

1 **A feedback loop between the androgen receptor and 6-phosphogluconate dehydrogenase**
2 **(6PGD) drives prostate cancer growth**

3

4 **Running title:** Cooperativity between 6PGD and AR drives prostate cancer growth

5

6 Joanna L. Gillis^{1,2}, Josephine A. Hinneh^{1,2,3}, Natalie Ryan^{1,2}, Swati Irani^{1,2}, Max Moldovan², Raj
7 Shrestha^{1,10}, Lake Ee Quek⁴, Andrew J. Hoy⁵, Jeff Holst⁶, Margaret M. Centenera^{1,2}, Ian G. Mills^{7,8},
8 David J. Lynn^{2,9}, Luke A. Selth^{1,9,10*} and Lisa M. Butler^{1,2*}

9

10 ¹University of Adelaide Medical School and Freemasons Foundation Centre for Men's Health,
11 University of Adelaide, Adelaide, SA 5005, Australia.

12 ²South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.

13 ³Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

14 ⁴School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of
15 Sydney, Camperdown, NSW 2006, Australia

16 ⁵School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The
17 University of Sydney, Camperdown, NSW 2006, Australia.

18 ⁶School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales,
19 Sydney, NSW 2052, Australia

20 ⁷Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, UK.

21 ⁸Nuffield Department of Surgical Sciences, University of Oxford, UK.

22 ⁹Flinders Health and Medical Research Institute and Flinders Centre for Innovation in Cancer,
23 Flinders University, College of Medicine and Public Health, Bedford Park, SA 5042, Australia.

24 ¹⁰Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, SA 5005,
25 Australia

26

27 *Corresponding authors:

28 Luke A. Selth: luke.selth@flinders.edu.au

29 Lisa M. Butler: lisa.butler@adelaide.edu.au

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 **ABSTRACT**

52 Alterations to androgen receptor (AR) signalling and cellular metabolism are hallmarks of prostate
53 cancer. This study uncovers a novel link between AR and the pentose phosphate pathway (PPP)
54 through 6-phosphogluconate dehydrogenase (6PGD), an androgen-regulated gene that is
55 upregulated in prostate cancer. Knockdown of 6PGD impairs growth and elicits death of prostate
56 cancer cells, at least in part due to oxidative stress. Targeting 6PGD using 2 specific inhibitors,
57 physcion and S3, was efficacious in multiple models of prostate cancer, including aggressive
58 castration-resistant models. Importantly, S3 also suppressed proliferation of clinical patient-
59 derived explants (PDEs). Mechanistically, 6PGD decreased expression and activity of AR in cell
60 lines and PDEs, revealing a novel positive feedback loop between these factors. The enhanced
61 efficacy of co-targeting AR and 6PGD further supported the biological relevance of this feedback.
62 This work provides insight into the dysregulated metabolism of prostate cancer and supports
63 investigation of co-targeting AR and the PPP.

64

65

66

67

68

69

70

71

72 **INTRODUCTION**

73 Altered cellular metabolism is a hallmark of cancer. Perhaps the best characterised metabolic
74 transformation in malignant cells is the so-called Warburg effect, in which cancer cells favour
75 metabolism via glycolysis rather than the more efficient oxidative phosphorylation (1). While
76 Warburg-like metabolism plays a key role in many malignancies, more recent work has
77 demonstrated the diversity of cancer metabolism and revealed that tissue-of-origin is likely to be
78 the critical determinant of malignant metabolic reprogramming (2). One tissue that exhibits a
79 unique metabolic profile is the prostate (3). Normal prostate epithelial cells exhibit a truncated
80 tricarboxylic acid (TCA) cycle to enable production of citrate, a key component of prostatic fluid,
81 resulting in high rates of glycolysis (2). By contrast, malignant transformation switches
82 metabolism of prostate cells to a more energetically favourable phenotype by re-establishing an
83 intact TCA cycle, whereby citrate is utilised for oxidative phosphorylation and biosynthetic
84 processes such as lipogenesis (4).

85

86 A major regulator of the unique metabolism of the normal and malignant prostate is the
87 androgen receptor (AR) (5). AR is a hormone (androgen)-activated transcription factor that
88 regulates expression of a large suite of genes involved in various aspects of metabolism, either
89 directly or indirectly through activation of other master regulators such as SREBP (6, 7). Given its
90 integral metabolic functions, it is unsurprising that AR is the primary oncogenic driver of
91 prostate cancer (PCa) and the major therapeutic target in advanced and metastatic disease.
92 While suppression of AR activity by androgen receptor pathway inhibitors (ARPIs) is initially
93 effective in almost all men, prostate tumours inevitably develop resistance and progress to a
94 lethal disease state known as castration-resistant prostate cancer (CRPC). One key feature of
95 CRPC is the maintenance or re-activation of the AR signalling axis, as revealed by the therapeutic
96 benefit of 2nd-generation ARPIs, such as the AR antagonist enzalutamide, in CRPC (8).

97 Unfortunately, the overall survival benefits of these newer ARPIs in men with CRPC are in the
98 order of months (9), despite many tumours retaining dependence on AR (10). Collectively, these
99 clinical observations highlight the ongoing dependence of CRPC on AR signalling and the
100 intractable problems associated with therapies that inhibit this pathway.

101

102 Direct alterations to AR – including mutation, amplification, alternative splicing and altered
103 ligand availability – have been well characterised as mechanisms of resistance in CRPC (11).
104 However, the extent to which AR-mediated metabolic reprogramming is involved in therapy
105 resistance in CRPC is less well understood. Herein, using an unbiased approach to discover
106 potential PCa survival factors, we identify 6-phosphogluconate dehydrogenase (6PGD) as a
107 novel AR-regulated gene. 6PGD is a key enzyme in the phosphate pathway (PPP) (also referred to
108 as the phosphogluconate pathway or the hexose monophosphate shunt), an alternative metabolic
109 pathway for glucose breakdown. The PPP is comprised of two phases: an irreversible oxidative
110 phase that generates NAPDH and ribulose-5-phosphate (Ru-5-P); and a subsequent reversible non-
111 oxidative phase in which Ru-5-P is converted to R-5-P, a sugar precursor for generation of
112 nucleotides (12). NADPH produced by the PPP is used for many anabolic reactions, including fatty
113 acid synthesis, as well as an electron donor to generate reduced glutathione, the major
114 endogenous antioxidant (13). Thus, the PPP is a major regulator of both redox homeostasis as well
115 as anabolic reactions, depending on cellular requirements. We demonstrate that 6PGD plays a key
116 role in PCa growth and survival, at least in part through moderating oxidative stress, and uncover a
117 novel feedback mechanism linking 6PGD and the AR signalling axis that provides impetus for
118 further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.

119

120

121

122 **RESULTS**

123 **6PGD is an androgen-regulated gene in prostate cancer**

124 The current clinical ARPIs, such as enzalutamide, do not target the entire repertoire of genes
125 regulated by the AR in prostate tumour cells (14). We hypothesised that ablation of AR expression
126 would be the most appropriate “therapeutic benchmark” to identify the key regulators of tumour
127 cell survival regulated by AR. To qualitatively and quantitatively compare downstream responses
128 to AR ablation and AR antagonism, LNCaP cells were treated with AR siRNA (siAR; i.e. AR ablation)
129 or enzalutamide (Enz; AR antagonism) and subsequently evaluated by RNA-seq. The experimental
130 conditions were optimised to achieve comparable suppression of the canonical AR target, PSA,
131 which is encoded by the *KLK3* gene (Figure 1A). Genes affected by siAR were highly concordant
132 with an independent dataset (15) (Figure S1). As expected, most (78 %) genes altered by
133 enzalutamide (compared to vehicle control) were also similarly dysregulated by siAR (compared to
134 a control siRNA, siCon) (Figure 1B; Dataset S1). An additional 2,574 genes were altered in their
135 expression by siAR but not enzalutamide (Figure 1B, $q < 0.05$). On closer examination, many of
136 these genes were altered in their expression by enzalutamide but not sufficiently for them to be
137 identified as statistically significant differentially expressed genes. A further direct statistical
138 comparison of gene expression between the two treatment groups identified that there were 581
139 genes that were differentially expressed in the siAR treated cells compared to those treated with
140 enzalutamide including, as expected, *AR* itself (Figure 1B-C, Dataset S1). These results provide
141 further evidence for the hypothesis that AR ablation is more effective at suppressing the AR-
142 regulated transcriptome compared with AR antagonism, at least in this experimental system.

143

144 The gene most significantly associated with AR ablation and not AR antagonism was *6PGD* (Figure
145 1C, Dataset S1), which encodes an enzyme in the pentose phosphate pathway (PPP). We
146 confirmed that *6PGD* expression was down-regulated by AR knockdown but not by acute AR

147 antagonism in multiple PCa cell lines (LNCaP and VCaP) at both the mRNA and protein level (Figure
148 1D-E, Figure S2). Down-regulation of 6PGD was also seen with a second AR siRNA, validating 6PGD
149 as a *bona fide* target of AR (Figure S2). In further support of differential regulation by siAR versus
150 AR antagonism, neither of the newest clinically approved AR antagonists (apalutamide and
151 darolutamide) altered 6PGD protein or mRNA expression (Figure S3). Conversely, AR activation
152 with the androgen 5 α -dihydrotestosterone (DHT) stimulated 6PGD expression, and this effect was
153 abolished by co-treatment with siAR (Figure 1F). To determine whether AR inhibition affects 6PGD
154 in more biologically relevant systems, we first utilised our patient-derived explant (PDE) model
155 (16). Similar to 2-dimensional PCa cell line culture, we did not observe enzalutamide-mediated
156 changes to 6PGD mRNA expression in the PDE model over a time-frame of 48h, under conditions
157 that caused significant repression of the well-characterised AR target genes *KLK2* and *KLK3* (Figure
158 1G). By contrast, longer term (~14 weeks) androgen deprivation therapy in patients caused a
159 significant decrease in 6PGD mRNA levels (Figure 1H). Collectively, these findings reveal 6PGD as a
160 novel AR-regulated factor in both PCa cell lines and clinical samples.

161
162 As an initial assessment of the relevance of 6PGD in clinical PCa, we examined its expression in the
163 TCGA dataset (17) and found that 6PGD mRNA expression was significantly elevated in cancer
164 compared to patient-matched normal tissue and also showed an association with increasing
165 Gleason grade (Figure 1I-J). An association with malignancy was recapitulated at the protein level
166 (Figure 1K) in a distinct set of patient samples for which proteomes were profiled using mass
167 spectrometry (18). We further examined 6PGD protein expression in prostate tumours by
168 immunohistochemistry (IHC). 6PGD was detected in all tissues that were examined and was
169 predominantly localised to the cytoplasm and peri-nuclear regions of epithelial cells (Figure S4).
170 Moreover, we observed a trend towards increasing protein levels in the more aggressive tumours

171 (Figure S4). In summary, 6PGD is highly expressed in prostate tumours, suggesting that the PPP
172 may play an important metabolic role in this cancer type.

