

1 **Efficient isolation of protoplasts from rice calli with pause points and**
2 **its application in transient gene expression and genome editing**
3 **assays**

4 Snigdha Poddar^{1,2}, Jaclyn Tanaka¹, Jamie H. D. Cate^{1,2,3}, Brian Staskawicz^{1,4}, Myeong-Je Cho^{1*}

5 ¹Innovative Genomics Institute, ²Department of Molecular and Cell Biology, ³Department of

6 Chemistry, ⁴Department of Plant and Microbial Biology, University of California, Berkeley, CA

7 94720

8

9

10

11

12 ***Correspondence**

13 Email: mjcho1223@berkeley.edu

14 Tel: +1-510-643-6270

15 Fax: +1-510-642-1490

16

17

18

19

20

21

22

23

24

25

26 **Abstract**

27

28 An efficient *in vivo* transient transfection system using protoplasts is an important tool to study
29 gene expression, metabolic pathways, and multiple mutagenesis parameters in plants. Although
30 rice protoplasts can be isolated from germinated seedlings or cell suspension culture, preparation
31 of those donor tissues can be inefficient, time consuming, and laborious. Additionally, the lengthy
32 process of protoplast isolation and transfection needs to be completed in a single day. Here we
33 report a protocol for isolation of protoplasts directly from rice calli, without using seedlings or
34 suspension culture. The method is developed to employ discretionary pause points during
35 protoplast isolation and prior to transfection. Protoplasts maintained within a sucrose cushion
36 partway through isolation, for completion on a subsequent day, per the first pause point, are
37 referred to as S protoplasts. Fully isolated protoplasts maintained in MMG solution for transfection
38 on a subsequent day, per the second pause point, are referred to as M protoplasts. Both S and
39 M protoplasts, 1 day after initiation of protoplast isolation, had minimal loss of viability and
40 transfection efficiency compared to protoplasts 0 days after isolation. S protoplast viability
41 decreases at a lower rate over time than that of M protoplasts and can be used with added
42 flexibility for transient transfection assays and time-course experiments. The protoplasts
43 produced by this method are competent for transfection of both plasmids and ribonucleoproteins
44 (RNPs). Cas9 RNPs were used to demonstrate the utility of these protoplasts to assay genome
45 editing *in vivo*. The current study describes a highly effective and accessible method to isolate
46 protoplasts from callus tissue induced from rice seeds. This method utilizes donor materials that
47 are resource-efficient and easy to propagate, permits convenience via pause points, and allows
48 for flexible transfection days after protoplast isolation. It provides an advantageous and useful
49 platform for a variety of *in vivo* transient transfection studies in rice.

50

51 **Keywords:** Protoplast isolation, Calli, Pause point, Transfection, Genome editing assay, Rice

52 **Background**

53

54 Rice (*Oryza sativa* L.) is a vital crop that provides staple calories for approximately half of the
55 global population and is a model organism for basic research of monocotyledon plant biology [1,
56 2]. Amidst rapid population growth, climate change, and threats posed by pests and pathogens,
57 the need to address food security via improved agricultural output is high. To meet these
58 challenges, it is important to advance basic scientific understanding of plant processes, molecular
59 machinery, and genetics. Concurrently, those advances can be applied and developed via
60 biotechnological efforts to improve plants for increased yield, new genetic diversity, insect
61 resistance, disease resistance, drought tolerance, herbicide tolerance and other agronomically
62 important traits [3].

63

64 Much of this work, particularly early stage experiments, can be hastened via robust protoplast
65 systems. The delivery of DNA or RNPs into plant tissue for biological assays is impeded by the
66 presence of a rigid cell wall surrounding each cell. Enzymatic digestion of the cell walls followed
67 by a purification process yields membrane-bound protoplasts [4]. These cells are useful and
68 versatile gene expression systems competent for transfection of exogenous genetic material.
69 Other experimental platforms exist in plants, such as heterologous expression in plants like onion
70 or tobacco [5,6] and stable and transient transformation by *Agrobacterium* [7,8] or particle
71 bombardment [9,10]. However, heterologous expression systems can be linked to a caveat of
72 aberrant characteristics [11], and stable transformation requires significant resources and can be
73 superfluous for some applications.

74

75 Protoplast studies are uniquely suited for facile, rapid, and high throughput *in vivo* assays to
76 examine gene expression as well as to evaluate genome editing efficacy. The advent of targeted
77 plant genome editing, mediated by various sequence-specific nucleases, is a powerful

78 biotechnological development that has hastened plant gene function studies and crop
79 development [12]. The CRISPR/Cas9 system, in particular, has provided significant utility due to
80 its simplicity and versatility [3,13]. A critical factor driving editing efficiency is the guide RNA
81 (gRNA) sequence that guides specific Cas9 cleavage of genomic DNA. Because generating
82 stable genome-edited plants is complex and labor intensive, it is beneficial to first determine the
83 most effective gRNAs *in vivo* as well as identify the range of mutations made through a simple
84 and rapid protoplast pipeline.

85

86 Generally, protoplasts are isolated from leaves or germinated seedlings for transient transfection
87 in several plant species [14,15,16,17,18]. Rice protoplasts can be isolated from cell suspension
88 culture [19,20] as well as seedlings [21,22,23]. While effective, these methods can be time
89 consuming and laborious. Isolation from seedlings requires 80-120 fresh seedlings per protoplast
90 preparation, which can deplete seed pools quickly. Meticulous manual slicing of the plant material
91 into small strips is also a critical step in the protocol. The blade must be changed regularly to
92 ensure clean cuts, as any bruising of the leaf tissue leads to a lower yield of healthy protoplasts.
93 Meanwhile, establishment and maintenance of cell suspension culture requires experienced skill
94 to select proper callus morphologies and are vulnerable to contamination [19,24,25]. Furthermore,
95 transfections are performed immediately after isolation, raising an additional component of time
96 sensitivity.

97

98 In the present study, we describe a highly efficient method to isolate rice protoplasts from callus
99 tissue derived from dry seeds. The induction and proliferation of calli is straightforward,
100 sustainable, and sterile. We analyze protoplast viability and transfection competence over time,
101 utilize the method for a genome editing assay, and demonstrate that this method provides
102 convenience via pause points during protoplast isolation and is permissive for transfection of
103 protoplasts for multiple days after initial cell wall digestion of calli.

104 **Materials and methods**

105

106 **Plant materials**

107 Plants of two rice (*Oryza sativa* L.) cultivars, Nipponbare and Kitaake, were grown in a
108 greenhouse at 16/8-h photoperiod intervals (250-300 $\mu\text{mol m}^{-2}\text{s}^{-1}$), 27 °C and 22 °C, respectively.

109

110 **Reagents and solutions**

111 Recipes for callus induction media, digestion solution, W5 solution, MMG solution, WI solution,
112 and PEG-CaCl₂ solution are listed in Table 1. All solutions are 0.2 μm filter sterilized.

113

114 **Callus induction and subculture**

115 Mature seeds of rice were used to induce callus tissue. Briefly, dehulled mature seeds were
116 surface sterilized for 15-20 minutes in 20% (v/v) bleach (5.25% sodium hypochlorite) plus one
117 drop of Tween 20 followed by three washes in sterile water and placed on OsCIM2 callus induction
118 medium (Table 1). After 7-14 days, the coleoptiles and endosperm tissues were removed from
119 the mature seeds and the translucent, pale-yellow nodular calli were transferred onto fresh
120 OsCIM2 every 3 to 4 weeks for subculture.

