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Abstract

Variation in cognitive ability arises from subtle differences in underlying neural
architectural properties. Understanding and predicting individual variability in
cognition from the differences in brain networks requires harnessing the unique variance
captured by different neuroimaging modalities. Here we adopted a multi-level machine
learning approach that combines diffusion, functional, and structural MRI data from
the Human Connectome Project (N=1050) to provide unitary prediction models of
various cognitive abilities: global cognitive function, fluid intelligence, crystallized
intelligence, impulsivity, spatial orientation, verbal episodic memory and sustained
attention. Out-of-sample predictions of each cognitive score were first generated using a
sparsity-constrained principal component regression on individual neuroimaging
modalities. These individual predictions were then aggregated and submitted to a
LASSO estimator that removed redundant variability across channels. This stacked
prediction led to a significant improvement in accuracy, relative to the best single
modality predictions (approximately 1% to 4% boost in variance explained), across a
majority of the cognitive abilities tested. Further analysis found that diffusion and
brain surface properties contribute the most to the predictive power. Our findings
establish a lower bound to predict individual differences in cognition using multiple
neuroimaging measures of brain architecture, both structural and functional, quantify
the relative predictive power of the different imaging modalities, and reveal how each
modality provides unique and complementary information about individual differences
in cognitive function.

Author summary

Cognition is a complex and interconnected process whose underlying mechanisms are 1

still unclear. In order to unravel this question, studies usually look at one neuroimaging 2

modality (e.g. functional MRI) and associate the observed brain properties with 3

individual differences in cognitive performance. However, this approach is limiting 4

because it fails to incorporate other sources of brain information and does not generalize 5
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well to new data. Here we tackled both problems by using out-of-sample testing and a 6

multi-level learning approach that can efficiently integrate across simultaneous brain 7

measurements. We tested this scenario by evaluating individual differences across 8

several cognitive domains, using five measures that represent morphological, functional 9

and structural aspects of the brain network architecture. We predicted individual 10

cognitive differences using each brain property group separately and then stacked these 11

predictions, forming a new matrix with as many columns as separate brain 12

measurements, that was then fit using a regularized regression model that isolated 13

unique information among modalities and substantially helped enhance prediction 14

accuracy across most of the cognitive domains. This holistic approach provides a 15

framework for capturing non-redundant variability across different imaging modalities, 16

opening a window to easily incorporate more sources of brain information to further 17

understand cognitive function. 18

Introduction 19

Cognitive abilities are not modularly localized to individual brain areas, but rely on 20

complex operations that are distributed across disparate brain systems (e.g., [1]). Prior 21

work on the association between macroscopic brain systems and individual differences in 22

cognitive ability has, by and large, relied on correlational analyses that usually assess 23

linear changes in a particular cognitive task or measure (e.g., general intelligence 24

quotient) that coincide with specific brain properties such as region size [2, 3], gray 25

matter [4] and white matter [5] volume, cortical thickness [6] and surface area [7], 26

resting-state functional connectivity [8], task-related activity [9], global functional 27

network properties [10], white matter connectivity [11], and other unimodal measures. 28

However, these correlation approaches, based on unimodal imaging methods, suffer 29

several critical limitations. First, due to the mass univariate nature of the analyses, a 30

large number of statistical tests is usually performed, thereby raising the chances of 31

Type I error (false positives) and decreasing the statistical power of the study after 32

adjusting for multiple testing. Second, they do not take into account the mutual 33

dependencies between brain features and therefore ignore redundant sources of 34

variability. Finally, the lack of out-of-sample validation tests leads to over-optimistic 35

results (i.e., potential overfitting), thus lowering their generalizability across studies and 36

applicability in clinical routines. 37

To address some of these limitations, recent studies have adopted machine learning 38

frameworks that can accommodate all of these deficiencies by building predictive models 39

from multivariate features across the whole brain and testing them on independent 40

hold-out data samples. These methodologies have been widely applied to predict 41

cognitive performance (see [12] and references therein) in out-of-sample test sets and 42

have proven particularly popular with resting-state functional connectivity paradigms 43

due to their inherent multivariate nature. For example, recent studies show that 44

functional connectivity profiles, distributed across the brain, can predict up to 20% of 45

the variance in general intelligence [13] and 25% in fluid intelligence, with regions within 46

the frontoparietal network displaying a positive correlation and regions in the default 47

mode network an anti-correlation [14]. Similar sparse regression models have shown how 48

variability in white matter integrity of association pathways can reliably predict 49

individual differences in cognitive ability [15]. By building predictive models that can be 50

evaluated in out-of-sample test sets, as opposed to simple association analyses, these 51

machine learning approaches can quantify the degree of generalizability of particular 52

findings, providing key insights into potential for neuroimaging based biomarkers for 53

cognitive function. 54

Despite the success of applying predictive modeling approaches for the mapping of 55
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brain properties to differences in cognitive performance, previous work has largely 56

focused on unimodal methods. Thus, an implicit assumption is that an individual 57

neuroimaging modality is sufficient to capture all, or at least, enough aspects of 58

underlying neural tissue to be a reliable measure of general brain properties. Yet we 59

know that different neuroimaging modalities reveal fundamentally different properties of 60

underlying neural tissue. For example, functional MRI (fMRI) and diffusion MRI 61

(dMRI) reveal separate, but complementary, properties of the underlying connectome 62

that independently associate with different aspects of cognition [16]. This means that 63

different measures of brain structure and function may reveal complementary 64

associations with cognitive abilities that collectively boost the power of predictive 65

models. 66

One of the challenges of building multimodal models of individual differences is the 67

increased complexity of the explanatory model when one attempts to combine all the 68

sources of variation. Modeling variability from a single neuroimaging modality is an 69

already high dimensional statistical problem [17–19], with many more features than 70

observations. Adding more modalities exponentially increases model complexity, 71

increasing the risk of overfitting, even when traditional approaches to dimensionality 72

reduction (e.g., principal component regression) or sparse feature selection (e.g., LASSO 73

regression) are applied. However, one way around this dimensionality problem is 74

transmodal learning [20], a multi-modal predictive approach that combines elements 75

from transfer [21] and stacking (sometimes also called stacked generalization) [22] 76

learning paradigms. Transmodal learning takes independent predictions from separate 77

channels (e.g., generated from separate imaging modalities) and runs a second model 78

using the single-channel predictions as the inputs. This second “stacked” model 79

attempts to find unique sources of variability in the different input channels. 80

Redundancy in variance, i.e., if two different imaging modalities are picking up on the 81

same sources of variability, is accounted for through the use of feature selection methods. 82

The end result is a more holistic prediction model that tries to explain more variance 83

than individual input channels. Such a transmodal learning approach was recently 84

shown to be effective at integrating structural and functional MRI measures to generate 85

a reliable prediction of participant age whose residuals also explained individual 86

differences in objective cognitive impairment [23]. 87

In the present study, we used the transmodal, or stacked, learning method to 88

quantify the extent to which the combination of data from multiple neuroimaging 89

modalities permits increasing predictive performance in several cognitive domains, 90

including intelligence, sustained attention, working memory, spatial orientation and 91

impulsivity. By using a large dataset, comprised of multiple neuroimaging measures 92

from 1050 subjects from the Human Connectome Project [24], we demonstrate that for 93

most cognitive domains a significant enhancement in overall prediction utility is 94

achieved when multiple modalities are integrated together, thus indicating that each 95

brain measurement provides unique information about the underlying neural substrates 96

relevant for cognitive function. In addition, this analysis yields a multi-modal cognitive 97

phenotype for each cognitive ability, namely, the subset of architectural brain features 98

whose combination yields a significant and complementary enhancement of the 99

prediction performance. 100

Results 101

Our primary goal was to see if predictions that integrate across neuroimaging modalities 102

provide a boost to the prediction capability of individual differences in cognitive ability. 103

