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Abstract

Variation in cognitive ability arises from subtle differences in underlying neural
architectural properties. Understanding and predicting individual variability in
cognition from the differences in brain networks requires harnessing the unique variance
captured by different neuroimaging modalities. Here we adopted a multi-level machine
learning approach that combines diffusion, functional, and structural MRI data from
the Human Connectome Project (N=1050) to provide unitary prediction models of
various cognitive abilities: global cognitive function, fluid intelligence, crystallized
intelligence, impulsivity, spatial orientation, verbal episodic memory and sustained
attention. Out-of-sample predictions of each cognitive score were first generated using a
sparsity-constrained principal component regression on individual neuroimaging
modalities. These individual predictions were then aggregated and submitted to a
LASSO estimator that removed redundant variability across channels. This stacked
prediction led to a significant improvement in accuracy, relative to the best single
modality predictions (approximately 1% to 4% boost in variance explained), across a
majority of the cognitive abilities tested. Further analysis found that diffusion and
brain surface properties contribute the most to the predictive power. Our findings
establish a lower bound to predict individual differences in cognition using multiple
neuroimaging measures of brain architecture, both structural and functional, quantify
the relative predictive power of the different imaging modalities, and reveal how each
modality provides unique and complementary information about individual differences
in cognitive function.

Author summary

Cognition is a complex and interconnected process whose underlying mechanisms are
still unclear. In order to unravel this question, studies usually look at one neuroimaging
modality (e.g. functional MRI) and associate the observed brain properties with
individual differences in cognitive performance. However, this approach is limiting
because it fails to incorporate other sources of brain information and does not generalize
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well to new data. Here we tackled both problems by using out-of-sample testing and a
multi-level learning approach that can efficiently integrate across simultaneous brain
measurements. We tested this scenario by evaluating individual differences across
several cognitive domains, using five measures that represent morphological, functional
and structural aspects of the brain network architecture. We predicted individual
cognitive differences using each brain property group separately and then stacked these
predictions, forming a new matrix with as many columns as separate brain
measurements, that was then fit using a regularized regression model that isolated
unique information among modalities and substantially helped enhance prediction
accuracy across most of the cognitive domains. This holistic approach provides a
framework for capturing non-redundant variability across different imaging modalities,
opening a window to easily incorporate more sources of brain information to further
understand cognitive function.

Introduction

Cognitive abilities are not modularly localized to individual brain areas, but rely on
complex operations that are distributed across disparate brain systems (e.g., [1]). Prior
work on the association between macroscopic brain systems and individual differences in
cognitive ability has, by and large, relied on correlational analyses that usually assess
linear changes in a particular cognitive task or measure (e.g., general intelligence
quotient) that coincide with specific brain properties such as region size [2,/3], gray
matter [4] and white matter [5] volume, cortical thickness [6] and surface area [7],
resting-state functional connectivity [8], task-related activity [9], global functional
network properties [10], white matter connectivity [11], and other unimodal measures.
However, these correlation approaches, based on unimodal imaging methods, suffer
several critical limitations. First, due to the mass univariate nature of the analyses, a
large number of statistical tests is usually performed, thereby raising the chances of
Type I error (false positives) and decreasing the statistical power of the study after
adjusting for multiple testing. Second, they do not take into account the mutual
dependencies between brain features and therefore ignore redundant sources of
variability. Finally, the lack of out-of-sample validation tests leads to over-optimistic
results (i.e., potential overfitting), thus lowering their generalizability across studies and
applicability in clinical routines.

To address some of these limitations, recent studies have adopted machine learning
frameworks that can accommodate all of these deficiencies by building predictive models
from multivariate features across the whole brain and testing them on independent
hold-out data samples. These methodologies have been widely applied to predict
cognitive performance (see [12] and references therein) in out-of-sample test sets and
have proven particularly popular with resting-state functional connectivity paradigms
due to their inherent multivariate nature. For example, recent studies show that
functional connectivity profiles, distributed across the brain, can predict up to 20% of
the variance in general intelligence [13] and 25% in fluid intelligence, with regions within
the frontoparietal network displaying a positive correlation and regions in the default
mode network an anti-correlation [14]. Similar sparse regression models have shown how
variability in white matter integrity of association pathways can reliably predict
individual differences in cognitive ability [15]. By building predictive models that can be
evaluated in out-of-sample test sets, as opposed to simple association analyses, these
machine learning approaches can quantify the degree of generalizability of particular
findings, providing key insights into potential for neuroimaging based biomarkers for
cognitive function.

Despite the success of applying predictive modeling approaches for the mapping of
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brain properties to differences in cognitive performance, previous work has largely
focused on unimodal methods. Thus, an implicit assumption is that an individual
neuroimaging modality is sufficient to capture all, or at least, enough aspects of
underlying neural tissue to be a reliable measure of general brain properties. Yet we
know that different neuroimaging modalities reveal fundamentally different properties of
underlying neural tissue. For example, functional MRI (fMRI) and diffusion MRI
(AMRI) reveal separate, but complementary, properties of the underlying connectome
that independently associate with different aspects of cognition [16]. This means that
different measures of brain structure and function may reveal complementary
associations with cognitive abilities that collectively boost the power of predictive
models.

One of the challenges of building multimodal models of individual differences is the
increased complexity of the explanatory model when one attempts to combine all the
sources of variation. Modeling variability from a single neuroimaging modality is an
already high dimensional statistical problem [17H19|, with many more features than
observations. Adding more modalities exponentially increases model complexity,
increasing the risk of overfitting, even when traditional approaches to dimensionality
reduction (e.g., principal component regression) or sparse feature selection (e.g., LASSO
regression) are applied. However, one way around this dimensionality problem is
transmodal learning [20], a multi-modal predictive approach that combines elements
from transfer [21] and stacking (sometimes also called stacked generalization) [22]
learning paradigms. Transmodal learning takes independent predictions from separate
channels (e.g., generated from separate imaging modalities) and runs a second model
using the single-channel predictions as the inputs. This second “stacked” model
attempts to find unique sources of variability in the different input channels.
Redundancy in variance, i.e., if two different imaging modalities are picking up on the

same sources of variability, is accounted for through the use of feature selection methods.

The end result is a more holistic prediction model that tries to explain more variance
than individual input channels. Such a transmodal learning approach was recently
shown to be effective at integrating structural and functional MRI measures to generate
a reliable prediction of participant age whose residuals also explained individual
differences in objective cognitive impairment [23].

In the present study, we used the transmodal, or stacked, learning method to
quantify the extent to which the combination of data from multiple neuroimaging
modalities permits increasing predictive performance in several cognitive domains,
including intelligence, sustained attention, working memory, spatial orientation and
impulsivity. By using a large dataset, comprised of multiple neuroimaging measures
from 1050 subjects from the Human Connectome Project [24], we demonstrate that for
most cognitive domains a significant enhancement in overall prediction utility is
achieved when multiple modalities are integrated together, thus indicating that each
brain measurement provides unique information about the underlying neural substrates
relevant for cognitive function. In addition, this analysis yields a multi-modal cognitive
phenotype for each cognitive ability, namely, the subset of architectural brain features
whose combination yields a significant and complementary enhancement of the
prediction performance.

Results

Our primary goal was to see if predictions that integrate across neuroimaging modalities

provide a boost to the prediction capability of individual differences in cognitive ability.

