

1 **Phenotypic and transcriptomic responses to stress differ according to population geography**
2 **in an invasive species**

3

4

5

6 Authors: Pierre Marin¹, Angelo Jaquet¹, Justine Pifarre¹, Marie Fablet¹, Vincent Merel¹, Marie-Laure
7 Delignette-Muller¹, Mariana Galvão Ferrarini^{1,2}, Patricia Gibert^{1*} & Cristina Vieira^{1*}

8 Corresponding author: patricia.gibert@univ-lyon1.fr & cristina.vieira@univ-lyon1.fr

9

10 1. Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie
11 Evolutive UMR 5558, F-69622 Villeurbanne, France

12 2. UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences
13 Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA),
14 University of Lyon (Univ Lyon), F-69621 Villeurbanne, France

15 **Abstract**

16

17 **Background:** Adaptation to rapid environmental changes must occur within a short time scale.
18 In this context, studies of invasive species may provide insights into the underlying mechanisms of
19 rapid adaptation as these species have repeatedly encountered and successfully adapted to novel
20 environmental conditions. Here we investigated how invasive and non-invasive populations of *D.*
21 *suzukii* deal with an oxidative stress at both the phenotypic and molecular level. We also investigated
22 the impact of transposable element insertions on the differential gene expression between genotypes
23 in response to oxidative stress.

24 **Results:** Invasive populations lived longer in the untreated condition than non-invasive
25 Japanese populations. As expected, lifespan was greatly reduced following exposure to paraquat, but
26 this reduction varied among genotypes (a genotype by environment interaction, GEI) with invasive

1 genotypes appearing more affected by exposure than non-invasive genotypes. We also performed
2 transcriptomic sequencing of selected genotypes upon and without paraquat and detected a large
3 number of genes differentially expressed, distinguishing the genotypes in the untreated environment.
4 While a small core set of genes were differentially expressed by all genotypes following paraquat
5 exposure, much of the response of each population was unique. Interestingly, we identified a set of
6 genes presenting genotype by environment interaction (GEI). Many of these differences may reflect
7 signatures of history of past adaptation. Transposable elements (TEs) were not activated after oxidative
8 stress and differentially expressed (DE) genes were significantly depleted of TEs.

9 **Conclusion:** In the decade since the invasion from the south of Asia, invasive populations of *D. suzukii*
10 have diverged from populations in the native area regarding their genetic response to oxidative stress.
11 This suggests that such transcriptomic changes could be involved in the rapid adaptation to local
12 environments.

13 **Keyword:** invasive species, *D. suzukii*, oxidative stress, transposable elements, environmental
14 changes, genotype by environment interaction.

15

16 **Introduction**

17

18 Rapid environmental changes, particularly related to human activity, can decisively affect living
19 organisms, who must respond to them within a short-time scale. Understanding the mechanisms
20 underlying these rapid responses is challenging and could help predict organism and species survival
21 in the face of global environmental changes. The rapid adaptation of invasive species to new
22 environments, some quite different than ancestral environments, may provide insights into such
23 mechanisms [1,2] including hormonal regulation of suites of traits, or epigenetic gene regulation [3–6].
24 Phenotypic plasticity, *i.e.*, the ability of a genotype to express different phenotypes in different
25 environments, is a possible explanation to the success of invasive species, particularly in the case of
26 founder populations depleted of genetic variations [3–5,7].

27 Genetic diversity could rapidly increase following environmental stress if there is an activation of

1 transposable elements (TEs) or if the epigenetic control is disturbed. TEs, which are repeated
2 sequences that can move around genomes, were discovered by B. McClintock in the 50' [8]. Depending
3 on where TEs are inserted within the genome, they can affect the fitness of its host organism. The vast
4 majority of new TE insertions are neutral or deleterious, and purifying selection is expected to remove
5 them or favours their silencing [9–11]. However, some TE insertions may be advantageous and
6 facilitate adaptation in different environments [6,12–22]. Such adaptive effects have been previously
7 observed in response to both biotic (e.g., virus infection) and abiotic (e.g., oxidative stress) stress
8 [19,20]. Moreover, stress-induced changes in the epigenetic regulation of TEs, which is often sensitive
9 to environmental cues [14,21,23], has already been described to rapidly generate potentially
10 advantageous changes in nearby gene regulation and facilitate rapid adaptation to environmental
11 stress [9,13].

12 Here, we examined variation in the oxidative stress response of invasive and non-invasive populations
13 of *Drosophila suzukii* with a focus on molecular mechanisms potentially underlying the observed
14 phenotypic differences. *D. suzukii* is an Asian species of the *melanogaster* group that invaded North
15 America and Europe in 2008 [24–28]. Outside of Asia, *D. suzukii* is now found in both North and South
16 America, and throughout most of Europe, from southern Spain easterly into Poland, Ukraine and
17 Russia [25–28]. As *D. suzukii* has spread throughout the world, it has encountered and successfully
18 colonised many different, potentially stressful environments.

19 Paraquat (*N,N'-dimethyl-4,4'-bipyridinium dichloride*) is one of the most widely used herbicide in the
20 world [29,30]. Exposure to paraquat leads to the production of ROS (reactive oxygen species) and has
21 often been used in the lab as a proxy to study oxidative stress [31–34]. Resistance to oxidative stress
22 has been associated with extended lifespan [34–36], a trait possibly under selection during invasion of
23 a new area. Furthermore, paraquat has been banned since 2007 in Europe but is still used in the U.S.A
24 and Japan.

25 In this study, we compared field-sampled *D. suzukii* genotypes collected in their native area of
26 Japan with genotypes collected in invaded areas in the U.S.A and France. For each genotype, we
27 measured lifespan in both the presence and absence of paraquat, where we identified an effect of

1 genotype and a genotype-by-environment interaction effect (GEI). We went further by examining the
2 transcriptomic response of single genotypes from each location along with analysis of TE expression.
3 We found substantial differences among genotypes in patterns of gene expression related to oxidative
4 stress that may explain the observed phenotypic differences and reflect population history. This work
5 highlights the local adaptation to environmental conditions of the genotypes within a short-time scale.
6

7 **Results**

8 **Among population variation for lifespan and oxidative resistance**

9
10 We have measured lifespan and oxidative stress in a total of 27 isofemale lines from six geographical
11 regions coming from the U.S.A, France and Japan. As expected, oxidative stress had a strong negative
12 effect on survival, with an average decrease in lifespan of 80% when paraquat was present in the
13 medium (multiplicative coefficient of 0.20, Fig. 1). Median lifespans of flies are presented in Table 1 for
14 each population, sex and treatment and statistical analysis of survival is presented in Fig. 1 and Table
15 S1. Sex differences in lifespan and changes in lifespan in response to stress are present in some
16 species [37]. However, we did not find a main effect of sex or any significant interactions with sex in
17 our preliminary statistical model (see materials and methods). Therefore, male and female data were
18 pooled for subsequent analysis.

19 In the untreated condition, flies from the two Japanese populations had the shortest lifespan and
20 were not significantly different. For flies sampled in the United States, those from Watsonville had a
21 median lifespan very similar to the Japanese populations and were not different from the reference
22 Sapporo population (Fig. 1, value = 1.01, corresponding to about 1% greater lifespan than the reference
23 Sapporo population). However, flies from Dayton lived the longest (value=1.44, a 44% relative
24 increase). The two populations collected in France lived on average 25-28% longer than flies in the
25 Sapporo population (1.25 and 1.28 for Paris and Montpellier, respectively).

26 The decline in lifespan following paraquat treatment was variable among populations (genotype
27 by environment interaction). Compared to the Sapporo reference population, there were non-significant

1 reductions in resistance for Tokyo, Paris and Dayton. Populations from Watsonville and Montpellier
2 were significantly more sensitive to paraquat treatment, with reductions in lifespan of 14.8% and 16%
3 respectively (multiplicative effects of 0.20×0.74 and 0.20×0.80 in Fig. 1). We observed a low but
4 significant correlation among genotypes for lifespan across the two environments ($r = 0.28$, p -value =
5 $3.3E^{-4}$, Fig. S1).

6

7 **Transcriptomic variability among genotypes**

8 We quantified gene expression of three genotypes in somatic tissues, one from each geographical
9 sampling location (Montpellier (MT47): France, Watsonville (W120): U.S.A & Sapporo (S29): Japan),
10 hereafter referred by the country where flies were sampled. We choose these three genotypes because
11 of their difference in lifespan.

12 A Principal Component Analysis (PCA) of gene read counts (Fig. 2) clearly showed genotype-specific
13 clustering, independent of the treatment. To evaluate variation in the transcriptomic response of each
14 genotype to paraquat treatment, we computed the coefficient of variation (CV) for each differentially
15 expressed (DE) genes between control and treated flies (Fig. S2). CV distributions were significantly
16 different across genotypes (paired Wilcoxon test, p -values < 0.01), which suggests significant genotype
17 by environment interaction for transcriptomic response. The number of differentially expressed (DE)
18 genes identified, (i) in pairwise comparisons between genotypes in control conditions, (ii) in
19 comparisons between untreated and oxidative stress conditions for each genotype, and (iii) in pairwise
20 comparisons between genotypes following paraquat treatment are presented in Table 2. The
21 distribution and values of the CV were in agreement with the distribution of DE genes shown in the
22 Table 2, suggesting that the difference in DE gene proportions between the genotypes are due to
23 biological variation and not a bias of statistical power.

24

25 **Genotypic variation in gene expression in untreated flies**

26

1 Pairwise comparisons of gene expression of untreated flies between the three genotypes revealed 715
2 DE genes between France and U.S.A (4.92% of the total transcriptome), 524 between France and
3 Japan (3.6%), and 1023 between U.S.A and Japan (7.04%) (Table 2 and Fig. S3). Most of these DE
4 genes (~70%) had an absolute log₂fold change below 2 (Fig. S3) and only 60 had an absolute log₂fold
5 change higher than 5.

6 To further examine these DE genes, we performed a Gene Ontology analysis (Fig. 3). The
7 rationale was to identify transcriptomic differences possibly related to adaptation of the different
8 genotypes to their respective environments. In the comparison of France vs U.S.A, there were fewer
9 enriched terms (all of them from up-regulated genes in France) when compared to France vs Japan or
10 U.S.A vs Japan. In the comparisons of France vs U.S.A, enriched terms came from down-regulated
11 genes in the Japan genotype. These results suggest a greater similarity between the two invasive
12 genotypes, France and U.S.A. The greater enrichment of GO terms in comparisons between Japan
13 and either the U.S.A or France suggests this population is extremely different than the other two.

14 We detected 44 GO terms shared between the invasive genotypes (France and U.S.A) in comparison
15 with the non-invasive Japan genotype. These terms were mainly related to translation, protein
16 metabolic process, ribosome biogenesis, response to hyperoxia, and immune response (antibacterial
17 related). All of these terms were down-regulated in the invasive genotypes (U.S.A or France) when
18 compared to the non-invasive Japan genotype. We also detected other functional terms in molecular
19 function (MF) that seemed to be specifically down-regulated in the U.S.A genotype (so they appear in
20 both U.S.A vs Japan and France vs U.S.A results): carbohydrate transport and energy metabolism. It
21 is plausible to say that these functions are compromised in the U.S.A genotype.

22 Taken together, these enrichment analyses suggest transcriptomic differences in translation,
23 protein metabolic process, ribosome biogenesis, response to hyperoxia, and immune response
24 (antibacterial related), which have been down-regulated in invasive genotypes compared to the non-
25 invasive Japanese genotype.

1

2 **Oxidative stress induces genes upregulation in invasive genotypes**

3 We compared changes in gene expression between flies in control and oxidative conditions and
4 identified a total of 659 unique DE genes across the 3 genotypes (Fig. 4 and Table 2). The Japan
5 genotype had the fewest DE genes (122 genes, representing 1.10% of the transcriptome) in response
6 to paraquat treatment, followed by the U.S.A (281 genes, 2.46%) and France (531 genes, 4.51%). Of
7 all DE genes, most were upregulated upon oxidative stress (435/659). When comparing DE genes
8 among genotypes, we observed that fewer genes were shared between Japan and the other two
9 genotypes (Fig. 4), with respectively 4 and 23 genes uniquely shared with U.S.A and France. The
10 comparison between France and U.S.A showed that a greater number of DE genes were uniquely
11 shared (114) between these two genotypes.

12 A gene ontology enrichment analysis for each genotype was performed with 621 annotated genes out
13 of the 659 DE genes. We were able to detect enriched terms for down-regulated genes in the Japan
14 genotype and for up-regulated genes in the U.S.A and France genotypes. These observations are in
15 accordance with the fact that, a functional major up-regulation of genes in response to paraquat was
16 only observed in invasive genotypes. When comparing the GO terms enriched in up-regulated genes
17 from invasive genotypes (Fig. 5), terms such as ligase activity, oxidation-reduction, ATP binding, drug
18 binding and ion binding were common to France and U.S.A. As observed in related species, paraquat
19 can indeed cause DNA damage via oxidative stress [31]. The French genotype had a greater number
20 of specific enriched terms, mostly related to DNA repair (including aforementioned ligase activity and
21 telomere maintenance, among others), protein translation, protein refolding and mitochondrion. The
22 U.S.A genotype had other enriched terms related to carbohydrate metabolism, detoxification, and
23 response to metal ion. There were no enriched GO terms among up-regulated genes in the Japan
24 genotype. Enriched terms for down-regulated genes in the Japan genotype were mainly related to
25 immune response (to bacteria), response to increased oxygen levels (hyperoxia) and peptidase activity
26 (Fig. 5). Overall, it appeared that while paraquat induced increased expression for genes related to
27 oxidation-reduction, detoxification, drug/metal binding, DNA repair and protein refolding in invasive

1 genotypes, it reduced the expression of important genes for the antioxidant response in the non-
2 invasive genotype.
3

4 **DE genes common to the three genotypes were mostly upregulated with oxidative stress**
5

6 From a total of 659 unique DE genes between control and paraquat exposure, 67 were shared by all
7 genotypes. This set of core genes were regulated in the same way for the three genotypes: 14 down-
8 regulated (from $\log_2FC = -1.03$ to -10.8) and 53 upregulated (from $\log_2FC = 1.03$ to 10.48) (Fig. 6).

9 Among those up-regulated following paraquat treatment, we found genes related to stress response
10 such as *Hsp* and *Cyp* genes families. The strongest up-regulated genes were a predicted gene
11 encoding for a transcription factor A (\log_2 fold-change = 10) and other genes in the *Hsp* gene family.
12 Among the strongest down-regulated genes, we identified a cytochrome P450 gene that was the top
13 down-regulated gene in all 3 genotypes and has a $\log_2FC < -10$ in the Japanese genotype.

14 We performed a GO enrichment analysis for the set of 67 genes common to the three genotypes. For
15 down-regulated genes, only 9 of the 14 genes had a homolog in *D. melanogaster*. Enriched terms were
16 associated with peptidoglycan metabolic process and negative regulation of NK cell differentiation
17 involved in the immune response. However, all enriched terms were related to two genes: *PGRP-SC1a*
18 and *PGRP-SC1b*. *PGRPs* (Peptidoglycan recognition proteins) are important in recognizing and
19 degrading bacterial peptidoglycan, although *PGRP-SC1b* has not shown antibacterial activity and may
20 instead be a scavenger protein [38]. Out of 53 up-regulated genes, 37 had homologs in *D.*
21 *melanogaster*. Enrichment analysis on this set of genes identified only one significant GO term: ligase
22 activity (which is related to DNA repair). Four of the five genes within this GO term were tRNA-ligases,
23 which may play a role in protecting cells against oxidative damage following their translocation into the
24 nucleus [39].

25 **The stress response is variable across genotypes**
26

1 We identified a total of 213 unique genes with a significant GEI, which represent the set of genes with
2 expression differentially modulated by oxidative stress according to genotype (Fig. 7). When comparing
3 differences in the response of invasive genotypes to the non-invasive Japan genotype, we found 62
4 differentially modulated genes with the U.S.A genotype and 138 with the France genotype (Table 2).
5 Most of these differences were due to greater up-regulation DE genes in the invasive genotypes (57/62
6 and 105/138). We identified 52 genes where the GEI was driven by a differential response in only one
7 genotype compared to the other two. This included 22 genes differentially modulated in the France
8 genotype compared to Japan and U.S.A, 14 in Japan compare to France and U.S.A, and 16 for U.S.A
9 against others. We have presented some examples of these genes (Fig. 7 and Table S2), selected for
10 the greatest log₂fold change and illustrating cases in which the magnitude of the response to paraquat
11 differed among genotypes. For example, *dysc* and *FarO* were down-regulated in France and
12 upregulated in U.S.A and Japan. The *Hsp* genes *Hsp68* and *Hsp70Aa* were strongly up-regulated
13 following paraquat treatment in France, with a log₂FC ≥ 2 , compared to the much-reduced changes in
14 expression in Japan or U.S.A. In the USA genotype, *Mec2* was strongly down-regulated compared to
15 the increased expression following treatment in the other genotypes. Oxidative stress appeared to
16 upregulate *CCHa2*, *RpL40* and *Tsf1* only for the Japanese genotype. These examples highlight the
17 potential effect of genotype-specific responses to oxidative stress.

18

19 **TE expression is not sensitive to oxidative stress**

20

21 Environmental changes can affect the expression of TEs by lifting epigenetic repressive regulation
22 mechanisms [17]. In our experiments, TE expression levels were very low, and reads corresponding
23 to TEs did not exceed 3.8 to 7.1% of the total transcriptome. In control condition, differentially
24 expressed TEs (DETEs) identified in pairwise comparisons between genotypes represented from 3.08
25 (48 families) to 5.91% (92) of total number of TE families annotated in the *D. suzukii* genome (Table
26 S3). The U.S.A genotype exhibited a greater level of DE of TEs compared to the French or Japanese
27 genotypes, with almost 70 TE families up-regulated in U.S.A genotype in comparisons with either

1 France or Japan. Moreover, a similar number of both up- and down-regulated DETES were identified
2 in the comparison between France and Japan (Fig. 8).
3 After paraquat exposure, very few TE families changed in their expression levels (Table S3). In total,
4 only 12 TE families were differentially expressed (Fig. 8). Six TE families in France and three in Japan
5 were up-regulated. In the U.S.A genotype, differential expression of five TE families was observed,
6 with three showing up-regulation and the remainder down-regulated. Among the DETEs, all classes of
7 TE families were represented. We observed a differential expression in two of the genotypes in a Copia
8 cluster and a Tc1 mariner cluster, which could suggest specific activation of these TE families upon
9 oxidative stress.

10

11 DE genes during oxidative stress are not enriched in TE insertions

12

13 TEs represent ~33% of the *D. suzukii* genome and can potentially interfere with gene expression during
14 stress [40]. To test for an enrichment or depletion of TE insertions around DE genes, we first test if the
15 distribution of TEs in the three genomes was not significantly different (Chi-square test = 0.67, Table
16 S4). We then tested the dependence of TE insertions and gene expression states (DE or not) after
17 paraquat exposure (Table S5). Chi-square tests for the three genotypes showed that DE genes had
18 fewer than expected TE insertions in genes and the 2kb flanking region (p-value < 0.05).

19 We then focused on all the 115 TE insertions present in the DE genes, the majority of which
20 were in introns (57) or in \pm 2kb flanking regions (50) around DE genes (Table S6). Of the remaining 8
21 TEs, 7 were associated with up regulated genes (*JMJD4* (5'UTR), *Act42A* (exon), *Cyp9b2* (3'UTR),
22 *CG8728* (3'UTR), *Cyp6a22* (3'UTR), *CG6834* (3'UTR), and one non annotated gene (exon). One
23 insertion was associated with a down-regulated gene, *CG4409* (exon).

24

25 Shared DE genes are not enriched with TE insertions

26 In agreement with a depletion of TE in DE genes, of the 67 shared DE genes that responded to
27 paraquat treatment in similar ways across the three genotypes (Fig. 6), we founded 11 genes with one

1 or more TE insertions. Among these 11 genes, only one (a gene predicted to encode a glutathione
2 transferase) had a shared element present at the same position in all three genotypes (helitron family
3 ~1kb upstream the gene).

4

5 **Distribution of TEs among GEI genes**

6 A GEI interaction indicates that the magnitude or direction of changes in expression following treatment
7 could differ depending on the genotype. We found a total of 53 genes with at least one TE insertion.

8 The DE genes showing evidence of a GEI, present the same distribution of TE insertion as all genes,
9 except for genes with a GEI between France and U.S.A (p-value = 0.016, Table S5) in which they are
10 less frequent and no insertion was shared in all genotypes. Also, the TE insertions were associated
11 with high or low level of expression (Fig. 9 summarizes detected TE insertions in GEI DE genes for the
12 different genotypes, also Table S7). For example, three genes were differentially expressed between
13 France and the others genotypes ; *FarO* (*Fatty acyl-CoA reductase*), *kelch* (which plays an essential
14 role in oogenesis, where it is required for cytoskeletal organization), and *Hsp70-Aa* (a protein involved
15 in response to heat shock and hypoxia). *Kelch* and *FarO* both had a TE insertion in France, with,
16 respectively, a greater and lesser expression compared to other genotypes. *Hsp70-Aa* had an insertion
17 in Japan and U.S.A and showed lower expression than in France. Another example is the gene
18 *CG12520*, which has a TE insertion in the 3'UTR in Japan and a lower expression.

19 TEs may impact neighbouring gene expression due to the transcription factor binding sites (TFBSs)
20 they harbour. We investigate whether this was the case in our data set and focused on three TFBSs of
21 the antioxidant responses elements group (ARE) [41]. We first analysed enrichment in TFBS for all TE
22 families identified in the GEI genes (Fig. S4A). Of 196 TE families, 36 had at least one TFBS, most of
23 them related to a CnC (Cap'n'collar) element. The TE sequences with putative TFBS were related to
24 Pao and Gypsy families. We founded 4 GEI genes with TFBS linked to a TE insertion (Fig. S4B). Only
25 one was annotated as *stc* gene (*shuttle craft*), which encodes a NFX1 family transcription factor
26 implicated in modulating adult lifespan and aging [42].

27

1 **Discussion**

2 ***D. suzukii* genotypes vary in lifespan and response to oxidative stress**

3

4 Previous studies founded a positive association between stress resistance and extended lifespan or
5 aging in *D. melanogaster* [34,43,44]. In this species, the ROS defences are mediated by both immune
6 and antioxidant response pathways. A similar association may be expected in *D. suzukii*, a species
7 which diverged from the melanogaster group ~8 Mya. However, until now, no extensive study had been
8 performed using *D. suzukii* wild-type genotypes. Here, we observed a significant positive correlation
9 between lifespan in standard conditions and under oxidative stress.

10 However, not all fly genotypes responded to oxidative stress in the same way, resulting in a significant
11 genotype-by-environment interaction (Fig. 1 and Table 1), in accordance to what was reported in *D.*
12 *melanogaster* [32]. For example, Japanese populations had the lowest lifespan in the untreated
13 condition but were more resistant to oxidative stress than genotypes from Watsonville (U.S.A) or
14 Montpellier (France). This GEI suggests possible local adaptation of the different populations to

15 paraquat, perhaps associated with differences in herbicide use in the three countries. Paraquat is one
16 of the most used herbicides in the world and is widely used in Japan and U.S.A, but forbidden in Europe
17 since 2007 [29,30]. The presence of *D. suzukii* in Europe has been reported since 2008, and flies are
18 therefore unlikely to have encountered paraquat in the field since their arrival [24,27,45]. This could
19 have resulted in a relaxed selective pressure for oxidative stress resistance and explain why the French
20 Montpellier population was more sensitive than Japanese and American lines (except for Watsonville).

21 The Paris population, on the other hand, was not significantly different than the Japanese Sapporo
22 population; we suggest that an admixture event that occurred in the North of France with flies from
23 U.S.A could explain the difference between the two French populations [24]. The difference between
24 the two American populations seemed odd at first; however, the transcriptomic analysis revealed that
25 a copper detoxification pathway specific to the Watsonville population (as discussed below) could be
26 involved. Even though we should confirm these findings with a larger sampling, our results demonstrate
27 the importance of considering different populations in such studies.

1 Basal gene expression is different between invasive and native genotypes

2

3 We performed a transcriptomic analysis on genotypes from each of the three sampled locations in

4 order to identify molecular processes underlying variation in the oxidative stress response. We first

5 identified DE genes between the three genotypes in untreated conditions (control).