For purposes of our analysis, the primary neural measures consisted of MRI-based 104

assessments of (1) functional networks defined as Fisher’s z-transformed Pearson 105
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correlation coefficients between resting BOLD time series, (2) measures of cortical 106

surface area, (3) cortical thickness attributes, (4) global and subcortical volumetric 107

information and (5) local connectome features representing the voxel-wise pattern of 108

water diffusion in white matter. Our multi-level, stacked modeling approach (see Fig 1 109

and Material and Methods section for details) uses a l1-constrained (LASSO) variant of 110

principal component regression (PCR) to generate predictions of specific cognitive 111

scores from single imaging modalities in a training set. These are referred to as 112

single-channel models. To integrate across modalities, we stacked these single-channel 113

predictions together and used them as inputs to a separate LASSO regression model 114

that performs a weighted feature selection across channels. This is referred to as the 115

stacked model and it produces a new set of predictions for cognitive scores of individuals 116

by selecting and reweighting the individual channel predictions. Performance of the 117

single-channel and stacked models are then evaluated by comparing the observed scores 118

with the predicted scores in the out-of-sample sets. All models were fit on 70% of the 119

data (training set) and tested on the remaining 30% (test set). A Monte Carlo 120

cross-validation procedure [25] with 100 random stratified splits was employed to assess 121

the generalization of these predictions. 122

The overall performance of the single-channel and stacked models are depicted in 123

Fig 2. These accuracies were determined using the coefficient of determination R2 (see 124

Fig S1 for the mean absolute error scores), which shows the percent variance explained 125

by each model in out-of-sample test sets. In Fig 3, the contributions of each channel to 126

the stacked model (estimated by the LASSO weights) are displayed for those domains in 127

which stacking bonus is positive, i.e. the scenario in which different measurements 128

aggregate complementary and non-redundant variability. Finally, in order to understand 129

the relative feature importance in the predictions of each brain measurement, we refit 130

the LASSO-PCR estimator to each single-channel model using all observations. The 131

resulting phenotype maps are depicted in Fig 4, only for those measurements whose 132

median cross-validated contribution to the stacked model is different from zero at 133

α = 0.05 significance level. In the following sub-sections we shall elaborate on the 134

specific pattern of results for each cognitive factor represented by the scores given in 135

Table 1. 136

Global cognitive function 137

Global cognitive function was estimated by the Composite Cognitive Function score, a 138

proxy for a general estimate of intelligence. Here the single-channel models based on 139

cortical surface area and local connectome features produced the highest predictive 140

rates for individual modalities, with a median R2 = 0.119, 95% CI [0.110, 0.126] and 141

0.116, 95% CI [0.107, 0.125] respectively. Moreover, the relative prediction accuracy of 142

these two models did not differ statistically (one tailed Wilcoxon test p = 0.116, 143

rank-biserial correlation W
S = 0.137). Compared to the cortical surface area and local 144

connectome models, a significant drop in prediction performance occurred for 145

resting-state connectivity (median R2 = 0.040, 95% CI [0.037, 0.045]), cortical thickness 146

(median R2 = 0.051, 95% CI [0.047, 0.055]) and global and sub-cortical volumetric 147

(median R2 = 0.065, 95% CI [0.061, 0.069]) features. Thus we see substantial variability 148

across individual neuroimaging modalities in their predictive utility on a measure of 149

global cognitive function. 150

After integrating predictions across modalities, however, an important improvement 151

in overall accuracy is observed. The stacked model raised the median R2 to 152

approximately 0.155, 95% CI [0.147, 0.163] in global cognitive function. Thus, the 153

stacked model predicted a significant incremental median bonus B = 0.035, 95% CI 154

[0.032, 0.039] compared to the best single-channel model. 155

Based on the LASSO weights in the stacked model (see Fig 3a), we identified the 156
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Fig 1. Stacking methodology for multi-modal data prediction. In the first
step, a principal component regression, with an l1-sparsity (LASSO) constraint, and
5-Fold cross-validation is applied to each brain measurement to simultaneously optimize
the model and generate out-of-sample predictions. These predictions are then stacked to
fit a new LASSO model during the second learning step that performs weighted feature
selection across single-channel predictions.

local connectome and cortical surface areas as the strongest contributing measurements, 157

with the former (median β = 0.560, 95% CI [0.534, 0.585]) contributing significantly 158

more than the latter (median β = 0.508, 95% CI [0.480, 0.526]). Interestingly, 159

resting-state connectivity was still a reliable predictor (median β = 0.360, 95% CI 160

[0.337, 0.386]), as was cortical thickness (median β = 0.193, 95% CI [0.154, 0.223]), 161

although to a lesser degree. A null median weight assigned to the volume channel 162

predictions showed that these factors did not appear to reliably contribute to the 163

stacked model. Such diverse patterns of contributions from single-channels to the 164
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Fig 2. Single-channel and stacked performances to predict cognition. The
coefficient of determination, R2, between the observed and predicted values of seven
cognitive scores using each brain measurement separately and together by stacking their
predictions. The scenario that yields the maximum predictive accuracy in out-of-sample
tests is shown in red.

stacked model may be partially affected by the L1 regularization term dealing with the 165

shared variance between predictions. Indeed, out-of-sample predictions from volumetric 166

factors exhibited a large collinearity, measured through Pearson correlations, especially 167

with those predictions from cortical surface area (median r = 0.597, 95% CI [0.577, 168

0.611]) and local connectome attributes (median Pearson r = 0.510, 95% CI [0.499, 169

0.524]). In contrast, a lower similarity was found when compared to predictions from 170

resting-state connectivity profiles (median r < 0.25 with respect to all measurements), 171

hence increasing their likelihood to be present in the final predictive model. 172

For the largest contributing channel, the local connectome, global cognitive ability 173
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Fig 3. β coefficient distribution of each single-channel in the stacked model.
Across the 100 different data splits, the weight distribution assigned to the
out-of-sample predictions of each brain measurement by the stacked LASSO model in
those cognitive scores in which stacking significantly improved the overall performance.

positively associated (warmer colors in Fig 4a, top panel) with signal in primarily 174

association (i.e., intrahemispheric cortical-cortical pathways) and commissural (i.e., 175

interhemispheric pathways) fiber systems. In contrast, many projection pathways, with 176

the major exception being cerebellar peduncles, were negatively associated with global 177

cognitive ability (cooler colors). This was particularly strong in the internal and 178

external capsules. For cortical surface area, ventral temporal and anterior parietal 179

regions areas were largely positively associated with global cognition while frontal and 180

posterior parietal pathways were negatively associated. Interestingly, a different pattern 181

was observed for cortical thickness, where anterior parietal regions and the insula 182

particularly appeared to positively associate with global cognitive function. Finally, 183
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Fig 4. Neurophenotypes of cognitive prediction. Correlates of each brain
measurement whose contribution to predicting cognitive scores during stacking is
statistically non-redundant. Red and blue colors in the brain images (i.e., local
connectome, cortical surface area, cortical thickness, and subcortical volumes) display
positive and negative weights respectively. To facilitate interpretability, a barplot shows
the average loadings of resting-state connectivity features to each intrinsic functional
network (indicated by color).

resting-state connectivity for the orbito-affective, language and default mode appeared 184

to be the strongest contributors to positive associations with global cognition. In 185

contrast, the auditory and primary visual networks particularly contributed negatively 186

to global cognitive ability scores. Loadings for the volumetric features are not shown 187

because this channel’s predictions did not survive the feature selection step in the 188

stacked LASSO model. 189
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Fluid intelligence 190

Global cognitive ability is usually decomposed into two domains [26]: fluid intelligence 191