173

174

175

176

177

178

179

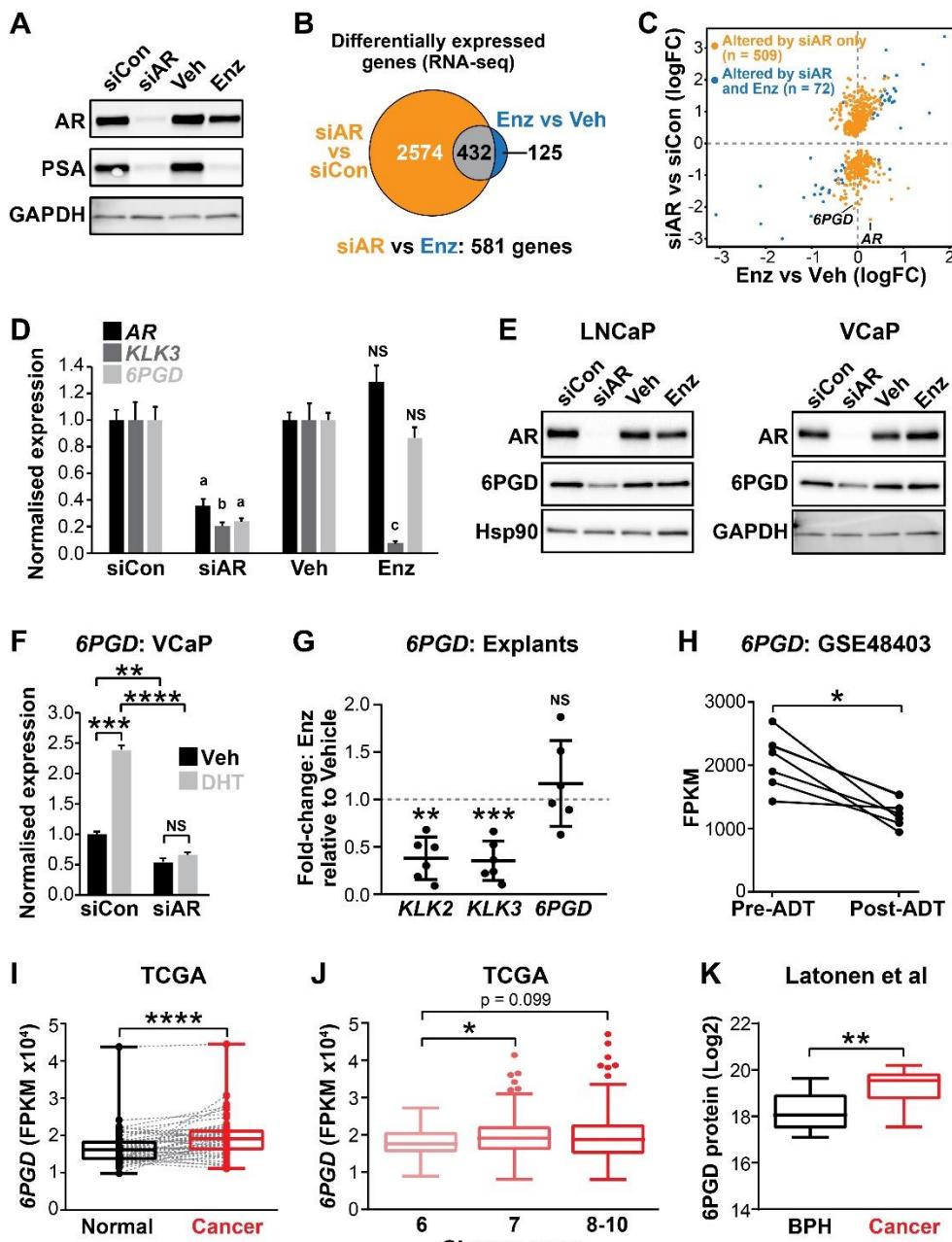
180

181

182

183

184


185

186

187

188

Figure 1

189

190 **Figure 1. 6PGD is an AR-regulated gene and is elevated in prostate cancer.** (A) Effect of siAR and
191 enzalutamide (Enz) on the AR target, PSA. LNCaP cells were transfected with AR (siAR; 12.5 nM) or
192 control (siCon) siRNA for 48 h or treated with Enz (1 μ M) or vehicle (Veh) for 24 h, after which AR
193 and PSA proteins were evaluated by immunoblotting. GAPDH was used as loading control. (B)
194 Numbers of genes differentially expressed by siAR (vs siCon) or Enz (vs Veh) are shown in the Venn
195 diagram (at top). Below: an alternative analysis identified 581 genes differentially expressed by
196 siAR versus Enz. (C) Scatterplot of genes affected by siAR and Enz. The 581 genes differentially
197 expressed by siAR versus Enz are shown in blue ($n = 72$, genes differentially expressed by siAR versus
198 siCon and Enz versus Veh) and yellow ($n = 509$, genes differentially expressed by siAR versus
199 siCon but not by Enz versus Veh). (D) Validation of 6PGD expression in response to siAR and Enz by
200 RT-qPCR. Gene expression was normalised to *GUSB* and *L19* and represents the mean \pm standard
201 error (SE) of three biological replicates; siCon and Veh were set to 1. Differential expression was
202 evaluated using unpaired t tests (a, $p < 0.01$; b, $p < 0.001$; c, $p < 0.0001$; NS, not significant). (E)

203 6PGD protein levels in response to siAR and Enz treatments were measured by immunoblotting in
204 LNCaP (left) and VCaP (right) cells. HSP90 and GAPDH were used as loading controls. **(F)** RT-qPCR
205 of *6PGD* expression in response to DHT and siAR in VCaP cells. Cells were transfected with siRNAs
206 for 24 h, and then treated with 1 nM DHT for another 24 h. Gene expression was normalised and
207 graphed as in D. Differential expression was evaluated by t tests (*, p < 0.05). **(G)** RT-qPCR of *KLK2*,
208 *KLK3* and *6PGD* expression in response to Enz treatment (1 μ M, 72 h) in patient-derived explants.
209 Gene expression was normalised to *GAPDH*, *PPIA* and *TUBA1B* and is represented as fold-change
210 of enzalutamide relative to vehicle treatment. Differential expression was evaluated by one
211 sample t tests (**, p < 0.01; ***, p < 0.001). **(H)** *6PGD* mRNA expression in prostate tumours
212 (GSE48403). A Wilcoxon matched-pairs signed rank test was used to compare expression in the
213 groups. FPKM, fragments per kilobase of exon per million mapped reads. **(I)** *6PGD* expression is
214 elevated in primary prostate cancer. The TCGA dataset comprises 52 patient-matched normal and
215 cancer samples. Boxes show minimum and maximum (bottom and top lines, respectively) and
216 mean (line within the boxes) values. A paired t test was used to compare expression in normal
217 versus cancer. FPKM, fragments per kilobase of exon per million mapped reads. **(J)** *6PGD*
218 expression by Gleason grade in the TCGA cohort. Boxes show minimum and maximum (bottom
219 and top lines, respectively) and mean (line within the boxes) values. Unpaired t tests were used to
220 compare expression between the groups. FPKM, fragments per kilobase of exon per million
221 mapped reads. **(K)** *6PGD* protein expression in clinical prostate samples (benign prostatic
222 hyperplasia (BPH) and tumours) were measured by mass spectrometry. Boxes show minimum and
223 maximum (bottom and top lines, respectively) and mean (line within the boxes) values. An
224 unpaired t test was used to compare expression between the groups.
225

226

227

228

229

230

231

232

233

234

235

236

237

238

239 **SREBP mediates induction of *6PGD* downstream of the androgen receptor**

240 AR binds to gene enhancers or promoters to directly regulate transcription (19). However, we
241 found no clear evidence of AR binding sites proximal the *6PGD* transcriptional start site in genome-
242 wide DNA binding (ChIP-seq) datasets from tissues and cell lines (Figure 2A and data not shown),
243 suggesting that the AR pathway may indirectly regulate *6PGD* expression via another downstream
244 pathway(s) or factor(s). One credible intermediary between AR and *6PGD* is sterol regulatory
245 element-binding protein-1 (SREBP1), a transcriptional master regulator of genes with a role in lipid
246 and cholesterol production (20). AR enhances SREBP1 expression and activity in a multifaceted
247 manner, most notably by upregulating the SREBP1 activator SCAP (20) and by activating the mTOR
248 pathway, which in turn leads to elevated SREBP1 expression (21). Additionally, SREBP1 has been
249 proposed to directly regulate *6PGD* in mouse adipocytes by direct binding to its promoter (22). We
250 mined ENCODE SREBP1 ChIP-seq data and identified an SREBP1 binding site at the *6PGD* promoter
251 in two cancer cell lines, HEPG2 (liver) and MCF7 (breast) (Figure 2B). Regulation of *6PGD* by
252 SREBP1 in prostate cancer cells was confirmed by siRNA-mediated knockdown of SREBP1 (Figure
253 2C). To test whether SREBP1 acts downstream of AR to increase *6PGD* expression, we treated cells
254 with a combination of DHT and Fatostatin, an inhibitor of SREBP1, and found Fatostatin to
255 effectively suppress DHT-mediated induction of *6PGD* (Figure 2D). Collectively, these results are
256 indicative of an AR-SREBP1-*6PGD* circuit in prostate cancer cells and implicate SREBP1 as a key
257 mediator of PPP activation by AR.

258


259

260

261

262

263

264
265

266 **Figure 2. (A)** ChIP-seq data showing AR DNA binding near the 6PGD gene in non-malignant and
267 prostate tumor samples (23) and the LNCaP (24) and VCaP (14) cell line models. The grey box
268 indicates a region +/- 50kb of the 6PGD transcriptional start site. **(B)** ChIP-seq data showing
269 SREBP1 DNA binding at the 6PGD promoter in HEPG2 and MCF7 cells. Data is from ENCODE (25)
270 (HEPG2: ENCF000XXR; MCF7: ENCFF911YFI). **(C)** Effect of siSREBP1 on 6PGD protein. LNCaP cells
271 were transfected with siRNA (siSREBP1; 12.5 nM) or control (siCon) for 72 h after which SREBP1
272 and 6PGD protein levels were evaluated by immunoblotting. GAPDH was used as loading control.
273 **(D)** RT-qPCR of 6PGD expression in response to DHT and Fatostatin in LNCaP cells. Cells were
274 serum starved in charcoal-stripped FBS media for 72 h, and then treated with Veh or 10 nM DHT
275 +/- 10 µM Fatostatin for another 24 h. Gene expression was normalised to GUSB and L19 and
276 represents the mean ± standard error (SE) of three biological replicates. Differential expression
277 was evaluated by t tests (*, p < 0.05; **, p < 0.01).
278

279 **6PGD is required for the growth of prostate cancer cells and has downstream effects on AMPK
280 and ACC1 activity**

281 Regulation of 6PGD by the AR signalling axis supports other recent reports linking the PPP to PCa
282 (13, 26); and although the role of the PPP in this malignancy is not fully elucidated, it could serve
283 to fuel cell growth and protect against oxidative stress. In support of this, knockdown of 6PGD
284 with two highly effective siRNAs (Figure S5) significantly decreased viability (Figure 3A) and
285 increased death (Figure 3B) of LNCaP and VCaP cells. Concomitant with these phenotypic effects,
286 mass spectrometry revealed accumulation of 6PGD's substrate, 6-phosphogluconate (6-PG)
287 (Figure 3C), confirming specificity of the knockdown. Since a key role of the PPP is to regulate
288 intracellular redox state, we also measured ROS using a flow cytometric-based assay. As expected,
289 knockdown of 6PGD (and AR) significantly increased levels of intracellular ROS (Figure 3D), which
290 could be reversed by the antioxidant Trolox (Figure 3E).

