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Abstract 
New X-ray crystallography and cryo-electron microscopy (cryo-EM) approaches yield vast amounts of 
structural data from dynamic proteins and their complexes. Modeling the full conformational ensemble 
can provide important biological insights, but identifying and modeling an internally consistent set of 
alternate conformations remains a formidable challenge. qFit efficiently automates this process by 
generating a parsimonious multiconformer model. We refactored qFit from a distributed application 
into software that runs efficiently on a small server, desktop, or laptop. We describe the new qFit 3 
software and provide some examples. qFit 3 is open-source under the MIT license, and is available at 
https://github.com/ExcitedStates/qfit-3.0 ​. 

Introduction 
Conformational dynamics play an essential role in many aspects of protein function, including ligand 
binding, allostery, and enzyme turnover ​1,2​. In each of these processes, the protein does not adopt a 
single conformation, but rather a conformational ensemble including a number of low-energy states. 
This ensemble can then be redistributed or reshaped by small-molecule binding, post-translational 
modifications, or other perturbations, thereby controlling biological function. To fully understand the 
fundamental interplay between protein conformational heterogeneity and function, it is necessary to 
develop experimental and computational techniques to reveal alternative protein conformations in 
atomic detail. 
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X-ray crystallography is a powerful tool for addressing this need. Because individual protein 
molecules in the crystal lattice sample different conformations, there is a growing appreciation that 
crystallographic electron density maps contain a wealth of information about sparsely populated, 
alternative protein conformations ​3​. Moreover, crystallography is undergoing an experimental 
renaissance: new tools are emerging with the potential to bias conformational distributions in crystals 
and gain new mechanistic insights into the links between protein dynamics and function. 
 
For example, crystallographic datasets collected across multiple temperatures — as opposed to at a 
single cryogenic temperature — often reveal ensembles with more conformational diversity ​4–8​, 
including at dynamic enzyme active sites ​9​. High-throughput crystallographic protein:ligand screening 
can identify otherwise undetectable low-occupancy ligand-bound protein states ​7,10,11​. And 
time-resolved diffraction experiments, triggered by a variety of stimuli ​12–15​, can offer detailed windows 
into how protein conformational ensembles evolve in real time. Time-resolved experiments are 
becoming more accessible as serial microcrystallography experiments can take place not only at 
X-ray free-electron lasers, but also at third-generation synchrotrons with microfocus beamlines ​16​. 
Serial microcrystallography can also help reveal alternative protein states by dissecting distinct crystal 
polymorphs within the microcrystal population ​17​. These advances, coupled with an ever-growing level 
of automation and faster X-ray detectors ​18​, are yielding larger amounts of data that highlight the need 
for automated (rather than manual) computational methods for modeling alternative conformations 
and their correlations in electron density maps. 
 
In parallel to the renaissance for X-ray crystallography, cryo-electron microscopy (cryo-EM) is in the 
midst of a “resolution revolution” ​19​. Recently, cryo-EM structures of two different systems at “atomic 
resolution” (1.2–1.25 Å) ​20,21​ demonstrated how far this method has come in recent years. Similar to 
electron density maps from X-ray crystallography, Coulomb potential maps from cryo-EM reveal 
evidence for alternative protein states, which in this case are sampled by individual protein molecules 
on the microscopy grid. Unfortunately, so far no methods exist for unbiased and automatic modeling 
of correlated alternative conformations in cryo-EM maps. Additionally, many cryo-EM structures 
feature large protein complexes with thousands of amino acids, posing a significant challenge to 
traditional model building approaches. Efficient, automated algorithms ​22​ could meet this challenge for 
cryo-EM. 
 
There is thus a clear need for computational model-building methods that better explain X-ray and 
cryo-EM data by incorporating alternative conformations. Protein conformational heterogeneity can be 
represented using various approaches, including B-factors, multi-copy ensembles, or multiconformer 
models ​1​. First, B-factors are present for every atom in the Protein Data Bank (PDB) ​23​ file format. 
Theoretically, B-factors represent the harmonic, thermal displacement of each atom about its mean 
position, either isotropically with one parameter or anisotropically with six parameters ​24​. However, in 
practice, B-factors often absorb uncertainty in a more general sense about each atom’s position, and 
are insufficient representations of anharmonic motions such as transitions between side-chain 
rotamers ​25​. Second, multi-copy ensemble models consist of some number (>1) of full, independent 
copies of the protein with distinct xyz coordinates and B-factors that collectively explain the 
experimental data ​26​. Ensemble models can successfully describe discrete conformational 
heterogeneity such as rotamer transitions -- but they unnecessarily inflate the number of model 
parameters for those regions of the protein with essentially a single, unique conformation ​27​. Finally, 
multiconformer models lie somewhere in the middle in terms of model complexity. A multiconformer 
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model represents local, anharmonic features in the data with a small number (2–5) of discrete 
conformations, but represents regions of the protein that show little to no evidence of flexibility with a 
single conformation. These conformations are assigned labels (“alternative locations” or “altlocs”), 
such as A, B, etc., with corresponding occupancies in the PDB format on a per-atom basis. Groups of 
atoms whose alternate positions are correlated (side chains, stretches of contiguous backbone, 
collective exchange across an active site, etc.) are assigned the same label and occupancy. When 
constructed in a parsimonious manner, multiconformer models can limit a model’s complexity while 
maximizing its explanatory power. 
 