6 In *D. melanogaster*, genotypic differences accounted for 7.3% of DE genes showing micro-environment

7 plasticity among a set of 16 DGRP (Drosophila Genetic Reference Panel) lines reared under carefully

8 controlled standard conditions [46]. This result is in agreement with our results, in which almost 7% of

9 the transcriptome was differentially expressed across genotypes. Most of these DE genes correspond

10 to biological processes such as metabolism or protein synthesis and may possibly reflect genotype-

11 specific differences related to local adaptation. In general, the level of expression for DE genes in

12 invasive genotypes (U.S.A and France) was lower than in the native genotype from Japan, suggesting

13 this genotype has by default a higher level of transcription for the DE genes. Among down-regulated

14 genes, we found significant enriched GO terms in invasive genotypes related to translation, protein

15 metabolic process, ribosome biogenesis, response to hyperoxia and immune response.

16

17 Relationship between oxidative stress response, phenotype and gene expression

18

19 Exposure to paraquat affected the expression of up to 5% of the transcriptome (703 DE genes between

20 control and paraquat) with a majority of DE genes being up-regulated. Similar changes in gene

21 expression have been observed in *D. melanogaster*, with 608 to 1111 DE genes identified after

22 exposure to 5mM or 15mM of paraquat [47]. In response to oxidative stress following exposure to

23 hydrogen peroxide, 1639 DE genes were identified [47,48].

24 Interestingly, the proportion of the transcriptome affected by oxidative stress differed between native

25 and invasive genotypes. The Japanese genotype appeared highly stable, with fewer DE genes in

26 response to paraquat than both invasive genotypes (Fig. 4). Furthermore, the number of DE genes

27 uniquely affected by paraquat exposure was much lower in the Japanese genotype (28) than either the

1 U.S.A (96) or France (327) genotypes.

2 It should be pointed out that the two invasive lines used in the transcriptomic analysis, Watsonville

3 (USA) and Montpellier (France), were the lines most affected by paraquat exposure in our phenotypic

4 analysis (Fig. 1), suggesting that stress sensitivity could be linked to greater transcriptional

5 deregulation. The French genotype had by far the greatest number of DE genes (almost twice as many

6 as the American genotype). Consistent with the hypothesis of transcriptional deregulation, this result

7 could reflect a lack of adaptation to paraquat, which has been banned as an herbicide in Europe since

8 2007, prior to the arrival of *D. suzukii*.

9 A set of 67 DE genes were shared by all genotypes in their response to paraquat. This set of common

10 DE genes likely corresponded to those directly implicated in stress response. In agreement with this

11 idea, we founded genes such as *Hsp* or genes of the cytochrome gene family [49–54].

12 At the transcriptomic level, the Japanese genotype appeared dissimilar from the other two. First, as

13 discussed above, the transcriptional response to paraquat involved a much smaller portion of the

14 genome and there were fewer DE genes unique to this genotype. Second, under control conditions,

15 this genotype had the highest amount of DE genes. At the phenotypic level, the Japanese genotype

16 had the lowest lifespan under standardized control conditions but was one of the genotypes most

17 resistant to oxidative stress.

18 Together, these results suggested that the Japanese genotype maintained some constitutive defences

19 to oxidative stress. In the absence of oxidative stress, the expression of constitutive defence may come

20 at a cost of reduced lifespan but it would result in greater resistance when flies encounter paraquat. In

21 the case of the French and American genotypes, many up-regulated genes are directly related to the

22 oxidative stress response (GO enriched for oxidation-reduction, immune response and ion binding),

23 which could indicate they are experiencing a greater amount of oxidative damage and therefore explain

24 their lower lifespan under stress conditions.

25 A surprising result comes from the GO analysis of DE genes in response to paraquat exposure

26 in the U.S.A genotype. We identified an enrichment in terms related to copper detoxification that was

27 not found in the other genotypes. Previous studies, ranging from bacteria to mammals, have

1 demonstrated a trade-off between copper tolerance and sensitivity to paraquat [55,56]. Thus, the
2 greater sensitivity of the Watsonville genotype to paraquat exposure could reflect previous exposure
3 and adaptation to copper in the environment. In support of this hypothesis, information from the
4 California Pesticide Information Portal (<https://calpip.cdpr.ca.gov/main.cfm>) indicates a sizeable use of
5 copper-based agricultural products, especially fungicides, with ~525 Kg reportedly used in 2017.
6

7 **Genotype-specific transcriptional responses to paraquat exposure**
8

9 To better understand genotype-specific responses to paraquat exposure, we focused on genes
10 presenting a genotype-by-environment interaction (GEI). If differences in the transcriptional response
11 to paraquat exposure reflect adaptive changes involved in response to local environmental conditions
12 then analysis of genes with GEI may provide insight into the mechanisms of local adaptation [57].
13 Genes with GEI have often been identified in studies of oxidative stress responses (see e.g., Jordan
14 *et al.*, 2012) [58].

15 Genetic variation in transcriptomic plasticity could contribute to rapid adaptation to novel environments
16 during the invasive process, possibly due to variation in both *cis* and *trans* regulatory sequences
17 [52,59–63]. We founded evidence of GEI for the transcriptional response to paraquat in only a small
18 part of the transcriptome. Most DE genes with evidence of GEI showed a greater change in the level
19 of expression in invasive genotypes versus the native one. Due to the large number of genes that
20 remain unannotated in the *D. suzukii* genome, a complete scenario of the genome-wide transcriptional
21 response to oxidative stress is difficult to achieve. This may be particularly problematic when attempting
22 to understand the functional relevance of genotype-specific responses. However, our results confirmed
23 that for parts of the genome, the transcriptional response to oxidative stress varies across genotypes,
24 and that some of these differences may reflect population history. Interestingly, the French genotype
25 showed massive up-regulation of some *Hsp*'s compared to the USA and Japan genotypes (Fig. 7).
26 These genes are known to be highly responsive to temperature [52] and also to oxidative stress (see
27 review [49]). In general, GO analysis revealed an enrichment in terms related to oxidative stress

1 (oxygen level, hyperoxia, hypoxia, stress) for up-regulated genes in invasive genotypes relative to the
2 native one. These GO terms were also enriched for up-regulated genes with evidence of GEI in the
3 comparison between France and the U.S.A.

4 One caveat of the genome-wide expression analysis is our statistical power to identify biologically
5 relevant differences in expression levels. We have applied a threshold (FDR < 0.01 and absolute
6 $\log_2FC > 1$) to identify DE genes, but it is possible that genes with more subtle changes in expression
7 are important. Indeed, genes showing evidence of GEI are often found in upstream parts of regulatory
8 networks, where even very small differences in expression could have pronounced phenotypic
9 consequences. Also, genes with GEI are often associated with genetic variation in cis or trans-
10 regulatory sequences, and a further investigation would be necessary to identify such factors in our
11 data [52,62–65].

12

13 **TE insertions are depleted near oxidative stress sensitive genes**

14

15 TEs have been described as stress sensitive and their activation by stress-responsive elements (SREs)
16 in promoting regions could generate a burst of transposition and facilitate adaptation by increasing the
17 genetic diversity upon which selection could act [13,66]. A recent review cited several examples of TE
18 family activation following stress, which may depend on the type of stress and the TE family [17,67].
19 Horváth *et al.* (2017) also suggested that under stressful conditions, some TEs could be repressed just
20 after their activation, indicating that stress could induce both activation and repression. TE transcription
21 is a prerequisite to TE activity [17]. Our analysis of the TE transcriptome after stress induction showed
22 that in *D. suzukii* very few TEs are activated, with a maximum of 6 TE families deregulated following
23 exposure to paraquat in the French genotype. This result is not related to the potential activity of TE in
24 *D. suzukii*, since a greater number of TE families are DE between genotypes in control conditions,
25 suggesting that TEs in *D. suzukii* are capable of being expressed.

26

27 Most TE insertions are neutral or slightly deleterious, but some may be beneficial and
implicated in adaptation [13,14,66,67]. The impact of TE insertions is often achieved by their effect on

1 gene expression, likely due to the addition of regulatory sequences, present in the TE, that can
2 modulate genes expressed, particularly during stress [20]. While TEs have been revealed as playing
3 an important role in the success of invasive species, by generating genetic diversity and thus
4 compensating for bottleneck effects after introduction, no empirical data exists to support this
5 hypothesis [3,6,16,66].
6 As ~33% of the *D. suzukii* genome is composed of TEs, we tested the hypothesis that TEs could
7 modulate gene expression by the addition of regulatory regions. We found that the distribution of
8 insertions along the chromosome did not differ among the three genomes, and, as observed in other
9 *Drosophila* species, a majority of the insertions were in intergenic and intronic regions [68]. However,
10 when we specifically analyzed DE genes, we observed a depletion of TE insertions, suggesting that
11 TE insertions in stress response genes may be eliminated by strong purifying selection. This paucity
12 of TE insertions was also observed for DE genes that were shared by the three genotypes. A gene
13 encoding a glutathion-s-transferase was the only one to display a shared TE insertion in its flanking
14 region. Finally, we tested for the enrichment of TE insertions in genes presenting GEI. We detected
15 more insertions in genes with GEI than in other DE genes, suggesting that this category of gene may
16 be more permissive to TE insertions. Several insertions were found in 3'UTR and 5'UTRs and could
17 have regulatory impacts on those genes. Further analyses are needed to understand the molecular
18 mechanisms responsible for changes in gene expression for this category of genes.
19

20 **Conclusion**
21

22 Our results showed a difference in paraquat resistance between native and invasive populations of *D.*
23 *suzukii*, that is not homogeneous between sampling sites on the same country. The differences
24 observed between the two French populations could be explained by differential admixture subsequent
25 to colonization in these two regions of France. In the United States, possible local adaptation to copper
26 in the environment in Watsonville, as revealed by the functional analysis, may explain the difference in
27 resistance to paraquat. Further research is required to test these hypotheses and to better understand

1 population differences in paraquat resistance. Our data also reveal that gene expression patterns first
2 depend on the genotype, and on the stress condition to a lesser extent. Finally, we showed that contrary
3 to expectations, oxidative stress does not induce significant activation of TEs and that DE genes under
4 stress conditions are depleted of TE insertions in the three genotypes of *D. suzukii* studied. Our results
5 highlight that it is important to focus on several genotypes in performing phenotypic or transcriptomic
6 analysis, and that we should consider the neglected role of TEs in adaptive evolution. Also, phenotypic
7 and molecular approaches should complement each other to better understand the evolution of
8 biological traits.

9
10 **Materials and Methods**

11 **Drosophila suzukii lines rearing conditions and phenotyping**

12
13 *D. suzukii* genotypes were sampled in 2014 in the native area (Japan: Sapporo and Tokyo) and two
14 invaded areas (U.S.A: Watsonville and Dayton and France: Montpellier and Paris) (Table S8). To
15 establish isofemale lines, a single gravid female was placed in a culture vial, and the line maintained
16 thereafter with a low larval density in vials containing modified “Dalton” medium (Table S9) in a
17 controlled environment: $22.5^{\circ}\text{C} \pm 1^{\circ}\text{C}$, $70\% \pm 5\%$ RH (relative hygrometry) and a 16:8 (Light/Day) [69].
18 We used paraquat (methyl viologen dichloride hydrate, ref. 75365-73-0, Sigma-Aldrich[®]) to mimic
19 oxidative stress. Paraquat (10mM) was added to the cooling medium, before pouring into vials. Control
20 vials were made at the same time but without adding paraquat. In the experiment, ten 4-7-day old flies
21 were placed in experimental vials and transferred to new vials every 3 to 4 days to limit microbial
22 development. Both males and females were tested and kept in separate vials. Survival was monitored
23 by visual inspection every 24h. There were three replicate vials for each combination of the 27
24 isofemale lines (Table S7), sex, and paraquat treatment, for a total of 324 vials.

25 **Survival data analysis**

26 The analysis of survival data was performed in two steps on R software (v.3.6.0, [70]). First, for each
27 replicate (10 survival times), we used the fitdistcens function from the fitdistrplus package (v.1.0-14,

1 [71]) to determine which of several distribution models (Weibull, lognormal and gamma) were most
2 appropriate to fit our right censored data (33 flies) data. The Weibull distribution was chosen after
3 graphical comparison with others, also confirmed using loglikelihoods of the fitted models. For each
4 replicate the fitted distribution was summarized using its theoretical median. Second, a linear mixed
5 model was fitted to the log transformed medians using the lmer function of the lme4 R package (v.1.1-
6 21, [72]), and p-values were estimated using lmerTest (v.3.1-0, [73]) with treatment, sex and population
7 (the 6 sampled cities) entered as fixed factors and isofemale line as a random factor. The main effect
8 of sex and interactions with both treatment and population were removed after AIC comparison from
9 the final model for analysis. The interaction between population and treatment (GEI effect) was kept in
10 the model. Model coefficients are reported with their confidence intervals (0.95) in Table S9 and after
11 exponential transformation on Fig. 1. These effects can be interpreted as multiplicative effect on the
12 median lifespan compared to a reference, here chosen as the non-exposed group from Sapporo. So,
13 for example, with the untreated Sapporo flies centered on 1, an effect of 0.2 for paraquat-treated
14 Sapporo flies means they have 20% of the survival time of Sapporo flies without paraquat. Normality
15 and homoscedasticity of residuals and normality of random effects were confirmed graphically after
16 logarithmic transformation of median survival times. We also examined the correlation across the
17 isofemale lines between log-transformed survival times in control and paraquat-treated conditions
18 using a Pearson correlation coefficient in R (Fig. S1).

19

20

21 **DNA extraction and sequencing**

22

23 We sequenced genomic DNA for one isofemale line per country: S29, W120 and MT47 respectively
24 from Sapporo (Japan), Watsonville (U.S.A) and Montpellier (France). DNA was extracted using phenol
25 chloroform from a pool of 10 adult females. Libraries and sequencing were performed by the platform
26 GeT-PlaGe, Génopole Toulouse / Midi-pyrénées (France), using Illumina (150 bp) *TruSeq Nano pair*
27 *end*. We obtained between 33,362,864 and 72,022,388 reads per library. Sequences were cleaned

1 using Trimmomatic with default parameters [74].

2 **RNA extraction and sequencing**

3 We used the same three isofemale lines (S29, W120 and MT47) for our analysis of gene
4 expression. For each of two biological replicates, fifteen 4-7 days old females were exposed for 24h to
5 medium supplemented with paraquat (20mM) or without paraquat (*i.e.*, a total of 12 samples). Flies
6 were dissected on ice in a phosphate buffer saline solution to remove gonads, and the remaining
7 somatic tissue was frozen in liquid nitrogen and stored at -80°C.

8 We used the RNAeasy Plus Mini Kit (Qiagen) to extract total RNA from the somatic tissues, following
9 the protocol provided by manufacturer. Samples were treated with DNase (ref AM2224, AMbion™)
10 according to manufacturer instructions and stored at -80°C. RNA amount and quality was estimated
11 using Qubit™ (Thermo Fisher Scientific) and the 2100 Bioanalyser instrument (Agilent). RNA libraries
12 and sequencing were performed on the GenomEast platform, a member of the 'France Génomique'
13 consortium (ANR-10-INBS-0009). Libraries were constructed using the TruSeq® Stranded mRNA
14 Library Prep Kit following manufacturer's recommendations. The libraries were sequenced on Illumina
15 High HiSeq 4000 with paired-end 100 base pair long reads.

16 **Transcriptome analysis**

17 Between 62.76 to 120.12 million paired-end reads were generated from the 12 libraries.
18 Quality was assessed using FastQC (v. 0.10.1), a trimming step implemented with UrQt (v. 1.0.17,
19 minimum phred score of 20), and quality was checked again using FastQC [75,76]. RNA-seq data were
20 mapped on the *D. suzukii* reference genome using HISAT2 (v. 2.2.1.0) and read counts for genes were
21 computed with eXpress [77–79]. We performed a reciprocal BLASTN (2.2.26) between the *D. suzukii*
22 genes and the *Drosophila melanogaster* database (FlyBase, dm6 version) (archive data: FB2018_06)
23 in order to identify orthologues [80]. Another BLASTX was performed against the NCBI nr database,
24 using predicted genes in *D. suzukii* for which no orthologues were detected in *D. melanogaster*.
25 Matched hits from this BLASTX were tagged with the term "(predicted)". Of the 16905 annotated genes
26 in the *D. suzukii* genome, 8428 matched with a Flybase gene and 478 others on the nr database (52.7%
27 of total genes).

1 Differential expression analysis was performed using the DESeq2 package (v. 1.24.0) on R (v. 3.6.0)
2 [81]. We built a model estimating the effects of genotype (France, U.S.A and Japan), the environment
3 (control and paraquat), and the genotype-by-environment interaction (GEI effect). The *lfcShrink*
4 function was used to estimate log₂fold change and identify differentially expressed (DE) genes using
5 the ashR R package [82]. DE genes were those with an FDR-adjusted p-value below 0.01 and absolute
6 log₂fold change > 1. The coefficient of variation (CV, standard deviation/mean) on normalized counts
7 was computed for each genotype, between control and paraquat.

8

9 **Transposable element (TE) identification**

10 The reference genome was masked using a custom TE library (Mérel *et al.*, *in prep*). The
11 Python script `create-reads-for-te-sequences.py` was used to generate reads corresponding to the TE
12 library using the following parameters : `--read-length 125, --max-error-rate 0, --boost 10` [77,83]. The
13 reads were then mapped to the reference genome using `bwa bwasw` (v0.7.17) [84]. Aligned bases
14 were masked using `bedtools`, `bamtobed`, and `bedtools maskfasta` (v2.20.0) [85]. This process of read
15 generation and mapping was repeated 200 times. Note that sequences smaller than 500 bp were
16 removed from the TE library. Forward and reverse reads were mapped separately to a `fasta` file
17 containing the masked reference genome and the TE library. The mapping was done using `bwa bwasw`.
18 For each line, the resulting single-end read alignments files were merged using `PoPopulationTE2 se2pe`
19 (v1.10.04) [83]. `PoPopulationTE2` pipeline was used to estimate TE frequencies in each sample. The
20 following options were used in the analysis: `--map-quality 15` (`ppileup` module), `--mode joint`,
21 `--signature-window minimumSampleMedian, min-valley minimumSampleMedian`, `--min-count 2` (identify
22 signature module), `--max-otherte-count 2`, `--max-structvar-count 2` (`filterSignatures` module), `--min-
23 distance -200`, `--max-distance 300` (`pairupSignatures` module). In the `PoPopulationTE2`, hierarchy file
24 was a file allowing multiple slightly diverged sequences to be assigned to one family, and all sequences
25 with cross mapping reads were regrouped in the same family. The cross mapping was investigated by
26 generating TE reads using `create-reads-for-te-sequences.py` (`--read-length 125, --max-error-rate 0, --
27 boost 50`) and mapping the reads to the TE library using `bwa bwasw`.

1 The software was run using the S29, W120 and MT47 DNaseq data. Using the gene annotation of the
2 reference *D. suzukii* genome we identified TE insertions present in genes (exon, intron, 5' and 3' UTR)
3 and \pm 2kb flanking regions.

4 We tested the dependence of TE insertions with the state of the genes (DE or not) using a
5 Chi-square test. We considered as absent, TEs with insertion frequency < 0.2 and present when > 0.8 .
6 Intermediate frequencies were removed to limit bias. For studies of TE insertions and expression of DE
7 genes, we considered a potential effect of an insertion when frequency > 0.5 .

8 **TE expression analysis**

9 TE expression was quantified using the TEcount module from the TEtools software [86]. Briefly,
10 TEcount sums reads aligned against copies of each TE family annotated from the reference genome
11 creating an output table of expression arranged by TE family [77]. Differential expression of TEs
12 between paraquat-treated and control flies for each isofemale line was computed using a merged file
13 with the RNA counts for genes and TE families, and following normalization using DEseq2.

14 **TFBS screening**

15 TE sequences inserted in flanking regions located \pm 2kb from differentially expressed genes were
16 screened for transcription factor binding sites (TFBS). We selected three TFBS (CNC, HSF and DL)
17 related to antioxidant response element family (ARE) from the literature [41]. TFBS were screened in
18 R (v. 3.6.0) using the JASPAR2018 database R library (v.1.1.1) and TFBSTools R library (v.1.22.0)
19 [87,88]. PFM (Position Frequency Matrix) matrices were extracted (CNC:MA0530.1, HSF:MA0486.2,
20 DL:MA0022.1) before a PWM (Position Weight Matrix) conversion with the *pseudocount* value set to
21 0.8. The minimum score value for the screening was fixed at 0.95 to minimize false positives due to
22 small TFBS sequence sizes. P-values were adjusted with the Benjamini-Hochberg correction for multi-
23 testing [89].

24

25 **Gene ontology analysis**

26 We performed a GO enrichment analysis directly on the geneontology.org website, using homologs in
27 *D. melanogaster* to discover over or underrepresented gene functions from the lists of DE genes [54].

1 P-values were calculated using a Fisher test for enriched GO terms and adjusted with the Benjamini-
2 Hochberg correction for multi-testing [89]. GO terms with FDR ≤ 0.05 were defined as significantly
3 enriched. The GO terms were reduced to representative non-redundant terms using the REVIGO tool
4 and manual curation [90].
5

6 **Declarations**

7 **Acknowledgment**

8 Experimental procedures were supported by the ANR (grant SWING ANR to P.G. and C.V. &
9 grant ExHyb ANR to C.V.) and the Rovaltain foundation (EpiRip project). Bioinformatic work was
10 performed using the computing facilities of the CC LBBE /PRABI. We thank S. Vicaire for the RNA
11 libraries preparation, K. McKean for english editing and suggestions in the manuscript, N. Burlet, S.
12 Martinez and H. Henri for various technical contributions.

13 **Author information**

14 **Orcid number**

15 Cristina Vieira: <https://orcid.org/0000-0003-3414-3993>

16 Pierre Marin: <https://orcid.org/0000-0002-8304-138X>

17 Patricia Gibert: <https://orcid.org/0000-0002-9461-6820>

18 Mariana Galvao Ferrarini: <https://orcid.org/0000-0002-9574-9991>

19
20 **Contribution**

21 P.M. produced data, conceived and wrote the manuscript draft. C.V. & P.G. designed
22 experiments, edited the manuscript. J.P. trimmed NGS data and help in bioinformatic analysis. A.J.
23 calibrated experimental design and produced data. M.L.D.M. supervised the statistical analysis and
24 revised manuscript. M.F. helped on transcriptomic analysis and manuscript correction. M.G.F.
25 performed gene ontology analysis. V.M. produced all related TE informations (genome annotations,

1 frequency insertions). All authors proofread and approved the manuscript

2 **Ethics declarations**

3 Ethics approval and consent to participate

4 Not applicable.

5 Consent for publication

6 Not applicable.

7 Competing interests

8 The authors declare that they have no competing interests.

9 **Availability of data**

10 DNA and RNA-seq data are available on NCBI with the Sequence Read Archive (SRA) number: SUB7319267
11 & SUB7021358.

12 Survival data of the populations are available to:

13 ftp://pbil.univ-lyon1.fr/pub/datasets/Marin2020/surv_suzukii_marin2020/surv_suzukii_marin2020.txt

14

15

16

17 **References**

18

19 1. Theoharides KA, Dukes JS. Plant invasion across space and time: Factors affecting nonindigenous species
20 success during four stages of invasion. *New Phytologist*. 2007;176: 256–273. doi:10.1111/j.1469-
21 8137.2007.02207.x

22 2. Moran EV, Alexander JM. Evolutionary responses to global change: Lessons from invasive species.
23 *Ecology Letters*. 2014;17: 637–649. doi:10.1111/ele.12262

24 3. Marin P, Genitoni J, Barloy D, Maury S, Gibert P, Ghalambor CK, et al. Biological invasion: The
25 influence of the hidden side of the (epi)genome. *Functional Ecology*. 2019;34: 385–400.

1 doi:10.1111/1365-2435.13317

2 5. Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity
3 and the potential for contemporary adaptation in new environments. *Functional Ecology*. 2007;21: 394–
4 407. doi:10.1111/j.1365-2435.2007.01283.x

5 6. Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the
6 genetic paradox of invasive species. *Molecular Ecology*. 2015;24: 2241–2252. doi:10.1111/mec.13089

7 7. Chabrierie O, Massol F, Facon B, Thevenoux R, Hess M, Ulmer R, et al. *Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales*. 2019.
8 doi:10.20944/PREPRINTS201910.0327.V1

9 10. McClintock B. The origin and behavior of mutable loci in maize. *Proceedings of the National Academy of
11 Sciences*. 1950;36.

