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Abstract  
The   challenge   of   defining   and   cataloging   the   building   blocks   of   the   brain   requires   a   standardized  
approach   to   naming   neurons   and   organizing   knowledge   about   their   properties.   The   US   Brain  
Initiative   Cell   Census   Network,   Human   Cell   Atlas,   Blue   Brain   Project,   and   others   are   generating  
vast   amounts   of   data   and   characterizing   large   numbers   of   neurons   throughout   the   nervous  
system.   The   neuroscientific   literature   contains   many   neuron   names   (e.g.   parvalbumin-positive  
interneuron   or   layer   5   pyramidal   cell)   that   are   commonly   used   and   generally   accepted.   However,  
it   is   often   unclear   how   such   common   usage   types   relate   to    the   many   proposed   evidence-based  
types   that   are   based   on   the   results   of   new   techniques.   Further,   comparing   different   models  
across   labs   remains   a   significant   challenge.   Here,   we   propose   an   interoperable   knowledge  
representation,   the   Neuron   Phenotype   Ontology   (NPO)   that   provides   a   standardized   and  
machine   computable   approach   for   naming   and   normalizing   phenotypes   in   cell   types   by   using  
community   ontology   identifiers   as   a   common   language.   The   NPO   provides   a   framework   for  
systematically   organizing   knowledge   about   cellular   properties   and   enables   interoperability   with  
existing   neuron   naming   schemes.   We   evaluate   the   NPO   by   populating   a   knowledge   base   with  
three   independent   cortical   neuron   classifications   derived   from   published   data   sets   that   describe  
neurons   according   to   molecular,   morphological,   electrophysiological   and   synaptic   properties.  
Competency   queries   to   this   knowledge   base   demonstrate   that   this   knowledge   model   enables  
interoperability   between   the   three   test   cases   and   common   usage   neuron   names   from   the  
literature.  

Introduction  
The   modern   description   and   classification   of   neurons   and   the   diversity   of   their   properties   began  
with   the   work   of   Santiago   Ramon   y   Cajal   over   100   years   ago.   Cajal   benefitted   from   a   newly  
discovered   technique,   the   Golgi   stain,   to   reveal   neurons   as   individual   entities   of   remarkably  
different   shapes,   which   he   described   as   the   “butterflies   of   the   soul”.   Our   knowledge   of   neuron  
types   (as   with   cell   types)   has   continued   to   evolve   as   new   experimental   techniques   emerge.   For  
this   reason,   a   centerpiece   of   the   US   Brain   Initiative   is   to   re-examine   what   constitutes   a   cell   type  
in   light   of   new   ways   of   probing   the   nervous   system.   Through   the   BRAIN   Initiative   Cell   Census  
Network   (BICCN)   researchers   are   generating   large   pools   of   data   using   cutting   edge   methods  
that   are   being   integrated   across   data   types   through   the   use   of   standards   such   as   a   common  
spatial   and   semantic   mappings    (Ecker   et   al.   2017) .   The   BICCN   joins   several   other   large  
initiatives   such   as   the   Blue   Brain   Project    (Markram   2006) ,   Human   Cell   Atlas    (Regev   et   al.   2017) ,  
and   SPARC   ( https://sparc.science/ )   which   also   seek   to   provide   foundational   knowledge   on   the  
types   of   cells   that   make   up   the   nervous   system.   As   these   data   are   analyzed   and   synthesized,  
new   ways   to   distinguish   among   different   classes   of   neurons   are   being   proposed   and   published.   
 
One   of   the   end   goals   of   these   large   projects   is   to   integrate   and   analyze   large   quantities   of  
cellular   data   to   derive   new   taxonomic   classification   of   neurons   across   neural   structures   and   to  
arrive   at   a   new   understanding   of   what   constitutes   a   cell   type   in   the   nervous   system.   To   manage  
this   process,   some   have   called   for   a   consistent   naming   scheme   for   neurons,   so   that   as   new  
types   are   discovered,   their   findings   can   be   reported   and   compared   in   an   organized   way  
(Hamilton   et   al.,   2012   ;    DeFelipe   et   al.   2013 ;    Shepherd   et   al.   2019) .   Biology   has   a   long   history   of  
successfully   developing   and   deploying   taxonomies   and   naming   conventions   for   new   entities,  
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e.g.,   species,   enzymes.   The   process   usually   involves   the   commissioning   of   an   authoritative  
body   that   comes   up   with   a   regularized   method   and   vocabulary   for   distinguishing   among   different  
types   and   applying   an   appropriate   nomenclature.   However,   developing   either   of   these  
pre-supposes   that   we   understand   the   key   dimensions   across   which   neurons   should   be  
classified   and   the   foundations   of   what   constitute   a   cell   type.   For   example,   the   Petilla   terminology  
proposed   a   set   of   criteria   and   controlled   terminology   for   naming   cortical   interneurons    (Petilla  
Interneuron   Nomenclature   Group   et   al.   2008 ).   In   addition,   as   new   technologies   enable   further  
characterization   of   additional   dimensions,   our   concept   of   cell   types   is   likely   to   evolve.   On   the  
other   hand,   although   we   expect   new   insights   regarding   defining   cell   types   in   the   nervous  
system,   to   date   large   integrative   data   gathering   exercises   have   tended   to   refine   our   current  
concepts   rather   than   replace   them   ( Osumi-Sutherland   2017) .    In   a   single   cell   transcriptomic  
analysis   of   retinal   bipolar   cells,    (Shekhar   et   al.   2016) ,   detected   17   different   types   of   RBC,   15   of  
which   corresponded   to   those   previously   described.   The   challenge   remains   to   define   a  
knowledge   representation   that   can   readily   adapt   to   and   integrate   results   from   new   data-driven  
taxonomic   efforts   but   which   still   supports   references   to   classical   naming   schemes   to   ensure  
integration   with   the   large   amount   of   historical   published   knowledge.  
 
Most   proposed   schemes,   to   date,   comprise   a   hierarchical   method   based   on   various   phenotypic  
properties   for   their   foundation,   i.e.,   key   molecular,   physiological,   and   connectivity   signatures   that  
distinguish   a   neuron   type.    Phenotypic   properties   are   typically   properties   of   a   neuron   which   are  
consistent   across   a   variety   of   measurements,   although   many   phenotypic   properties   can   only   be  
consistently   reproduced   with   a   specific   experimental   technique   or   protocol.    Given   the   multiple  
dimensions   across   which   neurons   can   be   differentiated,   a   phenotype-based   approach   for  
classification   could   effectively   generate   an   almost   infinite   number   of   ways   to   categorize  
neurons,   depending   on   the   granularity   at   which   the   distinctions   are   expressed.    A   single  
taxonomy   that   effectively   organizes   neurons   across   these   dimensions   is   unlikely.   The   recent  
proposal   for   naming   cortical   neurons   by   (Shepherd   et   al.   2019)   shows   how   quickly   the   number  
of   phenotypes   can   explode,   particularly   when   trying   to   address   the   results   of   dense   phenotypic  
sampling   such   as   array   expression.   Thus   for   neuronal   cell   types,   given   the   complexity   and  
variety   of   potentially   distinguishing   features   and   the   likely   evolution   of   these   over   time,   any  
system   for   communicating   and   comparing   across   phenotypes   will   require   a   firm   computational  
foundation.  
 
Traditionally,   such   proposed   classifications   are   communicated   through   the   research   paper,  
where   any   taxonomy   proposed   is   presented   in   the   form   a   table,   dendrogram   or   some   other  
figure   (e.g.,   Paul   et   al.,   2017,   Table   S7;    Markram   et   al.,   2015,   Table   1)   .   The   problem   with   our  
traditional   way   of   constructing   and   communicating   these   taxonomies   is   that   they   require   a  
human   being   to   understand,   compare,   and   reconcile   them   (Petilla   Interneuron   Nomenclature  
Group   et   al.   2008).   Anyone   who   has   attempted   to   read   through   multiple   articles,   each   with   their  
own   proposal   for   classifying   cell   types   within   a   region   understands   the   difficulties   in   trying   to  
reconcile   the   different   schemes,   even   when   they   are   based   on   limited   numbers   of   data  
dimensions.    The   multiplicity   of   papers   proposing   classification   schemes   just   for   cortical  
interneurons   illustrates   this   point    (Cauli   et   al.   1997) .   With   the   BICCN   and   other   large   scale  
consortia   tasked   to   map   the   cellular   landscape   of   the   brain   and   body,   the   potential   number   of  
these   taxonomies   is   likely   to   explode   beyond   the   current   already   unmanageable   number,   as  
researchers   apply   new   types   of   analytics   to   understand   the   data.    For   neuroscience   to   move  
beyond   paper-based   forums   for   discussion   and   integration,   we   need   to   treat   taxonomies   and  
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names   as   computable   artifacts   that   comply   with   the   FAIR   data   principles,   FAIR   =Findable,  
Accessible,   Interoperable   and   Reusable;    (Wilkinson   et   al.   2016) .  
 