(i.e., the ability to flexibly reason on new information) and crystallized intelligence (i.e., 192

the ability to recall and use prior information). Thus we next wanted to determine how 193

similar or different the prediction models were for these two subcomponents of general 194

cognitive ability are. For fluid intelligence, extracted from the NIH toolbox Cognitive 195

Fluid Composite Score, local connectome fingerprints yielded the highest coefficients of 196

determination (median R2 = 0.048, 95% CI [0.045, 0.055]), significantly exceeding those 197

from cortical surface areas (median R2 = 0.039, 95% CI [0.034, 0.044]), resting-state 198

connectivity (median R2 = 0.019, 95% CI [0.016, 0.021]), subcortical and global volume 199

features (median R2 = 0.018, 95% CI [0.015, 0.022]) and thickness of cortical regions 200

(median R2 = 0.016, 95% CI [0.013, 0.018]). Stacked predictions raised the variability 201

explained to a median R2 = 0.065, 95 % CI [0.060, 0.070], which is translated into a 202

0.015, 95 % CI [0.013, 0.019] of expected stacking bonus B. 203

Interestingly, despite its weak correlation with cognitive performance, the 204

resting-state connectivity channel supplied a non-redundant variability to the stacked 205

model, occupying second place in variance importance (median β = 0.514, 95%CI [0.474, 206

0.560]), between the local connectome (β = 0.571, 95% CI [0.535, 0.610]) and cortical 207

surface area factors (β = 0.462, 95% CI [0.410, 0.516]). Contributions from cortical 208

thickness attributes were lower compared to the aforementioned channels (median 209

β = 0.247, 95% CI [0.163, 0.297]). On the other hand, volumetric information appeared 210

again to provide a null contribution to the stacked model (see Fig 3b). 211

Since fluid intelligence is one of the two components of the global cognitive ability 212

score, it is not surprising that the weight maps in both domains showed large 213

correlations across the five modalities (see Fig S3). Regardless of this, subtle phenotypic 214

differences can still be observed (see Fig 4b); namely, the emergence of a stronger 215

positive association with brain stem pathways such as rubrospinal tract (see Table S1) 216

and the enhanced positive correlation of resting-state connectivity links to language 217

areas (see also FigS2b). Loadings for global and subcortical volumes are not shown 218

again because they did not survive the feature selection step in the stacked LASSO 219

model. 220

Crystallized intelligence 221

For crystallized intelligence we extracted the NIH toolbox Cognition Crystallized 222

Composite Score. In this domain, the highest predictive accuracies were provided by 223

cortical surface attributes (median R2 = 0.143, 95% CI [0.132, 0.149]), followed by the 224

local connectome features (median R2 = 0.123, 95% CI [0.117, 0.133]), volumetric 225

measurements (median R2 = 0.082, 95% CI [0.078, 0.090]), cortical thickness (median 226

R2 = 0.071, 95% CI [0.067, 0.079]) and resting-state connectivity (median R2 = 0.033, 227

95% CI [0.027, 0.036]). By stacking these predictions, we obtained a median bonus B = 228

0.029, 95% CI [0.025, 0.033], thus the stacked model reached a median R2 = 0.164, 95% 229

CI [0.157, 0.170]. 230

In contrast to global cognition, variability in the stacked model was foremostly 231

driven by cortical surface area factors (median β = 0.535, 95% CI [0.510, 0.566]), which 232

significantly exceeded the contribution from local connectome (median β = 0.469, 95% 233

CI [0.431, 0.497]), cortical thickness (β = 0.290, 95% CI [0.260, 0.334]) and resting-state 234

connectivity (median β = 0.224, 95% CI [0.148, 0.285]). Likewise, the stacked LASSO 235

model shrunk away predictions from volume attributes when combined with the rest of 236

channels (see Fig 3c). 237

Similarly to the fluid intelligence domain, multi-modal phenotypes of crystallized 238

intelligence resembled those of global cognition, with some slight differences such as the 239
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increase of positive associations with nerve tracts between the claustrum and the insular 240

cortex (the extreme capsule) and brainstem nerves such as the lateral lemniscus (see 241

Table S1 and Table S2); and the enhancement of both positive and negative correlations 242

with resting-state connectivity strength in regions of the fronto-parietal network (see 243

Fig 4c and FigS2c). 244

Impulsivity 245

One factor not reliably measured in the Composite Cognitive Function score is 246

impulsivity or self-regulation, i.e., the ability to suppress contextually inappropriate 247

behaviors. To assess this we extracted the area-under-the curve (AUC) for discounting 248

of $200 from the Delayed Discounting Task. Even though the percent variance 249

explained by the single-channel models for this impulsivity measure were relatively low 250

(see Fig 2d), their performance improved using the stacked predictions (median R2= 251

0.027, 95% CI [0.023, 0.031]). Indeed, the stacked model performance exceeded that of 252

the best single-channel, in this case cortical surface area properties (median R2 = 0.021, 253

95 % CI [0.018, 0.026]). Thus, by integrating across modalities one could expect a 254

smallish (yet significant) median bonus B = 0.006, 95 % CI [0.003, 0.009]. The next 255

best single-channel performances were those from volumetric factors (median 256

R2 = 0.017, 95% CI [0.012, 0.021]) and local connectome features (median R2 = 0.014, 257

95% CI [0.012, 0.017]). In contrast, both cortical thickness and resting-state 258

connectivity metrics produced prediction accuracies with confidence intervals that are 259

poorer than the mean response (median R2 = 0.002, 95% CI [-0.000, 0.004]; and median 260

R2 = −0.004, 95% CI [-0.005, -0.003] respectively). 261

Interestingly, unlike the models for global cognition and intelligence, for predicting 262

impulsivity the volumetric factor survived the LASSO feature selection step and 263

emerged as an important explanatory source of variability in the final out-of-sample 264

predictions (median β = 0.442, 95% CI [0.332, 0.477]). In fact, volumetric features 265

explained a similar amount of variance as that of cortical surface areas (median β = 266

0.452, 95% CI [0.429, 0.534]) and more variance than the local connectome predictions 267

(median β = 0.344, 95 % CI [0.294, 0.419]). On the other hand, both resting-state 268

connectivity and cortical thickness attributes did not appear to play a role in 269

combination with the rest of measurements (see Fig 3d). 270

Impulsivity phenotype maps for these contributing channels are depicted in Fig 4d. 271

Subcortical attributes showed a strong influence of cerebellum white matter volume, an 272

association which is manifested with opposite signs in each hemisphere. Moreover, 273

similar loadings were also observed for the volume of the hippocampus, amygdala, 274

pallidum, nucleus accumbens, and temporal horn. The importance of the remaining 275

volumetric features can be found in Table S3, revealing an overall positive association of 276

global volumetric measures with impulsivity scores. With respect to cortical surface 277

areas, the greatest positive associations were found in areas of the dorsal-prefrontal 278

cortex and inferior and middle temporal lobe, while negative associations were 279

concentrated in the occipital lobe and superior temporal gyrus. Finally, particularly 280

important areas of local connectome features positively correlated with impulsivity were 281

found along optic radiation tracts, a group of fibers which connect the lateral geniculate 282

nucleus of the pulvinar of the thalamus and the primary visual cortex of the occipital 283

lobe, and brainstem pathways like the lateral lemniscus tracts (see also Table S1). In 284

contrast, the largest negative loadings were located along the superior cerebellar 285

peduncle, the medial lemniscus and the uncinate fasciculus tracts (see also Table S2). 286
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Spatial orientation 287

Spatial orientation is the ability to reference how the body or other objects are oriented 288

in the environment and reflects a critical cognitive domain for spatial awareness. We 289

extracted scores from the Variable Short Penn Line Orientation Test to look at 290

individual differences in spatial orientation ability. The predictive models for spatial 291

orientation followed the similar tendency observed in our other models thus far, with 292

the stacked predictions improving overall single-channel accuracies. The best 293

performing single-channel model was for cortical surface area (median R2 = 0.104, 95% 294

