

1 **Massive expansion of human gut bacteriophage diversity**

2

3 **Luis F. Camarillo-Guerrero,^{1,*} Alexandre Almeida,^{2,3} Guillermo Rangel-Pineros,² Robert D.**

4 **Finn,² Trevor D. Lawley^{1*}**

5 ¹Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus,
6 Hinxton, CB10 1SA, UK.

7 ²European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA,
8 UK

9 ³Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.

10 *Correspondence: lg15@sanger.ac.uk (L.F.C.), tl2@sanger.ac.uk (T.D.L.)

11

12 **SUMMARY**

13 Bacteriophages drive evolutionary change in bacterial communities by creating gene flow networks that
14 fuel ecological adaptions. However, the extent of viral diversity and prevalence in the human gut
15 remains largely unknown. Here, we introduce the Gut Phage Database (GPD), a collection of ~142,000
16 non-redundant viral genomes (>10 kb) obtained by mining a dataset of 28,060 globally distributed
17 human gut metagenomes and 2,898 reference genomes of cultured gut bacteria. Host assignment
18 revealed that viral diversity is highest in the Firmicutes phyla and that ~36% of viral clusters (VCs) are
19 not restricted to a single species, creating gene flow networks across phylogenetically distinct bacterial
20 species. Epidemiological analysis uncovered 280 globally distributed VCs found in at least 5 continents
21 and a highly prevalent novel phage clade with features reminiscent of p-crAssphage. This high-quality,
22 large-scale catalogue of phage genomes will improve future virome studies and enable ecological and
23 evolutionary analysis of human gut bacteriophages.

24

25

26

27

28

29 INTRODUCTION

30 Viruses are the most numerous biological entities on Earth with an estimated population size of
31 10^{31} particles (Brüssow and Hendrix, 2002). Bacteriophages (or phages; viruses that infect
32 bacteria and archaea) profoundly influence microbial communities by functioning as vectors of
33 horizontal gene transfer (Jain et al., 1999), encoding accessory functions of benefit to host bacterial
34 species (Harrison and Brockhurst, 2017), and promoting dynamic co-evolutionary interactions
35 (Betts et al., 2014) . For decades, the discovery of phages occurred at a slow pace. However, with
36 the advent of high-throughput metagenomics, it became possible to uncover an unparalleled
37 amount of novel phage diversity (Al-Shayeb et al., 2020; Paez-Espino et al., 2016). A surprising
38 finding was that the majority of phage sequences uncovered by metagenomics could not be
39 classified into any known viral taxonomy laid out by the International Committee on Taxonomy of
40 Viruses (ICTV) (e.g. species, genus, family) (Simmonds et al., 2017) prompting many researchers
41 to organize phage predictions from metagenomic datasets into grouping schemes based solely on
42 genomic features (Bin Jang et al., 2019).

43

44 The impact of phages on different ecosystems is beginning to be uncovered, with phages found in
45 the oceans already being referred to as 'puppet masters' due to their significant impact on oceanic
46 biogeochemistry (Breitbart et al., 2018). Given the impact of the gut microbiome composition and
47 function on human health, there is a growing focus on phages that inhabit the gut ecosystem
48 (Clooney et al., 2019; Kho and Lal, 2018). The first metagenomic studies revealed that the majority
49 (81%-93%) of the viral gut diversity is novel (Manrique et al., 2016; Reyes et al., 2010) but gut
50 phage host assignment and host range remain largely uncharacterized. An exception has been p-
51 crAssphage, a phage discovered in 2014 by computational analysis of metagenomic reads and
52 found in >50% of Western human gut microbiomes (Dutilh et al., 2014). Analyses of predicted
53 phage sequences from gut metagenomes have yielded fascinating insights into phage biology,
54 such as the presence of sticky domains — which may facilitate adherence of phage to the intestinal
55 mucus (Barr et al., 2013) — reverse transcriptases that promote gene hypervariation (Minot et al.,
56 2012), and proteins with ankyrin domains that may aid bacterial hosts in immune evasion (Jahn et
57 al., 2019)

58 Previous analyses have focused on bulk viral fragments with limited resolution to characterize
59 individual phage genomes or link specific phage to a bacterial host species (Minot et al., 2012).
60 More recently, human gut metagenomes have been mined to compile a more comprehensive list
61 of gut phage genomes (Gregory et al., 2019; Paez-Espino et al., 2019), providing new fundamental
62 insights into the viral diversity and functions present in the human gut microbiome. Nevertheless,
63 the limited number (<700) of metagenomes used to construct these databases (GVD and gut
64 phage fraction from IMG/VR), and the fragment size of their predictions (median size <15 kb as
65 opposed to ~50 kb for an average *Caudovirales* phage genome commonly found in the human
66 gut), suggests that the majority of gut phage diversity remains uncharacterized and incomplete.
67 Indeed, a recent report estimated that IMG/VR, which contains viral sequences from a wide range
68 of environments, showed that only 1.9% of the predictions were complete, and 2.5% were
69 classified as high-quality (>90% complete)(Nayfach et al., 2020). A comprehensive resource of
70 longer and complete reference phage genomes is required to enable genome-resolved
71 metagenomics for gut phage studies across human populations.

72

73 Here, we introduce the Gut Phage Database (GPD), a highly curated database containing 142,809
74 non-redundant phage genomes derived from the analysis of 28,060 globally distributed
75 metagenomic samples. Importantly, the GPD includes over 40,000 high-quality genomes with a
76 median size of 47.68 kb. We use GPD to gain insight into the biology, host range and global
77 epidemiology of human gut phages. We uncover 280 globally distributed viral clusters, including
78 one viral clade (Gubaphage) with reminiscent features to p-crAssphage. Given the high quality of
79 the reference genomes, the database size, and the sequence diversity harboured by the GPD, this
80 resource will greatly improve the characterization of individual human gut bacteriophages at a
81 global or local scale.

82

83

84

85

86 **RESULTS**

87 **Generation of the Gut Phage Database (GPD)**

88 In order to obtain a comprehensive view of human gut phage diversity, we analysed 28,060 public
89 human gut metagenomes and 2898 bacterial isolate genomes cultured from the human gut (Figure
90 1A). To identify viral sequences among human gut metagenomes, we screened over 45 million
91 assembled contigs with VirFinder (Ren et al., 2017) which relies on *k*-mer signatures to
92 discriminate viral from bacterial contigs, and VirSorter (Roux et al., 2015) which exploits sequence
93 similarity to known phage and other viral-like features such as GC skew. Since obtaining high-
94 quality genomes was essential for our downstream analyses, we used conservative settings (see
95 “Methods” section for further details) for both tools and retained only predictions that were at least
96 10 kb long.

97

98 To further improve the quality of the dataset, we devised a machine learning approach to filter out
99 contaminant mobile genetic elements (Figure S1A). We identified predictions carrying machinery
100 from type IV secretion systems, suggesting contamination by integrative and conjugative elements
101 (ICEs). We used a feedforward neural network to discriminate phages from ICEs by exploiting
102 differences in gene density, fraction of hypothetical proteins, and *k*-mer composition signatures
103 (see “Methods” section). The classifier was trained with experimental sequences of phages and
104 ICEs and showed an excellent performance in an independent test set (AUC>0.97) (Figure S1B)
105 of human gut mobile genetic elements (MGEs). Next, we dereplicated the final set of filtered
106 sequences at a 95% average nucleotide identity (ANI) threshold (over a 75% aligned fraction)
107 obtaining a database of 142,809 gut phage sequences, henceforth referred to as the Gut Phage
108 Database (GPD).

109

110 We estimated the level of completeness of each viral genome using CheckV (Nayfach et al., 2020)
111 (Figure 2B). This tool infers the expected genome length of a viral prediction based on the average
112 amino acid identity to a database of complete viral genomes from NCBI and environmental
113 samples. In total, 13,429 (9.4%) of the viral genomes were classified as complete, 27,999 (19.6%)
114 as high-quality, and 101,381 (70.99%) as genome fragments (<90% complete). This classification

115 scheme is consistent with the MIUViG standards (Roux et al., 2019). The median genome
116 completeness of all genomes stored in the GPD was estimated to be 63.5% (interquartile range,
117 IQR= 34.68%–95.31%) (Figure S1C). Estimation of non-viral DNA by CheckV showed that 73.5%
118 of GPD predictions had no contamination whereas 84.13% had a predicted contamination <10%
119 (Figure S2D). In comparison to other human gut phage databases (Gregory et al., 2019; Paez-
120 Espino et al., 2019), GPD had the largest median genome size with ~31 kb, followed by IMG/VR
121 and GVD with 15 kb and 11 kb, respectively (Figure S1E).

122

123 **GPD significantly expands gut bacteriophage diversity**

124 In order to assess the viral diversity of the GPD at high taxonomic levels, we used a graph-based
125 clustering approach to group genetically related phages. Merging GPD with the RefSeq phages
126 and two other human gut phage databases (GVD and gut phage fraction of IMG/VR) resulted in
127 the generation of 21,012 non-singleton viral clusters (VCs) with at least 1 GPD prediction (GPD
128 VCs). A VC corresponds to a viral population sharing approximately 90% sequence identity over
129 ~75% aligned fraction (see “Methods” section for further details). Benchmarking against the
130 RefSeq phages (Brister et al., 2015) revealed that the boundaries of GPD VCs were equivalent to
131 a subgenus level, as 99.73% of all VCs were contained within the genus level.

132

133 Strikingly, less than 1% (171 out of 21,012) of the GPD VCs overlap with the RefSeq phages.
134 Phages from these 171 VCs mainly infect *Escherichia*, *Enterobacter*, *Staphylococcus*, and
135 *Klebsiella* genera, reflecting the bias of the RefSeq database towards well-known clinically
136 important and traditionally cultured bacteria. Consistent with previous reports of phage predictions
137 from metagenomic datasets (Hoyles et al., 2014), we were not able to confidently assign a family
138 to the majority (~80%) of GPD VCs, while the rest corresponded mainly to the *Podoviridae*,
139 *Siphoviridae* and *Myoviridae* families (Figure S1E). These 3 viral families belong to the
140 *Caudovirales* order (phages characterized by having tails and icosahedral capsids) which were
141 previously reported to be enriched in human faeces (Hoyles et al., 2014; Roux et al., 2012).

142

143 For comparison purposes, we also considered VCs without GPD predictions (Figure 1C). Analysis
144 of VCs composed from only GPD and IMG/VR genomes showed 3,699 overlaps, while we found
145 3,206 VCs composed of only GPD and GVD genomes. Moreover, GPD harboured the highest
146 number of unique VCs with 12,731 novel clusters. On the other hand, 1099 VCs and 113 VCs
147 were unique to IMG/VR and GVD, respectively. In addition, 1205 VCs were shared by the three
148 databases. Interestingly, the number of VCs with an assigned phage taxon was lower in the VCs
149 that were unique to GPD as opposed to those shared with GVD and IMG/VR (18.74% vs 27.8%)
150 ($P=1.96\times10^{-9}$, χ^2 test). Thus, GPD considerably expanded the previously unknown gut phage
151 diversity in the human gut. This phage diversity expansion is likely driven by the high number of
152 gut metagenomes mined and their global distribution which allows the retrieval of rarer gut phage
153 clades.

154

155 **Bacterial host assignment and host range for gut phage**

156 The GPD creates a unique opportunity to assign specific phage to bacterial host species at an
157 unprecedented scale providing a phylogenetic framework to study gut bacteria-phage biology.
158 Accordingly, we inferred the most likely bacterial hosts for each phage prediction using a
159 comprehensive collection of 2898 high-quality human gut bacterial isolate genomes (Forster et al.,
160 2019; Zou et al., 2019). By screening for the presence of CRISPR spacers targeting phage and by
161 linking the prophages to their assemblies of origin (Edwards et al., 2016), we assigned 40,932
162 GPD phage (28.66% of all predictions) to 2,157 host strains. This corresponded to at least one
163 phage for 74.43% of all cultured human gut bacteria. We then analysed if there was any preference
164 for phage infection across 4 common human gut bacterial phyla (Firmicutes, Bacteroidetes,
165 Proteobacteria, and Actinobacteriota) (Figure S2A). At the phylum level, we detected significant
166 lower phage prevalence in Actinobacteriota, with 58.79% infected isolates compared to at least
167 70% for the other phyla.