Towards   that   end,   we   have   developed   an   ontology-based   data   model,   the   Neuron   Phenotype  
Ontology   (NPO).   The   NPO   aims   to   provide   an   interoperable   representation   of   cell   types   that   can  
evolve   as   our   phenotypic   knowledge   evolves,   from   initial   data   gathering   to   modeling   and  
synthesis   (Fig   1).   The   NPO   provides   a   computable   representation   of   cell   types   defined   by  
collections   of   phenotypic   properties,   designed   to   enable   interoperability   between   neuronal  
taxonomies.   It   is   designed   to   enable   scientists   to   discover   which   cell   types   (or   potential   cell  
types)   share   similar   properties   and   to   help   scientists   understand   when   the   cell   types   they  
observe   are   the   same   or   similar   to   other   cell   types   described   in   the   literature   or   from   other  
laboratories.   Here,   we   show   how   the   NPO   can   be   used   to   express   taxonomies   proposed   by  
different   research   groups   using   modern   techniques,   enable   comparisons   between   them,   and  
enable   queries   with   commonly   used   neuron   types   from   the   literature.  
 

Methods  
 

 
Figure   1.   Evolution   of   neuron   knowledge.   A.   Common   usage   types   (CUTs)   emerge   in   the   literature   as   evidence  
accumulated   for   generally   accepted   neuron   types   with   implicitly   known   properties.   Data-driven   studies   generate  
evidence-based   types   (EBTs)   based   on   explicitly   measured   standardized   properties.   B.   The   Neuron   Phenotype  
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Ontology   (NPO)   provides   interoperability   between   the   CUTs   from   the   literature,   the   EBTs   from   data-driven   studies,  
and   new   experimental   observations   from   individual   laboratories.  

 
Overview   of   NPO  
 
The   NPO   as   well   as   all   data   and   code   referenced   below   are   available   for   reuse   under   open  
licenses   (see   Data   and   Code   availability   statement).   
 
The   NPO   provides   a   data   model   for   modeling   a   neuron   type   as   a   “bag   of   key   phenotypes”,   that  
is,   neurons   are   represented   as   a   collection   of   phenotypic   properties   (Fig   2)   formalized   by   Web  
Ontology   Language   (OWL)   classes.   These   properties   can   then   be   used   to   communicate   about  
and   compare   phenotypes   across   laboratories,   species   and   experimental   techniques.   This  
approach   has   been   demonstrated   previously   in   the   context   of   text-based   queries   of   neuron   type  
mentions    (Richardet   et   al.   2015) .  
 
 

 
Figure   2.   High   level   data   model   for   neuron   phenotypes.   The   Neuron   Phenotype   Ontology   characterizes   neuron   types  
as   bundles   of   normalized   phenotypic   properties.  

 

 

Phenotypic  
dimension  

Definition  Vocabularies/ontologies  

Organism  The   species   or   taxon   rank   in  
which   the   phenotype   inheres  

NCBI   taxonomy  
1

Anatomical  The   region   of   the   nervous  
system   containing   parts   of   the  
neuron.    Primary   location   is  
indicated   by   the   location   of   the  
cell   soma,   but   anatomical  
location   may   be   assigned   to  
any   cell   part   through   a   series   of  
predicates   

UBERON;    various   brain   atlases  
via   NIFSTD   parcellation  

2

1   https://www.ncbi.nlm.nih.gov/taxonomy  
2   https://github.com/SciCrunch/NIF-Ontology/blob/master/docs/brain-regions.org  
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Morphological  Distinguishing   morphological  
characteristics  

NIFSTD   
3

Molecular  Distinguishing   molecular  
constituents  

NCBI   Gene ,   CHEBI ,   Protein  
4 5

Ontology  
6

Physiological  Expresses   a   relationship  
between   a   neuron   type   and   an  
electrophysiological   phenotype  
concept.   This   should   be   used  
when   a   neuron   type   is  
described   using   a   high   level  
electrophysiological   concept  
class,   e.g.,   bursting  

Petilla   Conventions     ( Petilla  
Interneuron   Nomenclature   Group,  
2008)  

Connection  Indicates   a   synaptic  
relationship   between   cell   types.  
Further   elaborated   into  
connectivity   determined   by  
different   techniques,   e.g.,  
physiology,   electron   microscopy  

Gene   Ontology  
7

Circuit   role  Indicates   whether   the   neuron   is  
an   Intrinsic   neuron   (local   circuit  
neuron),   projection   neuron   or  
sensory   neuron  

NIFSTD   (Bug   et   al.,   2008)  
 

Projection   targets  Expresses   a   relationship  
between   a   neuron   type   and   a  
brain   region   to   which   it   sends  
axons.   Synaptic   relationships  
are   represented   through   the  
connection   relationship.  

UBERON   (Mungall   et   al.,  
2012)/various   atlases/NIF   Gross  
Anatomy   (Bug   et   al.,   2008)  

Table   1.   Phenotypic   Dimensions   of   the   NPO   and   the   associated   ontologies/vocabularies   used   to   populate   the   data  
model  

Each   of   these   dimensions   is   linked   to   a   formal   vocabulary   or   ontology,   which   is   used   to   provide  
the   descriptors   for   qualitative   phenotypic   attributes   (Table   1).    When   possible,   the   vocabularies  
are   drawn   from   community   ontologies/vocabularies   in   broad   use   across   biomedicine   to   aid   in  
interoperability.   Those   dimensions   that   were   not   covered   by   specific   community   ontologies   were  
added   as   classes   to   the   appropriate   branches   of   the   NIFSTD   ontology.     NIFSTD   is   a  
harmonized   set   of   neuroscience   relevant   ontologies   developed   and   maintained   by   the  
Neuroscience   Information   Framework    (Bug   et   al.   2008) .    These   dimensions   are   further  

3   https://github.com/SciCrunch/NIF-Ontology  
4   https://www.ncbi.nlm.nih.gov/gene  
5   https://www.ebi.ac.uk/chebi/  
6   https://proconsortium.org/  
7   http://geneontology.org/  
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elaborated   in   a   set   of   predicates   that   capture   more   granular   aspects   of   phenotypes.    For  
example,    hasMolecularPhenotype    can   be   further   divided   into    hasNeurotransmitterPhenotype ,  
hasEpigeneticPhenotype ,   and    hasExpressionPhenotype    (Fig   3).      hasExpressionPhenotype    is  
further   broken   down   into   a   set   of   predicates   that   captures   the   methodology   used   to   reveal   the  
phenotype.   In   the   current   version   (v1)   of   the   NPO,   we   have   not   made   use   of   the   full   set   of  
relationships   to   simplify   the   reasoning.   Relationships   that   have   not   been   used   in   the   current  
version   of   the   NPO   are   grayed   out   in   Figure   3.  
 
For   negative   phenotypes,   that   is,   where   the   lack   of   a   particular   phenotype   is   considered   to   be   a  
distinguishing   feature   between   neuron   types,   we   use   negation   in   OWL   semantics,   e.g.,   a  
parvalbumin   negative   neuron   would   be   modeled   as   “not   ( hasExpressionPhenotype    some  
'parvalbumin   alpha')”.  
 
We   have   also   included   disjointness   axioms   in   cases   where   the   strength   of   the   assertions   from  
the   EBTs   were   not   as   definitive   as   full   negation.   
 