121

122 **Protoplast isolation**

123 All exposed steps were performed under sterile conditions within a laminar flow hood. After
124 enzymatic digestion of tissue, all pipetting of protoplasts was performed with sterile 1 mL tips with
125 the top 0.25 cm removed. Five to six grams of compact, nodular callus tissue were collected from
126 subcultured OsCIM2 plates and gently crumbled using the edge of a metal spatula or scalpel in a
127 deep 25×100 mm petri dish with 15 mL of digestion solution. The petri dish was incubated in the
128 dark in a room temperature shaker at 70 rpm for 3 hours until the digestion solution appeared
129 milky.

130

131 The protoplast-filled digestion solution was first filtered through a Falcon 100 μm nylon cell strainer
132 (352360; BD Biosciences, San Jose, CA, USA) in a sterile petri dish and then through a Falcon
133 40 μm nylon cell strainer (352340; BD Biosciences). The protoplast solution was transferred to a
134 50 mL conical tube and centrifuged for 5 minutes at room temperature at 150xg. The supernatant
135 was discarded, and the protoplast pellet was gently resuspended in 8 mL W5 solution. Separately
136 a fresh 50 mL conical tube with 10 mL of 0.55 M sucrose was prepared. The cell suspension was
137 gently pipetted onto the sucrose cushion such that the cell suspension floated on top, then
138 centrifuged at 1000xg without deceleration for 5 minutes.

139

140 At this stage, the isolation process could be paused until subsequent days, or continued
141 immediately.

142

143 The intermediate cloudy phase, containing live protoplasts, was pipetted extracted and mixed with
144 10 mL W5 solution in fresh tubes. The suspension was centrifuged for 5 minutes at room
145 temperature at 150xg. The supernatant was removed, and the pellet gently resuspended in 5 mL
146 of MMG solution. The suspension was once again centrifuged for 5 minutes at room temperature
147 at 150xg. The protoplast pellet was resuspended in 4 mL of MMG, or enough to bring the final
148 cell concentration to 2.5×10^6 cells/mL as calculated by microscopy on a hemocytometer.

149

150 **Protoplast viability**

151 One μL of 1% Evans blue (E2129; Sigma-Aldrich Corp., St Louis, MO, USA) was added to 25 μL
152 protoplast suspension. The protoplasts were viewed on a hemocytometer under a light
153 microscope. Live protoplasts, which remained unstained, were counted and total live protoplasts
154 per milliliter were calculated. Dead protoplasts and debris were stained blue.

155

156 **Protoplast transfection**

157 PEG-mediated transfection was performed, guided by previously published methods [22,26] with
158 modifications. In a sterile 1.5 mL tube, 10 μ g of 250 ng/ μ L plasmid DNA pAct1lsGFP [27] were
159 added to 200 μ L of protoplasts suspension (5×10^5 total cells), gently flicked and inverted to mix
160 thoroughly, and incubated at room temperature in the dark for 5 minutes. Two hundred forty μ L
161 of PEG-CaCl₂ solution were added, and the tube inverted gently several times until fully mixed.
162 This was further incubated at room temperature in the dark for 20 minutes. After incubation, 800
163 μ L of W5 solution were added to stop the reaction, inverted gently several times until fully mixed,
164 and centrifuged at 200xg for 5 minutes. The supernatant was carefully pipetted for removal,
165 reserving the protoplast pellet. The protoplast pellet was resuspended with gentle inversions and
166 minimal pipetting in 1 mL WI solution and transferred into a 12-well tissue culture plate. The plate
167 edges were sealed with parafilm and incubated in the dark at 26 °C for 48 hours until they were
168 utilized for light microscopy to measure protoplast viability on a hemocytometer and GFP
169 fluorescence using a Zeiss Axio Imager (Carl Zeiss Microscopy LLC, White Plains, NY) and a
170 Leica M165 fluorescence microscope (Leica Microsystems Inc., Buffalo Grove, IL).

171

172 **Rice protoplast genome editing and amplicon next generation sequencing analysis**

173 Protoplasts were transfected with Cas9 RNPs based on a previous study, with modifications [28].
174 A 1:1 ratio of tracrRNA and target specific crRNA (Integrated DNA Technologies, Coralville, IA)
175 were annealed to form gRNA. Ten μ g Cas9 protein (Macrolab, University of California, Berkeley,
176 CA) and 10 ug gRNA were incubated at 37 °C for 20 minutes in a total 25 μ L to assemble the
177 Cas9 RNPs. Protoplast transfection was performed, as described above, using 25 μ L RNPs
178 instead of plasmid DNA. Forty-eight hours post-transfection, the protoplasts were harvested for
179 CTAB-chloroform genomic DNA extraction. To determine mutation rates by amplicon sequencing,
180 PCR was performed with target specific primers, amplifying approximately 300 bp around the cut
181 site using Q5 High-Fidelity (New England Biolabs, Ipswich, MA) polymerase. Primers contained

182 a 5'-stub compatible with Illumina NGS library preparation. PCR products were ligated to Illumina
183 TruSeq adaptors and purified. Libraries were prepared using a NEBNext kit (Illumina) according
184 to the manufacturer's guidelines. Samples were deep sequenced on an Illumina MiSeq at 300 bp
185 paired-end reads to a depth of approximately 10,000 reads per sample. Cortado
186 (<https://github.com/staciawyman/cortado>) was used to analyze editing outcomes. Briefly, reads
187 were adapter trimmed and then merged using overlap to single reads. These joined reads were
188 then aligned to the target reference sequence. Editing rates are calculated by counting any reads
189 with an insertion or deletion overlapping the cut site or occurring within a 3 base pair window on
190 either side of the cut site. SNPs occurring within the window around the cut site are not counted.
191 Total edited reads are then divided by the total number of aligned reads to get percent edited.
192

193 **Results and Discussion**

194
195 **A sustainable protoplast isolation method with optional pause points**
196 Existing methods for protoplast isolation from rice using germinated seedlings and suspension
197 cultures are valuable and well described [19-25]. However, they can consume seeds at a high
198 rate or require the technical and labor-intensive know-how of maintaining a suspension culture.
199 Furthermore, the methods require an uninterrupted lengthy workflow from donor tissue digestion
200 all the way through transfection performed on the isolated protoplasts.

201
202 Here, techniques are outlined for a branched method with built-in optional pause points that allow
203 for consistent and efficient procurement of healthy protoplasts that may be used gradually, over
204 the course of several days, for downstream transient assays. The donor tissue for the isolation of
205 protoplasts are calli induced from seeds and regularly sub-cultured on solid OsCIM2 callus
206 induction media (Table 1). Calli were also induced from immature embryos in this manner, with
207 comparable outcomes. In general, callus tissue propagated for more than six months could be

208 used in this method. As a result, the donor tissue becomes available at an exponential rate once
209 initiated, abrogating the obstacle of donor material availability for this procedure.

