation and flow cytometry analysis***

85 Single cell suspensions were generated from blood, spleen, and liver of alcohol dependent and
86 non-dependent mice. Cells were extracted from spleen and livers by mechanical disruption and
87 washed with PBS through 40- μ m mesh filters. Immune cells were enriched through incubation
88 with ACK buffer (spleen) or through density gradient centrifugation using Ficoll-Paque (GE
89 Healthcare) following the manufacturer's protocol (blood and liver). Immune cells were washed
90 with PBS containing 2% FBS and incubated with murine Fc Block at 4° C for 10 min prior to
91 staining. Cells were stained with extracellular antibodies, washed, permeabilized, incubated with
92 Fc Block again, and finally stained with intracellular antibodies. Permeabilization and
93 intracellular staining steps were performed with the FoxP3 permeabilization buffer kit (Tonbo
94 Biosciences, San Diego, CA) following the manufacturer's protocol. Flow cytometry data was
95 acquired on a four-laser Aurora (Cytek, Fremont, CA) and analyzed with FlowJo v 10.6.2
96 (Becton, Dickinson, and Company, Franklin Lakes, NJ). Graphing and statistical analyses were
97 performed on Graphpad Prism 8.4.0 (San Diego, CA). **Supplementary Table 1** provides a list of
98 the antibodies used for the experiment.

99 **Results**

100 ***Systemic immune responses are altered in alcohol dependent mice***

101 We observed organ-specific changes in immune cell and cytokine expression in alcohol
102 dependent mice compared to non-dependent controls. **Supplementary Table 2** summarizes the
103 gating strategy used to identify the various CD45⁺ cell types highlighted throughout this analysis.
104 We present cell type expression as percentages of total CD45⁺ cells; an increase does not always
105 translate to higher cell numbers but could be due to decreases in other cell types and less total
106 CD45⁺ cells. B cells, NK cells, T cells and NKT cells represent a higher proportion of CD45⁺
107 cells than macrophages, neutrophils and dendritic cells in the blood, spleen and liver of
108 dependent and non-dependent mice (Fig 1A-C).

109 **Figure 1: Alcohol dependent and non-dependent mice present with significant differences**

110 **in immune cell compositions and cytokine expression.** (A-C) Immune cell expression as
111 percentages of all CD45⁺ cells in (A) blood, (B) spleen and (C) liver isolated from alcohol
112 dependent (red, solid fill) and non-dependent (black outline, white fill) mice. (D-F) Expression
113 of cytokines in (D) blood, (E) spleen and (F) liver CD45⁺ cells isolated from dependent and non-
114 dependent mice. *, p<0.05; **p<0.01 analyzed by Mann-Whitney U test; n=5-8.

115 The data demonstrate significant organ-specific differences in the distribution of immune
116 cells in alcohol dependent mice compared to non-dependent controls: the blood exhibits changes
117 in both lymphocyte and myeloid cell populations, whereas the spleen is mostly impacted by
118 altered myeloid cell expression and changes in the liver are limited to lymphocytes. Of note, the
119 relative abundance of neutrophils increases significantly in the blood and the spleen (Fig 1A,B).
120 The liver exhibits significant changes in lymphocyte expression: a large decrease in liver B cells
121 is complemented by an increase in T cells and NKT cells (Fig 1C). The changes in blood

122 lymphocyte populations did not reach significance, but the data resemble the dynamic changes of
123 the liver more than the consistency of the spleen. Although, we did not investigate the cause of
124 altered immune cell expression in alcohol dependent mice, proliferation, migration or cell death
125 could contribute to these changes. Furthermore, we do not present cell numbers because the total
126 cells analyzed from each mouse varied. Figures 1A-C primarily serve as a reference to
127 contextualize cell specific-changes in the upcoming figures.

128 CD45⁺ cells from the blood, spleen and liver also show differences in cytokine
129 expression between dependent and non-dependent mice. We measured expression of type 1
130 cytokines IFN- γ and IL-12, type 2 cytokines IL-4 and IL-10, and type 17 cytokine IL-17. IFN- γ
131 and IL-17 levels increase in all three organs, although the changes are not statistically significant
132 in the liver. IL-12 expression did not change significantly in any organs despite its traditional
133 role in stimulating IFN- γ expression [21]. We did observe a significant increase in IL-10
134 expression in the liver, but we question the physiological relevance because of its low frequency
135 (Fig 1D-F). Nevertheless, we found strong evidence that chronic alcohol exposure promotes
136 systemic IFN- γ and IL-17 responses.

137 Next, we investigated further into expression of CD4⁺ T cell subsets which selectively
138 express these cytokines: Th1, Th2, Th17 and T regulatory (Treg) cells. They are often considered
139 the main regulators of systemic type 1, 2, and 17 immunity and IL-10-mediated regulatory
140 responses, respectively, but we found minimal differences in CD4⁺ T cell cytokine expression
141 between the two groups (S1A-F Fig). Th1 levels in the liver increase, however these cells are
142 expressed at low frequency and are likely not the only contributor to increased IFN- γ levels (S1F
143 Fig). Although we observed clear increases in overall IFN- γ and IL-17 levels, we do not see
144 large changes in CD4⁺ T cell expression patterns. It is unlikely that changes in T cell cytokine

145 expression alone are driving these type 1 and type 17 immune responses. Therefore, we
146 hypothesized that other immune cell types are important in promoting type 1 and type 17
147 immunity in alcohol dependent mice.

148

149 ***Pro-inflammatory type 1 and type 17 responses are altered in alcohol dependent mice***

150 We analyzed the source of increased pro-inflammatory IFN- γ and IL-17 cytokine
151 responses in alcohol dependent mice compared to non-dependent controls. First, we investigated
152 the cell types responsible for total IFN- γ levels in the blood, spleen and liver (Fig 2A-C). We
153 also analyzed the expression of IFN- γ as a percentage of each individual cell type in all three
154 organs (Fig 2D-J). Together, these analyses give a better understanding of the source(s) of
155 increased IFN- γ expression in each organ. Interestingly, the proportions of cell types which make
156 up the total CD45 $^{+}$ IFN- γ^{+} population do not mirror the distribution of all CD45 $^{+}$ cells. For
157 example, macrophages and neutrophils are among the largest contributors to IFN- γ expression
158 whereas they make up a minimal proportion of CD45 $^{+}$ cells for all three organs (Fig 1A-C, 2A-
159 C).

160 **Figure 2: IFN- γ expression is increased in alcohol dependent compared to control mice. (A-
161 C) Immune cells as percentages of all IFN- γ producing CD45 $^{+}$ cells in (A) blood, (B) spleen and
162 (C) liver isolated from alcohol dependent (red, solid fill) and non-dependent (black outline, white
163 fill) mice. (D-J) Expression of IFN- γ by (D) B cells, (E) NK cells, (F) T cells, (G) NKT cells, (H)
164 macrophages, (I) neutrophils and (J) dendritic cells in dependent and non-dependent mice. *,
165 p<0.05; **p<0.01 analyzed by Mann-Whitney U test; n=5-8.**

166 In the blood, the distribution of CD45 $^{+}$ IFN- γ^{+} cell types are mostly consistent between
167 dependent and non-dependent mice. Neutrophils are responsible for 50-60% of IFN- γ production

168 in both groups (Fig 2A). Despite minimal changes between the two groups in the composition of
169 IFN- γ ⁺ cells in the blood, the percent of B cells and neutrophils which produce IFN- γ is
170 increased significantly; B cell expression increases more dramatically than neutrophil
171 expression, but a much higher percentage of neutrophils produce IFN- γ overall (Fig 2D, I).
172 Neutrophils are likely the main source of increased IFN- γ in the blood of the alcohol dependent
173 mice, while B cells are a secondary source.

174 We also found that CD45⁺ IFN- γ ⁺ cells in the spleen of dependent mice are characterized
175 by a lower proportion of B cells and higher proportion of neutrophils compared to non-dependent
176 mice. Although not statistically significant, these changes are evident in the data (Fig 2B). Like
177 in the blood, splenic B cells are characterized by increased IFN- γ expression (Fig 2D); the
178 expression level is low, but B cells comprise about 60% of total CD45⁺ cells and 20-30% of
179 CD45⁺ IFN- γ ⁺ cells in the spleen (Fig 1B, 2B). Increased IFN- γ expression in splenic
180 macrophages complements the increase in B cell IFN- γ expression (Fig 2H). Despite
181 representing a smaller percentage of CD45⁺ cells, they contribute similarly to total CD45⁺ IFN-
182 γ ⁺ cells because about 20% of them produce IFN- γ (Fig 1B, 2B). NK cells and DCs also show
183 increased expression of IFN- γ in the spleen, although their minimal contributions to overall IFN-
184 γ levels may render this change less important to overall IFN- γ responses (Fig 2B, E, J).

