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 11 

SUMMARY 12 

Bacteriophages drive evolutionary change in bacterial communities by creating gene flow networks that 13 

fuel ecological adaptions. However, the extent of viral diversity and prevalence in the human gut 14 

remains largely unknown. Here, we introduce the Gut Phage Database (GPD), a collection of ~142,000 15 

non-redundant viral genomes (>10 kb) obtained by mining a dataset of 28,060 globally distributed 16 

human gut metagenomes and 2,898 reference genomes of cultured gut bacteria. Host assignment 17 

revealed that viral diversity is highest in the Firmicutes phyla and that ~36% of viral clusters (VCs) are 18 

not restricted to a single species, creating gene flow networks across phylogenetically distinct bacterial 19 

species. Epidemiological analysis uncovered 280 globally distributed VCs found in at least 5 continents 20 

and a highly prevalent novel phage clade with features reminiscent of p-crAssphage. This high-quality, 21 

large-scale catalogue of phage genomes will improve future virome studies and enable ecological and 22 

evolutionary analysis of human gut bacteriophages. 23 

 24 

 25 

 26 

 27 

 28 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.280214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.280214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

INTRODUCTION 29 

Viruses are the most numerous biological entities on Earth with an estimated population size of 30 

1031 particles (Brüssow and Hendrix, 2002).  Bacteriophages (or phages; viruses that infect 31 

bacteria and archaea) profoundly influence microbial communities by functioning as vectors of 32 

horizontal gene transfer (Jain et al., 1999), encoding accessory functions of benefit to host bacterial 33 

species (Harrison and Brockhurst, 2017), and promoting dynamic co-evolutionary interactions 34 

(Betts et al., 2014) . For decades, the discovery of phages occurred at a slow pace. However, with 35 

the advent of high-throughput metagenomics, it became possible to uncover an unparalleled 36 

amount of novel phage diversity (Al-Shayeb et al., 2020; Paez-Espino et al., 2016). A surprising 37 

finding was that the majority of phage sequences uncovered by metagenomics could not be 38 

classified into any known viral taxonomy laid out by the International Committee on Taxonomy of 39 

Viruses (ICTV) (e.g. species, genus, family) (Simmonds et al., 2017) prompting many researchers 40 

to organize phage predictions from metagenomic datasets into grouping schemes based solely on 41 

genomic features (Bin Jang et al., 2019). 42 

 43 

The impact of phages on different ecosystems is beginning to be uncovered, with phages found in 44 

the oceans already being referred to as ‘puppet masters’ due to their significant impact on oceanic 45 

biogeochemistry (Breitbart et al., 2018). Given the impact of the gut microbiome composition and 46 

function on human health, there is a growing focus on phages that inhabit the gut ecosystem 47 

(Clooney et al., 2019; Kho and Lal, 2018). The first metagenomic studies revealed that the majority 48 

(81%-93%) of the viral gut diversity is novel (Manrique et al., 2016; Reyes et al., 2010) but gut 49 

phage host assignment and host range remain largely uncharacterized. An exception has been p-50 

crAssphage, a phage discovered in 2014 by computational analysis of metagenomic reads and 51 

found in >50% of Western human gut microbiomes (Dutilh et al., 2014). Analyses of predicted 52 

phage sequences from gut metagenomes have yielded fascinating insights into phage biology, 53 

such as the presence of sticky domains — which may facilitate adherence of phage to the intestinal 54 

mucus (Barr et al., 2013) — reverse transcriptases that promote gene hypervariation (Minot et al., 55 

2012), and proteins with ankyrin domains that may aid bacterial hosts in immune evasion (Jahn et 56 

al., 2019) 57 
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Previous analyses have focused on bulk viral fragments with limited resolution to characterize 58 

individual phage genomes or link specific phage to a bacterial host species (Minot et al., 2012). 59 

More recently, human gut metagenomes have been mined to compile a more comprehensive list 60 

of gut phage genomes (Gregory et al., 2019; Paez-Espino et al., 2019), providing new fundamental 61 

insights into the viral diversity and functions present in the human gut microbiome. Nevertheless, 62 

the limited number (<700) of metagenomes used to construct these databases (GVD and gut 63 

phage fraction from IMG/VR), and the fragment size of their predictions (median size <15 kb as 64 

opposed to ~50 kb for an average Caudovirales phage genome commonly found in the human 65 

gut), suggests that the majority of gut phage diversity remains uncharacterized and incomplete. 66 

Indeed, a recent report estimated that IMG/VR, which contains viral sequences from a wide range 67 

of environments, showed that only 1.9% of the predictions were complete, and 2.5% were 68 

classified as high-quality (>90% complete)(Nayfach et al., 2020). A comprehensive resource of 69 

longer and complete reference phage genomes is required to enable genome-resolved 70 

metagenomics for gut phage studies across human populations. 71 

 72 

Here, we introduce the Gut Phage Database (GPD), a highly curated database containing 142,809 73 

non-redundant phage genomes derived from the analysis of 28,060 globally distributed 74 

metagenomic samples. Importantly, the GPD includes over 40,000 high-quality genomes with a 75 

median size of 47.68 kb. We use GPD to gain insight into the biology, host range and global 76 

epidemiology of human gut phages. We uncover 280 globally distributed viral clusters, including 77 

one viral clade (Gubaphage) with reminiscent features to p-crAssphage. Given the high quality of 78 

the reference genomes, the database size, and the sequence diversity harboured by the GPD, this 79 

resource will greatly improve the characterization of individual human gut bacteriophages at a 80 

global or local scale. 81 

 82 

 83 

 84 

 85 
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RESULTS 86 

Generation of the Gut Phage Database (GPD) 87 

In order to obtain a comprehensive view of human gut phage diversity, we analysed 28,060 public 88 

human gut metagenomes and 2898 bacterial isolate genomes cultured from the human gut (Figure 89 