168

169 We then measured viral diversity (measured by the number of VCs per isolate) within each phylum.
170 This analysis revealed that the Firmicutes harbour a significantly higher viral diversity (Figure S2B),
171 with an average of 3.13 VCs/isolate while also harbouring 60% of the total VCs assigned across

172 all phyla. Interestingly, the Firmicutes diversity was unevenly distributed as most of the viral
173 diversity originated from the Negativicutes and Clostridia classes, with an average of 4.88 VCs and
174 3.9 VCs per isolate respectively in contrast with the Bacilli (0.99 VC/isolate), and none for Bacilli A
175 and Desulfitobacteriia classes.

176

177 Analysis at the bacterial genus level across all phyla revealed that *Lachnospira*, *Roseburia*,
178 *Agathobacter*, *Prevotella*, and *Blautia* A contain the highest number of VCs/isolate (Figure 2A).
179 With the exception of *Prevotella*, which belongs to the Gram-negative Prevotellaceae family, these
180 genera are members of the Gram-positive Lachnospiraceae family of Firmicutes associated with
181 butyrate-producing spore-formers. In contrast, the lowest viral diversity per isolate was detected
182 among *Helicobacter*, and the lactic acid bacteria *Lactobacillus* H, *Lactobacillus*, *Enterococcus* D
183 and *Pediococcus*. Thus, we observe a wide distribution of phage abundance and prevalence
184 across human gut bacteria, even within the same phylum.

185

186 Horizontal transfer of genes between bacteria via transduction is a major driver of gene flow in
187 bacterial communities (Chen et al., 2018). Host tropism of bacteriophage is believed to be limited
188 by phylogenetic barriers, with most phages being usually restricted to a single host bacterial
189 species (Ackermann, 1998). However, this has not been investigated at large scale across the
190 human gut bacteria. Host assignment at different bacterial taxonomic ranks revealed that the
191 majority of VCs were restricted to infect a single species (64.51%) (Figure S2C). We also found
192 many VCs with broader host ranges such as those restricted to a single genus (22.39%), family
193 (10.79%), order (1.86%), class (0.26%) and phylum (0.13%). Our findings are in line with a recent
194 survey of the host range of gut phages by meta3C proximity ligation (6,651 unique host-phage
195 pairs) which found that ~69% of gut phages were restricted to a single species (Marbouty et al.,
196 2020). Visualization of very broad range VCs (i.e. those not restricted to a single genus) reveals
197 the large-scale connectivity between phylogenetically distinct bacterial species that fuels bacteria
198 adaptation and evolution (Figure 2B). In general, the higher the viral diversity per bacterial genus,
199 the higher the number of phages with broad host range (Figure S2D).

200

201 Surprisingly, two VCs (VC_269 and VC_644) had a host range that spanned two bacterial phyla.
202 VC_269 was predicted to infect *Faecalibacterium prausnitzii* C (Firmicutes) and two
203 *Bifidobacterium* spp. (Actinobacteriota), while VC_644 had a host range that included 5
204 *Bacteroides* spp. (Bacteroidota) and *Blautia A wexlerae* (Firmicutes). We predicted VC_269 to be
205 a *Myoviridae* phage, on the other hand, we could not assign a taxonomy rank to VC_644. The
206 presence of integrases in both VCs suggest that these are temperate phages. We hypothesize
207 that additional phages infecting both Actinobacteriota and Firmicutes may be more common, as
208 recent evidence supports a shared ancestry between phages that infect both Actinobacteria
209 (*Streptomyces*) and Firmicutes (*Faecalibacterium*) (Koert et al., 2019).

210

211 Taken together, we reveal that approximately one third of gut phage have a broad host range not
212 limited to a single host species. Our analysis provides a comprehensive blueprint of phage
213 mediated gene flow networks in human gut microbiome.

214

215 **Human lifestyle associated with global gut distribution of phageome types**

216 The gut phageome can be defined as the aggregate of phages that inhabit the gut (Manrique et
217 al., 2016). We performed the most comprehensive phageome profiling of the human gut by read
218 mapping 28,060 metagenomes against the GPD. These metagenomic datasets used to generate
219 the GPD were sampled from 28 different countries across the six major continents (Africa, Asia,
220 Europe, North America, South America and Oceania). Our initial analysis demonstrated a positive
221 correlation between sample sequencing depth and the number of viral genomes detected for
222 samples with <50 million reads. Therefore, we focused further analysis on a dataset of 3011 deeply
223 sequenced (>50 million reads) metagenome samples spanning all continents and 23 countries
224 (Figure S3A).

225

226 We observed clear separation of the North American, European, and Asian phageomes from
227 African and South American samples when we computed the inter-sample Jaccard distance
228 (Figure 3A) ($P = 0.001$, PERMANOVA test). Interestingly, these phageome patterns are associated
229 with important differences in human lifestyles. Country-wise, samples derived from Africa and

230 South America were mainly sampled from Peru, Tanzania, and Madagascar. Specifically, Peruvian
231 and Tanzanian samples originate from hunter gatherer communities whereas Malagasy samples
232 come from rural communities with non-Western lifestyles. Oceania was a special case because it
233 had a similar fraction of samples belonging to both groups. However, when we stratified by country,
234 we revealed that all Fijian samples clustered with the rural group, whereas Australian samples
235 segregated with the urbanized cluster. Fiji samples were derived from rural agrarian communities.
236 These observations support the hypothesis that lifestyle, particularly urbanization, may drive
237 differences in the gut phageomes across different human populations.

238
239 We reasoned that the bacterial composition of an individual's microbiome would shape the gut
240 phageome. Prevotellaceae bacteria are more abundant and prevalent in individuals living a
241 rural/traditional lifestyle, whereas *Bacteroides* are more abundant and prevalent in individuals
242 living a urban/Western lifestyle (Wu et al., 2011). By harnessing the host assignment data for each
243 phage, we found a significantly higher proportion of VCs assigned to the Prevotellaceae family
244 from African, South American and Fijian metagenome samples than that of North America, Europe,
245 Asia, and Australia ($P = 0.0$, χ^2 test) (Figure 3B). Conversely, the *Bacteroides* phages were
246 significantly more prevalent in North America, Europe, Asia, and Australia gut microbiomes ($P =$
247 1.72×10^{-208} , χ^2 test). Given the correlation between microbiome enterotypes and phageome types,
248 driven by the intimate connection between phages and their bacterial hosts, we provide evidence
249 that human lifestyle is associated with global variation of gut phageomes, most likely mediated by
250 differences in the host gut microbiome.

251
252 **Global distribution of 280 dominant human gut phages**
253 If the gut phageome is predominantly shaped by the bacterial composition, we would expect to
254 observe strong correlation between the prevalence of VCs with that of their bacterial hosts. A clear
255 example is the crass-like family of gut phages which can be divided into 10 phage genera (Guerin
256 et al., 2018). Genus I, which has been found in a large fraction of Western microbiome samples is
257 able to infect species from the *Bacteroides* genus. In contrast, genera VI, VIII and IV were
258 previously found to be the most prevalent crass-like phage among Malawian samples (Guerin et

259 al., 2018). Here, we predict that the most probable host of these three phage genera is *Prevotella*
260 *copri* (rest of crAss-like family predicted hosts in Table S1). In accordance with the results from the
261 Malawian samples, we also found the prevalence of genera VI, VIII and IV to be higher than genus
262 I in Africa, South America, and Fiji (Figure 4A). Thus, the crass-like family is globally distributed
263 with distinct global distribution patterns at the genera level, which appears to be strongly influenced
264 by human lifestyles and enterotypes.

265

266 We further investigated if we could identify other gut phage VCs with global distributions. By
267 extending the analysis to all the VCs we were able to detect a total of 280 VCs that were globally
268 distributed (found in at least 5 continents). This represents ~1.3% of all defined VCs (280/21,012).
269 For 119 out of the 280 VCs (42.5%), we were able to classify them to the *Caudovirales* order,
270 whereas the remaining 57.5% remained unclassified. Thus, the majority of globally distributed VCs
271 are completely novel. When we looked at viral families detected within the *Caudovirales*, we
272 detected *Podoviridae* (10 VCs), *Myoviridae* (28 VCs), *Siphoviridae* (43 VCs), and the newly formed
273 family *Herelleviridae* (1 VC). In addition, when we examined at the phage subfamily level, the most
274 common hits corresponded to the *Picovirinae* and *Peduovirinae* subfamilies with 4 VCs each.
275 Importantly, the genomes of 131 members of 57 globally distributed VCs were mined directly from
276 genomes of cultured isolates, providing unique opportunities for follow-up experiments to study
277 bacteria-phage co-evolution (Table S2).

278

279 A bacteria-phage network of globally distributed VCs (Figure 4B) revealed that *Prevotella* was the
280 most targeted genus (37 VCs), followed by *Faecalibacterium* and *Roseburia* with 15 VCs each. In
281 addition, we observed that in contrast to the Bacteroidales and Oscillospirales, the global VCs
282 associated to the Lachnospirales were highly shared between different genera (Figure S4A).
283 Notably, whilst 12 globally distributed VCs were members of the crAss-like family (in black), we
284 were only able to assign a host to 6 VCs which targeted Bacteroidales bacteria. We observed that
285 globally distributed phages had a significant broader range (across different genera) than phages
286 found in single continents ($P = 1.62 \times 10^{-5}$) (Figure S4B). This result suggests that broad host-range
287 of certain VCs likely contribute to their expansion across human populations.

288

289 Thus, we show that along with 12 crass-like VCs, there exists a set of at least 280 VCs which are
290 globally distributed. Functional characterization of members of this set will prove useful to shed
291 light on what makes a gut phage to become widespread across human populations.

292

293 **The Gubaphage is a novel and highly prevalent clade in the human gut**

294 When we calculated the number of genomes per VC, we discovered that VC_3 had the highest
295 number of GPD predictions, only surpassed by VC_1 (which was composed of p-crAssphage
296 genomes) (Figure 5A). Similarly to p-crAssphage, VC_3 was characterized by a long genome
297 (~80kb), a BACON domain-containing protein, and predicted *Bacteroides* host range. Searching
298 for sequences in the GPD with significant similarity to VC_3 large terminase gene (E-value<1e-6),
299 we identified other 205 related VCs. We refer to this clade of phages as the Gut Bacteroidales
300 phage (Gubaphage). Given its reminiscent features to crAssphage, we decided to investigate if
301 the Gubaphage belonged to the recently proposed crAss-like family which consists of 10 genera
302 and 4 subfamilies. We examined this relationship by building a phylogenetic tree using the large
303 terminase gene (Figure S5). The tree successfully clustered all the crAss-like genera as expected,
304 however the Gubaphage significantly diverged from the other crAss-like phages forming a distinct
305 clade.

306

307 Given the large genetic diversity contained in Gubaphage's VC we sought to characterize its
308 phylogenetic structure (Figure 5B). Analysis of protein overlap between Gubaphage's genomes
309 revealed that this clade is composed of 2 clusters that share more than 20% but less than 40% of
310 homologous proteins between them. This structure suggests two genera (G1 and G2) from a single
311 viral subfamily. In addition, within G1 we identified another phylogenetic substructure composed
312 of 3 large clusters (G1.1, G1.2, and G1.3) composed of 313, 514, and 502 phage genomes
313 respectively. Host range prediction revealed that G1.1 infects *Bacteroides caccae* and *Bacteroides*
314 *xylanisolvans* B, G1.3 *Bacteroides B vulgatus*, and G2 *Parabacteroides merdae* and
315 *Parabacteroides distasonis*. In the case of G1.2 we couldn't confidently predict a putative host.
316 Interestingly, the larger genetic distance between G1 and G2 also resulted in a more extreme host

317 range switch, from Bacteroidaceae (G1) to Porphyromonadaceae (G2). Core genes of the
318 Gubaphage included homing endonucleases, DNA polymerase I, FluMu terminase, DNA primase,
319 DNA helicase, Thymidylate kinase, dUTPase, among others. Annotation of its genome revealed
320 that Gubaphage is organized into three distinct regions. One region encodes structural proteins,
321 the second is composed mainly of genes involved in DNA processing and the third codes for a
322 series of hypothetical proteins. We also found that the phage FAKO05_000032F (Suzuki et al.,
323 2019), had high sequence identity (>90%) with several members of G1.3.