CI [0.095, 0.110]), which was greater than the local connectome (median R2 = 0.089, 295

95% CI [0.083, 0.095]), volumetric measure (median R2 = 0.0689, 95% CI [0.062, 296

0.076]), and cortical thickness (median R2 = 0.039, 95% CI [0.034, 0.043]) models. The 297

worst performing single-channel model for predicting spatial orientation was 298

resting-state connectivity features (median R2 = 0.008, 95% CI [0.006, 0.011]). 299

Like the previous cognitive measures, the prediction of individual differences in 300

spatial orientation improved when modalities were integrated together, with the 301

performance of the stacked model being R2 = 0.116, 95 % CI [0.110, 0.122] and 302

therefore constituting a stacking bonus B = 0.016, 95 % CI [0.012, 0.019] with respect 303

to the best single-channel model. The stacked model eliminated the contributions of 304

resting-state connectivity and volumetric features, suggesting that these factors did not 305

provide unique contributions to predicting spatial orientation ability above that of the 306

cortical surface and white matter measures. As a result, only cortical surface areas 307

(median β = 0.512, 95% CI [0.482, 0.545]), local connectome features (median β = 308

0.504, 95% CI [0.478, 0.527]) and cortical thickness attributes (median β = 0.175, 95% 309

CI [0.100, 0.224]) appeared to provide a non-redundant contribution to the stacked 310

model (see Fig 3e). 311

Finally, weight maps estimated from these contributing channels are displayed in 312

Fig 4e. Interestingly, we can appreciate a positive correlation with local connectome 313

features particularly along projection pathways connecting to regions in the occipital 314

cortex (optical radiation, central tegmental and occipito-pontine tracts), which are 315

involved in visual demanding tasks, whereas negative associations are mainly dominated 316

by cranial nerves and axons from the rubrospinal tract. Regarding structural cortical 317

attributes, positive loadings from surface area factors were found in regions along the 318

inferior and middle temporal gyri and the paracentral gyrus, whereas negative 319

associations took place in the frontal cortex. On the other hand, except for regions in 320

the central sulci, orbital gyrus and temporal pole, thickness properties exhibited a 321

negative correlation with spatial orientation that spans over the entire brain cortex. 322

Verbal episodic memory 323

The Penn Word Memory test captures verbal memory abilities. For this response 324

variable, stacked prediction accuracy (median R2 = 0.012, 95% CI [0.010, 0.016]) did 325

not improve the single-channel’s best performance represented by the local connectome 326

fingerprints (median R2 = 0.019, 95% CI [0.016, 0.022]). The rest of the measurements 327

all exhibited a negative median R2, meaning that they perform worse than using 328

predictions from the mean response variable (see Fig 2f). As a consequence, neither the 329

β coefficients showing the single-channel contributions to the stacked model nor the 330

weight maps were reported for this cognitive score. 331

Sustained attention 332

The Short Penn Continuous Performance Test is the measure of sustained attention. As 333

shown in Fig 2g, accuracies of single-channels and stacked model in this domain were 334
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overall negligible and worse or not statistically different from those provided by the 335

mean response variable. Owing to this, neither the β coefficients showing the 336

single-channel contributions to the stacked model nor the weight maps were reported for 337

this cognitive score. 338

Discussion 339

Here we tested whether multiple functional, diffusion, and morphological MRI-based 340

measurements of brain architecture constitute complementary sources of information for 341

predicting individual differences in cognitive ability. We accomplished this by means of 342

a stacking approach for multimodal data, a two-level learning framework in which 343

groups of features are first separately trained and their predicted response values 344

subsequently stacked to learn a new model that takes into account redundant effects 345

across channels. Our results show that for most of the cognitive measures tested 346

integrating across different brain measurements provides a boost to prediction accuracy, 347

highlighting how different imaging modalities provide unique information relevant to 348

predicting differences in human cognitive ability. 349

One of the strengths of our approach is the assessment of how performance in 350

different cognitive domains associates with a wide range of brain measurements. 351

Overall, our results show that effect sizes tend to be moderate (at most explaining less 352

than 20% of the variance), which begs the question of where the remaining variability 353

may come from. It might be possible that the metrics employed here, which largely 354

reflect static architectural aspects of global brain systems, are missing the fundamental 355

dynamics of neural circuits during relevant behavioral states for expressing specific 356

cognitive functions. In this regard, specific task-evoked fMRI measurements that 357

directly assess the neural reactivity during cognitive evaluation [27–29] could help raise 358

the overall predictive power. For example, we recently showed that brain activation 359

patterns during affective information processing tasks predict an important portion of 360

individual differences of cardiovascular disease risk factors, a finding that we could not 361

have reached had not we used the appropriate and specific task fMRI experiment [30]. 362

Additionally, increasing both spatial resolution to better capture features of 363

structural-functional variation [31] and temporal resolution for a more accurate 364

decoding of the underlying brain dynamics [32] could be valuable and complementary 365

sources of cognitive performance correlation. Thus we consider the work here a 366

proof-of-principle for making holistic models that predict specific cognitive abilities, 367

which could be further improved with additional, more specific, inputs. 368

Of particular note is that the observed effect sizes from resting-state connectivity are 369

consistently small, which appears to be in conflict with previous results that reported a 370

medium-large correlation (r = 0.5) between patterns of resting-state connectivity and 371

fluid intelligence functioning [14]. In our case and for this particular domain, the 372

maximum performance that we achieved across all simulations is ostensibly smaller 373

(R2 = 0.047, r = 0.29). Nevertheless, such a decrease in the effect sizes was expected 374

due to our use of a much larger sample size (N = 1050 versus N = 126), which reduces 375

inflated results caused by sampling variability and therefore, findings are more 376

reproducible and inferred patterns generalizable to a broader population spectrum [33]. 377

In addition, it is important to note that our preprocessing pipeline does not regress out 378

the mean global BOLD signal, which is supposed to strengthen the association between 379

resting-state functional connectivity profiles and behavior [34]. This step is still 380

controversial since it is not clear whether it supplies real or spurious information [35]. 381

Finally, we relied on the coefficient of determination, R2, to assess the predictive power 382

of the learned models, in contrast to using Pearson correlation coefficient, which 383

overestimates the association between predicted and observed values and therefore it is 384
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not a recommended performance metric during regression tasks [36,37]. 385

The overall stacking approach to multimodal integration that we applied here closely 386

follows work by Liem and colleagues [23], who used a stacking approach with multimodal 387

brain imaging data to improve the performance in individual age prediction, although 388

with two big differences in structure. First is the choice of the algorithm for the second 389

learning stage in this transmodal approach. Albeit performances from a Random Forest 390

algorithm, as used by Liem and colleagues, would have been proven to be less variable 391

compared to other well known algorithms in similar scenarios [38], we decided to use a 392

LASSO regression model because of its simplicity (it only has one hyperparameter to 393

tune) and due to the fact that the L1 penalty term can automatically get rid of the 394

redundant variability of the different channels. The second difference is the number of 395

neuroimaging modalities, since we have also included diffusion data in our study. 396

Indeed, we have demonstrated that the inclusion of local connectome features played an 397

important role for prediction, since they alone account for a moderate rate of variability 398

consistent across all cognitive domains. Moreover, such variability survives and indeed 399

prevails when combined with the rest of single-channel predictions. This finding 400

validates the role of the local connectome fingerprint as a reliable correlate of cognitive 401

factors at the individual level [15] and suggests its complementary role in combination 402

with other brain measurements. In particular, white matter diffusion tracts provide a 403

putative structural basis for the macroscopic human connectome that is reflected in the 404

correlation for age [39] and cognition [40,41]. Furthermore, it is important to stress that 405

local connectome fingerprints do not rely on fiber tracking algorithms, which reduces 406

the risk of false-positive bias when mapping white matter pathways [42–44]. Our 407

findings here with respect to predicting cognitive ability, along with the work of Liem 408

and colleagues on age predictions [23], simply demonstrate how powerful a stacking 409

approach can be to maximizing explainable variance from multiple imaging modalities. 410