1A). To identify viral sequences among human gut metagenomes, we screened over 45 million 90 

assembled contigs with VirFinder  (Ren et al., 2017) which relies on k-mer signatures to 91 

discriminate viral from bacterial contigs, and VirSorter (Roux et al., 2015) which exploits sequence 92 

similarity to known phage and other viral-like features such as GC skew. Since obtaining high-93 

quality genomes was essential for our downstream analyses, we used conservative settings (see 94 

“Methods” section for further details) for both tools and retained only predictions that were at least 95 

10 kb long. 96 

 97 

To further improve the quality of the dataset, we devised a machine learning approach to filter out 98 

contaminant mobile genetic elements (Figure S1A). We identified predictions carrying machinery 99 

from type IV secretion systems, suggesting contamination by integrative and conjugative elements 100 

(ICEs). We used a feedforward neural network to discriminate phages from ICEs by exploiting 101 

differences in gene density, fraction of hypothetical proteins, and k-mer composition signatures 102 

(see “Methods” section). The classifier was trained with experimental sequences of phages and 103 

ICEs and showed an excellent performance in an independent test set (AUC>0.97) (Figure S1B) 104 

of human gut mobile genetic elements (MGEs). Next, we dereplicated the final set of filtered 105 

sequences at a 95% average nucleotide identity (ANI) threshold (over a 75% aligned fraction) 106 

obtaining a database of 142,809 gut phage sequences, henceforth referred to as the Gut Phage 107 

Database (GPD). 108 

 109 

We estimated the level of completeness of each viral genome using CheckV (Nayfach et al., 2020) 110 

(Figure 2B). This tool infers the expected genome length of a viral prediction based on the average 111 

amino acid identity to a database of complete viral genomes from NCBI and environmental 112 

samples. In total,  13,429 (9.4%) of the viral genomes were classified as complete, 27,999 (19.6%) 113 

as high-quality, and 101,381 (70.99%) as genome fragments (<90% complete). This classification 114 
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scheme is consistent with the MIUViG standards (Roux et al., 2019). The median genome 115 

completeness of all genomes stored in the GPD was estimated to be 63.5% (interquartile range, 116 

IQR= 34.68%–95.31%) (Figure S1C). Estimation of non-viral DNA by CheckV showed that 73.5% 117 

of GPD predictions had no contamination whereas 84.13% had a predicted contamination <10% 118 

(Figure S2D). In comparison to other human gut phage databases (Gregory et al., 2019; Paez-119 

Espino et al., 2019), GPD had the largest median genome size with ~31 kb, followed by IMG/VR 120 

and GVD with 15 kb and 11 kb, respectively (Figure S1E). 121 

 122 

GPD significantly expands gut bacteriophage diversity  123 

In order to assess the viral diversity of the GPD at high taxonomic levels, we used a graph-based 124 

clustering approach to group genetically related phages. Merging GPD with the RefSeq phages 125 

and two other human gut phage databases (GVD and gut phage fraction of IMG/VR) resulted in 126 

the generation of 21,012 non-singleton viral clusters (VCs) with at least 1 GPD prediction (GPD 127 

VCs). A VC corresponds to a viral population sharing approximately 90% sequence identity over 128 

~75% aligned fraction (see “Methods” section for further details). Benchmarking against the 129 

RefSeq phages (Brister et al., 2015)  revealed that the boundaries of GPD VCs were equivalent to 130 

a subgenus level, as 99.73% of all VCs were contained within the genus level.  131 

 132 

Strikingly, less than 1% (171 out of 21,012) of the GPD VCs overlap with the RefSeq phages.  133 

Phages from these 171 VCs mainly infect Escherichia, Enterobacter, Staphylococcus, and 134 

Klebsiella genera, reflecting the bias of the RefSeq database towards well-known clinically 135 

important and traditionally cultured bacteria. Consistent with previous reports of phage predictions 136 

from metagenomic datasets (Hoyles et al., 2014), we were not able to confidently assign a family 137 

to the majority (~80%) of GPD VCs, while the rest corresponded mainly to the Podoviridae, 138 

Siphoviridae and Myoviridae families (Figure S1E). These 3 viral families belong to the 139 

Caudovirales order (phages characterized by having tails and icosahedral capsids) which were 140 

previously reported to be enriched in human faeces (Hoyles et al., 2014; Roux et al., 2012).  141 

 142 
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For comparison purposes, we also considered VCs without GPD predictions (Figure 1C). Analysis 143 

of VCs composed from only GPD and IMG/VR genomes showed 3,699 overlaps, while we found 144 

3,206 VCs composed of only GPD and GVD genomes. Moreover, GPD harboured the highest 145 

number of unique VCs with 12,731 novel clusters. On the other hand, 1099 VCs and 113 VCs 146 

were unique to IMG/VR and GVD, respectively. In addition, 1205 VCs were shared by the three 147 

databases. Interestingly, the number of VCs with an assigned phage taxon was lower in the VCs 148 

that were unique to GPD as opposed to those shared with GVD and IMG/VR (18.74% vs 27.8%) 149 

(P=1.96x10-9, 𝜒"  test). Thus, GPD considerably expanded the previously unknown gut phage 150 

diversity in the human gut. This phage diversity expansion is likely driven by the high number of 151 

gut metagenomes mined and their global distribution which allows the retrieval of rarer gut phage 152 

clades. 153 

 154 

Bacterial host assignment and host range for gut phage 155 

The GPD creates a unique opportunity to assign specific phage to bacterial host species at an 156 

unprecedented scale providing a phylogenetic framework to study gut bacteria-phage biology. 157 

Accordingly, we inferred the most likely bacterial hosts for each phage prediction using a 158 

comprehensive collection of 2898 high-quality human gut bacterial isolate genomes (Forster et al., 159 

2019; Zou et al., 2019). By screening for the presence of CRISPR spacers targeting phage and by 160 

linking the prophages to their assemblies of origin (Edwards et al., 2016), we assigned 40,932 161 