210

211 The workflow for the protoplast isolation protocol produced from this study is portrayed in Fig. 1.

212 We gathered 5 g of compact pale-yellow rice callus tissue (Fig. 2A) and used a scalpel or metal
213 spatula to bring all of the pieces to roughly the same size. Careful slicing and razor exchanges
214 were not needed. An enzymatic cocktail of 1.5% cellulase R10 and 0.1% pectolyase or 0.75%
215 macerozyme R10 resulted in successful breakdown of rice callus tissue cell walls while
216 maintaining healthy viable protoplasts (Figs. 2B, C). An additional step of vacuum infiltration of
217 the digestion solution with the donor tissue, an approach utilized in other protocols [22,29], was
218 unnecessary for our method, eliminating a common step, decreasing equipment load, and
219 increasing simplicity. Rather, we could simply incubate the callus tissue with 15 mL digestion
220 solution with gentle shaking at 70 rpm for 3 hours, less time than is required for seedling-derived
221 cells. After digestion, protoplasts were isolated from spent tissue via filtration (Fig. 2D) and
222 centrifugation through a 0.55 M sucrose cushion. A gentle overlay of the cell suspension onto the
223 sucrose was found to be a crucial step for optimal yield. If the cells were handled crudely and
224 dropped with a force that significantly broke the surface tension of the sucrose, the ultimate
225 protoplast yield could be diminished. After centrifugation of the cell suspension through 0.55 M
226 sucrose, healthy protoplasts separated from debris and accumulated to form a dense band of
227 purified protoplasts at the W5 - sucrose interface (Fig. 2E), bringing the protocol to its first optional
228 pause point.

229

230 Here, the method could be paused for one or more days. The band of protoplasts could be left
231 undisturbed at the interface for processing at a later time or handled immediately. The protoplasts
232 produced from utilization of this pause point are termed “S protoplasts.”

233

234 To isolate protoplasts from the sucrose cushion, the entirety of the cloudy phase band containing
235 the protoplasts was gently pipetted out. This was followed by final washing and centrifugation
236 steps to maximize purity of the protoplasts and eliminate cellular debris. Finally, protoplasts were
237 resuspended in MMG solution to a concentration of 2.5×10^6 protoplasts/mL. Protoplasts could
238 be transfected immediately, or the second optional pause point could be employed—storing the
239 protoplasts in MMG solution, termed “M protoplasts,” until transfection at a later time.

240

241 Protoplasts isolated from the band on the same day as digestion of the donor tissue cell walls
242 were referred to as “Sucrose Cushion Day 0/ MMG Day 0” (S/M0) protoplasts. Those isolated
243 from the interface one, two, three, or 7 days after digestion were designated S1, S2, S3, or S7
244 protoplasts, respectively. S/M0 protoplasts, stored in MMG solution and utilized in experiments
245 over the following one, two, three, or 7 days after digestion were labeled “MMG Day 1” (M1), M2,
246 M3, or M7 protoplasts.

247

248 **Protoplast viability over time**

249 To ensure the utility of this branched method for protoplast isolation, Evans blue staining was
250 used to quantify viable protoplasts in all isolations from the sucrose cushion (S protoplasts) as
251 well as protoplasts stored in MMG solution over time (M protoplasts) (Fig. 2F). Healthy intact
252 protoplasts derived from this method are colorless, spherical, and resistant to staining. The
253 viability assay indicated that S/M0 isolates yielded the greatest number of live protoplasts, with a
254 gradual decrease with increasing age of the protoplast-containing sucrose cushion. S/M0 isolates
255 contained approximately 2.5 times the number of protoplasts as S7 isolates. However, it is notable
256 that the order of magnitude for the protoplast count remained unchanged between S/M0 and S7.
257 We show that from 5 grams of rice callus donor tissue, this method yields, on average, 9.8×10^6
258 live protoplasts if isolated on day 0 (S/M0) and 3.9×10^6 live protoplasts if isolated on day 7 (S7)
259 (Fig. 3A). This translates to approximately 20 transfection reactions with S/M0 protoplasts, and 8

260 transfection reactions with S7 protoplasts. To compare, 100-120 finely sliced rice seedlings are
261 required to obtain approximately the same number of protoplasts as an S/M0 isolation by the
262 current method [22], and which cannot be stored for future use.

263

264 Viability of M protoplasts was also tracked over time. Though viability decreases appreciably from
265 day 2, the concentration of viable M1 protoplasts is comparable to S1 protoplasts and only mildly
266 reduced from S/M0 protoplasts, making them an acceptable option for use in assays (Fig. 3A). It
267 was also noted that protoplasts held in MMG solution for 7 days appeared approximately 1.7X
268 larger (Fig. 3B). This may be attributed to cell growth or osmotic swelling. However, the larger
269 protoplasts displayed a characteristically healthy spherical shape, unstained by Evans blue,
270 suggesting that osmotic stress was not occurring.

271

272 **Transfection efficiency over time**

273 Both quantity and quality of protoplasts are critical factors for downstream experiments. In existing
274 methods, transfection is performed only on freshly isolated protoplasts. Here, transfection
275 efficiency of both S and M protoplasts of different ages were assayed via PEG-mediated
276 transfection of pAct1lsGFP-1, a GFP overexpression plasmid [27].

277

278 First, S and M transfection pools were imaged for GFP expression 1 and 2 days after transfection
279 (Fig. 4). Protoplasts aggregate over time and the 1 mL pools were not pipetted for homogeneity.
280 Rather, a fluorescence stereomicroscope was used to manually scan the sample and gather
281 representative images in areas with moderate density of protoplasts. Strong GFP fluorescence
282 was detected in both S and M cells 1 and 2 days after transfection.

283

284 Transfection efficiency was calculated 2 days after plasmid transfection as a percentage of GFP
285 positive protoplasts over total live protoplasts, as determined by fluorescence microscopy and

286 Evans Blue staining on a hemocytometer (Fig. 5). For S/M0 protoplasts, transfection was highly
287 efficient, producing 73.5% GFP expressing protoplasts. S1 transfection efficiency was
288 comparable, at 69.5%. Taken together with the results from the previously described viability
289 assay, the data suggest that S1 protoplasts are comparable in value to freshly isolated S/M0
290 protoplasts. This finding facilitates novel flexibility in research, allowing assays to be performed
291 24 hours after initiation of the protoplast isolation method with little to no loss of efficacy and data.
292 Though transfection efficiency declines over time for both S and M protoplasts, it does not fall
293 below 15% within 7 days (Fig. 5). Moreover, it is conceivable that certain assays, for example
294 protein localization, do not require optimal transfection efficiency or viability. The data provided
295 here allow for the informed design and versatile scheduling of protoplast experiments with a
296 quantified summary of expected losses of viability and transfection efficiency over time.

297

298 **Gene editing via Cas9 ribonucleoprotein transfection**

299 Given the flourishing field of genome editing, it was critical to ensure that this method was suitable
300 for such studies. To demonstrate this, S/M0 as well as S1 and M1 protoplasts were transfected
301 with *in vitro* assembled Cas9-gRNA ribonucleoproteins targeting a single locus (Fig. 6). For
302 comparison with protoplasts isolated via a previously published method [22], protoplasts derived
303 from rice seedlings were also transfected. Editing at the Cas9 cleavage site was identified and
304 quantified through NGS. Editing rates for S/M0 protoplasts and seedling-derived protoplasts were
305 similar (Fig. 6), indicating that the present protocol can be used confidently in genome editing
306 studies.

