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Abstract

Pathogenic bacteria take host nutrients to support their growth, division, survival, and
pathogenesis. The genus Bacillus includes species with diverse natural histories, including free-
living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B.
anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning.
Although highly similar genotypically, the ecological niches of these three species are mutually
exclusive, which raises the untested hypothesis that their metabolism has speciated along a
nutritional tract. Here, we employed a quantitative measurement of the number of reducing
equivalents as a function of growth on hundreds of different sources of carbon to gauge the
“culinary preferences” of three distinct Bacillus species, and related Staphylococcus aureus. We
show that each species had widely varying metabolic ability to utilize diverse sources of carbon
that correlated to their ecological niches. In addition, carbohydrates are shown to be the preferred
sources of carbon when grown under ideal in vitro conditions. Rather unexpectedly, these
metabolic utilizations did not correspond one-to-one with an increase in biomass, which brings to
guestion what cellular activity should be considered productive when it comes to virulence. Finally,
we applied this system to the growth and survival of B. anthracis in a blood-based environment
and find that amino acids become the preferred source of energy while demonstrating the
possibility of applying this approach to identifying xenobiotics or host compounds that can

promote or interfere with bacterial metabolism during infection.

Author summary

Successful organisms must make nutritional adaptations to thrive in their environment.
Bacterial pathogens are no exception, having evolved for survival inside their hosts. The host

combats these pathogens by depriving them of potential biochemical resources, termed nutritional
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immunity. This places pathogens under pressure to utilize their resources efficiently and
strategically, and their metabolism must in turn be tailored for this situation. In this study, we
examined the carbon metabolism of three human pathogens of varying virulence (Bacillus
anthracis, Bacillus cereus, and Staphylococcus aureus) and one nonpathogenic Bacillus (Bacillus
subtilis) via a phenotype microarray that senses reducing equivalents produced during
metabolism. Our analysis shows the existence of distinct preferences by these pathogens towards
only a select few carbohydrates and implies reliance on specific metabolic pathways. These
metabolic signatures obtained could be distinguished from one bacterial species to another, and
we conclude that nutrient preferences offer a new perspective into investigating how pathogens

can thrive during infection despite host-induced starvation.
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Introduction

One key hallmark of pathogens is their ability to use their hosts as a source of nutrients
for survival and proliferation [1,2]. Bacterial pathogens, in term of their ecology, are bacteria that
have undergone specialization to spend part or all of their lifecycle being dependent on their hosts
for resources. This facilitates the use of host molecules for energy, catabolism/anabolism to build
biomass, and replication of genetic material [3]. It is expected that bacterial pathogens adapt their
metabolism to specifically exploit what the host offers; conversely, non-pathogenic bacteria could
not exploit these resources but may better utilize nutrients in their abiotic environmental niche.
Such fine tuning of metabolism would be advantageous, perhaps even essential, for pathogens
to successfully carry out infection of the host. This competition between the host and pathogens
for common resources offers insight into the functioning of nutritional immunity, a biochemical
means of controlling bacterial pathogens that operate in conjunction with cellular immune systems
[4-6].

Bacillus anthracis is the etiological agent of the deadly disease anthrax [7-9]. One of its
more defining features is its ability to replicate to very high numbers in mammalian blood and
tissues. As such, B. anthracis is often used as a model bacterial pathogen for the study of host
nutrient uptake during infection [10-12]. Its infectious cycle begins when spores enter the host
through an open wound, is inhaled, or is ingested. Next, spores germinate inside the host into the
fully-replicative and growing vegetative cells. This life cycle is in stark contrast to Bacillus cereus,
another member of the Bacillus genus, which is 93 percent similar at the genomic level to B.
anthracis but known more for being a cause of food poisoning [13-15]. Another extensively studied
Bacillus species, Bacillus subtilis, a non-pathogenic soil-dwelling bacteria that is utilized for food
fermentation and as a biotechnology model system, is phylogenetically distinct from pathogenic
Bacillus, as evidenced by sharing less than 20 percent of the amplified fragment length

polymorphism markers, nor does it have any genes that code for known virulence factors [16-18].
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76 Most of species in the genus Bacillus live ubiquitously in the environment similar to B.
77  subtilis, and all except two of them (B. anthracis and B. cereus) are nonpathogenic to mammals.
78  The extreme pathogenicity and virulence of B. anthracis is particularly striking when compared to
79  other Bacillus species. It is largely believed that two additional genomic elements, the plasmids
80 pXO1 and pXO2, which are not observed in other Bacillus species, are responsible for the
81  virulence of B. anthracis [19,20]. In fact, transformation of these virulence plasmids into certain
82  biovars of B. cereus has been demonstrated to result in bacteria that can cause anthrax-like
83 disease [21,22]. Indeed, these plasmids encode for anthrax toxin and the poly-D-glutamic acid
84  capsule, both of which are considered important virulence factors for the induction of anthrax,
85 while pXO1 also codes for the transcriptional regulator AtxA which is known to control the
86  production of toxin and S-layer [23-25]. However, most of the research into these plasmids thus
87  far have been focused on production of toxins and capsule, and their effects on other aspects of
88 B. anthracis biology, especially metabolism, remain undercharacterized. Given that the
89  production of toxins must involve the survival and proliferation of the pathogen, we must also
90 consider metabolism that fuels bacteria as being an essential part of virulence.

91 One approach to examining the role of metabolism in pathogenesis would be measuring
92 the utilization of various nutrients by bacteria, ideally under conditions that mimic the host
93  environment. This leads to the question of how nutrient utilization differs between pathogens and
94  their nonpathogenic counterparts, especially in the genus Bacillus. Previous investigations of B.
95 anthracis metabolism in association with virulence have thus far focused on roles of individual
96 enzymes, a global genomic analysis, or characterization of metabolic regulators [26-31]. Here,
97  we took a more comprehensive approach and assessed 189 distinct sources of carbon for their
98  ability to drive the generation of reducing equivalents (here a proxy for metabolic outflow) for three
99  species of Bacillus (B. anthracis, B. cereus, and B. subtilis) and Staphylococcus aureus. A pan-

100 cupboard of optimal but also detrimental nutrients are reported that can be used to both enhance
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101  and reduce virulence and highlight how metabolism is specifically tailored along environmental
102  niches.