Interestingly, although stacked predictions clearly increase the variability explained 411

at a global cognitive level, this is not the case across all domains. For example, global, 412

fluid, and crystalized intelligence, impulsivity and spatial orientation all show 413

improvements in prediction accuracy, in contrast to attention and word memory 414

functioning. These results might be caused by the existence of a hierarchical cognitive 415

categorization, with high complex functions demanding the integration of multi-modal 416

aspects of the brain compared to lower level functions [45]. Alternatively, individual 417

differences in some cognitive areas might be mostly parametrized by one specific brain 418

sub-system that captures all the variability. For instance, white matter structure is an 419

important substrate of cognitive performance whose deterioration, notably in the 420

hippocampus, is the first sign of memory decline at both early and late stages in 421

Azheimer’s disease [46,47]. On the other hand, it might also happen that for certain 422

cognitive domains, the measurements considered in this study do not constitute a 423

sizable source of variability and therefore stacking is only aggregating noise to the 424

predictive model. Finally, associations with cognitive performance might be affected by 425

the inherent nature of the cognitive tests, either due to an imperfect design that adds 426

unwanted variability, or because of the properties of the sampling distribution. For 427

example, in our dataset, scores in the Short Penn test display a heavy deviation from 428

normality, that can affect sensitivity in regression models. 429

A possible limitation of our study arises from the fact that predefined test scores 430

were employed as response variables, which in most cases are largely coarse measures of 431

cognitive ability that may rely on redundant underlying subprocesses, leading to a 432

degree of similarity in the brain architecture features that contribute to predicting 433

individual differences. Regardless of this, spatial correlation analysis shows that a 434

portion of each cognitive measure’s weight map is unique (including for the global 435

cognitive score that is constructed from both crystallized and fluid intelligence scores) 436
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and therefore there exist brain structures whose roles are specific to the area of 437

cognition involved (see Fig S3). Future studies might benefit from adopting more 438

sensitive approaches to measuring specific cognitive factors (e.g., psychophysical 439

measurements) that can carefully isolate primary cognitive abilities. 440

Finally, our current framework treats brain measurements separately at a first step, 441

based on the assumption that they represent independent and non-overlapping sources 442

of cognitive variation. As we showed, this is far from true: there exists some degree of 443

redundancy across the imaging modalities. Future studies might attempt to find a 444

decomposition into multidimensional representations of unique and shared variance 445

across brain measurements. This would likely increase the number of single-channels 446

whose individual predictions can be later exploited by our stacking approach. 447

Despite these limitations, our work here builds on the growing body of work 448

attempting to integrate information from different neural sources so as to maximize 449

explained variability of individual differences. Our approach predicts individual 450

differences in cognition by separately fitting measurements of structural, functional and 451

diffusion modalities and subsequently stacking predictions to enhance overall accuracy 452

while removing redundant contributions. Even though a large portion of variance in the 453

data remains unaccounted for, our results demonstrate that effect sizes can be easily 454

increased by using multimodal neuroimaging data and establish a solid and reliable 455

lower bound for cognitive prediction in different domains. 456

Materials and Methods 457

Participants 458

We used publicly available data from the S1200 release of the Human Connectome 459

Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The HCP project 460

(Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at Massachusetts 461

General Hospital; Arthur W. Toga, Ph.D., University of Southern California, Van J. 462

Weeden, MD, Martinos Center at Massachusetts General Hospital) is supported by the 463

National Institute of Dental and Craniofacial Research (NIDCR), the National Institute 464

of Mental Health (NIMH) and the National Institute of Neurological Disorders and 465

Stroke (NINDS). HCP is the result of efforts of co-investigators from the University of 466

Southern California, Martinos Center for Biomedical Imaging at Massachusetts General 467

Hospital (MGH), Washington University, and the University of Minnesota. Out of the 468

1200 participants released, 1050 subjects had viable T1-weighted, resting-state fMRI, 469

and diffusion MRI data. In addition, 21 subjects were discarded due to the presence of 470

missing information in some of the response variables used in this study. The final 471

dataset comprised of 1029 individuals (550 female, age range 22-37, mean ± σage = 472

22.73± 3.68 years). 473

Predictor variables 474

Preprocessing steps included spatial artifact/distortion removal, surface generation, 475

cross-modal registration and alignment to standard space and the automatic ICA-FIX 476

denoising of functional acquisitions, among others (more details on these and other 477

additional preprocessing steps can be found in [48]). 478

Structural predictors were composed of cortical thickness (CT) and surface area (CS) 479

values of 360 regions in a multi-modal parcellation [49], and 66 features containing 480

global, subcortical and other volume (VL) information, directly extracted from the 481

aseg.stats freesurfer file of each subject. 482
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Functional predictors were estimated from the resting-state data by first computing 483

the averaged time series from the voxels within each of the 718 regions in a parcellation 484

which extends the aforementioned multi-modal atlas to include 358 subcortical 485

regions [50]. Furthermore, this parcellation identified 12 different intrinsic functional 486

networks, which included the well-known primary visual, secondary visual, auditory, 487

somatomotor, cingulo-opercular, default-mode, dorsal attention and frontoparietal 488

cognitive control networks; novel networks like the posterior multimodal, ventral 489

multimodal, and orbito-affective networks; and the identification of a language 490

network [50]. Next, a functional connectome for each subject was built by calculating 491

the z-transformed Pearson correlation coefficient between pairs of time series. Finally, 492

the upper triangular elements were extracted to form the final vector of 257403 493

functional connectivity (FC) features per subject. 494

Diffusion predictors were represented by the local connectome fingerprint (LC), a 495

structural metric that quantifies the degree of connectivity between adjacent voxels 496

within a white matter fascicle defined by the density of diffusing spins [51]. The local 497

connectome was computed by reconstructing the spin distribution functions (SDFs) in 498

all white matter voxels in a common template space, previously derived from 842 499

subjects of the HCP dataset [52], using q-space diffeomorphic reconstruction [53] and 500

sampling the quantitative anisotropy [54] at peak directions within each voxel. This 501

produces a fingerprint vector of 128894 fibers across the entire brain for each subject. 502

These features were obtained using DSI Studio (http://dsi-studio.labsolver.org), an 503

open-source toolbox for connectome analysis from diffusion imaging. 504

Response variables 505

A subset of seven cognitive test scores available in the HCP repository were used as 506

response variables [55]. Each of these measures assesses the individual performance in 507

cognitive domains that are different to a greater or lesser extent. In particular, we 508

selected: (a) the Unadjusted scale NIH Toolbox Cognition Total Composite Score, 509

which provides a measure of global cognitive function, (b) The Unadjusted NIH Toolbox 510

Cognition Fluid Composite Score for fluid intelligence, (c) The Unadjusted NIH 511

Toolbox Cognition Crystallized Composite Score for crystallized intelligence, (d) the 512

area-under-the-curve (AUC) for Discounting of $200 in a Delay Discounting Test for 513

impulsivity, (e) the total number of correct responses in a Variable Short Penn Line 514

Orientation Test for spatial orientation assessment, (f) the Total Number of Correct 515

Responses in a Penn Word Memory Test, which aims at testing verbal episodic memory, 516

and (g) sensitivity in a Short Penn Continuous Performance Test for sustained attention 517

performance. The main descriptive statistics for these variables can be found in Table 1. 518

Prediction Models 519

The prediction of each cognitive score was carried out adopting a transmodal approach 520

to stacking learning. Stacking belongs to the ensemble paradigm in machine learning 521

and it is based on a multi-level training in which predictions from a given set of models 522

are combined to form a new meta feature matrix [20,22]. This new matrix can be then 523

fed into a new model for final predictions or passed to a successive and intermediate 524

learning level. 525

Our transmodal scenario consisted of two-levels of learning and differs from usual 526

stacking approaches in that each predictive model comes from training separately our 527

different groups of features (called channels), each corresponding to the resting-state 528

connectome, cortical thickness attributes, cortical surface areas, global and subcortical 529

volumetric information and the local connectome fingerprints. 530
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Table 1. Main descriptive statistics for the response cognitive variables.