12 11. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. *Nature
13 Reviews Genetics*. 2007;8: 272–85. doi:10.1038/nrg2072

14 12. Fablet M, Vieira C, Lyon D, Lyon D. Evolvability, epigenetics and transposable elements. *Biomolecular
15 Concepts*. 2011;2: 333–341. doi:10.1515/BMC.2011.035

16 13. Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary
17 Conflicts. *Trends in Genetics*. 2017;xx. doi:10.1016/j.tig.2017.07.011

18 14. Casacuberta E, González J. The impact of transposable elements in environmental adaptation. *Molecular
19 Ecology*. 2013;22: 1503–1517. doi:10.1111/mec.12170

20 15. Rey O, Danchin E, Mirouze M, Loot C, Blanchet S. Adaptation to Global Change: A Transposable
21 Element–Epigenetics Perspective. *Trends in Ecology & Evolution*. 2016;31: 514–526.
22 doi:10.1016/j.tree.2016.03.013

23 15. Choudhury RR, Parisod C. Jumping genes: Genomic ballast or powerhouse of biological diversification.

1 Molecular Ecology. 2017;26: 4587–4590. doi:10.1111/mec.14247

2 16. Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, et al. Transposable element islands
3 facilitate adaptation to novel environments in an invasive species. *Nature Communications*. 2014;5.
4 doi:10.1038/ncomms6495

5 17. Horváth V, Merenciano M, González J. Revisiting the Relationship between Transposable Elements and
6 the Eukaryotic Stress Response. *Trends in Genetics*. 2017;0: 1–10. doi:10.1016/j.tig.2017.08.007

7 18. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, et al. Unexpected consequences
8 of a sudden and massive transposon amplification on rice gene expression. *Nature*. 2009;461: 1130–1134.
9 doi:10.1038/nature08479

10 19. Magwire MM, Bayer F, Webster CL, Cao C, Jiggins FM. Successive increases in the resistance of
11 Drosophila to viral infection through a transposon insertion followed by a duplication. *PLoS Genetics*.
12 2011;7. doi:10.1371/journal.pgen.1002337

13 20. Guio L, Barrón MG, González J. The transposable element Bari-Jheh mediates oxidative stress response
14 in Drosophila. *Molecular Ecology*. 2014;23: 2020–2030. doi:10.1111/mec.12711

15 21. Guio L, Vieira C, González J. Stress affects the epigenetic marks added by natural transposable element
16 insertions in Drosophila melanogaster. *Scientific Reports*. 2018;8: 1–10. doi:10.1038/s41598-018-30491-
17 w

18 22. Song Y, Liu L, Feng Y, Wei Y, Yue X, He W, et al. Chilling and freezing induced alterations in cytosine
19 methylation and its association with the cold tolerance of an alpine subnival plant, chorispora bungeana.
20 Lu W, editor. *PLoS ONE*. 2015;10: e0135485. doi:10.1371/journal.pone.0135485

21 23. Spannhoff A, Kee Kim Y, J-M Raynal N, Gharibyan V, Su M-B, Zhou Y-Y, et al. Histone deacetylase
22 inhibitor activity in royal jelly might facilitate caste switching in bees. *EMBO reports*. 2011;12: 238–43.
23 doi:10.1038/embor.2011.9

1 24. Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, et al. Deciphering the routes of
2 invasion of *Drosophila suzukii* by means of ABC random forest. *Molecular biology and evolution*.
3 2017;34: 980–996.

4 25. Lavrinienko A, Kesäniemi J, Watts PC, Serga S, Pascual M, Mestres F, et al. First record of the invasive
5 pest *Drosophila suzukii* in Ukraine indicates multiple sources of invasion. *Journal of Pest Science*.
6 2017;90: 421–429. doi:10.1007/s10340-016-0810-3

7 26. Langille AB, Artega EM, Newman JA. The impacts of climate change on the abundance and distribution
8 of the Spotted Wing *Drosophila* (\textlessi\textgreater*Drosophila suzukii*\textlessi\textgreater) in the
9 United States and Canada. *PeerJ*. 2017;5: e3192. doi:10.7717/peerj.3192

10 27. Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D, Daane KM, et al. Invasion biology of spotted wing
11 *Drosophila* (*Drosophila suzukii*): a global perspective and future priorities. *Journal of Pest Science*.
12 2015;88: 469–494. doi:10.1007/s10340-015-0681-z

13 28. CABI. CABI. Invasive Species Compendium. Wallingford, UK: CAB International. In: CABI [Internet].
14 2020 [cited 1 Feb 2020]. Available: www.cabi.org/isc

15 29. Tsai W-T. Status of herbicide use, regulatory management and case study of paraquat in Taiwan.
16 Environment, Development and Sustainability. 2018 [cited 29 Nov 2019]. doi:10.1007/s10668-018-0293-
17 x

18 30. Tsai W-T. A review on environmental exposure and health risks of herbicide paraquat. *Toxicological &*
19 *Environmental Chemistry*. 2013;95: 197–206. doi:10.1080/02772248.2012.761999

20 31. Rzezniczak TZ, Douglas LA, Watterson JH, Merritt TJS. Paraquat administration in *Drosophila* for use in
21 metabolic studies of oxidative stress. *Analytical Biochemistry*. 2011;419: 345–347.
22 doi:10.1016/j.ab.2011.08.023

23 32. Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. Genome-wide association
24 analysis of oxidative stress resistance in *drosophila melanogaster*. *PLoS ONE*. 2012;7.

1 doi:10.1371/journal.pone.0034745

2 33. de Oliveira MV, Oliveira AC de F, Shida CS, de Oliveira RC, Nunes LR. Gene expression modulation by
3 paraquat-induced oxidative stress conditions in *Paracoccidioides brasiliensis*. *Fungal Genetics and*
4 *Biology*. 2013;60: 101–109. doi:10.1016/j.fgb.2013.05.004

5 34. Deepashree S, Niveditha S, Shivanandappa T, Ramesh SR. Oxidative stress resistance as a factor in aging:
6 evidence from an extended longevity phenotype of *Drosophila melanogaster*. *Biogerontology*. 2019;20:
7 497–513. doi:10.1007/s10522-019-09812-7

8 35. Zou S, Meadows S, Sharp L, Jan LY, Jan YN. Genome-wide study of aging and oxidative stress response
9 in *Drosophila melanogaster*. *Proceedings of the National Academy of Sciences of the United States of*
10 *America*. 2000;97: 13726–31. doi:10.1073/pnas.260496697

11 36. Morrow G, Le Pécheur M, Tanguay RM. *Drosophila melanogaster* mitochondrial Hsp22: a role in
12 resistance to oxidative stress, aging and the mitochondrial unfolding protein response. *Biogerontology*.
13 2016;17: 61–70. doi:10.1007/s10522-015-9591-y

14 37. Austad SN, Fischer KE. Sex Differences in Lifespan. *Cell Metab*. 2016;23: 1022–1033.
15 doi:10.1016/j.cmet.2016.05.019

16 38. Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J. Downregulation of the *Drosophila*
17 Immune Response by Peptidoglycan-Recognition Proteins SC1 and SC2. *PLOS Pathogens*. 2006;2: e14.
18 doi:10.1371/journal.ppat.0020014

19 39. Czech A, Wende S, Mörl M, Pan T, Ignatova Z. Reversible and Rapid Transfer-RNA Deactivation as a
20 Mechanism of Translational Repression in Stress. *PLOS Genetics*. 2013;9: e1003767.
21 doi:10.1371/journal.pgen.1003767

22 40. Sessegolo C, Burlet N, Haudry A. Strong phylogenetic inertia on genome size and transposable element
23 content among 26 species of flies. *Biology Letters*. 2016;12: 20160407. doi:10.1098/rsbl.2016.0407

1 41. Villanueva-Cañas JL, Horvath V, Aguilera L, González J. Diverse families of transposable elements affect
2 the transcriptional regulation of stress-response genes in *Drosophila melanogaster*. *Nucleic Acids Res.*
3 2019;47: 6842–6857. doi:10.1093/nar/gkz490

4 42. Pasyukova EG, Roshina NV, Mackay TFC. Shuttle craft: a candidate quantitative trait gene for *Drosophila*
5 lifespan. *Aging Cell*. 2004;3: 297–307. doi:10.1111/j.1474-9728.2004.00114.x

6 43. Moskalev AA, Shaposhnikov MV, Zemskaya NV, Koval L, Schegoleva EV, Guvatova ZG, et al.
7 Transcriptome Analysis of Long-lived *Drosophila melanogaster* *E(z)* Mutants Sheds Light on the
8 Molecular Mechanisms of Longevity. *Scientific Reports*. 2019;9: 1–11. doi:10.1038/s41598-019-45714-x

9 44. Shaposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. Lifespan and Stress Resistance in
10 *Drosophila* with Overexpressed DNA Repair Genes. *Scientific Reports*. 2015;5: 1–12.
11 doi:10.1038/srep15299

12 45. Calabria G, Máca J, Bächli G, Serra L, Pascual M. First records of the potential pest species *Drosophila*
13 *suzukii* (Diptera: Drosophilidae) in Europe. *Journal of Applied Entomology*. 2012;136: 139–147.
14 doi:10.1111/j.1439-0418.2010.01583.x

15 46. Lin Y, Chen ZX, Oliver B, Harbison ST. Microenvironmental gene expression plasticity among individual
16 *drosophila melanogaster*. *G3: Genes, Genomes, Genetics*. 2016;6: 4197–4210. doi:10.1534/g3.116.035444

17 47. Girardot F, Monnier V, Tricoire H. Genome wide analysis of common and specific stress responses in
18 adult *drosophila melanogaster*. *BMC Genomics*. 2004;5: 74. doi:10.1186/1471-2164-5-74

19 48. Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, et al. Similar gene expression patterns
20 characterize aging and oxidative stress in *Drosophila melanogaster*. *Proceedings of the National Academy
21 of Sciences of the United States of America*. 2004;101: 7663–8. doi:10.1073/pnas.0307605101

22 49. King AM, MacRae TH. Insect Heat Shock Proteins During Stress and Diapause. *Annu Rev Entomol.*
23 2015;60: 59–75. doi:10.1146/annurev-ento-011613-162107

1 50. Mishra R, Chiu JC, Hua G, Tawari NR, Adang MJ, Sial AA. High throughput sequencing reveals
2 *Drosophila suzukii* responses to insecticides: Insecticide responses in *Drosophila suzukii*. Insect Science.
3 2018;25: 928–945. doi:10.1111/1744-7917.12498

4 51. Zhou S, Campbell TG, Stone EA, Mackay TFC, Anholt RRH. Phenotypic plasticity of the drosophila
5 transcriptome. PLoS Genetics. 2012;8. doi:10.1371/journal.pgen.1002593

6 52. Chen J, Nolte V, Schlötterer C. Temperature Stress Mediates Decanalization and Dominance of Gene
7 Expression in *Drosophila melanogaster*. Gibson G, editor. PLoS Genet. 2015;11: e1004883.
8 doi:10.1371/journal.pgen.1004883

9 53. Li HB, Li N, Yang SZ, Peng HZ, Wang LL, Wang Y, et al. Transcriptomic analysis of *Casuarina*
10 *equisetifolia* L. in responses to cold stress. Tree Genetics and Genomes. 2017;13: 1–15.
11 doi:10.1007/s11295-016-1090-z

12 54. Gibson G. The environmental contribution to gene expression profiles. 2008. doi:10.1038/nrg2383

13 55. Zer H, Freedman JH, Peisach J, Chevion M. Inverse correlation between resistance towards copper and
14 towards the redox-cycling compound paraquat: A study in copper-tolerant hepatocytes in tissue culture.
15 Free Radical Biology and Medicine. 1991;11: 9–16. doi:10.1016/0891-5849(91)90182-3

16 56. Kohen R, Chevion M. Transition metals potentiate paraquat toxicity. Free radical research
17 communications. 1985;1: 79–88. doi:10.3109/10715768509056540

18 57. Lasky JR, Forester BR, Reimherr M. Coherent synthesis of genomic associations with phenotypes and
19 home environments. Molecular Ecology Resources. 2018;18: 91–106. doi:10.1111/1755-0998.12714

20 58. Jordan KW, Craver KL, Magwire MM, Cubilla CE, Mackay TFC, Anholt RRH. Genome-Wide
21 Association for Sensitivity to Chronic Oxidative Stress in *Drosophila melanogaster*. PLoS One. 2012;7.
22 doi:10.1371/journal.pone.0038722

23 59. Lavagnino NJ, Fanara JJ, Mensch J. Comparison of overwintering survival and fertility of *Zaprionus*

1 indianus (Diptera: Drosophilidae) flies from native and invaded ranges. *Journal of Thermal Biology*. 2019;
2 102470. doi:10.1016/j.jtherbio.2019.102470

3 60. Lavagnino NJ, Imberti M, Ortiz VE, Flaibani N, Fanara JJ. Contrasting levels of genotype by environment
4 interaction for life history and morphological traits in invasive populations of *Zaprionus indianus* (Diptera:
5 Drosophilidae). *Insect Science*. 2019. doi:10.1111/1744-7917.12710

6 61. Rockman MV, Kruglyak L. Genetics of global gene expression. *Nature Reviews Genetics*. 2006;7: 862–
7 872. doi:10.1038/nrg1964

8 62. Mark S, Weiss J, Sharma E, Liu T, Wang W, Claycomb JM, et al. Genome structure predicts modular
9 transcriptome responses to genetic and environmental conditions. *Molecular Ecology*. 2019;28: 3681–
10 3697. doi:10.1111/mec.15185

11 63. Dal Santo S, Zenoni S, Sandri M, De Lorenzis G, Magris G, De Paoli E, et al. Grapevine field experiments
12 reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E)
13 on the berry transcriptome. *Plant Journal*. 2018;93: 1143–1159. doi:10.1111/tpj.13834

14 64. Grishkevich V, Ben-Elazar S, Hashimshony T, Schott DH, Hunter CP, Yanai I. A genomic bias for
15 genotype-environment interactions in *C. elegans*. *Molecular Systems Biology*. 2012;8.
16 doi:10.1038/msb.2012.19

17 65. Des Marais DL, Guerrero RF, Lasky JR, Scarpino SV. Topological features of a gene co-expression
18 network predict patterns of natural diversity in environmental response. *Proceedings of the Royal Society
19 B: Biological Sciences*. 2017;284. doi:10.1098/rspb.2017.0914

20 66. Dubin MJ, Mittelsten Scheid O, Becker C. Transposons: a blessing curse. Elsevier Ltd; 2018.
21 doi:10.1016/j.pbi.2018.01.003

22 67. García Guerreiro MP, Transpositions S, García Guerreiro MP, Transpositions S, García Guerreiro MP,
23 Guerreiro MPG, et al. What makes transposable elements move in the *Drosophila* genome? *Heredity*.
24 2012;108: 461–468. doi:10.1038/hdy.2011.89

1 68. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, et al. The transposable elements
2 of the *Drosophila melanogaster* euchromatin: a genomics perspective. *Genome Biology*. 2002;3:
3 research0084.1. doi:10.1186/gb-2002-3-12-research0084

4 69. Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R. Laboratory survival of *Drosophila*
5 *suzukii* under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five
6 primary regions of small and stone fruit production in the United States. *Pest Management Science*.
7 2011;67: 1368–1374. doi:10.1002/ps.2280

8 70. R Core Team. R: A Language and Environment for Statistical Computing. 2019. Available:
9 <https://www.R-project.org/>

10 71. Delignette-Muller ML, Dutang C. *fitdistrplus*: An R package for fitting distributions. *Journal of Statistical*
11 *Software*. 2015;64: 1–34. doi:10.18637/jss.v064.i04

12 72. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using *lme4*. *Journal of*
13 *Statistical Software*. 2015;67. doi:10.18637/jss.v067.i01

14 73. Kuznetsova A, Brockhoff PB, Christensen RHB. *lmerTest Package: Tests in Linear Mixed Effects*
15 *Models*. *Journal of Statistical Software*. 2017;82: 1–26. doi:10.18637/jss.v082.i13

16 74. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
17 *Bioinformatics*. 2014;30: 2114–2120. doi:10.1093/bioinformatics/btu170

18 75. Modolo L, Lerat E. UrQt: an efficient software for the Unsupervised Quality trimming of NGS data. *BMC*
19 *Bioinformatics*. 2015;16. doi:10.1186/s12859-015-0546-8

20 76. Simon A. FastQC: a quality control tool for high throughput sequence data. Available online at:
21 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. 2010.

22 77. Paris M, Boyer R, Jaenichen R, Wolf J, Karageorgi M, Green J, et al. Near-chromosome level genome
23 assembly of the fruit pest *Drosophila suzukii* using long-read sequencing. *bioRxiv*. 2020;

1 2020.01.02.892844. doi:10.1101/2020.01.02.892844

2 78. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments.

3 Nature Methods. 2013;10: 71–73. doi:10.1038/nmeth.2251

4 79. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with

5 HISAT2 and HISAT-genotype. Nature Biotechnology. 2019;37: 907–915. doi:10.1038/s41587-019-0201-

6 4

7 80. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of

8 Molecular Biology. 1990;215: 403–410. doi:10.1016/S0022-2836(05)80360-2

9 81. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with

10 DESeq2. Genome Biology. 2014;15. doi:10.1186/s13059-014-0550-8

11 82. Stephens M. False discovery rates: a new deal. Biostat. 2016;18: kxw041.

12 doi:10.1093/biostatistics/kxw041

13 83. Kofler R, Gómez-Sánchez D, Schlötterer C. PoPopulationTE2: Comparative Population Genomics of

14 Transposable Elements Using Pool-Seq. Molecular Biology and Evolution. 2016;33: 2759–2764.

15 doi:10.1093/molbev/msw137

16 84. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.

17 2010;26: 589–595. doi:10.1093/bioinformatics/btp698

18 85. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.

19 Bioinformatics. 2010;26: 841–842. doi:10.1093/bioinformatics/btq033

20 86. Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C. TEtools facilitates big data expression analysis

21 of transposable elements and reveals an antagonism between their activity and that of piRNA genes.

22 Nucleic acids research. 2017;45: e17. doi:10.1093/nar/gkw953

23 87. Parcy F, Khan A, Baranasic D, Kulkarni SR, Stigliani A, van der Lee R, et al. JASPAR 2018: update of

1 the open-access database of transcription factor binding profiles and its web framework. *Nucleic Acids*
2 *Research*. 2017;46: D260–D266. doi:10.1093/nar/gkx1126

3 88. Tan G, Lenhard B. TFBSTools: an R/Bioconductor package for transcription factor binding site analysis.
4 *Bioinformatics*. 2016;32: 1555–1556. doi:10.1093/bioinformatics/btw024

5 89. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
6 Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1995;57: 289–300.
7 doi:10.1111/j.2517-6161.1995.tb02031.x

8 90. Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology
9 terms. *PLoS ONE*. 2011;6. doi:10.1371/journal.pone.0021800

10 91. Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary
11 Conflicts. *Trends in Genetics*. 2017;33: 817–831. doi:10.1016/j.tig.2017.07.011

12 92. Bradshaw AD. Evolutionary Significance of Phenotypic Plasticity in Plants. In: Caspary EW, Thoday JM,
13 editors. *Advances in Genetics*. Academic Press; 1965. pp. 115–155. doi:10.1016/S0065-2660(08)60048-6

1 **List of the figures**

2 **Fig. 1** Lifespans under control and paraquat-treated conditions relative to the Japan Sapporo
3 population with confidence intervals (0.95). The relative values are within each treatment group and
4 can be interpreted as a multiplicator effect compared to the reference level (Sapporo population, female
5 and control condition). The intercept, which is the basal level of the Sapporo females in untreated
6 condition, is equal to 31.96 days. Paraquat correspond to the mean effect of the treatment on Sapporo.
7 Mean values of the populations correspond to the effect of the population on the lifespan compared to
8 Sapporo in untreated condition and the last are the interaction term after paraquat exposure. As
9 examples, the effect of paraquat reduced the lifespan of Sapporo to 20% (0.2) of the initial value in
10 untreated condition. Values higher than 1 indicate an increase in the lifespan compared to Sapporo,
11 while below 1 this indicate a higher sensitivity (e.g., Paraquat:Watsonville correspond to the interaction
12 term and indicates that after paraquat exposure, Watsonville remains more sensitive than Sapporo with
13 a difference of 26% (1-0.74)).

14 **Fig. 2** PCA analysis using normalized read counts from DESeq2. Dots correspond to the biological
15 samples with the U.S.A in blue, Japan in red and France in green. Circles and squares correspond
16 respectively to control and paraquat treatment.

17 **Fig. 3** Gene ontology enrichment analysis for all genotypes in control condition. BP: Biological Process;
18 CC: Cellular Components; MF: Molecular Function. The size of dots corresponds to the number of
19 genes in each category and the colour to the FDR. Gene ratio correspond to the number of genes from
20 our data compared to genes within a GO term. Down-regulated genes from pairwise comparisons (e.g.,
21 France-Japan) are symbolized with negative gene ratio and a positive gene ratio for up-regulated
22 genes.

1 **Fig. 4** Gene expression between control and paraquat conditions. A Venn diagram of shared and
2 unique DE genes identified in comparisons of paraquat-treated and control flies within each population
3 after paraquat exposure (top left). Scatter plots of \log_2 normalized read count for Japan (top right),
4 U.S.A and France (bottom panels) comparing control and treated flies. Individual genes are indicated
5 by dots. Red colour corresponds to significant DE genes (see materials and methods).

6

7 **Fig. 5** Gene Ontology analysis for up- and down-regulated genes induced upon treatment with
8 paraquat. Up- and downregulated DE gene lists from the three pairwise comparisons (Paraquat vs
9 Control) were used in this analysis in order to detect enriched functions. For this we used: 243 genes
10 up-regulated and 105 genes downregulated in the French strain, 134 genes up-regulated and 42 genes
11 down-regulated in the USA strain and 31 genes down-regulated from the Japanese strain. No functional
12 enrichment with up-regulated genes from the Japanese genotype was detected.

13 **Fig. 6** DE genes (67) shared by all genotypes after paraquat exposure (U.S.A in red, France in green
14 and Japan in blue). The plotted labels refer to a TE insertion (frequency ≥ 0.5) within a gene (intron,
15 exon, 5' or 3'UTR) or within the 2kb flanking regions of a gene.

16 **Fig. 7** Reaction norms between control and paraquat for DE genes using normalized \log_2 read counts.
17 (A) Reaction norms of all DE genes, with red for the GEI ones, while grey are DE genes without GEI.
18 (B) Examples of 9 DE genes with GEI, with colours referred to the genotype (red for France, blue for
19 Japan and green for the U.S.A)

20 **Fig. 8** TE expression between genotypes (upper panel) and between control and paraquat conditions
21 for each genotype (bottom panel). Scatter plots represent the \log_2 normalized read counts. Individual
22 TE are indicated by dots. Red colour corresponds to significant DE TEs (see M&M).

23 **Fig. 9** Expression differences (expressed as \log_2 -fold-change) of paraquat-exposed flies of DE genes
24 showing evidence of GEI with detected inserted transposable elements. Colour indicates genotypes
25 with insertions that are either shared or unique among the populations.

1 **List of the tables**

2

3 **Table 1** Median lifespan (days) by sex, treatment, and population with bracketed 0.25 & 0.75 quantiles.

4 Values were calculated from estimated median (see M&M) at population level (line effects into the
5 populations were estimated as a random effect from the linear mixed model).

6

7 **Table 2** Number of DE genes between genotypes and treatments. Pairwise comparisons between (A)
8 untreated genotypes, (B) between treated and untreated flies within each genotype, and (C) in pairwise
9 comparisons of paraquat-treated flies between different genotypes. The threshold for identifying DE
10 genes was an adjusted p-value ≤ 0.01 and absolute log2fold-change ≥ 1 . The proportion of DE genes
11 is the percentage of DE genes in the expressed transcriptome (14538).

12

13 **Table 3** Insertion position of TEs in genes differentially expressed.

1 List of the supplementary figures

2 **Fig. S1** Correlation between median lifespan under or not paraquat treatment for every line. Correlation
3 test was made using Pearson method.

4 **Fig. S2** Distribution of the coefficient of variation (%) of DE genes after exposure to paraquat.
5 Coefficients of variation was calculated using the standard deviation and mean counts in control and
6 paraquat treated flies. Central values correspond to the median coefficient of variation. Pairwise
7 comparisons of medians were done using a paired Wilcoxon test and all comparison were significants
8 (p-value < 0.01).