307

308 **Conclusion**

309 The current study describes an embryogenic rice callus-derived protoplast isolation method that
310 avoids the growth of numerous rice seedlings or induction and maintenance of a suspension
311 culture. It also includes optional pause points during and after protoplast isolation. The ability to

312 pause the protocol as well as utilize viable stored M protoplasts increases flexibility in schedules
313 and experimentation for researchers. Because the process of obtaining donor material through
314 isolation of protoplasts and transfection is performed under sterile conditions in its entirety, the
315 protoplasts can be maintained without contamination for time course experiments from
316 transfection through subsequent 7 days or longer. In addition, we demonstrate that the
317 protoplasts produced from this method are competent for transfection of both DNA and RNPs,
318 suitable as transient expression systems, and effective for CRISPR-Cas9 based genome editing
319 assays.

320

321 **Abbreviations**

322 2,4-D: 2,4-dichlorophenoxyacetic acid; BAP: 6-benzylaminopurine; MES: 2-(*N*-
323 morpholino)ethanesulfonic acid; PEG: polyethylene glycol; MMG: mannitol magnesium; WI:
324 washing and incubation; CTAB: cetyl trimethylammonium bromide; RNP: ribonucleoprotein;
325 gRNA: guide RNA; SNP: single nucleotide polymorphism; CRISPR: clustered regularly
326 interspaced short palindromic repeats; Cas9:CRISPR-associated protein 9; GFP: green
327 fluorescent protein; NGS: next generation sequencing; rpm: revolutions per minute

328

329 **Declarations**

330 **Ethics approval and consent to participate**

331 Not applicable.

332

333 **Consent for publication**

334 Not applicable.

335

336 **Availability of data and material**

337 All data generated or analyzed during this study are included in this published article.

338

339 **Competing interests**

340 The authors declare that they have no competing interests.

341

342 **Funding**

343 This work was supported by the IGI of the University of California at Berkeley.

344

345 **Authors' Contributions**

346 SP and M-JC designed the experiments and wrote the manuscript. SP, JT and M-JC

347 performed the experiments. JHDC, BS and M-JC supervised the experiments. All

348 authors read and approved the final manuscript.

349

350 **Acknowledgments**

351 We thank Innovative Genomics Institute (IGI) scientists, Netravathi Krishnappa and

352 Stacia Wyman, for NGS library preparation and sequencing work and for assistance with

353 analysis of sequencing data. Figure 1 was created with Biorender.com.

354

355 **Figure Legends**

356

357 **Figure 1. Graphical depiction of the protoplast isolation workflow.**

358

359 **Figure 2. Isolation of protoplasts from rice calli induced from mature seeds.** (A) Donor tissue
360 for protoplast isolation were translucent, pale yellow, and nodular calli propagated on OsCIM2
361 medium. (B) To degrade the tissue cell walls, digestion solution was added. (C) A visual indication
362 of successful enzymatic digestion was a milky appearance of the solution after three hours of
363 gentle shaking. (D) Large particles and spent tissue were removed from the protoplast solution
364 via cell strainer filtration. (E) Protoplasts formed a visible band, marked by a red bracket, after
365 centrifugation through a 0.55 M sucrose cushion. (F) Protoplasts derived from rice calli. Healthy
366 cells are round and colorless. Dead cells and debris are stained by Evans Blue. Bar = 50 μ m
367

368 **Figure 3. Protoplast viability and size over time.** (A) Viability of protoplasts was measured by
369 counting protoplasts unstained by Evans Blue dye on a hemocytometer. Total live protoplasts
370 were calculated by first determining protoplast density, then multiplying by the total volume of
371 protoplasts from the isolation. Counts were performed in triplicate. The means are plotted and
372 error bars indicate standard deviation. (B) A random sampling of 50 protoplasts were measured for
373 diameter at 0 and 7 days in MMG. Each measurement was plotted individually, and the means
374 were indicated by a horizontal line.

375
376 **Figure 4. GFP expression in S and M callus-derived protoplasts of different ages.** S (top
377 panel) and M (bottom panel) protoplasts of different ages were transfected with pAct1sGFP-1 and
378 imaged for GFP fluorescence. Images were taken at 80X magnification on a Leica M165
379 fluorescence microscope. Transfected protoplasts were in 1 mL WI solution pools in 12-well
380 culture plates.

381
382 **Figure 5. Transfection efficiency in S and M protoplasts isolated from rice calli.** The
383 percentage of GFP fluorescence-positive protoplasts were calculated after transfection with

384 pAct1IsGFP-1 to determine plasmid DNA transfection efficiency in S and M callus-derived rice
385 protoplasts of different ages.

386

387 **Figure 6. Genome editing efficiency in rice protoplasts isolated from rice calli.** Editing
388 efficiency of Cas9 and gRNA ribonucleoproteins in S and M callus-derived rice protoplasts of
389 different ages was compared to seedling-derived rice protoplasts

390

391 **References**

392

393 1. Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges
394 in improving the nutritional quality of rice (*Oryza sativa* L.). *Crit Rev Food Sci Nutr.*
395 2017;57:2455–81.

396 2. Jackson SA. Rice: The first crop genome. *Rice.* 2016;21:1–3.

397 3. Romero FM, Gatica-Arias A. CRISPR/Cas9: Development and application in rice breeding.
398 *Rice Sci.* 2019;26:265–281.

399 4. Sheen J. Signal transduction in maize and *Arabidopsis* mesophyll protoplasts. *Plant*
400 *Physiol.* 2001;127:1466–75.

401 5. Su P-H, Yu S-M, Chen C-S. Spatial and temporal expression of a rice prolamin gene RP5
402 promoter in transgenic tobacco and rice. *J Plant Physiol.* 2001;158:247–54.

403 6. Ni J, Yu Z, Du G, Zhang Y, Taylor JL, Shen C, et al. Heterologous expression and functional
404 analysis of rice glutamate receptor-like family indicates its role in glutamate triggered
405 calcium flux in rice roots. *Rice.* 2016;9:1–14.

406 7. Hiei Y, Komari T. *Agrobacterium*-mediated transformation of rice using immature embryos
407 or calli induced from mature seed. *Nat Protoc.* 2008;3:824–34.

408 8. Andrieu A, Breitler J, Siré C, Meynard D, Gantet P, Guiderdoni E. An *in planta*,
409 *Agrobacterium*-mediated transient gene expression method for inducing gene silencing in
410 rice (*Oryza sativa* L.) leaves. *Rice.* 2012;5:23.

411 9. Christou P. Genetic transformation of crop plants using microprojectile bombardment. *Plant*
412 *J.* 1992;2:275-81

413 10. Kirienko DR, Luo A, Sylvester AW. Reliable transient transformation of intact maize leaf
414 cells for functional genomics and experimental study. *Plant Physiol.* 2012;159:1309–18.

415 11. Prelich G. Gene Overexpression: Uses, Mechanisms, and Interpretation. *Genetics.*
416 2012;190:841–54.

417 12. Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for
418 crop improvement: An update review. *Front Plant Sci.* 2018;9:985.