For purposes of our analysis, the primary neural measures consisted of MRI-based
assessments of (1) functional networks defined as Fisher’s z-transformed Pearson
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correlation coefficients between resting BOLD time series, (2) measures of cortical
surface area, (3) cortical thickness attributes, (4) global and subcortical volumetric
information and (5) local connectome features representing the voxel-wise pattern of
water diffusion in white matter. Our multi-level, stacked modeling approach (see Fig
and Material and Methods section for details) uses a l1-constrained (LASSO) variant of
principal component regression (PCR) to generate predictions of specific cognitive
scores from single imaging modalities in a training set. These are referred to as
single-channel models. To integrate across modalities, we stacked these single-channel
predictions together and used them as inputs to a separate LASSO regression model
that performs a weighted feature selection across channels. This is referred to as the
stacked model and it produces a new set of predictions for cognitive scores of individuals
by selecting and reweighting the individual channel predictions. Performance of the
single-channel and stacked models are then evaluated by comparing the observed scores
with the predicted scores in the out-of-sample sets. All models were fit on 70% of the
data (training set) and tested on the remaining 30% (test set). A Monte Carlo
cross-validation procedure [25] with 100 random stratified splits was employed to assess
the generalization of these predictions.

The overall performance of the single-channel and stacked models are depicted in
Fig[2l These accuracies were determined using the coefficient of determination R? (see
for the mean absolute error scores), which shows the percent variance explained
by each model in out-of-sample test sets. In Fig[3] the contributions of each channel to
the stacked model (estimated by the LASSO weights) are displayed for those domains in
which stacking bonus is positive, i.e. the scenario in which different measurements
aggregate complementary and non-redundant variability. Finally, in order to understand
the relative feature importance in the predictions of each brain measurement, we refit
the LASSO-PCR estimator to each single-channel model using all observations. The
resulting phenotype maps are depicted in Fig[4] only for those measurements whose
median cross-validated contribution to the stacked model is different from zero at
« = 0.05 significance level. In the following sub-sections we shall elaborate on the
specific pattern of results for each cognitive factor represented by the scores given in
Table 1l

Global cognitive function

Global cognitive function was estimated by the Composite Cognitive Function score, a
proxy for a general estimate of intelligence. Here the single-channel models based on
cortical surface area and local connectome features produced the highest predictive
rates for individual modalities, with a median R? = 0.119, 95% CI [0.110, 0.126] and
0.116, 95% CI [0.107, 0.125] respectively. Moreover, the relative prediction accuracy of
these two models did not differ statistically (one tailed Wilcoxon test p = 0.116,
rank-biserial correlation % = 0.137). Compared to the cortical surface area and local
connectome models, a significant drop in prediction performance occurred for
resting-state connectivity (median R? = 0.040, 95% CI [0.037, 0.045]), cortical thickness
(median R? = 0.051, 95% CI [0.047, 0.055]) and global and sub-cortical volumetric
(median R? = 0.065, 95% CI [0.061, 0.069]) features. Thus we see substantial variability
across individual neuroimaging modalities in their predictive utility on a measure of
global cognitive function.

After integrating predictions across modalities, however, an important improvement
in overall accuracy is observed. The stacked model raised the median R? to
approximately 0.155, 95% CI [0.147, 0.163] in global cognitive function. Thus, the
stacked model predicted a significant incremental median bonus B = 0.035, 95% CI
[0.032, 0.039] compared to the best single-channel model.

Based on the LASSO weights in the stacked model (see Fig[3p), we identified the
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Fig 1. Stacking methodology for multi-modal data prediction. In the first
step, a principal component regression, with an 11-sparsity (LASSO) constraint, and
5-Fold cross-validation is applied to each brain measurement to simultaneously optimize
the model and generate out-of-sample predictions. These predictions are then stacked to
fit a new LASSO model during the second learning step that performs weighted feature
selection across single-channel predictions.

local connectome and cortical surface areas as the strongest contributing measurements, s
with the former (median 8 = 0.560, 95% CI [0.534, 0.585]) contributing significantly 158

more than the latter (median 8 = 0.508, 95% CI [0.480, 0.526]). Interestingly, 150
resting-state connectivity was still a reliable predictor (median 8 = 0.360, 95% CI 160
[0.337, 0.386]), as was cortical thickness (median 5 = 0.193, 95% CI [0.154, 0.223]), 161
although to a lesser degree. A null median weight assigned to the volume channel 162
predictions showed that these factors did not appear to reliably contribute to the 163
stacked model. Such diverse patterns of contributions from single-channels to the 164
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Fig 2. Single-channel and stacked performances to predict cognition. The
coefficient of determination, R?, between the observed and predicted values of seven
cognitive scores using each brain measurement separately and together by stacking their
predictions. The scenario that yields the maximum predictive accuracy in out-of-sample
tests is shown in red.

stacked model may be partially affected by the L1 regularization term dealing with the
shared variance between predictions. Indeed, out-of-sample predictions from volumetric
factors exhibited a large collinearity, measured through Pearson correlations, especially
with those predictions from cortical surface area (median r = 0.597, 95% CI [0.577,
0.611]) and local connectome attributes (median Pearson r = 0.510, 95% CT [0.499,
0.524]). In contrast, a lower similarity was found when compared to predictions from
resting-state connectivity profiles (median r < 0.25 with respect to all measurements),
hence increasing their likelihood to be present in the final predictive model.

For the largest contributing channel, the local connectome, global cognitive ability

September 2, 2020

o1

165

166

167

168

169

170

171

172

173


https://doi.org/10.1101/2020.09.01.278747
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278747; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

da. GLOBAL COGNITIVE FUNCTION
RESTING-STATE ] m
CONNECTIVITY ' -
CORTICAL £
SURFACE
CORTICAL WEE O
THICKNESS
SUBCORTICAL
VOLUME =
LOCAL N m
CONNECTOME -
-0.5 0.0 0.5 1.0
LASSO WEIGHTS
b. FLUID INTELLIGENCE C. CRYSTALLIZED INTELLIGENCE
RESTING-STATE 1 m RESTING-STATE W
CONNECTIVITY ' » CONNECTIVITY B
CORTICAL = CORTICAL Da)
SURFACE SURFACE
CORTICAL B:I CORTICAL m
THICKNESS THICKNESS
SUBCORTICAL | SUBCORTICAL 3
VOLUME VOLUME
LOCAL o m LOCAL R m’ -
CONNECTOME " CONNECTOME ST ohd
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
LASSO WEIGHTS LASSO WEIGHTS
d IMPULSIVITY e. SPATIAL ORIENTATION
.
RESTING-STATE | . .~ ] RESTING-STATE [
CONNECTIVITY CONNECTIVITY s
CORTICAL P CORTICAL e
SURFACE SURFACE
CORTICAL - T CORTICAL -
THICKNESS THICKNESS
SUBCORTICAL —_—r— SUBCORTICAL EG
VOLUME VOLUME
LOCAL v LOCAL e D@P
CONNECTOME ¥ m . CONNECTOME “
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
LASSO WEIGHTS LASSO WEIGHTS

Fig 3. [ coefficient distribution of each single-channel in the stacked model.