324

325 Analysis of the distribution of the Gubaphage clade revealed its presence in all the continents
326 except in South America (Figure 5C). Particularly, it reached a prevalence close to 40% in Europe,
327 while the lowest corresponded to Africa (3%). The discovery of the Gubaphage clade is yet another
328 example of a highly prevalent phage in the human gut and highlights the need to perform further
329 culturing and mechanistic studies to better understand its role in the human gut microbiota.

330

331 **DISCUSSION**

332 In this study, we generated and analysed a collection of ~142,000 high-quality and non-redundant
333 gut phage genomes recovered from 28,060 worldwide distributed human gut metagenomes and
334 2898 gut isolate genomes. To our knowledge, this set represents the most comprehensive and
335 complete collection of human gut phage genomes to date and is complemented by other published
336 gut phage databases (Gregory et al., 2019; Paez-Espino et al., 2019). Importantly, this work shows
337 that it is possible to recover high-quality phage genomes from shotgun metagenomes without the
338 need to enrich for viral-like particles (VLPs) from stool samples prior to sequencing. With our
339 approach, we not only recovered non-integrative phages like p-crAssphage, but also uncovered
340 prophage sequences which may rarely enter the lytic cycle and form VLPs. As shotgun
341 metagenomes are far more readily available than VLP metagenomes, we had access to an
342 unparalleled number of datasets which enabled us to obtain more complete genomes and viral
343 diversity. Our pipeline highlighted the need for stringent quality control procedures in order to filter
344 out contamination when dealing with predictions of mobile genetic elements such as phages. This
345 is particularly true when mining large-scale datasets due to the impossibility of manually curating

346 every prediction. As the field moves towards the analysis of larger datasets, we believe that
347 machine learning approaches (such as the classifier developed in this work) can be harnessed to
348 help mitigate contamination and significantly boost the quality of the final set of predictions.

349

350 Grouping our predictions into VCs was a critical aspect to organize and manage the vast number
351 of predictions in our database. VCs allowed us to discover important phageome patterns such as
352 uncovering highly genetically diverse phage clades (p-crAssphage and Gubaphage), inferring host
353 range, evaluating prevalence around the world, and exposing epidemiology associations by
354 profiling the phageome composition of human samples. Although vContact (Bin Jang et al., 2019)
355 has been extensively used to group phage sequences into clusters that roughly correspond to
356 genus level, it was not computationally feasible to use it with our massive database. We foresee
357 that as genomic and phenotypic features of these VCs are further studied, it will be possible to
358 classify them into at least one of the 15 hierarchical ranks recommended by the ICTV.

359

360 Here we also carried out the most comprehensive analysis of the host range of human gut phages.
361 Although the majority of VCs were found to be restricted to a single bacterial species, a significant
362 percentage (~36%) was predicted to infect multiple species, genera, families, orders, and even
363 classes. A consequence of broad host range phages is an increased connectivity for horizontal
364 gene transfer events due to transduction, which can result in the creation of gene flow networks
365 between phylogenetically distinct bacterial species in the human gut.

366

367 The use of GPD also enabled us to gain new insights into the epidemiology of gut phages. Notably,
368 we were able to harness global variation in phage composition to learn that the human gut
369 phageome is associated with the lifestyle of individuals and populations. We showed that phages
370 found in urban samples targeted *Bacteroides* over Prevotellaceae bacteria, whereas rural samples
371 from Peru, Tanzania, Madagascar, and Fiji harboured phages with a host range that targeted
372 Prevotellaceae over *Bacteroides* bacteria. This is yet another result that highlights the importance
373 of the size and diversity of our initial dataset, as we were able to capture the genomes of phages
374 from several understudied regions.

375

376 In this work, we also show how our newly generated GPD can be harnessed for characterization
377 of other important viral subfamilies from the gut. In particular, we discovered that the novel
378 Gubaphage clade was actually composed of 2 genera and was able to infect bacteria from the
379 Bacteroidaceae and Porphyromonadaceae families. The combined prevalence of the 2
380 Gubaphage genera reached a sample proportion between 10-15% in North America, Oceania and
381 Asia, while in Europe it was found to be infecting bacteria in ~37% of the samples. These results
382 highlight the importance of establishing well-defined viral gut subfamilies, as the combined effect
383 size of highly related phage genomes may help uncover associations of specific clades with their
384 bacterial hosts and human health.

385

386 Having a comprehensive database of high-quality phage genomes paves the way for a multitude
387 of analyses of the human gut virome at a greatly improved resolution, enabling the association of
388 specific viral clades with distinct microbiome phenotypes. Importantly, GPD provides a blueprint to
389 guide functional and phenotypic experiments of the human gut phageome, as we linked over
390 40,000 predictions to 472 cultured gut bacteria species. GPD also harbours 2496 phages that were
391 mined from cultured isolates that are publicly available, and notably 131 members of 57 globally
392 distributed VCs, providing a resource for wet lab experiments to study bacteria-phage co-evolution.
393 In addition, having more complete genomes allows inspection of the most amenable phages for
394 genetic engineering (Chen et al., 2017) or identification of the receptor binding protein genes to
395 expand their host range (Yehl et al., 2019) . Given how important the mobilome can be for bacterial
396 ecosystems, we believe that further characterization of other prominent genetic elements such as
397 ICEs, IMEs, genetic islands, and transposons will bring us closer to understanding the association
398 of the gut microbiome with different lifestyles, age and ultimately, health and disease.

399

400

401 **METHODS**

402 **Metagenome assembly**

403 Sequencing reads from 28,060 human gut metagenomes were obtained from the European Nucleotide
404 Archive (Leinonen et al., 2011) Paired-end reads were assembled using SPAdes v3.10.0 (Bankevich
405 et al., 2012) with option ‘--meta’, while single-end reads were assembled with MEGAHIT v1.1.3 (Li et
406 al., 2015) both with default parameters.

407

408 **Viral sequence prediction**

409 To identify viral sequences among human gut metagenomes, we used virFinder (Ren et al., 2017)
410 which relies on k-mer signatures to discriminate viral from bacterial contigs, and VirSorter (Roux et al.,
411 2015) which exploits sequence similarity to known phage and other viral-like features such as GC
412 skew. While VirFinder is only able to classify whole contigs, VirSorter can also detect prophages and
413 thus classifies viral sequences as ‘free’ or integrated. Since obtaining high-quality genomes was
414 paramount for our downstream analyses, we used conservative settings for both tools. Metagenome
415 assembled contigs >10 kb in length were analysed with VirSorter v1.0.5 and VirFinder v1.1 to detect
416 putative viral sequences. With VirSorter, only predictions classified as category 1, 2, 4 or 5 were
417 considered. In the case of VirFinder, we selected contigs with a score >0.9 and $P < 0.01$.

418

419 Contigs were further quality-filtered to remove host sequences using a blast-based approach. Briefly,
420 we first used the ‘blastn’ function of BLAST v2.6.0 (Altschul et al., 1990) to query each contig against
421 the human genome GRCh38 using the following parameters: ‘-word_size 28 -best_hit_overhang 0.1 -
422 best_hit_score_edge 0.1 -dust yes -evalue 0.0001 -min_raw_gapped_score 100 -penalty -5 -
423 perc_identity 90 -soft_masking true’. Contigs with positive hits across >60% total length were excluded.

424

425 **Sequence clustering**

426 Dereplication of the filtered contigs was performed with CD-HIT v4.7 (Li and Godzik, 2006) using a
427 global identity threshold of 99% (‘-c 0.99’). This was performed first on contigs obtained within the same
428 ENA study, and afterwards among those obtained across studies. A final set of representative viral
429 sequences was generated by clustering these resulting contigs at a 95% nucleotide identity over a local
430 alignment of 75% of the shortest sequence (options ‘-c 0.95 -G 0 -aS 0.75’).

431

432 **Quality control of GPD predictions**

433 In order to ensure a high-quality of GPD predictions we removed integrative and conjugative elements
434 by using a machine learning approach.

435

436 Our training set consisted of all experimental ICEs with intact sequence retrieved from ICEberg 2.0 (Bi
437 et al., 2012) and the phage RefSeq genomes from NCBI (Brister et al., 2015). Our test set was
438 downloaded from the Intestinal microbiome mobile elements database (ImmeDB) corresponding to the
439 “ICEs” and “Prophages” datasets. By parsing GFF files with custom Python scripts, for each sequence
440 we calculated 3 high-level features, namely number of genes/kb, number of hypothetical proteins/total
441 genes, and 5-kmer relative frequency ($4^5 = 1024$ kmers). We used Keras with the TensorFlow (Abadi
442 et al.) backend to train a feedforward neural network with an initial hidden layer of size 10 (ReLU
443 activation), followed by another hidden layer of size 5 (ReLU activation) and a final neuron with a
444 sigmoid activation function. Model selection was carried out with 5-fold cross-validation. We trained the
445 network using the Adam optimizer and the binary cross entropy as the loss function.

446

447 We carried out the classification by allowing a false positive rate of 0.25% with a recall of 91%. Finally,
448 we excluded genomes that were predicted to belong to non-phage taxa (82 predictions)

449

450 **Clustering of phages into VCs**

451 We first created a BLAST database (makeblastdb) of all the nucleotide sequences stored in GPD and
452 then carried out all the pairwise comparisons by blasting GPD against itself (we kept hits with E-value
453 ≤ 0.001). Then, for every pairwise comparison, we calculated the coverage by merging the aligned
454 fraction length of the smaller sequence that shared at least 90% sequence similarity. We kept only the
455 results with a coverage $>75\%$. Finally, we carried out a graph-based clustering by running the Markov
456 Clustering Algorithm (MCL) (Dongen, 2000) with an inflation value of 6.0.

457

458 **Viral taxonomic assignment**

459 Viral taxonomic assignment of contigs was performed using a custom database of phylogenetically
460 informative profile HMMs (ViPhOG v1, available here:

461 ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/viral-pipeline/hmmer_databases), where each model
462 is specific to one viral taxon. First, protein-coding sequences of each viral contig were predicted with
463 Prodigal v2.6.3 (Hyatt et al., 2010). Thereafter, we used 'hmmscan' from HMMER v3.1b2 (Eddy, 1998)
464 to query each protein sequence against the ViPhOG database, setting a full-sequence E-value reporting
465 threshold of 10^{-3} and a per-domain independent E-value threshold of 0.1. Resulting hits were analysed
466 to predict the most likely and specific taxon for the whole contig based on the following criteria: (i) a
467 minimum of 20% of genes with hits against the ViPhOG database, or at least two genes if the contig
468 had less than 10 total genes; and (ii) among those with hits against the ViPhOG database, a minimum
469 of 60% assigned to the same viral taxon.

470

471 **Metagenomic read mapping**

472 To estimate the prevalence of each viral species, we mapped metagenomic reads using BWA-MEM
473 v0.7.16a-r1181 (Li and Durbin, 2009) ('bwa mem -M') against the GPD database (clustered at 95%
474 nucleotide identity) here generated. Mapped reads were filtered with samtools v1.5 (Li et al., 2009) to
475 remove secondary alignments ('samtools view -F 256') and each viral species was considered present
476 in a sample if the mapped reads covered >75% of the genome length.

477

478 **Taxonomic assignment of bacterial genomes**

479 Bacterial isolate genomes were taxonomically classified with the Genome Taxonomy Database Toolkit
480 (GTDB-Tk) v0.3.1 (Chaumeil et al., 2019) (<https://github.com/Ecogenomics/GTDBTk>) (database
481 release 04-RS89) using the 'classify_wf' function and default parameters. Taxa with an alphabetic suffix
482 represent lineages that are polyphyletic or were subdivided due to taxonomic rank normalization
483 according to the GTDB reference tree. The unsuffixed lineage contains the type strain whereas all other
484 lineages are given alphabetic suffixes, suggesting that their labelling should be revised in due course.