9 **Fig. S3** Scatter plots (left) of significant differentially expressed genes in pairwise comparisons between
10 populations under control conditions using \log_2 of normalized counts. Histograms (right) of \log_2 -fold-
11 changes for DE genes in pairwise comparisons between populations under control conditions. Red
12 lines correspond to threshold of fold change = 2.

13 **Fig. S4** A Transcription factor binding site counts in candidate TEs. (B) DE genes identified from
14 comparisons between populations after paraquat treatment (a GEI). Colours correspond to the 3
15 screened TFBS, CnC (red), dl (blue), and HSF1 (orange). Gene names are labelled on the y-axis,
16 followed by the genotype where insertion is detected (FRA for France, JAP for Japan, USA for U.S.A
17 and possible combination for shared), and the \log_2 -fold-change of expression in contrasted genotypes.

1 **List of the supplementary tables**

2 **Table S1** Table of linear mixed model with estimated coefficient and associated statistic. Model is
3 centered on the Sapporo population reference, in untreated condition. Data were previously log
4 transformed for normality. Isofemale lines were included as a random effect and we used exponential
5 of coefficient value as multiplicative effect to interpret.

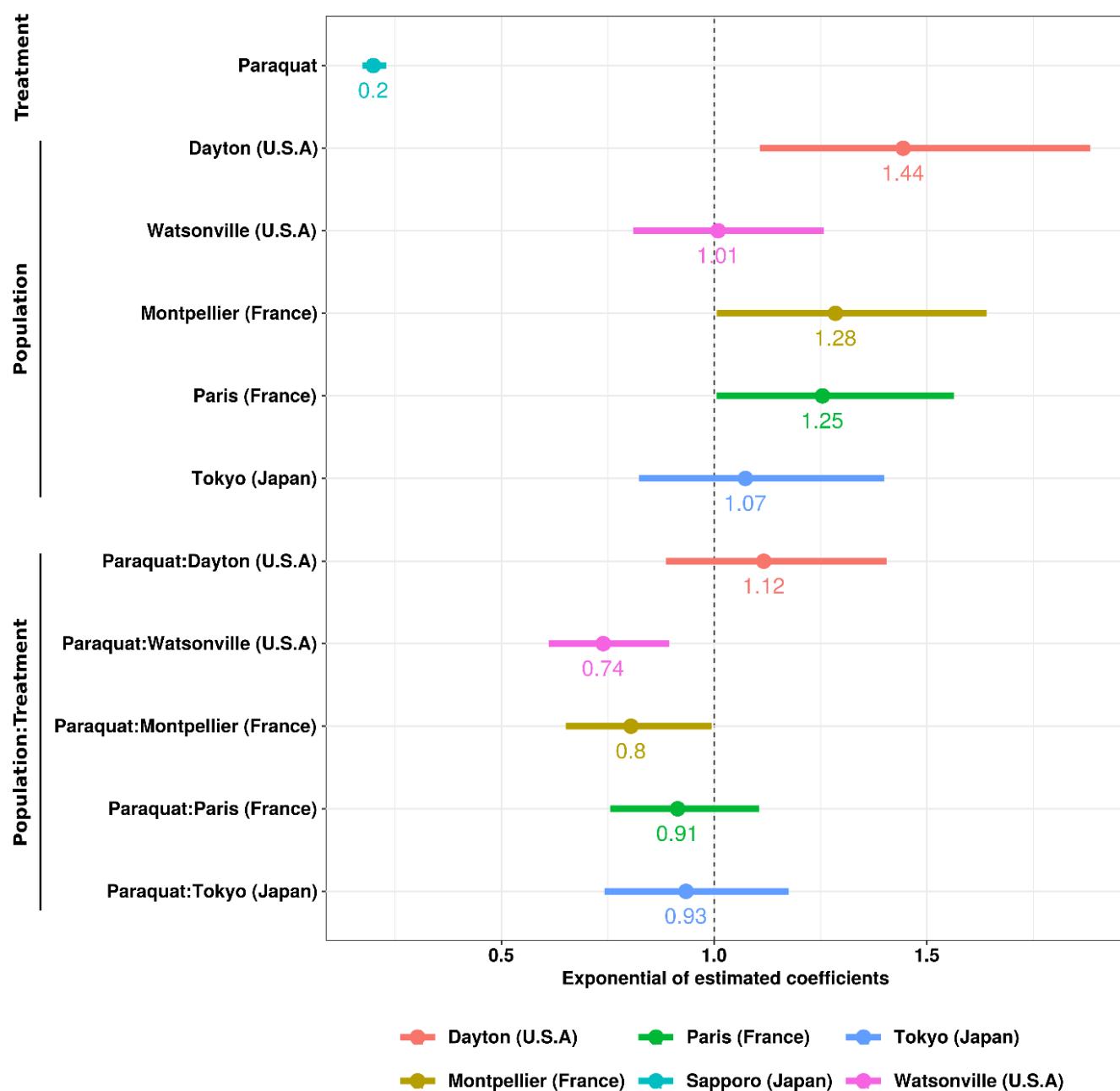
6 **Table S2** Table of some differentially expressed genes (p-adjusted <0.01 and $\log_2FC > 1$). These genes
7 are exemplified in Fig. 7. in the genotype environment interaction (GEI) with flybase information available.

8 **Table S3** Number of DE TEs between control and oxidative (paraquat) condition for each genotype
9 and between the different genotypes for both conditions. DE TE threshold made with adjusted p-value
10 ≤ 0.01 and absolute $\log_2foldchange \geq 1$. The rate corresponds to number of DE TE on total TE families
11 (2030).

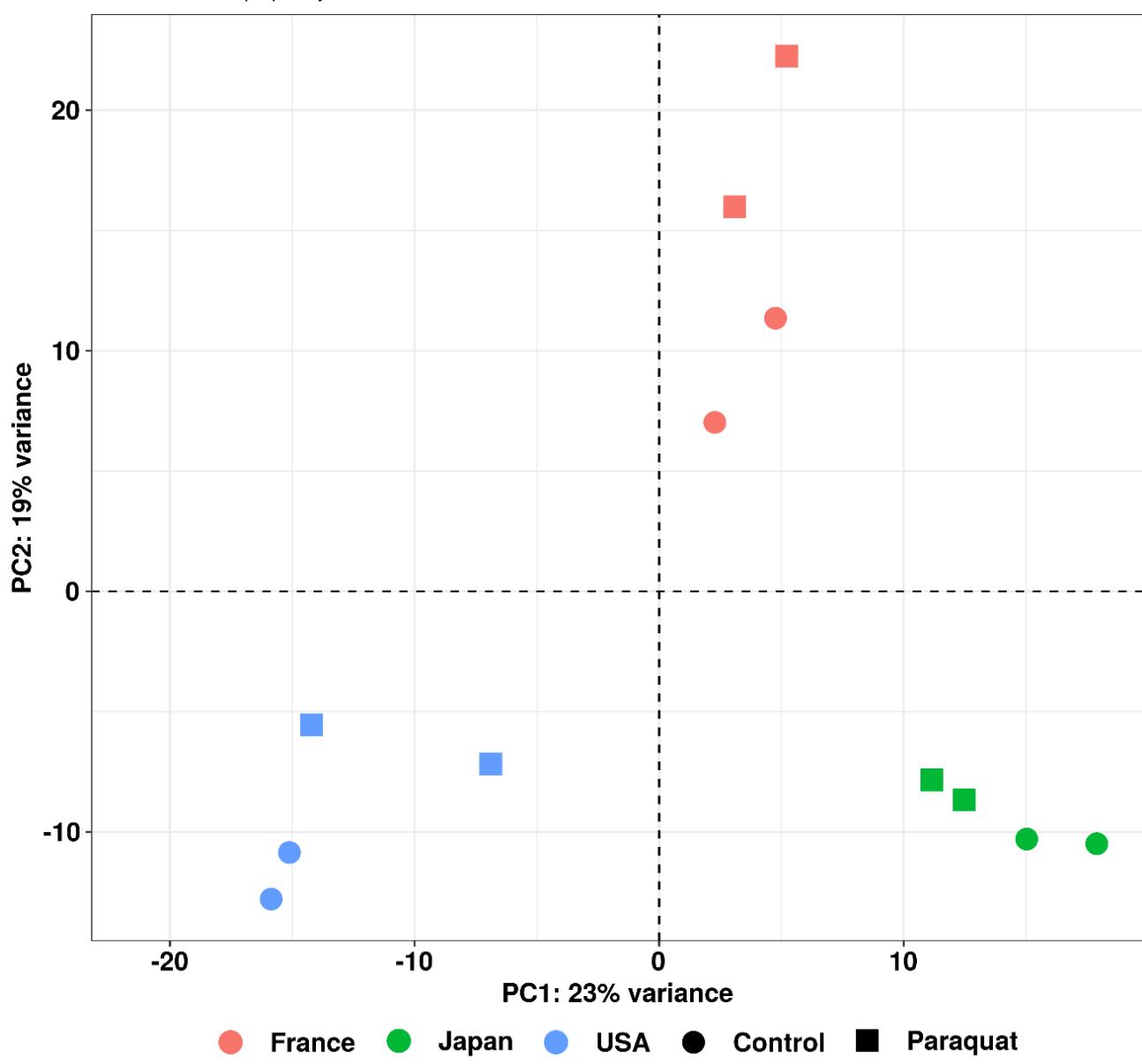
12 **Table S4** Observed genomic distribution of TE insertions in Japan, U.S.A, France.

13 **Table S5** Contingency table (observed and expected) of DE genes and TE insertions detected toward
14 2kb for the three genotypes. P-value associated correspond to the Pearson chi-square test result. The
15 three first rows correspond to DE genes in every genotypes after paraquat exposure and last 3 rows
16 to GEI genes in every contrasted genotypes. Partial chi-square are in brackets.

17 **Table S6** Insertion position of TEs in genes differentially expressed. (XLSX)

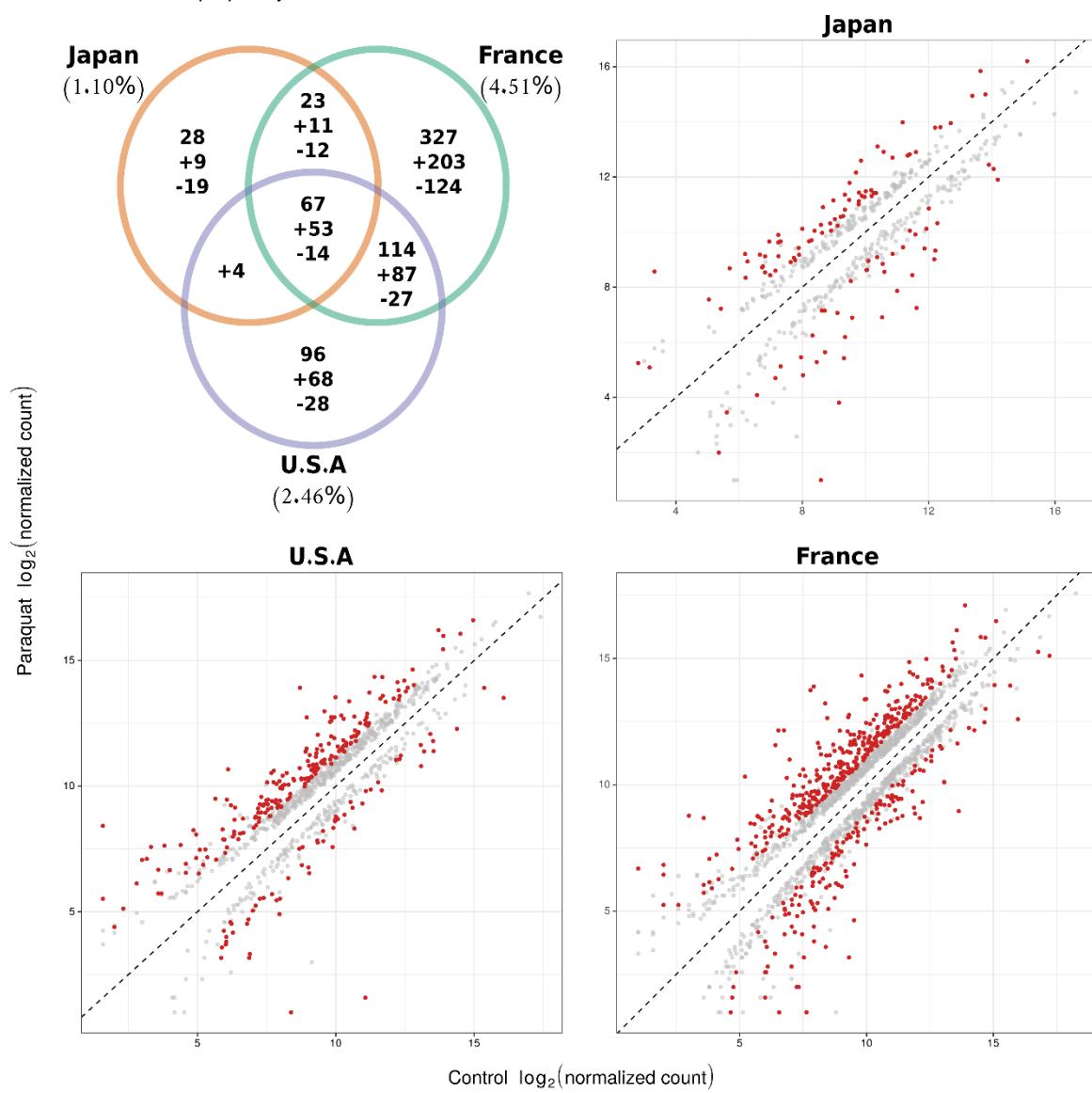

18 **Table S7** GEI DE genes with inserted element, unknown gene in Flybase was reported with name
19 "gene" followed by a number. Contrast column correspond to the lines tested for GEI. Type is the
20 structure where is inserted the element with the position of right and inserted line correspond to the line
21 where is detected the element.

1 **Table S8** Geographical location of isofemale lines. *D. suzukii* flies were sampled in 3 countries
2 (Japan, U.S.A and France) with their location and invasive status. Line name is indicated with bold
3 type for the line use in molecular analysis.


4 **Table S9** Recipe of diet medium modified from Dalton *et al.*, 2011.

5


1 **Figures**



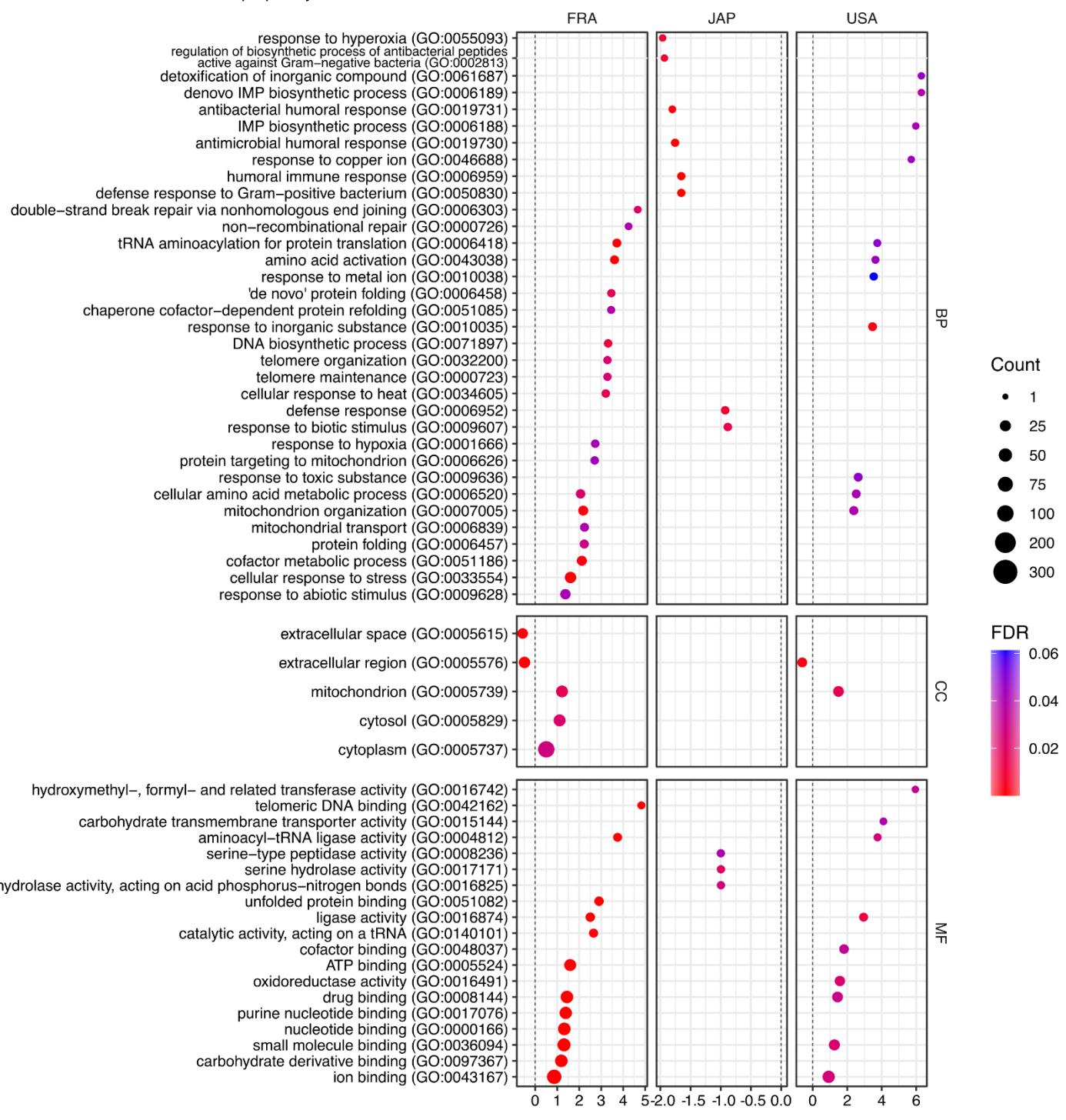
2 **Fig. 1** Lifespans under control and paraquat-treated conditions relative to the Japan Sapporo
3 population with confidence intervals (0.95). The relative values are within each treatment group and
4 can be interpreted as a multiplicator effect compared to the reference level (Sapporo population, female
5 and control condition). The intercept, which is the basal level of the Sapporo females in untreated
6 condition, is equal to 31.96 days. Paraquat correspond to the mean effect of the treatment on Sapporo.
7 Mean values of the populations correspond to the effect of the population on the lifespan compared to
8 Sapporo in untreated condition and the last are the interaction term after paraquat exposure. As
9 examples, the effect of paraquat reduced the lifespan of Sapporo to 20% (0.2) of the initial value in
10 untreated condition. Values higher than 1 indicate an increase in the lifespan compared to Sapporo,
11 while below 1 this indicate a higher sensitivity (e.g., Paraquat:Watsonville correspond to the interaction
12 term and indicates that after paraquat exposure, Watsonville remains more sensitive than Sapporo with
13 a difference of 26% (1-0.74)).
14

3 **Fig. 2** PCA analysis using normalized read counts from DESeq2. Dots correspond to the biological
4 samples with the U.S.A in blue, Japan in red and France in green. Circles and squares correspond
5 respectively to control and paraquat treatment.

1

2 **Fig. 4** Gene expression between control and paraquat conditions. A Venn diagram of shared and
3 unique DE genes identified in comparisons of paraquat-treated and control flies within each population
4 after paraquat exposure (top left). Scatter plots of \log_2 normalized read count for Japan (top right),
5 U.S.A and France (bottom panels) comparing control and treated flies. Individual genes are indicated
6 by dots. Red colour corresponds to significant DE genes (see materials and methods).

