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 2 

Abstract 16 

Pathogenic bacteria take host nutrients to support their growth, division, survival, and 17 

pathogenesis. The genus Bacillus includes species with diverse natural histories, including free-18 

living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. 19 

anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. 20 

Although highly similar genotypically, the ecological niches of these three species are mutually 21 

exclusive, which raises the untested hypothesis that their metabolism has speciated along a 22 

nutritional tract. Here, we employed a quantitative measurement of the number of reducing 23 

equivalents as a function of growth on hundreds of different sources of carbon to gauge the 24 

“culinary preferences” of three distinct Bacillus species, and related Staphylococcus aureus. We 25 

show that each species had widely varying metabolic ability to utilize diverse sources of carbon 26 

that correlated to their ecological niches. In addition, carbohydrates are shown to be the preferred 27 

sources of carbon when grown under ideal in vitro conditions. Rather unexpectedly, these 28 

metabolic utilizations did not correspond one-to-one with an increase in biomass, which brings to 29 

question what cellular activity should be considered productive when it comes to virulence. Finally, 30 

we applied this system to the growth and survival of B. anthracis in a blood-based environment 31 

and find that amino acids become the preferred source of energy while demonstrating the 32 

possibility of applying this approach to identifying xenobiotics or host compounds that can 33 

promote or interfere with bacterial metabolism during infection. 34 

 35 

Author summary 36 

 Successful organisms must make nutritional adaptations to thrive in their environment. 37 

Bacterial pathogens are no exception, having evolved for survival inside their hosts. The host 38 

combats these pathogens by depriving them of potential biochemical resources, termed nutritional 39 
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 3 

immunity. This places pathogens under pressure to utilize their resources efficiently and 40 

strategically, and their metabolism must in turn be tailored for this situation. In this study, we 41 

examined the carbon metabolism of three human pathogens of varying virulence (Bacillus 42 

anthracis, Bacillus cereus, and Staphylococcus aureus) and one nonpathogenic Bacillus (Bacillus 43 

subtilis) via a phenotype microarray that senses reducing equivalents produced during 44 

metabolism. Our analysis shows the existence of distinct preferences by these pathogens towards 45 

only a select few carbohydrates and implies reliance on specific metabolic pathways. These 46 

metabolic signatures obtained could be distinguished from one bacterial species to another, and 47 

we conclude that nutrient preferences offer a new perspective into investigating how pathogens 48 

can thrive during infection despite host-induced starvation. 49 

  50 
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Introduction 51 

One key hallmark of pathogens is their ability to use their hosts as a source of nutrients 52 

for survival and proliferation [1,2]. Bacterial pathogens, in term of their ecology, are bacteria that 53 

have undergone specialization to spend part or all of their lifecycle being dependent on their hosts 54 

for resources. This facilitates the use of host molecules for energy, catabolism/anabolism to build 55 

biomass, and replication of genetic material [3]. It is expected that bacterial pathogens adapt their 56 

metabolism to specifically exploit what the host offers; conversely, non-pathogenic bacteria could 57 

not exploit these resources but may better utilize nutrients in their abiotic environmental niche. 58 

Such fine tuning of metabolism would be advantageous, perhaps even essential, for pathogens 59 

to successfully carry out infection of the host. This competition between the host and pathogens 60 

for common resources offers insight into the functioning of nutritional immunity, a biochemical 61 

means of controlling bacterial pathogens that operate in conjunction with cellular immune systems 62 

[4-6].   63 

Bacillus anthracis is the etiological agent of the deadly disease anthrax [7-9]. One of its 64 

more defining features is its ability to replicate to very high numbers in mammalian blood and 65 

tissues. As such, B. anthracis is often used as a model bacterial pathogen for the study of host 66 

nutrient uptake during infection [10-12]. Its infectious cycle begins when spores enter the host 67 

through an open wound, is inhaled, or is ingested. Next, spores germinate inside the host into the 68 

fully-replicative and growing vegetative cells. This life cycle is in stark contrast to Bacillus cereus, 69 

another member of the Bacillus genus, which is 93 percent similar at the genomic level to B. 70 

anthracis but known more for being a cause of food poisoning [13-15]. Another extensively studied 71 