 

 
Figure   3.The   set   of   predicates   employed   to   define   molecular   phenotypes  

 
For   evaluation   purposes,   we   have   used   the   NPO   data   model   to   construct   a   knowledge   base   of  
neuronal   phenotypes   comprising   two   branches:   1.   Phenotypic   representations   of   common  
usage   types   (CUTs)   from   classical   morphological   and   physiological   studies   over   the   past   100  
years;    2.   Classification   models   arising   from   newer   experimental   techniques   tied   to   individual  
projects,laboratories    or   initiatives,   termed   evidence   based   types   (EBTs).   The   data   model   is  
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supported   by   computational   tools   that   enable   individual   researchers   to   compose   the   complex  
phenotype   of   a   neuron   out   of   any   number   of   individual   phenotypes   that   are   tightly   linked   to  
individual   data   sets   and   analyses   (Fig   4).     Neuron   Data   Model   (NeuroDM)   is   a   python   library   that  
implements   Neuron   Lang,   a   domain   specific   language   (DSL)   for   specifying   neurons   and  
generating   human   readable   neuron   names   based   on   these   OWL   semantics.   NeuronDM  
provides   tools   for   mapping   to   and   from   collections   of   local   names   for   phenotypes   by   using  
ontology   identifiers   as   the   common   language   underlying   all   local   naming.   These   tools   also   let   us  
automatically   generate   names   for   neurons   in   a   regular   and   consistent   way   using   a   set   of   rules  
operating   on   the   neurons'   constituent   phenotypes.   Neuron   Lang   can   export   to   python   or   to   any  
serialization   supported   by   rdflib,   however   deterministic   turtle   (ttl)   is   preferred.   8

 
 
Modeling   decisions  

Neuron   class   names  
Each   neuron   in   the   NPO   is   identified   by   a   full   uniform   resource   identifier   (URI)   and   a   compact  
identifier   for   ease   of   reference.   The   compact   identifier   has   the   prefix   npokb   and   the   ontology   is  
registered   in   BioPortal   (RRID:SCR_002713)   using   the   NPOKB   prefix   as   NPO   prefix   was   taken.  9

Each   class   has   multiple   human   readable   labels   assigned   as   annotation   properties.    Neurons   are  
named   according   to   the   phenotypic   properties   they   display.    These   labels   are   generated  
automatically   based   on   the   collection   of   phenotypic   properties   reported   for   each   cell   type   using  
the   neuronDM   Python   library.   Phenotypes   are   expressed   as   OWL2.0   restrictions,   and   neuron  
types   as   equivalent   to   the   intersection   of   those   restrictions   (Fig   4).   NPO   provides   two   versions  
of   these   names.     Local   label    records   molecular   properties   in   the   native   form   in   which   they   were  
measured,   e.g.,   genes,   proteins,   transgenes,   while   the    rdfs:label    contains   a   normalized   view  
where   molecules   are   assigned   a   common   molecular   abbreviation   regardless   of   the   form   in  
which   it   was   measured   (see   below).    For   ease   of   reference   we   also   preserve   the   common   name  
for   the   CUT   and   the   original   name   assigned   by   the   investigator   for   EBTs   if   it   was   provided.  
These   can   be   found   under    origLabel ,   and   they   also   appear   as    skos:prefLabel    when   they   are  
present,   otherwise    skos:prefLabel    is   populated   from    rdfs:label    so   there   are   no   neurons   missing  
a   preferred   label.  
 
For   the   NPOKB,    we   generally   follow   the   ordering   recommended   by    (Hamilton   et   al.   2012)    and  
(Ecker   et   al.   2017) .    In   both   papers,   the   recommendation   was   to   create   an   ordered   taxonomy  
based   on   key   phenotypic   features,   arranged   roughly   hierarchically,   starting   from   the   highest  
level,   species,   followed   by   anatomical   regions,   then   a   set   of   standardized   names   for  
morphological,   physiological,   molecular   or   connectional   phenotypes   (Fig   4   lower   panel).    In   this  
way,   as   proposed   originally   by   Hamilton   et   al.,   (2012),   it   is   easy   to   generate   a   human   readable  
list   of   neurons   from   a   given   species   or   brain   region   and   to   compare   across   complex  
phenotypes.   In   addition,   while   we   are   still   sorting   out   what   constitutes   a   cell   type,   we   define   the  
local   environment   in   which   the   neuron   resides.   

8https://github.com/tgbugs/pyontutils/blob/cc538d9c790d607cbc8c2af8a3c25f1bfa3bfc0b/ttlser/docs/ttlser. 
md  
9  https://bioportal.bioontology.org/  
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Figure   4:    Process   used   to   translate   local   terminology   into   ontology-based   representations   and   machine-generated  
names.   Using   NeuronDM,   phenotypes   are   first   mapped    by   a   user    into   ontology   identifiers   (top   panel).    NeuroDM  
automatically   translates   these   mappings   into   OWL   equivalence   statements   (middle   panel).   Neuro   Lang   then  
generates   a   set   of   human   readable   labels   based   on   these   restrictions   (bottom   panel).   
 

Molecular   Indicators   

For   EBTs,   NPO   preserves   the   means   by   which   molecular   phenotypes   are   determined.   If   gene  
expression   is   measured,   we   use   the   identifier   for   the   gene;   if   the   expression   of   a   transgene   is  
measured,   we   include   the   transgene;   if   the   protein   is   measured,   we   include   the   protein.    For  
CUTs,   we   only   use   the   protein,   peptide   or   small   molecules   that   are   thought   to   define   the   class.  
In   order   to   tie   together   these   different   measurements,   we   created   a   class   called   phenotype  
indicator   ( PhenotypeIndicator)    that   groups   together   the   different   forms   of   molecular   entities,  
e.g.,   a   somatostatin   indicator   is   equivalent   to   Sst,   SST,   SOM,   Sst-IRES-Cre,   Sst-IRES-FLpO.    A  
somatostatin   neuron   is   then   defined   as   equivalent   to   any   neuron   that   has   some   somatostatin  
indicator   as   a   molecular   phenotype.    In   this   way,   we   simplify   the   reasoning   required   to   retrieve  
all   somatostatin   neurons,   but   we   also   clearly   preserve   the   statements   made   by   investigators   in  
their   instances   or   model   assertions   as   preserved   in   the   l ocalLabel .    In   addition,   to   translate   all   of  
the   different   representations   of   a   particular   molecular   entity   into   a   consistent   human   readable  
label,   we   have   assembled   a   set   of   short   names   that   represent   each   class   based   largely   on  
common   conventions   or   the   names   used   in   NCBI   for   mouse   genes.   These   short   names   are  
used   in   the   skos:hiddenLabel   for   each   class   and   are   suffixed   with   "   (indicator)"   to   create   the  
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rdfs:label .    For   example,   when   generating   a   label   phenotype   indicators   for   parvalbumin   are  
shown   as   PV.    These   labels   are   available   through    the   “hidden   label”   annotation   property   under  
the    ilxtr:PhenotypeIndicator   class.   

Data   and   Code   Availability  
 
The   NPO/NPOKB   can   be   viewed   by   loading   the   .ttl   file   available   at  
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/neurons/ttl/npo.ttl     into   the   Protégé  
Ontology   Tool    (RRID:SCR_003299)   v5.5.0   or   higher .   As   described   in   the   supplemental  
methods,   the   .ttl   file   is   “light”   version   of   the   full   ontology   that   makes   it   less   reliant   on   the   full  
import   chain.   Additional   information   about   working   with   the   NPOKB   can   be   found   in   the  
supplemental   methods.    The   NPO   is   distributed   under   a   CC-BY   4.0   Attribution   license,   but   it  
imports   community   ontologies   that   may   be   covered   under   different   licenses.  
 
The   work   here   describes   v1.0   of   the   NPO   which   can   be   accessed   at  
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl .     In   the   import  
closure   of   npo.ttl   there   are   no   external   imports   except   for     http://purl.obolibrary.org/obo/bfo.owl  
which   had   versionIri    http://purl.obolibrary.org/obo/bfo/2019-08-26/bfo.owl     at   the   time   npo   1.0  
was   released.   All   other   ontology   iris   resolve   to   the   neurons   branch   of   the   NIF-Ontology   except  
for     http://ontology.neuinfo.org/NIF/ttl/generated/parcellation-artifacts.ttl .    As   a   result,   importing  
npo.ttl   directly   in   Protégé   will   result   in   the   newest   version   of   the   imports   on   the   neurons   branch  
being   used,   which   may   lead   to   some   small   differences   in   the   results   compared   to   what   are  
presented   here..   However,   it   is   possible   to   use   the   NIF-Ontology    catalog   file     to   load   an   exact  
view   of   version   1.0   of   npo.ttl   by   cloning   the   git   repository   and   checking   out   the   npo-1.0   tag.  
 
The   NPOKB   is   available   on   BioPortal   at     https://bioportal.bioontology.org/ontologies/NPOKB .    A  
loaded   graph   that   can   be   used   with   SciGraph,   a   neo4J-based   database   for   serving   ontologies,  
is   available   at   https://github.com/SciCrunch/NIF-Ontology/releases/tag/npo-1.0.  
 
The   content   of   the   NPO   is   also   accessible   via   the   UCSD   SciCrunch   SciGraph   API   at  
https://scicrunch.org/api/1/sparc-scigraph/ .    Documentation   for   access   can   be   found   at  
http://ontology.neuinfo.org/docs/NIF-Ontology/README.html#using-nifstd .  
 
The   neurondm   git   repo   is    https://github.com/tgbugs/pyontutils/tree/master/neurondm .  
 