291

292

293

294

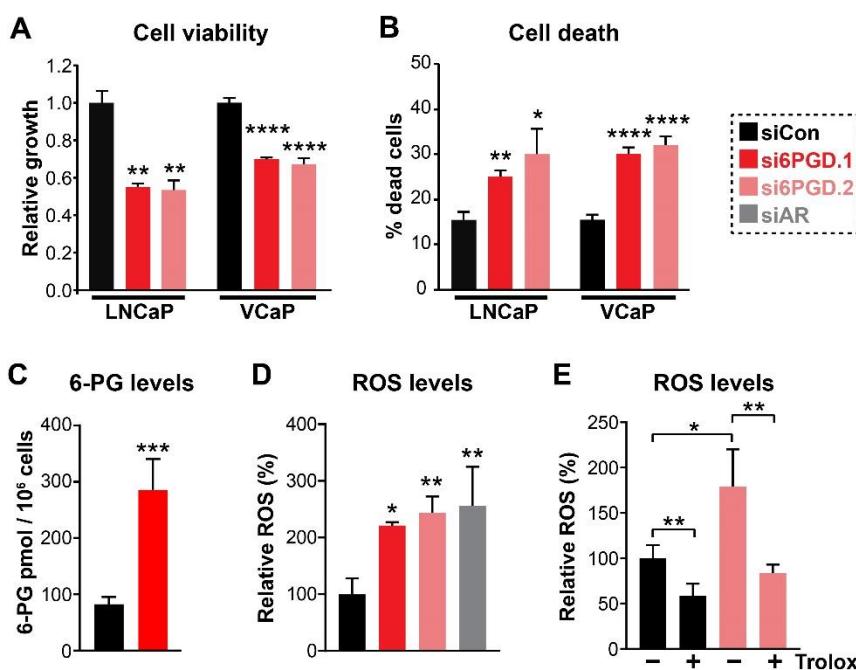
295

296

297

298

299


300

301

302

303

Figure 3

304

305

306 **Figure 3. Knockdown of 6PGD has multi-faceted anti-cancer effects in prostate cancer cells. (A-B)**
307 Knockdown of 6PGD with two distinct siRNAs (si6PGD.1 and si6PGD.2) reduced LNCaP viability (A)
308 and increased cell death (B), as assessed using Trypan blue exclusion assays. Bars are mean \pm SE of
309 triplicate samples, and are representative of 3 independent experiments. Effects were evaluated
310 using t tests (*, p < 0.05; **, p < 0.01). (C) Knockdown of 6PGD causes accumulation of intracellular
311 6-PG in LNCaP cells, as determined by mass spectrometry. Results are representative of 2
312 independent experiments. Effects were evaluated using t tests (p < 0.001). (D) Knockdown of
313 6PGD and AR causes increased levels of reactive oxygen species (ROS) in LNCaP cells. Data was
314 normalised to siCon, which was set to 100%. Effects were evaluated using t tests (*, p < 0.05; **, p
315 < 0.01). (E) ROS production in response to si6PGD is rescued by the antioxidant Trolox. Data is
316 presented as in C.

317

318

319

320

321

322

323

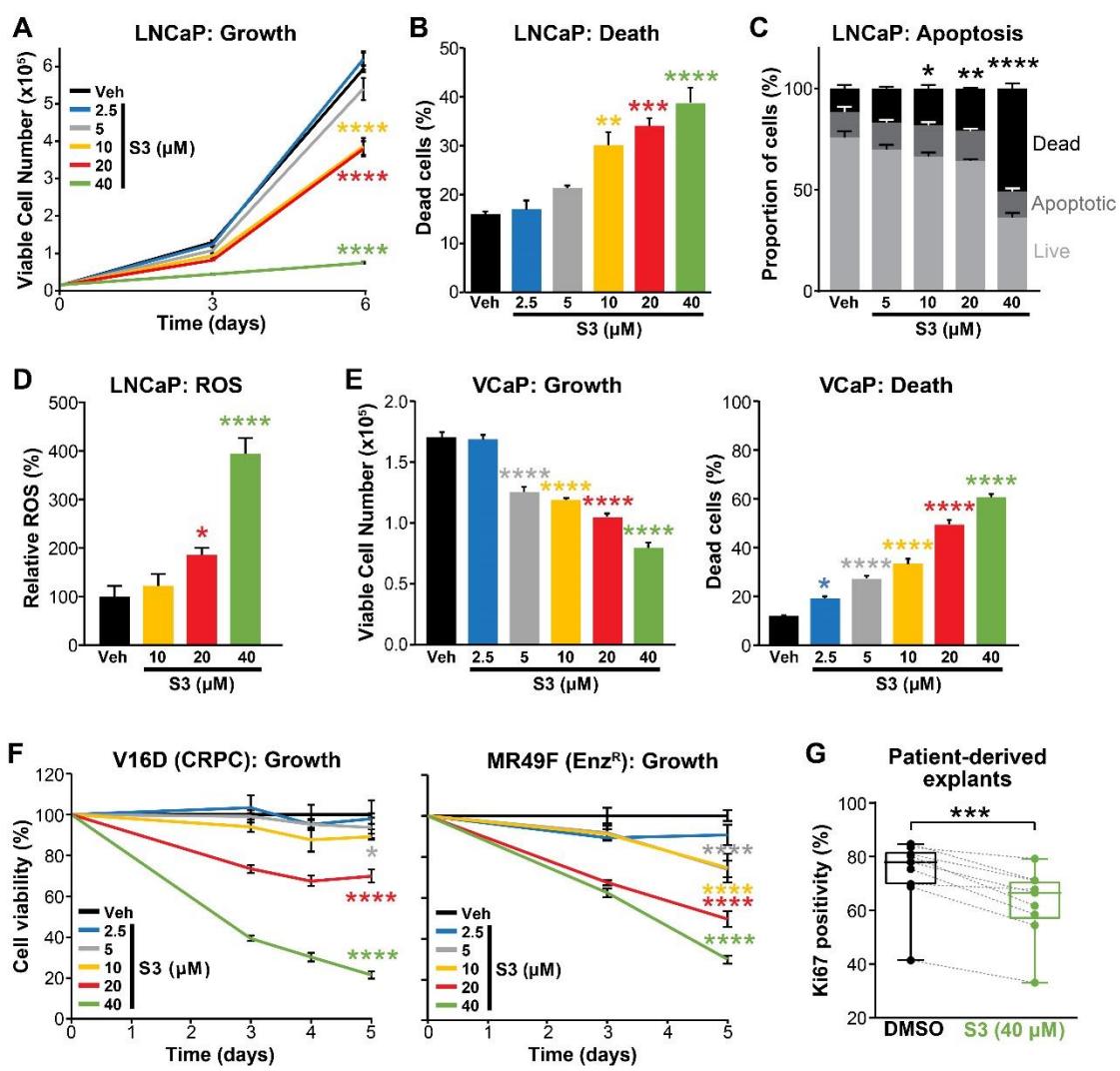
324

325 **Inhibition of 6PGD suppresses prostate cancer growth and increases ROS**

326 Having established that 6PGD is required for optimal PCa cell growth and protects against
327 oxidative stress, we evaluated pharmacological targeting of this enzyme as a potential therapeutic
328 strategy. Phycion, a plant-derived anthraquinone, was recently identified as an inhibitor of 6PGD
329 using an *in vitro* screening assay (27). Treatment of LNCaP cells with phycion dose-dependently
330 inhibited growth and elicited death (Figure S6). However, low solubility limits the pre-clinical and
331 clinical utility of this compound. Therefore, we focussed our efforts on a derivative of phycion, S3,
332 which has substantially improved solubility (~50-fold: 1 mM phycion c.f. 50 mM S3 in DMSO) (27).
333 Similarly to phycion, S3 reduced LNCaP cell viability and caused cell death (Figure 4A-B). Cell kill
334 was at least partly mediated via apoptosis, as demonstrated by flow cytometric-based Annexin/7-
335 AAD assay (Figure 4C). Importantly, S3 increased levels of cellular ROS in a dose-dependent
336 manner (Figure 4D), strengthening the link between the PPP and control of redox homeostasis. S3
337 was active in a range of PCa models, including VCaP and models of CRPC (V16D and MR49F)
338 (Figure 4E-F). The efficacy of S3 in MR49F cells was particularly notable, since this aggressive
339 LNCaP-derived line is resistant to the 2nd-generation AR antagonist enzalutamide (28). S3 was also
340 growth inhibitory in AR-negative PC3 cells, although this line was less sensitive than AR-driven
341 models (Figure S7). To assess the potential of targeting 6PGD with S3 in a more clinically-relevant
342 setting, we exploited the PDE model (16). Notably, S3 reduced proliferation, as measured by IHC
343 for Ki67, in all tumours (n = 9) that were evaluated (Figure 4G).

344

345


346

347

348

349

Figure 4

351 **Figure 4. Pharmacological targeting of 6PGD in prostate cancer. (A-B)** The 6PGD inhibitor, S3,
352 dose dependently decreased viability (A) and increased death (B) of LNCaP cells, as determined by
353 Trypan blue exclusion assays. Dead cells were counted at day 6. Data represents the mean \pm SE of
354 triplicate samples and are representative of 3 independent experiments. Growth (day 6) and death
355 for each dose was compared to vehicle using ANOVA and Dunnett's multiple comparison tests
356 (****, $p < 0.0001$). Veh, vehicle. **(C)** S3 causes apoptosis of LNCaP cells, as determined using flow
357 cytometry-based Annexin V/7-AAD assays. Cells were assessed 72 h after treatment. Data
358 represents the mean \pm SE of triplicate samples and are representative of 4 independent
359 experiments. Dead cell proportions were compared to vehicle using ANOVA and Dunnett's
360 multiple comparison tests (*, $p < 0.05$; **, $p < 0.01$; ****, $p < 0.0001$). **(D)** S3 causes increased
361 levels of reactive oxygen species (ROS) in LNCaP cells. Data was normalised to Veh, which was set
362 to 100%. Effects were evaluated using t tests (*, $p < 0.05$; ****, $p < 0.0001$). **(E)** S3 dose
363 dependently decreased viability (left) and increased death (right) of VCaP cells, as determined by
364 Trypan blue exclusion assays. Live and dead cells were counted 4 days after treatment. Data
365 represents the mean \pm SE of triplicate samples and are representative of 3 independent
366 experiments. **(F)** S3 suppresses the growth of CRPC cells (V16D) and enzalutamide-resistant CRPC
367 cells (MR49F), as determined using CyQuant Direct Cell Proliferation Assay. Fluorescence from day
368 0 was set to 100%. Data represents the mean \pm SE of triplicate samples and are representative of 2
369 independent experiments. **(G)** S3 inhibits the proliferation of prospectively collected human

370 tumours grown as patient-derived explants (PDEs). PDEs (from n = 9 patients) were treated for 72
371 h. Ki67 positivity, a marker of proliferation, was determined using IHC. Boxes show minimum and
372 maximum (bottom and top lines, respectively) and mean (line within the boxes) values. A paired t
373 test was used to compare Ki67 positivity in treated versus control samples (***, p < 0.001).
374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393


394

395

396 In addition to directly promoting cell growth and survival via anabolism and limiting oxidative
397 stress, the PPP has been reported to suppress AMPK activity by inhibiting its phosphorylation (29),
398 thereby activating key anabolic pathways via acetyl-CoA carboxylase 1 (ACC1) and mammalian
399 target of rapamycin (mTORC1) (Figure 5A). Accordingly, we examined whether these pathways are
400 altered in PCa cells by pharmacological targeting of 6PGD. S3 treatment activated AMPK and
401 repressed ACC1 and mTOR pathways in a dose-dependent manner in multiple PCa cell lines, as
402 revealed by increased levels of phospho-AMPK (pAMPK) and phospho-ACC1 (pACC1) and
403 decreased levels of phospho-S6K (pS6K) / phospho-S6 (pS6) (Figure 5B-C). Importantly, we
404 recapitulated the impact of S3 on mTOR signalling in our tumour PDE system (Figure 5C).
405 Collectively, these results reveal that PPP is an upstream regulator of AMPK, ACC1 and mTOR in
406 prostate cancer, a key implication being that targeting 6PGD could impede multiple cancer-
407 promoting metabolic pathways.

408

Figure 5

411 **Figure 5. Targeting 6PGD activates AMPK and represses ACC1 and mTOR pathways. (A)**

412 Schematic showing key metabolic pathways downstream of the PPP. By suppressing AMPK

413 signalling, the PPP can enhance the activity of ACC1 and mTOR and subsequently various growth-

414 promoting anabolic processes. **(B)** S3 activates AMPK and inhibits ACC1 and mTOR signalling, as

415 determined by increased levels of pAMPK and pACC1, respectively. LNCaP (left) and VCaP (right)

416 cells were treated for 24 h with the indicated doses of S3 prior to analysis of proteins by

417 immunoblotting. **(C)** S3 inhibits mTOR signalling, as indicated by reduced pS6, in patient-derived

418 explants (PDEs). PDEs (from $n = 11$ patients) were treated for 72 h. The levels of pS6 were

419 measured using IHC. Boxes (graph on left) show minimum and maximum (bottom and top lines,

420 respectively) and mean (line within the boxes) values. A paired t test was used to compare Ki67

421 positivity in treated versus control samples (***, $p < 0.001$). Representative IHC images are shown

422 on the right (scale bars represent 50 μ m).