185 The role of neutrophils is unclear in the spleen. They do not show increases in IFN- γ
186 expression on a per cell basis (Fig 2I), however they increase as a proportion of CD45⁺ IFN- γ ⁺
187 cells in the spleen in dependent mice (Fig 2B). This could be explained by their significant
188 increase as a percentage of CD45⁺ cells (Fig 1B): increased abundance of neutrophils contributes
189 to increased IFN- γ expression without significant changes in the percent of neutrophils
190 producing IFN- γ . Increases in spleen B cell and macrophage IFN- γ levels—and potentially

191 increases in neutrophil abundance—are the main source of observed increases in IFN- γ in the
192 spleen of alcohol dependent mice.

193 Dynamic changes in CD45 $^{+}$ IFN- γ^{+} cell type expression occur in the liver. NK cells
194 make up about 20% of IFN- γ producing cells in non-dependent mice but become a strikingly
195 lower contributor to total IFN- γ^{+} cells in dependent mice. This is accompanied by trends towards
196 decreases in B cell and increases in T cell and macrophage contributions to total IFN- γ levels
197 (Fig 2C). Liver B cells and NKT cells have significant increases in IFN- γ expression (Fig 2D,
198 G), however non-significant trends towards increased IFN- γ in T cells, macrophages and
199 neutrophils (Fig 2F, H, I) should be considered due to their higher relative contributions to the
200 total IFN- γ pool in the liver. Although the trend towards increased total expression of IFN- γ in
201 the liver was not significant (Fig 1F), the data here show a variety of changes in the production
202 of IFN- γ across nearly every cell type. Altogether, **Figure 2** demonstrates that activation of the
203 type 1 immune response is a prominent aspect of chronic alcohol exposure's immunomodulatory
204 effects: the liver, spleen and blood each exhibit activation of type 1 responses in an organ-
205 specific manner.

206 We then completed a parallel analysis to understand increased IL-17 expression in
207 alcohol dependent mice compared to non-dependent controls (Fig 1D-F). Like CD45 $^{+}$ IFN- γ^{+}
208 cells, CD45 $^{+}$ IL-17 $^{+}$ cells do not mirror the distribution of all CD45 $^{+}$ cells: macrophages and
209 neutrophils represent a much larger proportion of IL-17 producing CD45 $^{+}$ cell than all CD45 $^{+}$
210 cells (Fig 1A-C, 3A-C). In the blood of alcohol dependent mice, the B cell population increases
211 significantly as a percentage of all CD45 $^{+}$ IL-17 $^{+}$ cells, accompanied by trends towards
212 increasing NK cell and decreasing NKT cell percentages. Neutrophils are the dominant CD45 $^{+}$

213 IL-17⁺ cell type, while expression of other cells is relatively evenly distributed within this
214 population (Fig 3A).

215 **Figure 3: IL-17 expression is increased in alcohol dependent compared to control mice. (A-**
216 **C)** Immune cells as percentages of all IL-17 producing CD45⁺ cells in (A) blood, (B) spleen and
217 (C) liver isolated from alcohol dependent (red, solid fill) and non-dependent (black outline, white
218 fill) mice. (D-J) Expression of IL-17 by (D) B cells, (E) NK cells, (F) T cells, (G) NKT cells, (H)
219 macrophages, (I) neutrophils and (J) dendritic cells in dependent and non-dependent mice. *,
220 p<0.05; **p<0.01 analyzed by Mann-Whitney U test; n=5-8.

221 The percentage of B cells, NK cells and neutrophils expressing IL-17 increase
222 significantly in the blood of dependent mice (Fig 3D, E, I). Of the lymphocytes, NK cells may be
223 more important contributors to increased IL-17 levels than B cells: NK cell expression levels
224 increase in the blood of dependent mice whereas B cells decrease (Fig 1A) and NK cells
225 contribute more significantly to the total blood CD45⁺ IL-17⁺ cell population (Fig 3A). NK cells,
226 B cells and neutrophils together are the major sources of increased IL-17 expression in the blood
227 of dependent mice.

228 In the spleen, B cells, macrophages and neutrophils make up the vast majority of CD45⁺
229 IL-17⁺ cells; this distribution does not vary between dependent and non-dependent groups (Fig
230 3B). B cell IL-17 expression increases significantly in dependent spleen, although the frequency
231 of IL-17⁺ B cells is quite low (Fig 3D). Like for IFN- γ , this is counterbalanced by an abundance
232 of B cells in the spleen; a small increase in the percent of IL-17⁺ splenic B cells could still
233 promote type 17 responses. T cells also show significantly increased IL-17 expression (Fig 3F),
234 but the frequency is low—around 2% in dependent mice—and the contribution of T cells to total
235 IL-17⁺ CD45⁺ cells is minimal (Fig 3B). Non-significant trends towards increased IL-17

236 expression in macrophages and neutrophils, the other major contributors to total CD45⁺ IL-17⁺
237 cells besides B cells, are likely important in the overall increases in IL-17 observed in the
238 dependent spleen (3H, I).

239 In the liver, the proportion of neutrophils in the CD45⁺ IL-17⁺ population increases
240 significantly. T cells also show increasing trends which are offset by decreased contributions by
241 NKT cells, B cells and macrophages to total IL-17⁺ cells (Fig 3C). Despite a potential decrease
242 in macrophages, they still represent the largest proportion of CD45⁺ IL-17⁺ cells in the liver. No
243 specific cell populations show significant increases in IL-17 expression, so it is difficult to
244 attribute the overall increase in IL-17⁺ cells to one cell type (Fig 3D-J). However, each of them
245 exhibits a trend towards increasing IL-17 expression which likely add up to the overall increase
246 in IL-17 levels in the liver. This, considered with changes in the distribution of CD45⁺ IL-17⁺
247 cells, suggests a dynamic type 17 immune response in the liver: interactions between a variety of
248 cell types contribute to excess IL-17 production and inflammation.

249

250 *Anti-inflammatory immune responses are not altered in alcohol dependent mice*

251 We also observed a significant increase in IL-10 levels in the liver of alcohol dependent
252 mice compared to controls (Fig 1F). Although in both groups IL-10 was only expressed in about
253 0.1% of CD45⁺ cells, we investigated the potential for increased anti-inflammatory responses in
254 alcohol dependent mice. The abundance of IL-10 was too low to accurately analyze which cell
255 types produce notable amounts, but we analyzed the expression of the IL-10 receptor (IL-10R)
256 and found a significant increase in the spleen and a trend towards increased IL-10R expression in
257 the blood of dependent mice compared to non-dependent controls (S2A Fig). It is unclear

258 whether changes in IL-10R expression are important in this context as very few cells express IL-
259 10 in the organs analyzed from both groups.

260 Nevertheless, we analyzed IL-10R expression in immune cells from the blood, spleen and
261 liver. The cell types which make up the total CD45⁺ IL-10R⁺ population vary by organ and
262 exhibit subtle changes in alcohol dependent mice compared to non-dependent controls (S2B-D
263 Fig). The most notable change between the two groups is an increase in B cells as a percentage
264 of the total IL-10R⁺ population in the blood (S2B Fig). This is reflected by a significantly higher
265 expression of IL-10R as a percentage of total blood B cells (S2E Fig). We observe consistent
266 increases in B cell activation in our data; increased IL-10R expression could be a measure to
267 prevent overactivation, but with low levels of circulating IL-10 a higher IL-10R expression
268 would have minimal effects (S2D Fig).

269 In general, lymphocyte IL-10R expression in alcohol dependent mice increases whereas
270 myeloid cell IL-10R expression decreases (S2E-K Fig). In line with increases in IL-10R
271 expression blood, spleen and liver lymphocytes, we also found increases in PD-1 expression in
272 lymphocytes overall (S3A-D Fig). These increases are most pronounced in B cells, however
273 trends towards increased expression are evident in other lymphocytes as well. Further
274 investigation of anti-inflammatory responses and B cell regulation in response to chronic alcohol
275 exposure would be beneficial to understand the physiological relevance of these changes.

276

277 ***Co-expression of IFN- γ and IL-17 in alcohol dependent mice***

278 We observed that the cell types responsible for both IFN- γ and IL-17 expression are
279 distributed similarly in the blood, spleen and liver (Fig 2A-C, 3A-C). Thus, we investigated this
280 further by analyzing the co-expression of these inflammatory cytokines. The percent of CD45⁺

281 cells which co-express IFN- γ and IL-17 increase significantly in both the blood and liver of
282 alcohol dependent mice compared to non-dependent controls. Co-expression of these cytokines
283 in the spleen of dependent mice also trends towards an increase which is not significant (Fig 4A).
284 The contribution of different cell types to total CD45 $^{+}$ cells co-expressing IFN- γ and IL-17
285 differs from expression of each cytokine individually in one major aspect: B cells do not make
286 up a large percentage of these cells in any of the analyzed organs. Macrophages and neutrophils,
287 however, remain prominent contributors to total cytokine expression levels (Fig 4B-D).