GPD phage (28.66% of all predictions) to 2,157 host strains. This corresponded to at least one 162 

phage for 74.43% of all cultured human gut bacteria. We then analysed if there was any preference 163 

for phage infection across 4 common human gut bacterial phyla (Firmicutes, Bacteroidetes, 164 

Proteobacteria, and Actinobacteriota) (Figure S2A). At the phylum level, we detected significant 165 

lower phage prevalence in Actinobacteriota, with 58.79% infected isolates compared to at least 166 

70% for the other phyla. 167 

 168 

We then measured viral diversity (measured by the number of VCs per isolate) within each phylum. 169 

This analysis revealed that the Firmicutes harbour a significantly higher viral diversity (Figure S2B), 170 

with an average of 3.13 VCs/isolate while also harbouring 60% of the total VCs assigned across 171 
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all phyla. Interestingly, the Firmicutes diversity was unevenly distributed as most of the viral 172 

diversity originated from the Negativicutes and Clostridia classes, with an average of 4.88 VCs and 173 

3.9 VCs per isolate respectively in contrast with the Bacilli (0.99 VC/isolate), and none for Bacilli A 174 

and Desulfitobacteriia classes.  175 

 176 

Analysis at the bacterial genus level across all phyla revealed that Lachnospira, Roseburia, 177 

Agathobacter, Prevotella, and Blautia A contain the highest number of VCs/isolate (Figure 2A). 178 

With the exception of Prevotella, which belongs to the Gram-negative Prevotellaceae family, these 179 

genera are members of the Gram-positive Lachnospiraceae family of Firmicutes associated with 180 

butyrate-producing spore-formers. In contrast, the lowest viral diversity per isolate was detected 181 

among Helicobacter, and the lactic acid bacteria Lactobacillus H, Lactobacillus, Enterococcus D 182 

and Pediococcus. Thus, we observe a wide distribution of phage abundance and prevalence 183 

across human gut bacteria, even within the same phylum. 184 

 185 

Horizontal transfer of genes between bacteria via transduction is a major driver of gene flow in 186 

bacterial communities (Chen et al., 2018). Host tropism of bacteriophage is believed to be limited 187 

by phylogenetic barriers, with most phages being usually restricted to a single host bacterial 188 

species (Ackermann, 1998). However, this has not been investigated at large scale across the 189 

human gut bacteria. Host assignment at different bacterial taxonomic ranks revealed that the 190 

majority of VCs were restricted to infect a single species (64.51%) (Figure S2C). We also found 191 

many VCs with broader host ranges such as those restricted to a single genus (22.39%), family 192 

(10.79%), order (1.86%), class (0.26%) and phylum (0.13%). Our findings are in line with a recent 193 

survey of the host range of gut phages by meta3C proximity ligation (6,651 unique host-phage 194 

pairs) which found that ~69% of gut phages were restricted to a single species (Marbouty et al., 195 

2020). Visualization of very broad range VCs (i.e. those not restricted to a single genus) reveals 196 

the large-scale connectivity between phylogenetically distinct bacterial species that fuels bacteria 197 

adaptation and evolution (Figure 2B). In general, the higher the viral diversity per bacterial genus, 198 

the higher the number of phages with broad host range (Figure S2D). 199 

 200 
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Surprisingly, two VCs (VC_269 and VC_644) had a host range that spanned two bacterial phyla. 201 

VC_269 was predicted to infect Faecalibacterium prausnitzii C (Firmicutes) and two 202 

Bifidobacterium spp. (Actinobacteriota), while VC_644 had a host range that included 5 203 

Bacteroides spp. (Bacteroidota) and Blautia A wexlerae (Firmicutes). We predicted VC_269 to be 204 

a Myoviridae phage, on the other hand, we could not assign a taxonomy rank to VC_644. The 205 

presence of integrases in both VCs suggest that these are temperate phages. We hypothesize 206 

that additional phages infecting both Actinobacteriota and Firmicutes may be more common, as 207 

recent evidence supports a shared ancestry between phages that infect both Actinobacteria 208 

(Streptomyces) and Firmicutes (Faecalibacterium) (Koert et al., 2019).  209 

 210 

Taken together, we reveal that approximately one third of gut phage have a broad host range not 211 

limited to a single host species. Our analysis provides a comprehensive blueprint of phage 212 

mediated gene flow networks in human gut microbiome. 213 

 214 

Human lifestyle associated with global gut distribution of phageome types 215 

The gut phageome can be defined as the aggregate of phages that inhabit the gut (Manrique et 216 

al., 2016). We performed the most comprehensive phageome profiling of the human gut by read 217 

mapping 28,060 metagenomes against the GPD. These metagenomic datasets used to generate 218 

the GPD were sampled from 28 different countries across the six major continents (Africa, Asia, 219 

Europe, North America, South America and Oceania). Our initial analysis demonstrated a positive 220 

correlation between sample sequencing depth and the number of viral genomes detected for 221 

samples with <50 million reads. Therefore, we focused further analysis on a dataset of 3011 deeply 222 

sequenced (>50 million reads) metagenome samples spanning all continents and 23 countries 223 

(Figure S3A). 224 

 225 

We observed clear separation of the North American, European, and Asian phageomes from 226 

African and South American samples when we computed the inter-sample Jaccard distance 227 

(Figure 3A) (P = 0.001, PERMANOVA test). Interestingly, these phageome patterns are associated 228 

with important differences in human lifestyles. Country-wise, samples derived from Africa and 229 
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South America were mainly sampled from Peru, Tanzania, and Madagascar. Specifically, Peruvian 230 

and Tanzanian samples originate from hunter gatherer communities whereas Malagasy samples 231 

come from rural communities with non-Western lifestyles. Oceania was a special case because it 232 

had a similar fraction of samples belonging to both groups. However, when we stratified by country, 233 

we revealed that all Fijian samples clustered with the rural group, whereas Australian samples 234 

segregated with the urbanized cluster. Fiji samples were derived from rural agrarian communities. 235 