419 13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable
420 dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science.*
421 2012;337:816–21.

422 14. Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S. Tape-*Arabidopsis* sandwich - a
423 simpler *Arabidopsis* protoplast isolation method. *Plant Methods.* 2009;5:16.

424 15. Yao X, Zhao W, Yang R, Wang J, Zhao F, Wang S. Preparation and applications of guard
425 cell protoplasts from the leaf epidermis of *Solanum lycopersicum*. *Plant Methods.*
426 2018;14:26.

427 16. Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, et al. An efficient system composed of
428 maize protoplast transfection and HPLC–MS for studying the biosynthesis and regulation
429 of maize benzoxazinoids. *Plant Methods*. 2019;15:144.

430 17. Shan X, Li Y, Zhou L, Tong L, Wei C, Qiu L, et al. Efficient isolation of protoplasts from
431 freesia callus and its application in transient expression assays. *Plant Cell, Tissue Organ*
432 *Cult.* 2019;138:529–41.

433 18. Priyadarshani SVGN, Hu B, Li W, Ali H, Jia H, Zhao L, et al. Simple protoplast isolation
434 system for gene expression and protein interaction studies in pineapple (*Ananas comosus*
435 L.). *Plant Methods*. 2018;14:95.

436 19. Li Z, Murai N. Efficient plant regeneration from rice protoplasts in general medium. *Plant*
437 *Cell Rep.* 1990;4:216–20.

438 20. Utomo HS, Croughan SS, Croughan TP. Suspension and protoplast culture of U.S. rice
439 cultivars. *Plant Cell Rep.* 1995;15:34–7.

440 21. He F, Chen S, Ning Y, Wang G-L. Rice (*Oryza sativa*) protoplast isolation and its
441 application for transient expression analysis. *Curr Protoc Plant Biol.* 2016;1:373–83.

442 22. Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas
443 system. *Nat Protoc.* 2014;10:2395–410.

444 23. Page MT, Parry MAJ, Carmo Silva E. A high-throughput transient expression system for
445 rice. *Plant Cell Environ.* 2019;42:2057–64.

446 24. Toriyama K, Hinata K. Cell suspension and protoplast culture in rice. *Plant Sci.*
447 1985;41:179–83.

448 25. Thompson JA, Abdullah R, Cocking EC. Protoplast culture of rice (*Oryza sativa* L.) using
449 media solidified with agarose. *Plant Sci.* 1986;47:123–33.

450 26. Mathur J, Koncz C. PEG-mediated protoplast transformation with naked DNA. In: Martinez-
451 Zapater JM, Salinas J, editors. *Methods in Molecular Biology*, Vol 82: *Arabidopsis*
452 *Protocols*. Totowa, NJ: Humana Press; 1998. p. 267–76.