7

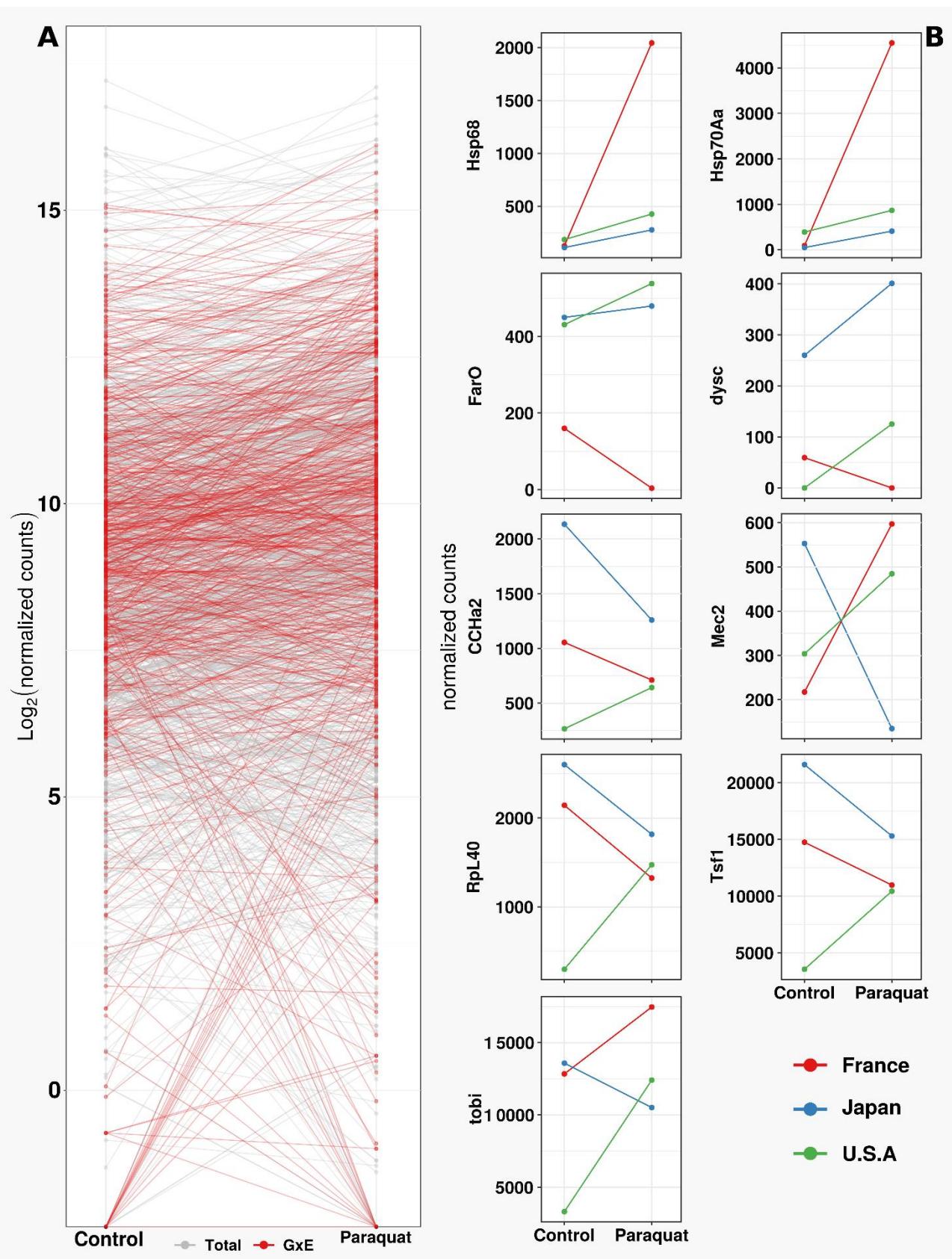

8

9


10

11

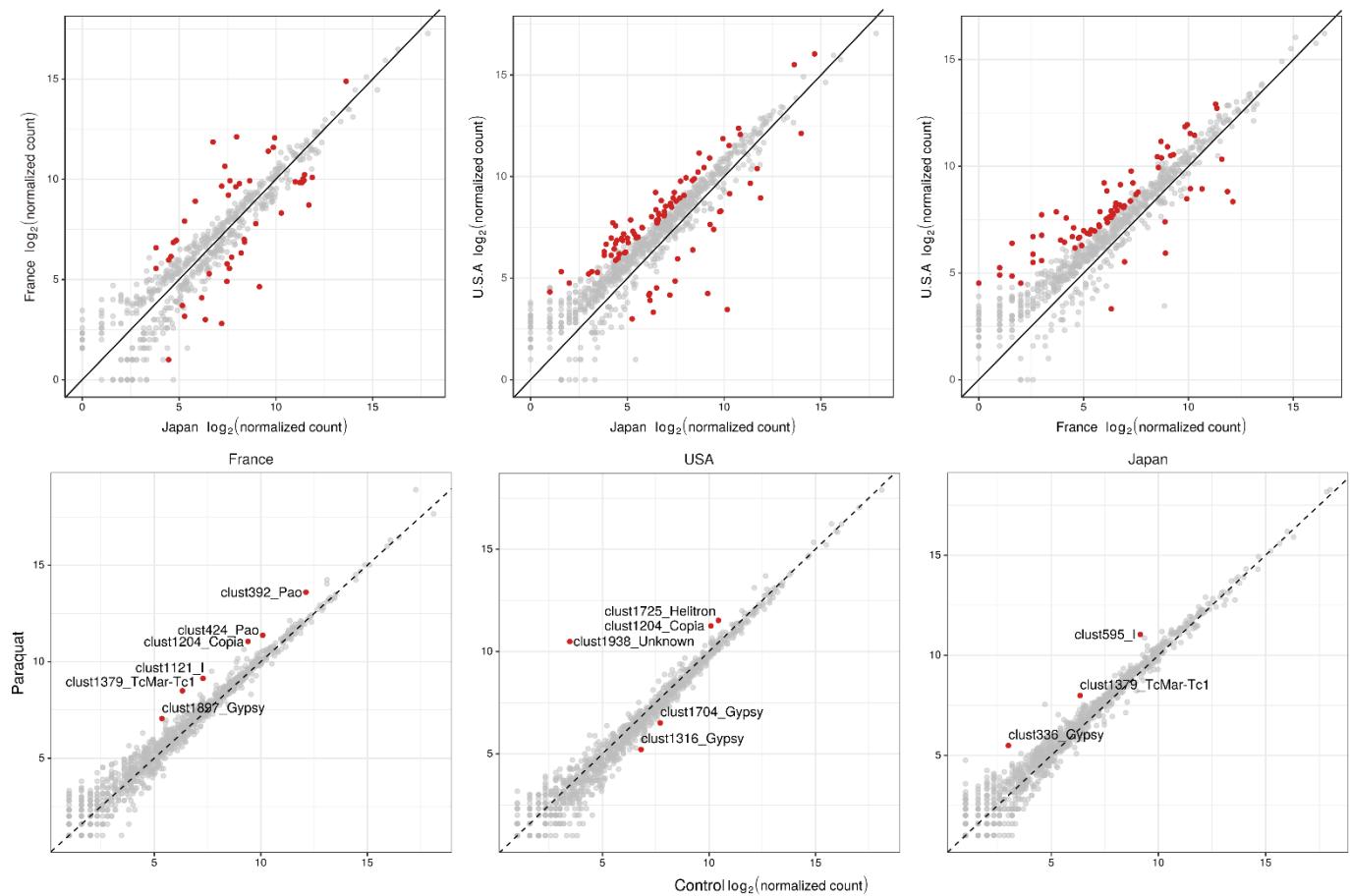
12



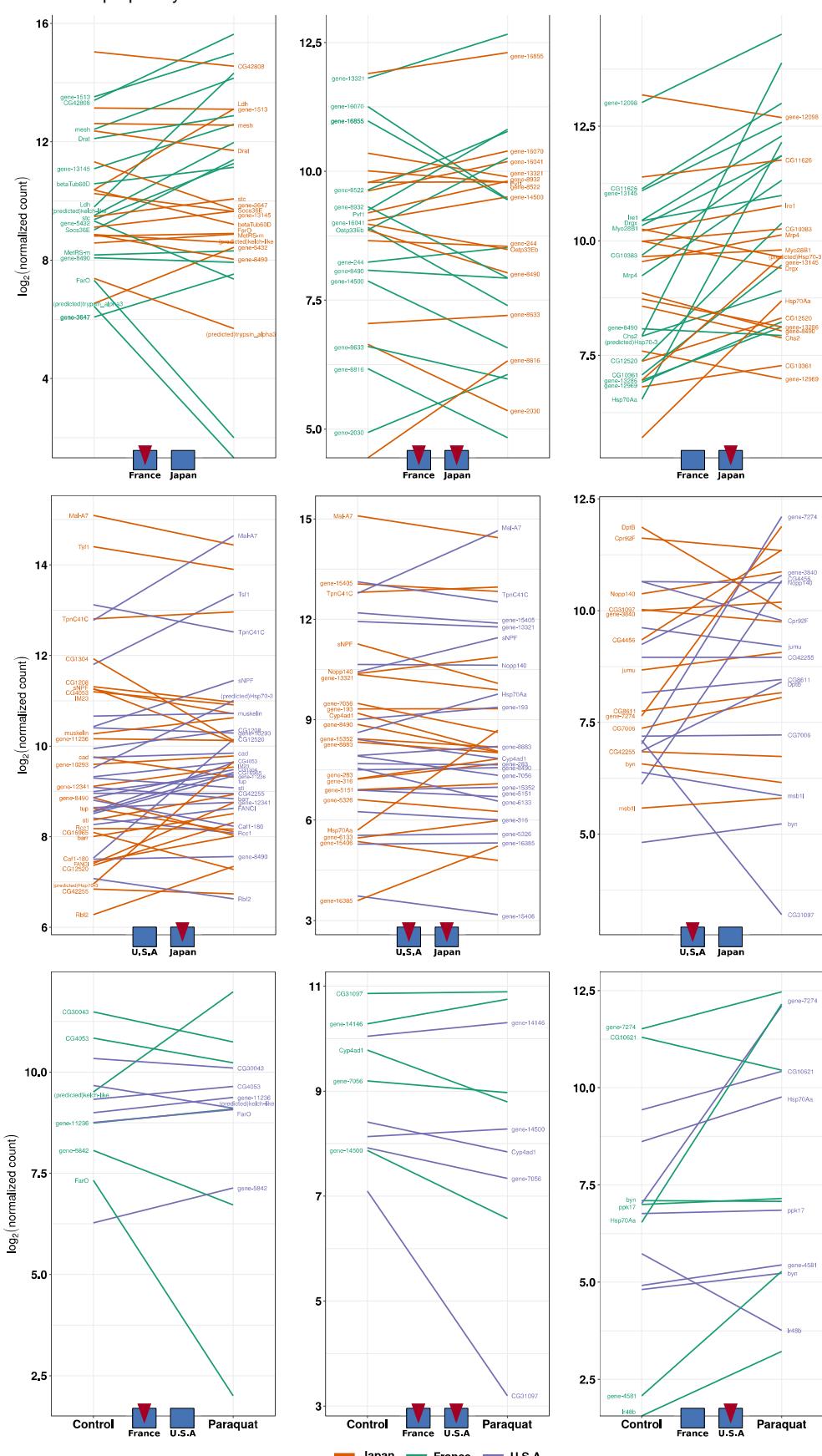
1 **Fig. 5** Gene Ontology analysis for up- and down-regulated genes induced upon treatment with
2 paraquat. Up- and downregulated DE gene lists from the three pairwise comparisons (Paraquat vs
3 Control) were used in this analysis in order to detect enriched functions. For this we used: 243 genes
4 up-regulated and 105 genes downregulated in the French strain, 134 genes up-regulated and 42 genes
5 down-regulated in the USA strain and 31 genes down-regulated from the Japanese strain. No functional
6 enrichment with up-regulated genes from the Japanese genotype was detected.

1

2 **Fig. 6** DE genes (67) shared by all genotypes after paraquat exposure (U.S.A in red, France in green
3 and Japan in blue). The plotted labels refer to a TE insertion (frequency ≥ 0.5) within a gene (intron,
4 exon, 5' or 3'UTR) or within the 2kb flanking regions of a gene.



2 **Fig. 7** Reaction norms between control and paraquat for DE genes using normalized log₂ read counts.


3 (A) Reaction norms of all DE genes, with red for the GEI ones, while grey are DE genes without GEI.

4 (B) Examples of 9 DE genes with GEI, with colours referred to the genotype (red for France, blue for

5 Japan and green for the U.S.A)

1 **Fig. 8** TE expression between genotypes (upper panel) and between control and paraquat conditions
2 for each genotype (bottom panel). Scatter plots represent the log₂ normalized read counts. Individual
3 TE are indicated by dots. Red colour corresponds to significant DE TEs (see M&M).

1

Fig. 9 Expression differences (expressed as log₂-fold-change) of paraquat-exposed flies of DE genes showing evidence of GEI with detected inserted transposable elements. Colour indicates genotypes with insertions that are either shared or unique among the populations (France and Japan on the top, U.S.A and Japan on the middle, France and U.S.A on the bottom).

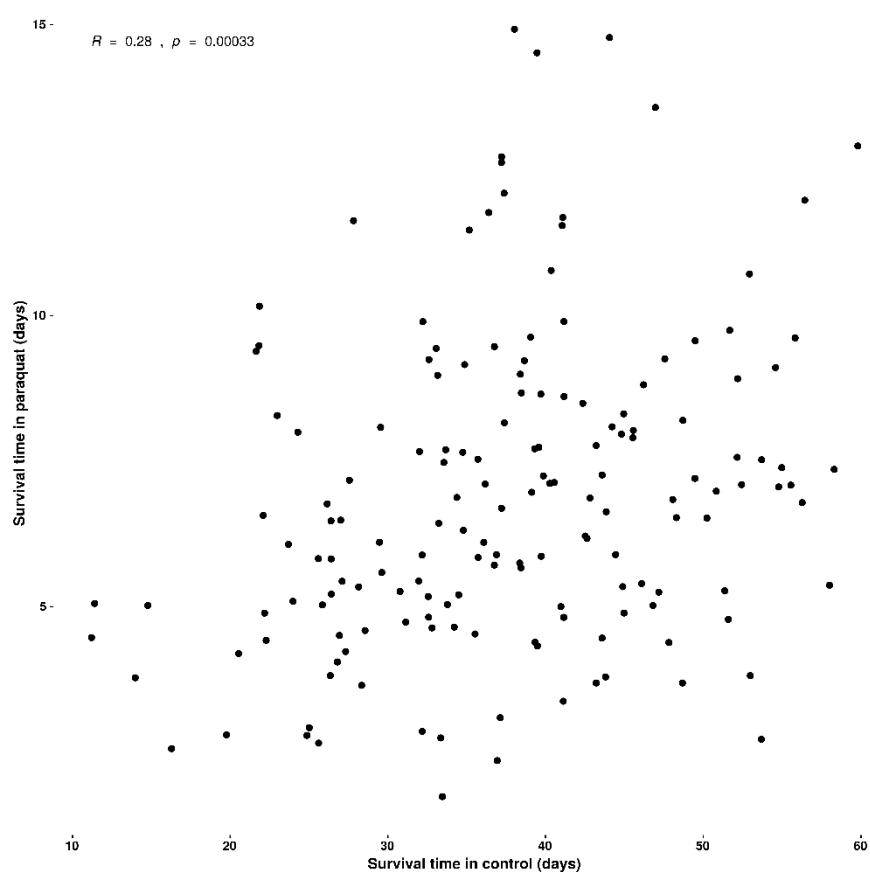
1 Tables

2

3 **Table 1** Median lifespan (days) by sex, treatment, and population with bracketed 0.25 & 0.75 quantiles. Values
 4 were calculated from estimated median (see M&M) at population level (line effects into the populations were
 5 estimated as a random effect from the linear mixed model).

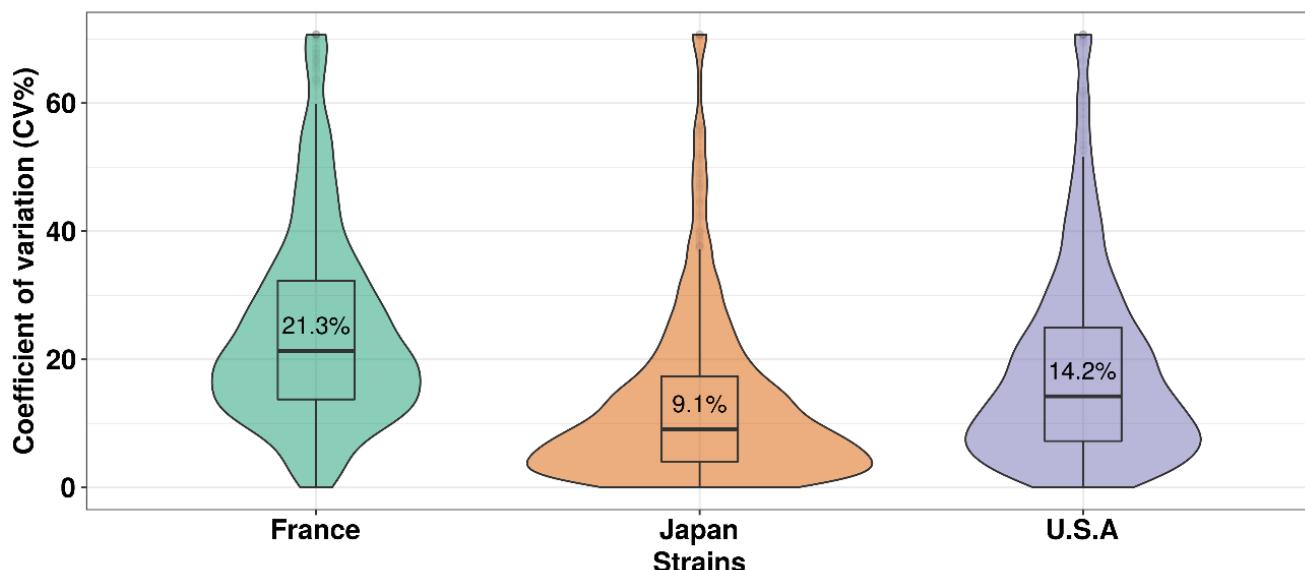
	Sapporo (Japan)	Tokyo (Japan)	Montpellier (France)	Paris (France)	Dayton (U.S.A)	Watsonville (U.S.A)
Females control	32.0 (26.0-39.8)	32.0 (29.6-41.0)	40.5 (35.3-46.3)	41.0 (34.5-49.3)	51.4 (39.7-54.6)	34.8 (27.4-42.4)
Females paraquat	6.8 (5.0-9.1)	5.3 (5.0-7.7)	5.5 (5.2-6.3)	7.1 (5.4-8.2)	9.1 (8.7-9.8)	5.1 (3.8-6.5)
Males control	32.6 (24.65-37.85)	33.2 (27.32-44.43)	39.4 (36.69-44.41)	39.9 (36.48-48.3)	40.4 (39.46-46.96)	33.9 (26.51-38.92)
Males paraquat	6.1 (4.85-7.57)	7.0 (5.89-8.2)	7.5 (6.66-8.08)	7.6 (6.81-9.02)	12.0 (10.78-12.91)	4.4 (3.16-5.17)

6

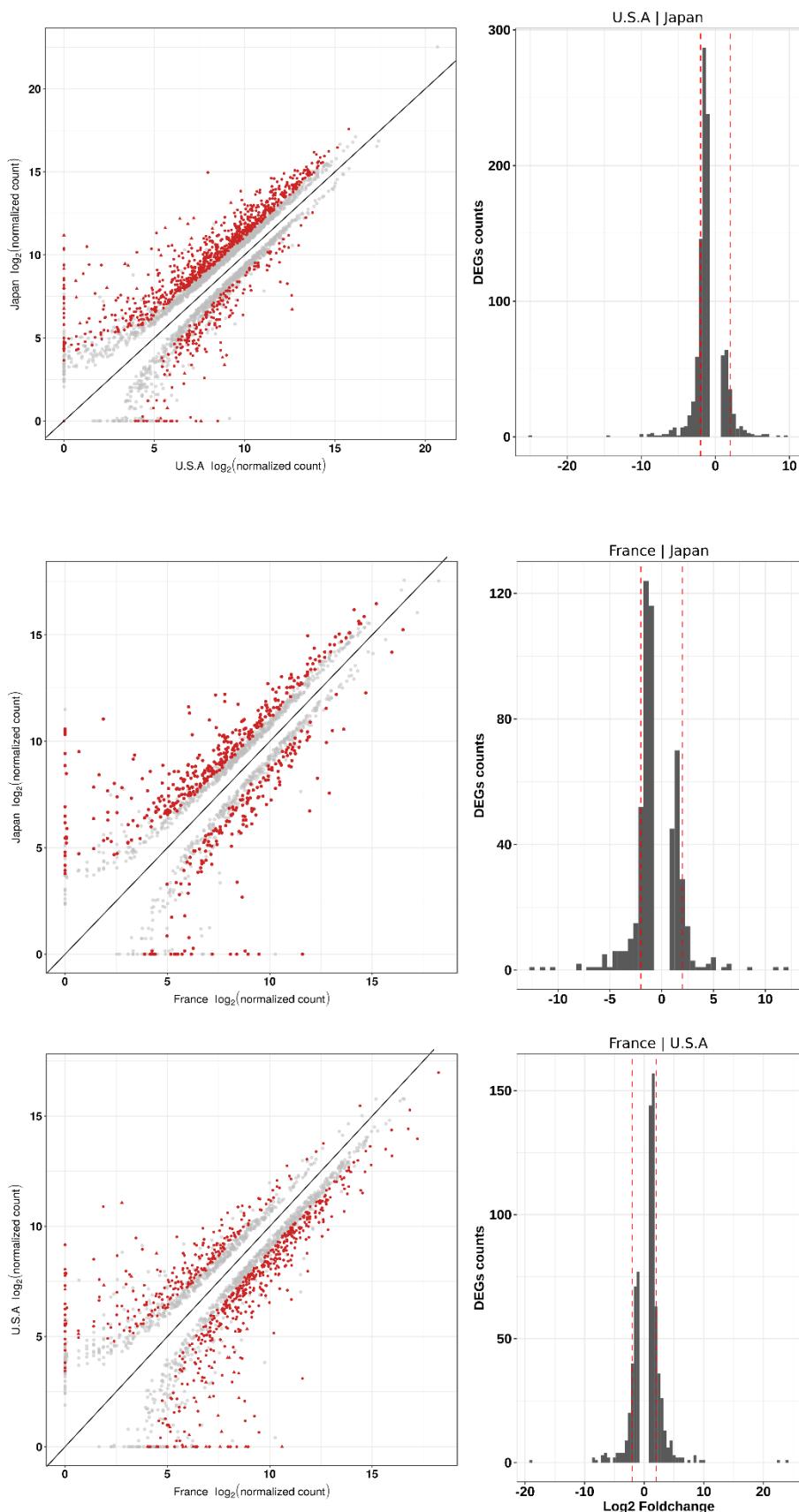

7 **Table 2** Number of DE genes between genotypes and treatments. Pairwise comparisons between (A) untreated
 8 genotypes, (B) between treated and untreated flies within each genotype, and (C) in pairwise comparisons of
 9 paraquat-treated flies between different genotypes. The threshold for identifying DE genes was an adjusted p-
 10 value ≤ 0.01 and absolute \log_2 fold-change ≥ 1 . The proportion of DE genes is the percentage of DE genes in
 11 the expressed transcriptome (14538).

	Contrast	DE genes	Up-regulated	Down-regulated	DE proportion (%)
A	France Japan control	524	175	349	3.6
	France U.S.A control	715	471	244	4.92
	U.S.A Japan control	1023	208	815	7.04
B	Japan (paraquat control)	122	74	48	0.84
	France (paraquat control)	531	354	177	3.65

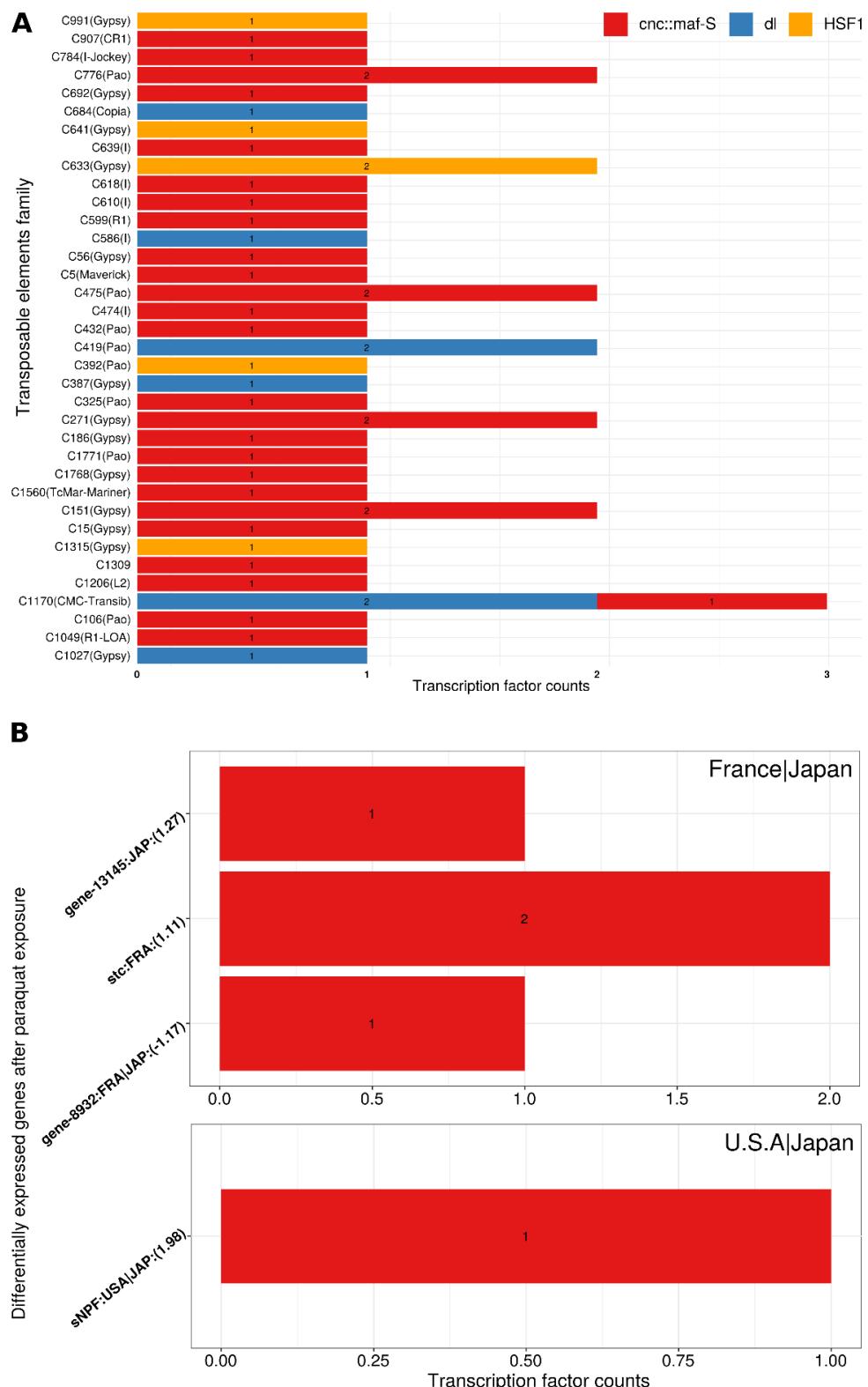
	U.S.A (paraquat control)	281	214	67	1.93
C	France Japan paraquat	138	105	33	0.95
	France U.S.A paraquat	65	19	46	0.45
	U.S.A Japan paraquat	62	57	5	0.43


1
2
3

1 **Supplementary figures**



2 **Fig. S1** Correlation between median lifespan under or not paraquat treatment for every line. Correlation
3 test was made using Pearson method.


4

1 **Fig. S2** Distribution of the coefficient of variation (%) of DE genes after exposure to paraquat.
2 Coefficients of variation was calculated using the standard deviation and mean counts in control and
3 paraquat treated flies. Central values correspond to the median coefficient of variation. Pairwise
4 comparisons of medians were done using a paired Wilcoxon test and all comparison were significant
5 (p-value < 0.01).

1 **Fig. S3** Scatter plots (left) of significant differentially expressed genes in pairwise comparisons between
2 populations under control conditions using \log_2 of normalized counts. Histograms (right) of \log_2 -fold-changes for
3 DE genes in pairwise comparisons between populations under control conditions. Red lines correspond to
4 threshold of fold change = 2.

1 **Fig. S4 A** Transcription factor binding site counts in candidate TEs. (B) DE genes identified from comparisons
2 between populations after paraquat treatment (a GEI). Colours correspond to the 3 screened TFBS, CnC (red),
3 dl (blue), and HSF1 (orange). Gene names are labelled on the y-axis, followed by the genotype where insertion
4 is detected (FRA for France, JAP for Japan, USA for U.S.A and possible combination for shared), and the log₂
5 fold-change of expression in contrasted genotypes.