All   python   code   bears   an   MIT   license   and   is   available   on     pypi .    It   can   be   installed   via   ̀pip   install  
neurondm`.   Additional   instructions   are   available   in   the     README .  
 
Gentoo   linux     ebuilds    f or   installing   neurondm   are   available   in   the   tgbugs-overlay.   It   can   be  
installed   via   ̀layman   -a   tgbugs-overlay   &&   eselect   repository   tgbugs-overlay   &&   emerge  
neurondm`.  
 
An   archive   of   the   code   corresponding   to   this   publication   is   also   available   on   Zenodo   at  
https://doi.org/10.5281/zenodo.4005727 .    Additional   release   artifacts   are   also   available   on   the  
GitHub   release   page     https://github.com/tgbugs/pyontutils/releases/tag/neurondm-0.1.3 .  
 

9  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278879doi: bioRxiv preprint 

https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/neurons/ttl/npo.ttl
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl
http://purl.obolibrary.org/obo/bfo.owl
http://purl.obolibrary.org/obo/bfo/2019-08-26/bfo.owl
http://ontology.neuinfo.org/NIF/ttl/generated/parcellation-artifacts.ttl
https://github.com/SciCrunch/NIF-Ontology/blob/cdffa6e4f30038fc8e1dcdc5065eab65cfe28e1f/ttl/catalog-v001.xml.example#L143-L156
https://bioportal.bioontology.org/ontologies/NPOKB
https://scicrunch.org/api/1/sparc-scigraph/
http://ontology.neuinfo.org/docs/NIF-Ontology/README.html#using-nifstd
https://github.com/tgbugs/pyontutils/tree/master/neurondm
https://pypi.org/project/neurondm/
https://github.com/tgbugs/pyontutils/blob/master/neurondm/README.md
https://github.com/tgbugs/tgbugs-overlay/tree/master/dev-python/neurondm
https://doi.org/10.5281/zenodo.4005727
https://github.com/tgbugs/pyontutils/releases/tag/neurondm-0.1.3
https://doi.org/10.1101/2020.09.01.278879
http://creativecommons.org/licenses/by/4.0/


The   full   list   of   CUTs   is   available   at:  
https://github.com/tgbugs/pyontutils/releases/download/neurondm-0.1.3/data-bundle-2020-0 
8-28.zip  
 
The   full   datasets   produced   for   the   competency   queries   (see   Results)   are   available   at:    Gillespie,  
Martone,   and   Hill   (2020)     https://zenodo.org/record/4007065#.X03TD2dKiAZ  

Results  
Common   Usage   Types  
Common   usage   types   represent   neuron   types   that   have   been   reliably   identified   over   many  
years   by   multiple   groups   using   multiple   techniques.    The   criteria   we   used   to   identity   CUTs   is  
provided   in   Supplementary   Table   S1.    A   master   spreadsheet   was   created   in   Google  
Spreadsheets   and   populated   with   a   list   of   neuron   “stubs”   that   were   created   automatically   by  
taking   the   list   of   major   brain   regions   in   the   UBERON   ontology   and   creating   two   classes   per  
region:    Region   X   projection   neuron   and   Region   X   intrinsic   neuron.   These   anatomical   regions  
were   at   a   fairly   coarse   level   and   comprised   the   major   brain   and   spinal   cord   regions,   but  
generally   not   subregions,   for   example,   cerebral   cortex   and   not   motor   cortex.    Individual   brain  
regions   were   then   augmented   with   the   list   of   neuron   types   extracted   from   online   knowledge  
bases.   We   started   with   the   list   of   approximately   300   mammalian   neurons   from   Neurolex   Wiki  
(RRID:SCR_005402;    (Larson   and   Martone   2013)    that   had   been   compiled   through   expert   input  
via   the   Neuron   Registry   Task   Force   of   the   INCF   (Hamilton   et   al.   2012),   as   well   as   by   community  
contributions.    This   list   was   then   cross   referenced   to   NeuroElectro   (RRID:SCR_006274),   BAMS  
Cells   (RRID:SCR_003531),   Hippocampome.org   (RRID:SCR_009023),   NeuroMorpho.org  
(RRID:SCR_002145)   and   Blue   Brain   Project   (RRID:SCR_002994).    All   of   these   sources   were  
accessed   via   the   Neuroscience   Information   Framework   (RRID:SCR_002894)   project   to   find   a  
set   of   cells   that   were   referenced   in   multiple   databases.    As   NeuroElectro   maps   their  
nomenclature   to   the   Neurolex   names,   we   used   this   database   to   examine   representation   of  
these   cell   types   in   the   neurophysiology   literature.    We   selected   all   neurons   that   were   referenced  
in   more   than   one   paper.   
 
This   procedure   resulted   in   a   working   list   of   ~350   neurons   (for   full   list   see   Data   Availability  
Statement).   From   this   list,   we   then   selected   ~100   neurons   for   which   we   had   basic   morphological  
and   molecular   properties   available.    We   also   included   the   neurotransmitter   for   the   majority.    We  
elected   to   focus   in   v1.0   primarily   on   molecular   and   morphological   phenotypes,   rather   than   the  
full   complexity   available   in   the   NPO   (Fig   2),    as   these   are   the   most   well   known   for   CUTs   and   are  
the   most   frequent   types   encountered   in   the   EBTs   (Zeng   and   Sanes,   2018).   We   also   elected   in  
the   modeling   to   take   a   minimalist   approach,   that   is,   our   representation   is   meant   not   to   represent  
an   exhaustive   list   of   every   molecule   that   has   been   identified   within   a   neuron,   but   the   minimum  
set   of   molecules   and   morphological   features   that   are   characteristic   for   that   type.    This   decision  
allowed   us   to   construct   OWL   equivalence   statements   for   each   CUT   that   defined   the   necessary  
and   sufficient   conditions   that   would   allow   EBTs   to   classify   under   these   CUTs.   Additional  
phenotypes   were   still   recorded   but   added   through   the   Subclassof   axiom.    Subclassof   represents  
a   weaker   form   of   restriction,   representing   a   necessary   but   not   sufficient   condition   for  
membership   in   a   class.   In   order   to   avoid   logical   inconsistencies   that   would   interfere   with  
classification,   we   only   included   positive   phenotypes   in   necessary   and   sufficient   conditions   for  
CUTs.    If   distinguishing   negative   phenotypes   were   present,   they   were   modeled   as   entailments  
rather   than   OWL   restrictions.  
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Following    (Larson   et   al.   2007) ,   the    primary   anatomical   location   of   a   neuron   is   assigned   based  
on   the   brain   region   in   which   the   soma   is   located,   e.g.,   cerebellar   neuron   is   equivalent    to   a  
neuron   with   a   cell   soma   in   any   part   of   the   cerebellum.  
  
Evidence-based   types  
EBTs   represent   cell   types   and   taxonomies   proposed   by   a   single   group   based   on   an   analysis   of  
experimental   evidence.    For   this   version   of   the   NPO   and   for   the   purposes   of   evaluating   our  
phenotype   model,   we   focused   on   3   projects   that   have   generated   cortical   classifications   based  
on   large   amounts   of   experimental   data:   
 

A. Cortical   cell   types   proposed   by   the   Blue   Brain   Project   (Markram   et   al.   2015),   as  
elaborated   in   the   text   and   Table   1.     In   this   study,   56   total    types   across   9   morphological  
types   are   identified   and   physiologically   characterized   from   cells   in   cortical   area   S1   of   rats  
ranging   from   P11-P15   from   which   they   recorded   physiological   properties.    Cell-specific  
molecular   markers   were   confirmed   by   immunohistochemistry   and   RT-PCR.    (Markram   et  
al.   2015)    utilize   a   nomenclature   aligned   to   the   Petilla   conventions    (Petilla   Interneuron  
Nomenclature   Group   et   al.   2008)    to   annotate   their   physiological   properties.    For   NPO  
V1.0,   we   included   the   molecular,   morphological   and   electrophysiological   phenotypic  
dimensions.   
 

B. The   classification   of   proposed   cortical   GABAergic   cell   types   from   Josh   Huang  
and   colleagues   as   summarized   in   Table   S7   of    Paul   et   al .   ( 2017 )    supplemented   with  
additional   information   from   Fig   1 .   The   latter   was   used   primarily   to   create   disjointness  
axioms   (see   Fig   1b).    For   NPO   v1.0,   we   concentrated   primarily   on   the   gene   expression  
phenotypes   presented   in   this   table,   supplemented   with   information   from   the   rest   of   the  
paper,   e.g.,   disjointness   axioms   based   on   Fig   1b.    Synaptic   and   physiological  
phenotypes   will   be   included   in   a   later   version.   
 