103

104 Results

105 Quantification of bacterial carbon utilization through a colorimetric assay

106 Metabolic activity is powered by the breakdown of biologically useful molecules via the
107 conversion of chemical potential energy into reducing potential energy [32]. For
108 chemoheterotrophic bacteria that rely on carbon molecules as nutrients, one product of
109 metabolism is the reductant NADPH. The quantity of intracellular NADPH can be measured
110  colorimetrically through reduction of tetrazolium dyes that impart purple color [33-39]. The level
111 of color is thought to be proportional to the overall metabolic activity, especially in terms of the
112 generation of reductive potential. We hypothesized that the formation of NADPH in the presence
113 of exogenously supplied nutrients might reflect different nutritional preferences between
114  pathogenic and non-pathogenic bacteria. In this context, we assessed the metabolism of 189
115  different carbon sources for four different species of bacteria; B. anthracis, B. subtilis, B. cereus,
116 and S. aureus. The experimental design of this study is shown in Fig 1A. We first aimed to
117  determine some of the quantifiable parameters of the system, including the kinetics and endpoints
118  of metabolism. Shown in Fig 1B is a plot of the metabolic activity (as measured by the reduction
119  of tetrazolium) against time for three nutrients that display some of the types of activity curves
120  observed in the data set. The first type of curve, shown here with D-glucose, is one in which the
121  maximum rate of metabolic activity is observed for most of the experiment (green line). The
122 second type, observed here with L-proline (pink line), shows classic exponential kinetics with an
123  accelerated rate of metabolism followed by a slow saturation. Finally, many metabolites either
124  inhibit metabolism or do not stimulate it, with data that resembles the curve shown for 2-hydroxy

125  benzoic acid (blue line). In the analysis, we focused on two characteristic descriptors of metabolic
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126  activity: the metabolic endpoint, which represents the net colorimetric change over the course of
127  the experiment, and maximum metabolic rate, which represents the highest rate of colorimetric
128 change at all times. To average out background variation in the colorimetric measurement, the
129  exponential moving average was employed to calculate a value for the final metabolic endpoint.
130  To determine the maximum metabolic rate from a metabolic activity curve with multiple inflection
131  points and stochastic variations, a polynomial was first fitted to the metabolic curve, and the
132 resulting polynomial differentiated to give rate of metabolic change for all time points (see
133  Materials and methods). We employed the use of two ready-made, commercially available plates
134  with different sources of carbon (S1 Table) [33]. In this backdrop, all other nutrients in the system
135 are not prominent sources of carbon. This was performed for 189 nutrients for three different
136  Bacillus species (B. anthracis, B. cereus, and B. subtilis) as well as the related Gram-positive
137  pathogen Staphylococcus aureus. There were striking differences in the both the maximum
138  metabolic rate and maximum metabolic endpoint values between each species and each
139  temperature (Fig 1C). Interestingly, whereas B. anthracis showed enhanced metabolism at the
140  higher of the two temperatures (mean maximum metabolic rate for all nutrients at 30° = 10.93, at
141 37°=27.19, p < 0.0001, paired Student’s t-test), B. cereus showed enhanced metabolism at the
142 lower of the two (mean maximum metabolic rate for all nutrients at 30° = 16.77, at 37° = 6.52, p
143 < 0.0001, paired Student’s t-test), a finding that may reflects adaptation of B. cereus for limited
144  growth, multiplication, and sporulation in soil at lower temperatures (however, unlike true soil
145  microorganisms it is not well adapted for using chemical resources, and is dependent on decaying
146  organic matters for resources) [13]. The metabolism of S. aureus at body temperature was more
147  similar to the metabolism of B. anthracis at body temperature than it was to B. cereus, presumably
148  reflecting the ability of these organisms to infect a wide range of vertebrate hosts, and at different
149  bodily sites (S1 Fig). We did not assess B. subtilis at higher temperatures because of its poor
150 growth at 37 degrees (data not shown).

151
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152  Bacterial metabolic activity and correlation to growth

153 Increases of the optical density at 600 nm in culture is typically used as a proxy for
154  bacterial growth. We wished to also understand the relationship between bacterial growth and
155  metabolism for nutrients assessed in Fig 1 across all three bacillus species. Rather remarkably,
156  there was very little over-all correlation between optical density and metabolism for all compounds
157  tested (S2 Fig). Spearman’s rank correlation coefficient (Spearman’s p) was calculated between
158  rank ordered lists to ascertain the degree of correlation between these two metrics for metabolism.
159 B. anthracis-ranked lists had the lowest correlation with p = 0.4753, while B. cereus and B. subtilis
160 showed more similarity with p = 0.4810 and 0.5913 respectively. These values indicate that total
161 metabolic activity as measured by chemical reductive potential does in some cases reflect
162  enhanced growth of the organism, but in many other cases, it does not. Indeed, there were cases
163  whereby very little increase in growth was observed (5-keto-D-gluconic acid) but reductive
164  metabolism was one of the highest of all compounds tested (see B. anthracis) and other cases
165  whereby growth was high (B. subtilis in capric acid) but almost no reductive metabolism was
166  detected. Furthermore, these trends were not conserved amongst each species (despite strong
167  reproducibility within each species), indicating that bacteria in Bacillus have vastly different
168  species-specific metabolic programs that can run independent of its drive to replicate.

169

170  Overall trends in metabolic utilization of carbon sources

171 We sought to determine whether the maximum metabolic rate could be used as a metric
172 to compare different bacteria and under different conditions. Metabolic data were first
173  standardized by each bacterium and condition to a mean of 0 and standard deviation of 1, and
174  the resulting data were hierarchically clustered for organization. Data for bacteria incubated at
175  their optimal temperature were used when two different temperatures were tested. When

176  visualized as heat maps, metabolic rates showed that while few nutrients were well utilized in all
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177  bacteria, there also exists a group of nutrients that were utilized exceptionally by one species
178  alone while not being used for metabolism in another species (Fig 2Ai and 2Bi). With normalized
179  maximum metabolic rate as the metric, the number of nutrients that gave greater than the overall
180 average rate was counted to show the overlap in utilization between different species (Fig 2Aii
181  and 2Bii). At 37 degrees, 20 nutrients were utilized at above the average rate among all three
182  bacteria tested, while there were groups of nutrients observed to be better utilized in one bacteria
183  alone (31 for B. cereus, 15 for B. anthracis, and 20 for S. aureus). Similar distribution was
184  observed for bacteria incubated in 30 degrees as well, although B. cereus once again had the
185  greatest number of nutrients that were utilized (20 for B. cereus, 17 for B. anthracis, and 14 for B.
186  subtilis). As for nutrients metabolized at above the overall average maximum metabolic rates by
187  all bacteria, there were 16 of them at 30 degrees and 20 at 37 degrees. Six of these nutrients
188  were common to both lists (5-keto-D-gluconic acid, D-arabinose, D-ribose, D-xylose, L-arabinose,
189  and L-lyxose) and all of them were either carbohydrates or derivatives (S2 Table). When averages
190 of maximum metabolic rates of nutrients that were well utilized by only one bacteria were
191 compared to that of nutrients well utilized by all bacteria, it was observed that these nutrients
192  resulted in higher rates as compared to nutrients well utilized by one bacteria at 37 degrees (0.68
193  for B. cereus, 0.44 for B. anthracis, 0.80 for S. aureus, 1.70 for commonly well utilized, p < 0.05,
194  unpaired Student’s t-test) (Fig 2Biii). This may indicate that while choices of carbon utilization are
195 distinct for each species, they also have core parts of metabolism that are common. It is
196 interesting to also note that B. anthracis shared more common nutrients with B. subtilis at 30
197  degrees (Fig 2Aii) and S. aureus at 37 degrees (Fig 2Bii) than it did with B. cereus, which was
198 unexpected. This was also true for B. anthracis and S. aureus at 37 degrees as compared to B.
199  cereus.