288 **Figure 4: Immune cells co-expressing IFN- γ and IL-17 are significantly increased in alcohol**
289 **dependent mice.** (A) Co-expression of IFN- γ and IL-17 in blood, spleen and liver CD45 $^{+}$ cells
290 isolated from alcohol dependent (red, solid fill) and non-dependent (black outline, white fill)
291 mice. (B-D) Immune cells as percentages of all IFN- γ^{+} IL-17 $^{+}$ CD45 $^{+}$ cells in (B) blood, (C)
292 spleen and (D) liver isolated from dependent and non-dependent mice. (E-K) Expression of IL-
293 17 by (E) B cells, (F) NK cells, (G) T cells, (H) NKT cells, (I) macrophages, (J) neutrophils and
294 (K) dendritic cells in dependent and non-dependent mice. *, p<0.05; **p<0.01 analyzed by
295 Mann-Whitney U test; n=5-8.

296 In the blood—which sees the largest increase in IFN- γ and IL-17 co-expressing cells in
297 dependent mice compared to non-dependent controls—neutrophils account for the highest
298 percent of CD45 $^{+}$ IFN- γ^{+} IL-17 $^{+}$ cells. In dependent mice, they are further separated from other
299 cell types because NK cells become less prominent within this group (Fig 4B). The percentage of
300 IFN- γ^{+} IL-17 $^{+}$ neutrophils increases significantly, whereas the percentage of NK cells co-
301 expressing these cytokines remains relatively consistent (Fig 4F, 4J). B cells, T cells and NKT
302 cells increase in percent co-expressing IFN- γ and IL-17, however the frequency is much lower

303 than neutrophils (Fig 4E, G, H). Neutrophils in the blood co-expressing IFN- γ and IL-17 could
304 be a major instigator of inflammatory immune responses to chronic alcohol exposure.

305 The IFN- γ^+ IL-17 $^+$ cells in the spleen are also mostly neutrophils, however co-expression
306 of these cytokines does not change in splenic neutrophils of dependent mice compared to non-
307 dependent controls (Fig 4C, J). The next most abundant IFN- γ^+ IL-17 $^+$ cell type in the spleen is
308 the macrophage (Fig 4C). Macrophages are characterized by significant increases in IFN- γ^+
309 IL17 $^+$ cells in dependent mice. B cells, T cells, NKT cells and dendritic cells also show
310 significant increases in co-expression in the spleen (Fig 4B, G, H, K). These cell-specific
311 changes suggest that IFN- γ and IL-17 co-expression is relevant in a variety of splenic cell types
312 in alcohol dependent mice, but altogether does not amount to significantly higher levels of IFN-
313 γ^+ IL-17 $^+$ cells overall within the total CD45 $^+$ population in the spleen (Fig 4A).

314 In the liver, a significant decrease in the NK cell proportion of CD45 $^+$ IFN- γ^+ IL-17 $^+$ cells
315 is accompanied by trends towards increased percentages of T cells, macrophages and neutrophils
316 in response to chronic alcohol exposure (Fig 4D). The percentages of these cells largely varied
317 across samples, so it is difficult to say there is a meaningful increase despite higher average
318 values in dependent mice. Within individual cell types, there were not significant differences in
319 the percentage of IFN- γ^+ IL-17 $^+$ cells, although T cells, macrophages and neutrophils look to
320 have increases which do not reach statistical significance. These three cell types may
321 complement each other in contributing to the overall increase of IFN- γ and IL-17 co-expressing
322 cells in dependent mice: T cells are the most highly expressed cell type in the liver but a lower
323 percentage are IFN- γ^+ IL-17 $^+$ compared to macrophages and neutrophils; macrophages and
324 neutrophils are less populous in the liver but have a higher percentage are IFN- γ^+ IL-17 $^+$
325 compared to T cells (Fig 1C, 4G, I, J).

326 **Discussion**

327 In the present study, we found that alcohol dependent mice express higher levels of IFN- γ
328 and IL-17 compared to non-dependent controls in their blood, spleen and liver. The data suggest
329 that neutrophils and B cells are the major contributors to systemic pro-inflammatory type 1 and
330 type 17 cytokine responses in alcohol dependent mice, although the importance of individual cell
331 types varies in an organ-specific and cytokine-specific manner.

332 In the blood and spleen, neutrophils and B cells are primarily responsible for increased
333 IFN- γ and IL-17 expression in alcohol dependent mice. Blood NK cells and splenic macrophages
334 are additional contributors to increased IL-17 and IFN- γ expression, respectively. In the liver, we
335 did not find any cell types to be majorly responsible for increased cytokine expression, but we
336 hypothesize that non-significant trends towards increases in many cell types have cumulative
337 effects on overall IFN- γ and IL-17 levels in alcohol dependent mice. While trends towards
338 increases in IFN- γ and IL-17 individually in the liver are not significant, there is a significant
339 increase in the overall co-expression of these cytokines due to T cells, macrophages and
340 neutrophils. We also observed co-expression of IFN- γ and IL-17 in blood neutrophils.

341 Our analysis reveals mechanisms through which cytokine expression by various cells
342 promotes systemic type 1 and type 17 immune responses in alcohol dependent mice. Some of
343 these inflammatory mechanisms have been addressed previously using *in vitro* or *in vivo* models
344 of chronic alcohol exposure, but no other studies have investigated a similarly large range of
345 cytokines, cell types and organs simultaneously [9-12, 15-17]. Most analyze one specific
346 inflammatory process and focus on its role in the development of alcoholic liver disease (ALD),
347 a leading cause of alcohol-related deaths [22]. In our analysis, we observed dynamic

348 inflammatory processes which occur independent of ALD and identified the key cellular and
349 molecular mediators of this systemic inflammation.

350 We observed an increase in IFN- γ expression but no change in IL-4 expression and
351 concluded that chronic intermittent alcohol exposure in mice skews immunity towards systemic
352 type 1 responses. The literature provides evidence both in support and opposition of these results.
353 Excessive TNF- α production—evidence of type 1 responses—and increased IgE levels—
354 evidence of type 2 responses—are hallmarks of alcoholism [4, 7, 23]. Studies of IFN- γ and IL-4
355 expression provide less consistent conclusions. Some data show increased IFN- γ /IL-4 ratios
356 whereas others find the opposite [4, 10, 11, 24-26]. Based on this, it is still unclear how IFN- γ
357 and IL-4 production is altered in response to chronic alcohol use.

358 Although many of these studies report T cell cytokine secretion, we observed that T cells
359 are not the main drivers of differential cytokine responses in alcohol dependent mice (S1 Fig). In
360 fact, for every cell type besides T cells we saw significant differences in IFN- γ expression in at
361 least one organ. B cell IFN- γ expression increased in all three organs. Neutrophils and
362 macrophages also contribute to increased IFN- γ levels: neutrophil IFN- γ expression increases
363 significantly in the blood, macrophage IFN- γ expression increases significantly in the spleen, and
364 both show non-significant trends towards higher IFN- γ expression in the liver. There is limited
365 evidence that B cells and neutrophils produce IFN- γ in response to infection or stimulation [27-
366 35]. Furthermore, macrophages are known to secrete IFN- γ in vitro, and lung-resident alveolar
367 have also been described to secrete IFN- γ in response to pulmonary infection in vivo [36-40].

368 There are no studies of chronic alcohol use which address IFN- γ production by any of
369 these cell types, despite extensive studies of T cells in this context. Future studies should not
370 depend on T cell cytokine secretion to understand the balance between type 1 and type 2

371 cytokines in response to chronic alcohol use. Experiments with T cells may overlook meaningful
372 alterations in immunity due to cytokine production by other cells. Instead, studies should always
373 analyze overall cytokine levels and consider neutrophils, B cells and macrophages as better
374 measures of these changes.

375 We also observed systemic increases in IL-17 levels in alcohol dependent mice. Type 17
376 responses to chronic alcohol exposure are less studied than type 1 and type 2 responses and most
377 research addresses their role in alcoholic liver disease (ALD) development. Patients with ALD
378 have increased IL-17 levels in the blood and liver which correlate with disease severity. In these
379 patients, IL-17⁺ liver-infiltrating cells are mostly T cells and neutrophils [9]. IL-17 blockade can
380 reverse alcohol dependence and liver damage in mice [41]. Indeed, we found increases in
381 neutrophil abundance and expression of IL-17 in the liver of alcohol dependent mice. Previous
382 research found IL-17 is involved in neutrophil recruitment to the liver in ALD [9]. Our data
383 support an additional ALD-independent role for IL-17⁺ neutrophil infiltration in the liver during
384 the early stages of alcohol-induced inflammation.