C. The   ~800   cell   classes   contained   in   the   Allen   Cell   Types   database  
(RRID:SCR_014806),   a   database   of   experimental   electrophysiological,  
morphological   and   transcriptomic   data   derived   from   single   cell   data .    In   the   Cell  
Types   database,   no   classification   scheme   was   proposed;   rather   the   records   represent  
statistical   summaries   of   properties   measured   from   these   classes   of   cells   identified   in  
transgenic   lines.    We   therefore   include   this   as   an   EBT.    For   this   version,   we   focused   on  
molecular   measurements   from   mouse   cortex.   

 
 
Competency   Queries  
 
The   NPO   was   designed   to   classify   neurons   according   to   phenotype   dimensions,   regardless   of  
whether   they   represent   EBTs   or   CUTs.    To   test   the   integrity   of   the   knowledge   base   and   the  
structure   of   the   ontology,   we   developed   a   set   of   competency   queries    (CQ):    
 

1. Find   all   parvalbumin+   neurons  

Description   Logic   (DL)   Query:    hasPhenotype   some   'parvalbumin   (indicator)'  
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2. Find   all   cortical   neurons   that   contain   somatostatin   

DL   Query:   hasPhenotype   some   'somatostatin   (indicator)'   and   hasSomaLocatedIn   some  
(neocortex   or   'part   of'   some   neocortex)  
 

3. How   do   basket   cells   described   in   Paul   et   al.   (2017)   and   Markram   et   al.   (2015)  
compare   on   key   dimensions?  

DL   Query:   (NeuronHuang2017   or   NeuronMarkram2015)   and   hasPhenotype   some  
'Basket   phenotype'  
 

4. What   EBTs   are   related   to   the   Martinotti   cell?  

Determine   which   neurons   classify   under   the   CUT   Neocortex   Martinotti   cell   
 

All   of   the   results   presented   below   were   produced   by   issuing   OWL   DL   queries   as   specified  
above   in   Protégé   v5.5.0   on   a   MacBook   Pro   using   the   ELK   0.4.3   reasoner   unless   otherwise  
noted.   More   information   on   loading   the   ontology   into   Protégé   can   be   found   in   the   Supplemental  
Methods.   
 
CQ1:    Find   all   examples   of   parvalbumin   neurons  
This   query   should   return   all   neurons   that   have   a   phenotype   associated   with   parvalbumin,  
regardless   of   exactly   what   molecule   was   measured   (DNA,   RNA,   protein)    or   how   it   was  
measured.    In   this   version   of   the   NPO,   we   achieve   this   by   creating   phenotype   indicators   without  
specifying   the   relationships   between   these   measures   through   the   npokb:parvalbumin   (indicator)  
class.    The   results   of   this   query   are   summarized    in   Table   2.    A   total   of   86   neurons   are   returned,  
including   EBTs   (Huang,   N   =   2,   Markram,   N    =   16   and   Allen;    N   =59)   and   CUTs   (N   =   9).    To   aid   in  
comparison   across   these   classes,   we   illustrate   with   one   example   each   from   the   Markram   EBTs  
and   Allen   data.   The   complete   list   of   neurons   is   provided   in   Gillespie   et   al.,   (2020).   The   original  
label   is   provided   for   each   EBT   and   the   common   name   for   the   CUT.    These   are   followed   by   the  
localLabel    names   that   preserve    the   form   of   molecule   upon   which   the   classifications   were   based  
to   illustrate   how   the   NPO   can   be   used   to   compare   across   different   assertions   about   molecular  
identity   (Markram2015,   Huang2017,   AllenCT).    Related   phenotypic   values   are   color   coded   to  
aid   in   comparison.    In   this   case,   we   use   the    localLabel    that   preserves   the   form   of   molecule   upon  
which   the   classifications   were   based.     For   a   complete   list   of   abbreviations,   see   Table   S2.    
 
Table   2.   Examples   of   EBT   and   CUT   neurons   returned   from   Competency   query   CQ1:    Find   all   examples   of  
parvalbumin   containing   neurons.    The   form   of   the   parvalbumin   indicator   is   highlighted   in   red.   Only   one   example   is  
provided   from   the   Allen   EBT   (total   59).    Full   results   are   available   in   Gillespie   et   al.,   2020.   The   compact   identifier   for  
each   class   is   prefixed   (in   bold)    to   the   localLabel   for   ease   of   reference.   The   local   label   preserves   the   form   in   which   the  
molecule   was   measured.   The   Common/original   name   represents   the   common   name    from   the   superclass   for   all   of  
the   physiological   subtypes   for   the   Markram   cells.    However,   for   the   local   label   we   provide   a   subtype   as   the   superclass  
does   not   include   the   full   molecular   profile   in   the   name.  

Type  #  Common/original   name  NPO   localLabel  

CUT   6  nifext:56 :   Neocortex   basket   cell   Mammalia   neocortex   L2/3   Basket    +PV  
+GABA   intrinsic   neuron  
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EBT  
Markram   

16  npokb:112 :Nest   basket   cell    Rattus   norvegicus   S1   Nest   basket  
(intersectionOf   AC   b)   Fast   spiking   +GABA  
+calbindin   +CR   +NPY    +PV    +VIP   -SST  
intrinsic   neuron   (Markram2015)  

EBT  
Huang  

2  npokb:43 :PVBC   cortical   neuron   "Mus   musculus   neocortex   Basket   +GABA  
+ PV-cre    intrinsic   neuron   (Huang2017)"  

EBT   Allen  59  none  npokb:434 :Mus   musculus   female   left  
cerebral   hemisphere   VISrl2_3   -Apical  
Dendrite   -Spiny    +Pvalb-T2A-FlpO  
+Vipr2-IRES2-Cre   +Ai65(RCFL-tdT)  
neuron   (AllenCT)  

 
Three   of   the   neuron   classes   indicate   that   the   parvalbumin   cells   are   basket   cells,   while   the   Allen  
data   does   not   specify   morphology   beyond   noting   that   these   cells   lack   an   apical   dendrite   and  
dendritic   spines.  
 
CQ2:    Find   all   cortical   neurons   that   contain   somatostatin  
This   query   should   return   all   cortical   neurons   that   contain   somatostatin   regardless   of   cortical  
subregion   or   atlas   brain   region.   Details   about   how   atlas   brain   regions   are   handled   are   provided  
in   the   supplemental   methods.    This   query   returns   a   total   of   100   neurons,   including   the   neocortex  
Martinotti   cell   from   the   CUT   and   EBTs   from   the   three   classification   schemes   (Table   4).   For  
Markram,   we   show   only   one   subtype   from   each   of   the   3   main   types.    For   Allen,   we   selected   a  
few   representative   examples.   Note   that   Allen   neurons   are   returned   from   retrosplenial   cortex  
(RSPd2/3)   and   two   areas   of   primary   visual   cortex   (VISal6a,    VISl5 )   while   Markram   is   returned   for  
primary   somatosensory   cortex   (S1).   Both   Huang   and   Allen   cells   use   a   transgenic   line   for   Sst  
expression,   labeled   SST   and   Sst-IRES-FlpO   respectively.   The   local   labels   preserve   the  
nomenclature   used   in   the   source   (Paul   et   al   2017   and   Allen   Cell   Types   Database   respectively).  
However,   because   the   NPO   maps   to   identifier   systems   wherever   possible,   we   can   see   that  
Huang   and   Allen   use   the   same   transgenic   line   developed   by   the   Huang   lab,   regardless   of   the  
different   nomenclature   (jax:028579).    For   the   case   of   transgenes   in   NPO,   the   identifier   is   the  
Jackson   lab   stock   number   when   it   is   available.   
 
Table   4.   Results   for   CQ2:    Find   all    cortical   neurons   containing   somatostatin.   Full   results   are   available   in   Gillespie   et  
al.,   (2020).    The   compact   identifier   for   each   class   is   prefixed   (in   bold)    to   the   local   label   for   ease   of   reference.   The  
local   label   preserves   the   form   in   which   the   molecule   was   measured.   The   Common/original   name   represents   the  
common   name    from   the   superclass   for   all   of   the   physiological   subtypes   for   the   Markram   cells.    However,   for   the   local  
label   we   provide   a   subtype   as   the   superclass   does   not   include   the   full   molecular   profile   in   the   name.   Similar   entities  
across   cell   types   are   color   coded.   Brain   region   =   blue;   somatostatin   indicator   =   red.  