200

201  Metabolic utilization of nutrients by chemical properties
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202 Nutrients in the plates for carbon metabolism have a wide variety of chemical properties.
203  This fact can be leveraged to determine the types of food bacteria prefer to eat. We classified
204  nutrients into distinct “food groups” based on their chemical properties: carbohydrates, amino
205  acids, lipids, and hydrophobicity according to their calculated partition coefficient (xLogP3) (Fig
206  3Ai, Bi, Ci, Di) [40]. Every nutrient was queried through NCBI PubChem for assignment into those
207  four criteria and categorized accordingly. Nutrients were hierarchically clustered according to their
208  chemical structural similarities as measured by atom-pair distances using ChemmineR R package
209  within groups [41]. Maximum metabolic rates were standardized to mean of 0 and standard
210  deviation of 1 for each bacteria incubated under their optimal growth temperatures, and visualized
211  as heat maps for comparison, with ‘+’ and *-* indicating groups of nutrients that either belonged or
212 not to the “food group,” respectively (Fig 3Aii, Bii, Cii, Dii). The average maximum metabolic rate
213 for carbohydrates was greater than that of non-carbohydrates for B. anthracis (31.32 for
214  carbohydrates, 23.46 for non-carbohydrates, p = 0.0005), B. subtilis (16.19 for carbohydrates,
215 10.80 for non-carbohydrates, p = 0.0030), and S. aureus (23.52 for carbohydrates, 16.84 for non-
216  carbohydrates, p = 0.0084, all unpaired Student’s t-test) (Fig 3A). This stands in contrast to amino
217  acids and lipids, where no statistically significant differences were observed between nutrients
218  categorized under these properties (Fig 3B and 3C). As for hydrophobicity, the median value of
219  xLogP for all nutrients, -2.3, was used as the dividing point, with xLogP less than or equal to the
220 median as being deemed relatively hydrophilic and greater as hydrophobic. All four species of
221  bacteria incubated under their optimal temperature had average raw maximum metabolic rates
222 for hydrophilic nutrients greater than hydrophobic nutrients (for B. anthracis, < median 29.74 and
223 > median 24.39, p = 0.0183; for B. cereus, < median 20.04 and > median 13.53, p = 0.0115; for
224  B. subtilis, < median 16.75 and > median 9.67, p < 0.0001; for S. aureus, < median 23.28 and >
225 median 16.43, p = 0.0067; unpaired Student’s t-test) (Fig 3D). These results highlight facile
226  metabolic utilization of carbohydrates for these bacteria, as opposed to amino acids and lipids,

227  when bacteria are constrained to primarily one nutrient as their carbon source. Superior utilization

10
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228  of hydrophilic nutrients is also suggestive of carbohydrate metabolism, as 76% of hydrophilic
229  molecules (68 out of 89) are carbohydrates, as opposed to 29% (30 out of 102) for hydrophobic
230 nutrients. Further suggestive of the importance carbohydrates play in carbon metabolism of these
231  bacteria can be observed when chemical formula of the nutrients themselves are examined.
232 When modular arithmetic is applied to the number of carbon atoms in nutrients, there exists
233 statistical correlation between the remainder after divisions by five and six and classification of
234  molecules as carbohydrates when ANOVA is performed (mod 5, p < 0.00072; mod 6, p = 3.74 x
235  1079). This can be visualized when raw maximum metabolic rates are plotted by their remainders
236  after division by five or six (pentoses have remainder of 0 and 5 after division by 5 and 6, and
237  hexoses have remainder of 1 and 0 after division by 5 and 6), as nutrients that have number of
238  carbon number atoms that fit the modular arithmetic for pentoses and hexoses have greater
239  maximum metabolic rates (mod 5: p < 0.0001; mod 6: p < 0.0001, one-way ANOVA) (S4A and B
240  Fig).

241

242  Carbohydrate pathways in carbon metabolism of bacteria

243 To examine pathways in carbohydrate metabolism for each nutrient, KEGG was queried
244  and each nutrient’'s pathway participation was examined [42]. We sought to extract information
245  from metabolic utilization data to determine which metabolic pathways are utilized more efficiently
246  while avoiding a priori knowledge of the organism and its metabolic network biasing our analysis.
247  Nutrients classified into pathways involved in carbohydrate metabolism were selected for this
248  analysis, following our determination from the previous section that carbohydrates were preferred
249  than other nutrients. Average standardized metabolic maximum rates for nutrients grouped into
250 15 different carbohydrate pathways showed overall elevation of utilization across bacteria with
251  the exception of B. cereus at its suboptimal temperature of 37 degrees (Fig 4A). The pentose
252  phosphate pathway had the highest normalized maximum rate at 30 degrees for all bacteria

253  (0.917 for B. cereus, 1.488 for B. anthracis, and 1.239 for B. subtilis). Of particular note was the

11
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254  comparison in number of nutrients that showed higher utilization associated with carbohydrate
255 pathways between B. anthracis, B. cereus, and B. subtilis that emphasize the distinctiveness of
256  B. anthracis’ carbohydrate metabolism. At 30 degrees, the top four carbohydrate pathways for B.
257  anthracis were amino and nucleotide sugar metabolism, inositol phosphate metabolism, pentose
258  and glucoronate conversion, and pentose phosphate pathway (1, 10, 11, and 12). (Fig 4B). While
259  most of these pathways were found to have high metabolic rates for B. cereus and B. subtilis as
260  well, an exception was noted for inositol phosphate pathway, which had negative normalized
261  maximum metabolic rate indicating that it was not utilized well by these two bacteria (0.7938 for
262  B. anthracis, -0.0464 for B. cereus, -0.0605 for B. subtilis). At 37 degrees, a similar pattern of
263  carbohydrate pathway utilization was observed for B. anthracis and B. cereus, with the same
264  pathways being commonly well utilized and inositol phosphate pathway being underutilized in B.
265  cereus. For S. aureus eleven out of fifteen carbohydrate pathways had positive normalized
266  maximum metabolic rates, hinting at a more diversified use of carbohydrates (Fig 4C). Curiously,
267  the inositol phosphate pathway was not one of the pathways well utilized for S. aureus (-0.0583),
268 indicating that its utilization might be specific for B. anthracis.