385 Beyond the liver, systemic IL-17-mediated inflammation due to chronic alcohol exposure
386 has not been thoroughly investigated. Our data show IL-17 expression also increases in the blood
387 and spleen in response to chronic intermittent alcohol exposure in mice. It is known that IL-17
388 expression in the serum is increased in ALD patients [9]. We found that IL-17 expression in
389 neutrophils, NK cells, and B cells increased dramatically in the blood of alcohol dependent mice
390 compared to non-dependent controls. However, we are the first to report increased splenic B cell
391 IL-17 expression that drives increases in spleen IL-17 levels.

392 It is well established that chronic alcohol exposure inhibits NK cell cytotoxic functions
393 and modulates B cell antibody production [42-47]. Although neither cell type has been

394 implicated in alcohol-induced IL-17 production, there is evidence that both can contribute
395 substantially to type 17 responses in infection and autoimmune disorders [48-50]. Here, we
396 demonstrate that increased IL-17 expression by B cells, NK cells and neutrophils in the blood
397 and spleen promote relevant type 17 responses beyond the liver in alcohol dependent mice.

398 The mechanisms behind altered IL-17 expression in alcoholics are not understood. Our
399 data demonstrate that previously described increases in IL-17 in the liver of ALD patients are not
400 exclusively a consequence of ALD: IL-17 expression increases systemically in the blood, spleen
401 and liver after chronic intermittent alcohol exposure. These changes occur prior to any clinical
402 manifestations of chronic alcohol use in mice. More studies are necessary to understand the
403 molecular mechanisms which promote systemic type 17 responses to chronic alcohol exposure,
404 the cell types which initiate this response, and the long-term effects on host health.

405 We also found increases in co-expression of IFN- γ and IL-17 contributed to the skewing
406 of type 1 and type 17 responses. IFN- γ^+ IL-17 $^+$ cells are not commonly studied, but there is
407 evidence of T cell subsets which co-express these cytokines in chronic infections or autoimmune
408 disorders [51-55]. Similarly, in dependent mice we did observe increases in IFN- γ^+ IL-17 $^+$ T
409 cells in the blood and spleen, as well as evidence of B cells, NKT cells, macrophages,
410 neutrophils and dendritic cells with increased IFN- γ IL-17 co-expression in at least one organ.
411 Co-expression of IFN- γ and IL-17 is not documented beyond T cells. Even in T cells, it is
412 unclear what mechanisms promote expression of IFN- γ^+ IL-17 $^+$ cells and what role they play in
413 host defense. Our data suggest that co-expression of IFN- γ and IL-17 should be considered in
414 future studies as a relevant component of systemic inflammation due to chronic alcohol use.

415 In this analysis, we give a snapshot of diverse immune processes which are altered in
416 alcohol dependent mice. The study's strength lies in the wide range of immune processes

417 investigated as we analyzed a variety of organs, cell types and cytokine secretion profiles to
418 understand shifts in immune system characteristics in alcohol dependent mice. We did not
419 perturb the immune system with other stimuli or pathogens, gaining insight into how immunity is
420 altered at resting state.

421 In our model of alcohol dependence, mice were exposed to ethanol vapor intermittently
422 for 4 weeks [18]. Of note this ethanol model is most commonly used for studies of addiction as it
423 results in higher blood alcohol levels but does not induce the same levels of liver damage as
424 alcohol drinking. Furthermore, rodent models that more closely mimic harmful inflammatory
425 processes like ALD in humans may use an alcohol exposure time of 2-3 months [56]. The
426 purpose of this study was not to understand ALD, rather to describe the systemic inflammatory
427 processes that occur as mice develop dependence on alcohol. We cannot rule out that the
428 inflammatory processes observed here lead directly to liver damage. Regardless, altered type 1
429 and type 17 responses are worth further investigation for their role in altered systemic immunity
430 and initiation of potentially harmful inflammation.

431 Our main goal was to investigate as many immune processes as possible which limited
432 precision in differentiating between cell types. In distinguishing macrophage, neutrophil and
433 dendritic cell populations, we may have misclassified some of the rarer populations. Our
434 phenotypic definition of neutrophils excluded CD11c⁺ neutrophils and that of macrophages
435 excluded F4/80- macrophages. F4/80- CD11c- macrophages specifically would be identified as
436 neutrophils in our analysis (Supplemental Table 2). We did not have the neutrophil-specific
437 marker Ly6G included in the experiment which would have provided a clearer way to distinguish
438 these populations [57].

439 Furthermore, defining type 1 and type 2 responses by only IFN- γ and IL-4 simplifies
440 these dynamic processes. We did not observe an increase in IL-12, a stimulator of type 1
441 responses, in dependent mice despite higher IFN- γ levels [21]. It would have been beneficial to
442 compare our results to previous studies if we had measurements of type 1 and type 2 markers
443 TNF- α and IgE, respectively, which are commonly seen to be elevated in models of alcohol
444 dependence. Nevertheless, we observed clear increases in systemic IFN- γ and IL-17 expression
445 and believe future studies of chronic alcohol use would benefit from including these cytokines in
446 their analyses.

447 The data provide insight into dynamic systemic responses that are underappreciated in
448 alcohol research. Through our approach, we observed diverse immune processes which are
449 altered in alcohol dependent mice. Future studies will assess whether different models of chronic
450 alcohol exposure in mice such as liquid ethanol diet or a longer time period of alcohol exposure
451 would provide a more human-like pattern of alcohol consumption and be more physiologically
452 relevant to how alcohol affects the human body. A time course experiment analyzing the
453 expression of inflammatory cytokines at various time points would be particularly insightful.

454 While most studies address the effects of chronic alcohol consumption on ALD, our data
455 highlight systemic inflammatory processes which are activated prior to liver disease. These
456 systemic changes could be important initiators of the severe long-term effects where the field
457 currently focuses. We identify neutrophils and B cells as substantial contributors to early
458 inflammatory processes of chronic alcohol exposure. Future studies are needed for a better
459 understanding of mechanisms through which neutrophils and B cells are activated and how their
460 altered functionalities contribute to the adverse effects of AUD.

461 In conclusion, we found that chronic intermittent alcohol exposure in mice induces
462 systemic IFN- γ and IL-17 inflammatory responses. A variety of cell types are responsible for
463 these responses in a cytokine- and organ-specific manner, but neutrophil and B cell cytokine
464 secretion patterns are the most commonly dysregulated across all organs studied. We observed
465 these changes *in vivo* without additional stimulation suggesting that alcohol dependence alters
466 immune system functions at steady state. The data we present provide valuable insight into
467 systemic inflammatory responses in alcohol dependent mice and serve as a starting point for
468 future studies to probe these alcohol-induced inflammatory mechanisms.