To efficiently generate parsimonious multiconformer models for protein X-ray crystal structures, we 
previously introduced the software package qFit ​28​. Besides providing mechanistic insights, for 
example by revealing hidden protein contact signaling networks ​29​ and allosteric pathways ​7​, 
multiconformer qFit models have also established that the conformational ensemble at room 
temperature is not dominated by radiation damage ​30​, and that the effect of crystal dehydration on the 
conformational ensemble is similar to that of cryocooling ​31​. We recently introduced multiconformer 
treatment of ligands in complex with proteins in a standalone version, ​qFit-ligand ​ ​32​. However, 
previous versions of qFit were computationally demanding (requiring a high-performance computing 
cluster), and were restricted to density maps from X-ray crystallography only, among other limitations. 
 
Here we report a new, refactored version of qFit, which we call qFit 3, with several key improvements. 
qFit 3 operates on maps from either X-ray crystallography or cryo-EM. 
It combines multiconformer modeling of proteins and of ligands complexed with proteins (from 
qFit-ligand ​) in a single software package written in Python. The software distribution includes a script 
to refine the multiconformer model generated by qFit with Phenix ​33​. Importantly, we reduced the 
runtime by two orders of magnitude. qFit 3 typically runs for a ~300 residue protein in several hours 
on a laptop, making it significantly more accessible to users. 
 
Overall, qFit 3 reveals hidden alternative conformations in protein structures in a rapid, automated, 
and unbiased manner. This new software will allow a broader array of users to explore conformational 
heterogeneity in their systems of interest. It will also smooth the path toward integrating new and 
exciting types of structural biology data, including series of datasets related by temperature, ligands, 
or time, as well as biologically important and/or large protein systems from X-ray free electron lasers 
(XFELs) or cryo-EM. qFit 3 will thus empower novel studies of the relationship between protein 
dynamics and biological function. 
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Figure 1: Usage flowchart for qFit 3 for either protein or ligand inputs and for either X-ray or 
cryo-EM data. 

(1) qFit requires an initial model and map information. In the case of X-ray diffraction data, qFit 
will require both the structure factors and a high-quality, unbiased map, such as a composite 
omit map. (2) With these files, qFit will generate a parsimonious model 
(multiconformer_model2.pdb) containing the fewest number of sampled conformers that 
explain the experimental data. (3) This intermediate/preliminary model should proceed 
through an iterative procedure to refine the occupancies of conformers in the model, and cull 
those conformers that have <9% occupancy. (4) The resulting model can then be used to 
explore conformational diversity. See ​Supplementary Figures 1 & 2 ​ for more detail on usage 
for X-ray vs. cryo-EM data. 
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Results 
qFit was completely refactored in the Python programming language and released as open-source 
software; see Methods and the GitHub repository (​https://github.com/ExcitedStates/qfit-3.0 ​) for more 
details. A typical qFit 3 workflow is illustrated in ​Figure 1 ​. qFit 3 takes as minimal input a starting 
model and either a real-space map in the MRC/CCP4 format or map coefficients in the MTZ format. 
For X-ray crystallography, the preferred map is a composite omit map to minimize model bias, which 
can be readily generated with Phenix. For cryo-EM, the input is a real-space map together with the 
resolution of the data and a flag to use electron scattering factors for generating synthetic densities. 
qFit 3 relies on a sample-and-select procedure based on constrained optimization to identify 
alternative conformations of proteins and their ligands. To ensure optimal model selection and 
prevent overfitting, qFit 3 evaluates increasing model complexities, selecting the model with the 
lowest Bayesian Information Criterion (BIC). qFit 3 now also provides all functionality to model ligand 
alternate conformations, previously available separately in ​qFit-ligand ​. A distinctly important new 
feature is qFit 3’s capability to model alternate conformations into cryo-EM maps. Numerous 
additional options and details are described in the Methods section and can be found in the qFit 3 
GitHub repository. Here, we demonstrate typical use cases of qFit for protein systems and their 
ligands. All analyses in this section used default parameters, unless otherwise stated. 
 
We first carried out qFit 3 modeling on a previously deposited cryogenic X-ray structure of a protein 
tyrosine phosphatase, PTPN18 (PDB ID: 2oc3) ​34​. While the deposited model includes ten residues 
with alternate conformers, a difference density map shows unmodeled positive density over 3σ 
around Phe30 and Gln34 ​(Figure 2A, left panel)​. qFit 3 models suggest that an alternate conformer 
for Phe30 and an ensemble of three side-chain conformers for Gln34 better fit the density, and 
reduce nearby difference density peaks (​Figure 2A, right panel)​. Running on a quad-core processor, 
qFit sampled and selected alternative conformations for this 290-residue protein in 12.75 hours. 
 
The default algorithm of qFit 3 changed slightly compared to earlier versions. Previously, each amino 
acid in turn was truncated at the Cβ atom and refined anisotropically. This had two advantages: 1) it 
generally positioned the Cβ atom at the peak ​average ​ density of potential alternate conformations, 
and 2) the anisotropy of the atomic displacement parameter provided guidance for backbone motions. 
Although this earlier version often better captured subtle backbone movements, it led to significant 
increased computational expense and complexity ​35​. Nonetheless, the present version of qFit can be 
made to mimic the behavior of the earlier algorithm on a single residue by providing an alternative 
input. A thoroughly-tested room-temperature structure of the peptidyl-prolyl cis-trans isomerase CypA 
(PDB ID: 3k0n) displays multiple conformers for Phe113 ​9​. Starting from a single conformer (​Figure 
2B, left panel​), we truncated Phe113 at Cβ, refined the structure anisotropically, calculated a 
composite omit map, and used this as input to qFit 3. This pre-processing enabled qFit to recapitulate 
the alternative conformations observed in the published model (​Figure 2B, right panel​). With 
Phe113 in place, qFit 3 ran in 460 min over the other 161 residues. This computationally expensive 
pre-processing procedure is provided as an option, and improved backbone modeling will be a focus 
of future development (Discussion). 
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Figure 2: qFit 3 recapitulates deposited alternate conformations in X-ray crystallography 
density maps, and suggests additional conformations to explain unmodeled density. 