269

270 Individual nutrients and their metabolic pathway associations

271 Analysis of overall averages of metabolic rates suggests that there exist variations in
272 metabolism at the level of individual nutrients. Using metabolic pathway assignments made for
273 every nutrient in the previous analysis, individual nutrients and pathways were ordered by their
274  standardized maximum metabolic rate at 37 degrees and laid out as heat maps for carbohydrate
275  (Fig 5A) and amino acid pathways (Fig 5B). These rates for individual nutrients show that even
276  within pathways that average high metabolic rate for nutrients tested, there exists a large variation
277  of utilization of nutrients within individual pathways (for the pentose phosphate pathway, from
278  6.279 for 5-keto-D-gluconic acid to -0.663 for D-gluconic acid in B. cereus, 4.558 for D-ribose to

279  -0.773 for 2-deoxy-D-ribose for B. anthracis, 4.212 for D-ribose to -0.718 for D-glucosaminic acid

12
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280 in S. aureus — as examples). There are universally well-utilized nutrients within carbohydrate
281  pathways, such as L-arabinose (4.390 for B. cereus, 4.051 for B. anthracis, and 2.926 for S.
282 aureus), which was consistently involved in the top three out of four pathways (amino sugar and
283  nucleotide metabolism, pentose and glucoronate interconversion, and pentose phosphate
284  pathway). In contrast, analysis of amino acid pathways reflects a more modest degree of
285 utilization and does not show the heterogeneity as observed in carbohydrate pathways. This is
286  more evident when the top and bottom ten nutrients in metabolic maximum rates are separately
287  visualized for carbohydrate metabolism (Fig 5C) and amino acid metabolism (Fig 5D). B. cereus
288 and S. aureus had a small group of nutrients metabolized exceptionally well even within the top
289 ten (four nutrients with normalized rates greater than 3, which is equivalent to three-fold greater
290 rates than the standard deviation, for B. cereus — 5-keto-D-gluconic acid, L-lyxose, D-ribose, and
291 L-arabinose; and two nutrients for S. aureus — D-ribose and 5-keto-D-gluconic acid), while B.
292  anthracis had seven nutrients with rates that exceeded the threshold rate of 3 (D-ribose, D-
293 glucosamine, D-xylose, L-arabinose, 5-keto-D-gluconic acid, D-arabinose, and L-lyxose). In
294 contrast, none of the nutrients involved in amino acid pathways exceeded the threshold of 3. This
295  high efficiency of metabolism observed for B. anthracis in carbohydrate pathways for a larger
296  number of nutrients than B. cereus or S. aureus suggests that the carbohydrate metabolism of B.
297  anthracis would be more efficient in environments with a limited variety of nutrients.

298

299  Nutritional preferences of B. anthracis in serum

300 To better characterize the global nutrient requirement of pathogenic Bacillus under
301 conditions designed to simulate growth in a mammalian host, carbon sources from the screen
302 were supplemented with 40% fetal bovine serum (FBS) and the entire analysis repeated.
303  Nutrients were ordered according to their maximum metabolic rates. Interestingly, nutrients well

304 used in serum by B. anthracis were not identical to those in minimal media, with Spearman’s p of

13
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305 0.5050 (Fig 6A). When nutrients are categorized by carbohydrates and amino acids, their
306 utilization essentially flips in serum compared to media (carbohydrates: -0.2474 vs. non-
307 carbohydrates: 0.1809, amino acids: 0.2397 vs. non-amino acids: -0.0700, lipids: -0.0588 vs. non-
308 lipids: -0.0187) (Fig 6B). The most striking observation is that B. anthracis no longer utilizes
309 carbohydrates well in serum (or perhaps uses them less), with amino acids now seemingly being
310 the dominant nutrient of choice (carbohydrates: -0.2474, amino acids: 0.2397, p = 0.0264,
311  unpaired Student’s t-test). This change of metabolism is most apparent when comparing the
312 number of nutrients that have higher normalized metabolic rates in media as opposed to those in
313  serum (for carbohydrates: 50 in media vs. 39 in serum, for amino acids: 11 in media vs. 19 in
314  serum). This involvement of pathways in metabolic differences in serum is most readily seen when
315 nutrients themselves are categorized by pathways. Out of 15 carbohydrate pathways catalogued,
316  the average of standardized maximum metabolic rates for nutrients in 8 pathways are negative,
317 whereas 12 out of 13 amino acid utilization pathways average in the positive (Fig 6C). For
318 carbohydrate pathways, average maximum rates range from -0.788 for amino sugar and
319  nucleotide metabolism to 0.661 for citric acid cycle. While lipid metabolism as a category contains
320 both the lowest (-2.540 for fatty acid biosynthesis) and highest rates (1.581 for
321  glycerophospholipid metabolism), no statistically significant trends could be discerned. On the
322 other hand, amino acid metabolism pathways (with the exception of branched chain amino acid
323  degradation), all ranged in positive from 0.106 (lysine degradation) to 0.548 (lysine biosynthesis),
324  reflecting how nutrients involved in amino acid pathways are well utilized. Analyses of these
325 pathways at the nutrient level for carbohydrates (S7A Fig) and amino acid pathways (S7B Fig)
326  show that decreases in metabolic rates for carbohydrates for media to serum are the greatest for
327  certain pentoses (D-xylose: -3.808, D-arabinose: -3.616, D-ribose: -4.243) and hexose derivatives
328 (D-galactonic acid-g-lactone: -2.897, D-glucosamine: -4.053), demonstrating that these simpler
329  carbohydrates, while well utilized in nutrient-poor conditions, no longer become efficient carbon

330 sources for metabolism in environment rich with diverse nutrients. These results suggest that
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331 there are massive changes to carbon metabolism that is dependent on the environment the
332 bacteria find themselves in, with B. anthracis switching to favor catabolism of amino acids in
333  serum.

334

335 Discussion

336 From this study, we are able to establish that: i) metabolic activity of bacteria can be
337 measured colorimetrically through chemical reduction potential, ii) nutrients have different
338  degrees of utilization among different bacteria, iii) the choice of which nutrients to use is impacted
339 by temperature; generally, the nutrient preferences track with whether the species grows in the
340 environment versus the host, iv) the chemical properties of the nutrients affect their metabolic
341  utilization rate; carbohydrates and hydrophilic nutrients are generally preferred in media, v) within
342  carbohydrate metabolism, higher metabolic rates are limited to few specific pathways that use a
343  handful of same nutrients, and vi) in serum, B. anthracis’ nutrient preferences are vastly different
344  then in defined media; mainly, the nutrient preference shifts from carbohydrates to amino acids.

345 Infection of a host by bacteria requires these pathogens to be adaptable metabolically in
346  nutritionally austere environments. One component of a host’s nutritional immunity to starve out
347  pathogens would be to keep down the level of free amino acids and lipids. Pathogens would then
348 be expected to tune their metabolism to use freely available nutrients such as carbohydrates.
349  Since previous studies have shown that pathogens thrive in carbohydrate-rich environments, we
350 expected to observe a high degree of metabolic utilization for carbohydrates in general; our data
351 reinforces this notion [43-46]. However, the type of carbohydrate each species preferred varied
352 substantially. The data suggests that not all carbohydrate metabolic pathways are equally tuned
353  for utilization. Indeed, there would be resource costs involved in creating and maintaining
354  metabolic pathways that remain unused or underutilized, and these pathogens would only need