469 **Conflict of Interest Statement**

470 The authors have declared that no conflict of interest exists.

471

472 **Author Contributions**

473 Conceptualization – SP

474 Formal analysis – KF, SP

475 Funding acquisition – MR, SP

476 Investigation – KF, SA, RN, RRP, AJR

477 Methodology – SA, RN, RRP, AJR, MR, SP

478 Project administration – AJR, MR, SP

479 Resources – AJR, MR, SP

480 Supervision – SP

481 Validation – RRP, MR, SP

482 Visualization – KF, SP

483 Writing (original draft) – KF

484 Writing (review and editing) – RRP, MR, SP

485

486 **Acknowledgements**

487 Funding: Support for this study was provided by the National Institute on Alcohol Abuse and

488 Alcoholism grants AA021491, AA013498, P60 AA006420, AA017447, AA015566, AA027700,

489 F32 AA026765, T32 AA007456, as well as the Pearson Center for Alcoholism and Addiction

490 Research (all to MR) and TSRI unrestricted funds (SP). The manuscript is TSRI MS# 30018.

491 **References**

- 492 1. Rocco A, Compare D, Angrisani D, Sanduzzi Zamparelli M, Nardone G. Alcoholic disease: liver and
493 beyond. *World J Gastroenterol.* 2014;20(40):14652-9. Epub 2014/10/31. doi:
494 10.3748/wjg.v20.i40.14652. PubMed PMID: 25356028; PubMed Central PMCID: PMC4209531.
- 495 2. Ratna A, Mandrekar P. Alcohol and Cancer: Mechanisms and Therapies. *Biomolecules.*
496 2017;7(3). Epub 2017/08/15. doi: 10.3390/biom7030061. PubMed PMID: 28805741; PubMed Central
497 PMCID: PMCPMC5618242.
- 498 3. Chan C, Levitsky J. Infection and Alcoholic Liver Disease. *Clin Liver Dis.* 2016;20(3):595-606. Epub
499 2016/07/05. doi: 10.1016/j.cld.2016.02.014. PubMed PMID: 27373619.
- 500 4. Domínguez-Santalla MJ, Vidal C, Viñuela J, Pérez LF, González-Quintela A. Increased Serum IgE in
501 Alcoholics: Relationship With Th1/Th2 Cytokine Production by Stimulated Blood Mononuclear Cells.
502 *Alcoholism: Clinical and Experimental Research.* 2001;25(8):1198-205. doi: 10.1111/j.1530-
503 0277.2001.tb02336.x.
- 504 5. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased
505 TNF- α production in rat Kupffer cells after chronic ethanol feeding. *American Journal of Physiology-*
506 *Gastrointestinal and Liver Physiology.* 2002;282(1):G6-G15. doi: 10.1152/ajpgi.00328.2001. PubMed
507 PMID: 11751152.
- 508 6. Shi L, Kishore R, McMullen MR, Nagy LE. Chronic ethanol increases lipopolysaccharide-
509 stimulated Egr-1 expression in RAW 264.7 macrophages contribution to enhanced tumor necrosis factor
510 α production. *Journal of Biological Chemistry.* 2002;277(17):14777-85.
- 511 7. Khoruts A, Stahnke L, McClain CJ, Logan G, Allen JI. Circulating tumor necrosis factor, interleukin-
512 1 and interleukin-6 concentrations in chronic alcoholic patients. *Hepatology.* 1991;13(2):267-76. doi:
513 10.1002/hep.1840130211.
- 514 8. Fukui H, Kitano H, Tsujii T, Morimura M, Kikuchi E, Matsumoto M, et al. Effect of Alcohol on the
515 Functions of Kupffer Cells and Splenic Macrophages in Rats. *Alcohol and Alcoholism.*
516 1993;28(Supplement_1B):53-7. doi: 10.1093/alc/28.Supplement_1B.53.
- 517 9. Lemmers A, Moreno C, Gustot T, Maréchal R, Degré D, Demetter P, et al. The interleukin-17
518 pathway is involved in human alcoholic liver disease. *Hepatology.* 2009;49(2):646-57. doi:
519 10.1002/hep.22680.
- 520 10. Zhang H, Meadows GG. Chronic alcohol consumption in mice increases the proportion of
521 peripheral memory T cells by homeostatic proliferation. *Journal of Leukocyte Biology.* 2005;78(5):1070-
522 80. doi: 10.1189/jlb.0605317.
- 523 11. Song K, Coleman RA, Zhu X, Alber C, Ballas ZK, Waldschmidt TJ, et al. Chronic ethanol
524 consumption by mice results in activated splenic T cells. *Journal of Leukocyte Biology.* 2002;72(6):1109-
525 16. doi: 10.1189/jlb.72.6.1109.
- 526 12. Ma H-Y, Xu J, Liu X, Zhu Y, Gao B, Karin M, et al. The Role of IL-17 Signaling in Regulation of the
527 Liver-Brain Axis and Intestinal Permeability in Alcoholic Liver Disease. *Current Pathobiology Reports.*
528 2016;4(1):27-35. doi: 10.1007/s40139-016-0097-3.
- 529 13. Kolls JK, Lindén A. Interleukin-17 Family Members and Inflammation. *Immunity.* 2004;21(4):467-
530 76. doi: <https://doi.org/10.1016/j.immuni.2004.08.018>.
- 531 14. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells
532 regulates tissue inflammation by producing interleukin 17. *Nature Immunology.* 2005;6(11):1133-41.
533 doi: 10.1038/ni1261.
- 534 15. Taïeb J, Mathurin P, Elbim C, Cluzel P, Arce-Vicioso M, Bernard B, et al. Blood neutrophil
535 functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids. *Journal of*
536 *Hepatology.* 2000;32(4):579-86. doi: [https://doi.org/10.1016/S0168-8278\(00\)80219-6](https://doi.org/10.1016/S0168-8278(00)80219-6).

537 16. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by
538 peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease.
539 Cytometry Part B: Clinical Cytometry. 2007;72(5):408-15.

540 17. Kono H, Uesugi T, Froh M, Rusyn I, Bradford BU, Thurman RG. ICAM-1 is involved in the
541 mechanism of alcohol-induced liver injury: studies with knockout mice. American Journal of Physiology-
542 Gastrointestinal and Liver Physiology. 2001;280(6):G1289-G95. doi: 10.1152/ajpgi.2001.280.6.G1289.
543 PubMed PMID: 11352823.

544 18. Herman MA, Contet C, Roberto M. A Functional Switch in Tonic GABA Currents Alters the Output
545 of Central Amygdala Corticotropin Releasing Factor Receptor-1 Neurons Following Chronic Ethanol
546 Exposure. J Neurosci. 2016;36(42):10729-41. Epub 2016/11/01. doi: 10.1523/jneurosci.1267-16.2016.
547 PubMed PMID: 27798128; PubMed Central PMCID: PMCPMC5083004.

548 19. Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and
549 withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28(12):1829-38. Epub 2004/12/21.
550 doi: 10.1097/01.alc.0000149977.95306.3a. PubMed PMID: 15608599.

551 20. Patel RR, Khom S, Steinman MQ, Varodayan FP, Kiosses WB, Hedges DM, et al. IL-1 β expression
552 is increased and regulates GABA transmission following chronic ethanol in mouse central amygdala.
553 Brain, Behavior, and Immunity. 2019;75:208-19. doi: <https://doi.org/10.1016/j.bbi.2018.10.009>.

554 21. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, et al. Natural killer cell
555 stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and
556 inhibits the development of IL-4-producing Th cells. Journal of Experimental Medicine.
557 1993;177(4):1199-204. doi: 10.1084/jem.177.4.1199.

558 22. Mellinger JL. Epidemiology of Alcohol Use and Alcoholic Liver Disease. Clin Liver Dis (Hoboken).
559 2019;13(5):136-9. doi: 10.1002/cld.806. PubMed PMID: 31236261.

560 23. GONZÁLEZ-QUINTELA A, VIDAL C, GUDE F, TOMÉ S, LOJO S, LORENZO MJ, et al. Increased serum
561 IgE in alcohol abusers. Clinical & Experimental Allergy. 1995;25(8):756-64. doi: 10.1111/j.1365-
562 2222.1995.tb00014.x.

563 24. Laso FJ, Iglesias-Osma C, Ciudad J, Lopez A, Pastor I, Orfao A. Chronic Alcoholism Is Associated
564 With an Imbalanced Production of Th-1/Th-2 Cytokines by Peripheral Blood T Cells. Alcoholism: Clinical
565 and Experimental Research. 1999;23(8):1306-11. doi: 10.1111/j.1530-0277.1999.tb04351.x.

566 25. Zhang H, Zhang F, Zhu Z, Luong D, Meadows GG. Chronic alcohol consumption enhances iNKT
567 cell maturation and activation. Toxicology and Applied Pharmacology. 2015;282(2):139-50. doi:
568 <https://doi.org/10.1016/j.taap.2014.11.013>.

569 26. Starkenburg S, Munroe ME, Waltenbaugh C. Early Alteration in Leukocyte Populations and
570 Th1/Th2 Function in Ethanol-Consuming Mice. Alcoholism: Clinical and Experimental Research.
571 2001;25(8):1221-30. doi: 10.1111/j.1530-0277.2001.tb02339.x.

572 27. Kouskoff V, Famiglietti S, Lacaud G, Lang P, Rider JE, Kay BK, et al. Antigens Varying in Affinity for
573 the B Cell Receptor Induce Differential B Lymphocyte Responses. Journal of Experimental Medicine.
574 1998;188(8):1453-64. doi: 10.1084/jem.188.8.1453.

575 28. Yoshimoto T, Okamura H, Tagawa YI, Iwakura Y, Nakanishi K. Interleukin 18 together with
576 interleukin 12 inhibits IgE production by induction of interferon-gamma production from activated B
577 cells. Proc Natl Acad Sci U S A. 1997;94(8):3948-53. Epub 1997/04/15. doi: 10.1073/pnas.94.8.3948.
578 PubMed PMID: 9108085; PubMed Central PMCID: PMCPMC20548.

579 29. Ganapamo F, Dennis VA, Philipp MT. CD19+ cells produce IFN- γ in mice infected with *Borrelia*
580 *burgdorferi*. European journal of immunology. 2001;31(12):3460-8.