423

424 **A feedback loop between AR and 6PGD supports combinatorial targeting of these factors**

425 During our investigations into the mode of action of S3 and physcion, we noted that both agents
426 reduced steady-state levels of AR protein in models of castration-sensitive and castration-resistant
427 prostate cancer (Figure 6A; Figure S8A). This observation suggested that targeting 6PGD would
428 inhibit the AR signalling axis. We validated this hypothesis by demonstrating that S3 and physcion
429 dose dependently reduced the expression of AR target genes in multiple cell line models (Figures
430 6A-B, Figure S8B-D) and, critically, in our clinical PDE tissues (Figure 6C). These observations reveal
431 a positive feedback loop involving 6PGD and the AR signalling axis, and hence suggest co-targeting
432 of AR and 6PGD as a rational combination therapy. In support of such an approach, enzalutamide
433 and S3 exhibited an additive effect in VCaP cells for growth inhibition (Figure 6D) and induction of
434 cell death (Figure 6E) compared to the single agents. The value of such a combinatorial targeting
435 strategy was further validated using a cell line model of CRPC (Figure 6F).

436

437

438

439

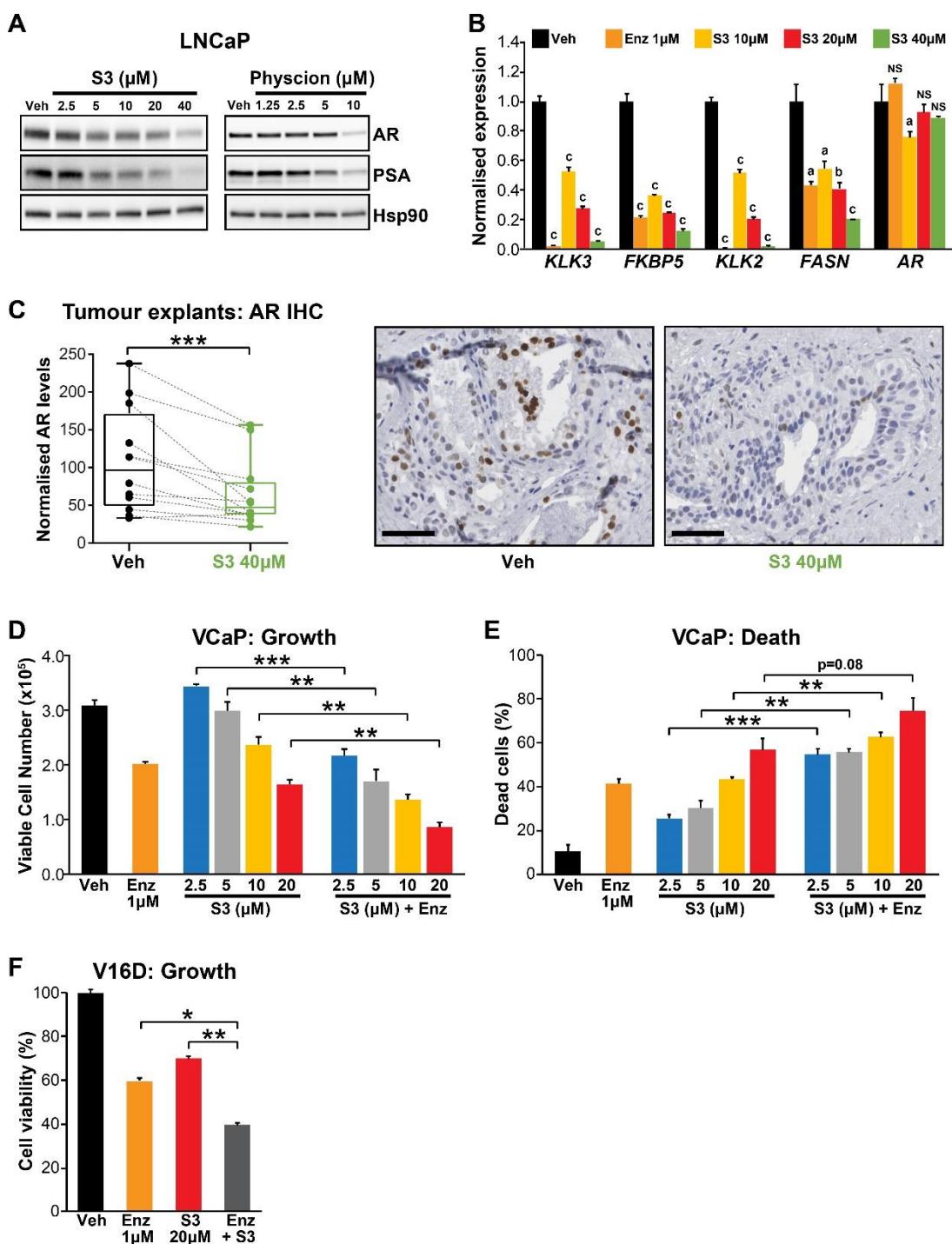
440

441

442

443

444


445

446

447

448

Figure 6

449

450 **Figure 6. Targeting the AR/PGD feedback loop in prostate cancer. (A)** Protein levels of AR and its
451 target in response to S3 (24 h of treatment) and physcion (48 h of treatment) in LNCaP cells, as
452 determined by immunoblotting. HSP90 was used as a loading control. **(B)** AR target gene
453 expression in response to S3 treatment in LNCaP cells, as determined by RT-qPCR. Gene
454 expression was normalized to *GUSB* and *L19* and represents the mean \pm standard error (SE) of
455 three biological replicates; Veh was set to 1. Differential expression was evaluated using ANOVA
456 and Dunnett's multiple comparison tests (a, $p < 0.01$; b, $p < 0.001$; c, $p < 0.0001$; NS, not

457 significant). **(C)** S3 reduces AR protein levels in PDEs. AR levels in tumours from 14 patients were
458 measured by IHC (left). Boxes show minimum and maximum (bottom and top lines, respectively)
459 and mean (line within the boxes) values. A paired t test was used to compare AR levels in treated
460 versus control samples (***, $p < 0.001$). Representative IHC images are shown on the right (scale
461 bars represent 50 μ m). **(D-E)** Anti-cancer effects of combined Enz and S3 treatment in VCaP cells.
462 Live (D) and dead (E) cells were measured by Trypan blue exclusion assays 4 days after treatment.
463 Data represents the mean \pm SE of triplicate samples and are representative of 3 independent
464 experiments. **(F)** Anti-cancer effects of combined Enz and S3 treatment in V16D cells. Live cells (F)
465 were measured as in D after 3 days of treatment; data are representative of 3 independent
466 experiments.

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488 **DISCUSSION**

489 Prostate cancer possesses a unique androgen-regulated metabolic profile, characterised by high
490 rates of lipogenesis and oxidative phosphorylation compared to the normal state. More recently,
491 altered glucose metabolism has emerged as another feature of this common malignancy (3). In
492 this study, we identified *6PGD* as an AR-regulated gene that may not be effectively suppressed in
493 tumour cells by current ARPIs such as enzalutamide. *6PGD* is the third enzyme in a critically
494 important glucose metabolic pathway, the PPP. Our data reveal that a positive feedback loop
495 between AR and *6PGD* promotes growth and survival of tumour cells. This work not only expands
496 our knowledge of the interplay between hormones and glucose metabolism in PCa but also
497 exposes a new therapeutic vulnerability.

498

499 Our identification of *6PGD* as an androgen-regulated PPP enzyme lends further support to this
500 pathway being a key metabolic target of androgens in prostate cancer. Frigo and colleagues
501 recently demonstrated that G6PD, the rate-limiting enzyme of this pathway, is also
502 transcriptionally and post-transcriptionally regulated by AR signalling (13). Moreover, an enzyme
503 that regulates the non-oxidative phase of the PPP, transketolase-like protein 1 (TKTL1), increases
504 in expression during PCa progression, being highest in metastatic tumours (30). Such multi-level
505 control of a single pathway emphasises the relevance of increased PPP flux in PCa. It is notable
506 that the androgen-regulated enzymes of this pathway, *6PGD* and G6PD, both catalyse steps in the
507 NADPH-generating oxidative phase of the PPP; this represents another mechanism underlying
508 hormonal protection against oxidative stress in the prostate.

509

510 Despite its role as a key downstream effector of androgen-regulated cellular metabolism, our data
511 do not support a direct mode of transcriptional regulation of *6PGD* by AR. Rather, AR harnesses

512 another key metabolic transcription factor, SREBP1, to drive expression of 6PGD and hence activity
513 of the PPP. SREBP1 is a transcription factor that regulates genes involved in fatty acid and
514 cholesterol biosynthesis and homeostasis, and itself a therapeutic target in prostate cancer (31).
515 Although some metabolic genes appear to be directly co-regulated by AR and SREBP1 based on
516 the binding of both factors to cis-regulatory elements (e.g. *FASN*, (32, 33)), our observation that
517 fatostatin largely blocks androgen-mediated induction of 6PGD supports an indirect role for AR's
518 transcriptional regulatory function in this process. A broader implication of the AR-SREBP1-6PGD
519 circuit identified in this study is its potential relevance as a clinical target; therapeutic strategies
520 that effectively suppress this circuit would impinge on the activity of 3 important and distinct
521 oncogenic drivers.

522

523 We propose that AR-mediated activation of the PPP in PCa would yield additional advantages
524 beyond the generation of key substrates for nucleic acid anabolism and the antioxidant NADPH.
525 Most notably, PPP suppression of AMPK, itself a hub for cellular metabolic and growth control,
526 results in augmentation of ACC1 and mTOR activity (34). The importance of both ACC1 and mTOR
527 in enabling PCa cells to meet their energy demands is increasingly well recognised; indeed, both of
528 these factors are key mediators of *de novo* lipogenesis, high levels of which are a fundamental
529 attribute of prostate tumours (35). Mechanistically, it has been reported that 6PGD-mediated
530 production of Ru-5-P inhibits AMPK by disrupting the LKB1 complex, leading to activation of ACC1
531 and lipogenesis (27). Thus, in addition to its more direct impact on lipogenesis by regulation of
532 lipid metabolic genes (35), our data reveal that AR also supports this metabolic process by
533 activation of 6PGD and the PPP.

534

535 In addition to regulation of 6PGD by the androgen signalling axis, our work also revealed that
536 6PGD can act in a reciprocal manner to maintain AR protein levels and activity. Indeed, S3 was as

537 effective as enzalutamide at inhibiting the expression of some AR target genes, albeit at higher
538 doses. We propose that this positive feedback would serve as an effective circuit to fuel PCa
539 growth and enhance survival. The mechanism(s) by which 6PGD increases AR protein are
540 unknown, although a number of possibilities can be envisioned. First, it has been reported that
541 induction of ROS reduces the levels of AR protein in PCa cells without decreasing its steady state
542 mRNA (36). This post-transcriptional mechanism aligns with our observation that S3/physcion
543 significantly decreased AR protein but only had a negligible impact on AR transcript levels. Second,
544 altered AMPK and SREBP1 signalling downstream of 6PGD/PPP likely influences AR expression.
545 AMPK signalling causes down-regulation of *AR* gene expression as well as promoting AR protein
546 degradation (37). Additionally, SREBP1 has been reported to directly regulate the *AR* gene (38),
547 and one likely consequence of S3-mediated activation of AMPK would be down-regulation of
548 SREBP1. More broadly, the likelihood of shared intermediary factors within each arm of the
549 AR/PPP feedback loop – for example, altered redox homeostasis, SREBP1, AMPK and mTOR –
550 would result in strong positive reinforcement of this complex circuit.