355 to have in preparation pathways involved in metabolizing nutrients frequently encountered during
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356 their lifecycle. For the experiment performed in auxotrophic media, where a single nutrient is the
357  predominant source of carbon, bacterial maximum metabolic rate measured reflects the readiness
358  of bacteria’s metabolic pathways to utilize that nutrient. This raises a point noted during both
359 nutrient and pathway analyses: why are pentoses utilized better than other forms of carbohydrates
360 in B. anthracis? High metabolic utilization observed for nutrients involved in the pentose
361 phosphate pathway offers an explanation. In addition to being catabolized for energy production,
362 these pentoses can also be readily used for anabolism to build up metabolic machinery through
363 the pentose phosphate pathway. These newly synthesized metabolic components in turn allow
364  for even better utilization of pentoses provided in the environment, creating a positive feedback
365 loop that allows B. anthracis to thrive in a nutrient limited environment. B. anthracis would normally
366  encounter nutritionally restricted surroundings during parts of its infectious cycle, such as
367  attempting to survive within a macrophage’s endosomes. B. anthracis relies on toxins to further
368  progress in its course of infection, and ability to remain metabolically active in nutritionally deficient
369 condition would be valuable. Nutrients that result in high metabolic yield under an ideal condition
370  may not be the best nutrient for every situation, especially when bacteria must deal with resource-
371  poor environment. This may be the reason why certain hexoses such as glucose, which are
372  previously known to be well utilized by various pathogens during infection, do not result in
373  particularly high metabolic rate when they are provisioned as the sole source of carbon.
374  Conversely, in the nutrient-rich environment tested in this experiment with 40% fetal bovine
375 serum, bacteria no longer need to focus on taking a balanced approach; instead, maximum
376  metabolic rate is primarily determined by total capacity for metabolism. In fetal bovine serum
377  supplemented media, B. anthracis is no longer restricted to one carbon source for both energy
378 and anabolism, and the nutrient screen thus serves as a proxy for which nutrients allow for most
379  expansion of metabolic pathway capacity. This would result in nutrients utilized in amino acid

380 metabolism generally giving higher metabolic rates, as these nutrients would be directly used in
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381 anabolism to expand metabolic pathways to allow higher maximum rates. This hypothesis will
382  need to be tested.

383 Our results show that the chemical properties of the nutrient can correlate with their
384  metabolic utilization. One intriguing chemical property we observed is the partition coefficient for
385 nutrients (LogP), which is a quantitative measure of a physical property of molecules as opposed
386  toadescriptive categorical variable. Many cases of high metabolic rates observed for low partition
387  coefficient molecules could be explained by the presence of well-metabolized carbohydrates,
388  which are hydrophilic molecules. However, there were exceptions to this as seen by nutrients with
389 low partition coefficients that are carbohydrate-derivatives but still not utilized well by bacteria. On
390 the other hand, hydrophobic molecules with their larger number of energetic carbon-carbon bonds
391 may initially appear as energy-dense molecules that yield higher metabolic payoff. However,
392  considering the fact that pathogenic Bacillus must spend majority of its lifecycle inside the animal
393  host with water as the primary matrix, it follows that these Bacillus would be proficient at uptaking
394  and utilizing nutrients that are hydrophilic and water soluble (with low partition coefficient). High
395  metabolic utilization for bacteria implies that a transport mechanism already is in place to import
396 these nutrients from the environment, as well as having pathogens ready to convert the primary
397 metabolism’s products into biological building blocks for anabolism. Given that these Bacillus are
398  much more likely to encounter these hydrophilic nutrients during a course of infection, they would
399 also have ways to utilize these nutrients. Conversely, these hosts also employee nutritional
400 immunity during bacterial infection to counter these Bacillus and other bacterial pathogens.
401  Studies have demonstrated that abundance of glucose during bacterial infection correlate with
402  poorer outcome, while switching of the host’s metabolism away from carbohydrates towards lipid
403 and amino acid consumption can aid the host in battling the infection [43-45, 47-50]. This role
404  nutrition plays during infection has been principally investigated in context of host immunity and
405 inflammation, but our study suggests that this topic also merits consideration from the perspective

406  of bacterial nutrition consumption as well [51-54]. Our findings indicate that through the readiness
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407  of Bacillus for such nutrients, partition coefficient of nutrients is another one of factors that can
408 influence growth of a pathogen in the host. We demonstrate in this study that approaching
409 nutrients as a limited resource that must be utilized by pathogens offers another perspective to
410 host-pathogen interaction, especially in the context of all the nutrients that are available at that
411  time.

412 The connection between nutrition and bacterial infection has been so far primarily
413  approached from the perspective of host malnutrition and dysfunction of host’s immune response,
414  as it had been assumed that bacteria are indiscriminate in their preferences to utilize all possible
415  categories of nutrients [55]. And while the host’s responses regarding nutrients occur at the
416  organismal level, direct nutritional tug-of-war between host and bacterial pathogens occurs at the
417  molecular level. As our study demonstrates, bacterial pathogens are more metabolically proficient
418  when consuming certain nutrients and it is reasonable to expect them to be more pathogenic
419  toward the host when encountering an optimal combination of nutrients. One well-characterized
420  component of host’s nutritional immunity is the sequestration of key micronutrients, such as iron,
421  which removes these linchpins of metabolism from being accessible to pathogens through
422  biochemical means [5,6]. Is it possible that mammalian hosts deploy a similar strategy with
423 macronutrients? In humans, the concentrations of various amino acids in blood are kept in the
424  micromolar range. Given the heightened metabolic utilization of amino acids and associated
425 nutrients by B. anthracis in serum observed here, keeping the concentration of amino acids low
426  could also be a part of nutritional immunity. On other hand, physiological concentrations of
427  carbohydrates can be in the millimolar range. While situationally lowering this already high
428  concentration of carbohydrate in blood as a part of response against infection might be impractical
429  for the host, more achievable would be to lower the amino acid concentrations, which may
430 adversely affect pathogen protein anabolism. In this study, we also demonstrate that even among
431  the same class of nutrients, metabolic utilization can vastly differ from one nutrient to another.

432 This suggests that when either depriving or interfering with a bacterial pathogen’s metabolism of
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433  nutrients, only targeting a handful of nutrients and pathways that have high utilization might be
434  sufficient for disarmament. Unlike antibiotics that target one component of a bacterial cellular
435  process (usually essential), this method of metabolism control would aim to shut down a
436  bacterium’s ability to derive energy or build larger biomolecules.

437 As pertaining to the direct control of metabolism, a handful of nutrients were metabolized
438  with maximum rates that were much lower than the average of all nutrients screened. While some
439 nutrients by definition were expected to be metabolized at lower rates than the average,
440  observations that some of these nutrients also had equally lower metabolic maximum rate in the
441 enriched condition as tested with serum was surprising, for this indicated that metabolism of B.
442  anthracis was outright slow with these nutrients. There are two possible explanations for this
443  decreased metabolic activity in the presence of these nutrients: one is that nutrients themselves
444  are utilized at a slower rate, and decreased maximum rate observed is due to lack of additive
445  effects normally found between the nutrients and enriched media. More intriguing possibility is
446  that nutrients directly interfere with metabolic consumption of other resources from enriched
447  media. Nutrients involved in amino acid metabolism resulted in faster metabolic maximum rates
448  than the overall average for B. anthracis (Fig 6C, S7B and S7C Fig), and only a limited number
449  of nutrients (21) had higher rate than the negative control without supplemental nutrients. Given
450 these two facts, it stands to reason that B. anthracis in a nutritionally plentiful environment can be
451  selective as to which nutrients to utilize in metabolism and choose to leave alone nutrients that
452  would not result in efficient usage. While this may explain why the majority of nutrients
453  supplemented did not result in increased maximum rate, there were five nutrients where the
454  maximum rate did not even reach 30% of the negative control: capric acid, f-methyl-D-glucoside,
455  glyoxylic acid, 2-hydroxy benzoic acid, and itaconic acid. This decrease in the maximum metabolic
456  rates supports the scenario where the interference of metabolism by the nutrient itself must be
457  considered as a possible cause for this decrease in the metabolic maximum rate. How could the