485

486 **Clustering of proteins**

487 We predicted the whole proteome of GPD with Prodigal v2.6.3 (metagenomic mode) and masked the
488 low-complexity regions with DustMasker. We then created a BLAST database of all the protein
489 sequences and carried out all the pairwise comparisons by blasting the GPD proteome against itself
490 (we kept hits with E-value ≤ 0.001). Then, for every pairwise comparison, we calculated a similarity

491 metric as defined by Chan et al (Chan et al., 2013). Finally, we ran the Markov Clustering Algorithm
492 (MCL) with an inflation value of 6.0 and removed clusters with only 1 member.

493

494 **Geographical distribution of metagenomic samples**

495 We removed samples with a sequencing depth below 50 million reads/sample, as below this threshold
496 we observed a positive correlation between sample depth and number of viral genomes detected
497 (Supplemental figure 3B). This new subset consisted of 3011 samples and spanned all the continents
498 and 23 countries. Similarity between 2 samples was calculated by computing the number of shared
499 VCs divided by the total number of VCs in both samples (Jaccard index). Distribution of samples was
500 visualized with PCA.

501

502 **Host assignment**

503 We predicted CRISPR spacer sequences from the 2898 gut bacteria using CrisprCasFinder-2.0.2
504 (Couvin et al., 2018). We only used spacers found in CRISPR arrays having evidence levels 3 and 4.
505 We assigned a host to a prediction only if the putative host CRISPR spacer matched perfectly to the
506 phage prediction (100% sequence identity across whole length of CRISPR spacer). We carried out the
507 screen by blasting all the predicted CRISPR spacers against the nucleotide GPD BLAST database
508 using the following custom settings (task: blastn-short, - gapopen 10, -gapextend 2, penalty -1, -
509 word_size 7m -perc_identity 100). We kept only hits that matched across the whole length of the spacer
510 with a custom script. In addition, prophages were assigned to the bacterial assembly from which they
511 were predicted.

512

513 **Phylogenetic analysis of Gubaphage**

514 The phylogenetic tree comparing Gubaphage against crAss-like phages was constructed by aligning
515 the corresponding large terminase genes with MAFFT v7.453 (Katoh et al., 2002) –auto mode, followed
516 by FastTree v2.1.10 (Price et al., 2010). The resultant tree was visualized on iTOL (Letunic and Bork,
517 2007). We calculated the fraction of shared protein clusters among all the Gubaphage genomes and
518 then carried out hierarchical clustering with average linkage and Euclidean metric.

519

520

521 **Annotation of viral genomes**

522 Protein annotation was carried out using Prokka v1.5-135 (Seemann, 2014).

523

524 **Data and code availability**

525 GPD sequences and associated metadata can be found in the following FTP link:

526 http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/

527 Classifier and scripts used to generate figures can be found here:

528 <https://github.com/cai91/GPD>

529

530

531 **Acknowledgements**

532 This work was supported by the Wellcome Trust (098051). L.F.C. is supported by a Wellcome Sanger

533 Institute PhD Studentship. A.A. and R.D.F are funded by EMBL core funds. We would like to thank Y.

534 Shao and H. Browne for fruitful discussions and feedback about the manuscript.

535

536 **Author contributions**

537 L.F.C., A.A., R.D.F., and T.D.L. conceived the study. L.F.C. wrote the manuscript and made the figures,

538 assessed quality of GPD predictions, developed the classifier to distinguish phages from ICEs,

539 analysed viral diversity patterns across gut isolates, analysed global epidemiology trends, and defined

540 the Gubaphage clade. A.A. assembled human gut metagenomes, carried out viral prediction and

541 mapped predictions to metagenomes. G.R.P. wrote the phage taxonomic classification pipeline. All

542 authors read, edited and approved the final manuscript.

543

544 **Competing interests**

545 T.D.L. and R.D.F. are either employees of, or consultants to, Microbiotica Pty Ltd.

546

547

548

549

550

551

552 **REFERENCES**

553 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
554 Irving, G., Isard, M., et al. TensorFlow: A system for large-scale machine learning. *21*.

555 Ackermann, H.W. (1998). Tailed bacteriophages: the order caudovirales. *Adv. Virus Res.* *51*,
556 135–201.

557 Al-Shayeb, B., Sachdeva, R., Chen, L.-X., Ward, F., Munk, P., Devoto, A., Castelle, C.J.,
558 Olm, M.R., Bouma-Gregson, K., Amano, Y., et al. (2020). Clades of huge phages from
559 across Earth's ecosystems. *Nature* *578*, 425–431.

560 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
561 alignment search tool. *J. Mol. Biol.* *215*, 403–410.

562 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin,
563 V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: A New Genome
564 Assembly Algorithm and Its Applications to Single-Cell Sequencing. *J. Comput. Biol.* *19*,
565 455–477.

566 Barr, J.J., Auro, R., Furlan, M., Whiteson, K.L., Erb, M.L., Pogliano, J., Stotland, A.,
567 Wolkowicz, R., Cutting, A.S., Doran, K.S., et al. (2013). Bacteriophage adhering to mucus
568 provide a non-host-derived immunity. *Proc. Natl. Acad. Sci. U. S. A.* *110*, 10771–10776.

569 Betts, A., Kaltz, O., and Hochberg, M.E. (2014). Contrasted coevolutionary dynamics
570 between a bacterial pathogen and its bacteriophages. *Proc. Natl. Acad. Sci. U. S. A.* *111*,
571 11109–11114.

572 Bi, D., Xu, Z., Harrison, E.M., Tai, C., Wei, Y., He, X., Jia, S., Deng, Z., Rajakumar, K., and
573 Ou, H.-Y. (2012). ICEberg: a web-based resource for integrative and conjugative elements
574 found in Bacteria. *Nucleic Acids Res.* *40*, D621–D626.

575 Bin Jang, H., Bolduc, B., Zablocki, O., Kuhn, J.H., Roux, S., Adriaenssens, E.M., Brister,
576 J.R., Kropinski, A.M., Krupovic, M., Lavigne, R., et al. (2019). Taxonomic assignment of
577 uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. *Nat.*
578 *Biotechnol.* *37*, 632–639.

579 Breitbart, M., Bonnain, C., Malki, K., and Sawaya, N.A. (2018). Phage puppet masters of the
580 marine microbial realm. *Nat. Microbiol.* *3*, 754–766.

581 Brister, J.R., Ako-adjei, D., Bao, Y., and Blinkova, O. (2015). NCBI Viral Genomes
582 Resource. *Nucleic Acids Res.* *43*, D571–D577.

583 Brüssow, H., and Hendrix, R.W. (2002). Phage genomics: small is beautiful. *Cell* *108*, 13–16.

584 Chan, C.X., Mahboub, M., and Ragan, M.A. (2013). Clustering evolving proteins into
585 homologous families. *BMC Bioinformatics* *14*, 120.

586 Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2019). GTDB-Tk: a toolkit
587 to classify genomes with the Genome Taxonomy Database. *Bioinforma. Oxf. Engl.*

588 Chen, J., Quiles-Puchalt, N., Chiang, Y.N., Bacigalupe, R., Fillol-Salom, A., Chee, M.S.J.,
589 Fitzgerald, J.R., and Penadés, J.R. (2018). Genome hypermobility by lateral transduction.
590 *Science* *362*, 207–212.

591 Chen, M., Zhang, L., Abdelgader, S.A., Yu, L., Xu, J., Yao, H., Lu, C., and Zhang, W.
592 (2017). Alterations in gp37 Expand the Host Range of a T4-Like Phage. *Appl. Environ.*
593 *Microbiol.* *83*.

594 Clooney, A.G., Sutton, T.D.S., Shkorporov, A.N., Holohan, R.K., Daly, K.M., O'Regan, O.,
595 Ryan, F.J., Draper, L.A., Plevy, S.E., Ross, R.P., et al. (2019). Whole-Virome Analysis Sheds
596 Light on Viral Dark Matter in Inflammatory Bowel Disease. *Cell Host Microbe* *26*, 764–
597 778.e5.

598 Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha,
599 E.P.C., Vergnaud, G., Gautheret, D., and Pourcel, C. (2018). CRISPRCasFinder, an update of
600 CRISRFinder, includes a portable version, enhanced performance and integrates search for
601 Cas proteins. *Nucleic Acids Res.* *46*, W246–W251.

602 Dongen, S.M. van (2000). Graph clustering by flow simulation.

603 Dutilh, B.E., Cassman, N., McNair, K., Sanchez, S.E., Silva, G.G.Z., Boling, L., Barr, J.J.,
604 Speth, D.R., Seguritan, V., Aziz, R.K., et al. (2014). A highly abundant bacteriophage
605 discovered in the unknown sequences of human faecal metagenomes. *Nat. Commun.* *5*, 4498.

606 Eddy, S.R. (1998). Profile hidden Markov models. *Bioinforma. Oxf. Engl.* *14*, 755–763.

607 Edwards, R.A., McNair, K., Faust, K., Raes, J., and Dutilh, B.E. (2016). Computational
608 approaches to predict bacteriophage-host relationships. *FEMS Microbiol. Rev.* *40*, 258–272.

609 Forster, S.C., Kumar, N., Anonye, B.O., Almeida, A., Viciani, E., Stares, M.D., Dunn, M.,
610 Mkandawire, T.T., Zhu, A., Shao, Y., et al. (2019). A human gut bacterial genome and
611 culture collection for improved metagenomic analyses. *Nat. Biotechnol.* *37*, 186–192.

612 Gregory, A.C., Zablocki, O., Howell, A., Bolduc, B., and Sullivan, M.B. (2019). The human
613 gut virome database. *BioRxiv* 655910.

614 Guerin, E., Shkorporov, A., Stockdale, S.R., Clooney, A.G., Ryan, F.J., Sutton, T.D.S.,
615 Draper, L.A., Gonzalez-Tortuero, E., Ross, R.P., and Hill, C. (2018). Biology and Taxonomy
616 of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. *Cell Host*
617 *Microbe* *24*, 653–664.e6.

618 Harrison, E., and Brockhurst, M.A. (2017). Ecological and Evolutionary Benefits of
619 Temperate Phage: What Does or Doesn't Kill You Makes You Stronger. *BioEssays* *39*,
620 1700112.

621 Hoyles, L., McCartney, A.L., Neve, H., Gibson, G.R., Sanderson, J.D., Heller, K.J., and van
622 Sinderen, D. (2014). Characterization of virus-like particles associated with the human faecal
623 and caecal microbiota. *Res. Microbiol.* *165*, 803–812.

624 Hyatt, D., Chen, G.-L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010).
625 Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC*
626 *Bioinformatics* *11*, 119.

627 Jahn, M.T., Arkhipova, K., Markert, S.M., Stigloher, C., Lachnit, T., Pita, L., Kupczok, A.,
628 Ribes, M., Stengel, S.T., Rosenstiel, P., et al. (2019). A Phage Protein Aids Bacterial
629 Symbionts in Eukaryote Immune Evasion. *Cell Host Microbe* *26*, 542-550.e5.

630 Jain, R., Rivera, M.C., and Lake, J.A. (1999). Horizontal gene transfer among genomes: the
631 complexity hypothesis. *Proc. Natl. Acad. Sci. U. S. A.* *96*, 3801–3806.

632 Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid
633 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* *30*, 3059–
634 3066.

635 Kho, Z.Y., and Lal, S.K. (2018). The Human Gut Microbiome - A Potential Controller of
636 Wellness and Disease. *Front. Microbiol.* *9*, 1835.

637 Koert, M., Mattson, C., Caruso, S., and Erill, I. (2019). Evidence for shared ancestry between
638 Actinobacteria and Firmicutes bacteriophages. *BioRxiv* 842583.