551

552 Given the important role of the PPP in PCa growth and survival, established by this study in
553 addition to earlier work (13, 26), targeting this pathway as a possible therapeutic strategy has
554 merit. We investigated this concept using two inhibitors of 6PGD, physcion (1,8-dihydroxy-3-
555 methoxy-6-methyl-anthraquinone; emodin-3-methyl ether) and S3 (1-hydroxy-8-methoxy-
556 Anthraquinone). Physcion (also known as parietin; PubChem CID 10639) was the most active
557 inhibitor of 6PGD activity in an *in vitro* assay amongst a library of ~2,000 small molecules (27). A
558 plant-derived anthraquinone, physcion was initially investigated for its anti-microbial and anti-
559 inflammatory activities (39). More recently, there has been significant interest in its repurposing as
560 an oncology agent since it has been reported to possess broad anti-cancer activity (i.e. suppression
561 of growth and migration, induction of apoptosis) in leukemia, colorectal, cervical and breast

562 cancer cells, amongst others (27, 40-43). However, while physcion has achieved impressive anti-
563 cancer results in some pre-clinical studies, its poor pharmacological attributes, including low
564 solubility, may impede efforts to progress it to the clinic (39). Therefore, we also tested the
565 physcion derivative compound S3, which has been reported to possess improved pharmacological
566 attributes (27). Our results represent the first evaluation of physcion and S3 in PCa and collectively
567 highlight the potential of therapeutically targeting 6PGD in this disease. Indeed, our data suggest
568 that S3/physcion would possess multi-pronged anti-tumour activity in PCa by: inhibiting oncogenic
569 metabolism, including lipogenesis (i.e. activation of AMPK and suppression of ACC1 and mTOR);
570 increasing levels of ROS, resulting in oxidative stress and lipid peroxidation; and finally,
571 suppressing the levels and activity of AR, the primary oncogenic driver of this disease. Importantly,
572 a Phase I trial reported that physcion was well tolerated with low toxicity (44), supporting its
573 future clinical application.

574

575 Since AR-targeted therapies are not curative, there is intense interest in identifying combination
576 therapies that would improve patient outcomes. Our work provides a solid rationale for co-
577 targeting of AR and 6PGD; indeed, we observed synergistic effects of enzalutamide and S3 in PCa
578 models. Moreover, the existence of an AR:6PGD feedback loop enhances the appeal of such a
579 combinatorial strategy. Although we acknowledge that physcion and S3 may not be useful clinical
580 agents due to pharmacological issues, we expect that the future development of therapies that
581 effectively suppress activity of 6PGD, or other components of the PPP, could have a major impact
582 on PCa patients.

583

584

585

586

587

588

589

590 **MATERIALS AND METHODS**

591 ***Reagents***

592 Chemicals, solvents and solutions, including physcion ($C_{16}H_{12}O_5$; 1,8-dihydroxy-3-methoxy-6-
593 methyl-anthraquinone; emodin-3-methyl ether) and S3 ($C_{15}H_{10}O_4$; 1-hydroxy-8-methoxy-
594 Anthraquinone), were obtained from Sigma-Aldrich (St Louis, MO, USA), except for: enzalutamide
595 (Selleck Chemicals; Houston, TX, USA); apalutamide (ARN-509), darolutamide (ODM-201) and
596 Trolox (Sapphire Bioscience; Redfern, NSW, AUS). All chemicals/reagents were dissolved in
597 dimethyl sulfoxide (DMSO) except dihydrotestosterone (DHT), which was dissolved in ethanol

598

599 ***Cell line models***

600 LNCaP, VCaP, PC-3 and 22Rv1 human prostate carcinoma cells were obtained from the American
601 Type Culture Collection (ATCC, MD, USA). Dr. Amina Zoubeidi (Vancouver Prostate Centre,
602 Vancouver, Canada) kindly provided LNCaP-V16D (castration-resistant, enzalutamide-sensitive)
603 and LNCaP-MR49F (castration-resistant, enzalutamide-resistant) human prostate cancer cells (28).
604 LNCaP, 22Rv1, V16D and MR49F cells were maintained in RPMI-1640 containing 10% FBS; the
605 media for growth of MR49F cells was additionally supplemented with 10uM enzalutamide. VCaP
606 cells were maintained in Dulbecco's Modified Eagle's Medium containing 10% FBS, 1% sodium
607 pyruvate, 1% MEM non-essential amino acids, and 0.1 nM 5 α -dihydrotestosterone (DHT). PC-3
608 cells were maintained in RPMI-1640 containing 5% FBS. All cell lines were authenticated using
609 short tandem repeat profiling in 2018/2019 by ATCC or CellBank Australia.

610

611 ***Transfection of prostate cancer cell lines***

612 Gene-specific knockdown was achieved by reverse-transfection of PCa cell suspensions (total
613 5×10^5 cells) with 12.5 nM siRNA in 6 well plates using RNAiMAX transfection reagent (Life
614 Technologies; Thermo Fisher Scientific, Scornsbys, VIC, AUS), according to the manufacturer's
615 instructions. The siRNAs used in this study were: AR (Silencer Select #4390824/5; s1538, s1539 and
616 custom #4399665; s551824 (Sense: GAACUUCGAAUGAACUACAtt, Antisense:
617 UGUAGUUCAUUCGAAGUUCat, , 6PGD Silencer Select #4427038; s10394 and 10395 and Negative
618 Control 2 #AM4637 (Ambion; Thermo Fisher Scientific) and SREBP1 ON-TARGETplus: 6720
619 (Dharmacon; Millennium Science, Mulgrave, VIC, AUS).

620

621 ***Quantitative real-time PCR***

622 Reverse transcription of (1 μ g) and qPCR was done as described previously (45). GeNorm (46) was
623 used to identify suitable reference genes: gene expression in cell lines is presented relative to *L19*
624 and *GUSB*, and gene expression in prostate tumour explants is presented relative to *GAPDH*, *PP1A*
625 and *TUBA1B*. Primers sequences are provided in Table S1.

626

627 ***Immunoblotting***

628 Whole cell lysates were prepared using RIPA buffer containing cOmplete ULTRA protease and
629 phosphatase inhibitor (Cell Signaling Technology (CST), Danvers, MA, USA) and Western blotting
630 was performed as described previously (47). A list of primary and secondary antibodies used in the
631 study is provided in Table S2.

632

633 ***RNA sequencing (RNA-seq)***

634 LNCaP cells were seeded at density 5×10^5 cells in 6-well dishes (Corning) and treated with 1 μ M
635 enzalutamide (or 0.1% DMSO control) or transfected with 12.5 nM AR siRNA (or scrambled siRNA
636 control). Each treatment comprised 4 replicates. After 24 h, the cells were collected in Trizol (4

637 replicates, for RNA analysis) or RIPA Buffer + protease inhibitors (2 replicates, for protein analysis).
638 RNA extractions were completed using RNeasy Mini spin columns (Qiagen, Chadstone, VIC, AUS),
639 according to the manufacturer's instructions. RNA was eluted in 40 μ l RNase-free H₂O. RT-qPCR
640 and western blotting were performed to verify the expected response of known AR-regulated
641 proteins and genes, PSA/*KLK3* and FKBP51/*FKBP5*. Subsequently, libraries were generated using
642 800 ng of RNA and NEXTflex Rapid Illumina Directional RNA-Seq Library Prep Kits (Bio Scientific,
643 Kirrawee, NSW, AUS), according to the manufacturer's instructions. Sequencing was carried out at
644 the South Australian Health and Medical Research Institute Genomics Facility using an Illumina
645 NextSeq 500 (single read 75bp v2 sequencing chemistry). The quality and number of reads for
646 each sample were assessed with FastQC v0.11.3 (48). Adaptors were trimmed from reads, and
647 low-quality bases, with Phred scores < 28, were trimmed from ends of reads, using Trimgalore
648 v0.4.4 (49). Trimmed reads of <20 nucleotides were discarded. Reads passing all quality control
649 steps were aligned to the hg38 assembly of the human genome using TopHat v2.1.1 (50) allowing
650 for up to two mismatches. Reads not uniquely aligned to the genome were discarded. HTSeq-
651 count v0.6.1 (51) was used with the union model to assign uniquely aligned reads to Ensembl
652 Hg38.86-annotated genes. Data were normalized across libraries by the trimmed mean of M-
653 values (TMM) normalization method, implemented in the R v3.5.0, using Bioconductor v3.6 EdgeR
654 v3.20.9 package (52). Only genes expressed at count-per-million value greater than 10 in at least 2
655 samples per group were retained for further analysis. Differential expressed genes were selected
656 based on the robust version of the quasi-likelihood negative binomial generalized log-linear model
657 (53), with false discovery rate (FDR) set at 0.05. RNA-seq data are available through NCBI's Gene
658 Expression Omnibus (GSE152254).

659

660 ***Cell growth and apoptosis assays***

661 Cell growth curves were done using Trypan blue exclusion and manual counting of cells, as
662 described previously (54). Cell viability was also determined by CyQuantTM Assay Cell Proliferation
663 Assays (Thermo Fisher Scientific), according to the manufacturer's instructions. Apoptosis was
664 measured by collecting cells in FACS binding buffer (47 ml of HANKS buffered saline, 500 μ L of
665 Herpes solution and 2.5 mL of 100 mM CaCl₂), staining with Annexin V PE (BD PharmagenTM , BD
666 Biosciences, CA, US and 1 mM 7-Aminoactinomycin D (Thermo Fisher Scientific) and analysis by
667 Flow Cytometry using a BD LSRFortessa X20.

668

669 ***Metabolomics***

670 LNCaP cells were seeded at a density of 5x10⁵ cells into Nunclon D multi-dishes with poly lysine
671 coating (Thermo Fisher Scientific), with or without transfection. At time of collection, cells were
672 washed twice with 0.9% w/v NaCl, scraped in MeOH:H₂O (1:1).Chloroform was added prior to
673 vortexing, centrifuging and collection of the aqueous layer. The aqueous layer was lyophilised by
674 SpeedVac without heat, then samples were resuspended in 60 μ L LC-MS H₂O and centrifuged at
675 15,000g at 4°C for 10 min. The supernatants were transferred into HPLC vials, placed at 4°C on the
676 autosampler tray and analysed immediately. Samples were assayed using two different platforms.
677 For the first platform, analyte separation was achieved using a Poroshell 120 HILIC-Z column (2.7
678 μ m, 2.1x100 mm, Agilent) at ambient temperature on a Vanquish-TSQAltis LC-MS/MS system. The
679 pair of buffers used were 95:5 (v/v) water:acetonitrile containing 20 mM ammonium hydroxide
680 and ammonium acetate (Buffer A) and 100% acetonitrile (Buffer B) flowed at 200 μ L/min; injection
681 volume was 5 μ L. MS acquisition was performed in positive and negative SRM mode to measure
682 amino acids and central carbon metabolites. For the second platform, analyte separation was
683 achieved using a Synergi Hydro-RP column (2.5 μ m 3x100mm, Phenomenex) at ambient
684 temperature on a 1260 Infinity (Agilent)-QTRAP500 (AB Sciex) LC-MS/MS system. The pair of
685 buffers used were 95:5 (v/v) water:acetonitrile containing 10 mM tributylamine and 15 mM acetic

686 acid (Buffer A) and 100% acetonitrile (Buffer B) flowed at 200 μ L/min; injection volume was 5 μ L.
687 MS acquisition was performed in negative SRM mode to measure central carbon metabolites.
688 Calibration standards were injected using the same set up. Raw data was extracted using
689 ProteoWizard and in-house MATLAB scripts.

690

691 ***Reactive oxygen species (ROS) assays***

692 Cellular ROS levels were measured using CellROXTM Orange Flow Cytometry Assay Kits (Life
693 Technologies). Briefly, 24 h post-seeding (5×10^5 cells per 6-well plate), the cells were treated with
694 or without antioxidant (0.5 mM Trolox) and left to incubate for the indicated time (siRNA, 48 h;
695 S3,72 h). Cells were stained with CellROX Orange and SYTOX Red Stain and analysed by Flow
696 Cytometry (10-30,000 cells/sample) using a BD LSRIFortessa X20.