Name of the test:
measure score

Mean Median Skewness Kurtosis
Mild (Extreme)

% outliers
Lower-Higher
95% mean CI

NIH Toolbox Cognition:
Total Composite Score

122.28 120.77 0.21 -0.49 0.00 (0.00) 121.37-123.17

NIH Toolbox Cognition:
Fluid Composite score

115.43 114.15 0.26 -0.46 0.00 (0.00) 114.72 - 116.13

NIH toolbox Cognition:
Crystallized Composite score

117.90 117.81 0.11 0.09 0.01 (0.00) 117.29 - 118.50

Delay Discounting Test:
AUC for discounting
of $200

0.26 0.20 1.33 1.57 0.04 (0.00) 0.25 - 0.27

Variable Short Penn
Line Orientation Test:
total number of
correct responses

14.93 15.00 -0.27 -0.14 0.00 (0.00) 14.67 - 15.23

Penn Word Memory Test:
total number of
correct responses

35.64 36.00 -0.82 0.57 0.01 (0.00) 35.45 - 35.81

Short Penn Continuous
Performance Test:
sensitivity

0.96 0.97 -3.29 19.76 0.04 (0.01) 0.95 - 0.96

The entire prediction modeling procedure is sketched in Fig 1. First, we split the 531

data such that 70% of the subjects were used for training and the rest for testing. Since 532

we are dealing with unadjusted response variables, before fitting any model we regressed 533

each cognitive score in the training set onto the individual ages and used the estimated 534

regression coefficients to remove the age effect in both training and test set. Given the 535

narrow range of ages of our data (22-37 years), this effect is likely to very weak, so 536

perhaps this step could have been omitted. After age adjustment, a 5-Fold 537

cross-validation was applied to the observations in the training set using a principal 538

component regression model with a L1 regularization term (LASSO-PCR) on each 539

channel. This estimator constitutes a pipeline with the following sequential steps: 540

1. Dimensionality reduction by PCA to the input matrix of features X of each 541

channel: 542

X = USV T , (1)

where the product matrix Z = US represents the projected values of X into the 543

principal component space and V T an orthogonal matrix whose row vectors are 544

the principal axes in feature space. 545

2. Regression of the (age adjusted) response variable y onto Z, where the estimation 546

of the β coefficients is subject to a L1 penalty term λ in the objective function: 547

β̂ = arg minβ
{
||y − Zβ||2 + λ||β||

}
(2)

3. Projection of the fitted β̂ coefficients back to the original feature space to produce 548

a weight map (or phenotype) ŵ = V β̂ used to generate final predictions ŷ: 549

ŷ = Xŵ (3)

The cross-validation loop was used so as to determine the optimal value of λ and 550

simultaneously generate out-of-sample predictions that are to be used at the subsequent 551
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learning level. After training each LASSO-PCR model with the optimal level of 552

shrinkage, single-channel predictions from the test set were aggregated across all 553

channels. 554

At the second level, both out-of-sample predictions from the training set and 555

predictions on the test set were stacked across channels to form a new training set 556

consisting of 70% observations × 5 channels and a new test set consisting of 30% 557

observations × 5 channels, respectively. By means of a new 5-Fold cross-validation loop, 558

the former matrix first optimized and then fit a LASSO regression model that made 559

predictions on the latter object of stacked data. The use of LASSO produced a feature 560

selection as well, that automatically selected and weighted how much each channel 561

contributed to the best final prediction. 562

Prediction error was measured through the coefficient of determination R2 and the 563

mean absolute error (MAE). In order to assess the stability and consistency of the 564

predicted metrics, a Monte Carlo cross-validation was employed. In particular, we 565

generated 100 random data splits with the same training and test size proportions as 566

given above (70% and 30% respectively) and repeated the entire predictive procedure 567

for each of these splits. Thereafter, the model performance and the contributing weights 568

of each single-channel to the LASSO stacked model were reported using the median and 569

its bootstrapped confidence intervals at a significance level α = 0.05. The choice of the 570

median was particularly suitable when summarizing the contributions of each 571

single-channel, since the stacked LASSO model produced sparse solutions. All 572

predictive analyses were carried out using scikit-learn [56]. 573

Stacking bonus 574

In order to formally compare the integrated model, i.e. the model that integrates 575

predictions across modality, against the single-channel predictions, we defined a stacking 576

bonus score B which reads 577

B ≡ R2
stacking− < R2 >single , (4)

where R2
stacking is the out-of-sample coefficient of determination from the 578

second-level LASSO learning to the stacked predictions and 579

< R2 >single=
1
5

(
R2
FC +R2

CS +R2
CT +R2

V L +R2
LC

)
is the average performance across 580

individual modalities. Therefore, this quantity aims to mimic the notion of synergy 581

from information theory, which states that joint systems may convey more information 582

that just the sum of its parts [57–59]. 583

Since the above definition may lead to very optimistic bonuses in the presence of 584

poor modalities, we adopted a more conservative definition by expressing this difference 585

just against the best single-channel performance R2
best as follows 586

B ≡ R2
stacking −R2

best (5)

Code and data availability 587

The code used to generate all the results and plots in this study is available in 588

https://github.com/CoAxLab/multimodal-predict-cognition. The weight maps 589

for the local connectome, cortical surface area and thickness, and sub-cortical 590

volumetric features have been uploaded as NIFTI files to 591

https://neurovault.org/collections/VXOBBMIZ. The data used and generated in 592

this study are available in https://figshare.com/s/b97d2d1ba359e6458cb5. 593
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Supporting information 803

804

Fig S1. Single-channel and stacked performances to predict cognition. 805

Mean absolute errors (MAE) between the observed and predicted values of seven 806

cognitive scores using each brain measurements separately and together by stacking 807

their predictions. In red the scenario that yields the maximum score. 808
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809

FigS2. Resting-state connectivity phenotypes. Weight maps from the 810

resting-state connectivity matrix coefficients for the three cognitive areas (global 811

cognitive function, fluid and crystallized intelligence) in which these attributes 812

significantly contributed to stacking. Red and blue colors display positive and negative 813

weights respectively. 814
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815

Fig S3. Phenotype similarity between cognitive domains. For each brain 816

measurement, the Pearson correlation coefficient is computed to assess the similarity 817

between the brain correlates of each cognitive score in which stacking led to a significant 818

performance enhancement. 819

Composite
Cognitive

Crystallized
Composite

Fluid
Composite

Penn
Line

Delay Disc
AUC 200

Tracts (×10−4) (×10−4) (×10−4) (×10−4) (×10−4)
Acoustic-Radiation L 5.441 4.469 2.622 1.057 0.045
Acoustic-Radiation R 4.682 2.290 3.112 1.408 0.040
Cortico-Striatal
Pathway L

3.678 4.218 1.625 1.165 0.039

Cortico-Striatal
Pathway R

3.445 3.641 1.755 1.319 0.041

Cortico-Spinal L 4.011 4.362 2.113 1.186 0.041
Cortico-Spinal R 4.155 3.821 2.530 1.498 0.045
Cortico-thalamic
Pathway L