581 30. Bao Y, Liu X, Han C, Xu S, Xie B, Zhang Q, et al. Identification of IFN- γ -producing innate B cells.
582 Cell research. 2014;24(2):161-76.

583 31. Gjertsson I, Foster S, Tarkowski A. Polarization of cytokine responses in B-and T-lymphocytes
584 during *Staphylococcus aureus* infection. Microbial pathogenesis. 2003;35(3):119-24.

585 32. Harris DP, Goodrich S, Gerth AJ, Peng SL, Lund FE. Regulation of IFN- γ production by B effector 1
586 cells: essential roles for T-bet and the IFN- γ receptor. *The Journal of Immunology*. 2005;174(11):6781-
587 90.

588 33. Sturge CR, Benson A, Raetz M, Wilhelm CL, Mirpuri J, Vitetta ES, et al. TLR-independent
589 neutrophil-derived IFN- γ is important for host resistance to intracellular pathogens. *Proceedings of the*
590 *National Academy of Sciences*. 2013;110(26):10711-6. doi: 10.1073/pnas.1307868110.

591 34. Yin J, Ferguson TA. Identification of an IFN- γ -producing neutrophil early in the response to
592 *Listeria monocytogenes*. *The Journal of Immunology*. 2009;182(11):7069-73.

593 35. Ellis TN, Beaman BL. Murine polymorphonuclear neutrophils produce interferon-gamma in
594 response to pulmonary infection with *Nocardia asteroides*. *J Leukoc Biol*. 2002;72(2):373-81. Epub
595 2002/08/01. PubMed PMID: 12149429.

596 36. Robinson B, McLemore TL, Crystal RG. Gamma interferon is spontaneously released by alveolar
597 macrophages and lung T lymphocytes in patients with pulmonary sarcoidosis. *The Journal of clinical*
598 *investigation*. 1985;75(5):1488-95.

599 37. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, et al. IL-12 induces IFN-gamma
600 expression and secretion in mouse peritoneal macrophages. *The Journal of Immunology*.
601 1997;159(7):3490-7.

602 38. Ballester-López C, Conlon TM, Ertüz Z, Greiffo FR, Irmeler M, Verleden SE, et al. The Notch ligand
603 DNER regulates macrophage IFN γ release in chronic obstructive pulmonary disease. *EBioMedicine*.
604 2019;43:562-75. Epub 2019/05/08. doi: 10.1016/j.ebiom.2019.03.054. PubMed PMID: 31060902;
605 PubMed Central PMCID: PMCPMC6562022.

606 39. Fenton MJ, Vermeulen MW, Kim S, Burdick M, Strieter RM, Kornfeld H. Induction of gamma
607 interferon production in human alveolar macrophages by *Mycobacterium tuberculosis*. *Infection and*
608 *Immunity*. 1997;65(12):5149-56.

609 40. Fultz MJ, Barber SA, Dieffenbach CW, Vogel SN. Induction of IFN- γ in macrophages by
610 lipopolysaccharide. *International immunology*. 1993;5(11):1383-92.

611 41. Xu J, Ma H-Y, Liu X, Rosenthal S, Baglieri J, McCubbin R, et al. Blockade of IL-17 signaling reverses
612 alcohol-induced liver injury and excessive alcohol drinking in mice. *JCI insight*. 2020;5(3):e131277. doi:
613 10.1172/jci.insight.131277. PubMed PMID: 32051339.

614 42. Blank SE, Pfister LJ, Gallucci RM, Meadows GG. Ethanol-Induced Changes in Peripheral Blood and
615 Splenic Natural Killer Cells. *Alcoholism: Clinical and Experimental Research*. 1993;17(3):561-5. doi:
616 10.1111/j.1530-0277.1993.tb00800.x.

617 43. Pan H-n, Sun R, Jaruga B, Hong F, Kim W-H, Gao B. Chronic Ethanol Consumption Inhibits Hepatic
618 Natural Killer Cell Activity and Accelerates Murine Cytomegalovirus-Induced Hepatitis. *Alcoholism: Clinical and Experimental Research*. 2006;30(9):1615-23. doi: 10.1111/j.1530-0277.2006.00194.x.

619 44. Zhang H, Meadows GG. Exogenous IL-15 in Combination With IL-15R α Rescues Natural Killer
620 Cells From Apoptosis Induced by Chronic Alcohol Consumption. *Alcoholism: Clinical and Experimental*
621 *Research*. 2009;33(3):419-27. doi: 10.1111/j.1530-0277.2008.00852.x.

622 45. Viitala K, Israel Y, Blake JE, Niemela O. Serum IgA, IgG, and IgM antibodies directed against
623 acetaldehyde-derived epitopes: Relationship to liver disease severity and alcohol consumption.
624 *Hepatology*. 1997;25(6):1418-24. doi: 10.1002/hep.510250619.

625 46. Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, et al. Cytokines and Alcohol.
626 *Alcoholism: Clinical and Experimental Research*. 2006;30(4):720-30. doi: 10.1111/j.1530-
627 0277.2006.00084.x.

628 47. COOK RT, WALDSCHMIDT TJ, COOK BL, LABRECQUE DR, MCLATCHIE K. Loss of the CD5+ and
629 CD45RAhi B cell subsets in alcoholics. *Clinical & Experimental Immunology*. 1996;103(2):304-10. doi:
630 10.1046/j.1365-2249.1996.d01-621.x.

632 48. Passos ST, Silver JS, O'Hara AC, Sehy D, Stumhofer JS, Hunter CA. IL-6 Promotes NK Cell
633 Production of IL-17 during Toxoplasmosis. *The Journal of Immunology*. 2010;184(4):1776-83. doi:
634 10.4049/jimmunol.0901843.

635 49. Schlegel PM, Steiert I, Kötter I, Müller CA. B cells contribute to heterogeneity of IL-17 producing
636 cells in rheumatoid arthritis and healthy controls. *PloS one*. 2013;8(12):e82580-e. doi:
637 10.1371/journal.pone.0082580. PubMed PMID: 24340045.

638 50. Bermejo DA, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Amezcu-Vesely MC, Sather
639 BD, et al. Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors
640 ROR γ t and Ahr that leads to IL-17 production by activated B cells. *Nature Immunology*. 2013;14(5):514-
641 22. doi: 10.1038/ni.2569.

642 51. Loxton AG, Black GF, Stanley K, Walzl G. Heparin-Binding Hemagglutinin Induces IFN- γ ⁺ IL-2⁺ IL-17⁺ Multifunctional CD4⁺ T Cells during
643 Latent but Not Active Tuberculosis Disease. *Clinical and Vaccine Immunology*. 2012;19(5):746-51. doi:
644 10.1128/cvi.00047-12.

645 52. Kaufmann U, Diedrichs-Möhring M, Wildner G. Dynamics of intraocular IFN- γ , IL-17 and IL-10-
646 producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. *PloS
647 one*. 2012;7(11).

648 53. Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, et al. Human
649 Th17 Cells Comprise Heterogeneous Subsets Including IFN- γ -Producing Cells with Distinct Properties
650 from the Th1 Lineage. *The Journal of Immunology*. 2010;185(1):679-87. doi:
651 10.4049/jimmunol.1000366.

652 54. Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M, et al. V δ 1 T lymphocytes
653 producing IFN- γ and IL-17 are expanded in HIV-1-infected patients and respond to *Candida albicans*.
654 *Blood*. 2009;113(26):6611-8. doi: 10.1182/blood-2009-01-198028.

655 55. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of
656 interferon- γ -expressing TH17 cells in multiple sclerosis. *Annals of Neurology*. 2009;66(3):390-402. doi:
657 10.1002/ana.21748.

658 56. Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH. Rodent models of alcoholic liver
659 disease: Of mice and men. *Alcohol*. 2012;46(8):715-25. doi:
660 <https://doi.org/10.1016/j.alcohol.2012.08.004>.

661 57. Becher B, Schlitzer A, Chen J, Mair F, Sumatoh HR, Teng KWW, et al. High-dimensional analysis
662 of the murine myeloid cell system. *Nature Immunology*. 2014;15(12):1181-9. doi: 10.1038/ni.3006.

663

664

665 **Supporting Table 1:** Antibodies used for the multiparametric flow cytometry experiment.

666 **Supporting Table 2:** Gating strategy to identify individual cell types isolated from blood, spleen
667 and liver of dependent and non-dependent mice.