697

698 ***Ex vivo culture of human prostate tumours***

699 Prostate cancer tissue was obtained with informed written consent through the Australian
700 Prostate Cancer BioResource from men undergoing radical prostatectomy at St Andrew's Hospital
701 (Adelaide, Australia). Ethical approval for the use of human prostate tumours was obtained from
702 the Ethics Committees of the University of Adelaide (Adelaide, Australia) and St Andrew's
703 Hospital (Adelaide, Australia). All experiments were performed in accordance with the
704 guidelines of the National Health and Medical Research Council (Australia). The 8 mm core of
705 tissue was dissected and prepared for *ex vivo* culturing as described previously (55). Tissues were
706 treated with AR antagonist 10 μ M enzalutamide or 40 μ M S3 for 72 h. At the time of collection,
707 the tissues were preserved in RNAlater (Invitrogen; Thermo Fisher Scientific) or formalin-fixed
708 then paraffin embedded.

709

710 ***Immunohistochemistry (IHC)***

711 Prostate cancer explant tissue sections were evaluated for target antigens 6PGD, Ki67 and pS6
712 (Ser235/236) by IHC as described previously (55). The antibodies used are shown in Table S2. An
713 automated staining protocol (U OptiView DAB IHC v6 (v1.00.0136)) using the Ventana BenchMark
714 ULTRA IHC/ISH Staining Module (F Hoffmann-La Roche Ltd, Switzerland) was used for the
715 detection of AR. Quantitative image analysis for AR and pS6 (Ser235/236) was completed using FIJI
716 software (ImageJ) (<http://fiji.sc/Fiji> version 1.52p). Briefly, images (obtained from NDP viewer
717 version 2.7.52; Hamamatsu Photonics K.K, Hamamatsu City, Japan) were imported and converted
718 into three panels using *Colour Deconvolution* plug-in and vector hematoxylin and DAB staining
719 (HDAB) commands. Plug-in *Adjust Threshold* was performed on the DAB-only images to measure %
720 Area (Positivity) and Reciprocal Intensity (R.I). The final DAB intensity values were calculated by
721 subtracting R.I from Maximal Intensity (255) and multiplying by % Area (Positivity). Values from
722 20-70 images per treatment were measured and R.I was kept constant for each patient.

723

724 **Statistical analysis**

725 Data are displayed as the mean; error bars are standard error. Differences between groups were
726 determined using GraphPad Prism with t tests or one-way ANOVA (with Tukey or Dunnett post hoc
727 test), as indicated in the figure legends. A *P* value ≤ 0.05 was considered statistically significant.

728

729

730 **ACKNOWLEDGEMENTS**

731 We acknowledge expert assistance from Kayla Bremert, Madison Helm, Samira Khabbazi, Scott
732 Townley, Zeyad Nassar, Elizabeth Nguyen, Shadrack Mututu, Courtney Moore, Deanna Miller,
733 Mark Van der Hoek, Randall Grose, Bianca Varney and Michelle van Geldermalsen. RNA-seq was
734 performed at the South Australian Health and Medical Research Institute (SAHMRI) Genomics
735 Facility. Flow cytometry analysis was performed at SAHMRI in the ACRF Cellular Imaging and

736 Cytometry Core Facility, which is generously supported by the Australian Cancer Research
737 Foundation, Detmold Hoopman Group and Australian Government through the Zero Childhood
738 Cancer Program. Metabolomics was facilitated by access to Sydney Mass Spectrometry, a core
739 research facility at the University of Sydney. LNCaP-V16D and LNCaP-MR49F cells were a kind gift
740 from Dr. Amina Zoubeidi (Vancouver Prostate Centre, Vancouver, Canada). The authors are
741 grateful to the study participants, as well as the urologists, nurses and histopathologists who
742 assisted in the recruitment and collection of patient information and pathology reports through
743 the Australian Prostate Cancer BioResource.

744

745 This work was supported by a grant from Cancer Australia (ID 1138766 to LMB, DJL, MMC, IGM).
746 The research programs of LMB and LAS are supported by the Movember Foundation and the
747 Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award. LAS and
748 LMB are supported by Principal Cancer Research Fellowships, awarded by Cancer Council's Beat
749 Cancer project on behalf of its donors, the State Government through the Department of Health
750 and the Australian Government through the Medical Research Future Fund.

751

752 COMPETING INTERESTS

753 The authors declare no competing interests.

754

755

756

757

758

759

760

761 REFERENCES

762 1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic
763 requirements of cell proliferation. *Science*. 2009;324(5930):1029-33.

764 2. Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma.
765 *Nat Rev Urol*. 2020;17(4):214-31.

766 3. Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, et al. Prostate Cancer Energetics and
767 Biosynthesis. *Adv Exp Med Biol*. 2019;1210:185-237.

768 4. Flavin R, Zadra G, Loda M. Metabolic alterations and targeted therapies in prostate cancer. *J Pathol*.
769 2011;223(2):283-94.

770 5. Butler LM, Centenera MM, Swinnen JV. Androgen control of lipid metabolism in prostate cancer:
771 novel insights and future applications. *Endocr Relat Cancer*. 2016;23(5):R219-27.

772 6. Gonthier K, Poluri RTK, Audet-Walsh E. Functional genomic studies reveal the androgen receptor as
773 a master regulator of cellular energy metabolism in prostate cancer. *J Steroid Biochem Mol Biol*.
774 2019;191:105367.

775 7. Heemers H, Vanderhoydonc F, Roskams T, Shechter I, Heyns W, Verhoeven G, et al. Androgens
776 stimulate coordinated lipogenic gene expression in normal target tissues in vivo. *Mol Cell Endocrinol*.
777 2003;205(1-2):21-31.

778 8. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in
779 metastatic prostate cancer before chemotherapy. *N Engl J Med*. 2014;371(5):424-33.

780 9. Recine F, Sternberg CN. Hormonal therapy and chemotherapy in hormone-naive and castration
781 resistant prostate cancer. *Transl Androl Urol*. 2015;4(3):355-64.

782 10. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative Clinical
783 Genomics of Advanced Prostate Cancer. *Cell*. 2015;162(2):454.

784 11. Coutinho I, Day TK, Tilley WD, Selth LA. Androgen receptor signaling in castration-resistant prostate
785 cancer: a lesson in persistence. *Endocr Relat Cancer*. 2016;23(12):T179-T97.

786 12. Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. *Oncol Lett*.
787 2019;17(5):4213-21.

788 13. Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, et al. Regulation of the pentose
789 phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer
790 cell growth. *Oncogenesis*. 2014;3:e103.

791 14. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET
792 bromodomain proteins in castration-resistant prostate cancer. *Nature*. 2014;510(7504):278-82.

793 15. He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM, et al. GATA2 facilitates steroid receptor
794 coactivator recruitment to the androgen receptor complex. *Proc Natl Acad Sci U S A*. 2014;111(51):18261-6.

795 16. Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H, et al. A patient-
796 derived explant (PDE) model of hormone-dependent cancer. *Mol Oncol*. 2018;12(9):1608-22.

797 17. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. *Cell*.
798 2015;163(4):1011-25.

799 18. Latonen L, Afyounian E, Jylha A, Nattinen J, Aapola U, Annala M, et al. Integrative proteomics in
800 prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease
801 progression. *Nat Commun*. 2018;9(1):1176.

802 19. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, et al. A hierarchical network of transcription
803 factors governs androgen receptor-dependent prostate cancer growth. *Mol Cell*. 2007;27(3):380-92.

804 20. Heemers HV, Verhoeven G, Swinnen JV. Androgen activation of the sterol regulatory element-
805 binding protein pathway: Current insights. *Mol Endocrinol*. 2006;20(10):2265-77.

806 21. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene
807 regulatory network downstream of mTOR complex 1. *Mol Cell*. 2010;39(2):171-83.

808 22. Rho HK, Park J, Suh JH, Kim JB. Transcriptional regulation of mouse 6-phosphogluconate
809 dehydrogenase by ADD1/SREBP1c. *Biochem Biophys Res Commun*. 2005;332(1):288-96.

810 23. Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, et al. The androgen receptor
811 cistrome is extensively reprogrammed in human prostate tumorigenesis. *Nat Genet*. 2015;47(11):1346-51.

812 24. Barfeld SJ, Urbanucci A, Itkonen HM, Fazli L, Hicks JL, Thiede B, et al. c-Myc Antagonises the
813 Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.
814 EBioMedicine. 2017;18:83-93.

815 25. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature.
816 2012;489(7414):57-74.

817 26. Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, et al. Functional metabolic screen identifies
818 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell
819 survival. Cancer Discov. 2012;2(4):328-43.

820 27. Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, et al. 6-Phosphogluconate dehydrogenase links oxidative
821 PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 2015;17(11):1484-96.

822 28. Kuruma H, Matsumoto H, Shiota M, Bishop J, Lamoureux F, Thomas C, et al. A novel antiandrogen,
823 Compound 30, suppresses castration-resistant and MDV3100-resistant prostate cancer growth in vitro and
824 in vivo. Mol Cancer Ther. 2013;12(5):567-76.

825 29. Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, et al. gamma-6-Phosphogluconolactone, a Byproduct of the
826 Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol
827 Cell. 2019;76(6):857-71 e9.

828 30. da Costa IA, Hennenlotter J, Stuhler V, Kuhs U, Scharpf M, Todenhof T, et al. Transketolase like 1
829 (TKTL1) expression alterations in prostate cancer tumorigenesis. Urol Oncol. 2018;36(10):472 e21- e27.

830 31. Galbraith L, Leung HY, Ahmad I. Lipid pathway deregulation in advanced prostate cancer.
831 Pharmacol Res. 2018;131:177-84.

832 32. Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE, et al. Targeting chromatin binding
833 regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based
834 therapies. Nucleic Acids Res. 2015;43(12):5880-97.

835 33. Choi WI, Jeon BN, Park H, Yoo JY, Kim YS, Koh DI, et al. Proto-oncogene FBI-1 (Pokemon) and
836 SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN). J Biol Chem.
837 2008;283(43):29341-54.

838 34. Zadra G, Photopoulos C, Tyekucheva S, Heidari P, Weng QP, Fedele G, et al. A novel direct activator
839 of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med. 2014;6(4):519-38.

840 35. Mah CY, Nassar ZD, Swinnen JV, Butler LM. Lipogenic effects of androgen signaling in normal and
841 malignant prostate. Asian Journal of Urology. 2019.

842 36. Wu W, Karelia D, Pramanik K, Amin SG, Sharma AK, Jiang C, et al. Phenylbutyl isoselenocyanate
843 induces reactive oxygen species to inhibit androgen receptor and to initiate p53-mediated apoptosis in
844 LNCaP prostate cancer cells. Mol Carcinog. 2018;57(8):1055-66.

845 37. Shen M, Zhang Z, Ratnam M, Dou QP. The interplay of AMP-activated protein kinase and androgen
846 receptor in prostate cancer cells. J Cell Physiol. 2014;229(6):688-95.

847 38. Huang WC, Zhai HE, Chung LW. Androgen receptor survival signaling is blocked by anti-beta2-
848 microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. J Biol
849 Chem. 2010;285(11):7947-56.

850 39. XunLi, Liu Y, Chu S, Yang S, Peng Y, Ren S, et al. Physcion and physcion 8-O-beta-glucopyranoside: A
851 review of their pharmacology, toxicities and pharmacokinetics. Chem Biol Interact. 2019;310:108722.

852 40. Hong JY, Chung HJ, Bae SY, Trung TN, Bae K, Lee SK. Induction of Cell Cycle Arrest and Apoptosis by
853 Physcion, an Anthraquinone Isolated From Rhubarb (Rhizomes of Rheum tanguticum), in MDA-MB-231
854 Human Breast Cancer Cells. J Cancer Prev. 2014;19(4):273-8.

855 41. Chen X, Gao H, Han Y, Ye J, Xie J, Wang C. Physcion induces mitochondria-driven apoptosis in
856 colorectal cancer cells via downregulating EMMPRIN. Eur J Pharmacol. 2015;764:124-33.

857 42. Elf S, Lin R, Xia S, Pan Y, Shan C, Wu S, et al. Targeting 6-phosphogluconate dehydrogenase in the
858 oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin. Oncogene. 2017;36(2):254-
859 62.