639 Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., Cleland, I.,
640 Faruque, N., Goodgame, N., Gibson, R., et al. (2011). The European Nucleotide Archive.
641 *Nucleic Acids Res.* *39*, D28–D31.

642 Letunic, I., and Bork, P. (2007). Interactive Tree Of Life (iTOL): an online tool for
643 phylogenetic tree display and annotation. *Bioinforma. Oxf. Engl.* *23*, 127–128.

644 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler
645 transform. *Bioinformatics* *25*, 1754–1760.

646 Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets
647 of protein or nucleotide sequences. *Bioinforma. Oxf. Engl.* *22*, 1658–1659.

648 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an ultra-fast
649 single-node solution for large and complex metagenomics assembly via succinct de Bruijn
650 graph. *Bioinformatics* *31*, 1674–1676.

651 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
652 G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence
653 Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.* *25*, 2078–2079.

654 Manrique, P., Bolduc, B., Walk, S.T., Oost, J. van der, Vos, W.M. de, and Young, M.J.
655 (2016). Healthy human gut phageome. *Proc. Natl. Acad. Sci.* *113*, 10400–10405.

656 Marbouth, M., Thierry, A., and Koszul, R. (2020). Phages - bacteria interactions network of
657 the healthy human gut (Microbiology).

658 Minot, S., Grunberg, S., Wu, G.D., Lewis, J.D., and Bushman, F.D. (2012). Hypervariable
659 loci in the human gut virome. *Proc. Natl. Acad. Sci. U. S. A.* *109*, 3962–3966.

660 Nayfach, S., Camargo, A.P., Eloé-Fadrosch, E., Roux, S., and Kyrpides, N. (2020). CheckV:
661 assessing the quality of metagenome-assembled viral genomes. *BioRxiv* 2020.05.06.081778.

662 Paez-Espino, D., Eloé-Fadrosch, E.A., Pavlopoulos, G.A., Thomas, A.D., Huntemann, M.,
663 Mikhailova, N., Rubin, E., Ivanova, N.N., and Kyrpides, N.C. (2016). Uncovering Earth's
664 virome. *Nature* *536*, 425–430.

665 Paez-Espino, D., Roux, S., Chen, I.-M.A., Palaniappan, K., Ratner, A., Chu, K., Huntemann,
666 M., Reddy, T.B.K., Pons, J.C., Llabrés, M., et al. (2019). IMG/VR v.2.0: an integrated data
667 management and analysis system for cultivated and environmental viral genomes. *Nucleic
668 Acids Res.* *47*, D678–D686.

669 Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2 – Approximately Maximum-
670 Likelihood Trees for Large Alignments. *PLoS ONE* *5*.

671 Ren, J., Ahlgren, N.A., Lu, Y.Y., Fuhrman, J.A., and Sun, F. (2017). VirFinder: a novel k-
672 mer based tool for identifying viral sequences from assembled metagenomic data.
673 *Microbiome* *5*, 69.

674 Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I.
675 (2010). Viruses in the fecal microbiota of monozygotic twins and their mothers. *Nature* *466*,
676 334–338.

677 Roux, S., Krupovic, M., Poulet, A., Debroas, D., and Enault, F. (2012). Evolution and
678 Diversity of the Microviridae Viral Family through a Collection of 81 New Complete
679 Genomes Assembled from Virome Reads. *PLoS ONE* *7*.

680 Roux, S., Enault, F., Hurwitz, B.L., and Sullivan, M.B. (2015). VirSorter: mining viral signal
681 from microbial genomic data. *PeerJ* *3*.

682 Roux, S., Adriaenssens, E.M., Dutilh, B.E., Koonin, E.V., Kropinski, A.M., Krupovic, M.,
683 Kuhn, J.H., Lavigne, R., Brister, J.R., Varsani, A., et al. (2019). Minimum Information about
684 an Uncultivated Virus Genome (MIUViG). *Nat. Biotechnol.* *37*, 29–37.

685 Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinforma. Oxf. Engl.*
686 *30*, 2068–2069.

687 Simmonds, P., Adams, M.J., Benkő, M., Breitbart, M., Brister, J.R., Carstens, E.B., Davison,
688 A.J., Delwart, E., Gorbatenya, A.E., Harrach, B., et al. (2017). Consensus statement: Virus
689 taxonomy in the age of metagenomics. *Nat. Rev. Microbiol.* *15*, 161–168.

690 Suzuki, Y., Nishijima, S., Furuta, Y., Yoshimura, J., Suda, W., Oshima, K., Hattori, M., and
691 Morishita, S. (2019). Long-read metagenomic exploration of extrachromosomal mobile
692 genetic elements in the human gut. *Microbiome* *7*.

693 Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S.A., Bewtra, M.,
694 Knights, D., Walters, W.A., Knight, R., et al. (2011). Linking Long-Term Dietary Patterns
695 with Gut Microbial Enterotypes. *Science* *334*, 105–108.

696 Yehl, K., Lemire, S., Yang, A.C., Ando, H., Mimee, M., Torres, M.D.T., de la Fuente-Nunez,
697 C., and Lu, T.K. (2019). Engineering Phage Host-Range and Suppressing Bacterial
698 Resistance through Phage Tail Fiber Mutagenesis. *Cell* *179*, 459-469.e9.

699 Zou, Y., Xue, W., Luo, G., Deng, Z., Qin, P., Guo, R., Sun, H., Xia, Y., Liang, S., Dai, Y., et
700 al. (2019). 1,520 reference genomes from cultivated human gut bacteria enable functional
701 microbiome analyses. *Nat. Biotechnol.* 37, 179–185.

702

703

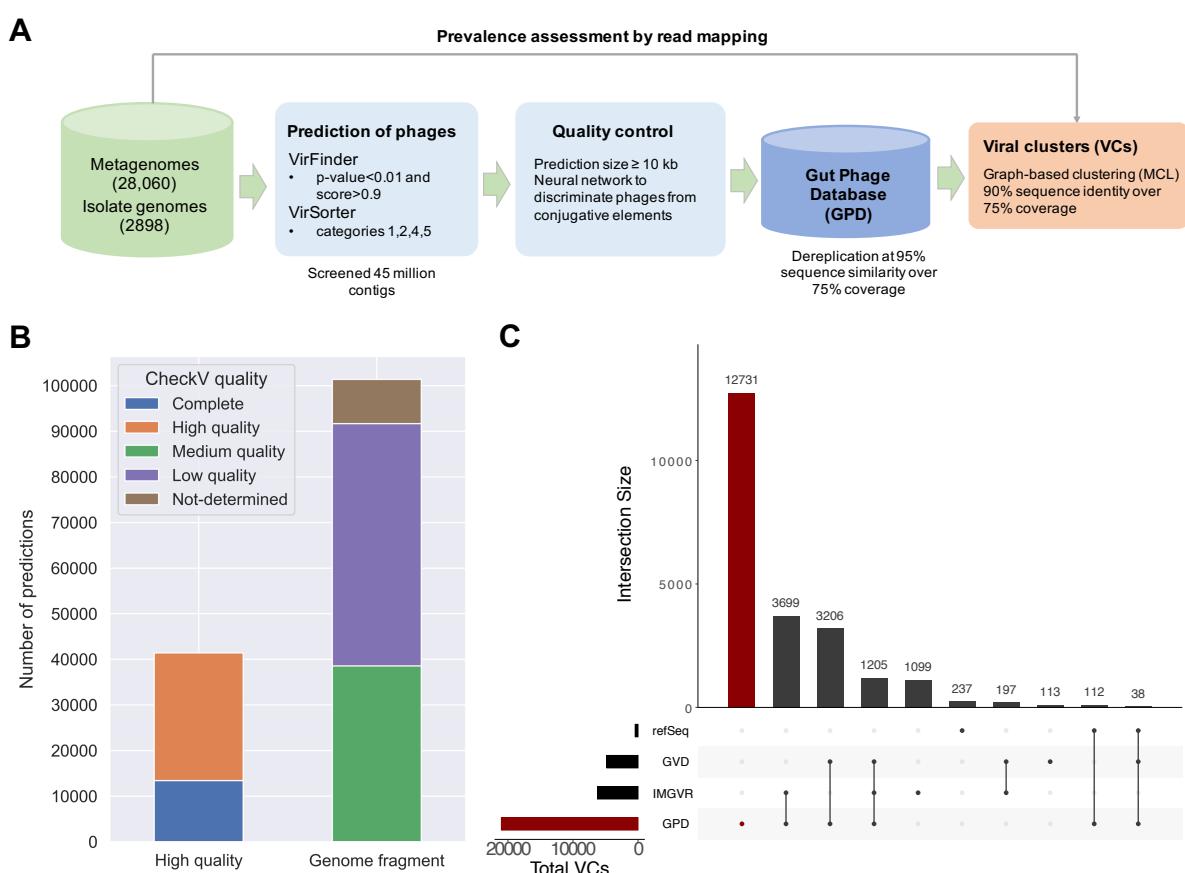
704

705

706

707 **Figures**

708



709

710 **Figure 1. Generating the most complete sequence database of human gut bacteriophages**

711 **A**) Massive prediction of phage genomes from 28,060 human gut metagenomes and 2898 isolate genomes was
712 carried out using VirFinder and VirSorter with conservative settings. A machine learning approach (see "Methods")
713 was used to increase the quality of predictions and redundancy was removed by clustering the sequences at a
714 95% sequence identity. Diversity was further analysed by generating viral clusters (VCs) of predictions using a
715 graph-based approach. **B**) Quality estimation of GPD genomes by CheckV. Over 40,000 predictions are
716 categorized as high-quality. **C**) UpSet plot comparing GPD against other public gut phage databases. GPD
717 captures the greatest unique diversity of phage genomes that inhabit the human gut.