Across the 100 different data splits, the weight distribution assigned to the
out-of-sample predictions of each brain measurement by the stacked LASSO model in
those cognitive scores in which stacking significantly improved the overall performance.

positively associated (warmer colors in Fig , top panel) with signal in primarily
association (i.e., intrahemispheric cortical-cortical pathways) and commissural (i.e.,
interhemispheric pathways) fiber systems. In contrast, many projection pathways, with
the major exception being cerebellar peduncles, were negatively associated with global
cognitive ability (cooler colors). This was particularly strong in the internal and
external capsules. For cortical surface area, ventral temporal and anterior parietal
regions areas were largely positively associated with global cognition while frontal and
posterior parietal pathways were negatively associated. Interestingly, a different pattern
was observed for cortical thickness, where anterior parietal regions and the insula
particularly appeared to positively associate with global cognitive function. Finally,
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Fig 4. Neurophenotypes of cognitive prediction. Correlates of each brain
measurement whose contribution to predicting cognitive scores during stacking is
statistically non-redundant. Red and blue colors in the brain images (i.e., local
connectome, cortical surface area, cortical thickness, and subcortical volumes) display
positive and negative weights respectively. To facilitate interpretability, a barplot shows

the average loadings of resting-state connectivity features to each intrinsic functional
network (indicated by color).

resting-state connectivity for the orbito-affective, language and default mode appeared
to be the strongest contributors to positive associations with global cognition. In
contrast, the auditory and primary visual networks particularly contributed negatively
to global cognitive ability scores. Loadings for the volumetric features are not shown

because this channel’s predictions did not survive the feature selection step in the
stacked LASSO model.
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Fluid intelligence

Global cognitive ability is usually decomposed into two domains [26]: fluid intelligence
(i.e., the ability to flexibly reason on new information) and crystallized intelligence (i.e.,
the ability to recall and use prior information). Thus we next wanted to determine how
similar or different the prediction models were for these two subcomponents of general
cognitive ability are. For fluid intelligence, extracted from the NIH toolbox Cognitive
Fluid Composite Score, local connectome fingerprints yielded the highest coefficients of
determination (median R? = 0.048, 95% CI [0.045, 0.055]), significantly exceeding those
from cortical surface areas (median R? = 0.039, 95% CI [0.034, 0.044]), resting-state
connectivity (median R? = 0.019, 95% CI [0.016, 0.021]), subcortical and global volume
features (median R? = 0.018, 95% CI [0.015, 0.022]) and thickness of cortical regions
(median R? = 0.016, 95% CI [0.013, 0.018]). Stacked predictions raised the variability
explained to a median R? = 0.065, 95 % CI [0.060, 0.070], which is translated into a
0.015, 95 % CI [0.013, 0.019] of expected stacking bonus B.

Interestingly, despite its weak correlation with cognitive performance, the
resting-state connectivity channel supplied a non-redundant variability to the stacked
model, occupying second place in variance importance (median 8 = 0.514, 95%CI [0.474,
0.560]), between the local connectome (5 = 0.571, 95% CI [0.535, 0.610]) and cortical
surface area factors (8 = 0.462, 95% CI [0.410, 0.516]). Contributions from cortical
thickness attributes were lower compared to the aforementioned channels (median
B =0.247, 95% CI [0.163, 0.297]). On the other hand, volumetric information appeared
again to provide a null contribution to the stacked model (see Fig[3p).

Since fluid intelligence is one of the two components of the global cognitive ability
score, it is not surprising that the weight maps in both domains showed large
correlations across the five modalities (see [Fig S3)). Regardless of this, subtle phenotypic
differences can still be observed (see Fig4p); namely, the emergence of a stronger
positive association with brain stem pathways such as rubrospinal tract (see
and the enhanced positive correlation of resting-state connectivity links to language
areas (see also [FigS2p). Loadings for global and subcortical volumes are not shown
again because they did not survive the feature selection step in the stacked LASSO
model.

Crystallized intelligence

For crystallized intelligence we extracted the NIH toolbox Cognition Crystallized
Composite Score. In this domain, the highest predictive accuracies were provided by
cortical surface attributes (median R? = 0.143, 95% CI [0.132, 0.149]), followed by the
local connectome features (median R? = 0.123, 95% CI [0.117, 0.133]), volumetric
measurements (median R? = 0.082, 95% CI [0.078, 0.090]), cortical thickness (median
R? =0.071, 95% CI [0.067, 0.079]) and resting-state connectivity (median R? = 0.033,
95% CI [0.027, 0.036]). By stacking these predictions, we obtained a median bonus B =
0.029, 95% CI [0.025, 0.033], thus the stacked model reached a median R? = 0.164, 95%
CI [0.157, 0.170].

In contrast to global cognition, variability in the stacked model was foremostly
driven by cortical surface area factors (median 8 = 0.535, 95% CI [0.510, 0.566]), which
significantly exceeded the contribution from local connectome (median 8 = 0.469, 95%
CI [0.431, 0.497]), cortical thickness (8 = 0.290, 95% CI [0.260, 0.334]) and resting-state
connectivity (median 8 = 0.224, 95% CI [0.148, 0.285]). Likewise, the stacked LASSO
model shrunk away predictions from volume attributes when combined with the rest of
channels (see Fig [3).

Similarly to the fluid intelligence domain, multi-modal phenotypes of crystallized
intelligence resembled those of global cognition, with some slight differences such as the

September 2, 2020

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239


https://doi.org/10.1101/2020.09.01.278747
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278747; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

increase of positive associations with nerve tracts between the claustrum and the insular
cortex (the extreme capsule) and brainstem nerves such as the lateral lemniscus (see
[Table S1fand [Table S2)); and the enhancement of both positive and negative correlations
with resting-state connectivity strength in regions of the fronto-parietal network (see

Fig k- and [FigS2k).

Impulsivity

One factor not reliably measured in the Composite Cognitive Function score is
impulsivity or self-regulation, i.e., the ability to suppress contextually inappropriate
behaviors. To assess this we extracted the area-under-the curve (AUC) for discounting
of $200 from the Delayed Discounting Task. Even though the percent variance
explained by the single-channel models for this impulsivity measure were relatively low
(see Fig ), their performance improved using the stacked predictions (median R?=
0.027, 95% CI [0.023, 0.031]). Indeed, the stacked model performance exceeded that of
the best single-channel, in this case cortical surface area properties (median R? = 0.021,
95 % CI [0.018, 0.026]). Thus, by integrating across modalities one could expect a
smallish (yet significant) median bonus B = 0.006, 95 % CI [0.003, 0.009]. The next
best single-channel performances were those from volumetric factors (median

R? =0.017, 95% CI [0.012, 0.021]) and local connectome features (median R? = 0.014,
95% CT [0.012, 0.017]). In contrast, both cortical thickness and resting-state
connectivity metrics produced prediction accuracies with confidence intervals that are
poorer than the mean response (median R? = 0.002, 95% CI [-0.000, 0.004]; and median
R? = —0.004, 95% CI [-0.005, -0.003] respectively).

Interestingly, unlike the models for global cognition and intelligence, for predicting
impulsivity the volumetric factor survived the LASSO feature selection step and
emerged as an important explanatory source of variability in the final out-of-sample
predictions (median S = 0.442, 95% CI [0.332, 0.477]). In fact, volumetric features
explained a similar amount of variance as that of cortical surface areas (median 8 =
0.452, 95% CI [0.429, 0.534]) and more variance than the local connectome predictions
(median 8 = 0.344, 95 % CI [0.294, 0.419]). On the other hand, both resting-state
connectivity and cortical thickness attributes did not appear to play a role in
combination with the rest of measurements (see Fig [3).