860 43. Pan X, Wang C, Li Y, Zhu L, Zhang T. Protective autophagy induced by physcion suppresses
861 hepatocellular carcinoma cell metastasis by inactivating the JAK2/STAT3 Axis. Life Sci. 2018;214:124-35.

862 44. Tzeng T-B, Chang W-K, Huang T-Y, Wu P-T, Huang W-C, Lee C, et al. Safety and Tolerability of
863 Physcion in Healthy Volunteers in a Phase I Dose Escalating Clinical Pharmacology Study. Gastroenterology.
864 2011;140(5):S-572.

865 45. Gillis JL, Selth LA, Centenera MM, Townley SL, Sun S, Plymate SR, et al. Constitutively-active
866 androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to
867 HSP90 inhibitors. *Oncotarget*. 2013;4(5):691-704.

868 46. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate
869 normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control
870 genes. *Genome Biol*. 2002;3(7):RESEARCH0034.

871 47. Armstrong HK, Gillis JL, Johnson IRD, Nassar ZD, Moldovan M, Levrier C, et al. Dysregulated
872 fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion. *Sci Rep*. 2018;8(1):2090.

873 48. Andrews S. FastQC: a quality control tool for high throughput sequence data.
874 <http://wwwbioinformaticsbabraham.ac.uk/projects/fastqc>. 2010.

875 49. Krueger F. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter
876 trimming to FastQ files, with some extra functionality for Mspl-digested RRBS-type libraries.
877 http://wwwbioinformaticsbabraham.ac.uk/projects/trim_galore/. 2012.

878 50. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of
879 transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol*. 2013;14(4):R36.

880 51. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing
881 data. *Bioinformatics*. 2015;31(2):166-9.

882 52. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression
883 analysis of digital gene expression data. *Bioinformatics*. 2010;26(1):139-40.

884 53. Lun AT, Chen Y, Smyth GK. It's DE-licious: A Recipe for Differential Expression Analyses of RNA-seq
885 Experiments Using Quasi-Likelihood Methods in edgeR. *Methods Mol Biol*. 2016;1418:391-416.

886 54. Centenera MM, Carter SL, Gillis JL, Marrocco-Tallarigo DL, Grose RH, Tilley WD, et al. Co-targeting
887 AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms. *Endocr Relat
888 Cancer*. 2015;22(5):805-18.

889 55. Centenera MM, Gillis JL, Hanson AR, Jindal S, Taylor RA, Risbridger GP, et al. Evidence for efficacy of
890 new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumors. *Clin Cancer Res*.
891 2012;18(13):3562-70.

892

893

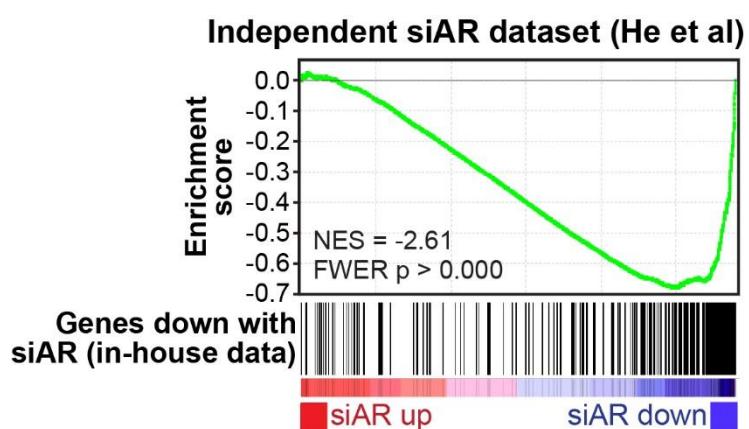
894

895

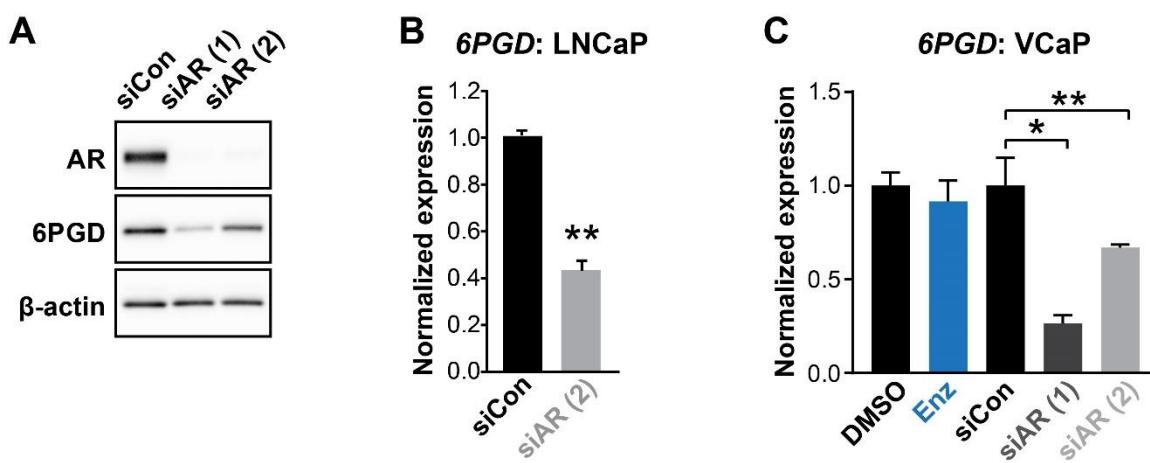
896

897

898


899

900


901

902

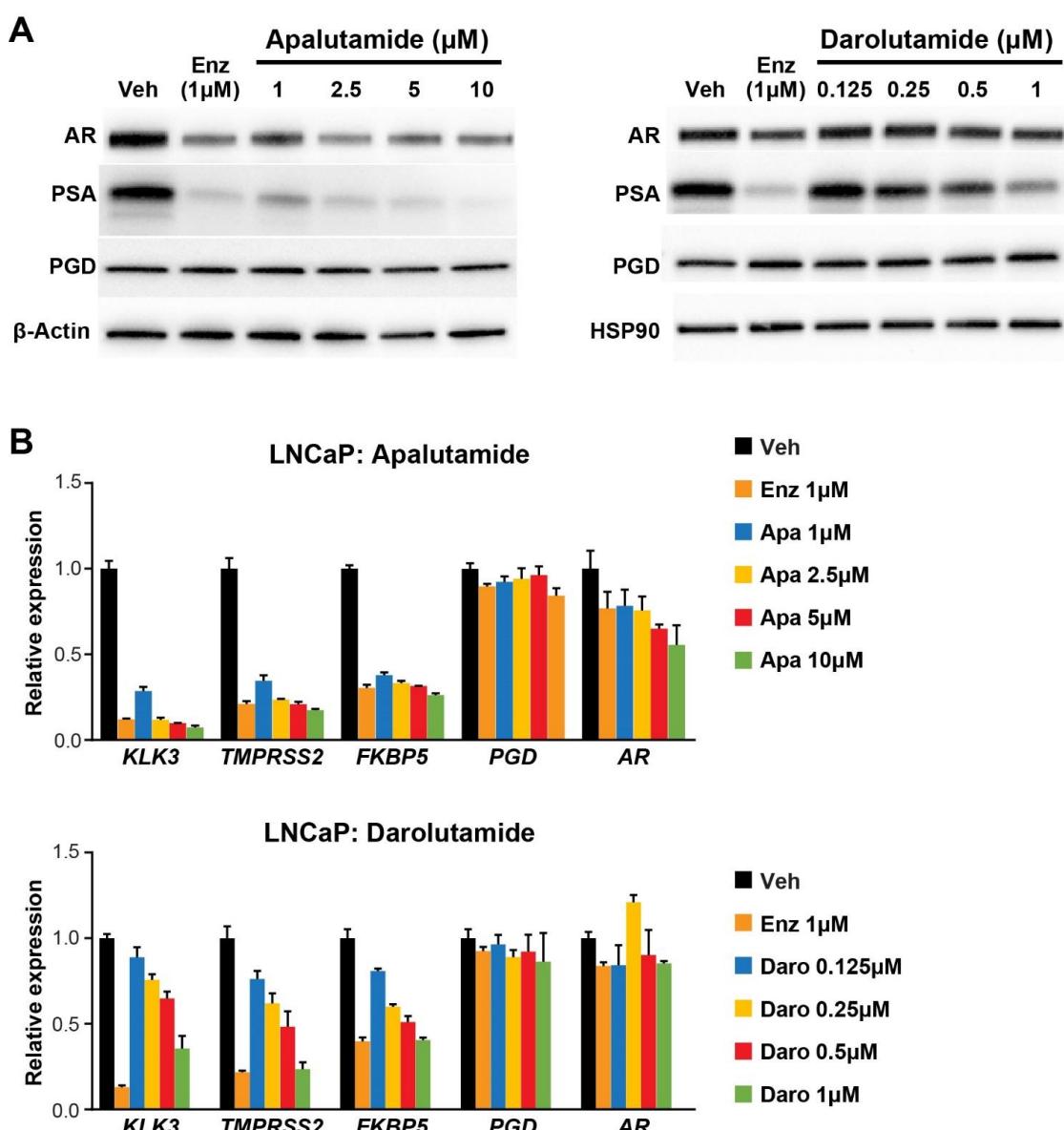

903

Figure S1. Concordance between our siAR RNA-seq data and an independent dataset, as demonstrated by gene set enrichment analysis (GSEA) (1). RNA-seq data from He and colleagues (2) was kindly provided by Nicholas Mitsiades (Baylor College of Medicine), and genes were ranked by fold-change in siAR treatment versus siControl. Genes down-regulated by siAR versus siControl in our dataset ($FDR < 0.01$, $n = 305$) were used as the gene set of interest. Running enrichment scores are plotted (top graph) and normalized enrichment scores (NES) and P values are indicated.

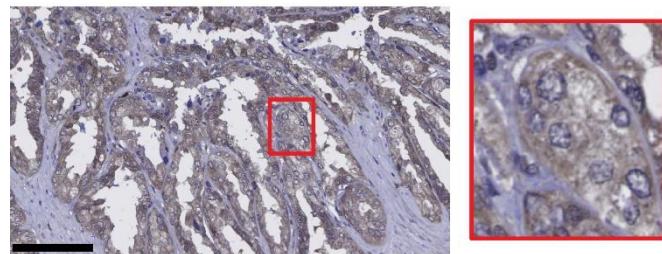


Figure S2. (A) Two distinct AR siRNAs (siAR (1) and siAR (2); 12.5 nM) reduce the expression of 6PGD at the protein level in LNCaP cells. Cells were transfected with 12.5 nM of each siRNA; after 48 h, proteins were extracted and assessed by Western blotting. (B) siAR (2) reduces the expression of 6PGD mRNA in LNCaP cells. Transfection of siRNAs was performed as in A. Differential expression was evaluated using an unpaired t test (**, p < 0.001). (C) siAR (1) and siAR (2), but not enzalutamide (Enz, 1 uM), reduce the expression of 6PGD mRNA in VCaP cells. Transfection of siRNAs was performed as in A. Cells were treated with DMSO or Enz for 24 h. Differential expression compared to DMSO or siCon was determined using ANOVA and Dunnett's multiple comparison tests (*, p < 0.05; **, p < 0.01).