A) Left​: PTPN18 (PDB ID: 2oc3) displays regions of unmodeled density near Phe30 and Gln34 in 
the deposited ​m​Fo-​D​Fc difference density map at +3σ (green cloud). These are visible in a 
2 ​m​Fo-​D​Fc composite omit density map contoured at 1σ (blue mesh), which is clarified by a 
low-density 0.5σ contour (blue cloud). 
Right​: qFit 3 adds extra conformers to model these residues. Gln34 is modeled by three 
conformers (corresponding to the rotamers ​mm​110, ​mt​0, ​mt​0 ​25​); Phe30 is also modeled by 
two conformers (both in the “favored” ​t​80 rotamer space). The distance between Phe30 and 
Gln34 doesn’t lead to steric hindrance between any of the conformers of either residue. Note 
that qFit 3 sets the minimum number of conformers in Ile33 to three (because of Gln34) to 
ensure backbone consistency; Phe30 is part of another backbone segment.  

B) Left​: Following the methodology in qFit 2 ​35​, Phe113 was truncated at Cβ and refined. Both the 
composite omit map and the difference map indicated the presence of at least two conformers 
for this residue. 
Right:​ qFit 3 sampled and selected two conformers of Phe113 (matching the two known ones) 
to explain the density in the composite omit map. 
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qFit 3, for the first time, also accepts cryo-EM density maps as input. We have adopted the simplified 
scattering factor calculation of averaging the contributions of all atoms to calculate synthetic maps, as 
is used in real-space refinement in Phenix ​36​. As an example application of this new functionality, we 
ran qFit 3 on two ultra-high-resolution cryo-EM structures: β3 GABA receptor ​21​ (1.2 Å resolution) 
and apoferritin ​20​ (1.7 Å resolution). qFit 3 was run on both chain A and the entire structure for both 
examples. Chain A of apoferritin (176 residues) had a runtime of 112 minutes using four cores. 
 
For these examples, qFit 3 captured both previously modeled and newly modeled alternative 
conformations (​Figure 3)​. Within chain A, there were originally 19 residues with modeled alternative 
conformers. qFit 3 successfully identified alternate conformations for 16 (84.2%) of these residues 
and suggested 66 additional residues with alternative conformations. In ​Figure 3A, ​we demonstrate 
the ability of qFit 3 to recapitulate alternative conformers in Ser124. In ​Figure 3B​, we demonstrate 
the ability of qFit 3 to detect a new alternative rotamer for Gln14 (​pt0 ​ and ​mm-40 ​25​, RMSF 1.16 Å).  
 

 
Figure 3: qFit 3 recapitulates deposited alternate conformations in cryo-EM density maps, and 
suggests alternate conformations to explain noisy data. 

A) Left​: Deposited alternative conformations for Ser113 in a high-resolution published cryo-EM 
structure of apoferritin (PDB ID: 6v21). These are visible in a 2 ​m​Fo-​D​Fc composite omit 
density map contoured at 1σ (dark blue cloud) and at 0.5σ (light blue cloud and blue mesh).  
Right​: qFit 3 and subsequent refinement successfully modeled identical alternative 
conformations. Occupancies are indicated in italics. 

B) Left​: Deposited single conformation for Gln14 in the same structure of apoferritin. 
Right​: qFit 3 and subsequent refinement identifies the original conformer, plus an alternative 
conformer (​mt​ and ​tt​ rotamers ​25​). 
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Additionally, qFit 3 can determine alternative conformations of ligands ​32​. Distinct ligand 
conformations can play an important role in determining binding affinities, activity, and disassociation 
from the protein. Visualizing ligand alternate conformations can help determine the role of entropy in 
binding affinity, or help guide lead optimization in drug discovery ​37​. ​qFit-ligand ​ takes a model, map, 
and information about the position of the ligand of interest (chain and residue number). The output is 
a set of conformations of the ligand. In ​Figure 4 ​, we show two examples of ligands taking on multiple 
conformations to two different proteins, CDK2 ​38​ and Human Leukotriene A4 Hydrolase ​39​.  
 
 

 
Figure 4: qFit 3 generates occupancy-weighted multiconformer models for bound ligands. 

A) Left: ​Deposited alternative conformations of​ ​thiazolylpyrimidine, an inhibitor of CDK2, in a 
co-crystal structure (PDB ID: 5hq5). The 2 ​m​Fo-​D​Fc composite omit density map is contoured 
at 1σ (dark blue cloud) and at 0.5σ (light blue cloud and grey mesh). Occupancies of 
alternative conformations are labeled in italics. 
Right:​ ​qFit-ligand ​ successfully identifies both deposited alternative thiazolylpyrimidine 
conformations, as well as an additional, similar conformer.  