Type  #  Common/original   name  NPO   localLabel  

CUT   1  nifext:55:    Neocortex   Martinotti  
cell  

Mammalia    neocortex    (unionOf   EGL   L3   L5)  
(with-axon-in   cortical   layer   I)   Martinotti    +Sst  
+GABAR   +GluR   +GABA   intrinsic   neuron'  

EBT  31  ● npokb:114:    Small   basket  ● npokb:75:    Rattus   norvegicus    S1    Small  
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Markram   neuron   
● npokb:111:    Martinotti   neuron   
● npokb:109:    Double   bouquet  

neuron  

basket   (intersectionOf   NAC   d)   Fast  
spiking   +GABA   +calbindin   +NPY    +SST  
+VIP   -CR   -PV   intrinsic   neuron  
(Markram2015)  

● npokb:89:    Rattus   norvegicus    S1  
Martinotti   (intersectionOf   AC   b)   Regular  
spiking   non   pyramidal   +GABA  
+calbindin   +NPY    +SST    -CR   -PV   -VIP  
intrinsic   neuron   (Markram2015)  

● npokb:87 :   Rattus   norvegicus    S1    Double  
bouquet   (intersectionOf   IR   c)   Regular  
spiking   non   pyramidal   +GABA  
+calbindin   +CR    +SST    +VIP   -NPY   -PV  
intrinsic   neuron   (Markram2015)  

EBT  
Huang  

4  ● npokb:42 :   MNC   neuron   
● npokb:45:    LPC   neuron   

● Mouse    Neocortex    Martinotti   +GABA  
(intersectionOf   +Adcy2   +Calb2   +Grin3a  
+Inhbb   +Nppc   +Pde2a   +Rgs6   +Rgs7  
+Sst   +Zip1   +Znt3)   +CR    +SST  
interneuron   (Huang2017)  

● Mouse    Neocortex    +GABA  
(intersectionOf   +Calca   +Chrm2   +Cort  
+Gpr88   +Gucy1a3   +Gucy1b3   +Hcrtr1  
+Kcnmb4   +Nos1   +Opn3   +Oxtr   +Pde1a  
+Penk   +Prkg2   +Ptn   +Rln1   +Slc7a3    +Sst  
+Syt4   +Syt5   +Syt6   +Tacr1   +Trpc6  
+Unc5d   +Wnt2)    +SST    +NOS1  
projection   (Huang2017)  

EBT   Allen  64  none  ● npokb:296 :   Mus   musculus   female   right  
cerebral   hemisphere    RSPd2_3     -Apical  
Dendrite   (intersectionOf   Spiny   sparse)  
+Sst-IRES-FlpO    +Nos1-CreERT2  
+Ai65(RCFL-tdT)   neuron   (AllenCT)  

● npokb:415 :   Mus   musculus   female   left  
cerebral   hemisphere    VISl5    -Apical  
Dendrite   -Spiny    +Sst-IRES-Cre  
+Ai14(RCL-tdT)   neuron   (AllenCT)  

● npokb:412 :   Mus   musculus   female   right  
cerebral   hemisphere    VISp6a    -Apical  
Dendrite   (intersectionOf   Spiny   sparse)  
+Sst-IRES-Cre    +Ai14(RCL-tdT)   neuron  
(AllenCT)  

 
CQ3:How   do   basket   cells   described   in   Paul   et   al.   (2017)   and   Markram   et   al.   (2015)   compare   on   key  
dimensions?  
This   query   returned   EBT   cells   from   the   two   groups   that   were   assigned   the   morphological  
phenotype   “basket”.    A   total   of   22   neurons   were   returned,   20   from   Markram   and   two   from  
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Huang.    A   subset   are   illustrated   in   Table   5   and   related   phenotypes   are   color   coded   across   the  
different   types   for   ease   of   comparison.   For   the   Markram   cells,   we   only   show   one   subtype   for  
each   main   class.    
 
Table   5.   Neurons   that   have   a   basket   phenotype.    Similar   entities   across   the   cell   are   color   coded   to   aid   in   comparison.  
The   full   results   list   is   available   in   Gillespie   et   al,   2020.     Similar   entities   are   color   coded   across   cell   types:    blue   =   brain  
region;   green   =   morphology;   purple   =   neurotransmitter;   dark   red   =   parvalbumin   indicator;   red   =   somatostatin  
indicator.  

Original   name  NPO   ID  NPO   Label  

PVBC   Neuron  
(Huang2017)  

npokb:43    Mus   musculus     neocortex     Basket     +GABA     (intersectionOf  
+Adm   +Cckbr   +PV   +ilxtr:Kv3   +Rspo2   +Adcy8   +Cox6c  
+Gabra1   +Gabra4   +Gabrd   +Gria1   +Gria4   +Mef2c   +Pparg  
+Ppargc1a   +Rgs4   +Slit2   +Slit3   +Tac1   +Arhgef10   +Esrrg  
+Nefh   +Adcy1   +Rasl11b)     +PV     intrinsic   neuron  
(Huang2017)  

CCKC   Neuron  
(Huang2017)   

npokb:40    Mus   musculus     neocortex    Basket     +GABA     (intersectionOf  
+Crh   +Cck   +Cck   +Cnr1   +Edn3   +Htr3a   +Igf1   +VIP   +VIP  
+Vipr1   +Adcy9   +Chrm3   +Cplx2   +Htr2c   +Pnoc   +Npy1r  
+Tac2   +Cplx3   +Pde7b   +Prok2   +Hs6st3   +Syt10   +Rgs12)  
+Cck     +VIP     intrinsic   neuron   (Huang2017)  

Large   basket   cell  
(Markram2015):  
subtype  

npokb:59  'Rattus   norvegicus     S1     Large   Basket     (intersectionOf   AC   b)  
Fast   Spiking     +GABA     +Calb   +Calb2   +Npy     +PV     +VIP     -Sst  
interneuron   (Markram2015)'  

Nest   basket   cell  
(Markram2015):  
subtype  

npokb:65  ‘Rattus   norvegicus    S1     Nest   Basket     (intersectionOf   AC   b)  
Fast   Spiking    +GABA     +Calb   +Calb2   +Npy     +PV     +VIP     -Sst  
interneuron   (Markram2015)'  

Small   basket   cell  
(Markram2015):  
subtype  

npokb:73  ‘Rattus   norvegicus     S1     Small   Basket     (intersectionOf   AC   c)  
Fast   Spiking     +GABA     +Calb   +Npy   +Sst     +VIP     -Calb2     -PV  
interneuron   (Markram2015)'  

 
Two   classes   of   basket   neurons   are   returned   for   Huang,   while   three   are   returned   for   Markram.  
Each   of   the   three   Markram   classes   are   distinguished   by   distinct   basket   morphologies:    small  
basket   phenotype,   large   basket   phenotype,   and   nest   basket   phenotype.   These   morphologies  
are   modeled   as   subtypes   of   npokb:BasketPhenotype.   
 
For   these   types   of   comparisons,   the   NPO   facilitates   comparison   across   diverse   experimental  
techniques   and   anatomical   nomenclatures   and   can   help   to   generate   testable   hypotheses  
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regarding   phenotypes.   In   this   example,   it    is   difficult   to   tell   from   the   information   provided   whether  
there   is   a   1:1   correspondence   between   any   of   the   Huang   and   Markram    cells.   The   only  
molecules   mentioned   by   all    5   cells   are   GABA,   PV   and   VIP.    The   Huang   PVBC   neuron   is   PV+  
while   the   CCKC   neuron   is   VIP+.    Two   Markram   neurons   are   positive   for   both   PV   and   VIP,   while  
the   small   basket   cell   is   asserted   to   be   PV+   and   VIP-.    No   negative   phenotypes   were   recorded  
for   the   Huang   neurons,   as   we   based   the   equivalence   classes   on   the   information   available   in  
Table   S7   which   only   included   positive   phenotypes.   In   the   NPO,   we   operate   under   an   open   world  
assumption,   that   is,   unless   there   is   an   explicit   statement   that   a   molecule   is   lacking,   we   do   not  
assume   that   it   is   absent.   We   do   provide   additional   information   in   the   form   of   disjointness   axioms  
based   on   Fig   1b   of    Paul   et   al.   (2017)   that   the   PV-containing   and   the   VIP-containing   cells   are  
non-overlapping.   This   approach   dovetails   with   EBTs   making   assertions   about   disjointness   of   cell  
types   within   a   species   which   can   be   true   even   if   there   is   not   a   universal   axiom   about   molecular  
constituents.    Disjointness   therefore   doesn’t   mean   that   there   is   no   expression,   but   an   inspection  
of   the   data   provided   in   Fig   1e   indicates   that   expression   of   PV   in   the   CCKC   neuron   is   very   low.  
Inspecting   the   data   therefore   suggests   that   the   CCKC   neuron   is   VIP+   and   PV-,   consistent   with  
the   small   basket   cell   of   Markram.  
 