458  antagonistic relation between these added nutrients and enriched pool of chemical resources
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459  occur? For these five nutrients, not one classification of pathways seems to explain the reason
460  why these degrade metabolism. Glyoxylic acid features prominently in multiple pathways as a key
461  component of glyoxylate shunt, an alternative pathway to citric acid cycle, but other four nutrients
462  are not widely utilized at all [56]. This dichotomy in pathway utilization hints that there could be
463  two distinct ways in which these nutrients adversely affect the metabolism. One possible
464  explanation is that the nutrient itself directly acts as an inhibitor of metabolic enzymes. Given that
465  these four nutrients are not normally used as metabolites, it can be argued that these molecules
466  may be inhibitors that slow down metabolism as either drug-like or signal molecules. Indeed, in
467 case of itaconic acid, the ability of such chemical derivatives of metabolites to inhibit the bacterial
468  growth through metabolic interference has been previously demonstrated [57]. The other
469  explanation, which may be the reason for glyoxylic acid, is that these nutrients themselves tune
470  down the metabolism through feedback. In case of glyoxylic acid, a key piece in glyoxylate shunt
471  which is operated to synthesize carbohydrates from other carbon sources when B. anthracis is
472  only provisioned with non-carbohydrate carbons, proper functioning of overall metabolism might
473  not be possible even when the pathway itself is present [58,59]. While it remains to be seen
474  whether it would be feasible to achieve pharmacologically relevant local concentrations of these
475  metabolism antagonists at the bacterial level to block the proliferation of B. anthracis in vivo, our
476  study offers glimpses into how such strategy could be utilized when these nutrients are applied
477  as antibiotics.

478 At the level of organism, chemical categories of nutrients do not seem to be specific
479  enough to distinguish one bacteria from another by metabolic performance alone. Rather, it is at
480 the pathway level where nutrient utilization can differentiate one bacteria to another. While most
481  nutrients were either universally well-utilized or poorly-utilized, there still were a number of
482 nutrients where high utilization was restricted to one species. These species-level utilization
483  signatures were found across multiple nutrient utilization pathways, indicating that their

484  uniqueness arose as a part of bacteria’s specialization into their ecological niches with specific
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485  mixture of nutrients. While B. anthracis spends only a part of its lifecycle in soil, one which is
486  considered metabolically inert (the spore), it is widely accepted that B. cereus and B. subtilis thrive
487  on soil [13,17,20]. All three bacteria share soil as the backdrop for a big part of their lifecycle, yet
488 they still differ greatly in metabolic utilization of same nutrients. This hints that their metabolic
489  specializations arose not just as a product of nutrient availability, but their interactions with host
490 organisms as pathogens as well. This raises the intriguing possibility of tailoring therapeutics
491  using nutrient classes that can specifically target metabolic specializations at a species-specific
492  level. This might be especially useful at selectively targeting certain pathobionts amongst a myriad
493  of beneficial or non-pathogenic commensal species, for example, in the gastrointestinal tract.

494

495 Materials and methods

496 Preparation of bacteria for assays

497 Frozen bacterial stocks of B. anthracis Sterne, B. cereus 10987 (ATCC), B. subtilis 2091
498 (ATCC), and S. aureus LAC were added to 1 mL of Luria Bertani (LB) media at 1% inoculum and
499 incubated in 30°C or 37°C overnight with 160 rpm orbital shaking to stationary growth phase
500 (ODeoo > 1.5). Kanamycin was added to the medium for selection (50 ug/mL for B. anthracis and
501 B. cereus). One mL of bacterial culture was washed twice with 1 mL of deionized water after
502  spinning down in Beckman Coulter centrifuge (Indianapolis, IN, USA) for 3 minutes at 17000xG.
503 Washed cells were diluted in IF-Oa inoculating fluid from Biolog (Hayward, CA, USA) — here
504 referred to as minimal media — to 81% transmittance equivalent (ODeoo ~0.093) as measured by

505  spectrophotometer (Beckman Coulter).

506

507 Bacterial growth assay
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508 For growth on 96-well Phenotype MicroArray™ carbon utilization assay plates (Biolog),
509 880 puL of washed bacterial cells were added to the assay media of following composition: 10 mL
510  of IF-0a inoculating fluid (Biolog) and 1.12 mL of deionized water for total volume of 12 mL. The
511 list of nutrients in Phenotype MicroArray™ carbon utilization assay plates can be found in
512  supplemental information (S1 Table). Well number 7 of the Phenotype MicroArray plate 2
513  contained gelatin, which due to its heterogenous composition was excluded from all further
514 analysis. The assay media had following concentration of additives: 2 mM MgClz-6H.0, 1 mM
515  CaClz:2H20, 25 uM L-arginine HCI, 50 uM L-glutamine Na, 12.5 uM L-cystine, 25 uM 5’-UMP
516  2Na, 0.005% yeast extract, and 0.005% Tween 80. 100 uL of bacterial cells in the assay media
517  were dispensed into each well of Phenotype MicroArray™ plate, and plates were incubated at
518 stationary position in 30°C or 37°C for 24 hours in Synergy™ plate reader (BioTek, Winooski, VT,

519  USA) with 550 and 600 nm absorbance readings taken every 15 minutes.

520

521  Metabolic utilization assay

522 To measure metabolic utilization of various carbon sources by bacteria, Phenotype
523  MicroArray carbon utilization assay plates were prepared in the same fashion as in the growth
524  assay, but also with 120 uL of tetrazolium-based dye mix F (Biolog) added to the assay media to
525  total volume of 12 mL. 100 pL of bacterial cells in the assay media were dispensed into each well
526  as previously. Plates were incubated in OmniLog™ plate reader (Biolog) in static position at 30°C
527  or 37°C for 24 hours, with metabolic activity reflected by the color change of dye from transparent
528  to purple. Measurements of color changes were made every 15 minutes. Resulting raw data was
529 first aggregated and processed through OmniLog PM™ program (Biolog) and exported as

530 comma-separated values files for further analysis.

531
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532 Extraction of metabolic endpoints and rates

533 Raw metabolic data in form of comma-separated values file was imported into MATLAB
534  (Mathworks, Natick, MA, USA) to obtain metabolic endpoints and maximum metabolic rates for
535 each nutrient. Metabolic endpoint was defined as the increase of the metabolic value from the
536 value of the metabolic curve at the beginning of its increase in value throughout the course of
537 experiment and exponential moving average (EMA) of the metabolic curve at the conclusion of
538 experiment. The threshold value for the beginning of metabolic curve increase was defined as
539  metabolic activity at the timepoint when the metabolic value was 10% greater than the average
540  of all previous timepoints. EMA was determined by the formula:

541 EMA, =«a <1n + 2(1 - a)‘l(n_t)>

542  where | is the raw intensity reading, n is the number of datapoints, and a is the weighing coefficient

543  which was set as 0.25 [60].