B) Left:​ Deposited conformation of ​4-(4-benzylphenyl)thiazol-2-amine, an epoxide hydrolase 
selective inhibitor, co-crystallized with human Leukotriene A4 Hydrolase (PDB ID: 4l2l)​39​.  
Right:​ ​qFit-ligand ​ models both the deposited ​4-(4-benzylphenyl)thiazol-2-amine ​conformation 
and suggests two additional conformations that, unlike the deposited conformation, fit entirely 
within the 1σ density contour. 
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Discussion 
qFit 3 is a significantly faster implementation of the qFit algorithm that can now run on commodity 
computer hardware like a laptop. It is open-source and freely available, with simple installation 
instructions. qFit 3’s speed enables application of the qFit approach to series of multiple datasets 
generated by new high-throughput methods in crystallography; to large, increasingly high-resolution 
cryo-EM structures with many thousands of amino acids; and to many more structural bioinformatics 
studies that focus on conformational heterogeneity. 
 
Although qFit 3 can be run in an automated fashion on large (numbers of) structures, the user should 
apply caution in interpreting its multiconformer models. False positives can occur when qFit 3 selects 
spurious alternative protein conformations based on density that corresponds to other atoms such as 
water molecules. False negatives can occur when qFit 3 fails to sample backbone conformational 
space sufficiently. Development of qFit is ongoing and the user community is invited to contribute to 
the open-source project at ​https://github.com/ExcitedStates/qfit-3.0 ​. 
 
To improve qFit further, we envision several new developments. For example, qFit’s backbone 
sampling methodology has ample room for improvement. Currently in qFit, each amino acid’s 
backbone is translated along the principal axes of the anisotropic ellipsoid of the Cß atom (or O for 
Gly), while closure of the backbone is maintained by torsion-based nullspace inverse kinematics, thus 
positioning it to accommodate suitable alternative side-chain rotamers (Methods). Although this 
current backbone sampling is powerful for capturing small-scale motions, it is limited in its ability to 
capture larger ones (​Figure 2B​). A suite of backbone sampling methods in qFit, ranging from 
backrubs ​40​ and helix “shear” ​41,42​ to inverse-kinematics-based loop modeling ​43​, would be able to 
overcome this limitation. These new methods will allow qFit to model alternative conformations that 
are related to each other by larger, biologically relevant motions, as with loops in ​protein tyrosine 
phosphatase 1B (PTP1B)​ ​7​ and helices in isocyanide hydratase (ICH) ​15​. A related challenge is that 
hierarchical alternative conformations — such as alternative loop or helix backbone positions that 
each have alternative side-chain rotamers — are not supported in the existing PDB format. It may be 
possible to use additional restraints to bypass this limitation, as with refinement of the multi-state 
models from PanDDA ​44​, which are conceptually related but distinct from the multiconformer models 
from qFit. Alternatively, the new PDBx/mmCIF format that was recently adopted by the PDB could be 
used to explicitly define hierarchical relationships between alternative conformations. 
 
Another important direction is improving ligand models, and correlating protein alternate 
conformations with alternate ligand binding modes. Currently, qFit lacks chemical knowledge of ligand 
atoms such as hybridisation and protonation. Incorporating this knowledge, for example with the help 
of sophisticated force fields that work in tandem with crystallography maps ​45​, will greatly improve 
ligand model quality and help determine the precise interactions between protein and ligand. 
 
Finally, the problem of compositional heterogeneity must be addressed. Some of the alternative 
conformations in the protein may be in response to the ordering of other components in the unit cell 
(heteroatoms such as ligands, crystallographic additives, and solvent). While multi-dataset 
approaches, such as PanDDA ​11​, may increase confidence in modeling partially occupied ligands and 
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crystal additives, addressing the problem of partially occupied solvent may be bootstrapped by using 
stereotypical interactions in a solvated rotamer library ​46​. Solving this problem will also help to better 
define the border between proteins or ligands and bulk solvent ​47​, which is likely to be key to reducing 
the “R-factor gap in crystallography” ​48​. 

Conclusion 
X-ray crystallography and cryo-electron microscopy remain the dominant experimental techniques to 
obtain structural information for proteins and their complexes with other macromolecules or with 
ligands, like therapeutic chemical compounds. New, emerging experimental techniques in X-ray 
crystallography and ever-increasing resolution limits in cryo-EM can reveal an ensemble of protein 
and ligand conformations that can provide insights into molecular mechanisms and function. qFit 3 
automates interpreting an ensemble from X-ray or cryo-EM density maps, and generates an 
unbiased, internally consistent, parsimonious model of conformational heterogeneity. We refactored 
qFit with a specific focus on efficiency and ease-of-use, so that it effortlessly installs and runs on a 
standard laptop to facilitate advanced interpretation of experimental structural biology data.  

Methods 

qFit algorithm 
Overview: ​qFit samples a large number of conformers and uses a deterministic approach to select a 
small ensemble of these conformers that parsimoniously explains local density. The method starts 
from an initial single-conformer model and generates candidate conformers for each residue/ligand in 
the initial structure. It evaluates all possible combinations of these conformers to determine an 
optimal ensemble. A final relabeling step ensures that conformers of different residues/ligands have 
consistent altloc labels. For all analyses in this manuscript, default parameters were used unless 
otherwise stated. ​Figure 5 ​ provides a graphical overview of both the ​qFit-protein ​ and ​qFit-ligand 
algorithms, the two main command-line utilities of the qFit 3 package for automatic multiconformer 
modeling of proteins or ligands. 
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Figure 5:​ A flowchart of the sample-and-select protocols for (A) ​qFit-protein ​, and (B) ​qFit-ligand​. See 
Supplementary Figure 3 ​ for a flowchart of the subsequent refinement stage. 
 