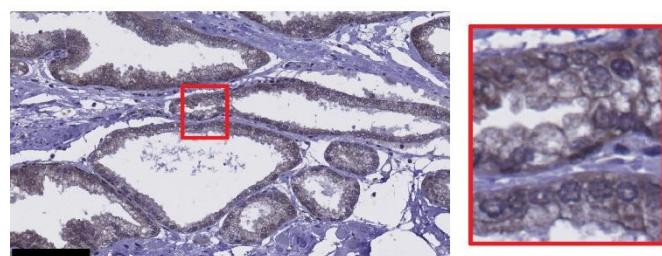
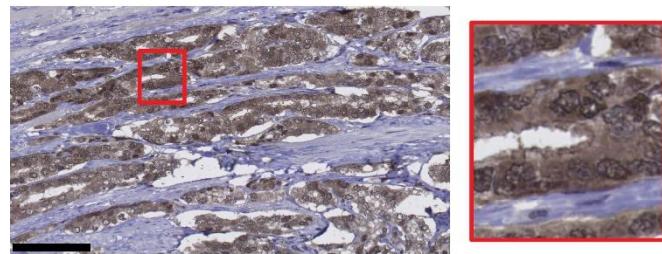
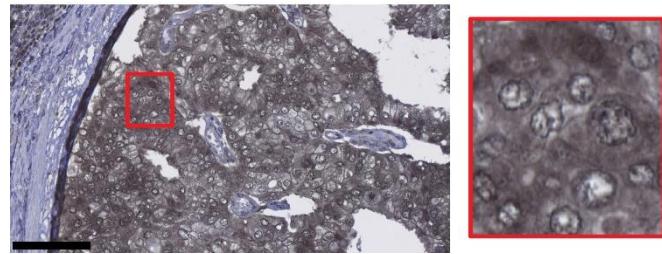
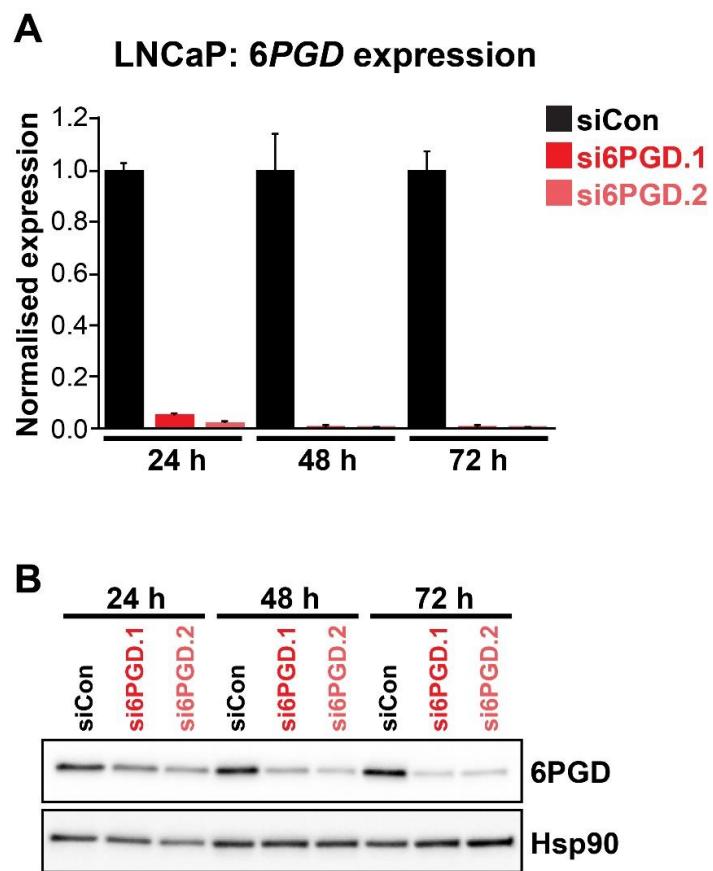
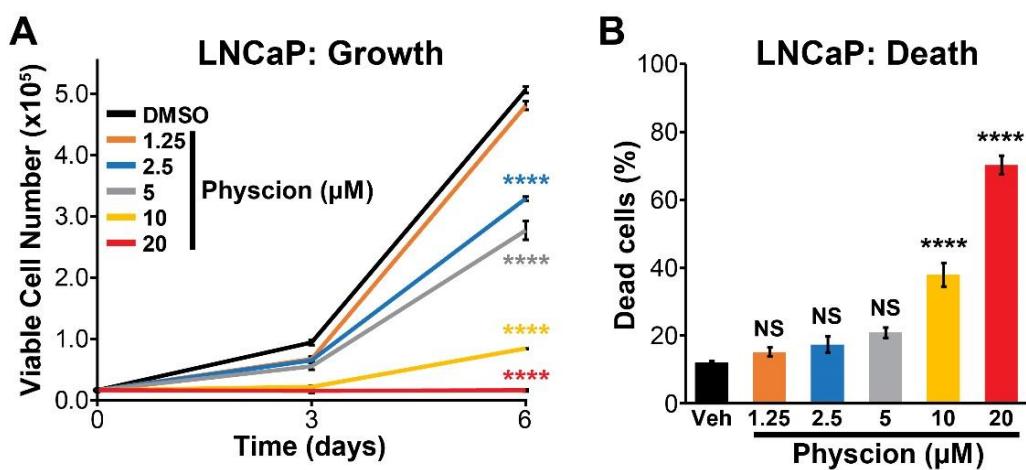


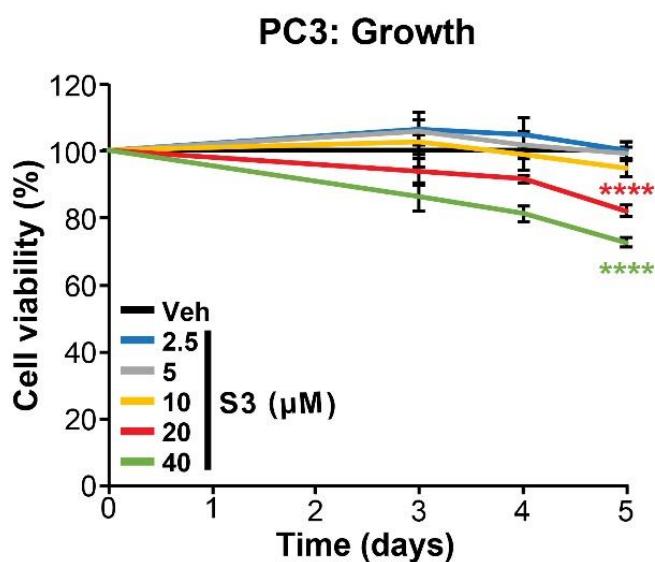
Figure S3. Next-generation AR antagonists apalutamide and darolutamide inhibit AR target gene expression at the protein (A) and mRNA (B) level, but do not reduce expression of 6PGD protein or mRNA. Cells were treated for 24 h with the indicated doses of each drug.


Gleason 3+3


Gleason 3+4


Gleason 4+4


Gleason 4+5


Figure S4. Representative images of 6PGD IHC in patient tumours. Gleason grades are shown. Scale bars represent 100 μ m.

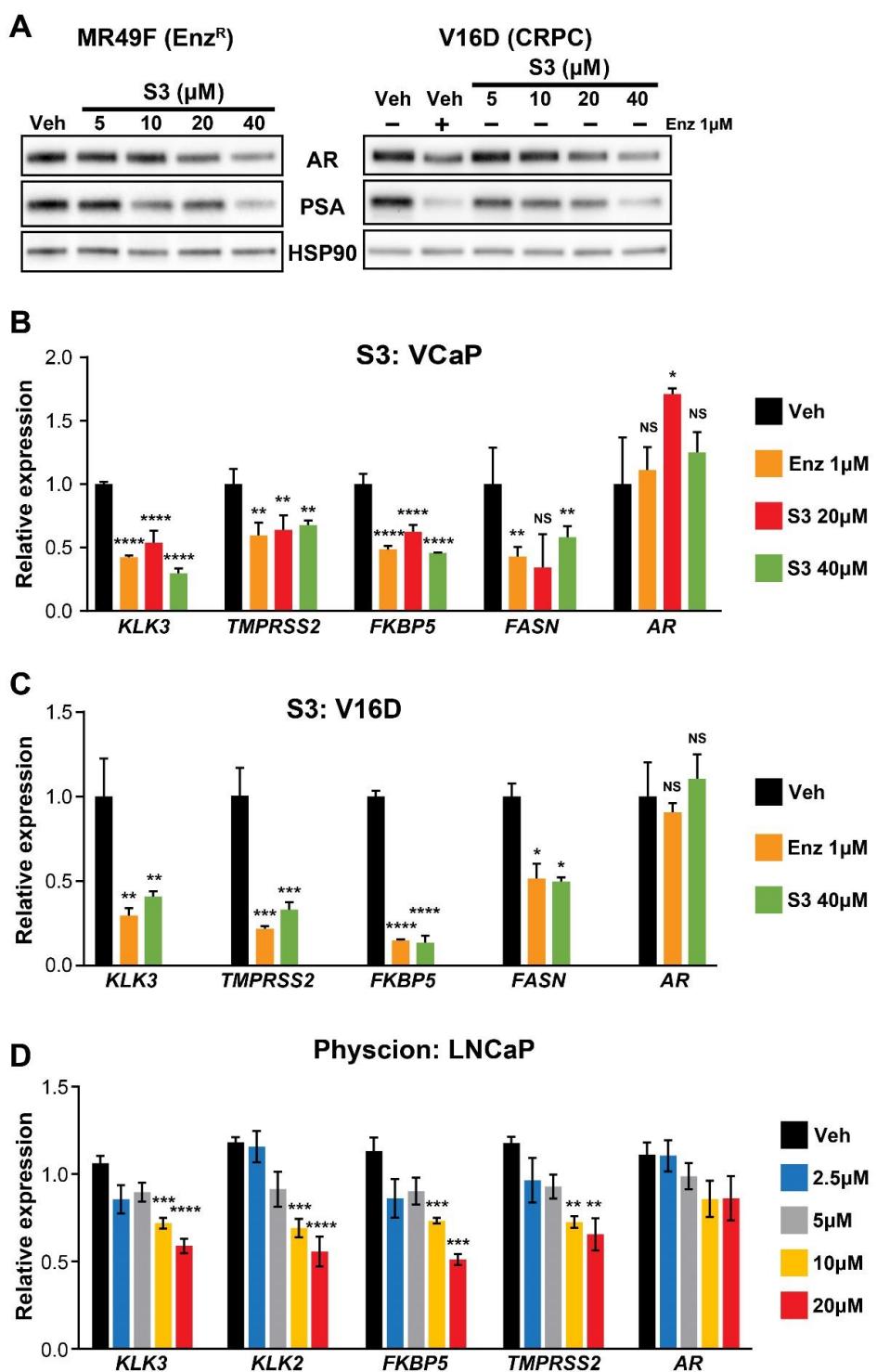

Figure S5. Two distinct 6PGD siRNAs (si6PGD.1 and si6PGD.2) effectively reduce 6PGD expression in LNCaP cells. Cells were transfected with 12.5 nM of each siRNA for 72 h, after which 6PGD mRNA was measured by RT-qPCR (A) or 6PGD protein was measured by immunoblotting (B).

Figure S6. Physcion effectively suppresses growth (A) and causes death (B) of LNCaP cells. Live and dead cells were measured (A, at the indicated time-points; B, at day 6) using Trypan blue exclusion assays. Physcion's effects on growth and death compared to vehicle (Veh) were determined using ANOVA and Dunnett's multiple comparison tests (****, $p < 0.0001$; NS, not significant).

Figure S7. Effect of S3 on growth of PC3 cells. Cell viability assessed by CyQuant Direct Cell Proliferation Assay. Fluorescence at day 0 was set to 100%. The effect of S3 on growth compared to vehicle (Veh) was determined using ANOVA and Dunnett's multiple comparison tests; only 20 μ M and 40 μ M doses were significantly different to Veh (****, p < 0.0001).

Figure S8. (A) S3 decreases AR and PSA protein levels in MR49F (left) and V16D (right) cells. Protein was extracted from cells at 24h and assessed by Western blotting. HSP90 is shown as a loading control. (B-C) S3 suppresses AR target gene expression in VCaP (B) and V16D (C) cells after 24 h treatment. Expression is shown relative to *GUSB* and *L19*; vehicle (Veh) was set to 1. (D) Phyoscion suppresses AR target gene expression in LNCaP cells after 24 h treatment. Expression is shown relative to *GUSB* and *L19*. Differential expression compared to vehicle (B-D) was determined using ANOVA and Dunnett's multiple comparison tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; NS, not significant).

Reference list for Supplementary Figures

1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-50.
2. He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM, et al. GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. *Proc Natl Acad Sci U S A*. 2014;111(51):18261-6.