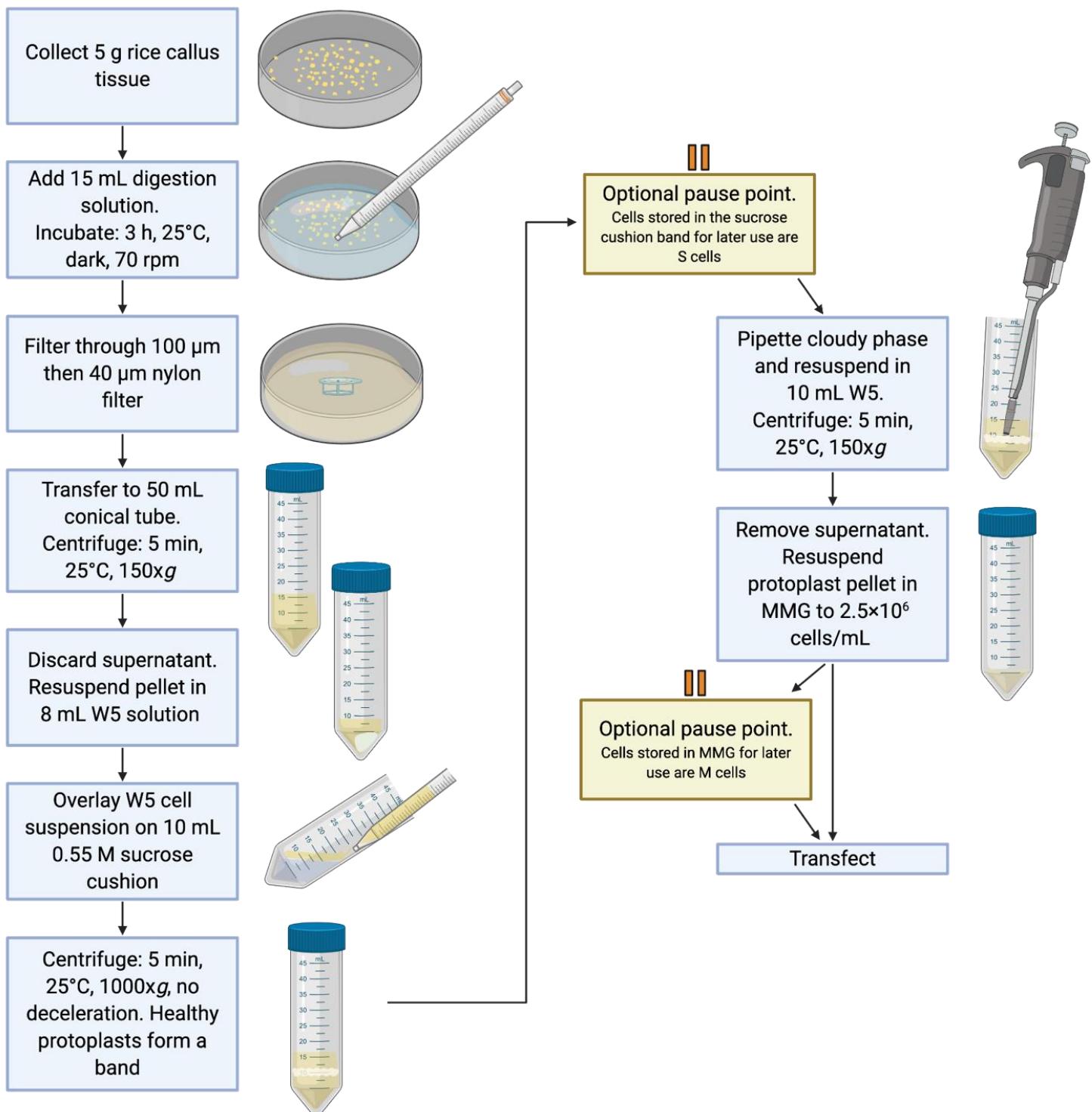
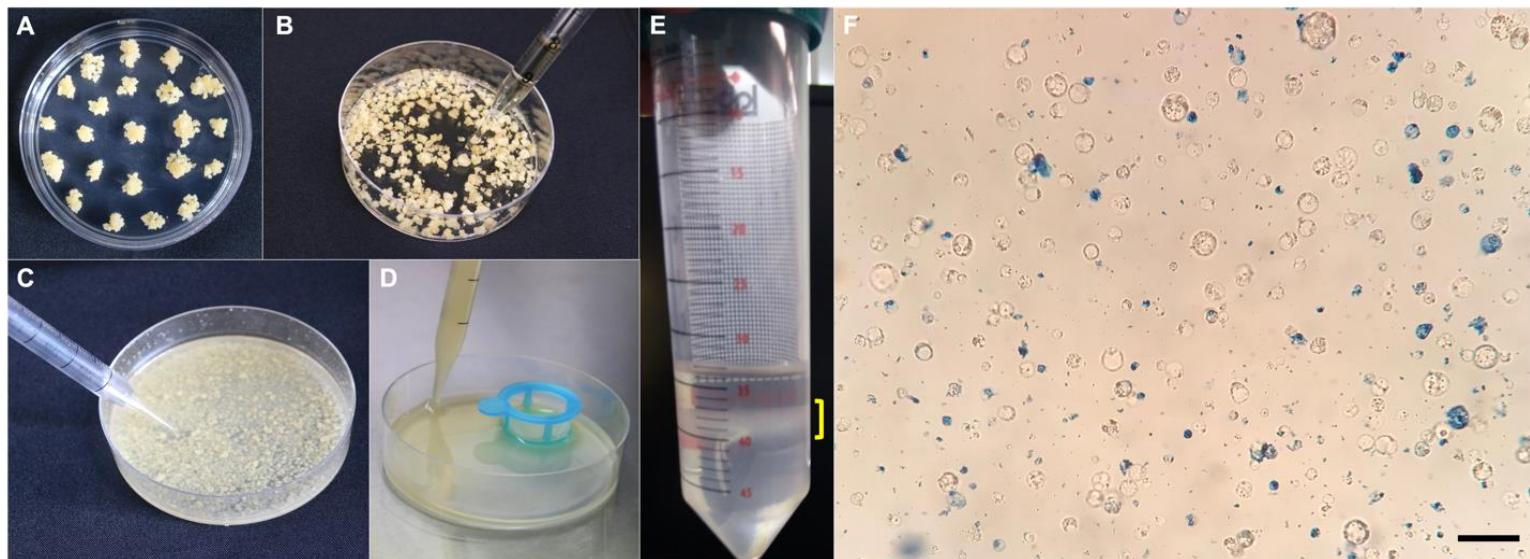
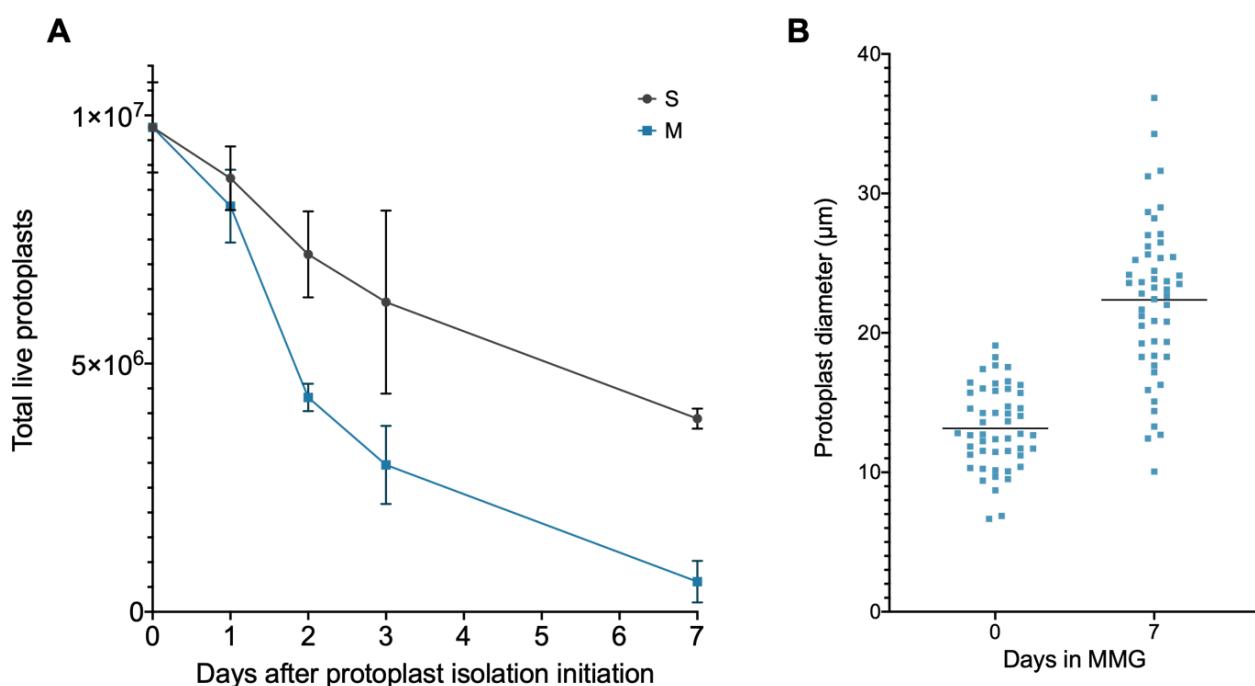
453 27. Cho M-J, Ha CD, Lemaux PG. Production of transgenic tall fescue and red fescue plants
454 by particle bombardment of mature seed-derived highly regenerative tissues. *Plant Cell*
455 *Rep.* 2000;11:1084–9.