Input: ​The qFit 3 protocol accepts input density maps or map coefficients in several commonly 
accepted crystallographic or cryo-EM file formats (MTZ, CCP4). For best performance, we 
recommend the use of a composite omit map for crystallographic densities ​49​. All runs of qFit 3 on 
crystal structures described in this manuscript used an input composite omit map generated with the 
phenix.composite_omit_map ​command from the Phenix software suite ​33​. Refinement was carried out 
on each partial model (​omit-type=refine ​) and default parameters were used for this calculation. qFit 3 
also expects a PDB file containing the structure of interest as input. Hydrogens are automatically 
removed to provide uniform treatment of input models. Note that during the final refinement stage, 
hydrogens will be (re-)added (see Final refinement script). For analyses described in this manuscript, 
we removed all alternate conformers (except for altloc A) using the ​phenix.pdbtools​ executable and 
used the resulting single-conformer input structure as input for all subsequent modeling.  
 
Map treatment: ​qFit 3 converts the input maps to absolute scale following the protocol described in 
reference ​50​. The software creates ​a lookup table corresponding to the theoretical spatial density 
value distribution for each atomic element for radial shells spaced at 0.01 Å. ​The mask radius for this 
calculation is resolution-dependent (default radius = 0.5 Å + resolution/3). qFit 3 indirectly avoids 
clashes during sampling by means of a real-space density subtraction. It uses all atoms whose 
conformations are not being sampled to calculate a density map to perform this real-space 
subtraction. This prevents undesirable modeling into density from neighboring residues/side chains. 
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The mask radius and an option to use excluded volume for clash detection instead, as detailed in ​32​, 
can be determined via the command line. Different sets of scattering factors are used for electron 
density maps from X-ray crystallography vs. Coulomb potential maps from cryo-EM. For convenience, 
we refer to both types of maps as “density maps” in this paper. 
 
Conformational sampling for residues: ​qFit 3 exhaustively samples residue conformations in three 
stages: backbone sampling, Cα-Cß-Cγ bond angle sampling (for certain residues), and side-chain 
sampling (​Figure 5A)​. These are all enabled by default, but can be individually disabled via 
command-line options. 
 
Backbone sampling:​ qFit 3 samples backbone conformations by means of a nullspace inverse 
kinematics algorithm ​28,35,43​. Backbone sampling for each residue extends to neighboring residues, 
two on each side. Backbone sampling is not performed if a residue lacks two neighbors on both sides 
(e.g., close to terminal residues). The Cß atom of the residue of interest (or O atom for Gly) is moved 
in the direction of the major and minor axes of its thermal ellipsoid. By default, three amplitudes for 
this sampling are used (0.1 + σ, 0.2 + σ, 0.3 + σ), where σ is randomly selected in the interval [-0.125, 
0.125].  
 
The amplitude scaling factor and the maximum value of σ can be defined at input. In total, three 
amplitudes times six directions = 18 positions for the Cß (O in case of glycine) are tested. The 
five-residue fragment is then deformed using nullspace inverse kinematics and dihedral angle 
degrees of freedom. The input conformation is also added to the ensemble, leading to 19 backbone 
conformations after backbone sampling. Peptide flips ​35​ are not yet implemented in qFit 3. 
 
Cα-Cß-Cγ bond angle sampling:​ For amino acids with large planar aromatic groups (Phe, Tyr, Trp, 
His), qFit samples around the Cα-Cß-Cγ bond angle of the 19 backbone conformations resulting from 
the previous sampling step. For each conformation, we sample the Cα-Cß-Cγ bond angles as follows: 
[θ - 7.5 ​o​, θ - 3.75 ​o​, θ, θ + 3.75 ​o​, θ + 7.5 ​o​]. Both the range and the step of the bond angle sampling can 
be adjusted via command line. This step expands the number of sampled conformations to 95 for the 
large planar aromatic residues. 
 
Side-chain sampling: ​Side-chain sampling in qFit 3 is performed by iteratively rotating around the χ 
angles of ideal rotamers. The protocol begins by rotating around χ​1​. For each of the (19 or 95) 
backbone conformations, we rotate around each of the rotamers for the target residue in the 
penultimate rotamer library ​25​. For each rotamer, we explore a sampling window using a rotamer 
neighborhood of [-60 ​o​, +60 ​o​] at 10 ​o​ intervals. Both the sampling window and the step size can be 
defined via command-line options. For the default parameters, at most 19*5*(8+1)*13 = 11,115 
conformations are generated (with either Phe, Tyr, Trp, or His), which provides a balance between 
performance and accuracy. From this set, we remove conformations that lack support from the 
subtracted density map (voxel with minimum density intensity < 0.3 e ​-1​ Å​-3​), conformations that 
contain self-collisions (based on hard spheres), and conformations that are redundant (using an 
all-atom RMSD threshold of 0.01 Å). These exclusion strategies can be adjusted via command-line 
options. For protein and ligand atoms, B-factor sampling is also a non-default option. 
 
Once the backbone and χ​1​ sampling is complete, the protocol initiates a selection step based on our 
optimization strategy (see Optimization protocol for more details). We select all atoms starting from 
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the backbone up to the atoms involved in the χ angle being sampled (χ​1 ​in this first iteration). The 
remaining atoms are rendered inactive, and their density contribution is not taken into account during 
optimization. Up to five conformers can be selected at each iteration, which then serve as the basis 
for sampling of subsequent χ angles. 
 