3.863 4.254 1.696 1.213 0.041

Cortico-thalamic
Pathway R

3.499 3.633 1.851 1.377 0.042

Fornix L 3.649 4.088 1.297 1.366 0.045
Fornix R 3.702 4.646 1.178 1.431 0.030
Fronto-pontine L 3.278 3.756 1.438 0.932 0.033
Fronto-pontine R 3.766 3.716 1.855 1.323 0.039
Occipito-pontine L 5.424 4.761 2.416 1.605 0.047
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Occipito-pontine R 4.339 4.558 2.441 1.867 0.049
Optic-Radiation L 5.480 5.226 2.085 1.510 0.055
Optic-Radiation R 4.401 5.168 1.913 1.991 0.056
Parieto-pontine L 4.014 4.167 2.349 1.287 0.051
Parieto-pontine R 3.717 3.311 2.115 1.443 0.049
Temporo-pontine L 4.659 3.788 2.109 1.356 0.048
Temporo-pontine R 3.691 3.978 2.168 1.432 0.047
Arcuate
Fasciculus L

4.089 4.726 1.336 1.199 0.039

Arcuate
Fasciculus R

3.405 3.137 1.442 1.311 0.031

Cingulum L 2.586 3.218 1.200 1.230 0.028
Cingulum R 2.748 2.978 1.316 1.130 0.028
Extreme-Capsule L 4.239 5.296 2.384 1.559 0.054
Extreme-Capsule R 3.539 2.947 2.107 1.390 0.040
Frontal-Aslant L 2.947 4.278 1.116 1.005 0.035
Frontal-Aslant R 3.290 3.435 1.578 1.312 0.037
Inf-Fronto-Occipital
Fasciculus L

4.008 4.345 1.599 1.347 0.037

Inf-Fronto-Occipital
Fasciculus R

3.039 3.658 1.571 1.560 0.038

Inf-Longitudinal
Fasciculus L

4.444 4.456 1.739 1.348 0.044

Inf-Longitudinal
Fasciculus R

3.219 4.242 1.712 1.309 0.044

Mid-Longitudinal
Fasciculus L

4.294 4.517 2.247 1.026 0.052

Mid-Longitudinal
Fasciculus R

3.644 3.200 1.995 1.326 0.041

Sup-Longitudinal
Fasciculus L

4.511 4.748 1.658 1.220 0.037

Sup-Longitudinal
Fasciculus R

3.548 3.365 1.765 1.397 0.039

U-Fiber L 3.977 4.692 1.703 1.371 0.040
U-Fiber R 3.407 3.793 1.644 1.311 0.037
Uncinate-Fasciculus L 2.902 3.609 1.282 1.229 0.046
Uncinate-Fasciculus R 3.868 4.111 1.500 1.507 0.031
Vertical-Occipital
Fasciculus L

4.431 3.358 1.543 1.441 0.039

Vertical-Occipital
Fasciculus R

2.973 3.797 1.538 1.191 0.047

Anterior-Commissure 3.880 3.947 1.812 1.454 0.039
Corpus-Callosum 3.764 3.983 1.720 1.330 0.041
Posterior-Commissure 2.952 3.845 2.073 1.597 0.044
Cerebellum L 3.135 3.337 1.805 1.019 0.027
Cerebellum R 3.095 3.812 1.526 1.079 0.030
Inf-Cerebellar
Peduncle L

4.439 4.477 2.806 1.310 0.033

Inf-Cerebellar
Peduncle R

5.033 4.556 3.036 1.349 0.039

Mid-Cerebellar
Peduncle

4.118 3.967 2.334 1.128 0.043

September 2, 2020 26/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.01.278747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sup-Cerebellar
Peduncle

5.100 4.006 3.123 1.625 0.044

Vermis 3.442 2.947 2.325 0.919 0.030
Central-Tegmental L 5.787 3.969 3.549 1.800 0.041
Central-Tegmental R 7.416 4.048 4.494 1.872 0.034
Dorsal-Longitudinal
Fasciculus L

2.646 2.867 1.448 1.341 0.044

Dorsal-Longitudinal
Fasciculus R

4.501 4.265 3.260 0.886 0.051

Lateral-Lemniscus L 4.714 5.236 2.955 2.830 0.061
Lateral-Lemniscus R 4.224 4.791 3.137 1.185 0.028
Medial-Lemniscus L 5.121 3.936 3.439 1.663 0.038
Medial-Lemniscus R 5.558 5.089 3.514 1.472 0.036
Medial-Longitudinal
Fasciculus L

5.895 4.144 3.788 1.691 0.048

Medial-Longitudinal
Fasciculus R

6.775 4.987 3.492 1.687 0.043

Rubro-spinal L 5.805 4.481 3.769 1.616 0.038
Rubro-spinal R 6.198 4.334 4.521 1.425 0.023
Spino-thalamic L 4.755 3.658 3.428 1.605 0.039
Spino-thalamic R 5.408 4.787 3.740 1.459 0.033
CNII L 3.286 4.394 1.677 1.464 0.045
CNII R 3.917 4.025 2.572 1.586 0.041
CNIII L 4.440 1.955 3.211 0.666 0.045
CNIII R 6.628 4.917 4.397 1.708 0.043
CNIV L 1.818 2.753 1.246 1.130 0.051
CNIV R 5.383 5.624 2.633 1.313 0.028
CNV L 3.161 3.933 1.802 1.416 0.035
CNV R 5.307 3.765 2.096 1.307 0.054
CNVII L 7.835 6.415 4.511 1.799 0.019
CNVII R 7.054 3.584 4.192 0.841 0.029
CNVIII L 4.142 4.119 2.227 1.275 0.028
CNVIII R 4.087 3.656 2.261 1.027 0.027
CNX L 2.718 - 4.106 - -
CNX R 3.393 0.018 3.632 - 0.023

Table S1. Average positive weights of local connectome features per 820

major tract. Following a population-based atlas of structural connectome, positive 821

loadings within each major tract have been averaged. An entry with a line mark denotes 822

the lack of positive weights within that tract. L≡Left hemisphere, R≡Right hemisphere 823

Composite
Cognitive

Crystallized
Composite

Fluid
Composite

Penn
Line

Delay Disc
AUC 200$

Tracts (×10−4) (×10−4) (×10−4) (×10−4) (×10−4)

Acoustic-Radiation L 4.337 3.898 2.388 0.949 0.044
Acoustic-Radiation R 4.441 3.369 3.252 0.989 0.047
Cortico-Striatal
Pathway L

3.920 4.109 1.808 1.417 0.038

Cortico-Striatal
Pathway R

3.762 4.019 1.677 1.383 0.038

Cortico-Spinal L 3.660 4.227 1.755 1.335 0.041
Cortico-Spinal R 3.600 3.836 1.852 1.406 0.037
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Cortico-thalamic
Pathway L

3.698 3.994 1.772 1.319 0.039

Cortico-thalamic
Pathway R

3.740 3.813 1.742 1.241 0.039

Fornix L 3.594 3.571 1.699 0.993 0.042
Fornix R 4.957 4.723 2.180 1.303 0.041
Fronto-pontine L 3.603 3.844 1.574 1.538 0.043
Fronto-pontine R 3.114 3.883 1.198 1.324 0.038
Occipito-pontine L 3.009 3.605 1.401 0.938 0.027
Occipito-pontine R 1.749 2.719 1.032 0.798 0.030
Optic-Radiation L 4.600 4.652 2.543 1.024 0.051
Optic-Radiation R 3.394 2.891 1.898 0.933 0.046
Parieto-pontine L 3.487 4.370 1.863 1.221 0.038
Parieto-pontine R 3.677 3.460 1.792 1.359 0.033
Temporo-pontine L 2.834 3.499 1.280 0.796 0.025
Temporo-pontine R 2.183 2.382 1.568 0.864 0.034
Arcuate-Fasciculus L 2.447 3.219 1.364 1.054 0.036
Arcuate-Fasciculus R 2.796 3.127 1.555 1.113 0.034
Cingulum L 4.852 4.210 1.990 1.321 0.049
Cingulum R 4.824 4.725 1.657 1.455 0.049
Extreme-Capsule L 3.903 3.900 1.919 1.227 0.035
Extreme-Capsule R 3.248 2.625 1.193 0.862 0.037
Frontal-Aslant L 2.850 3.537 1.160 1.360 0.038
Frontal-Aslant R 3.276 3.698 1.088 1.246 0.035
Inf-Fronto-Occipital
Fasciculus L