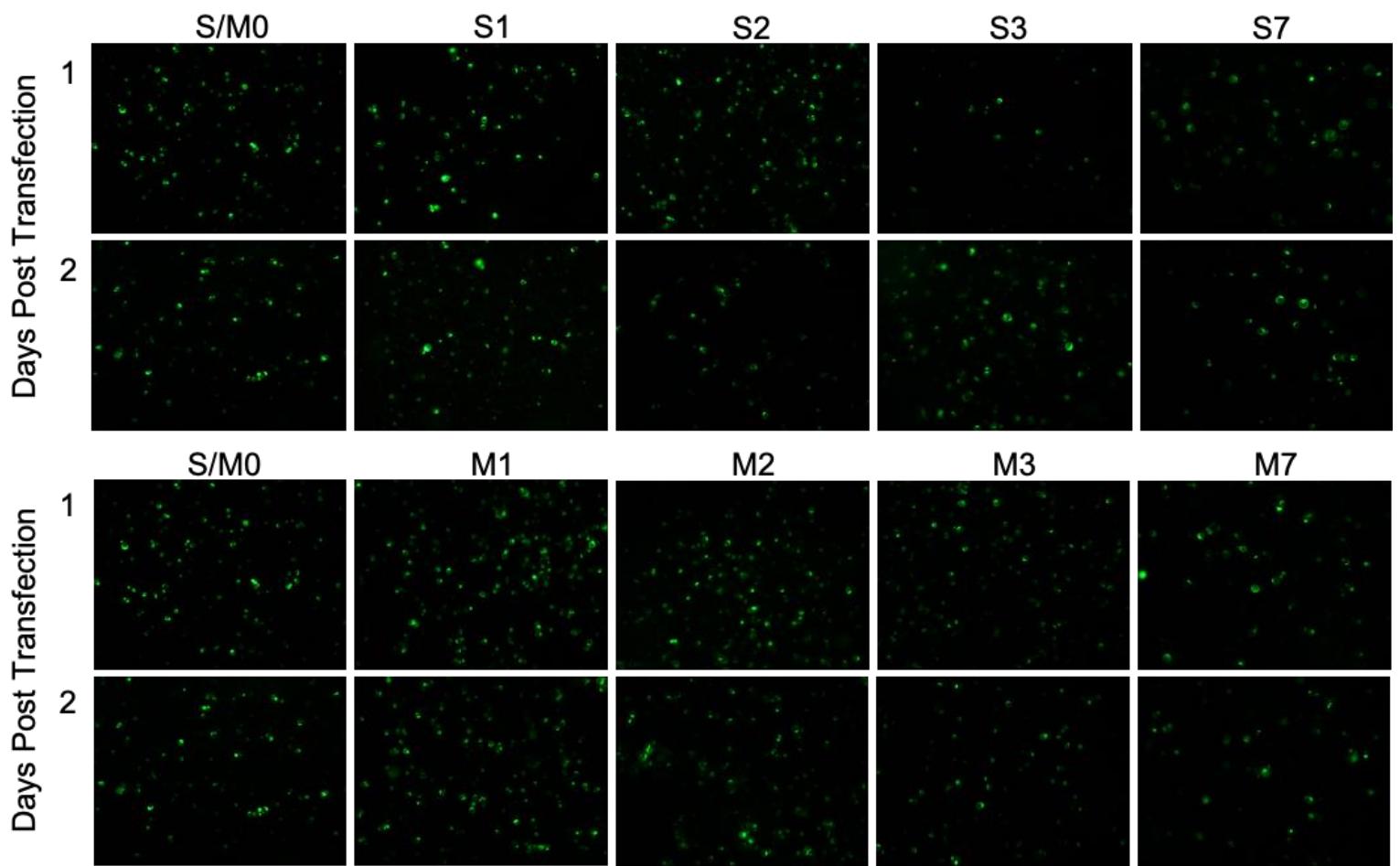
456 28. Mickael M, Roberto V, Min-Hee J, Ok-Jae K, Seokjoong K, Jin-Soo K, Riccardo V,
457 Chidananda NK. DNA-free genetically edited grapevine and apple protoplast using
458 CRISPR/Cas9 ribonucleoproteins. *Front Plant Sci.* 2016;7:1904.

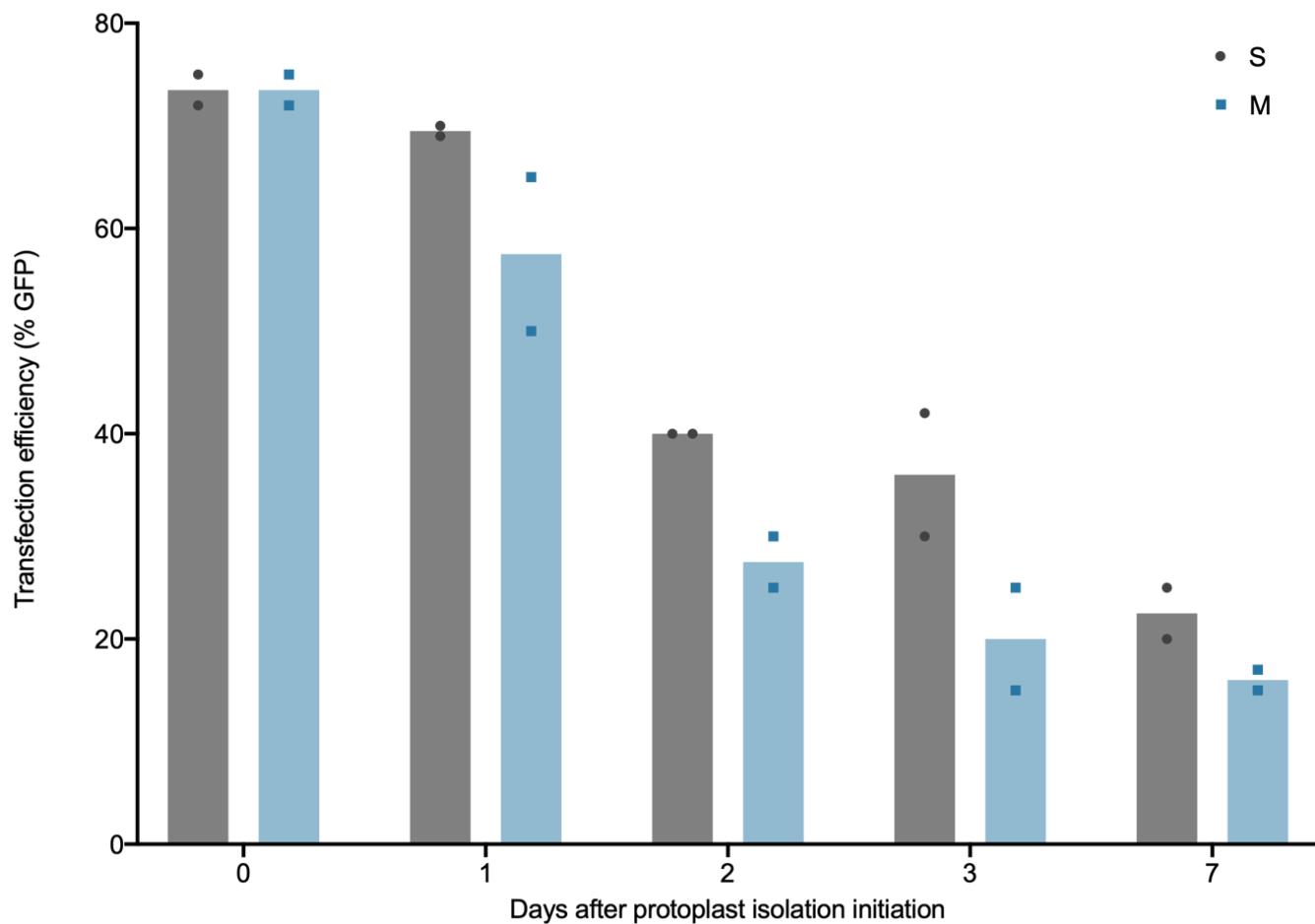
459 29. Nanjareddy K, Arthikala M-K, Blanco L, Arellano ES, Lara M. Protoplast isolation, transient
460 transformation of leaf mesophyll protoplasts and improved *Agrobacterium*-mediated leaf
461 disc infiltration of *Phaseolus vulgaris*: tools for rapid gene expression analysis. *BMC*
462 *Biotechnol.* 2016;16:53.