Impulsivity phenotype maps for these contributing channels are depicted in Fig [4{d.
Subcortical attributes showed a strong influence of cerebellum white matter volume, an
association which is manifested with opposite signs in each hemisphere. Moreover,
similar loadings were also observed for the volume of the hippocampus, amygdala,
pallidum, nucleus accumbens, and temporal horn. The importance of the remaining
volumetric features can be found in revealing an overall positive association of
global volumetric measures with impulsivity scores. With respect to cortical surface
areas, the greatest positive associations were found in areas of the dorsal-prefrontal
cortex and inferior and middle temporal lobe, while negative associations were
concentrated in the occipital lobe and superior temporal gyrus. Finally, particularly
important areas of local connectome features positively correlated with impulsivity were
found along optic radiation tracts, a group of fibers which connect the lateral geniculate
nucleus of the pulvinar of the thalamus and the primary visual cortex of the occipital
lobe, and brainstem pathways like the lateral lemniscus tracts (see also . In
contrast, the largest negative loadings were located along the superior cerebellar
peduncle, the medial lemniscus and the uncinate fasciculus tracts (see also [Table S2)).
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Spatial orientation

Spatial orientation is the ability to reference how the body or other objects are oriented
in the environment and reflects a critical cognitive domain for spatial awareness. We
extracted scores from the Variable Short Penn Line Orientation Test to look at
individual differences in spatial orientation ability. The predictive models for spatial
orientation followed the similar tendency observed in our other models thus far, with
the stacked predictions improving overall single-channel accuracies. The best
performing single-channel model was for cortical surface area (median R? = 0.104, 95%
CI [0.095, 0.110]), which was greater than the local connectome (median R? = 0.089,
95% CI [0.083, 0.095]), volumetric measure (median R? = 0.0689, 95% CI [0.062,
0.076]), and cortical thickness (median R? = 0.039, 95% CI [0.034, 0.043]) models. The
worst performing single-channel model for predicting spatial orientation was
resting-state connectivity features (median R? = 0.008, 95% CI [0.006, 0.011]).

Like the previous cognitive measures, the prediction of individual differences in
spatial orientation improved when modalities were integrated together, with the
performance of the stacked model being R? = 0.116, 95 % CI [0.110, 0.122] and
therefore constituting a stacking bonus B = 0.016, 95 % CI [0.012, 0.019] with respect
to the best single-channel model. The stacked model eliminated the contributions of
resting-state connectivity and volumetric features, suggesting that these factors did not
provide unique contributions to predicting spatial orientation ability above that of the
cortical surface and white matter measures. As a result, only cortical surface areas
(median 8 = 0.512, 95% CI [0.482, 0.545]), local connectome features (median 8 =
0.504, 95% CI [0.478, 0.527]) and cortical thickness attributes (median 5 = 0.175, 95%
CI [0.100, 0.224]) appeared to provide a non-redundant contribution to the stacked
model (see Fig[3p).

Finally, weight maps estimated from these contributing channels are displayed in
Fig k. Interestingly, we can appreciate a positive correlation with local connectome
features particularly along projection pathways connecting to regions in the occipital
cortex (optical radiation, central tegmental and occipito-pontine tracts), which are
involved in visual demanding tasks, whereas negative associations are mainly dominated
by cranial nerves and axons from the rubrospinal tract. Regarding structural cortical
attributes, positive loadings from surface area factors were found in regions along the
inferior and middle temporal gyri and the paracentral gyrus, whereas negative
associations took place in the frontal cortex. On the other hand, except for regions in
the central sulci, orbital gyrus and temporal pole, thickness properties exhibited a
negative correlation with spatial orientation that spans over the entire brain cortex.

Verbal episodic memory

The Penn Word Memory test captures verbal memory abilities. For this response
variable, stacked prediction accuracy (median R? = 0.012, 95% CI [0.010, 0.016]) did
not improve the single-channel’s best performance represented by the local connectome
fingerprints (median R? = 0.019, 95% CT [0.016, 0.022]). The rest of the measurements
all exhibited a negative median R?, meaning that they perform worse than using
predictions from the mean response variable (see Fig ) As a consequence, neither the
0 coefficients showing the single-channel contributions to the stacked model nor the
weight maps were reported for this cognitive score.

Sustained attention

The Short Penn Continuous Performance Test is the measure of sustained attention. As
shown in Fig 2, accuracies of single-channels and stacked model in this domain were
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overall negligible and worse or not statistically different from those provided by the
mean response variable. Owing to this, neither the g coefficients showing the
single-channel contributions to the stacked model nor the weight maps were reported for
this cognitive score.

Discussion

Here we tested whether multiple functional, diffusion, and morphological MRI-based
measurements of brain architecture constitute complementary sources of information for
predicting individual differences in cognitive ability. We accomplished this by means of
a stacking approach for multimodal data, a two-level learning framework in which
groups of features are first separately trained and their predicted response values
subsequently stacked to learn a new model that takes into account redundant effects
across channels. Our results show that for most of the cognitive measures tested
integrating across different brain measurements provides a boost to prediction accuracy,
highlighting how different imaging modalities provide unique information relevant to
predicting differences in human cognitive ability.

One of the strengths of our approach is the assessment of how performance in
different cognitive domains associates with a wide range of brain measurements.
Overall, our results show that effect sizes tend to be moderate (at most explaining less
than 20% of the variance), which begs the question of where the remaining variability
may come from. It might be possible that the metrics employed here, which largely
reflect static architectural aspects of global brain systems, are missing the fundamental
dynamics of neural circuits during relevant behavioral states for expressing specific
cognitive functions. In this regard, specific task-evoked fMRI measurements that
directly assess the neural reactivity during cognitive evaluation [27H29] could help raise
the overall predictive power. For example, we recently showed that brain activation
patterns during affective information processing tasks predict an important portion of
individual differences of cardiovascular disease risk factors, a finding that we could not
have reached had not we used the appropriate and specific task fMRI experiment [30].
Additionally, increasing both spatial resolution to better capture features of
structural-functional variation [31] and temporal resolution for a more accurate
decoding of the underlying brain dynamics [32] could be valuable and complementary
sources of cognitive performance correlation. Thus we consider the work here a
proof-of-principle for making holistic models that predict specific cognitive abilities,
which could be further improved with additional, more specific, inputs.

Of particular note is that the observed effect sizes from resting-state connectivity are
consistently small, which appears to be in conflict with previous results that reported a
medium-large correlation (r = 0.5) between patterns of resting-state connectivity and
fluid intelligence functioning [14]. In our case and for this particular domain, the
maximum performance that we achieved across all simulations is ostensibly smaller
(R? = 0.047,7 = 0.29). Nevertheless, such a decrease in the effect sizes was expected
due to our use of a much larger sample size (N = 1050 versus N = 126), which reduces
inflated results caused by sampling variability and therefore, findings are more
reproducible and inferred patterns generalizable to a broader population spectrum [33].
In addition, it is important to note that our preprocessing pipeline does not regress out
the mean global BOLD signal, which is supposed to strengthen the association between
resting-state functional connectivity profiles and behavior [34]. This step is still
controversial since it is not clear whether it supplies real or spurious information [35].
Finally, we relied on the coefficient of determination, R?, to assess the predictive power
of the learned models, in contrast to using Pearson correlation coefficient, which
overestimates the association between predicted and observed values and therefore it is
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not a recommended performance metric during regression tasks [36,37].

The overall stacking approach to multimodal integration that we applied here closely
follows work by Liem and colleagues [23], who used a stacking approach with multimodal
brain imaging data to improve the performance in individual age prediction, although
with two big differences in structure. First is the choice of the algorithm for the second
learning stage in this transmodal approach. Albeit performances from a Random Forest
algorithm, as used by Liem and colleagues, would have been proven to be less variable
compared to other well known algorithms in similar scenarios [38], we decided to use a
LASSO regression model because of its simplicity (it only has one hyperparameter to
tune) and due to the fact that the L1 penalty term can automatically get rid of the
redundant variability of the different channels. The second difference is the number of
neuroimaging modalities, since we have also included diffusion data in our study.
Indeed, we have demonstrated that the inclusion of local connectome features played an
important role for prediction, since they alone account for a moderate rate of variability
consistent across all cognitive domains. Moreover, such variability survives and indeed
prevails when combined with the rest of single-channel predictions. This finding
validates the role of the local connectome fingerprint as a reliable correlate of cognitive
factors at the individual level [15] and suggests its complementary role in combination
with other brain measurements. In particular, white matter diffusion tracts provide a
putative structural basis for the macroscopic human connectome that is reflected in the
correlation for age [39] and cognition [40,41]. Furthermore, it is important to stress that
local connectome fingerprints do not rely on fiber tracking algorithms, which reduces
the risk of false-positive bias when mapping white matter pathways [42-44]. Our
findings here with respect to predicting cognitive ability, along with the work of Liem
and colleagues on age predictions 23], simply demonstrate how powerful a stacking
approach can be to maximizing explainable variance from multiple imaging modalities.