This   example   illustrates   some   of   the   difficulties   involved   in   comparing   across   phenotypes,  
particularly   when   the   different   phenotypes   are   measured   across   experiments.   It   also   illustrates  
the   importance   of   tying   EBTs   to   experimental   data,   so   that   predictions   generated   from   these  
comparisons   can   be   explored.    In   this   case,   Paul   et   al.   (2017)   provided   expression   data   for  
several   key   molecules   in   FIg   1e.   This   figure   shows   that   while   the   CCKC   neuron   expresses   little  
to   no   PV,   consistent   with   the   small   basket   cell,   it   also   expresses   little   to   no   Sst   and   detectable  
Calb2,   in   contrast   to   the   small   basket   cell.    However,   as   is   easily   seen   in   the   labels,   the   Huang  
and   Markram   cells   come   from   mouse   and   rat   respectively   and   how   complex   molecular  
phenotypes   compare   across   species   is   unknown   (Yuste   et   al.,   2020).  
 
CQ4:   What   EBTs   are   related   to   the   Martinotti   cell?  
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Fig   5.   Inferred   hierarchy   after   reasoning   over   the   ontology   for   the   Martinotti   cell.    Panel   A   shows   the   hierarchy  
generated   under   the   NeuronCUT   class.    The   position   of   the   Marinotti   CUT   is   indicated   by   the   lower   red   arrow.    An  
enlargement   of   the   Martinotti   classification   is   shown   in   panel   B.    Panel   C   shows   the   OWL   representation   of   the  
Martinotti   CUT.   

 
 
To   address   this   competency   query,   we   reasoned   over   the   ontology   to   determine   which   neurons  
would   classify    under   the   Neocortex   Martinotti   neuron   CUT.    For   a   neuron   to   be   classified   as   a  
type   of   Martinotti   cell,   it   has   to   share   necessary   and   sufficient   conditions   of   that   class   as   coded  
in   the   equivalence   statements.    As   discussed   in   the   methods,   we   deliberately   chose   to   model   a  
minimum   of   properties   as   necessary   and   sufficient   due   to   the   large   variability   in   the   number   of  
phenotypes   recorded   for   the   EBTs.    Additional   properties   are   included   (Figure   5C)   but   not   in   the  
form   of   OWL   restrictions,   so   they   do   not   factor   into   the   reasoning.   We   also   only   represent   the  
major   classes   of   CUTs   and   do   not   include   subtypes,   as   these   are   less   well   agreed   upon.   In  
OWL,   if   we   were   to   require   that   a   Martinotti   neuron   must   have   calretinin,    if   a   given   EBT   did   not  
state   that   calretinin   was   a   defining   characteristic,   the   neurons   would   not   classify.   In   fact,  
according   to    Rudy   et   al.   (2011) ,   Martinotti   cells   contain   two   subclasses,   one   that   contains  
calretinin   and   one   that   does   not.    In   the   NPO,   the   NeuronHuang2017   EBT   notes   the   presence   of  
calretinin   (+Calb2),   while   the   NeuronMarkram2015   EBT   says   it   is   absent   (-Calb2),   perhaps  
representing   these   two   subclasses.   
 
As   Fig   5   shows,   the   Allen   EBTs   do   not   classify   under   the   Martinotti   CUT.   In   v1.0   of   the   NPO,   we  
only   model   morphological   phenotypes   at   a   coarse   level,   e.g.,   Martinotti   phenotype,   which   is  
assigned   to   the   level   of   the   entire   cell.   In   contrast,   NeuronACT   provided   morphological  
information   only   for   the   dendrites   of   each   cell.    For   the   cortical   somatostatin   containing   cells,   it  
was   noted   that   they   lack   an   apical   dendrite   and   dendritic   spines,   but   no   assertion   was   made  
about   a   Martinotti   phenotype,   unlike   in   the   other   two   classifications.   In   the   future,   the   NPO   will  
include   additional   defining   features   of   a   Martinotti   phenotype.   
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FAIR   properties   of   the   NPO  
 
The   NPO   was   designed   to   be   consistent   with   the   FAIR   principles.   In   Table   7,   we   show   how   the  
NPO   achieves   FAIR   using   the   rubric   in    Hodson   et   al.   (2018) .    The   key   features   are   machine  
readability,   the   use   of   identifiers   (FAIR   vocabularies),   common   knowledge   representation  
languages   and   community   standards.   We   provide   a   comparison   with   other   cellular   ontologies   in  
Table   S1.  
 
Table   7.   This   rubric   (Hodson   et   al.,   2018)   organizes   the   15   FAIR   principles   (Applicable   principles)   into   a   hierarchical  
table   according   to   how   easy   they   are   to   achieve,   starting   from   a   basic   core   (Summary)   and   rates   data   according   to  
level   of   compliance,   from   1   to   4   *   (Rating).    We   provide   an   evaluation   of   the   NPO/NPOKB   against   these   principles   in  
column   4.  

Rating  Summary  Applicable   principles  NPO/NPOKB  

*  The   basic   core:  
metadata,   PID  
&  
access  
 

F2.   data   are   described   with   rich  
metadata  
F1.   (meta)data   are   assigned   a  
globally   unique   and   persistent  
identifier  
A1.   (meta)data   are   retrievable   by  
their   identifier   using   a  
standardized  
communications   protocol  
 

● F2:   Full   descriptive   metadata   for   the  
ontology   are   included   in   the   .ttl   file.  
Metadata   for   the   datasets   and   code   are  
included   in    Pypi    from    setup.py ,    Zenodo ,  
MIRO ;    The   NPOKB   includes   complete  
authoring   metadata.  

● F1:    All   datasets   referenced   in   this   paper  
have   been   assigned   DOIs  

● F1.   The   NPOKB   is   assigned   a   unique  
identifier   (RRID)    RRID:SCR_017403  

● A1.   RRIDs   are   resolvable   through  
identifiers.org:  
https://identifiers.org/RRID:SCR_017403  
and   through   the   SciCrunch   Registry  
resolver   service:  
https://scicrunch.org/resolver/RRID:SCR_ 
017403     by   the   Neuroscience   Information  
Framework   and   dkNET .  

**  Enhanced  
access:  
catalogues   for  
discovery,  
standard  
(controlled)  
access  
&   licences  
 

F4:.   (meta)data   are   registered   or  
indexed   in   a   searchable  
resource  
A1.1.   the   protocol   is   free,   open  
and   universally   implementable  
A1.2.   the   protocol   allows   for   an  
authentication   and   authorization  
procedure,   where   necessary  
R1.1.   (meta)data   are   released  
with   a   clear   and   accessible   data  
usage  
license  
 

 
● F4:   All   python   code   is   available   via   pypi.  

ebuilds   for   Gentoo   are   available   from  
tgbugs-overlay.  

● F4.   The   NPO   is   registered   in    BioPortal  
and   in   the   SciCrunch   Registry  
(RRID: SCR_017403) .  

● A1.2   API   access   is   provided   via   Bioportal  
and   also   via   SciGraph   maintained   by   the  
Neuroscience   Information   Framework  
and   dkNET.  

● R1.1   The   NPO   is   covered   under   a   CC-BY  
4.0   license.  

***  Use   of  
standards:  
for   metadata  
and  
data  
 

I1.   (meta)data   use   a   formal,  
accessible,   shared,   and   broadly  
applicable  
language   for   knowledge  
representation  
R1.3.   (meta)data   meet   domain  
relevant   community   standards  

 
● I1:   The   ontology   is   built   in   OWL2,   a  

recognized   standard   for   ontologies  
● R1.3:   The   phenotype   bags   are   built   out   of  

terms   from   community   standard  
ontologies.  

● F3:   All   terms   are   defined   by   a   URI   as   well  
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F3:    metadata   clearly   and  
explicitly   include   the   identifier   of  
the   data   it  
describes  
 

as   a   compact   identifier  

****  Rich,   FAIR  
metadata  

R1.   (meta)data   are   richly  
described   with   a   plurality   of  
accurate   and  
relevant   attributes  
I2.   (meta)data   uses   vocabularies  
that   follow   FAIR   principles  
 

● R1:   The   ontology   has   complete   metadata  
associated   with   it   

● I2:   The   NPO   has   been   designed   in  
accordance   with   the   FAIR   principles.  
Documentation   

● I2:   The   NPO/NPOKB   imports   relevant  
community   vocabularies   (see   Table   1)  
that   adhere   to   the   FAIR   principles.   

*****  Provenance  
and  
additional  
context  
 

R1.2   (meta)data   are   associated  
with   data   provenance  
I3.   (meta)data   include   qualified  
references   to   other   (meta)data  
A2.   metadata   are   accessible,  
even   when   the   data   are   no  
longer   available  
 

● R1.2:    References   that   support   assertions  
are   included   in   the   annotations   although  
unfortunately   OWL   does   not   provide   an  
easy   way   to   annotate   specific   triples.   