These observations support the hypothesis that lifestyle, particularly urbanization, may drive 236 

differences in the gut phageomes across different human populations. 237 

 238 

We reasoned that the bacterial composition of an individual’s microbiome would shape the gut 239 

phageome. Prevotellaceae bacteria are more abundant and prevalent in individuals living a 240 

rural/traditional lifestyle, whereas Bacteroides are more abundant and prevalent in individuals 241 

living a urban/Western lifestyle (Wu et al., 2011). By harnessing the host assignment data for each 242 

phage, we found a significantly higher proportion of VCs assigned to the Prevotellaceae family 243 

from African, South American and Fijian metagenome samples than that of North America, Europe, 244 

Asia, and Australia (P = 0.0, 𝜒"  test) (Figure 3B). Conversely, the Bacteroides phages were 245 

significantly more prevalent in North America, Europe, Asia, and Australia gut microbiomes (P = 246 

1.72x10-208, 𝜒" test). Given the correlation between microbiome enterotypes and phageome types, 247 

driven by the intimate connection between phages and their bacterial hosts, we provide evidence 248 

that human lifestyle is associated with global variation of gut phageomes, most likely mediated by 249 

differences in the host gut microbiome. 250 

 251 

Global distribution of 280 dominant human gut phages 252 

If the gut phageome is predominantly shaped by the bacterial composition, we would expect to 253 

observe strong correlation between the prevalence of VCs with that of their bacterial hosts. A clear 254 

example is the crass-like family of gut phages which can be divided into 10 phage genera (Guerin 255 

et al., 2018). Genus I, which has been found in a large fraction of Western microbiome samples is 256 

able to infect species from the Bacteroides genus. In contrast, genera VI, VIII and IV were 257 

previously found to be the most prevalent crass-like phage among Malawian samples (Guerin et 258 
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al., 2018). Here, we predict that the most probable host of these three phage genera is Prevotella 259 

copri (rest of crAss-like family predicted hosts in Table S1). In accordance with the results from the 260 

Malawian samples, we also found the prevalence of genera VI, VIII and IV to be higher than genus 261 

I in Africa, South America, and Fiji (Figure 4A). Thus, the crass-like family is globally distributed 262 

with distinct global distribution patterns at the genera level, which appears to be strongly influenced 263 

by human lifestyles and enterotypes.  264 

 265 

We further investigated if we could identify other gut phage VCs with global distributions. By 266 

extending the analysis to all the VCs we were able to detect a total of 280 VCs that were globally 267 

distributed (found in at least 5 continents). This represents ~1.3% of all defined VCs (280/21,012).  268 

For 119 out of the 280 VCs (42.5%), we were able to classify them to the Caudovirales order, 269 

whereas the remaining 57.5% remained unclassified. Thus, the majority of globally distributed VCs 270 

are completely novel. When we looked at viral families detected within the Caudovirales, we 271 

detected Podoviridae (10 VCs), Myoviridae (28 VCs), Siphoviridae (43 VCs), and the newly formed 272 

family Herelleviridae (1 VC). In addition, when we examined at the phage subfamily level, the most 273 

common hits corresponded to the Picovirinae and Peduovirinae subfamilies with 4 VCs each. 274 

Importantly, the genomes of 131 members of 57 globally distributed VCs were mined directly from 275 

genomes of cultured isolates, providing unique opportunities for follow-up experiments to study 276 

bacteria-phage co-evolution (Table S2). 277 

 278 

A bacteria-phage network of globally distributed VCs (Figure 4B) revealed that Prevotella was the 279 

most targeted genus (37 VCs), followed by Faecalibacterium and Roseburia with 15 VCs each. In 280 

addition, we observed that in contrast to the Bacteroidales and Oscillospirales, the global VCs 281 

associated to the Lachnospirales were highly shared between different genera (Figure S4A). 282 

Notably, whilst 12 globally distributed VCs were members of the crAss-like family (in black), we 283 

were only able to assign a host to 6 VCs which targeted Bacteroidales bacteria. We observed that 284 

globally distributed phages had a significant broader range (across different genera) than phages 285 

found in single continents (P = 1.62x10-5) (Figure S4B). This result suggests that broad host-range 286 

of certain VCs likely contribute to their expansion across human populations. 287 
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 288 

Thus, we show that along with 12 crass-like VCs, there exists a set of at least 280 VCs which are 289 

globally distributed. Functional characterization of members of this set will prove useful to shed 290 

light on what makes a gut phage to become widespread across human populations. 291 

 292 

The Gubaphage is a novel and highly prevalent clade in the human gut 293 

When we calculated the number of genomes per VC, we discovered that VC_3 had the highest 294 

number of GPD predictions, only surpassed by VC_1 (which was composed of p-crAssphage 295 

genomes) (Figure 5A). Similarly to p-crAssphage, VC_3 was characterized by a long genome 296 

(~80kb), a BACON domain-containing protein, and predicted Bacteroides host range. Searching 297 

for sequences in the GPD with significant similarity to VC_3 large terminase gene (E-value<1e-6), 298 

we identified other 205 related VCs. We refer to this clade of phages as the Gut Bacteroidales 299 

phage (Gubaphage). Given its reminiscent features to crAssphage, we decided to investigate if 300 

the Gubaphage belonged to the recently proposed crAss-like family which consists of 10 genera 301 

and 4 subfamilies. We examined this relationship by building a phylogenetic tree using the large 302 

terminase gene (Figure S5). The tree successfully clustered all the crAss-like genera as expected, 303 

however the Gubaphage significantly diverged from the other crAss-like phages forming a distinct 304 

clade.  305 

 306 

Given the large genetic diversity contained in Gubaphage’s VC we sought to characterize its 307 

phylogenetic structure (Figure 5B). Analysis of protein overlap between Gubaphage’s genomes 308 

revealed that this clade is composed of 2 clusters that share more than 20% but less than 40% of 309 

homologous proteins between them. This structure suggests two genera (G1 and G2) from a single 310 

viral subfamily. In addition, within G1 we identified another phylogenetic substructure composed 311 

of 3 large clusters (G1.1, G1.2, and G1.3) composed of 313, 514, and 502 phage genomes 312 

respectively. Host range prediction revealed that G1.1 infects Bacteroides caccae and Bacteroides 313 

xylanisolvens B, G1.3 Bacteroides B vulgatus, and G2 Parabacteroides merdae and 314 