668 **Supporting Figure 1: Alcohol dependent mice exhibit minor tissue specific changes in their**
669 **T cell subset ratios.** (A-C) CD4⁺ and CD8⁺ T cell expression as a percentage of CD3⁺ cells
670 isolated from (A) blood, (B) spleen and (C) liver of alcohol dependent (red, solid fill) and non-
671 dependent (black outline, white fill) mice. (D-F) Th1 (CD4⁺ IFN- γ ⁺), Th2 (CD4⁺ IL-4⁺), Th17
672 (CD4⁺ IL-17⁺), and Treg (CD4⁺ FoxP3⁺) expression as a percentage of CD4⁺ T helper cells
673 isolated from (D) blood, (E) spleen and (F) liver of dependent and non-dependent mice. *,
674 p<0.05; **p<0.01 analyzed by Mann-Whitney U test; n=5-8.

675 **Supporting Figure 2: IL-10 receptor expression is increased in alcohol dependent mice**
676 **compared to controls.** (A) Expression of IL-10 receptor (IL-10R) blood, spleen and liver
677 CD45⁺ cells isolated from alcohol dependent (red, solid fill) and non-dependent (black outline,
678 white fill) mice. (B-D) Immune cells as percentages of all IL-10R⁺ CD45⁺ cells in (B) blood, (C)
679 spleen and (D) liver isolated from dependent and non-dependent mice. (E-K) Expression of IL-
680 10R by (E) B cells, (F) NK cells, (G) T cells, (H) NKT cells, (I) macrophages, (J) neutrophils
681 and (K) dendritic cells in dependent and non-dependent mice. *, p<0.05; **p<0.01 analyzed by
682 Mann-Whitney U test; n=5-8.

683 **Supporting Figure 3: PD-1 expression is minimally altered in lymphocytes of alcohol**
684 **dependent mice compared to controls.** (A-D) Expression of PD-1 by (E) B cells, (F) NK cells,
685 (G) T cells, and (H) NKT cells in alcohol dependent (red, solid fill) and non-dependent (black
686 outline, white fill) mice. *, p<0.05; **p<0.01 analyzed by Mann-Whitney U test; n=5-8.