Bacillus species, Bacillus subtilis, a non-pathogenic soil-dwelling bacteria that is utilized for food 72 

fermentation and as a biotechnology model system, is phylogenetically distinct from pathogenic 73 

Bacillus, as evidenced by sharing less than 20 percent of the amplified fragment length 74 

polymorphism markers, nor does it have any genes that code for known virulence factors [16-18].  75 
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Most of species in the genus Bacillus live ubiquitously in the environment similar to B. 76 

subtilis, and all except two of them (B. anthracis and B. cereus) are nonpathogenic to mammals.  77 

The extreme pathogenicity and virulence of B. anthracis is particularly striking when compared to 78 

other Bacillus species. It is largely believed that two additional genomic elements, the plasmids 79 

pXO1 and pXO2, which are not observed in other Bacillus species, are responsible for the 80 

virulence of B. anthracis [19,20]. In fact, transformation of these virulence plasmids into certain 81 

biovars of B. cereus has been demonstrated to result in bacteria that can cause anthrax-like 82 

disease [21,22]. Indeed, these plasmids encode for anthrax toxin and the poly-D-glutamic acid 83 

capsule, both of which are considered important virulence factors for the induction of anthrax, 84 

while pXO1 also codes for the transcriptional regulator AtxA which is known to control the 85 

production of toxin and S-layer [23-25]. However, most of the research into these plasmids thus 86 

far have been focused on production of toxins and capsule, and their effects on other aspects of 87 

B. anthracis biology, especially metabolism, remain undercharacterized. Given that the 88 

production of toxins must involve the survival and proliferation of the pathogen, we must also 89 

consider metabolism that fuels bacteria as being an essential part of virulence.  90 

One approach to examining the role of metabolism in pathogenesis would be measuring 91 

the utilization of various nutrients by bacteria, ideally under conditions that mimic the host 92 

environment. This leads to the question of how nutrient utilization differs between pathogens and 93 

their nonpathogenic counterparts, especially in the genus Bacillus. Previous investigations of B. 94 

anthracis metabolism in association with virulence have thus far focused on roles of individual 95 

enzymes, a global genomic analysis, or characterization of metabolic regulators [26-31]. Here, 96 

we took a more comprehensive approach and assessed 189 distinct sources of carbon for their 97 

ability to drive the generation of reducing equivalents (here a proxy for metabolic outflow) for three 98 

species of Bacillus (B. anthracis, B. cereus, and B. subtilis) and Staphylococcus aureus. A pan-99 

cupboard of optimal but also detrimental nutrients are reported that can be used to both enhance 100 
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and reduce virulence and highlight how metabolism is specifically tailored along environmental 101 

niches.  102 

 103 

Results 104 

Quantification of bacterial carbon utilization through a colorimetric assay 105 

 Metabolic activity is powered by the breakdown of biologically useful molecules via the 106 

conversion of chemical potential energy into reducing potential energy [32]. For 107 

chemoheterotrophic bacteria that rely on carbon molecules as nutrients, one product of 108 

metabolism is the reductant NADPH. The quantity of intracellular NADPH can be measured 109 

colorimetrically through reduction of tetrazolium dyes that impart purple color [33-39]. The level 110 

of color is thought to be proportional to the overall metabolic activity, especially in terms of the 111 

generation of reductive potential. We hypothesized that the formation of NADPH in the presence 112 

of exogenously supplied nutrients might reflect different nutritional preferences between 113 

pathogenic and non-pathogenic bacteria. In this context, we assessed the metabolism of 189 114 

different carbon sources for four different species of bacteria; B. anthracis, B. subtilis, B. cereus, 115 

and S. aureus. The experimental design of this study is shown in Fig 1A. We first aimed to 116 

determine some of the quantifiable parameters of the system, including the kinetics and endpoints 117 