Parabacteroides distasonis.  In the case of G1.2 we couldn’t confidently predict a putative host. 315 

Interestingly, the larger genetic distance between G1 and G2 also resulted in a more extreme host 316 
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range switch, from Bacteroidaceae (G1) to Porphyromonadaceae (G2). Core genes of the 317 

Gubaphage included homing endonucleases, DNA polymerase I, FluMu terminase, DNA primase, 318 

DNA helicase, Thymidylate kinase, dUTPase, among others. Annotation of its genome revealed 319 

that Gubaphage is organized into three distinct regions. One region encodes structural proteins, 320 

the second is composed mainly of genes involved in DNA processing and the third codes for a 321 

series of hypothetical proteins. We also found that the phage FAKO05_000032F (Suzuki et al., 322 

2019), had high sequence identity (>90%) with several members of G1.3. 323 

 324 

Analysis of the distribution of the Gubaphage clade revealed its presence in all the continents 325 

except in South America (Figure 5C). Particularly, it reached a prevalence close to 40% in Europe, 326 

while the lowest corresponded to Africa (3%). The discovery of the Gubaphage clade is yet another 327 

example of a highly prevalent phage in the human gut and highlights the need to perform further 328 

culturing and mechanistic studies to better understand its role in the human gut microbiota. 329 

 330 

DISCUSSION 331 

In this study, we generated and analysed a collection of ~142,000 high-quality and non-redundant 332 

gut phage genomes recovered from 28,060 worldwide distributed human gut metagenomes and 333 

2898 gut isolate genomes. To our knowledge, this set represents the most comprehensive and 334 

complete collection of human gut phage genomes to date and is complemented by other published 335 

gut phage databases (Gregory et al., 2019; Paez-Espino et al., 2019). Importantly, this work shows 336 

that it is possible to recover high-quality phage genomes from shotgun metagenomes without the 337 

need to enrich for viral-like particles (VLPs) from stool samples prior to sequencing. With our 338 

approach, we not only recovered non-integrative phages like p-crAssphage, but also uncovered 339 

prophage sequences which may rarely enter the lytic cycle and form VLPs. As shotgun 340 

metagenomes are far more readily available than VLP metagenomes, we had access to an 341 

unparalleled number of datasets which enabled us to obtain more complete genomes and viral 342 

diversity. Our pipeline highlighted the need for stringent quality control procedures in order to filter 343 

out contamination when dealing with predictions of mobile genetic elements such as phages. This 344 

is particularly true when mining large-scale datasets due to the impossibility of manually curating 345 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.280214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.280214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

every prediction. As the field moves towards the analysis of larger datasets, we believe that 346 

machine learning approaches (such as the classifier developed in this work) can be harnessed to 347 

help mitigate contamination and significantly boost the quality of the final set of predictions. 348 

 349 

Grouping our predictions into VCs was a critical aspect to organize and manage the vast number 350 

of predictions in our database. VCs allowed us to discover important phageome patterns such as 351 

uncovering highly genetically diverse phage clades (p-crAssphage and Gubaphage), inferring host 352 

range, evaluating prevalence around the world, and exposing epidemiology associations by 353 

profiling the phageome composition of human samples. Although vContact (Bin Jang et al., 2019) 354 

has been extensively used to group phage sequences into clusters that roughly correspond to 355 

genus level, it was not computationally feasible to use it with our massive database. We foresee 356 

that as genomic and phenotypic features of these VCs are further studied, it will be possible to 357 

classify them into at least one of the 15 hierarchical ranks recommended by the ICTV.   358 

 359 

Here we also carried out the most comprehensive analysis of the host range of human gut phages. 360 

Although the majority of VCs were found to be restricted to a single bacterial species, a significant 361 

percentage (~36%) was predicted to infect multiple species, genera, families, orders, and even 362 

classes.  A consequence of broad host range phages is an increased connectivity for horizontal 363 

gene transfer events due to transduction, which can result in the creation of gene flow networks 364 

between phylogenetically distinct bacterial species in the human gut.  365 

 366 

The use of GPD also enabled us to gain new insights into the epidemiology of gut phages. Notably, 367 

we were able to harness global variation in phage composition to learn that the human gut 368 

phageome is associated with the lifestyle of individuals and populations. We showed that phages 369 

found in urban samples targeted Bacteroides over Prevotellaceae bacteria, whereas rural samples 370 

from Peru, Tanzania, Madagascar, and Fiji harboured phages with a host range that targeted 371 

Prevotellaceae over Bacteroides bacteria. This is yet another result that highlights the importance 372 

of the size and diversity of our initial dataset, as we were able to capture the genomes of phages 373 

from several understudied regions.  374 
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 375 

In this work, we also show how our newly generated GPD can be harnessed for characterization 376 

of other important viral subfamilies from the gut. In particular, we discovered that the novel 377 

Gubaphage clade was actually composed of 2 genera and was able to infect bacteria from the 378 

Bacteroidaceae and Porphyromonadaceae families. The combined prevalence of the 2 379 

Gubaphage genera reached a sample proportion between 10-15% in North America, Oceania and 380 

Asia, while in Europe it was found to be infecting bacteria in ~37% of the samples. These results 381 

highlight the importance of establishing well-defined viral gut subfamilies, as the combined effect 382 

size of highly related phage genomes may help uncover associations of specific clades with their 383 

bacterial hosts and human health. 384 

 385 

Having a comprehensive database of high-quality phage genomes paves the way for a multitude 386 

of analyses of the human gut virome at a greatly improved resolution, enabling the association of 387 

specific viral clades with distinct microbiome phenotypes. Importantly, GPD provides a blueprint to 388 

guide functional and phenotypic experiments of the human gut phageome, as we linked over 389 