Interestingly, although stacked predictions clearly increase the variability explained
at a global cognitive level, this is not the case across all domains. For example, global,
fluid, and crystalized intelligence, impulsivity and spatial orientation all show
improvements in prediction accuracy, in contrast to attention and word memory
functioning. These results might be caused by the existence of a hierarchical cognitive
categorization, with high complex functions demanding the integration of multi-modal
aspects of the brain compared to lower level functions [45]. Alternatively, individual
differences in some cognitive areas might be mostly parametrized by one specific brain
sub-system that captures all the variability. For instance, white matter structure is an
important substrate of cognitive performance whose deterioration, notably in the
hippocampus, is the first sign of memory decline at both early and late stages in
Azheimer’s disease [46l[47]. On the other hand, it might also happen that for certain
cognitive domains, the measurements considered in this study do not constitute a
sizable source of variability and therefore stacking is only aggregating noise to the
predictive model. Finally, associations with cognitive performance might be affected by
the inherent nature of the cognitive tests, either due to an imperfect design that adds
unwanted variability, or because of the properties of the sampling distribution. For
example, in our dataset, scores in the Short Penn test display a heavy deviation from
normality, that can affect sensitivity in regression models.

A possible limitation of our study arises from the fact that predefined test scores
were employed as response variables, which in most cases are largely coarse measures of
cognitive ability that may rely on redundant underlying subprocesses, leading to a
degree of similarity in the brain architecture features that contribute to predicting
individual differences. Regardless of this, spatial correlation analysis shows that a
portion of each cognitive measure’s weight map is unique (including for the global
cognitive score that is constructed from both crystallized and fluid intelligence scores)

September 2, 2020

1331

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

402

403

404

405

407

408

409

410

412

413

414

415

417

418

419

420

422

423

424

425

427

428

429

430

432

433

434

435

436


https://doi.org/10.1101/2020.09.01.278747
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278747; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

and therefore there exist brain structures whose roles are specific to the area of
cognition involved (see . Future studies might benefit from adopting more
sensitive approaches to measuring specific cognitive factors (e.g., psychophysical
measurements) that can carefully isolate primary cognitive abilities.

Finally, our current framework treats brain measurements separately at a first step,
based on the assumption that they represent independent and non-overlapping sources
of cognitive variation. As we showed, this is far from true: there exists some degree of
redundancy across the imaging modalities. Future studies might attempt to find a
decomposition into multidimensional representations of unique and shared variance
across brain measurements. This would likely increase the number of single-channels
whose individual predictions can be later exploited by our stacking approach.

Despite these limitations, our work here builds on the growing body of work
attempting to integrate information from different neural sources so as to maximize
explained variability of individual differences. Our approach predicts individual
differences in cognition by separately fitting measurements of structural, functional and
diffusion modalities and subsequently stacking predictions to enhance overall accuracy
while removing redundant contributions. Even though a large portion of variance in the
data remains unaccounted for, our results demonstrate that effect sizes can be easily
increased by using multimodal neuroimaging data and establish a solid and reliable
lower bound for cognitive prediction in different domains.

Materials and Methods

Participants

We used publicly available data from the S1200 release of the Human Connectome
Project (HCP) database (https://ida.loni.usc.edu/login. jsp). The HCP project
(Principal Investigators: Bruce Rosen, M.D., Ph.D.; Martinos Center at Massachusetts
General Hospital; Arthur W. Toga, Ph.D., University of Southern California, Van J.
Weeden, MD, Martinos Center at Massachusetts General Hospital) is supported by the
National Institute of Dental and Craniofacial Research (NIDCR), the National Institute
of Mental Health (NIMH) and the National Institute of Neurological Disorders and
Stroke (NINDS). HCP is the result of efforts of co-investigators from the University of
Southern California, Martinos Center for Biomedical Imaging at Massachusetts General
Hospital (MGH), Washington University, and the University of Minnesota. Out of the
1200 participants released, 1050 subjects had viable T1-weighted, resting-state fMRI,
and diffusion MRI data. In addition, 21 subjects were discarded due to the presence of
missing information in some of the response variables used in this study. The final
dataset comprised of 1029 individuals (550 female, age range 22-37, mean + o4, =
22.73 + 3.68 years).

Predictor variables

Preprocessing steps included spatial artifact/distortion removal, surface generation,
cross-modal registration and alignment to standard space and the automatic ICA-FIX
denoising of functional acquisitions, among others (more details on these and other
additional preprocessing steps can be found in [48]).

Structural predictors were composed of cortical thickness (CT) and surface area (CS)
values of 360 regions in a multi-modal parcellation [49], and 66 features containing
global, subcortical and other volume (VL) information, directly extracted from the
aseg.stats freesurfer file of each subject.
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Functional predictors were estimated from the resting-state data by first computing
the averaged time series from the voxels within each of the 718 regions in a parcellation
which extends the aforementioned multi-modal atlas to include 358 subcortical
regions [50]. Furthermore, this parcellation identified 12 different intrinsic functional
networks, which included the well-known primary visual, secondary visual, auditory,
somatomotor, cingulo-opercular, default-mode, dorsal attention and frontoparietal
cognitive control networks; novel networks like the posterior multimodal, ventral
multimodal, and orbito-affective networks; and the identification of a language
network [50]. Next, a functional connectome for each subject was built by calculating
the z-transformed Pearson correlation coefficient between pairs of time series. Finally,
the upper triangular elements were extracted to form the final vector of 257403
functional connectivity (FC) features per subject.

Diffusion predictors were represented by the local connectome fingerprint (LC), a
structural metric that quantifies the degree of connectivity between adjacent voxels
within a white matter fascicle defined by the density of diffusing spins [51]. The local
connectome was computed by reconstructing the spin distribution functions (SDFs) in
all white matter voxels in a common template space, previously derived from 842
subjects of the HCP dataset [52|, using g-space diffeomorphic reconstruction [53] and
sampling the quantitative anisotropy [54] at peak directions within each voxel. This
produces a fingerprint vector of 128894 fibers across the entire brain for each subject.
These features were obtained using DSI Studio (http://dsi-studio.labsolver.org), an
open-source toolbox for connectome analysis from diffusion imaging.

Response variables

A subset of seven cognitive test scores available in the HCP repository were used as
response variables [55]. Each of these measures assesses the individual performance in
cognitive domains that are different to a greater or lesser extent. In particular, we
selected: (a) the Unadjusted scale NIH Toolbox Cognition Total Composite Score,
which provides a measure of global cognitive function, (b) The Unadjusted NIH Toolbox
Cognition Fluid Composite Score for fluid intelligence, (c¢) The Unadjusted NTH
Toolbox Cognition Crystallized Composite Score for crystallized intelligence, (d) the
area-under-the-curve (AUC) for Discounting of $200 in a Delay Discounting Test for
impulsivity, (e) the total number of correct responses in a Variable Short Penn Line
Orientation Test for spatial orientation assessment, (f) the Total Number of Correct
Responses in a Penn Word Memory Test, which aims at testing verbal episodic memory,
and (g) sensitivity in a Short Penn Continuous Performance Test for sustained attention
performance. The main descriptive statistics for these variables can be found in Table

Prediction Models

The prediction of each cognitive score was carried out adopting a transmodal approach
to stacking learning. Stacking belongs to the ensemble paradigm in machine learning
and it is based on a multi-level training in which predictions from a given set of models
are combined to form a new meta feature matrix [20L[22]. This new matrix can be then
fed into a new model for final predictions or passed to a successive and intermediate
learning level.