● !3:    I2:   The   NPO/NPO-KB   imports   relevant  
community   vocabularies   (see   Table   1)  
that   adhere   to   the   FAIR   principles.   

● A2:   The   NPO   and   associated   tools   have  
been   registered   with   the   SciCrunch  
Registry   ,   which   maintains   metadata  
pages   for   similar   resources.   They   ensure  
that   their   metadata   is   accessible   even   if  
the   resource   is   no   longer   available.   

  
 

Discussion   and   conclusion  
The   NPO   provides   a   semantically-enriched,   FAIR   data   model   for   representing   the   complex  
cellular   phenotypes   being   generated   by   neuroscientists   involved   in   individual   and   large   scale  
brain   initiatives.    It   allows   the   creation   of   machine   generated   taxonomies,   and   provides   a  
consistent   naming   convention   that   is   machine   configurable.   Using   the   NPO,   we   showed   that   we  
could   take   cellular   data   arising   from   high   throughput   activities,   e.g.,   the   Allen   Cell   Atlas,   large  
projects   like   the   Blue   Brain   Project   and   from   individual   investigators   to   cross   between   different  
techniques   to   show   areas   of   agreement   and   non-alignment.    This   exercise   is   not   trivial,   as   the  
multiplicity   of   techniques,   the   incomplete   sampling,   and   the   complex   nomenclature   present  
challenges.    However,   the   NPO   helps   to   mitigate   these   by   allowing   translation   of   custom   lab  
nomenclature   and   experimental   results   into   a   common,   semantic,   and   computable  
representation   using   community   ontologies.    The   names   themselves   can   be   customized   to  
conform   to   any   nomenclature   standard   that   might   emerge   for   human   consumption   (e.g.,  
Shepherd   et   al.,   2019),   but   this   process   is   managed   as   a   formal   specification   rather   than  
through   agreed   upon   naming   conventions.  
 
We   have   focused   our   efforts   on   addressing   the   problem   of   cell   classification   vs   the   issue   of  
determining   neuronal   types   by   providing   a   means   to   compare   our   current   knowledge   about   cell  
types   (our   common   usage   types)   with   the   many   different   classifications   being   generated   by   data  
driven   methods   and   other   experimental   techniques.   The   distinction   between   a   neuron   type   vs   a  
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neuron   class   is   not   entirely   clear,   and   the   terms   are   often   used   interchangeably.   We   use   class  
here   to   refer   to   a   set   of   neurons   that   satisfy   a   set   of   criteria,   e.g.,   GABAergic   neurons   =   all  
neurons   that   use   GABA   as   a   neurotransmitter.    The   number   of   potential   classes   given   the  
number   of   phenotypic   dimensions   measured   is   therefore   very   large.   Types,   however,   refer   to  
neurons   that   are   sufficiently   distinct   that   the   presence   of   a   given   set   of   features   will   reliably  
predict   the   presence   of   additional   features   that   have   not   been   measured.    For   example,   when   a  
cerebellar   Purkinje   cell   is   identified   by   a   Nissl   stain   based   on   its   size,   shape,   and   location,   we  
can   reliably   infer   that   it   contains   parvalbumin,   and   calbindin,   has   dendrites   densely   covered   in  
dendritic   spines,   and   uses   GABA   as   a   neurotransmitter   whether   or   not   we   explicitly   measure  
them.   This   definition   is   similar   to   that   proposed   by   Zeng   and   Sanes    (Zeng   and   Sanes   2017)    who  
propose   that   types   represent   discrete   groups   which   notionally   serve   a   specific   function   while  
classes   represent   aggregates   of   types   that   share   common   features.   Types   are   also   the  
categories   of   cells   that   must   be   accounted   for   when   building   circuit   diagrams   of   the   nervous  
system    (Luo,   Callaway,   and   Svoboda   2008) .   
 
The   NPO   allows   us   to   communicate   about   and   compare   measured   neuronal   phenotypes   in   a  
way   that   reflects   human   understanding   but   that   can   also   be   fully   managed   using   modern  
computational   methods.    Genomics   benefitted   enormously   from   a   community   ontology   for  
annotation   of   experimental   results   that   allowed   them   to   be   communicated   in   a   consistent   and  
machine-processable   manner,   the   issue   of   neuron   typology   will   also   benefit   from   a   consistent  
annotation   framework.   Although   there   are   challenges,   the    phenotypes   themselves   lend   themselves  
to   a   consistent   annotation   framework,   e.g.   genes,   morphological   features.    However,    the   issue   of  
cell   type   itself   is   more   fluid.    Thus   the   NPO   implements   a   model   that   distinguishes   between  
observations   in   single   cells   (instances),   proposals   about   cell   types   derived   from   computational  
analyses   (EBTs)   and   cell   types   that   have   been   recognized   by   one   or   more   criteria   across   multiple  
labs   and   techniques   (CUTs).    None   of   these   categorizations   represent   ground   truth.    Nevertheless,  
transcriptomics   combined   with   data   driven   approaches   have   shown   promise   as   a   unifying  
technique   that   may   allow   stable   cell   populations   to   be   described   within   a   probabilistic   framework  
(Yuste   et   al.,   2020).   Such   abstractions   will   still   likely   reference   entities   such   as   brain   regions,  
marker   genes,   morphology   and   connections   and   many   of   these   will   map   onto   well   known   cell  
types   (Yuste   et   al.,   2020).    Disagreements   are   also   still   likely   to   arise   about   the   nature   of   of  
these   populations,   particularly   at   finer   levels   of   granularity    NPO   and   the   associated   knowledge  
environment   provide   a   bridge   between   such   classifications   generated   using   high   throughput   and  
integrative   techniques   with   our   accumulated   knowledge   over   the   past   100   years   on   cell   types   in  
the   nervous   system.   
 
The   work   reported   here   should   be   considered   a   proof-of-concept;   in   order   for   the   NPO   to   be  
used   at   the   scale   we   envision    significant   additional   tooling   would   be   required.   Currently,   the  
python   codes   can   be   used   now   by   a   researcher   to   translate   their   phenotypes   into   NPO   and   they  
can   compare   their   neurons   locally   to   the   NPOKB   using   Protégé.    But   to   gain   traction,   increase  
ease   of   use   and   populate   the   knowledge   base,   we   envision   a   set   of   on-line   tools   that   would  
assist   researchers   in   translating   their   phenotypes   into   the   NPO,   along   with   a   web-accessible  
growing   knowledge   base   with   visualization   and   analysis   tools   for   researchers   to   compare   their  
neurons   to   what   is   known.   Yuste   and   colleagues   (2020)   also   envision   an   online   community  
knowledge   base   where   information   on   cell   types   is   accumulated   and   linked.   In   addition,   the  
NPO   currently   only   provides   the   skeleton   of   discrete   types   on   top   of   which   the   continuous  
nature   of   measurements   needs   to   be   integrated.    Nonetheless,   the   goals   of   the   BRAIN   initiative  
and   other   large   scale   data   projects   are   to   transform   our   understanding   of   the   brain   through   new  
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technologies   and   data   science   and   understanding   the   “parts   list”   of   the   nervous   system   is   a   key  
objective   (Zeng   and   Sanes,   2018).    If   we   accept   the   premise   that   no   single   project   or   group   can  
do   it   alone,   then   neuroscientists   must   produce   data   and   knowledge   artifacts   like   atlases   and  
taxonomies   in   a   way   that   is   amenable   to   computation.    The   FAIR   data   principles   outline   some   of  
the   basic   ways   to   do   that   (Table   7).    Integral   to   FAIR   is   the   use   of   community   standards   that  
make   the   process   of   searching,   aggregating,   and   reusing   data   more   tractable.    The   proposed  
methods   do   not   require   that   we   all   think   alike,   rather,   they   ensure   that   we   can   employ  
computational   methods   to   compare   and   contrast   across   different   classification   schemes.  
Although   the   proposed   approaches   would   require   a   significant   investment   by   funders   and  
researchers   alike   to   develop   and   adopt   these   methods,   we   have   to   measure   this   against   the  
time   we   currently   spend   trying   to   reconcile   computationally   opaque   and   un-FAIR   neuroscience  
data.    In   an   ideal   world,   we   would   focus   our   resources   on   grappling   with   the   innate   complexity   of  
the   issue   of   cell   types   in   the   brain,   rather   than   having   to   focus   on   reconciling   the   myriad   number  
of   ways   we   can   refer   to   common   entities   in   neuroscience.  
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