40,000 predictions to 472 cultured gut bacteria species. GPD also harbours 2496 phages that were 390 

mined from cultured isolates that are publicly available, and notably 131 members of 57 globally 391 

distributed VCs, providing a resource for wet lab experiments to study bacteria-phage co-evolution. 392 

In addition, having more complete genomes allows inspection of the most amenable phages for 393 

genetic engineering (Chen et al., 2017) or identification of the receptor binding protein genes to 394 

expand their host range (Yehl et al., 2019) . Given how important the mobilome can be for bacterial 395 

ecosystems, we believe that further characterization of other prominent genetic elements such as 396 

ICEs, IMEs, genetic islands, and transposons will bring us closer to understanding the association 397 

of the gut microbiome with different lifestyles, age and ultimately, health and disease. 398 

 399 

  400 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.280214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.280214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

METHODS 401 

Metagenome assembly  402 

Sequencing reads from 28,060 human gut metagenomes were obtained from the European Nucleotide 403 

Archive (Leinonen et al., 2011) Paired-end reads were assembled using SPAdes v3.10.0 (Bankevich 404 

et al., 2012) with option ‘--meta’, while single-end reads were assembled with MEGAHIT v1.1.3  (Li et 405 

al., 2015) both with default parameters.  406 

 407 

Viral sequence prediction 408 

To identify viral sequences among human gut metagenomes, we used virFinder  (Ren et al., 2017) 409 

which relies on k-mer signatures to discriminate viral from bacterial contigs, and VirSorter (Roux et al., 410 

2015) which exploits sequence similarity to known phage and other viral-like features such as GC 411 

skew. While VirFinder is only able to classify whole contigs, VirSorter can also detect prophages and 412 

thus classifies viral sequences as ‘free’ or integrated. Since obtaining high-quality genomes was 413 

paramount for our downstream analyses, we used conservative settings for both tools. Metagenome 414 

assembled contigs >10 kb in length were analysed with VirSorter v1.0.5 and VirFinder v1.1 to detect 415 

putative viral sequences. With VirSorter, only predictions classified as category 1, 2, 4 or 5 were 416 

considered. In the case of VirFinder, we selected contigs with a score >0.9 and P <0.01.  417 

 418 

Contigs were further quality-filtered to remove host sequences using a blast-based approach. Briefly, 419 

we first used the ‘blastn’ function of BLAST v2.6.0 (Altschul et al., 1990)  to query each contig against 420 

the human genome GRCh38 using the following parameters: ‘-word_size 28 -best_hit_overhang 0.1 -421 

best_hit_score_edge 0.1 -dust yes -evalue 0.0001 -min_raw_gapped_score 100 -penalty -5 -422 

perc_identity 90 -soft_masking true’. Contigs with positive hits across >60% total length were excluded. 423 

 424 

Sequence clustering 425 

Dereplication of the filtered contigs was performed with CD-HIT v4.7 (Li and Godzik, 2006) using a 426 

global identity threshold of 99% (‘-c 0.99’). This was performed first on contigs obtained within the same 427 

ENA study, and afterwards among those obtained across studies. A final set of representative viral 428 

sequences was generated by clustering these resulting contigs at a 95% nucleotide identity over a local 429 

alignment of 75% of the shortest sequence (options ‘-c 0.95 -G 0 -aS 0.75’). 430 
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 431 

Quality control of GPD predictions 432 

In order to ensure a high-quality of GPD predictions we removed integrative and conjugative elements 433 

by using a machine learning approach. 434 

 435 

Our training set consisted of all experimental ICEs with intact sequence retrieved from ICEberg 2.0 (Bi 436 

et al., 2012) and the phage RefSeq genomes from NCBI (Brister et al., 2015). Our test set was 437 

downloaded from the Intestinal microbiome mobile elements database (ImmeDB) corresponding to the 438 

“ICEs” and “Prophages” datasets. By parsing GFF files with custom Python scripts, for each sequence 439 

we calculated 3 high-level features, namely number of genes/kb, number of hypothetical proteins/total 440 

genes, and 5-kmer relative frequency (45 = 1024 kmers). We used Keras with the TensorFlow (Abadi 441 

et al.) backend to train a feedforward neural network with an initial hidden layer of size 10 (ReLU 442 

activation), followed by another hidden layer of size 5 (ReLU activation) and a final neuron with a 443 

sigmoid activation function. Model selection was carried out with 5-fold cross-validation. We trained the 444 

network using the Adam optimizer and the binary cross entropy as the loss function.  445 

 446 

We carried out the classification by allowing a false positive rate of 0.25% with a recall of 91%. Finally, 447 

we excluded genomes that were predicted to belong to non-phage taxa (82 predictions) 448 

 449 

Clustering of phages into VCs 450 

We first created a BLAST database (makeblastdb) of all the nucleotide sequences stored in GPD and 451 

then carried out all the pairwise comparisons by blasting GPD against itself (we kept hits with E-value 452 

≤ 0.001). Then, for every pairwise comparison, we calculated the coverage by merging the aligned 453 

fraction length of the smaller sequence that shared at least 90% sequence similarity. We kept only the 454 

results with a coverage >75%. Finally, we carried out a graph-based clustering by running the Markov 455 

Clustering Algorithm (MCL) (Dongen, 2000) with an inflation value of 6.0.  456 

 457 

Viral taxonomic assignment 458 

Viral taxonomic assignment of contigs was performed using a custom database of phylogenetically 459 

informative profile HMMs (ViPhOG v1, available here: 460 
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ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/viral-pipeline/hmmer_databases), where each model 461 

is specific to one viral taxon. First, protein-coding sequences of each viral contig were predicted with 462 