From the second iteration onwards, we sample up to two χ angles simultaneously (also defined at 
command line). After sampling χ​i ​ we exclude unsupported, clashing, and redundant conformers (as 
outlined above) and use this filtered conformer ensemble to sample around χ​i+1​. In the worst case 
scenario (Arg), χ​i ​ leads to 5*(34+1)*13 = 2,275 conformers and up to 2,275*(34+1)*13 = 1,035,125 
conformations are produced for χ​i+1​. In practice, this number of conformations is never produced 
owing to redundancy. We limit the number of conformations that can be used during optimization to 
15,000 for computational efficiency and memory (RAM) constraints. If sampling two χ​ ​angles in a 
single iteration leads to more than 15,000 conformers, we reduce sampling to a single χ for that 
iteration. Side-chain sampling concludes when all χ angles have been sampled. 
  
Conformational sampling for ligands: ​Ligand sampling in qFit 3 is performed in two steps: a local 
rigid body search followed by an iterative step which samples the degrees of freedom about the 
flexible areas of the ligand ​32​ (​Figure 5B). ​For the local search, we identify all possible roots, i.e. rigid 
fragments of atoms. Rigid fragments are defined as a set of connected atoms that do not contain a 
rotatable bond. We sample conformations starting from each possible root. Around the center of each 
ligand root, we test 100 possible rotations, by sampling rotation space in intervals of [0 ​o​, 10 ​o​]. For 
each rotation, we enumerate possible translations for x, y, and z coordinates in the interval [-0.2 Å, 
0.2 Å] at 0.1 Å increments. The local search leads to 100(rotations)*125(translations) = 12,500 
conformers. We then exclude conformers that do not have support from the density (voxel with 
minimum density intensity < 0.3 e ​-1​ Å​-3​) and conformations that are redundant, using an all-atom 
RMSD threshold cutoff of 0.01 Å. Additionally, conformers with internal (ligand) or external clashes 
(receptor) are removed using a spatial hashing algorithm, which efficiently converts the 3D 
coordinates to a 1D hash table to determine if the sampled portion of the ligand occupies the same 
spatial coordinates as any other part of the ligand and/or receptor. After this exclusion step, remaining 
conformations are used as input for the optimization routine (see below), which selects up to five 
conformers of each root to best represent the local density.  
 
Still treating each root independently, we take the root fragments selected by the local rigid body 
search and “expand” each fragment to the full ligand, by iteratively sampling around rotatable bonds. 
The protocol follows a rotatable bond hierarchy from the root to the extremities of the molecule. For 
each rotatable bond, we sample all angles in a [0 ​o​, 360 ​o​] interval at 10 ​o​ increments. Two rotatable 
bonds are sampled at a time, leading to 5*36*36 = 6,480 conformations per iteration. At each 
iteration, we exclude conformers that do not have support from the density (voxel with minimum 
density intensity < 0.3 e ​-1​ Å​-3​), those with an all-atom RMSD of <0.01 Å, or that contain internal or 
external clashes. After exclusion, qFit uses the optimization routine to select up to five conformers to 
be used for the next iteration. After all rotatable bonds have been sampled, up to five conformers can 
be output for each root. One final optimization step is used to select up to five consensus conformers 
from the pool of conformers produced across all roots.  
 
Optimization Protocol: ​We frame the problem of selecting a subset of conformers that best 
represents local density as an optimization problem. Each conformer has an occupancy ​ω​i ​ ​associated 
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with it. The vector of all occupancies ​ω ​T​ contains the variables for the optimization, with the extra 
constraints that ​ω​i ​ ​ are non-negative and their sum lies in the unit interval. We optimize real-space 
residuals, calculated from the observed density (​ρ​obs​) against the occupancy-weighted sum of the 
calculated densities (​ρ​i ​

calc​
 ​) for all conformers. We can formulate this problem as constrained quadratic 

optimization: 
 

 
  
Residuals are calculated over all voxels within (0.5 + resolution / 3) Å from any active atoms across 
all input conformers. To prevent overfitting conformers with arbitrarily small occupancies, we require a 
threshold constraint on the occupancies, turning the problem into a mixed-integer quadratic program 
(MIQP): 
 

 
 
Note that this ensures that the number of conformers selected is at most . The optimal 
threshold parameter is determined using a ​penalized-likelihood criteria ​ (see below). An MIQP is 
NP-hard, thus applying an MIQP solver directly to the conformers output from our sampling step is 
computationally inefficient ​28,35​. Applying a QP solver to the thousands of conformers output from our 
sampling routine, and then selecting the QP-fitted conformers with non-zero occupancy as input for 
MIQP, allows for near-optimal solutions to be calculated within a tractable time. Our protocol uses 
cvxopt (​https://cvxopt.org/​) and a proprietary, freely available implementation of the ​IBM ILOG CPLEX 
Optimization Studio ​ ​(Python API, version 12.10) to solve QP and MIQP programs.  
 