1 **Supplementary tables**

2 **Table S1** Table of linear mixed model with estimated coefficient and associated statistic. Model is
3 centered on the Sapporo population reference, in untreated condition. Data were previously log
4 transformed for normality. Isofemale lines were included as a random effect and we used exponential
5 of coefficient value as multiplicative effect to interpret.

	Estimate	Std. Error	df	t value	Pr(> t)	CI(2.5%)	CI(97.5%)	exp(estimate)
Intercept)	3.444	0.081	41.46	42.456	8.50e-36	26.614	36.862	31.322
Paraquat	-1.615	0.072	297.00	-22.537	2.92e-66	0.173	0.229	0.199
Dayton (U.S.A)	0.367	0.132	41.46	2.774	8.27e-03	1.107	1.884	1.444
Montpellier (France)	0.251	0.122	41.46	2.060	4.57e-02	1.006	1.640	1.285
Paris (France)	0.227	0.110	41.46	2.063	4.55e-02	1.006	1.564	1.254
Tokyo (Japan)	0.071	0.132	41.46	0.533	5.97e-01	0.823	1.400	1.073
Watsonville (U.S.A)	0.009	0.110	41.46	0.081	9.36e-01	0.809	1.258	1.009
Paraquat:Dayt on (U.S.A)	0.110	0.117	297.00	0.941	3.47e-01	0.887	1.405	1.116
Paraquat:Mont pellier (France)	-0.218	0.108	297.00	-2.026	4.37e-02	0.651	0.994	0.804
Paraquat:Paris (France)	-0.090	0.097	297.00	-0.927	3.54e-01	0.755	1.106	0.914
Paraquat:Toky o (Japan)	-0.069	0.117	297.00	-0.586	5.58e-01	0.742	1.175	0.934

Paraquat:Wats -0.302 0.097 297.00 -3.114 2.03e-03 0.611 0.895 0.739

onville (U.S.A)

1

2

3 **Table S2** Table of some differentially expressed genes (p-adjusted <0.01 and $\log_2FC > 1$). These genes
4 are exemplified in Fig. 7. in the genotype environment interaction (GEI) with flybase information available.

Gene ID	Information	Biological process	Molecular function
<i>dysc</i>	dyschronic (<i>dysc</i>) encodes a protein that regulates the localization of the calcium-activated potassium channel encoded by <i>slo</i> . The product of <i>dysc</i> impacts circadian locomotor patterns, synaptic morphology, active zone structure, and both spontaneous and evoked neurotransmitter release.	regulation of synaptic growth at neuromuscular junction, rhabdomere development, locomotor rhythm, muscle cell cellular homeostasis, positive regulation of ion transmembrane transporter activity, negative regulation of neuromuscular synaptic transmission, photoreceptor cell axon guidance, sensory perception of sound	
<i>FarO</i>	-	long-chain fatty-acyl-CoA metabolic process, negative regulation of cell	fatty-acyl-CoA reductase (alcohol-forming) activity, long-chain-fatty-acyl-CoA reductase activity

		growth, positive regulation of lipid storage	
<i>Hsp68</i>	Heat shock protein 68 (<i>Hsp68</i>) encodes a protein involved in lifespan determination and response to heat shock and starvation.	protein refolding, cellular response to heat, chaperone cofactor-dependent protein refolding, response to starvation, response to unfolded protein, protein folding, determination of adult lifespan	protein folding chaperon, heat shock protein binding, ATP binding, ATPase activity, coupled, unfolded protein binding, misfolded protein binding, ATPase activity, unfolded protein binding
<i>Hsp70Aa</i>	Heat-shock-protein-70Aa (<i>Hsp70Aa</i>) encodes a protein involved in response to heat shock and hypoxia.	chaperone cofactor-dependent protein refolding, response to hypoxia, response to heat, cellular response to unfolded protein, protein refolding, cellular response to heat, response to unfolded protein, vesicle-mediated transport, heat shock-mediated polytene chromosome puffing	protein folding chaperone, heat shock protein binding, ATPase activity, unfolded protein binding, ATP binding, misfolded protein binding, ATPase activity, coupled
<i>Mec2</i>	-	nephrocyte filtration	protein binding, inferred from physical interaction with sns
<i>CCHa2</i>	Insufficient genetic data for FlyBase to solicit a summary.	neuropeptide signaling pathway	neuropeptide hormone activity

<i>Tsf1</i>	Transferrin 1 (Tsf1) encodes an iron binding protein induced during the immune response. Iron sequestration is a classical host defense mechanism to combat bacterial infection. [Date last reviewed: 2019-03-14]	olfactory behavior, response to fungus	-
<i>tobi</i>	-	carbohydrate metabolic process, glycoside catabolic	hydrolase activity, hydrolyzing O-glycosyl compounds
<i>RpL40</i>	Insufficient genetic data for FlyBase to solicit a summary.	Translation, protein ubiquitination, cytoplasmic translation, ubiquitin-dependent protein catabolic process, translation protein ubiquitination, cellular protein modification process, modification-dependent protein catabolic process	structural constituent of ribosome, protein tag, protein tag, ubiquitin protein ligase binding, structural constituent of ribosome

1 **Table S3** Number of DE TEs between control and oxidative (paraquat) condition for each genotype
2 and between the different genotypes for both conditions. DE TE threshold made with adjusted p-value
3 ≤ 0.01 and absolute $\log_2\text{foldchange} \geq 1$. The rate corresponds to number of DE TE on total TE families
4 (2030).

Carcasses	DE TEs	Up-regulated	Down-regulated	DE rate (%)
France Japan control	48	22	26	3.08
France U.S.A control	78	10	68	5.01
U.S.A Japan control	92	70	22	5.91
Japan (paraquat control)	3	3	0	0.19
France (paraquat control)	6	6	0	0.39
U.S.A (paraquat control)	5	3	2	0.32
France Japan paraquat	1	1	0	0.06
France U.S.A paraquat	2	2	0	0.13
U.S.A Japan paraquat	0	0	0	0.00

5 **Table S4** Observed genomic distribution of TE insertions in Japan, U.S.A, France.

	intergenic	+/-2kb flanking	5'UTR	3'UTR	intron	exon
France	17142	2179	66	76	2469	115
U.S.A	19210	2399	69	78	2582	124
Japan	18924	2354	73	87	2687	133

1 **Table S5** Contingency table (observed and expected) of DE genes and TE insertions detected toward
 2 2kb for the three genotypes. P-value associated correspond to the Pearson chi-square test result. The
 3 three first rows correspond to DE genes in every genotypes after paraquat exposure and last 3 rows
 4 to GEI genes in every contrasted genotypes. Partial chi-square are in brackets.

		Observed		Expected		
		TE-	TE+	TE-	TE+	p-value
France	DE-	11501	2506	11528.0	2479.0	0.00216
	DE+	464	67	437.0	94.0	
Japan	DE-	11664	2752	11675.2	2740.8	0.01321
	DE+	110	12	98.8	23.2	
U.S.A	DE-	11678	2579	11692.5	2564.5	0.02761
	DE+	245	36	230.5	50.5	
France Japan	DE-	11358	3042	11352.2	3047.8	0.2678
	DE+	103	35	108.8	29.2	
France U.S.A	DE-	11491	2982	11499.4	2973.6	0.01566
	DE+	60	5	51.6	13.4	
U.S.A Japan	DE-	11383	3093	11385.2	3090.8	0.5894
	DE+	51	11	48.8	13.2	

1 **Table S6** Insertion position of TEs in genes differentially expressed

		5'UTR	Exon	Intron	3'UTR	Flank 2kb
France	Down	0	1	17	0	8
	Up	0	2	18	2	19
U.S.A	Down	0	0	6	0	5
	Up	1	0	12	2	10
Japan	Down	0	0	2	0	3
	Up	0	0	2	0	5

2
3
4

5 **Table S7** GEI DE genes with inserted element, unknown gene in Flybase was reported with name
6 “gene” followed by a number. Contrast column correspond to the lines tested for GEI. Type is the
7 structure where is inserted the element with the position of right and inserted line correspond to the line
8 where is detected the element.

Gene symbol	log ₂ FoldChange	Contrast	Type	Insertion position	Inserted line
CG10383	1.753125	France Japan	intron	11431663	Japan
CG12520	1.892906	France Japan	3'UTR	16312823	Japan
Mrp4	1.354537	France Japan	intron	3059393	Japan
FarO	-4.923014	France Japan	intron	7509567	France
Ire1	1.168464	France Japan	exon.part	1288004	Japan

<i>CG11626</i>	1.328294	France Japan	flank2kb	1760496	Japan
<i>(predicted)Hsp70-3</i>	3.007337	France Japan	intron	2816351	Japan
<i>Drgx</i>	1.027039	France Japan	intron	23636644	Japan
<i>Drgx</i>	1.027039	France Japan	flank2kb	23660595	U.S.A
<i>mesh</i>	1.497837	France Japan	intron	1007389	France
<i>Myo28B1</i>	1.175073	France Japan	5'UTR	7819926	Japan
<i>Mocs1</i>	1.115113	France Japan	intron	18050475	U.S.A
<i>(predicted)kelch-like</i>	2.399565	France Japan	flank2kb	14580423	France
<i>stc</i>	1.106598	France Japan	flank2kb	23035304	France
<i>CG42808</i>	2.321616	France Japan	intron	6914954	France
<i>Pvf1</i>	1.262606	France Japan	flank2kb	924620	Japan
<i>Pvf1</i>	1.262606	France Japan	5'UTR	928977	Japan
<i>Pvf1</i>	1.262606	France Japan	flank2kb	924620	France
<i>Pvf1</i>	1.262606	France Japan	5'UTR	928977	France
<i>Pvf1</i>	1.262606	France Japan	flank2kb	924620	U.S.A
<i>Pvf1</i>	1.262606	France Japan	5'UTR	928977	U.S.A
<i>JMJD4</i>	1.152672	France Japan	5'UTR	12034085	U.S.A
<i>Ldh</i>	1.414352	France Japan	flank2kb	2962505	France
<i>Ldh</i>	1.414352	France Japan	flank2kb	2962902	France

<i>gene-8816</i>	-6.929561	France Japan	exon.part	826521	Japan
<i>gene-8816</i>	-6.929561	France Japan	flank2kb	828928	Japan
<i>gene-8816</i>	-6.929561	France Japan	exon.part	826521	France
<i>gene-8816</i>	-6.929561	France Japan	flank2kb	828928	France
<i>gene-8816</i>	-6.929561	France Japan	flank2kb	828928	U.S.A
<i>CG4456</i>	1.689628	France Japan	flank2kb	7586469	U.S.A
<i>Oatp33Eb</i>	1.420563	France Japan	flank2kb	2565015	Japan
<i>Oatp33Eb</i>	1.420563	France Japan	flank2kb	2565015	France
<i>Oatp33Eb</i>	1.420563	France Japan	flank2kb	2565015	U.S.A
<i>Oatp33Eb</i>	1.420563	France Japan	flank2kb	2566617	U.S.A
<i>gene-16041</i>	-1.556090	France Japan	intron	51130	Japan
<i>gene-16041</i>	-1.556090	France Japan	intron	53804	Japan
<i>gene-16041</i>	-1.556090	France Japan	intron	51130	France
<i>gene-16041</i>	-1.556090	France Japan	intron	53804	France
<i>gene-16041</i>	-1.556090	France Japan	intron	51130	U.S.A
<i>gene-16041</i>	-1.556090	France Japan	intron	53804	U.S.A
<i>Hsp70Aa</i>	1.956436	France Japan	flank2kb	2824573	Japan
<i>Hsp70Aa</i>	1.956436	France Japan	flank2kb	2824573	U.S.A
<i>gene-742</i>	1.419717	France Japan	flank2kb	2573404	U.S.A

CG3513	2.132744	France Japan	flank2kb	23660595	U.S.A
<i>Socs36E</i>	1.322709	France Japan	flank2kb	12039658	France
<i>Socs36E</i>	1.322709	France Japan	intron	12042814	U.S.A
<i>Socs36E</i>	1.322709	France Japan	intron	12046161	U.S.A
<i>Socs36E</i>	1.322709	France Japan	intron	12046748	U.S.A
<i>gene-8522</i>	1.051557	France Japan	exon.part	8449067	Japan
<i>gene-8522</i>	1.051557	France Japan	exon.part	8449067	France
<i>gene-8522</i>	1.051557	France Japan	exon.part	8449067	U.S.A
<i>Drat</i>	1.079845	France JapanF	intron	2761492	France
<i>gene-12098</i>	1.386302	France Japan	intron	6814225	Japan
<i>lncRNA:CR45936</i>	-1.419969	France Japan	intron	16923423	U.S.A
<i>gene-2030</i>	1.575219	France Japan	intron	5579171	Japan
<i>gene-2030</i>	1.575219	France Japan	intron	5579171	France
<i>gene-2030</i>	1.575219	France Japan	intron	5579171	U.S.A
<i>gene-3647</i>	1.941648	France Japan	intron	2104897	France
<i>gene-3647</i>	1.941648	France Japan	intron	2099877	U.S.A
<i>gene-1513</i>	1.070880	France Japan	intron	145053	France
<i>(predicted)trypsin_alpha3</i>	-2.153081	France Japan	intron	6743283	France
<i>gene-13286</i>	1.164912	France Japan	3'UTR	16312823	Japan

<i>gene-13145</i>	1.267960	France Japan	intron	16350711	Japan
<i>gene-13145</i>	1.267960	France Japan	intron	16351595	France
<i>Chs2</i>	1.075446	France Japan	flank2kb	22441443	Japan
<i>Chs2</i>	1.075446	France Japan	flank2kb	22441443	U.S.A
<i>gene-12969</i>	1.158750	France Japan	flank2kb	18466778	Japan
<i>gene-8932</i>	-1.170218	France Japan	intron	5844	Japan
<i>gene-8932</i>	-1.170218	France Japan	intron	5844	France
<i>gene-8932</i>	-1.170218	France Japan	intron	5844	U.S.A
<i>gene-5432</i>	-1.652789	France Japan	intron	9876320	France
<i>betaTub60D</i>	1.037268	France Japan	3'UTR	12121904	France
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	439861	Japan
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	440304	Japan
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	439861	France
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	440304	France
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	439861	U.S.A
<i>gene-16855</i>	-1.081314	France Japan	flank2kb	440304	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	45349	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	53781	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	56597	Japan

<i>gene-16070</i>	-1.190533	France Japan	intron	92529	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	97953	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	99403	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	118960	Japan
<i>gene-16070</i>	-1.190533	France Japan	intron	45349	France
<i>gene-16070</i>	-1.190533	France Japan	intron	53781	France
<i>gene-16070</i>	-1.190533	France Japan	intron	56597	France
<i>gene-16070</i>	-1.190533	France Japan	intron	92529	France
<i>gene-16070</i>	-1.190533	France Japan	intron	97953	France
<i>gene-16070</i>	-1.190533	France Japan	intron	99403	France
<i>gene-16070</i>	-1.190533	France Japan	intron	118960	France
<i>gene-16070</i>	-1.190533	France Japan	intron	45349	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	53781	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	56597	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	92529	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	97953	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	99403	U.S.A
<i>gene-16070</i>	-1.190533	France Japan	intron	118960	U.S.A
CG33282	1.002304	France Japan	intron	19704856	U.S.A

CG10361	1.045731	France Japan	flank2kb	18922002	Japan
(predicted) <i>Hsp70-3</i>	4.281151	France U.S.A	intron	2816351	Japan
<i>Hsp70Aa</i>	4.230943	France U.S.A	flank2kb	2824573	Japan
<i>Hsp70Aa</i>	4.230943	France U.S.A	flank2kb	2824573	U.S.A
<i>FarO</i>	-5.293578	France U.S.A	intron	7509567	France
(predicted) <i>kelch-like</i>	2.863579	France U.S.A	flank2kb	14580423	France
CG10621	-1.446417	France U.S.A	3'UTR	11134738	U.S.A
<i>gene-5842</i>	-1.775330	France U.S.A	intron	9902605	Japan
<i>gene-5842</i>	-1.775330	France U.S.A	intron	9902872	Japan
<i>gene-5842</i>	-1.775330	France U.S.A	intron	9905803	France
CG16965	-1.049352	France U.S.A	flank2kb	3227015	Japan
<i>gene-9109</i>	6.739623	France U.S.A	intron	2816351	Japan
<i>Ir48b</i>	2.818729	France U.S.A	intron	10573980	Japan
<i>Ir48b</i>	2.818729	France U.S.A	intron	10573980	U.S.A
<i>Tsf1</i>	-1.099044	France U.S.A	intron	1957700	Japan
<i>Ldh</i>	2.339272	U.S.A Japan	flank2kb	2962505	France
<i>Ldh</i>	2.339272	U.S.A Japan	flank2kb	2962902	France
CG12520	1.480822	U.S.A Japan	3'UTR	16312823	Japan
<i>sNPF</i>	1.983076	U.S.A Japan	intron	14521385	Japan

<i>sNPF</i>	1.983076	U.S.A Japan	intron	14523939	Japan
<i>sNPF</i>	1.983076	U.S.A Japan	intron	14521385	France
<i>sNPF</i>	1.983076	U.S.A Japan	intron	14521385	U.S.A
<i>CG4456</i>	2.260613	U.S.A Japan	flank2kb	7586469	U.S.A
<i>Mal-A1</i>	2.109920	U.S.A Japan	flank2kb	5265200	France
<i>CG16965</i>	1.430053	U.S.A Japan	flank2kb	3227015	Japan
<i>Mal-A7</i>	2.224882	U.S.A Japan	intron	5210868	Japan
<i>Mal-A7</i>	2.224882	U.S.A Japan	intron	5211873	Japan
<i>Mal-A7</i>	2.224882	U.S.A Japan	intron	5211873	France
<i>Mal-A7</i>	2.224882	U.S.A Japan	intron	5211873	U.S.A
<i>gene-3840</i>	1.106626	U.S.A Japan	intron	1916531	U.S.A
<i>tup</i>	1.030389	U.S.A Japan	intron	11241399	Japan
<i>DptB</i>	2.623785	U.S.A Japan	intron	4000182	U.S.A
<i>CG4372</i>	1.269428	U.S.A Japan	flank2kb	1467799	France
<i>Ance-2</i>	1.004916	U.S.A Japan	intron	5677285	France
<i>CG1304</i>	1.656842	U.S.A Japan	flank2kb	2387338	Japan
<i>Mal-A3</i>	1.215228	U.S.A Japan	flank2kb	5257029	France
<i>Tsf1</i>	1.261203	U.S.A Japan	intron	1957700	Jap

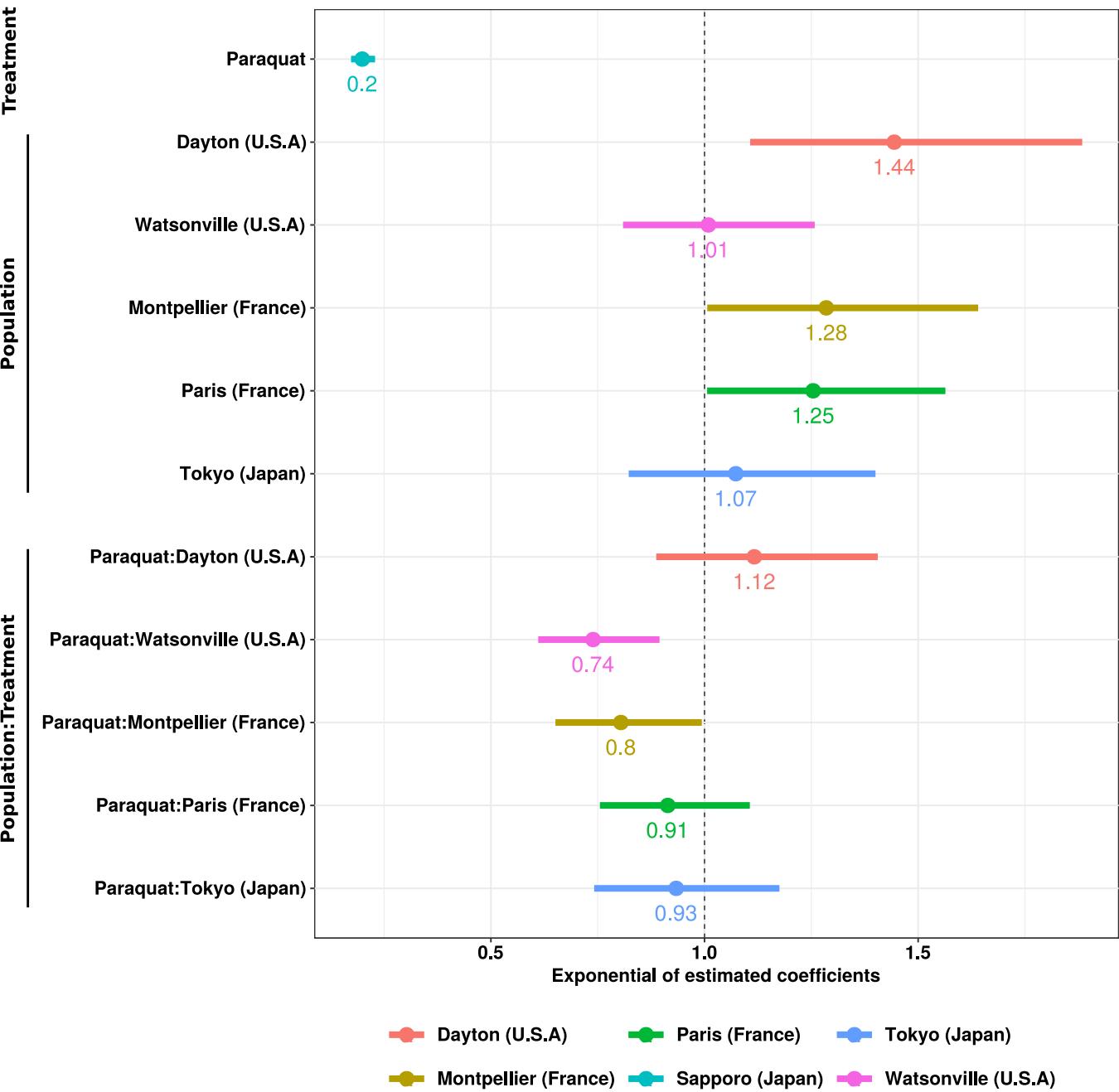
1 **Table S8** Geographical location of isofemale lines. *D. suzukii* flies were sampled in 3 countries
2 (Japan, U.S.A and France) with their location and invasive status. Line name is indicated with bold
3 type for the line use in molecular analysis.