Our transmodal scenario consisted of two-levels of learning and differs from usual
stacking approaches in that each predictive model comes from training separately our
different groups of features (called channels), each corresponding to the resting-state
connectome, cortical thickness attributes, cortical surface areas, global and subcortical
volumetric information and the local connectome fingerprints.
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Table 1. Main descriptive statistics for the response cognitive variables.

Name of the test: Mean | Median | Skewness | Kurtosis Mild (Ext'reme) Lower-Higher
measure score % outliers 95% mean CI
NIH Toolbox Cognition: 122.28 | 120.77 0.21 -0.49 0.00 (0.00) 121.37-123.17
Total Composite Score

NIH Toolbox Cognition: 115.43 | 114.15 0.26 -0.46 0.00 (0.00) | 114.72 - 116.13
Fluid Composite score

NIH toolbox Cognition: 117.90 | 11781 | 0.1 0.09 0.01 (0.00) | 117.29 - 118.50
Crystallized Composite score

Delay Discounting Test:

AUC for discounting 0.26 0.20 1.33 1.57 0.04 (0.00) 0.25 - 0.27
of $200

Variable Short Penn

Line Orientation Test: 1493 | 1500 | 027 | -0.14 | 0.00(0.00) | 14.67-15.23

total number of

correct responses

Penn Word Memory Test:
total number of 35.64 36.00 -0.82 0.57 0.01 (0.00) 35.45 - 35.81
correct responses

Short Penn Continuous
Performance Test: 0.96 0.97 -3.29 19.76 0.04 (0.01) 0.95 - 0.96
sensitivity

The entire prediction modeling procedure is sketched in Fig[l] First, we split the 531
data such that 70% of the subjects were used for training and the rest for testing. Since sz
we are dealing with unadjusted response variables, before fitting any model we regressed  s3
each cognitive score in the training set onto the individual ages and used the estimated s
regression coefficients to remove the age effect in both training and test set. Given the s

narrow range of ages of our data (22-37 years), this effect is likely to very weak, so 536
perhaps this step could have been omitted. After age adjustment, a 5-Fold 537
cross-validation was applied to the observations in the training set using a principal 538
component regression model with a L1 regularization term (LASSO-PCR) on each 539
channel. This estimator constitutes a pipeline with the following sequential steps: 540
1. Dimensionality reduction by PCA to the input matrix of features X of each sa1
channel: 542
X=U0svT, (1)

where the product matrix Z = US represents the projected values of X into the s
principal component space and V7' an orthogonal matrix whose row vectors are  sa
the principal axes in feature space. 545

2. Regression of the (age adjusted) response variable y onto Z, where the estimation s

of the [ coefficients is subject to a L1 penalty term X in the objective function: 547
B = arg ming {|ly — ZB||> + Al|B|I} (2)

3. Projection of the fitted 3 coefficients back to the original feature space to produce s

a weight map (or phenotype) @ = V3 used to generate final predictions §: 549
y=Xuw (3)

The cross-validation loop was used so as to determine the optimal value of A and 550

simultaneously generate out-of-sample predictions that are to be used at the subsequent ss
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learning level. After training each LASSO-PCR model with the optimal level of
shrinkage, single-channel predictions from the test set were aggregated across all
channels.

At the second level, both out-of-sample predictions from the training set and
predictions on the test set were stacked across channels to form a new training set
consisting of 70% observations x 5 channels and a new test set consisting of 30%
observations x 5 channels, respectively. By means of a new 5-Fold cross-validation loop,
the former matrix first optimized and then fit a LASSO regression model that made
predictions on the latter object of stacked data. The use of LASSO produced a feature
selection as well, that automatically selected and weighted how much each channel
contributed to the best final prediction.

Prediction error was measured through the coefficient of determination R? and the
mean absolute error (MAE). In order to assess the stability and consistency of the
predicted metrics, a Monte Carlo cross-validation was employed. In particular, we
generated 100 random data splits with the same training and test size proportions as
given above (70% and 30% respectively) and repeated the entire predictive procedure
for each of these splits. Thereafter, the model performance and the contributing weights
of each single-channel to the LASSO stacked model were reported using the median and
its bootstrapped confidence intervals at a significance level & = 0.05. The choice of the
median was particularly suitable when summarizing the contributions of each
single-channel, since the stacked LASSO model produced sparse solutions. All
predictive analyses were carried out using scikit-learn [56].

Stacking bonus

In order to formally compare the integrated model, i.e. the model that integrates
predictions across modality, against the single-channel predictions, we defined a stacking
bonus score B which reads

— P2 2
B= Rstacking_ <R >single (4)

where R%, ... g 1s the out-of-sample coefficient of determination from the
second-level LASSO learning to the stacked predictions and

< R? >gingie= + (R}¢ + REg + Rep + Ry, + R3 ) is the average performance across
individual modalities. Therefore, this quantity aims to mimic the notion of synergy
from information theory, which states that joint systems may convey more information
that just the sum of its parts [57H59).

Since the above definition may lead to very optimistic bonuses in the presence of
poor modalities, we adopted a more conservative definition by expressing this difference
just against the best single-channel performance R3, , as follows

B= R2 - Rl%est (5)

stacking

Code and data availability

The code used to generate all the results and plots in this study is available in
https://github.com/CoAxLab/multimodal-predict-cognition. The weight maps
for the local connectome, cortical surface area and thickness, and sub-cortical
volumetric features have been uploaded as NIFTI files to
https://neurovault.org/collections/VXOBBMIZ. The data used and generated in
this study are available in https://figshare.com/s/b97d2d1ba359e6458cbb.
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Fig S1. Single-channel and stacked performances to predict cognition.
Mean absolute errors (MAE) between the observed and predicted values of seven
cognitive scores using each brain measurements separately and together by stacking
their predictions. In red the scenario that yields the maximum score.
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a. GLOBAL COGNITIVE FUNCTION
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b. FLUID INTELLIGENCE
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c. CRYSTALLIZED INTELLIGENCE
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FigS2. Resting-state connectivity phenotypes. Weight maps from the
resting-state connectivity matrix coefficients for the three cognitive areas (global
cognitive function, fluid and crystallized intelligence) in which these attributes

significantly contributed to stacking. Red and blue colors display positive and negative

weights respectively.
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Fig S3. Phenotype similarity between cognitive domains. For each brain 816
measurement, the Pearson correlation coefficient is computed to assess the similarity 817

between the brain correlates of each cognitive score in which stacking led to a significant s
performance enhancement.