Achieving parsimony by means of the Bayesian Information Criterion (BIC)​: To prevent 
overfitting and to ensure optimal model selection, we use the Bayesian Information Criterion to decide 
on model complexity. For every optimization call in qFit, we iteratively test increasing values of the 
threshold parameter  and determine if the gain of information justifies the use of a more complex 
model. We fit iteratively, allowing the maximum number of conformers to vary from 1 up to 5 
conformers ranked according to real-space correlation. For each iteration, we use our combined 
QP/MIQP routine to optimize the real-space residual sum of squares (RSS). We calculate the BIC for 
each level of complexity according to the following formula: 
  

, 
 

14 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.280222doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Baligned%7D%20%26%20%5Cunderset%7B%5Comega%7D%7B%5Ctext%7Bmin%7D%7D%20%26%20%26%20%7C%7C%20%5Crho%5E%7Bobs%7D%20-%20%5Csum_i%20%5Comega_i%5Crho%5E%7Bcalc%7D_%7Bi%7D%20%7C%7C_2%20%5C%5C%26%20%5Ctext%7Bsubject%20to%7D%20%26%20%26%200%20%5Cleq%20%20%5Csum_i%20%5Comega_i%20%5Cleq%201%20%5C%5C%5C%5C%20%26%20%26%20%26%20%5Comega_i%20%5Cgeq%200%20%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Ctext%7Bfor%20%20%7D%20%20i%20%3D%201%2C%20%5Cdotsc%20%2C%20N.%20%5Cend%7Baligned%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Baligned%7D%20%26%20%5Cunderset%7B%5Comega%7D%7B%5Ctext%7Bmin%7D%7D%20%26%20%26%20%7C%7C%20%5Crho%5E%7Bobs%7D%20-%20%5Csum_i%20%5Comega_i%5Crho%5E%7Bcalc%7D_%7Bi%7D%20%7C%7C_2%20%5C%5C%5C%5C%20%26%20%5Ctext%7Bsubject%20to%7D%20%26%20%26%20z_i%20t_%7Bd_%7Bmin%7D%7D%20%5Cleq%20%5Comega_i%20%5Cleq%20z_i%2C%20%5C%3B%20z_i%20%5Cin%20%5C%7B0%2C1%5C%7D%5EN%5C%5C%5C%5C%20%26%20%26%20%26%200%20%5Cleq%20%20%5Csum_i%20%5Comega_i%20%5Cleq%201%2C%20%5C%3B%5Ctext%7Bfor%20%20%7D%20%20i%20%3D%201%2C%20%5Cdotsc%20%2C%20N.%20%5Cend%7Baligned%7D#0
https://paperpile.com/c/jAsZRi/uFqT+hfZO
https://cvxopt.org/
https://www.codecogs.com/eqnedit.php?latex=t_%7Bd_%7Bmin%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7BBIC%7D%20%3D%20n%20%5Cln(%5Cmathrm%7BRSS%7D%20%2F%20n)%20%2B%20k%20%5Cln%20(n)#0
https://doi.org/10.1101/2020.09.03.280222
http://creativecommons.org/licenses/by/4.0/


where  is the number of voxels in our resolution-dependent mask (see previous section for details) 
and  is the number of parameters in the model. 
Each active atom has four parameters: x, y, z, and B-factor. Note that the occupancies are variables 
and not parameters. The factor  is a proxy for model complexity and imposes a limit on the 
maximum number of conformations. We select the number of conformers that minimizes the BIC. 
 
Parallelization: ​qFit 3 can be run individually for a single residue or ligand of interest, or in parallel 
across a whole protein using Python’s ​multiprocessing ​ module to spawn embarrassingly parallel 
subprocesses that run qFit across all residues in a target protein.  
 
Validation metrics: ​For each residue/ligand modeled by qFit 3, we output several validation metrics, 
which include the BIC and the related Akaike information criterion  ​with  and 
k as above. qFit 3 also reports a ​confidence interval for the real-space cross-correlation of the 
proposed conformers. ​The confidence interval is calculated from the Fisher z-score of the real-space 
cross-correlation  ​51​: 

 
 

 
Note that the z-score is approximately normally distributed with a standard deviation of

, ​where  is the number of voxels in our resolution-dependent mask around the set of 
conformers being assessed. qFit 3 reports the 95% confidence interval  for the 
cross-correlation. Overlapping intervals suggest that the gain in cross-correlation is statistically not 
significant; we cannot reject the null hypothesis that the cross-correlations are the same at 95% 
confidence.  
 
These auxiliary validation metrics are not used to filter results, but provide a guideline for balancing 
gain of information vs. model complexity.  
 
Building an internally consistent structural model: ​In the procedure above, residues are modeled 
independently, i.e., without taking into account multiconformer models for neighboring residues. This 
leads to two modeling inconsistencies. First, consecutive residues may have different occupancies for 
each altloc, or even a different number of alternate conformations. Second, alternate conformers of 
(not necessarily consecutive) side chains in a spatial neighborhood can clash owing to inconsistent 
assignment of altloc identifiers. To resolve these two inconsistencies, we execute two routines: 
qFit-segment, which addresses the problem of inconsistency along the backbone, and qFit-relabel, 
which resolves clashing alternate conformers between neighboring residues by reassigning altloc 
labels.  
 