Prodigal v2.6.3 (Hyatt et al., 2010). Thereafter, we used ‘hmmscan’ from HMMER v3.1b2 (Eddy, 1998) 463 

to query each protein sequence against the ViPhOG database, setting a full-sequence E-value reporting 464 

threshold of 10-3 and a per-domain independent E-value threshold of 0.1. Resulting hits were analysed 465 

to predict the most likely and specific taxon for the whole contig based on the following criteria: (i) a 466 

minimum of 20% of genes with hits against the ViPhOG database, or at least two genes if the contig 467 

had less than 10 total genes; and (ii) among those with hits against the ViPhOG database, a minimum 468 

of 60% assigned to the same viral taxon. 469 

 470 

Metagenomic read mapping 471 

To estimate the prevalence of each viral species, we mapped metagenomic reads using BWA-MEM 472 

v0.7.16a-r1181 (Li and Durbin, 2009) (‘bwa mem -M’) against the GPD database (clustered at 95% 473 

nucleotide identity) here generated. Mapped reads were filtered with samtools v1.5 (Li et al., 2009) to 474 

remove secondary alignments (‘samtools view -F 256’) and each viral species was considered present 475 

in a sample if the mapped reads covered >75% of the genome length. 476 

 477 

Taxonomic assignment of bacterial genomes 478 

Bacterial isolate genomes were taxonomically classified with the Genome Taxonomy Database Toolkit 479 

(GTDB-Tk) v0.3.1 (Chaumeil et al., 2019) (https://github.com/Ecogenomics/GTDBTk) (database 480 

release 04-RS89) using the ‘classify_wf’ function and default parameters. Taxa with an alphabetic suffix 481 

represent lineages that are polyphyletic or were subdivided due to taxonomic rank normalization 482 

according to the GTDB reference tree. The unsuffixed lineage contains the type strain whereas all other 483 

lineages are given alphabetic suffixes, suggesting that their labelling should be revised in due course. 484 

 485 

Clustering of proteins 486 

We predicted the whole proteome of GPD with Prodigal v2.6.3 (metagenomic mode) and masked the 487 

low-complexity regions with DustMasker. We then created a BLAST database of all the protein 488 

sequences and carried out all the pairwise comparisons by blasting the GPD proteome against itself 489 

(we kept hits with E-value ≤ 0.001). Then, for every pairwise comparison, we calculated a similarity 490 
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metric as defined by Chan et al (Chan et al., 2013). Finally, we ran the Markov Clustering Algorithm 491 

(MCL) with an inflation value of 6.0 and removed clusters with only 1 member.  492 

 493 

Geographical distribution of metagenomic samples 494 

We removed samples with a sequencing depth below 50 million reads/sample, as below this threshold 495 

we observed a positive correlation between sample depth and number of viral genomes detected 496 

(Supplemental figure 3B). This new subset consisted of 3011 samples and spanned all the continents 497 

and 23 countries. Similarity between 2 samples was calculated by computing the number of shared 498 

VCs divided by the total number of VCs in both samples (Jaccard index). Distribution of samples was 499 

visualized with PCA. 500 

 501 

Host assignment 502 

We predicted CRISPR spacer sequences from the 2898 gut bacteria using CrisprCasFinder-2.0.2 503 

(Couvin et al., 2018). We only used spacers found in CRISPR arrays having evidence levels 3 and 4.  504 

We assigned a host to a prediction only if the putative host CRISPR spacer matched perfectly to the 505 

phage prediction (100% sequence identity across whole length of CRISPR spacer). We carried out the 506 

screen by blasting all the predicted CRISPR spacers against the nucleotide GPD BLAST database 507 

using the following custom settings (task: blastn-short, - gapopen 10, -gapextend 2, penalty -1, -508 

word_size 7m -perc_identity 100). We kept only hits that matched across the whole length of the spacer 509 

with a custom script. In addition, prophages were assigned to the bacterial assembly from which they 510 

were predicted.    511 

 512 

Phylogenetic analysis of Gubaphage 513 

The phylogenetic tree comparing Gubaphage against crAss-like phages was constructed by aligning 514 

the corresponding large terminase genes with MAFFT v7.453 (Katoh et al., 2002) –auto mode, followed 515 

by FastTree v2.1.10 (Price et al., 2010). The resultant tree was visualized on iTOL (Letunic and Bork, 516 

2007). We calculated the fraction of shared protein clusters among all the Gubaphage genomes and 517 

then carried out hierarchical clustering with average linkage and Euclidean metric. 518 

 519 

 520 
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Annotation of viral genomes 521 

Protein annotation was carried out using Prokka v1.5-135 (Seemann, 2014). 522 

 523 

Data and code availability 524 

GPD sequences and associated metadata can be found in the following FTP link:  525 

http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/ 526 

Classifier and scripts used to generate figures can be found here: 527 

https://github.com/cai91/GPD 528 
 529 
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Figures 707 

 708 

 709 

Figure 1. Generating the most complete sequence database of human gut bacteriophages 710 

A) Massive prediction of phage genomes from 28,060 human gut metagenomes and 2898 isolate genomes was 711 

carried out using VirFinder and VirSorter with conservative settings. A machine learning approach (see “Methods”) 712 

was used to increase the quality of predictions and redundancy was removed by clustering the sequences at a 713 

95% sequence identity. Diversity was further analysed by generating viral clusters (VCs) of predictions using a 714 

graph-based approach. B) Quality estimation of GPD genomes by CheckV. Over 40,000 predictions are 715 

categorized as high-quality. C) UpSet plot comparing GPD against other public gut phage databases. GPD 716 

captures the greatest unique diversity of phage genomes that inhabit the human gut. 717 
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 749 

Figure 2. Bacterial host assignment and host range for gut phage 750 

A) Bacterial genera with the highest viral diversity were Lachnospira, Roseburia, Agathobacter, Prevotella, and 751 

Blautia A. On the other hand, the lowest viral diversity was harboured by Helicobacter and the lactic acid bacteria 752 

Lactobacillus, Lactobacillus H, Enterococcus D and Pediococcus. B) Phylogenetic tree of 2898 gut bacteria isolates 753 

showing phage host range. Host assignment was carried out by linking prophages with their assemblies and 754 