819

Composite | Crystallized Fluid Penn Delay Disc
Cognitive | Composite | Composite Line AUC_200
Tracts (x107%) (x107%) (x107%) | (x107%) | (x107%)
Acoustic-Radiation_L 5.441 4.469 2.622 1.057 0.045
Acoustic-Radiation_R 4.682 2.290 3.112 1.408 0.040
Cortico-Striatal
Pathway L 3.678 4.218 1.625 1.165 0.039
Cortico-Striatal
Pathway R 3.445 3.641 1.755 1.319 0.041
Cortico-Spinal _L 4.011 4.362 2.113 1.186 0.041
Cortico-Spinal R 4.155 3.821 2.530 1.498 0.045
Cortico-thalamic
Pathway L 3.863 4.254 1.696 1.213 0.041
Cortico-thalamic
Pathway R 3.499 3.633 1.851 1.377 0.042
Fornix_L 3.649 4.088 1.297 1.366 0.045
Fornix_R 3.702 4.646 1.178 1.431 0.030
Fronto-pontine_L 3.278 3.756 1.438 0.932 0.033
Fronto-pontine_R, 3.766 3.716 1.855 1.323 0.039
Occipito-pontine_L 5.424 4.761 2.416 1.605 0.047
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Occipito-pontine_ R
Optic-Radiation_L
Optic-Radiation_R
Parieto-pontine_L
Parieto-pontine_R
Temporo-pontine_L
Temporo-pontine_R
Arcuate
Fasciculus_L
Arcuate
Fasciculus_R
Cingulum_L
Cingulum_R
Extreme-Capsule_L
Extreme-Capsule_R
Frontal-Aslant_L
Frontal-Aslant_R
Inf-Fronto-Occipital
Fasciculus L
Inf-Fronto-Occipital
Fasciculus R
Inf-Longitudinal
Fasciculus L
Inf-Longitudinal
Fasciculus R
Mid-Longitudinal
Fasciculus_L
Mid-Longitudinal
Fasciculus_R
Sup-Longitudinal
Fasciculus_L
Sup-Longitudinal
Fasciculus_R
U-Fiber_L
U-Fiber_R
Uncinate-Fasciculus_L
Uncinate-Fasciculus_R
Vertical-Occipital
Fasciculus_L
Vertical-Occipital
Fasciculus_R
Anterior-Commissure
Corpus-Callosum
Posterior-Commissure
Cerebellum_L
Cerebellum_R
Inf-Cerebellar
Peduncle_L
Inf-Cerebellar
Peduncle_R
Mid-Cerebellar
Peduncle

4.339
5.480
4.401
4.014
3.717
4.659
3.691

4.089

3.405

2.586
2.748
4.239
3.539
2.947
3.290

4.008

3.039

4.444

3.219

4.294

3.644

4.511

3.548

3.977
3.407
2.902
3.868

4.431

2.973

3.880
3.764
2.952
3.135
3.095

4.439

5.033

4.118

4.558
5.226
5.168
4.167
3.311
3.788
3.978

4.726

3.137

3.218
2.978
5.296
2.947
4.278
3.435

4.345

3.658

4.456

4.242

4.517

3.200

4.748

3.365

4.692
3.793
3.609
4.111

3.358

3.797

3.947
3.983
3.845
3.337
3.812

4.477

4.556

3.967

2.441
2.085
1.913
2.349
2.115
2.109
2.168

1.336

1.442

1.200
1.316
2.384
2.107
1.116
1.578

1.599

1.571

1.739

1.712

2.247

1.995

1.658

1.765

1.703
1.644
1.282
1.500

1.543

1.538

1.812
1.720
2.073
1.805
1.526

2.806

3.036

2.334

1.867
1.510
1.991
1.287
1.443
1.356
1.432

1.199

1.311

1.230
1.130
1.559
1.390
1.005
1.312

1.347

1.560

1.348

1.309

1.026

1.326

1.220

1.397

1.371
1.311
1.229
1.507

1.441

1.191

1.454
1.330
1.597
1.019
1.079

1.310

1.349

1.128

0.049
0.055
0.056
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0.049
0.048
0.047

0.039

0.031
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0.044
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Sup-Cerebellar 5.100 4.006 3.123 1.625 0.044
Peduncle
Vermis 3.442 2.947 2.325 0.919 0.030
Central-Tegmental L 5.787 3.969 3.549 1.800 0.041
Central-Tegmental R 7.416 4.048 4.494 1.872 0.034
Dorsal-Longitudinal 2.646 2.867 1.448 1.341 0.044
Fasciculus_L
Dorsal-Longitudinal 4.501 4.265 3.260 0.886 0.051
Fasciculus_R
Lateral-Lemniscus_L 4.714 5.236 2.955 2.830 0.061
Lateral-Lemniscus_R, 4.224 4.791 3.137 1.185 0.028
Medial-Lemniscus_L 5.121 3.936 3.439 1.663 0.038
Medial-Lemniscus_R 5.558 5.089 3.514 1.472 0.036
Medial-Longitudinal 5.895 4.144 3.788 1.691 0.048
Fasciculus_L
Medial-Longitudinal 6.775 4.987 3.492 1.687 0.043
Fasciculus R
Rubro-spinal L 5.805 4.481 3.769 1.616 0.038
Rubro-spinal R 6.198 4.334 4.521 1.425 0.023
Spino-thalamic_L 4.755 3.658 3.428 1.605 0.039
Spino-thalamic_R 5.408 4.787 3.740 1.459 0.033
CNIIL_L 3.286 4.394 1.677 1.464 0.045
CNII_R 3.917 4.025 2.572 1.586 0.041
CNIII_L 4.440 1.955 3.211 0.666 0.045
CNIII_R 6.628 4.917 4.397 1.708 0.043
CNIV_L 1.818 2.753 1.246 1.130 0.051
CNIV_R 5.383 5.624 2.633 1.313 0.028
CNV_L 3.161 3.933 1.802 1.416 0.035
CNV_R 5.307 3.765 2.096 1.307 0.054
CNVII_L 7.835 6.415 4.511 1.799 0.019
CNVII_R 7.054 3.584 4.192 0.841 0.029
CNVIII_L 4.142 4.119 2.227 1.275 0.028
CNVIIIR 4.087 3.656 2.261 1.027 0.027
CNX_L 2.718 - 4.106 - -
CNX_R 3.393 0.018 3.632 - 0.023
Table S1. Average positive weights of local connectome features per 820
major tract. Following a population-based atlas of structural connectome, positive 821

loadings within each major tract have been averaged. An entry with a line mark denotes &2
the lack of positive weights within that tract. L=Left hemisphere, R=Right hemisphere &3

Composite | Crystallized Fluid Penn Delay Disc
Cognitive Composite | Composite Line AUC 200%
Tracts (x107%) (x107%) (x107%) | (x107%) | (x107%)
Acoustic-Radiation_L 4.337 3.898 2.388 0.949 0.044
Acoustic-Radiation_R 4.441 3.369 3.252 0.989 0.047
Cortico-Striatal
Pathway L 3.920 4.109 1.808 1.417 0.038
Cortico-Striatal
Pathway R 3.762 4.019 1.677 1.383 0.038
Cortico-Spinal_L 3.660 4.227 1.755 1.335 0.041
Cortico-Spinal_R 3.600 3.836 1.852 1.406 0.037
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Cortico-thalamic
Pathway L
Cortico-thalamic
Pathway_R

Fornix_L

Fornix_ R
Fronto-pontine_L
Fronto-pontine_ R
Occipito-pontine_L
Occipito-pontine R,
Optic-Radiation_L
Optic-Radiation_R
Parieto-pontine_L
Parieto-pontine_ R
Temporo-pontine_L
Temporo-pontine_ R
Arcuate-Fasciculus_L
Arcuate-Fasciculus_R
Cingulum_L
Cingulum_R
Extreme-Capsule_L
Extreme-Capsule_R
Frontal-Aslant_L
Frontal-Aslant_R
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Fasciculus L
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Fasciculus R
Inf-Longitudinal
Fasciculus_L
Inf-Longitudinal
Fasciculus_R
Mid-Longitudinal
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Mid-Longitudinal
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Sup-Longitudinal
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U-Fiber_L