Table 1. Compositions of medium/solutions used for protoplast isolation and transfection

Medium/Solution Name	Compositions
OsCIM2	3.99 g/L Chu's N6 Basal Medium with Vitamins (C167, PhytoTechnology Laboratories, Lenexa, KS, USA), 30 g/L maltose, 0.1 g/L myo-inositol, 5 μ M CuSO ₄ , 0.3 g/L casein enzymatic hydrolysate, 2.5 mg/L 2,4-D, 0.2 mg/L BAP, 0.5 g/L L-Proline, 0.5 g/L L-Glutamine, pH 5.8, solidified with 3.5 g/L Phytagel (P8169; Sigma-Aldrich Corp., St Louis, MO, USA). Autoclaved.
Digestion solution	10 mM MES pH 5.7, 0.6 M mannitol, 1.5% cellulase Onozuka R-10 (Yakult, Tokyo, Japan), 0.1% pectolyase (or 0.75% macerozyme R-10) (Yakult, Tokyo, Japan), 10 mM CaCl ₂ , 4 mM 2-mercaptoethanol, 0.1% bovine serum albumin. <i>Special instructions:</i> MES, mannitol, H ₂ O, cellulase R10, and pectolyase were stirred and incubated at 55°C for 10 minutes. The solution was cooled to room temperature, and CaCl ₂ , 2-mercaptoethanol, and bovine serum albumin were added in and gently mixed.
W5 solution	2 mM MES pH 5.7, 154 mM NaCl, 5 mM KCl, 125 mM CaCl ₂
MMG solution	4 mM MES pH 5.7, 0.6 M mannitol, 15 mM MgCl ₂
WI solution	4 mM MES pH 5.7, 0.4 M mannitol, 4 mM KCl
PEG-CaCl ₂ solution	0.4 M mannitol, 100 mM CaCl ₂ , 40% (wt/vol) PEG4000 (81240; Sigma-Aldrich Corp., St Louis, MO, USA)


Figure 1. Graphical depiction of the protoplast isolation workflow.


Figure 2. Isolation of protoplasts from rice calli induced from mature seeds. (A) Donor tissue for protoplast isolation were translucent, pale yellow, and nodular calli propagated on OsCIM2 medium. (B) To degrade the tissue cell walls, digestion solution was added. (C) A visual indication of successful enzymatic digestion was a milky appearance of the solution after three hours of gentle shaking. (D) Large particles and spent tissue were removed from the protoplast solution via cell strainer filtration. (E) Protoplasts formed a visible band, marked by a red bracket, after centrifugation through a 0.55 M sucrose cushion. (F) Protoplasts derived from rice calli. Healthy cells are round and colorless. Dead cells and debris are stained by Evans Blue. Bar = 50 μ m

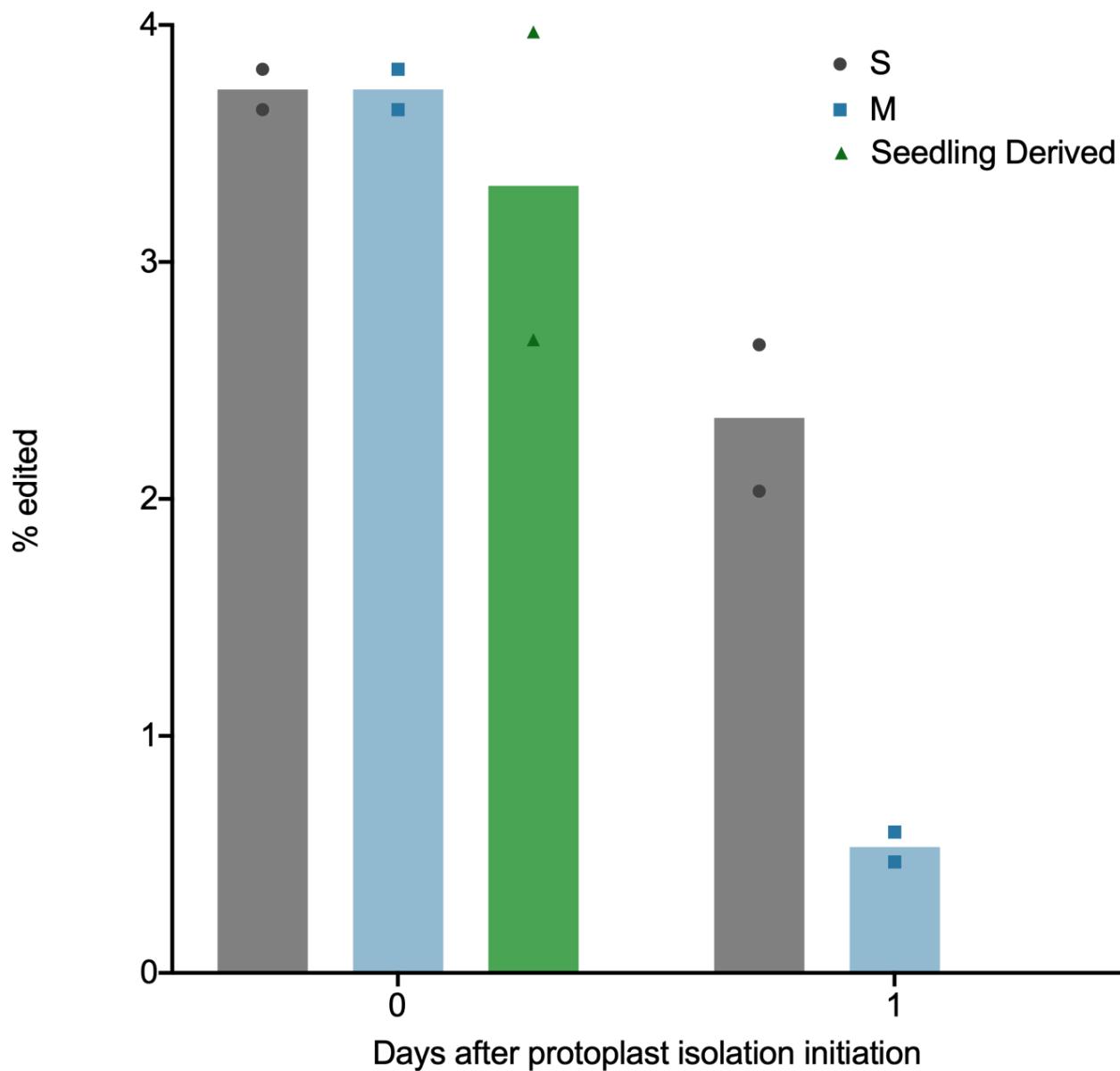

Figure 3. Protoplast viability and size over time. (A) Viability of protoplasts was measured by counting protoplasts unstained by Evans Blue dye on a hemocytometer. Total live protoplasts were calculated by first determining protoplast density, then multiplying by the total volume of protoplasts from the isolation. Counts were performed in triplicate. The means are plotted and error bars indicate standard deviation. (B) A random sampling of 50 protoplasts were measured for diameter at 0 and 7 days in MMG. Each measurement was plotted individually, and the means were indicated by a horizontal line.

Figure 4. GFP expression in S and M callus-derived protoplasts of different ages. S (top panel) and M (bottom panel) protoplasts of different ages were transfected with pAct1sGFP-1 and imaged for GFP fluorescence. Images were taken at 80X magnification on a Leica M165 fluorescence microscope. Transfected protoplasts were in 1 mL WI solution pools in 12-well culture plates.

Figure 5. Transfection efficiency in S and M protoplasts isolated from rice calli. The percentage of GFP fluorescence-positive protoplasts were calculated after transfection with pAct1lsGFP-1 to determine plasmid DNA transfection efficiency in S and M callus-derived rice protoplasts of different ages.

Figure 6. Genome editing efficiency in rice protoplasts isolated from rice calli. Editing efficiency of Cas9 and gRNA ribonucleoproteins in S and M callus-derived rice protoplasts of different ages was compared to seedling-derived rice protoplasts