CRISPR spacer matching. Orange connections represent VCs with a very broad host range (not restricted to a 755 

single genus). Black connections represent VCs able to infect two phyla. Outer bars show phage diversity 756 

(VCs/isolate). 757 
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 758 
Figure 3. Global phylogeography of gut phages.  759 

A) PCA plot of inter-sample Jaccard distance. Lifestyle is associated with differences in the gut phageome across 760 

human populations. Samples from Peru, Madagascar, Tanzania and Fiji are found in the rural cluster whereas 761 

those samples with a more Westernized lifestyle (mainly from North America, Europe, and Asia) are found in the 762 

urban cluster (P = 0.001, R2 = 0.36, PERMANOVA test). Ellipses enclose samples within 2 standard deviations for 763 

each lifestyle. B) The proportion of viral sequences (at 95% sequence identity dereplicated) that target 764 

Prevotellaceae hosts in traditional societies is higher than that of industrialized populations. Conversely, 765 

Bacteroides hosts are more common in industrialized populations than in traditional societies. This result suggests 766 

that the composition of the gut phageome at a global scale is driven by the bacterial composition.   767 
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 768 

Figure 4. Global gut phage clades and their bacterial hosts.  769 

A) The crass-like family is a globally distributed phage. Genera VI, VIII and IX which are predicted to infect a 770 

Prevotella host are more common in Africa and South America in contrast to genus I which infects a Bacteroides 771 

host. B) Host-phage network of globally distributed VCs (orange) reveals that Prevotella, Faecalibacterium, and 772 

Roseburia are the most targeted bacterial genera. In contrast to the Bacteroidales and Oscillospirales, the VCs 773 

from the Lachnospirales are highly shared. VCs that belong to the crAss-like family are highlighted in black; These 774 

were predicted to infect Prevotella, Bacteroides, and Parabacteroides. 775 

A

B

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.280214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.280214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 776 
 777 
 778 

Figure 5. The Gubaphage is a novel and highly prevalent clade in the gut.  779 

A) VCs composed of only GPD predictions ranked by number of genomes. VC_3 which belongs to the Gubaphage 780 

clade was the second biggest cluster after VC_1 (composed of p-crAssphage genomes). B) Analysis of Gubaphage 781 

phylogenetic structure revealed two genera infecting members of the Bacteroides (G1) and Parabacteroides (G2). 782 

C) The Gubaphage clade was found in 5 continents, with Europe harbouring the highest number of infected 783 

samples (38%), as opposed to South America with none detected. 784 
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Supplementary figures 787 

 788 

 789 

Figure S1. Generating the most complete sequence database of human gut bacteriophages 790 

A) Gene density and fraction of hypothetical proteins are features that can be harnessed discriminate phages from 791 

ICEs. B) ROC curve showing the high performance (AUC>0.97) of the neural network developed to decontaminate 792 

ICEs from phages. C) Genome completeness distribution as estimated by CheckV on GPD. D) GPD contamination 793 

distribution according to CheckV. D) Size distribution of GPD against other public databases. E) Assignment of 794 

viral taxonomy to GPD predictions.  795 
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 796 
Figure S2. Bacterial host assignment and host range for gut phage 797 

A) Percentage of isolates of each phylum linked to phage by CRISPR spacers and prophage assignment. 798 

Actinobacteria had the lowest percentage of isolates predicted to be a phage host.  Actinobacteria vs Bacteroidota 799 

(P = 0.007, 𝜒" test), Actinobacteria vs Proteobacteria (P = 0.0025,	𝜒" test), Actinobacteria vs Firmicutes (P = 1.01 800 

x 10-5, 𝜒" test). B) The Firmicutes hosted the highest viral diversity (highest number of VCs/isolate). Firmicutes vs 801 

Bacteroidota (P = 0.021, 	𝜒"  test), Firmicutes vs Proteobacteria (P = 4.41 x 10-6, 	𝜒"  test), Firmicutes vs 802 

Actinobacteriota (P = 1.1 x 10-31,	𝜒" test) C) The majority of VCs were found to be restricted to infect a single 803 

species. However, a considerable number of VCs (~36%) had a broader host range (P = 0.0, binomial test). D) In 804 

general, the higher the viral diversity per bacterial genus, the higher the number of phages with broad host range 805 

(Spearman’s Rho = 0.6685, P = 3.91x10-9). 806 
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 812 
Figure S3. Relationship between sample sequencing depth and phage richness 813 

Samples exhibit a positive correlation between sequencing depth and number of phage genomes detected. In 814 

order to reduce this bias, we analysed only samples with a sequencing depth >50 million reads/sample. Correlation 815 

of samples with sequencing depth <50 million (Pearson’s r: 0.6825, P = 0.0). Correlation of samples with 816 

sequencing depth >50 million (Pearson’s r: 0.3681, P = 2.79e-97). 817 
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 832 

Figure S4. Global gut phage clades and their bacterial hosts.  833 

A) When analysing globally distributed VCs, the VCs from the order of Lachnospirales were shared across a wider 834 

range of genera than those within Oscillospirales and Bacteroidales. Lachnospirales vs Bacteroidales (P = 9.99 x 835 

10-6, 𝜒" test). Lachnospirales vs Oscillospirales (P = 6.55 x 10-6, 𝜒" test). B) We observed that globally distributed 836 

phages had a significantly broader range (above genus) than phages found in single continents (P = 1.63 x 10-837 
5,	𝜒" test). 838 
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 855 
 856 

Figure S5.  The Gubaphage is a novel and highly prevalent clade in the human gut 857 

Unrooted phylogenetic tree of the large terminase gene from 226 crAss-like genomes and 44 Gubaphage 858 

sequences. Roman numerals correspond to the 10 crass-like genera. The Gubaphage significantly diverged from 859 

other crAss-like phages forming a distant clade of its own (red). 860 
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