718

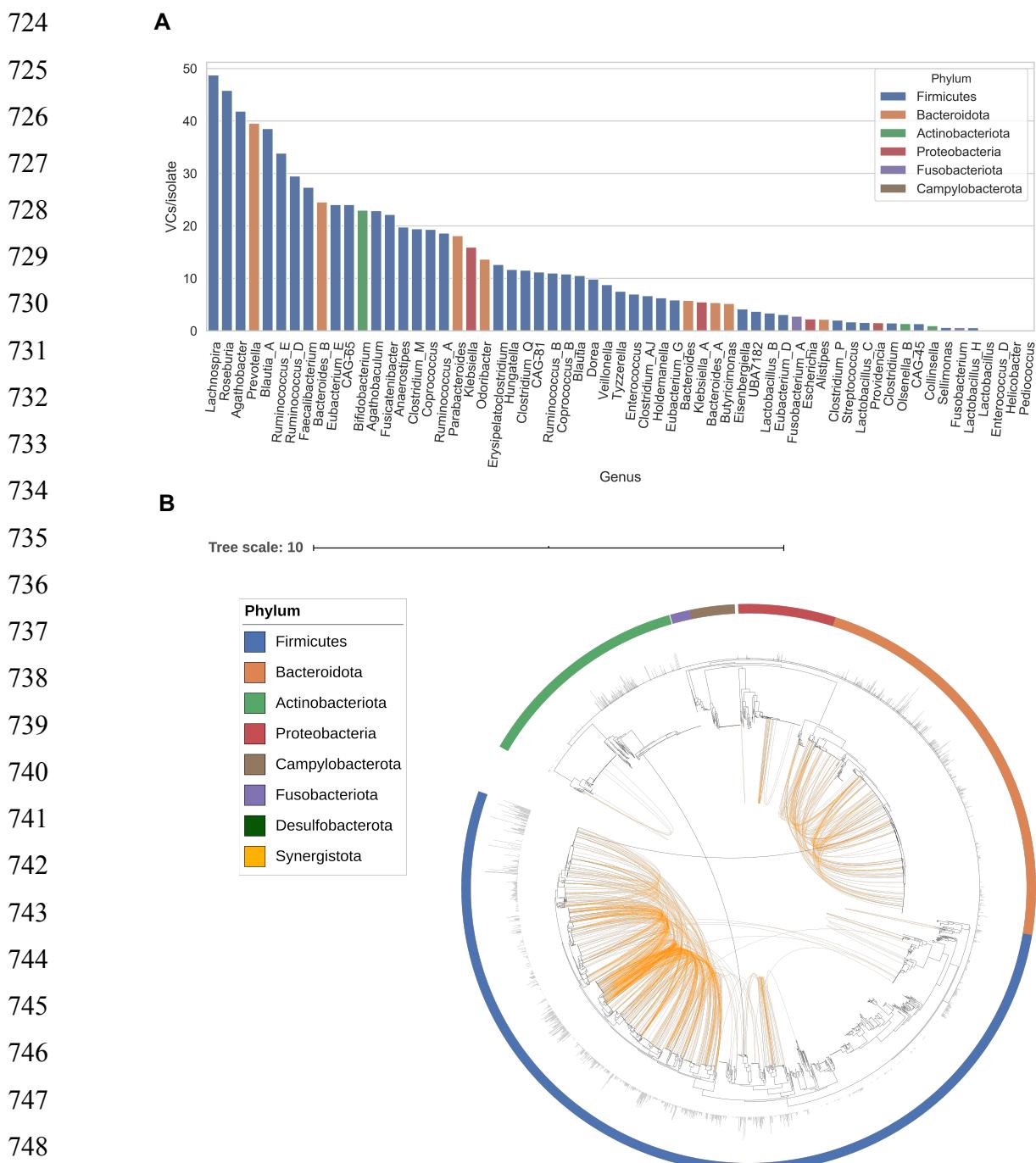
719

720

721

722

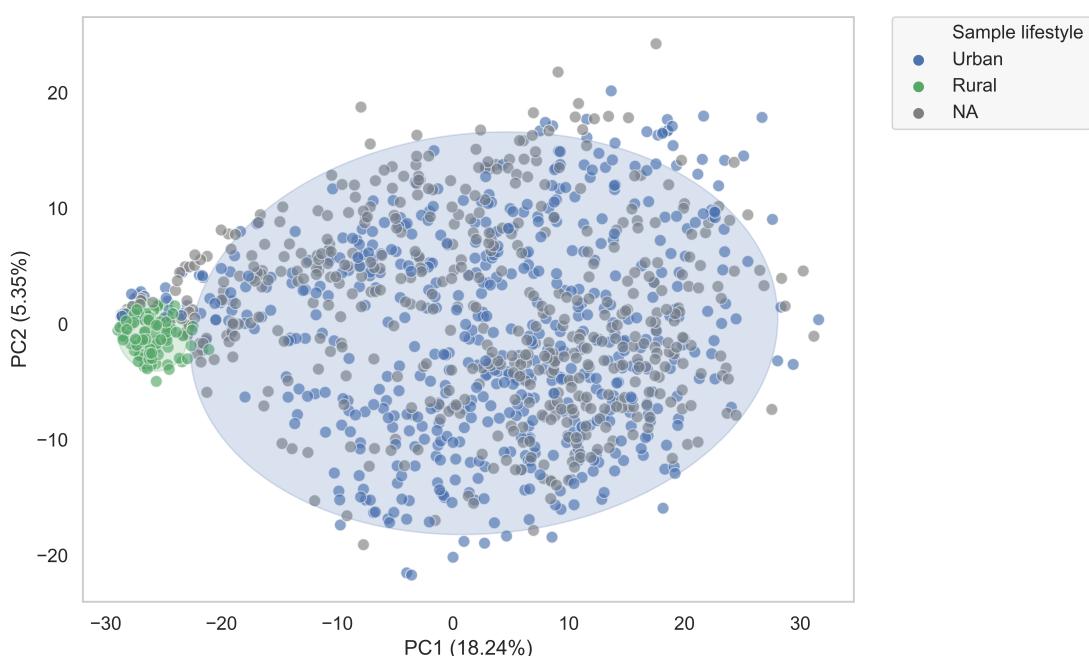
723



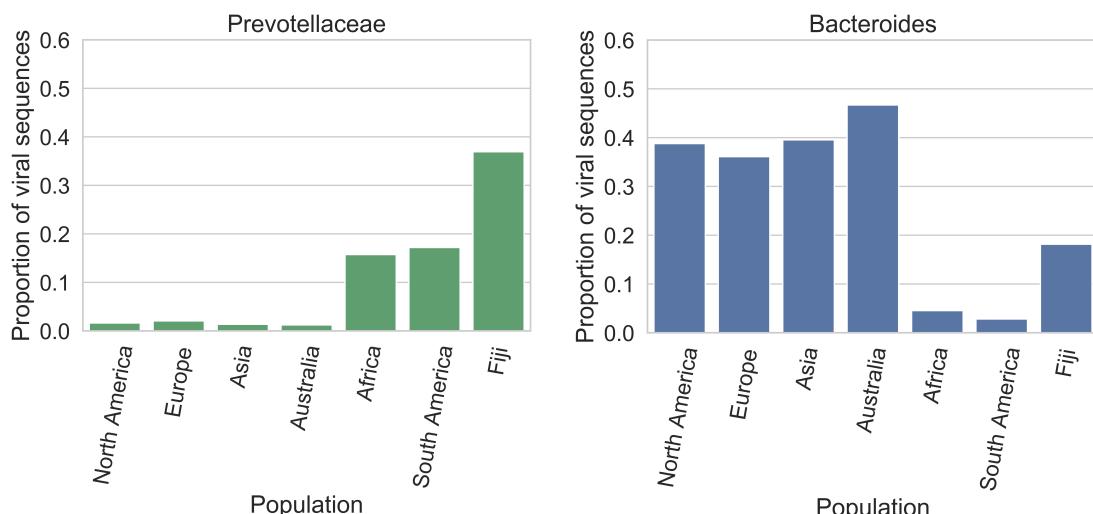
750 **Figure 2. Bacterial host assignment and host range for gut phage**

751 **A)** Bacterial genera with the highest viral diversity were *Lachnospira*, *Roseburia*, *Agathobacter*, *Prevotella*, and
 752 *Blautia* A. On the other hand, the lowest viral diversity was harboured by *Helicobacter* and the lactic acid bacteria
 753 *Lactobacillus*, *Lactobacillus H*, *Enterococcus D* and *Pediococcus*. **B)** Phylogenetic tree of 2898 gut bacteria isolates
 754 showing phage host range. Host assignment was carried out by linking prophages with their assemblies and
 755 CRISPR spacer matching. Orange connections represent VCs with a very broad host range (not restricted to a
 756 single genus). Black connections represent VCs able to infect two phyla. Outer bars show phage diversity
 757 (VCs/isolate).

A



B

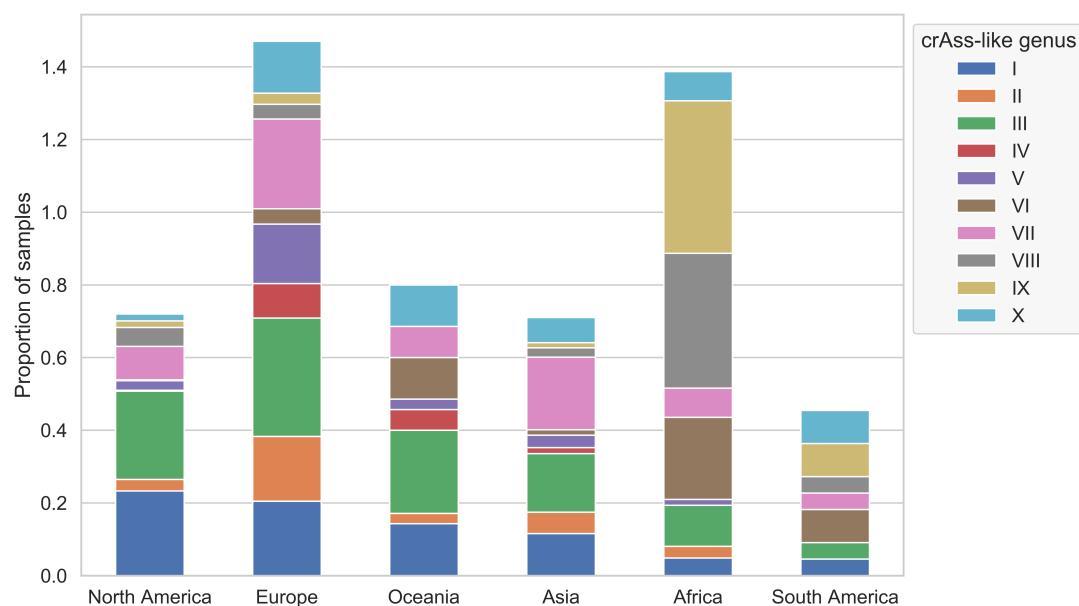


758

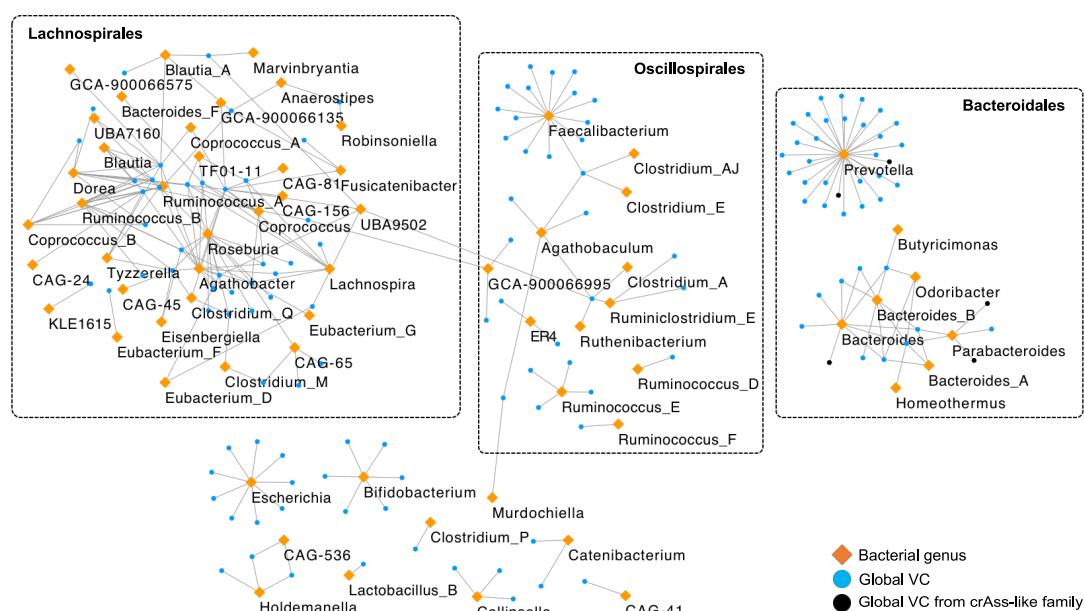
759 **Figure 3. Global phylogeography of gut phages.**

760 **A)** PCA plot of inter-sample Jaccard distance. Lifestyle is associated with differences in the gut phageome across
761 human populations. Samples from Peru, Madagascar, Tanzania and Fiji are found in the rural cluster whereas
762 those samples with a more Westernized lifestyle (mainly from North America, Europe, and Asia) are found in the
763 urban cluster ($P = 0.001$, $R^2 = 0.36$, PERMANOVA test). Ellipses enclose samples within 2 standard deviations for
764 each lifestyle. **B)** The proportion of viral sequences (at 95% sequence identity dereplicated) that target
765 Prevotellaceae hosts in traditional societies is higher than that of industrialized populations. Conversely,
766 Bacteroides hosts are more common in industrialized populations than in traditional societies. This result suggests
767 that the composition of the gut phageome at a global scale is driven by the bacterial composition.