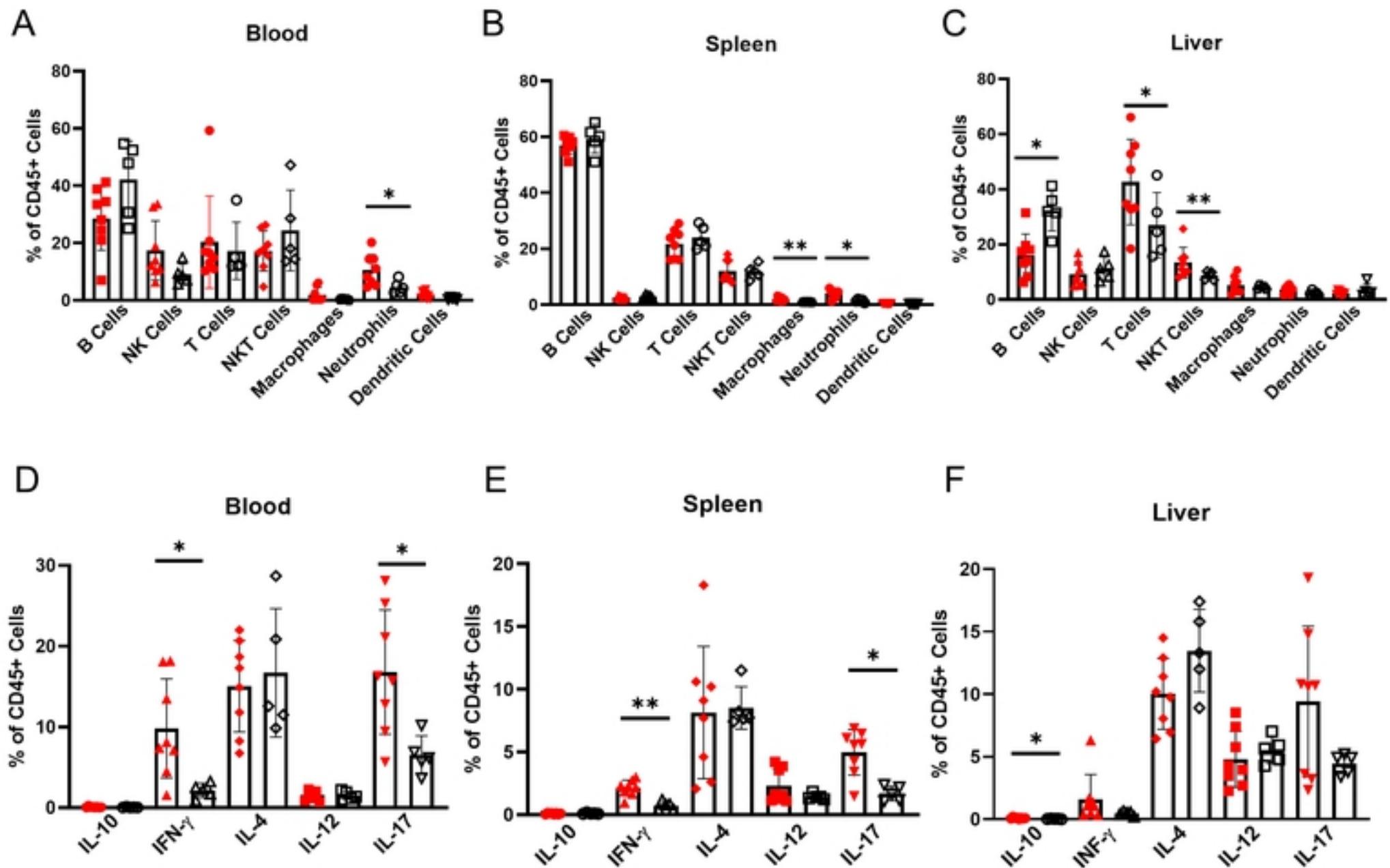


Figure 1

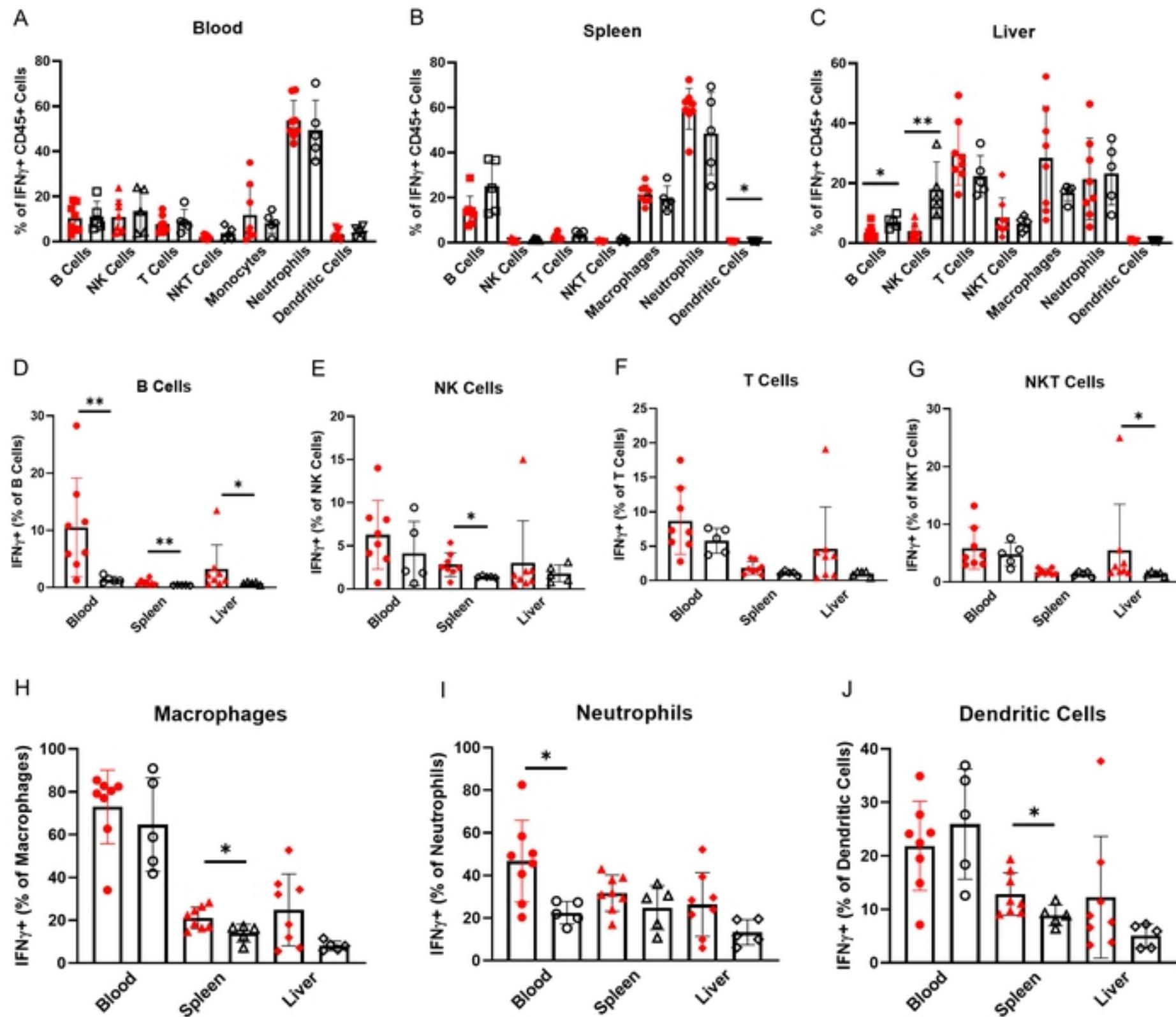


Figure 2

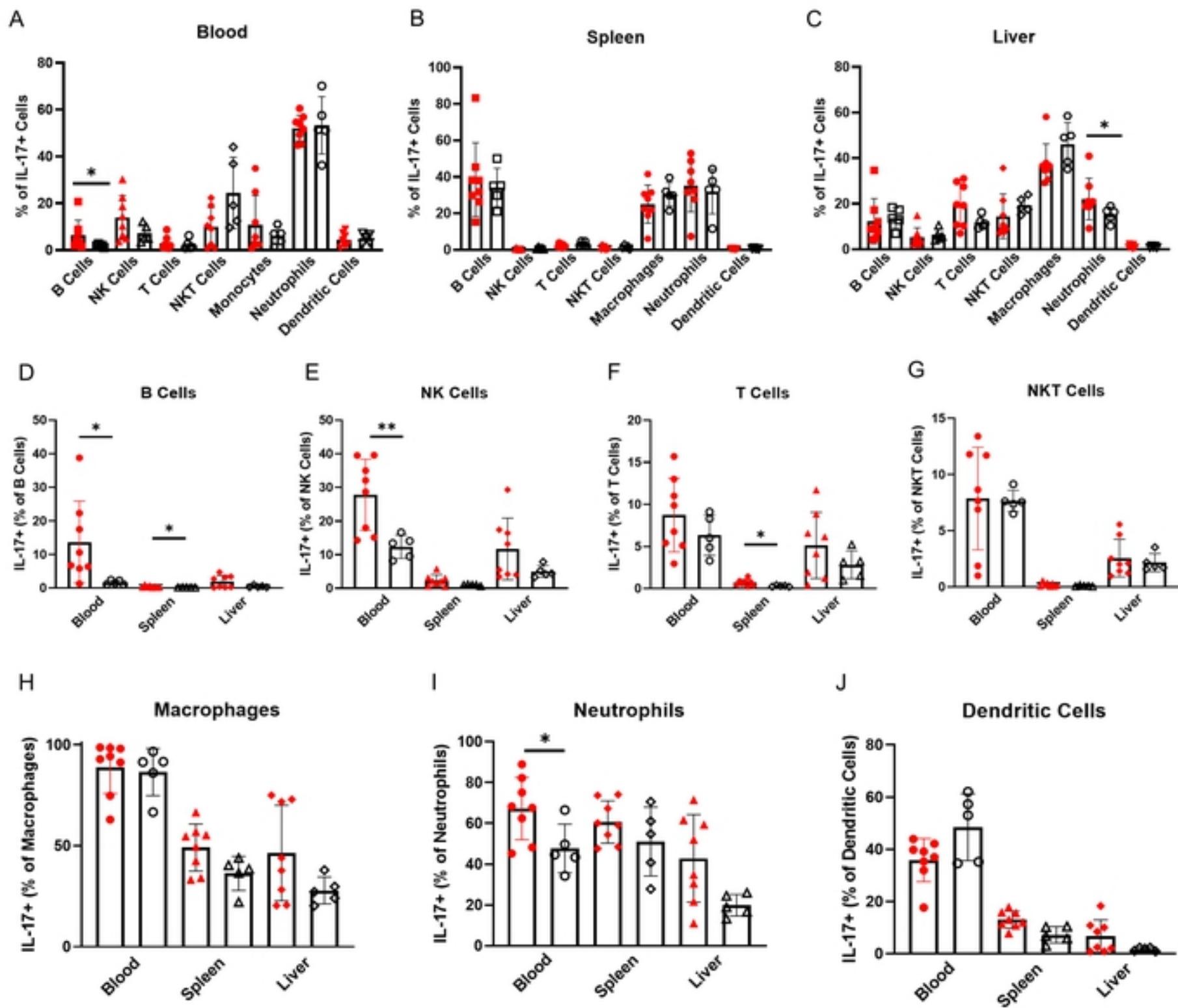
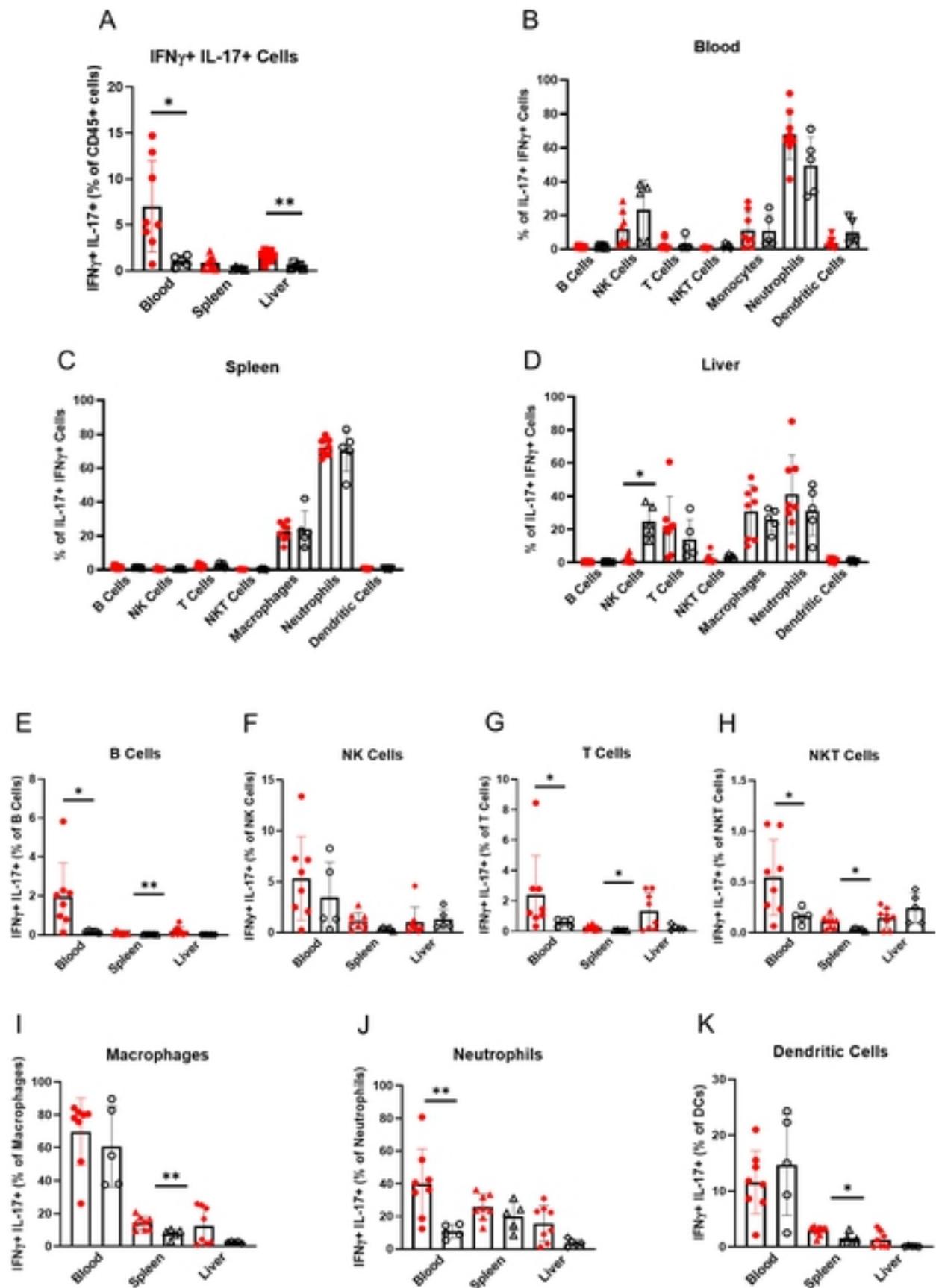



Figure 3

Figure 4