The qFit-segment routine starts by identifying all segments along the backbone for which all residues 
have at least two backbone conformers. To mark the start and end points of such backbone 
segments, we identify residues for which either (a) a single conformer was output, or (b) where the 
backbone Cα and O atoms of that residue’s conformers do not deviate by more than 0.05 Å. A 
segment is then delimited by these single-backbone-conformer residues. To create consistent 
segments, we proceed iteratively. We break the segments in fragments of up to 4 residues 
(adjustable via the command line). We enumerate all possible combinations of conformers for the 
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fragment, which at worst case leads to 5 ​4​ = 625 possible conformers. We use our optimization 
strategy (QP/MIQP iteratively, using the BIC) to select up to five conformers per fragment based on 
optimal fit to the experimental map (not based on covalent geometry). To ensure consistency with the 
PDB file format and compatibility with refinement software, we duplicate conformers for some 
residues within a fragment as needed to ensure that all consecutive residues have the same number 
of backbone conformers. Once all 4-residue fragments have been modeled in this fashion, we 
proceed to enumerate all possible combinations of such length-4 fragments. This leads to fragments 
of at most length 16, and, again, at worst case 5 ​4​ = 625 possible conformers. We continue to iterate in 
this fashion, enumerating all possible combinations and solving/modeling, until the segment is 
completed. The output of the qFit-segment routine is segments, each with up to five conformers, for 
which the backbone is consistent, i.e., for which all atoms for each conformer have the same label 
and occupancy.  
 
Next, qFit-relabel relies on simulated annealing (SA) optimization of a Lennard-Jones potential to 
reassign altloc labels. We calculate the pairwise Lennard-Jones potential across every atom of all 
conformers output by qFit. Parameters for the Lennard-Jones calculation were taken from the Amber 
ff99SB forcefield ​52​. The procedure selects five segments at random (a segment can include a single 
residue in this case) and randomly shuffles their labels. We then assess the change in the 
Lennard-Jones potential and either accept or reject this move. The probability of accepting an 
unfavorable move is defined as: 
 

 
 
The temperature begins at 273 (arbitrary units), and is decreased by 10% every 10,000 perturbations. 
By default, 100,000 perturbations are sampled during relabeling. Benchmarking suggests that this 
value is sufficient for the scoring function to converge (data not shown). The output of the relabeling 
routine is a multiconformer model with up to five conformers per residue, in which backbones are 
consistent and in which alternate conformers for side chains are not clashing. 
 
Final refinement script: ​We performed iterative refinement on the qFit multiconfomer models using 
version 1.18 of the Phenix software suite ​33​ to normalize the initially distorted covalent geometry, to 
ensure that the output models are properly fit into density (​Supplementary Figure 3)​, and to remove 
any unnecessary conformers. 
 
For X-ray crystallography structures, this iterative refinement protocol uses the ​phenix.refine 
executable (script name: qfit_final_refine_xray.sh). The initial round of refinement is done without 
hydrogens and uses the strategy=*individual_sites. We then (re-)add hydrogens to the model ​53​. The 
next rounds of refinement use the following parameters: strategy=*individual_sites *individual_adp 
*occupancies, number_of_macro_cycles=5. At each iteration, we remove all conformers for which the 
occupancy fell below a cutoff of 0.09. This iterative cycle continues for as long as atoms are being 
removed due to this occupancy cutoff criterion. We then perform one last refinement round.  
 
For cryo-EM structures, we use a similar refinement protocol as described above, but using 
phenix.real_space_refine ​ ​36​ (script name: qfit_final_refine_cryoem.sh). All rounds of real-space 
refinement use the default parameters. 
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High-performance and cloud computing 
qFit is capable of scaling from single laptops to large high-performance computing clusters. The 
following instructions enable qFit on Amazon's AWS, and should readily generalize to other cloud 
providers and RPM-based Linux distributions. 
We describe configurations at two different scales: a single instance and an autoscaling cluster with a 
free master instance. 

Single instance 
Launch an instance that will be used to execute qFit. AWS's ​c5.9xlarge​ instance has an 
appropriate number of cores and amount of memory for most proteins. 
 
The following Bash script, reproduced from ​docs/aws_deploy.sh​ in the qFit repository, installs qFit 
and its dependencies within a conda environment: 
 
#!/usr/bin/env bash 
 
# Tested on Amazon Linux 2, but should work on most RPM-based Linux distros 
 
# install Anaconda RPM GPG keys 
sudo rpm --import https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc 
 
# add Anaconda repository 
cat <<EOF | sudo tee /etc/yum.repos.d/conda.repo 
[conda] 
name=Conda 
baseurl=https://repo.anaconda.com/pkgs/misc/rpmrepo/conda 
enabled=1 
gpgcheck=1 
gpgkey=https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc 
EOF 
 
sudo yum -y install conda 
sudo yum -y install git gcc 
 
source /opt/conda/etc/profile.d/conda.sh 
conda create -y --name qfit 
conda activate qfit 
 
conda install -y -c anaconda mkl 
conda install -y -c anaconda -c ibmdecisionoptimization cvxopt cplex 
 
git clone https://github.com/ExcitedStates/qfit-3.0.git 
cd qfit-3.0/ 
 
# Optionally, uncomment the following line to set a specific version of qFit 
#git checkout v3.2.0 
pip install . 
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Consider creating an image of the instance at this point to avoid executing the above script each time 
an instance is launched from a base instance. 
 
After installation, it is necessary to execute ​source  
 

/opt/conda/etc/profile.d/conda.sh  
 
to set up conda within your Bash shell then activate the conda environment by executing 
 
conda activate qfit​. 
 
Using the example described it qFit's ​README.md​, alternative conformers for all residues in 3K0N can 
be calculated by executing  
 
qfit_protein 3K0N.mtz -l 2FOFCWT,PH2FOFCWT 3K0N.pdb -p 36  
 
for ​3K0N.mtz​ and ​3K0N.pdb​ in the current working directory, utilizing up to 36 cores. 

Autoscaling cluster 
Additionally, ParallelCluster can be used to create an autoscaling cluster to maximize efficiency of 
cloud resources. See Supplementary Methods for details. 
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