A



B

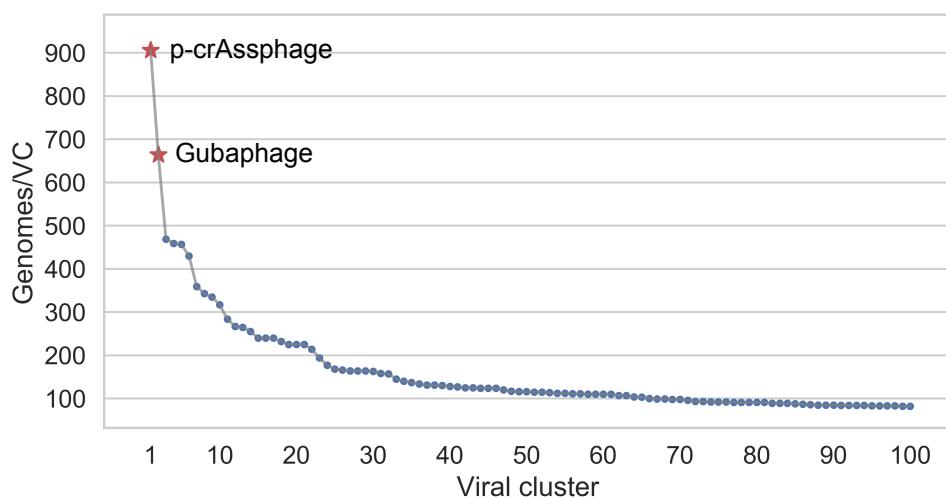


768

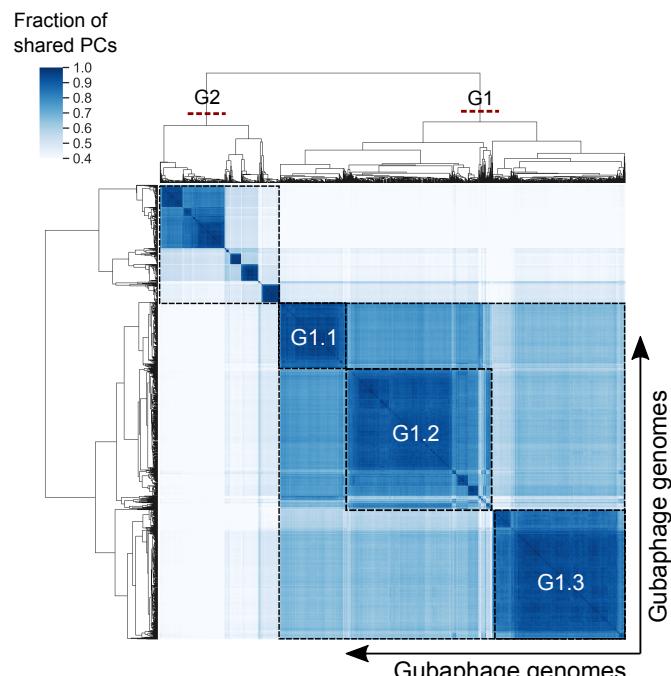
769 **Figure 4. Global gut phage clades and their bacterial hosts.**

770 **A)** The crass-like family is a globally distributed phage. Genera VI, VIII and IX which are predicted to infect a
 771 *Prevotella* host are more common in Africa and South America in contrast to genus I which infects a *Bacteroides*
 772 host. **B)** Host-phage network of globally distributed VCs (orange) reveals that *Prevotella*, *Faecalibacterium*, and
 773 *Roseburia* are the most targeted bacterial genera. In contrast to the Bacteroidales and Oscillospirales, the VCs
 774 from the Lachnospirales are highly shared. VCs that belong to the crAss-like family are highlighted in black; These
 775 were predicted to infect *Prevotella*, *Bacteroides*, and *Parabacteroides*.

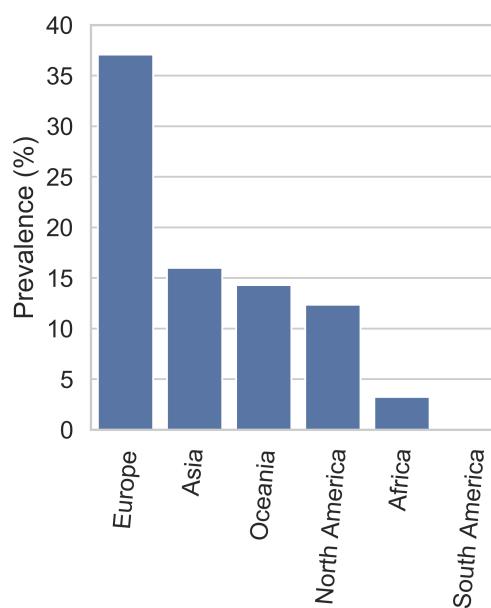
A



B



C



779 **Figure 5. The Gubophage is a novel and highly prevalent clade in the gut.**

780 **A)** VCs composed of only GPD predictions ranked by number of genomes. VC_3 which belongs to the Gubophage
781 clade was the second biggest cluster after VC_1 (composed of p-crAssphage genomes). **B)** Analysis of Gubophage
782 phylogenetic structure revealed two genera infecting members of the *Bacteroides* (G1) and *Parabacteroides* (G2).
783 **C)** The Gubophage clade was found in 5 continents, with Europe harbouring the highest number of infected
784 samples (38%), as opposed to South America with none detected.

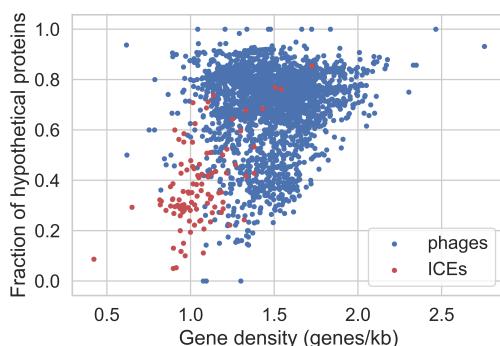
785

786

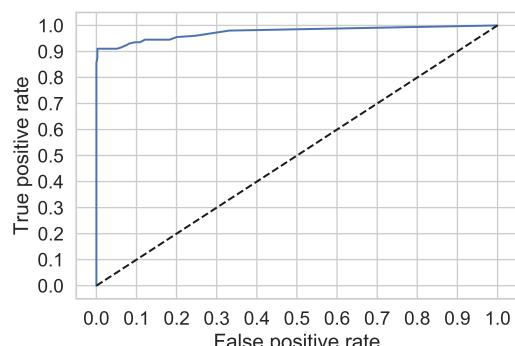
787 **Supplementary figures**

788

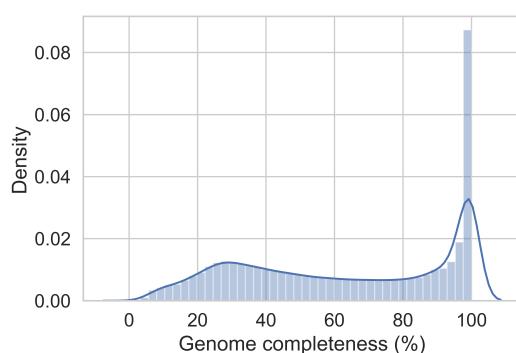
A



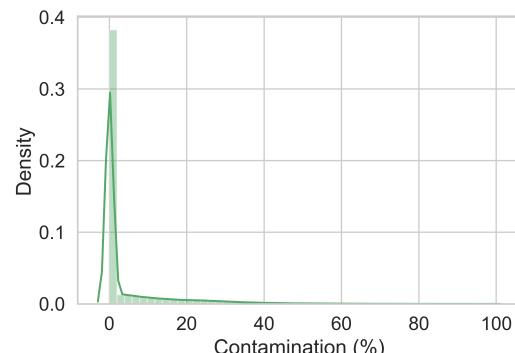
B



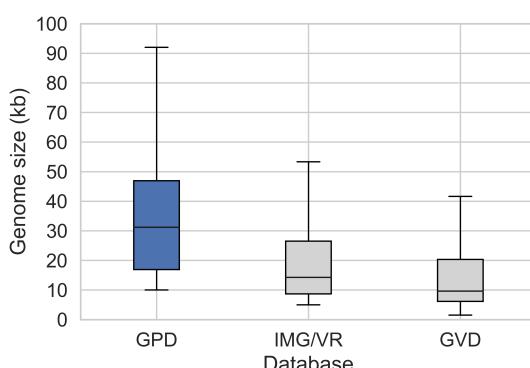
C



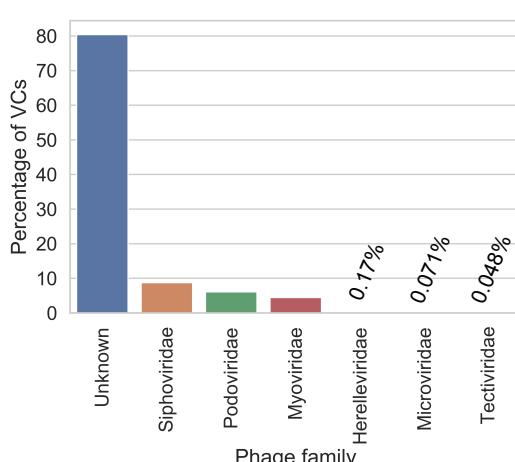
D



E



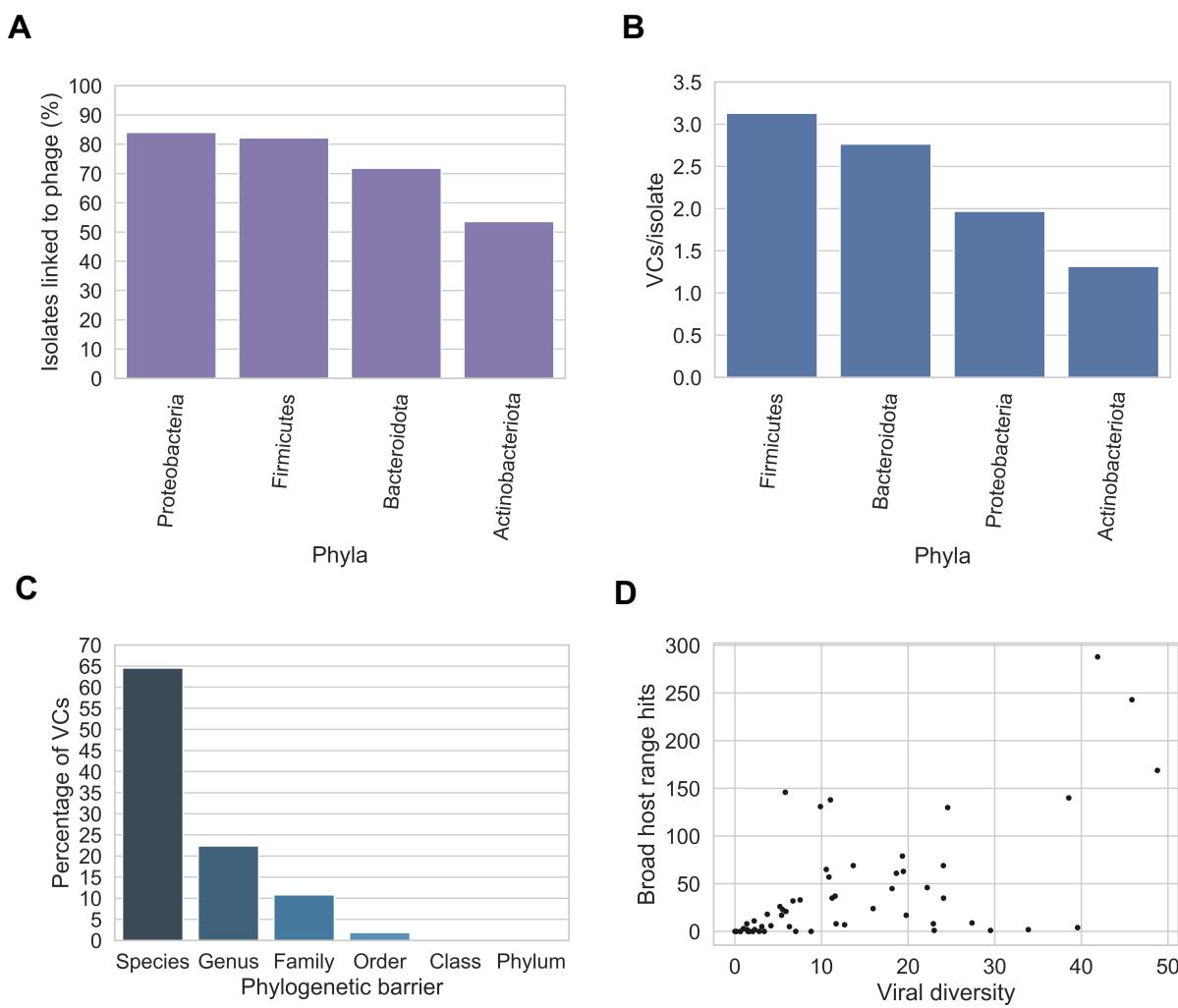
F



789

790 **Figure S1. Generating the most complete sequence database of human gut bacteriophages**

791 **A**) Gene density and fraction of hypothetical proteins are features that can be harnessed to discriminate phages from
792 ICEs. **B**) ROC curve showing the high performance ($AUC > 0.97$) of the neural network developed to decontaminate
793 ICEs from phages. **C**) Genome completeness distribution as estimated by CheckV on GPD. **D**) GPD contamination
794 distribution according to CheckV. **E**) Size distribution of GPD against other public databases. **F**) Assignment of
795 viral taxonomy to GPD predictions.