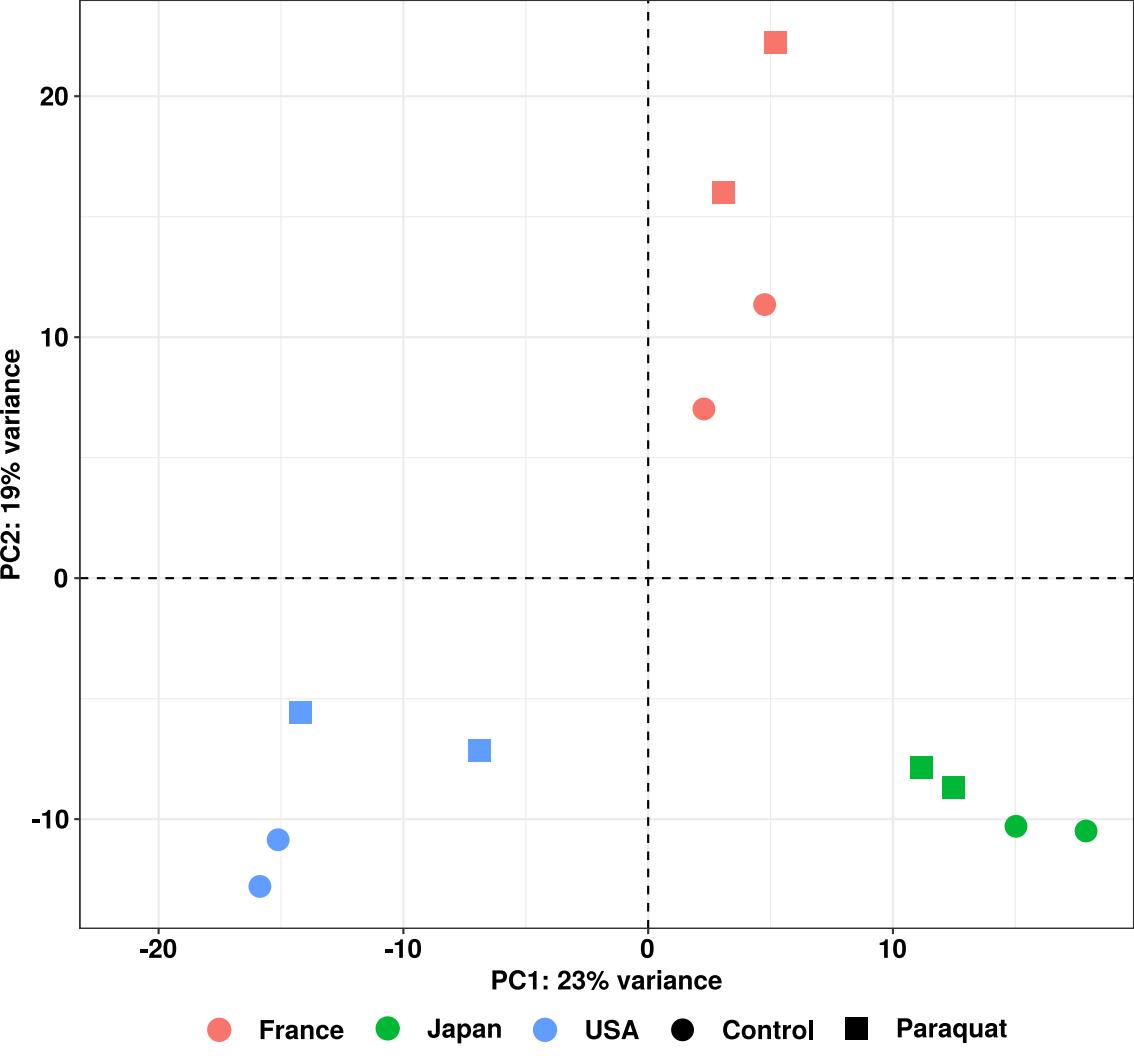
Location	Coordinates	Status	Lines
Sapporo (Hokkaido, Japan)	43° 3' 43.545"N 141° 21' 15.754" E	Native	S11, S20, S21, S24, S29
Tokyo (Honshu, Japan)	35° 41' 22.155" N 139° 41' 30.143" E	Native	T3, T11, T18
Watsonville (California, U.S.A)	36°54'51.8"N 121°45'27.7"W	Invasive	W106, W112, W113, W120 , W122, W127
Dayton (Oregon, U.S.A)	45° 13' 14.422" N 123° 4' 34.368" E	Invasive	Sok1, Sok28, Sok58
Paris (France)	48° 51' 23.81" N 2° 21' 7.998" E	Invasive	L2, L6, L7, L21, L22, L26
Montpellier (France)	43° 36' 38.768" N 3° 52' 36.177" E	Invasive	MT15, MT20, MT25, MT47

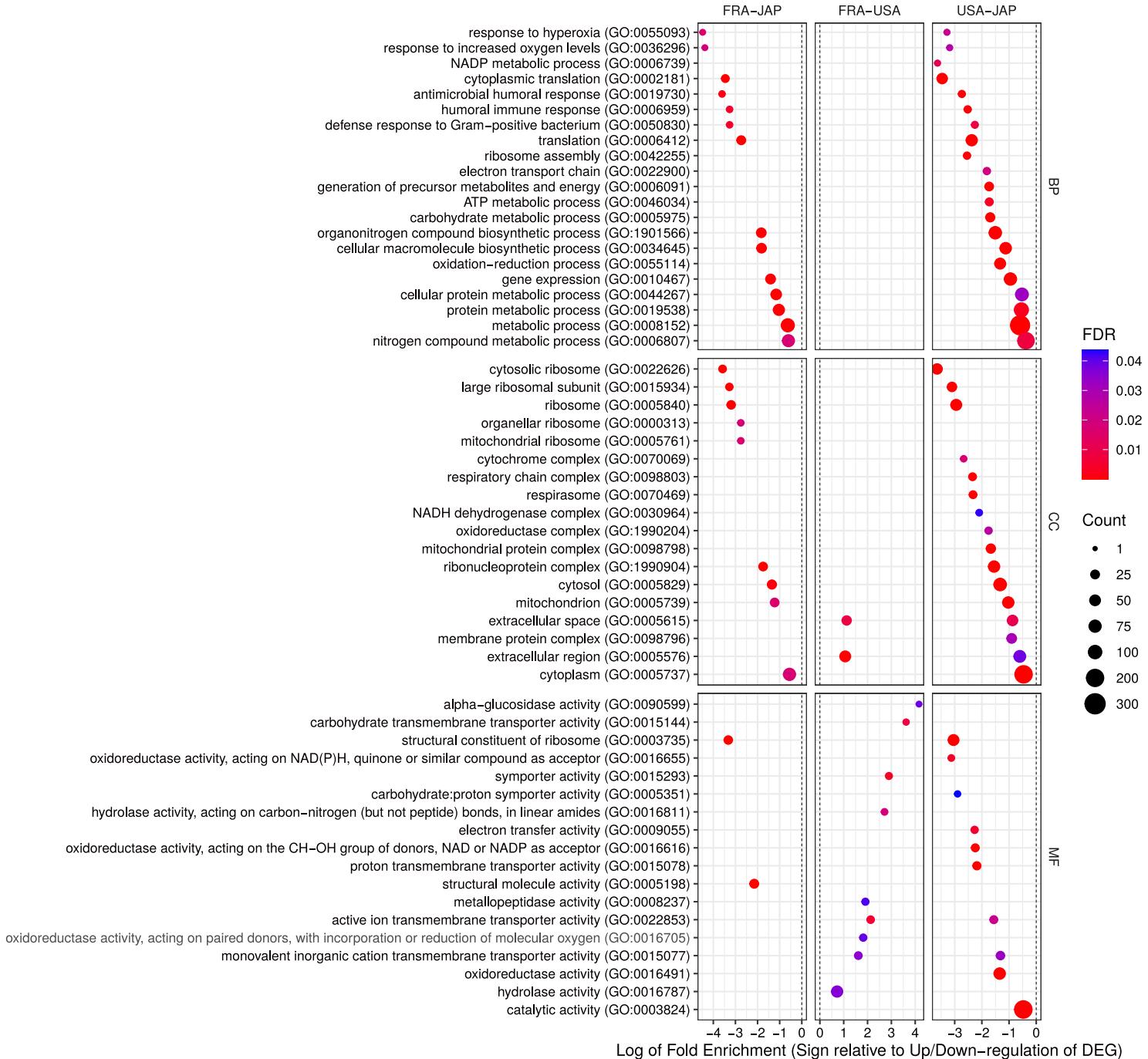
4

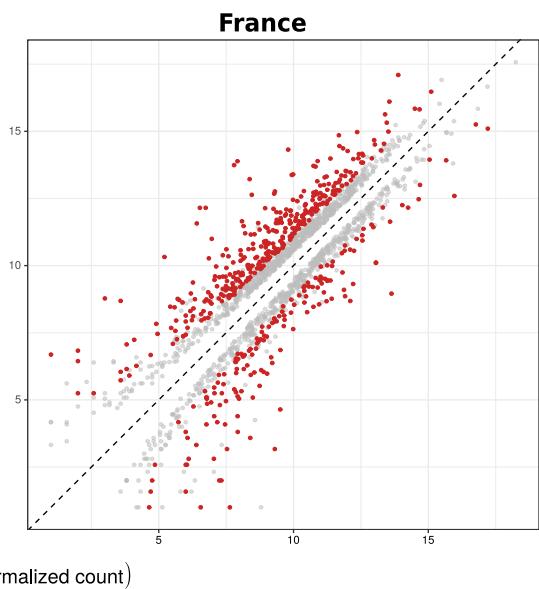
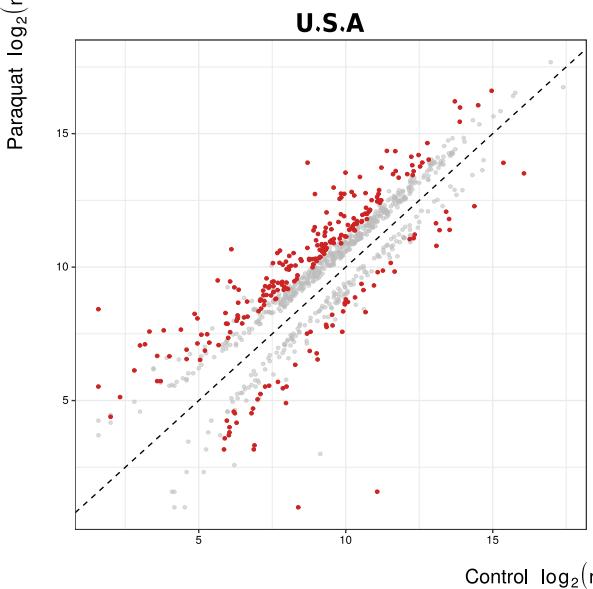
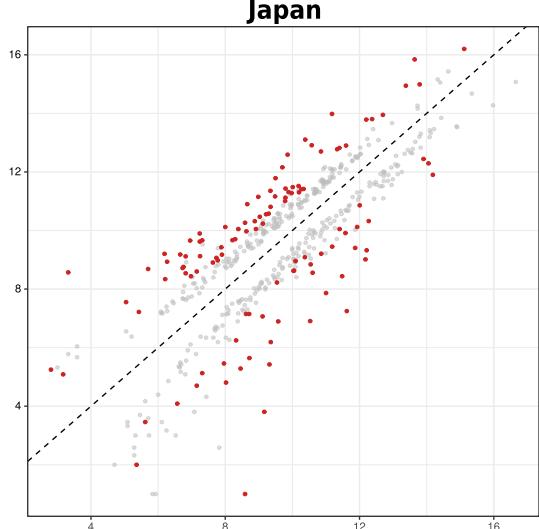
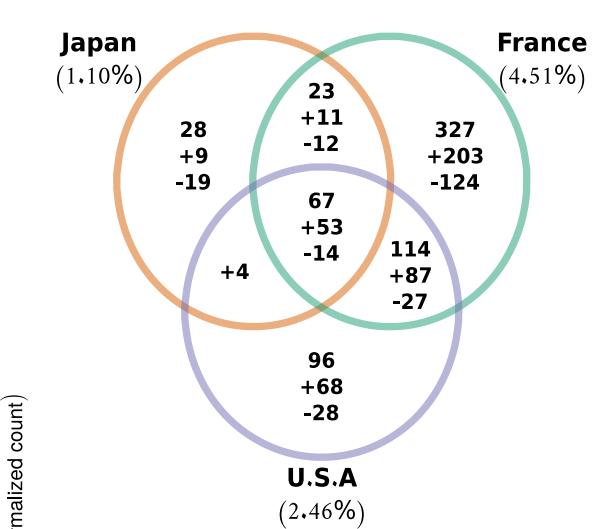
5 **Table S9** Recipe of diet medium modified from Dalton *et al.*, 2011.

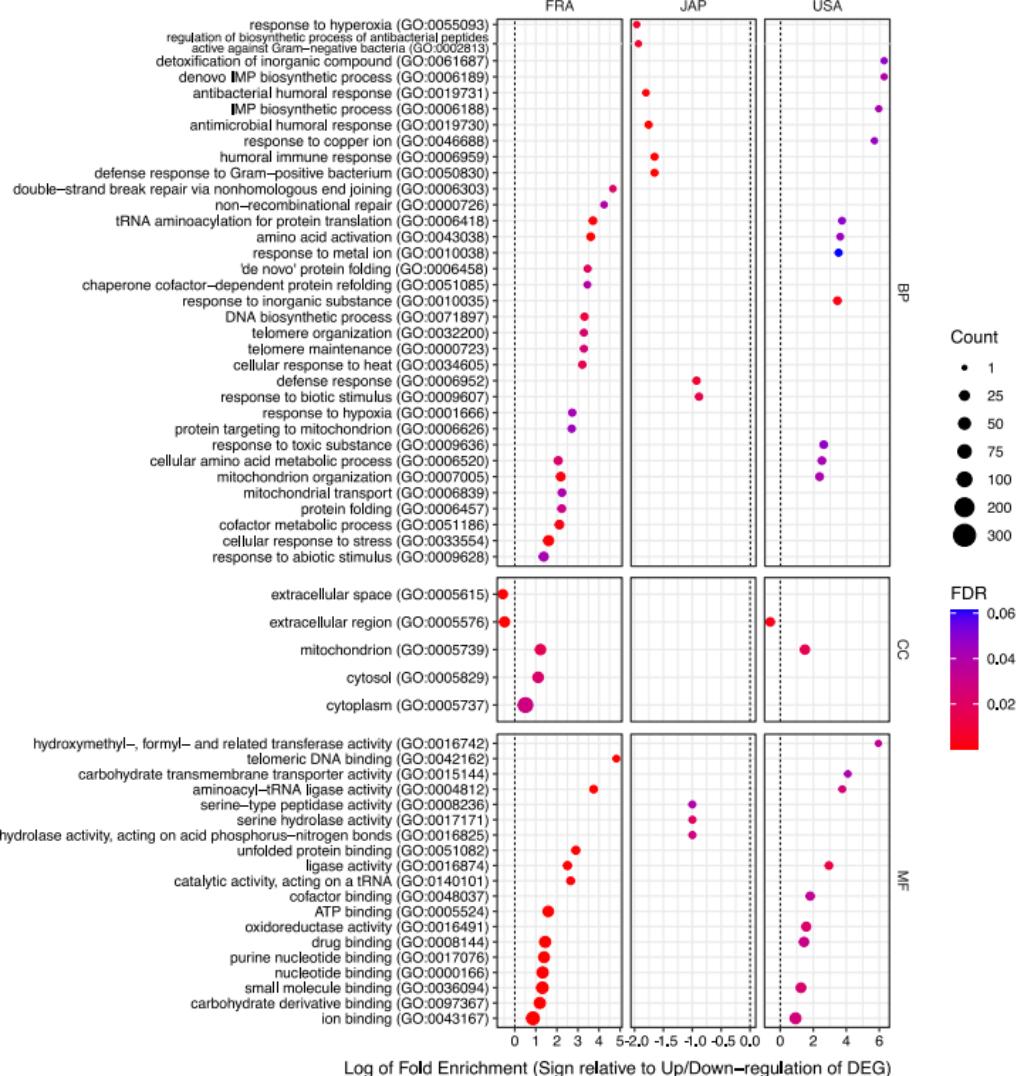
Distilled water: 1 L
Agar (Drosophila Agar Type, ref.66-103, Apex TM): 9 g.L ⁻¹
Cornmeal (Farine de galettes, Moulin Giraud): 33 g.L ⁻¹
Ethanol 96%: 40 ml.L ⁻¹
Yeast (ref.75570, LYN SIDE [®]): 17 g.L ⁻¹
Sugar (supermarket sugar): 50 g.L ⁻¹

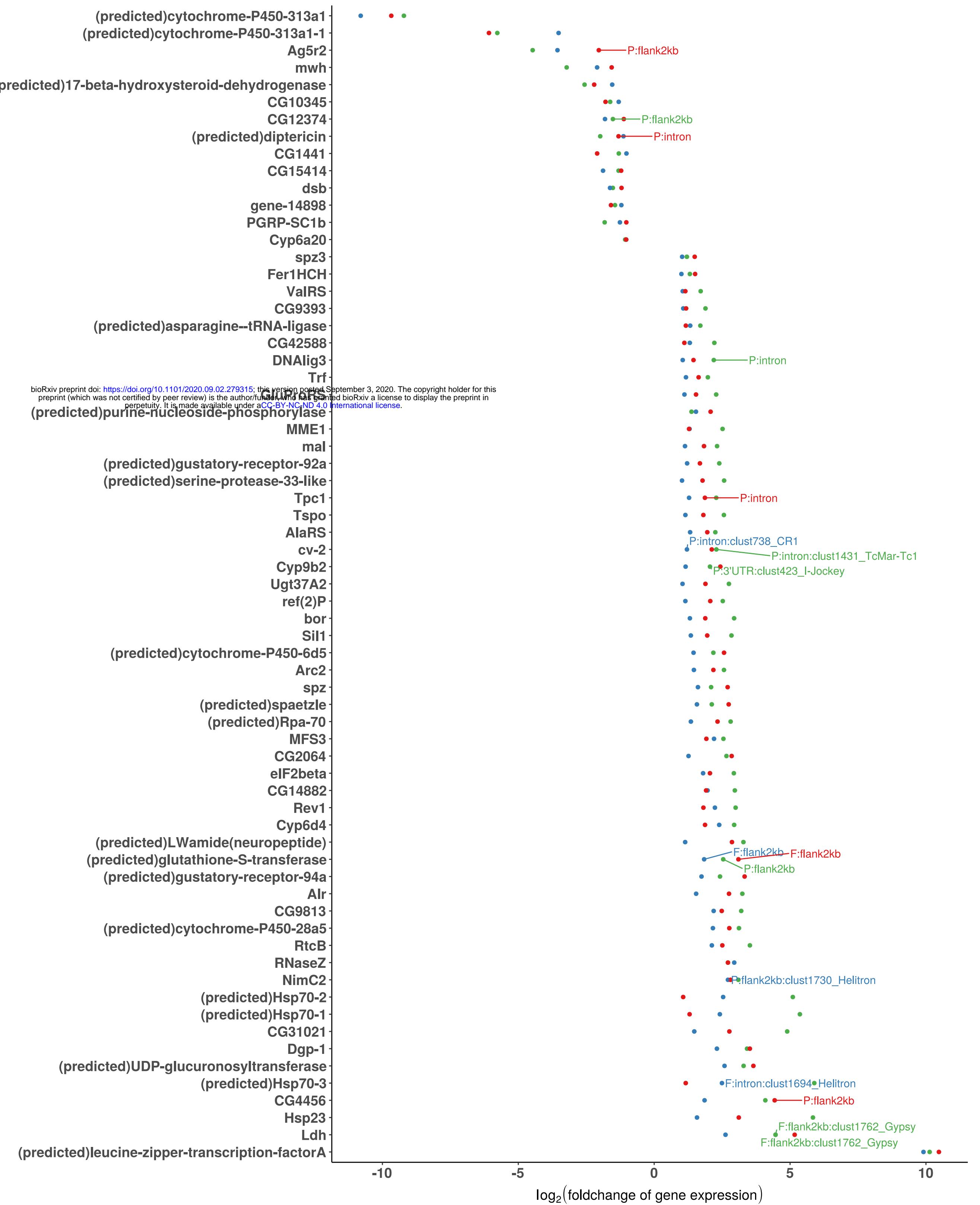

Nipagin (Tegosept, ref. 20-258, ApexTM): 4 g.L⁻¹

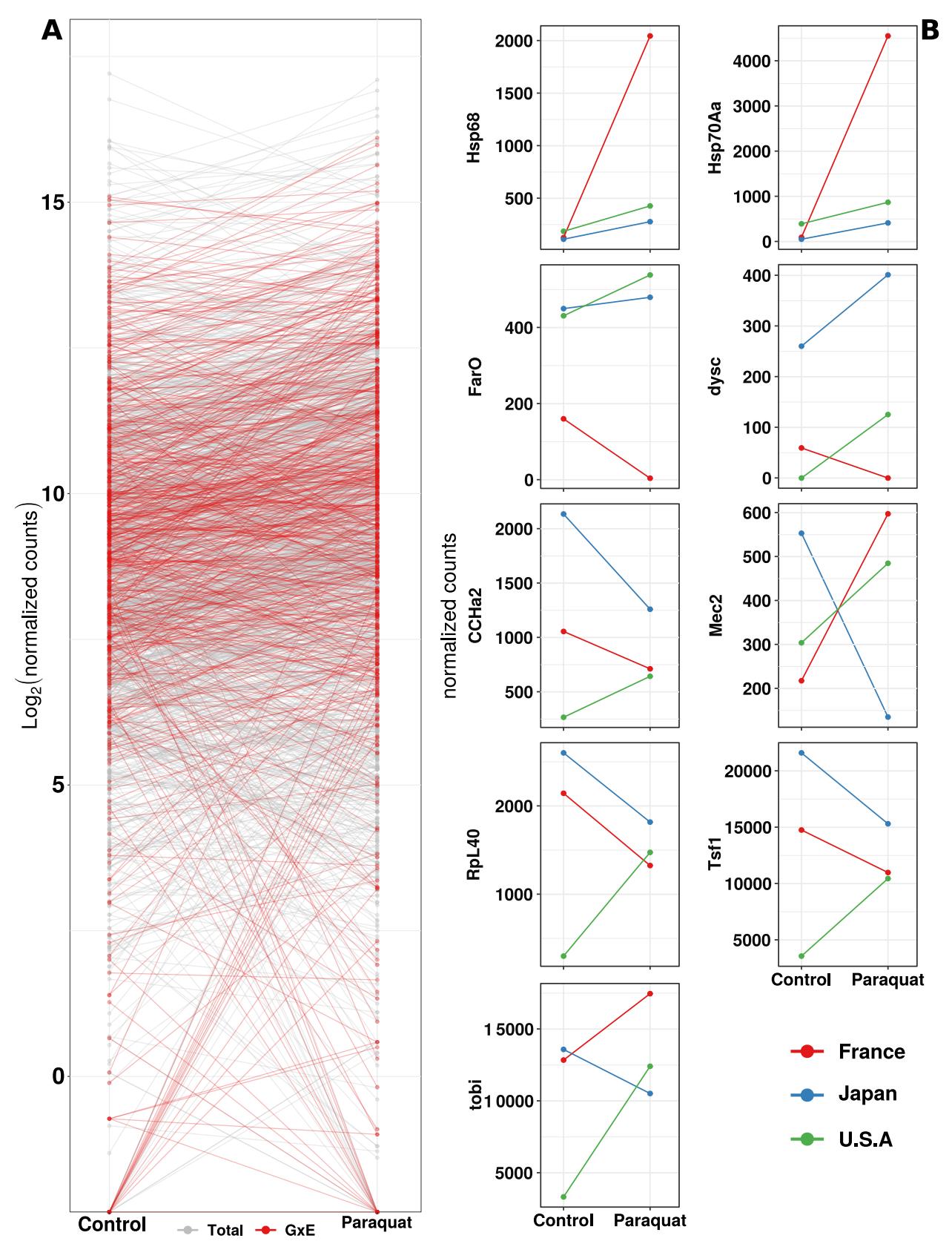

Bring to boil agar, cornmeal, yeast extract and sugar in distilled water. Then wait out of the fire about 10 minutes until the mixture cooled to 53°C before adding diluted nipagin in 96% ethanol. Medium is then poured in vials and cooled at room temperature before to be stored at 4°C.