544 To determine the maximum metabolic rate from the curve of color change over time, the
545  rate of metabolism value change over the entire experiment was calculated and the largest rate
546  change defined as the maximum metabolic rate. Fifth degree polynomials were fitted to raw
547  metabolic curves using the MATLAB function polyfit to minimize the error from stochastic
548 variations in metabolic curves from one time point to next. The polynomial generated by curve
549 fitting was differentiated with diff function to symbolically derive a function of metabolic rates, a
550 table of metabolic rates at all time points generated, and the maximum value from the metabolic

551 rate table chosen.

552

553  Hierarchical clustering of nutrients
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554 For hierarchical clustering of by the chemical structure, chemical structures for nutrients
555 in Phenotype MicroArray™ carbon utilization screen were queried from PubChem Download
556  Service as SDF files. SDF files were converted to atom distance pairs using R v3.5.3 with the
557  package ChemmineR'’s sdf2ap function, and fpSim function was used to calculate similarities and
558 generate a distance matrix. The distance matrix of chemical structural similarities was used for
559 R’s hierarchical clustering function hclust and visualized with heatmap.2. For hierarchical
560 clustering by metabolic data, metabolic data was directly used to calculate a set of pairwise
561 distances by MATLAB function pdist. Euclidean distance was used as the distance metric.
562  Pairwise distances between nutrients were converted into a square matrix with function
563  squareform. Resulting distance matrix generated was clustered with R function hclust and

564  visualized with the function heatmap.2 [61].
565

566 Fetal bovine serum-supplementation metabolic assay

567 880 pL of washed bacteria suspended in IF-Oa media were added to 4.8 mL of fetal bovine
568  serum (Gibco), 120 uL of dye mix F, and 6.2 mL of phosphate buffered saline, pH 7.8, for the final
569 fetal bovine serum concentration of 40% v/v. 100 uL of this bacterial suspension in 40% fetal
570 bovine serum was added to each well of Phenotype MicroArray™ carbon utilization plates, and
571 plates were incubated at static position in 30°C or 37°C for 24 hours in Synergy™ plate reader
572  (BioTek) with the color change due to metabolic activity measured as 550 nm absorbance
573  readings taken every 15 minutes. To verify that 550 nm absorbance reading correlated with
574  metabolic activity obtained in the metabolic utilization assay, raw data from the Phenotype
575  MicroArray™ plate 2 from both metabolic utilization experiments were plotted linearly and R? value

576  calculated to confirm the degree of correlation (Data not shown).

577
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Statistical analysis

Unpaired Student’s t-test and one-way ANOVA with Tukey post-hoc test were performed
on GraphPad Prism (GraphPad Software, La Jolla, CA, USA). Spearman’s rank correlation
coefficients were calculated with Excel. Principal component analysis of metabolic data was
performed with R’s prcomp function and visualized with fviz_pca_ind. On all statistical analysis,
P-values less than or equal to 0.05 were considered significant and marked with an asterisk in
the graphs. All visualization was performed through GraphPad Prism, R, or Tableau (Tableau

Software, Mountain View, CA, USA).
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777 Figures

778  Fig 1. Colorimetric assay reflects metabolic activity in bacteria

779  (A) Schematic showing the experimental setup using 96-well plates with nutrients providing a
780  carbon source for bacteria being examined. (B) Examples of raw metabolic data outputs and
781  polynomial fitting for metabolic curves. Metabolic curves over the course of experiment for three
782  nutrients with different degrees of color change are shown: High activity (green) with a-D-glucose,
783  medium activity (red) with L-proline, and low activity (blue) with 2-hydroxy benzoic acid. Light
784  curves show raw metabolic data output as measured by the overall color change, and
785  corresponding dark curves show polynomials fitted to determine metabolic rates. (C) Maximum
786  metabolic rates of bacteria and conditions tested for selected nutrients. Maximum metabolic rates
787  for twelve selected nutrients from the carbon utilization screen are shown to highlight the range
788  of rates measured. Darker shades reflect higher rates, and lighter shades lower rates. Two
789  experiments in separate temperatures (30°C and 37°C) were performed for B. anthracis and B.
790 cereus and are shown in two columns. Maximum metabolic rates are averaged from three

791  independent runs.
792
793  Fig 2. Metabolic rates for carbon sources in bacteria show variations and groupings

794 (A and B) Maximum metabolic rates of nutrients for bacteria incubated at 30°C (A) and 37°C (B).
795 (i) Nutrients are hierarchically clustered by their chemical structures (dendrograms, left) and
796  metabolic rates observed are shown as heatmaps (right) with each column representing results
797  from different bacteria. (ii) Venn diagrams of nutrients are shown with numbers reflecting the count
798  of nutrients that had metabolic rates statistically greater (p < 0.05) than the overall average rate.
799  Unpaired Student’s t-test was used for comparison. (iii) Normalized maximum metabolic rates for

800 nutrients well utilized by one bacteria are compared against nutrients well utilized by all bacteria.
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801 Bars represent averages of all nutrients that had statistically higher metabolic rate than the overall
802  average rate. Error bars represent standard error of the mean. Maximum metabolic rate for each
803 nutrient is an average from three independent experiments (n = 3). *: p < 0.05 by unpaired

804  Student’s t-test.

805

806 Fig 3. Metabolic rates correspond to certain chemical properties of nutrients

807  (A-D) Four chemical properties of nutrients examined with the structure of an example from each
808  category (i): (A) carbohydrates (shown: D-glucose), (B) amino acids (shown: L-alanine), (C) lipids
809  (shown: caproic acid), and (D) hydrophilicity as represented by partition coefficient (shown:
810 tyramine and L-arginine). (ii) Heatmaps of maximum metabolic rates for nutrients with nutrients in
811 the category for chemical property under question (+ or lesser) or did not (- or greater). Nutrients
812  are hierarchically clustered by their chemical structural similarities using atom-pair distances. Ba:
813  B. anthracis, Bc: B. cereus, Bs: B. subtilis, Sa: S. aureus. (iii) Average maximum metabolic rates
814  for nutrients by chemical property (blue: carbohydrates, red: amino acids, green: lipids, yellow:
815  hydrophilicity / partition coefficient). Bars represent averages of all nutrients categorized by
816  chemical property. Error bars represent standard error of the mean. Maximum metabolic rate for
817  each nutrient is an average from three independent experiments (n = 3). *: p < 0.05 by unpaired

818 Student’s t-test.

819

820 Fig 4. Certain carbohydrate pathways have superior utilization of nutrients

821 (A) Heatmaps of normalized maximum metabolic rates for nutrients utilized by different
822  carbohydrate pathways. Nutrients are categorized by which carbohydrate pathways they are
823  utilized in, and average of all maximum metabolic rates from nutrients for each carbohydrate

824  pathway are shown as heatmaps. (B and C) Bar graphs of normalized maximum metabolic rates
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825  for nutrients in all carbohydrate pathways. (B) shows results from bacteria incubated at 30°C, and
826 (C) shows results from 37°C. Each bar represents average maximum metabolic rates for all
827  nutrients for each carbohydrate pathway. Error bars represent standard error of mean. Maximum
828 metabolic rates are normalized to average of 0 and standard deviation of 1. Each nutrient’s

829  maximum metabolic rate is an average from three independent experiments (n = 3).