4.230 3.784 2.473 1.369 0.037

Inf-Fronto-Occipital
Fasciculus R

3.446 2.931 1.644 1.017 0.044

Inf-Longitudinal
Fasciculus L

3.123 3.135 1.369 1.093 0.032

Inf-Longitudinal
Fasciculus R

3.125 3.869 1.231 1.178 0.035

Mid-Longitudinal
Fasciculus L

4.150 3.943 1.335 0.959 0.036

Mid-Longitudinal
Fasciculus R

1.961 3.016 0.874 0.922 0.050

Sup-Longitudinal
Fasciculus L

3.063 3.821 1.328 1.044 0.031

Sup-Longitudinal
Fasciculus R

3.220 3.675 1.433 1.295 0.035

U-Fiber L 2.909 3.797 1.280 1.098 0.034
U-Fiber R 3.181 3.609 1.450 1.208 0.035
Uncinate-Fasciculus L 4.212 3.836 2.354 1.265 0.038
Uncinate-Fasciculus R 4.792 4.053 2.154 1.131 0.051
Vertical-Occipital
Fasciculus L

3.182 3.920 1.266 1.049 0.034

Vertical-Occipital
Fasciculus R

2.434 3.847 1.071 1.043 0.034

Anterior-Commissure 4.878 4.257 2.133 1.338 0.046
Corpus-Callosum 3.475 3.872 1.494 1.237 0.038
Posterior-Commissure 3.063 3.296 2.492 1.300 0.030
Cerebellum L 3.741 4.037 2.198 1.160 0.040
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Cerebellum R 3.551 3.756 2.091 1.108 0.039
Inf-Cerebellar
Peduncle L

3.798 2.894 2.417 1.133 0.036

Inf-Cerebellar
Peduncle R

2.739 3.322 2.088 1.102 0.040

Mid-Cerebellar
Peduncle

3.294 3.250 2.000 1.396 0.034

Sup-Cerebellar
Peduncle

4.726 3.486 2.881 1.483 0.054

Vermis 2.593 3.401 1.504 1.052 0.039
Central-Tegmental L 4.379 4.074 2.127 1.507 0.018
Central-Tegmental R 2.864 2.797 1.701 1.579 0.023
Dorsal-Longitudinal
Fasciculus L

4.261 4.197 2.069 1.394 0.012

Dorsal-Longitudinal
Fasciculus R

4.868 4.511 2.567 1.520 0.028

Lateral-Lemniscus L 2.476 2.909 1.191 1.412 0.043
Lateral-Lemniscus R 3.196 5.027 1.628 1.546 0.045
Medial-Lemniscus L 3.799 3.480 2.587 1.716 0.045
Medial-Lemniscus R 4.425 3.940 2.563 1.626 0.052
Medial-Longitudinal
Fasciculus L

2.572 3.936 0.200 1.402 0.019

Medial-Longitudinal
Fasciculus R

4.966 4.678 2.351 1.228 0.025

Rubro-spinal L 1.556 2.976 0.068 1.606 0.031
Rubro-spinal R 2.956 3.834 - 1.764 0.022
Spino-thalamic L 2.906 3.196 1.695 1.455 0.034
Spino-thalamic R 3.069 3.530 2.022 1.489 0.040
CNII L 3.631 3.927 2.244 0.941 0.040
CNII R 3.636 2.794 2.189 1.427 0.031
CNIII L 2.758 1.778 1.460 1.023 0.026
CNIII R 3.198 1.698 1.009 0.520 0.012
CNIV L 2.927 4.605 1.500 1.440 0.013
CNIV R 2.296 5.866 0.958 0.978 0.030
CNV L 4.880 3.715 1.570 1.733 0.021
CNV R 3.446 3.709 1.006 1.745 0.025
CNVII L 2.066 3.654 - 1.920 0.047
CNVII R - 4.233 - 0.482 0.045
CNVIII L 3.128 3.422 1.520 1.486 0.042
CNVIII R 3.015 4.061 1.345 1.009 0.045
CNX L - 1.503 - 0.799 0.033
CNX R - 1.086 - 0.976 0.064

Table S2. Average negative weights of local connectome features per 824

major tract. Following a population-based atlas of structural connectome, negative 825

loadings within each major tract have been averaged. An entry with a line mark denotes 826

the lack of negative weights within that tract. L≡Left hemisphere, R≡Right hemisphere 827

Feature Weight
rhCortexVol 0.015890
CortexVol 0.015644
lhCortexVol 0.015265
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Left-VentralDC 0.013799
Left-Cerebellum-White-Matter 0.012979
MaskVol-to-eTIV 0.012450
TotalGrayVol 0.012299
CC Mid Posterior 0.012187
MaskVol 0.011233
Right-Lateral-Ventricle 0.010319
4th-Ventricle 0.008717
CSF 0.006599
Right-Accumbens-area 0.006029
Right-VentralDC 0.006001
Left-Amygdala 0.005821
Left-Lateral-Ventricle 0.004951
Right-vessel 0.004450
CC Central 0.003990
EstimatedTotalIntraCranialVol 0.003390
rhSurfaceHoles 0.003077
WM-hypointensities 0.003074
Brain-Stem 0.002957
Right-Inf-Lat-Vent 0.002753
Right-Caudate 0.002452
Left-Caudate 0.002396
CC Mid Anterior 0.001909
Left-vessel 0.001129
Left-Pallidum 0.001000
SupraTentorialVol 0.000911
BrainSegVol 0.000812
SupraTentorialVolNotVentVox 0.000524
SupraTentorialVolNotVent 0.000481
BrainSegVolNotVent 0.000377
BrainSegVolNotVentSurf 0.000366
Left-Hippocampus 0.000329
Right-Cerebellum-Cortex -0.000447
Left-choroid-plexus -0.001078
Left-Cerebellum-Cortex -0.001522
SubCortGrayVol -0.001767
SurfaceHoles -0.001866
CC Posterior -0.002304
Right-Thalamus-Proper -0.002689
5th-Ventricle -0.003094
3rd-Ventricle -0.004685
Left-Thalamus-Proper -0.005249
Left-Inf-Lat-Vent -0.005394
Right-Putamen -0.005477
non-WM-hypointensities -0.005570
Right-Amygdala -0.006690
lhSurfaceHoles -0.006709
Left-Putamen -0.007109
BrainSegVol-to-eTIV -0.007461
Right-choroid-plexus -0.007678
Right-Hippocampus -0.009197
Optic-Chiasm -0.010261
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Right-Pallidum -0.010930
Right-Cerebellum-White-Matter -0.012078
CC Anterior -0.013259
lhCorticalWhiteMatterVol -0.013764
CorticalWhiteMatterVol -0.013820
rhCorticalWhiteMatterVol -0.013856
Left-Accumbens-area -0.014673

Table S3. Weights of volumetric properties. Loadings of global and subcortical 828

volume features for predicting the score of a Delay Discounting test, which assesses 829

impulsivity abilities. The name of the features are the same that can be found in the 830

aseg.stats file from freesurfer. 831
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