796

797 **Figure S2. Bacterial host assignment and host range for gut phage**

798 **A**) Percentage of isolates of each phylum linked to phage by CRISPR spacers and prophage assignment.
799 Actinobacteriota had the lowest percentage of isolates predicted to be a phage host. Actinobacteriota vs Bacteroidota
800 ($P = 0.007$, χ^2 test), Actinobacteriota vs Proteobacteria ($P = 0.0025$, χ^2 test), Actinobacteriota vs Firmicutes ($P = 1.01$
801 $\times 10^{-5}$, χ^2 test). **B**) The Firmicutes hosted the highest viral diversity (highest number of VCs/isolate). Firmicutes vs
802 Bacteroidota ($P = 0.021$, χ^2 test), Firmicutes vs Proteobacteria ($P = 4.41 \times 10^{-6}$, χ^2 test), Firmicutes vs
803 Actinobacteriota ($P = 1.1 \times 10^{-31}$, χ^2 test) **C**) The majority of VCs were found to be restricted to infect a single
804 species. However, a considerable number of VCs (~36%) had a broader host range ($P = 0.0$, binomial test). **D**) In
805 general, the higher the viral diversity per bacterial genus, the higher the number of phages with broad host range
806 (Spearman's Rho = 0.6685, $P = 3.91 \times 10^{-9}$).

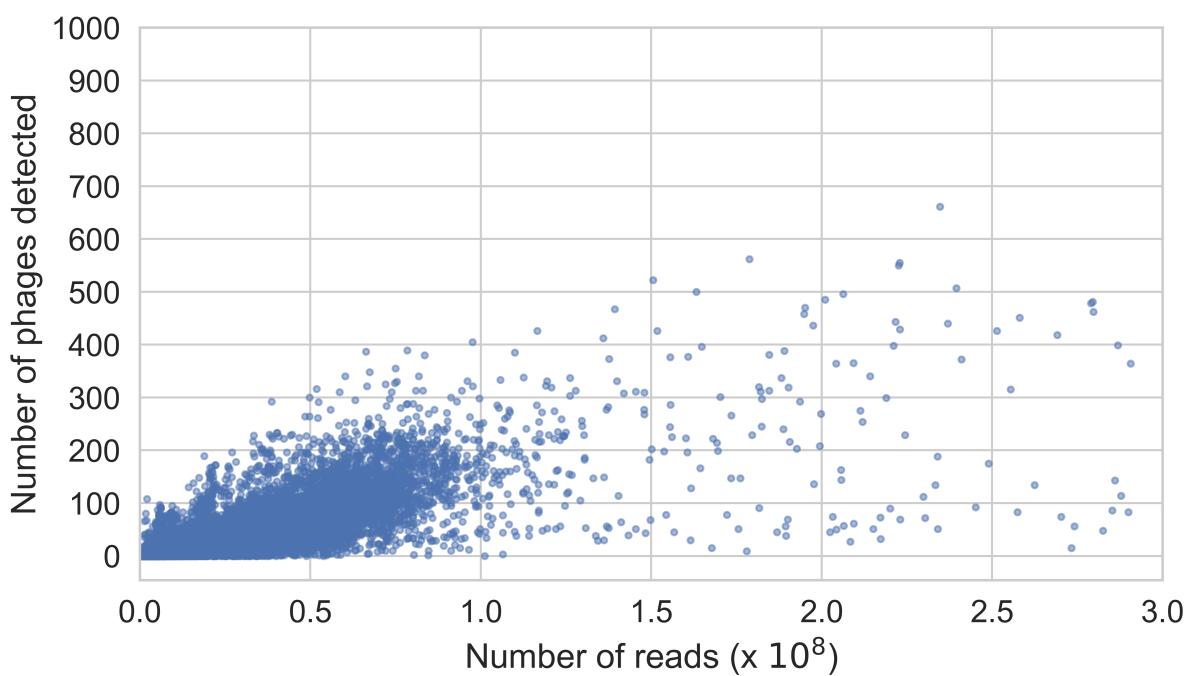
807

808

809

810

811



812

813 **Figure S3. Relationship between sample sequencing depth and phage richness**

814 Samples exhibit a positive correlation between sequencing depth and number of phage genomes detected. In
815 order to reduce this bias, we analysed only samples with a sequencing depth >50 million reads/sample. Correlation
816 of samples with sequencing depth <50 million (Pearson's r: 0.6825, P = 0.0). Correlation of samples with
817 sequencing depth >50 million (Pearson's r: 0.3681, P = 2.79e-97).

818

819

820

821

822

823

824

825

826

827

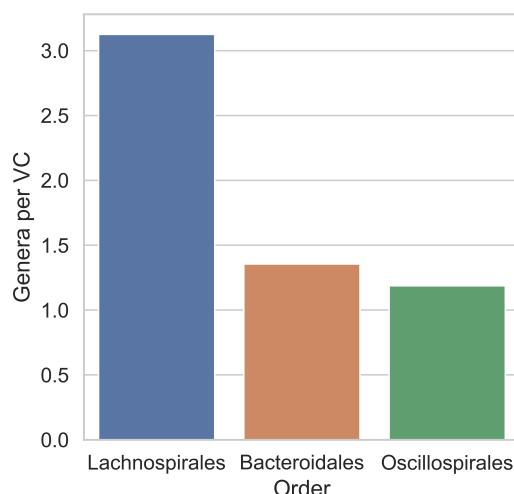
828

829

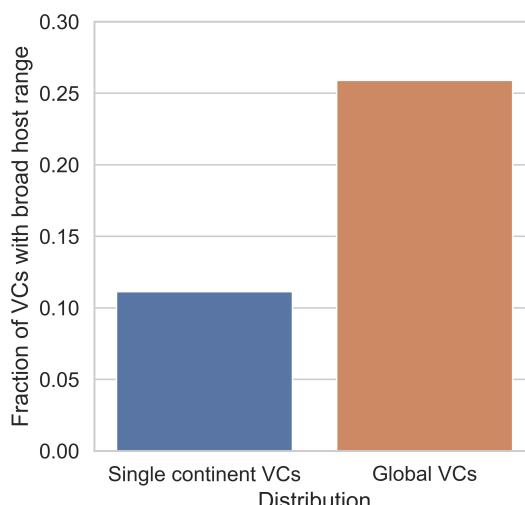
830

831

A



B



832

Figure S4. Global gut phage clades and their bacterial hosts.

833 **A)** When analysing globally distributed VCs, the VCs from the order of Lachnospirales were shared across a wider
834 range of genera than those within Oscillospirales and Bacteroidales. Lachnospirales vs Bacteroidales ($P = 9.99 \times$
835 10^{-6} , χ^2 test). Lachnospirales vs Oscillospirales ($P = 6.55 \times 10^{-6}$, χ^2 test). **B)** We observed that globally distributed
836 phages had a significantly broader range (above genus) than phages found in single continents ($P = 1.63 \times 10^{-5}$, χ^2 test).

837

838

839

840

841

842

843

844

845

846

847

848

849

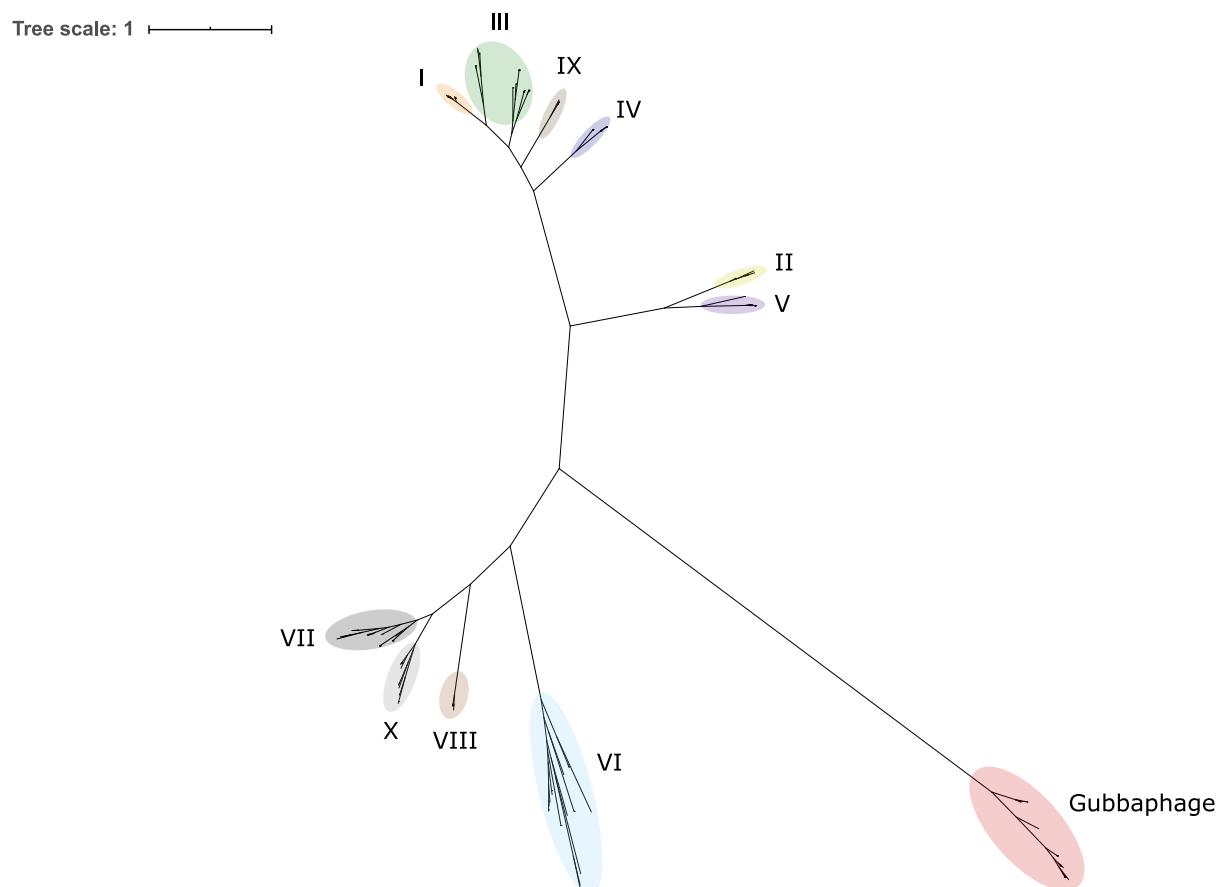
850

851

852

853

854



855

856

857 **Figure S5. The Gubaphage is a novel and highly prevalent clade in the human gut**

858 Unrooted phylogenetic tree of the large terminase gene from 226 crAss-like genomes and 44 Gubaphage
859 sequences. Roman numerals correspond to the 10 crass-like genera. The Gubaphage significantly diverged from
860 other crAss-like phages forming a distant clade of its own (red).

861