U-Fiber_R
Uncinate-Fasciculus_L
Uncinate-Fasciculus_R
Vertical-Occipital
Fasciculus_L
Vertical-Occipital
Fasciculus_R
Anterior-Commissure
Corpus-Callosum
Posterior-Commissure
Cerebellum_L

3.698

3.740

3.594
4.957
3.603
3.114
3.009
1.749
4.600
3.394
3.487
3.677
2.834
2.183
2.447
2.796
4.852
4.824
3.903
3.248
2.850
3.276

4.230

3.446

3.123

3.125

4.150

1.961

3.063

3.220

2.909
3.181
4.212
4.792

3.182

2.434

4.878
3.475
3.063
3.741

3.994

3.813
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4.723
3.844
3.883
3.605
2.719
4.652
2.891
4.370
3.460
3.499
2.382
3.219
3.127
4.210
4.725
3.900
2.625
3.537
3.698

3.784

2.931

3.135

3.869

3.943

3.016

3.821

3.675

3.797
3.609
3.836
4.053

3.920

3.847

4.257
3.872
3.296
4.037

1.772

1.742

1.699
2.180
1.574
1.198
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1.032
2.543
1.898
1.863
1.792
1.280
1.568
1.364
1.555
1.990
1.657
1.919
1.193
1.160
1.088

2.473

1.644

1.369

1.231

1.335

0.874

1.328

1.433

1.280
1.450
2.354
2.154

1.266

1.071

2.133
1.494
2.492
2.198

1.319

1.241

0.993
1.303
1.538
1.324
0.938
0.798
1.024
0.933
1.221
1.359
0.796
0.864
1.054
1.113
1.321
1.455
1.227
0.862
1.360
1.246

1.369

1.017

1.093

1.178

0.959

0.922

1.044

1.295

1.098
1.208
1.265
1.131

1.049

1.043

1.338
1.237
1.300
1.160

0.039

0.039

0.042
0.041
0.043
0.038
0.027
0.030
0.051
0.046
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0.025
0.034
0.036
0.034
0.049
0.049
0.035
0.037
0.038
0.035
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Cerebellum_R
Inf-Cerebellar
Peduncle_L
Inf-Cerebellar
Peduncle_ R
Mid-Cerebellar
Peduncle
Sup-Cerebellar
Peduncle

Vermis
Central-Tegmental L
Central-Tegmental R
Dorsal-Longitudinal
Fasciculus_L
Dorsal-Longitudinal
Fasciculus_R
Lateral-Lemniscus_L
Lateral-Lemniscus_R
Medial-Lemniscus_L
Medial-Lemniscus_R
Medial-Longitudinal
Fasciculus_L
Medial-Longitudinal
Fasciculus_R
Rubro-spinal L
Rubro-spinal R
Spino-thalamic_L
Spino-thalamic_R
CNII_L

CNII_R

CNIII_L

CNIII.R

CNIV_L

CNIV_R

CNV_L

CNV_R

CNVII_L

CNVII.R

CNVIII_L

CNVIII_R

CNX_L

CNX_R

3.551
3.798

2.739
3.294

4.726

2.593
4.379
2.864

4.261

4.868

2.476
3.196
3.799
4.425

2.572

4.966

1.556
2.956
2.906
3.069
3.631
3.636
2.758
3.198
2.927
2.296
4.880
3.446
2.066

3.128
3.015

3.756
2.894

3.322

3.250

3.486

3.401
4.074
2.797

4.197

4.511

2.909
5.027
3.480
3.940

3.936

4.678

2.976
3.834
3.196
3.530
3.927
2.794
1.778
1.698
4.605
5.866
3.715
3.709
3.654
4.233
3.422
4.061
1.503
1.086

2.091
2.417

2.088
2.000

2.881

1.504
2.127
1.701

2.069

2.567

1.191
1.628
2.587
2.563

0.200

2.351
0.068

1.695
2.022
2.244
2.189
1.460
1.009
1.500
0.958
1.570
1.006

1.520
1.345

1.108
1.133

1.102

1.396

1.483

1.052
1.507
1.579

1.394

1.520

1.412
1.546
1.716
1.626

1.402

1.228

1.606
1.764
1.455
1.489
0.941
1.427
1.023
0.520
1.440
0.978
1.733
1.745
1.920
0.482
1.486
1.009
0.799
0.976

0.039
0.036

0.040

0.034

0.054

0.039
0.018
0.023

0.012

0.028

0.043
0.045
0.045
0.052

0.019

0.025

0.031
0.022
0.034
0.040
0.040
0.031
0.026
0.012
0.013
0.030
0.021
0.025
0.047
0.045
0.042
0.045
0.033
0.064

Table S2. Average negative weights of local connectome features per

major tract. Following a population-based atlas of structural connectome, negative
loadings within each major tract have been averaged. An entry with a line mark denotes
the lack of negative weights within that tract. L=Left hemisphere, R=Right hemisphere

Feature Weight

rhCortexVol 0.015890
CortexVol 0.015644
IhCortex Vol 0.015265
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Left-VentralDC
Left-Cerebellum-White-Matter
MaskVol-to-eTIV
TotalGray Vol
CC_Mid_Posterior
MaskVol
Right-Lateral-Ventricle
4th-Ventricle

CSF
Right-Accumbens-area
Right-VentralDC
Left-Amygdala
Left-Lateral-Ventricle
Right-vessel

CC_Central

Estimated TotallntraCranial Vol
rhSurfaceHoles
WDM-hypointensities
Brain-Stem
Right-Inf-Lat-Vent
Right-Caudate
Left-Caudate
CC_Mid_Anterior
Left-vessel

Left-Pallidum
SupraTentorial Vol
BrainSegVol
SupraTentorial VolNot Vent Vox
SupraTentorial VolNot Vent
BrainSegVolNot Vent
BrainSegVolNot VentSurf
Left-Hippocampus
Right-Cerebellum-Cortex
Left-choroid-plexus
Left-Cerebellum-Cortex
SubCortGrayVol
SurfaceHoles
CC_Posterior
Right-Thalamus-Proper
5th-Ventricle
3rd-Ventricle
Left-Thalamus-Proper
Left-Inf-Lat-Vent
Right-Putamen
non-WM-hypointensities
Right-Amygdala
lhSurfaceHoles
Left-Putamen
BrainSegVol-to-eTTV
Right-choroid-plexus
Right-Hippocampus
Optic-Chiasm

0.013799
0.012979
0.012450
0.012299
0.012187
0.011233
0.010319
0.008717
0.006599
0.006029
0.006001
0.005821
0.004951
0.004450
0.003990
0.003390
0.003077
0.003074
0.002957
0.002753
0.002452
0.002396
0.001909
0.001129
0.001000
0.000911
0.000812
0.000524
0.000481
0.000377
0.000366
0.000329
-0.000447
-0.001078
-0.001522
-0.001767
-0.001866
-0.002304
-0.002689
-0.003094
-0.004685
-0.005249
-0.005394
-0.005477
-0.005570
-0.006690
-0.006709
-0.007109
-0.007461
-0.007678
-0.009197
-0.010261
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Right-Pallidum
Right-Cerebellum-White-Matter
CC_Anterior

IhCortical WhiteMatter Vol
Cortical WhiteMatterVol
rhCortical WhiteMatter Vol
Left-Accumbens-area

-0.010930
-0.012078
-0.013259
-0.013764
-0.013820
-0.013856
-0.014673

Table S3. Weights of volumetric properties. Loadings of global and subcortical
volume features for predicting the score of a Delay Discounting test, which assesses
impulsivity abilities. The name of the features are the same that can be found in the

aseg.stats file from freesurfer.
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