of metabolism. Shown in Fig 1B is a plot of the metabolic activity (as measured by the reduction 118 

of tetrazolium) against time for three nutrients that display some of the types of activity curves 119 

observed in the data set. The first type of curve, shown here with D-glucose, is one in which the 120 

maximum rate of metabolic activity is observed for most of the experiment (green line). The 121 

second type, observed here with L-proline (pink line), shows classic exponential kinetics with an 122 

accelerated rate of metabolism followed by a slow saturation. Finally, many metabolites either 123 

inhibit metabolism or do not stimulate it, with data that resembles the curve shown for 2-hydroxy 124 

benzoic acid (blue line). In the analysis, we focused on two characteristic descriptors of metabolic 125 
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activity: the metabolic endpoint, which represents the net colorimetric change over the course of 126 

the experiment, and maximum metabolic rate, which represents the highest rate of colorimetric 127 

change at all times. To average out background variation in the colorimetric measurement, the 128 

exponential moving average was employed to calculate a value for the final metabolic endpoint. 129 

To determine the maximum metabolic rate from a metabolic activity curve with multiple inflection 130 

points and stochastic variations, a polynomial was first fitted to the metabolic curve, and the 131 

resulting polynomial differentiated to give rate of metabolic change for all time points (see 132 

Materials and methods). We employed the use of two ready-made, commercially available plates 133 

with different sources of carbon (S1 Table) [33]. In this backdrop, all other nutrients in the system 134 

are not prominent sources of carbon. This was performed for 189 nutrients for three different 135 

Bacillus species (B. anthracis, B. cereus, and B. subtilis) as well as the related Gram-positive 136 

pathogen Staphylococcus aureus. There were striking differences in the both the maximum 137 

metabolic rate and maximum metabolic endpoint values between each species and each 138 

temperature (Fig 1C). Interestingly, whereas B. anthracis showed enhanced metabolism at the 139 

higher of the two temperatures (mean maximum metabolic rate for all nutrients at 30° = 10.93, at 140 

37° = 27.19, p < 0.0001, paired Student’s t-test), B. cereus showed enhanced metabolism at the 141 

lower of the two (mean maximum metabolic rate for all nutrients at 30° = 16.77, at 37° = 6.52, p 142 

< 0.0001, paired Student’s t-test), a finding that may reflects adaptation of B. cereus for limited 143 

growth, multiplication, and sporulation in soil at lower temperatures (however, unlike true soil 144 

microorganisms it is not well adapted for using chemical resources, and is dependent on decaying 145 

organic matters for resources) [13]. The metabolism of S. aureus at body temperature was more 146 

similar to the metabolism of B. anthracis at body temperature than it was to B. cereus, presumably 147 

reflecting the ability of these organisms to infect a wide range of vertebrate hosts, and at different 148 

bodily sites (S1 Fig). We did not assess B. subtilis at higher temperatures because of its poor 149 

growth at 37 degrees (data not shown).  150 

 151 
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Bacterial metabolic activity and correlation to growth 152 

Increases of the optical density at 600 nm in culture is typically used as a proxy for 153 

bacterial growth. We wished to also understand the relationship between bacterial growth and 154 

metabolism for nutrients assessed in Fig 1 across all three bacillus species. Rather remarkably, 155 

there was very little over-all correlation between optical density and metabolism for all compounds 156 

tested (S2 Fig). Spearman’s rank correlation coefficient (Spearman’s ρ) was calculated between 157 

rank ordered lists to ascertain the degree of correlation between these two metrics for metabolism. 158 

B. anthracis-ranked lists had the lowest correlation with ρ = 0.4753, while B. cereus and B. subtilis 159 

showed more similarity with ρ = 0.4810 and 0.5913 respectively. These values indicate that total 160 

metabolic activity as measured by chemical reductive potential does in some cases reflect 161 

enhanced growth of the organism, but in many other cases, it does not. Indeed, there were cases 162 

whereby very little increase in growth was observed (5-keto-D-gluconic acid) but reductive 163 

metabolism was one of the highest of all compounds tested (see B. anthracis) and other cases 164 

whereby growth was high (B. subtilis in capric acid) but almost no reductive metabolism was 165 

detected. Furthermore, these trends were not conserved amongst each species (despite strong 166 

reproducibility within each species), indicating that bacteria in Bacillus have vastly different 167 

species-specific metabolic programs that can run independent of its drive to replicate. 168 