830

831  Fig 5. Nutrients are utilized in different pathways with wide range of metabolic rates

832 (A and B) Heatmap showing normalized maximum metabolic rates for all nutrients associated
833  with carbohydrate pathways (A) and amino acid pathways (B). For every nutrient (left column),
834  normalized maximum metabolic rates for bacteria incubated in 37°C are shown in three columns
835 (B. cereus, B. anthracis, and S. aureus) for all pathways that the nutrient is associated with.
836  Nutrients are ordered from top to bottom by their overall average metabolic rate. Pathways are
837  ordered from left to right by their average metabolic rate. (C and D) Bar graphs of normalized
838 maximum metabolic rates for nutrients with top and bottom 10 metabolic rates involved in
839  carbohydrate pathways (C) and amino acid pathways (D). For each bacteria, maximum metabolic
840 rates for nutrients with 10 highest metabolic rates are shown in green, and 10 lowest metabolic
841 rates are red. Maximum metabolic rates are normalized to average of 0 and standard deviation
842  of 1. Gray lines indicate normalized rate of threshold of 3, which is equivalent to three standard
843  deviations greater than the mean. Each nutrient’'s maximum metabolic rate is an average from

844  three independent experiments. (n = 3).

845

846  Fig 6. B. anthracis has metabolic profile dependent on nutrient availability

847  (A) Comparison of ordered lists of maximum metabolic rates between nutrient restricted (minimal

848 media) and enriched (serum) environments. Color gradient shows rank of nutrients by their
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metabolic rate. The ordered list from nutrient restricted condition (left) is shown ordered, and
corresponding rank from nutrient enriched condition (right) is placed side as comparison. (B)
Differences of average metabolic rates between nutrient-restricted and enriched conditions by
nutrient category. Bar graphs show differences between average maximum metabolic rates for
nutrients by their categorization (blue: carbohydrates, red: amino acids, green: lipids). Error bars
represent standard error of the mean. (C) Differences of average metabolic rates by pathways
associated with nutrients. For each pathway, differences in maximum metabolic rates of all
nutrients associated with that pathway between nutrient restricted and enriched conditions were
averaged and shown as a bar graph. Colors represent pathway categories (blue: carbohydrates,

red: amino acids, green: lipids).
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860  Supporting Information

861 S1 Fig. Maximum metabolic rates of bacteria in all conditions for all nutrients

862  The full list of all nutrients examined in this study is shown with maximum metabolic rates for all

863  bacteria and conditions tested. Darker shades reflect higher rates, and lighter shades lower rates.
864

865 S2 Fig. Comparing rank lists for maximum metabolic rates and growth as measured by

866  ODego for three Bacillus species

867  For B. anthracis, B. cereus, and B. subtilis, corresponding rank lists for maximum metabolic rate
868  (left) and ODesoo (right) are shown. Darker tones show higher ranking with higher metabolic rate

869  and ODeno, and lighter tones show lower ranking.
870
871  S3 Fig. Maximum metabolic rates and metabolic endpoints for all nutrients

872  For all bacteria and incubation temperatures (37°C: red, 30°C: blue) investigated in this study,
873  maximum metabolic rate (A) and metabolic endpoints (B) observed for all nutrients are shown as
874  box and whisker plots. Each dot represents an average of metabolic data observed for one
875  nutrient. Whiskers represent 5" and 95" percentile range, while boxes represent 25" and 75"
876  percentile with the middle line representing the median. Each nutrient’'s metabolic data is an

877  average from three independent experiments (n = 3).
878

879  S4 Fig. Maximum metabolic rates by modular arithmetic on number of carbon atoms in

880 nutrients

38


https://doi.org/10.1101/2020.09.01.277376
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.277376; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

881  Maximum metabolic rates for nutrients are grouped by remainders after dividing number of carbon
882  atoms in the nutrient by 5 (A) or 6 (B). Data shown are combined from bacteria incubated in their
883  optimal temperature (37°C for B. anthracis and S. aureus, 30°C for B. cereus and B. subtilis).
884  Each nutrient’'s metabolic data is an average from three independent experiments (n = 3). One-
885 way ANOVA was performed for p-values and Tukey's range test was used for pairwise

886  comparisons (*: p < 0.05, **: p < 0.005, ***: p < 0.001).

887

888 S5 Fig. Role of temperature in maximum metabolic rates observed by nutrient property

889  Average maximum metabolic rates for nutrients by category are shown as bar graphs. Nutrient
890 properties examined are carbohydrates (A), amino acids (B), lipids (C), and hydrophilicity /
891  partition coefficient (D). Lighter shades represent average rates from 30°C, and darker shades
892  from 37°C. Error bars represent standard error of the mean. Maximum metabolic rate for each
893  nutrient is an average from three independent experiments (n = 3). p-values were obtained with

894  unpaired Student’s t-test.

895

896 S6 Fig. Maximum metabolic rates for nutrients by pathways from bacteria incubated at

897 30°C

898 (A and C) Heatmaps showing normalized maximum metabolic rates for all nutrients associated
899  with carbohydrate pathways (A) and amino acid pathways (C). For every nutrient (left column),
900 normalized maximum metabolic rates for bacteria incubated in 30°C are shown in three columns
901 (B. cereus, B. anthracis, and B. subtilis) for all pathways that nutrient is associated with. Nutrients
902 are ordered from top to bottom by their average metabolic rate. Pathways are ordered from left to

903 right by their average metabolic rate. (B and D) Bar graph of normalized maximum metabolic rates
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904  for nutrients with top and bottom 10 metabolic rates involved in carbohydrate pathways (B) and
905 amino acid pathways (D). For every bacteria, maximum metabolic rates for nutrients with 10
906 highest metabolic rates are shown in green, and 10 lowest metabolic rates are shown in red.
907 Maximum metabolic rates are normalized to average of 0 and standard deviation of 1. Each

908 nutrient’s maximum metabolic rate is an average from three independent experiments (n = 3).

909

910 S7 Fig. Differences in B. anthracis metabolic profile between nutrient restricted and

911 enriched environments

912 (A and B) Maximum metabolic rates of nutrients associated with carbohydrate pathways (A) and
913 amino acid pathways (B) are shown as heatmaps. Rates from nutrient restricted environment
914  (minimal media, left), nutrient enriched environment (serum, middle), and difference between two
915  (right) are shown. Nutrients associated with more than one pathway are listed in all associated

916  pathways.

917

918  S1 Table. List of nutrients in Phenotype MicroArray carbon utilization screen

919  S2 Table. List of nutrients with normalized maximum metabolic rate greater than zero for

920 all bacteria
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