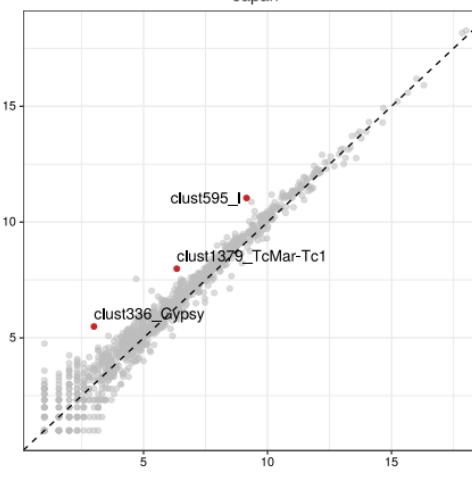
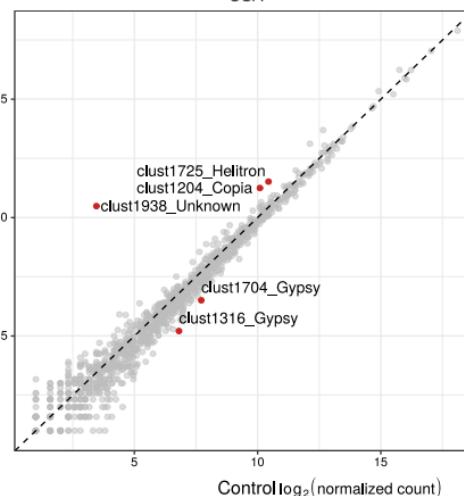
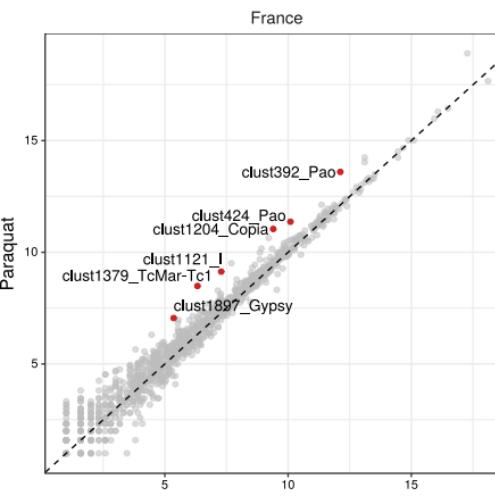
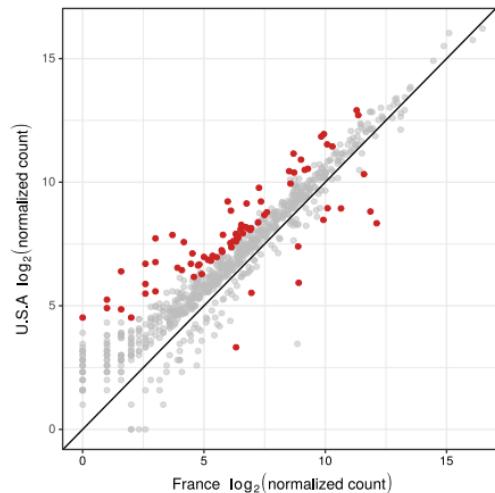
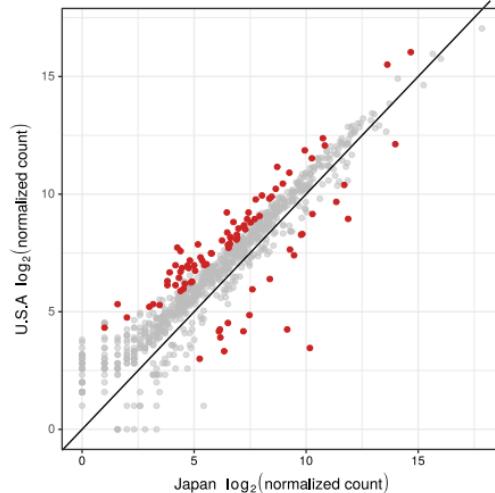
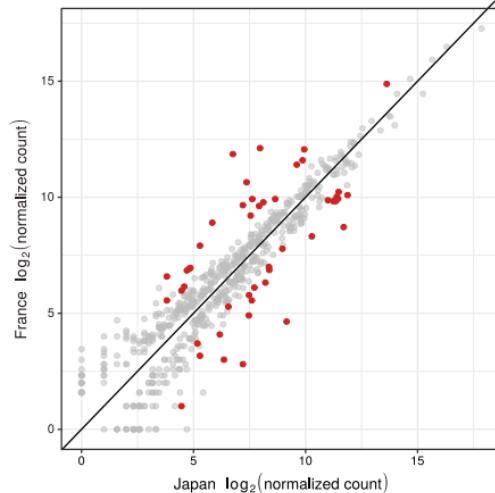

1

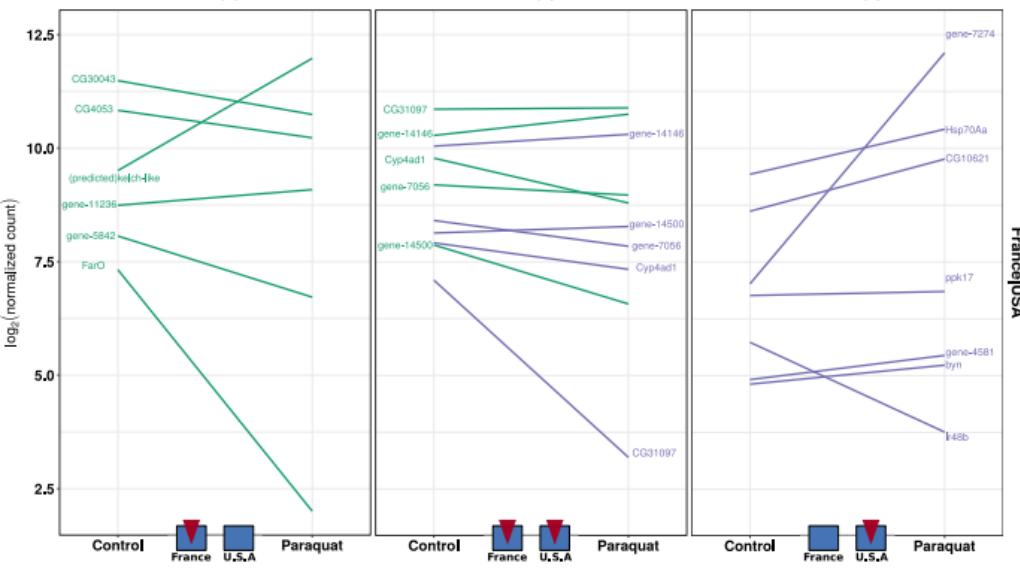
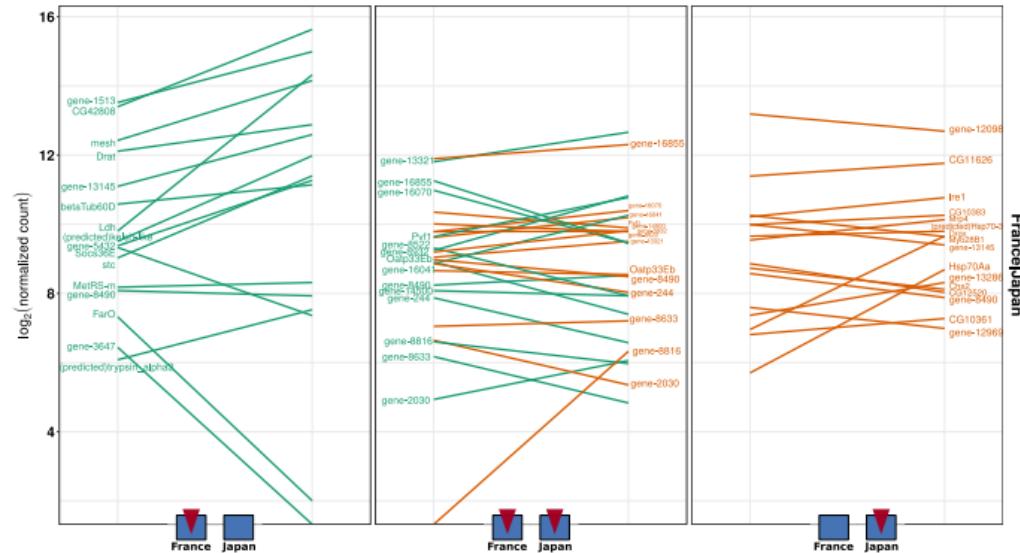
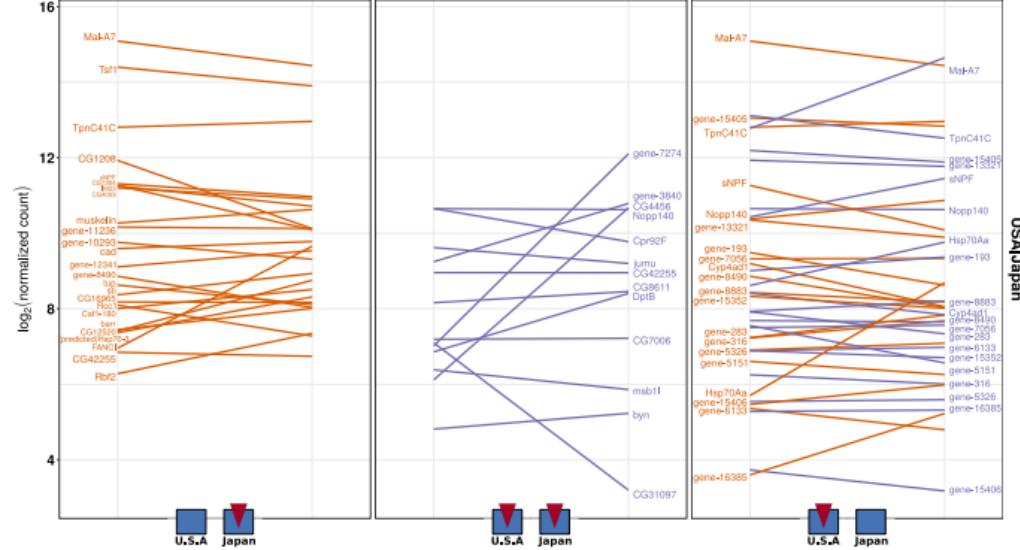




2

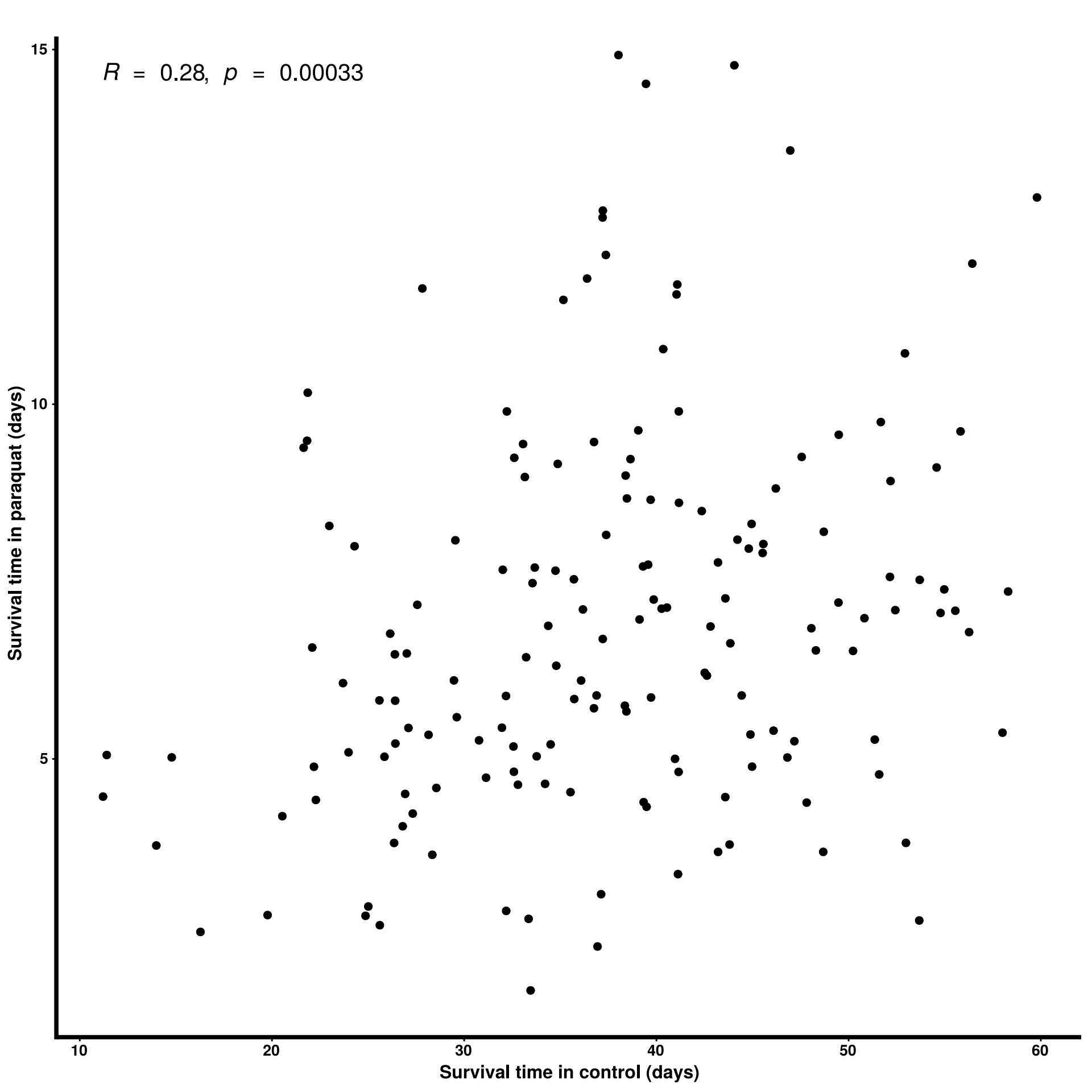

3

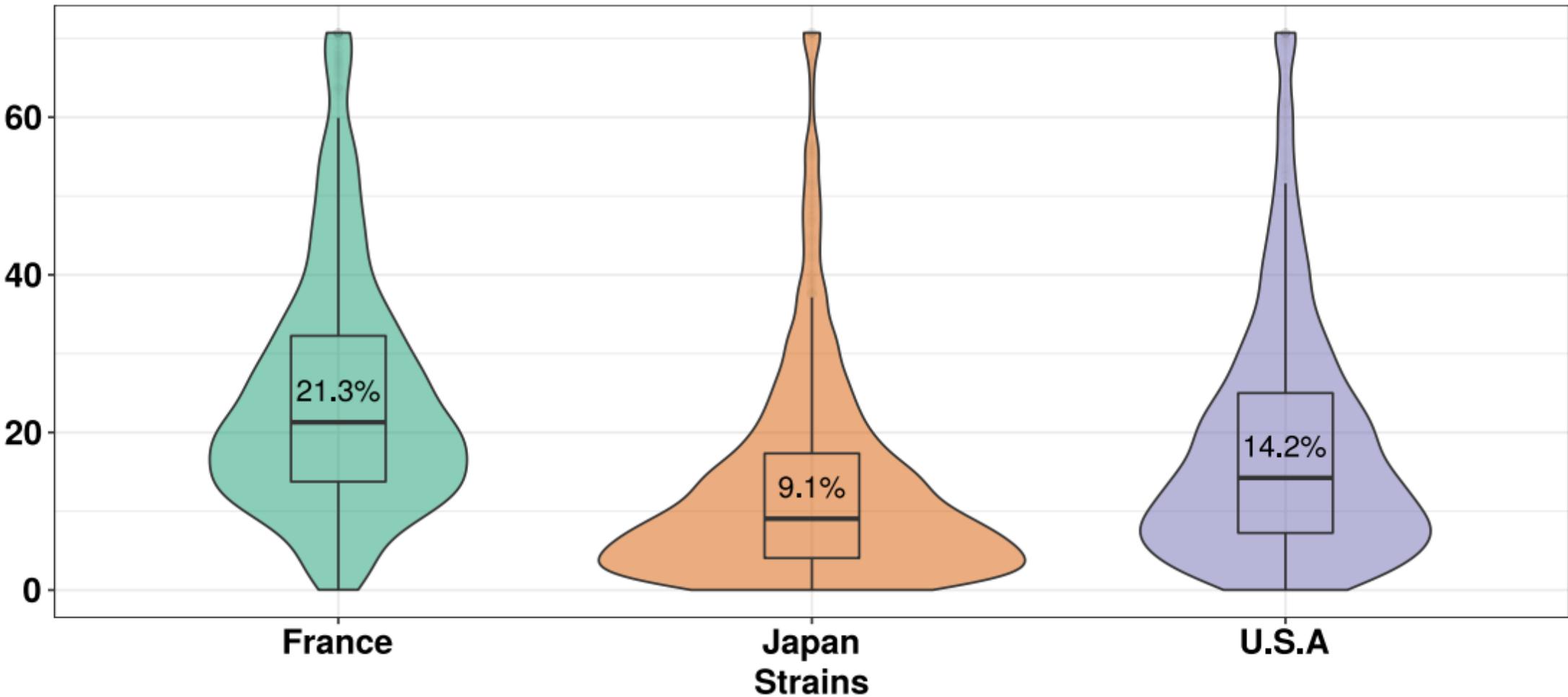


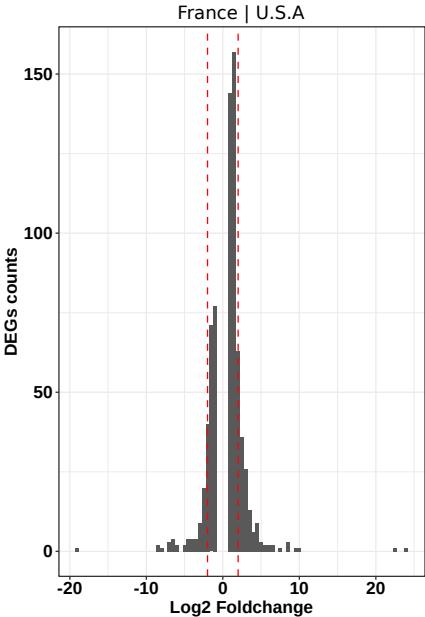
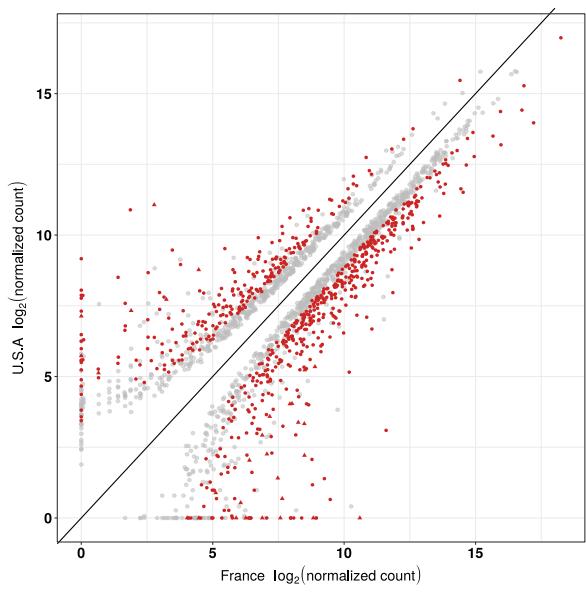
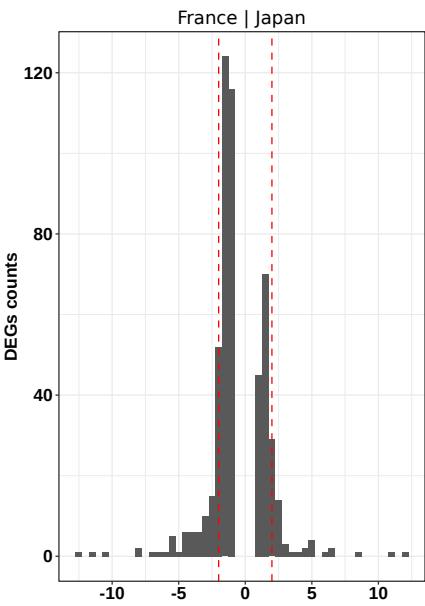
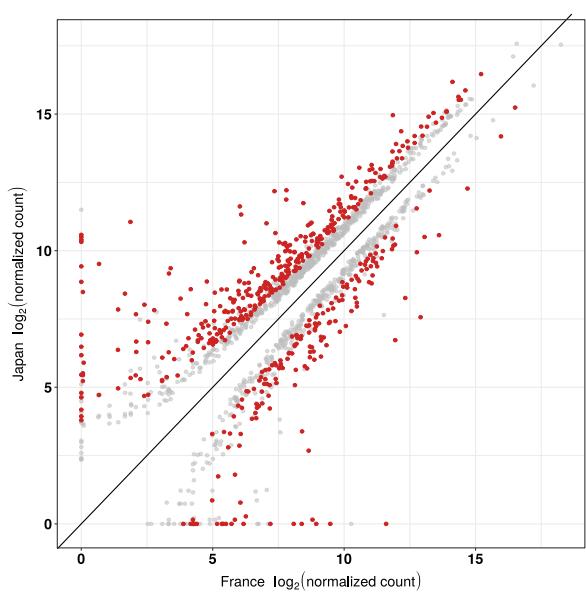
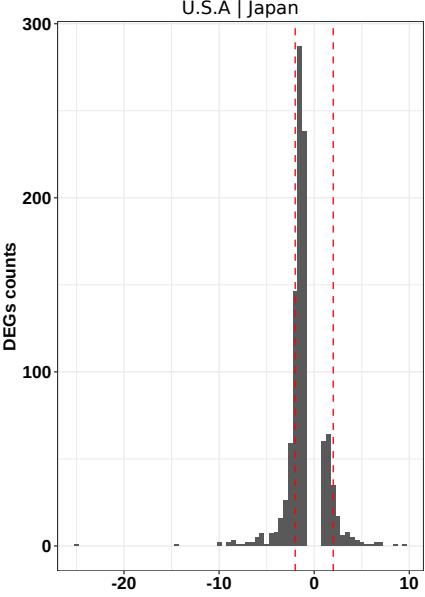
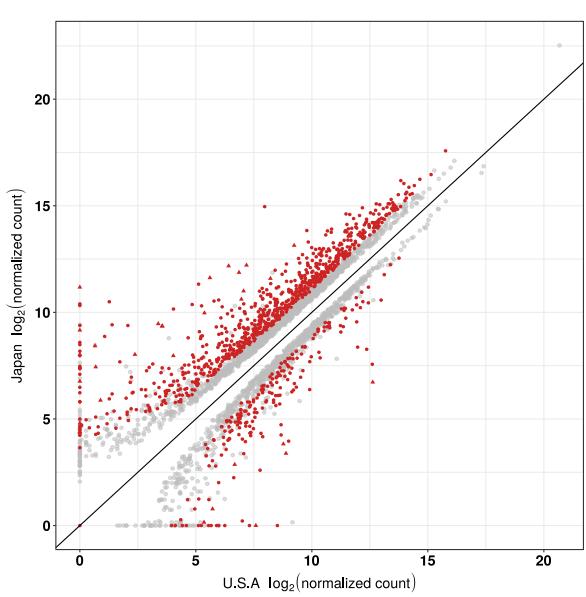


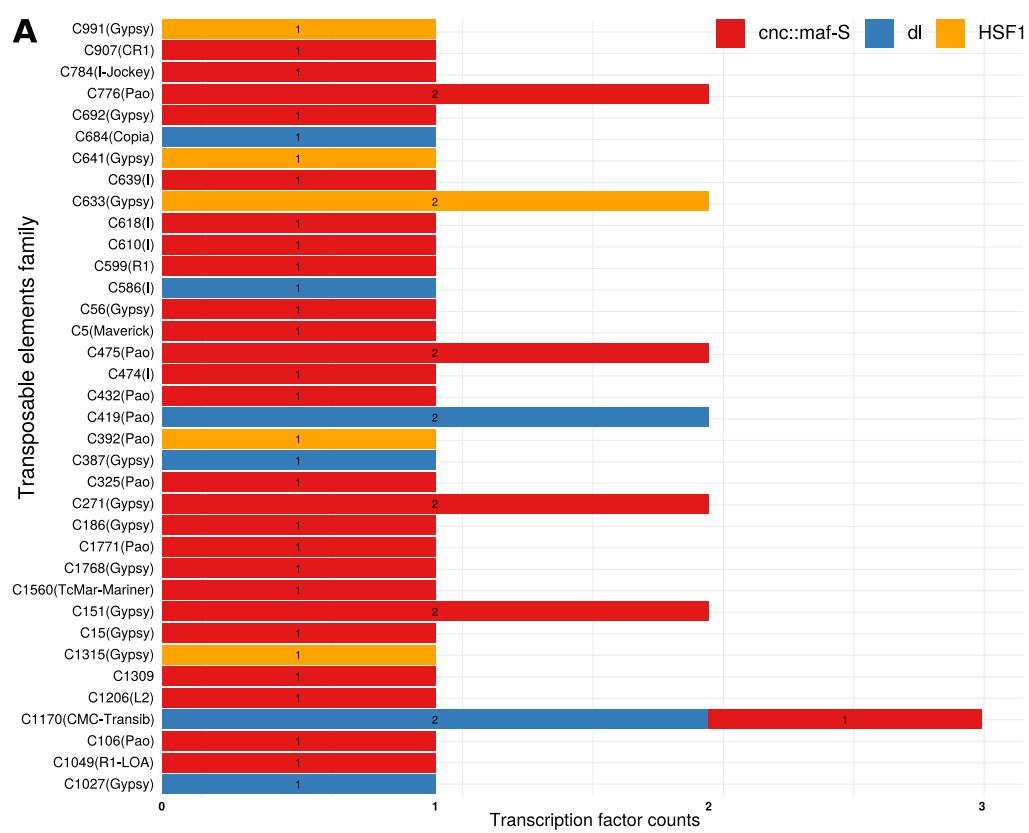













Coefficient of variation (CV%)