 169 

Overall trends in metabolic utilization of carbon sources 170 

We sought to determine whether the maximum metabolic rate could be used as a metric 171 

to compare different bacteria and under different conditions. Metabolic data were first 172 

standardized by each bacterium and condition to a mean of 0 and standard deviation of 1, and 173 

the resulting data were hierarchically clustered for organization. Data for bacteria incubated at 174 

their optimal temperature were used when two different temperatures were tested. When 175 

visualized as heat maps, metabolic rates showed that while few nutrients were well utilized in all 176 
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bacteria, there also exists a group of nutrients that were utilized exceptionally by one species 177 

alone while not being used for metabolism in another species (Fig 2Ai and 2Bi). With normalized 178 

maximum metabolic rate as the metric, the number of nutrients that gave greater than the overall 179 

average rate was counted to show the overlap in utilization between different species (Fig 2Aii 180 

and 2Bii). At 37 degrees, 20 nutrients were utilized at above the average rate among all three 181 

bacteria tested, while there were groups of nutrients observed to be better utilized in one bacteria 182 

alone (31 for B. cereus, 15 for B. anthracis, and 20 for S. aureus). Similar distribution was 183 

observed for bacteria incubated in 30 degrees as well, although B. cereus once again had the 184 

greatest number of nutrients that were utilized (20 for B. cereus, 17 for B. anthracis, and 14 for B. 185 

subtilis). As for nutrients metabolized at above the overall average maximum metabolic rates by 186 

all bacteria, there were 16 of them at 30 degrees and 20 at 37 degrees. Six of these nutrients 187 

were common to both lists (5-keto-D-gluconic acid, D-arabinose, D-ribose, D-xylose, L-arabinose, 188 

and L-lyxose) and all of them were either carbohydrates or derivatives (S2 Table). When averages 189 

of maximum metabolic rates of nutrients that were well utilized by only one bacteria were 190 

compared to that of nutrients well utilized by all bacteria, it was observed that these nutrients 191 

resulted in higher rates as compared to nutrients well utilized by one bacteria at 37 degrees (0.68 192 

for B. cereus, 0.44 for B. anthracis, 0.80 for S. aureus, 1.70 for commonly well utilized, p < 0.05, 193 

unpaired Student’s t-test) (Fig 2Biii). This may indicate that while choices of carbon utilization are 194 

distinct for each species, they also have core parts of metabolism that are common. It is 195 

interesting to also note that B. anthracis shared more common nutrients with B. subtilis at 30 196 

degrees (Fig 2Aii) and S. aureus at 37 degrees (Fig 2Bii) than it did with B. cereus, which was 197 

unexpected. This was also true for B. anthracis and S. aureus at 37 degrees as compared to B. 198 

cereus. 199 

 200 

Metabolic utilization of nutrients by chemical properties 201 
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 10 

 Nutrients in the plates for carbon metabolism have a wide variety of chemical properties. 202 

This fact can be leveraged to determine the types of food bacteria prefer to eat. We classified 203 

nutrients into distinct “food groups” based on their chemical properties: carbohydrates, amino 204 

acids, lipids, and hydrophobicity according to their calculated partition coefficient (xLogP3) (Fig 205 

3Ai, Bi, Ci, Di) [40]. Every nutrient was queried through NCBI PubChem for assignment into those 206 

four criteria and categorized accordingly. Nutrients were hierarchically clustered according to their 207 

chemical structural similarities as measured by atom-pair distances using ChemmineR R package 208 

within groups [41]. Maximum metabolic rates were standardized to mean of 0 and standard 209 

deviation of 1 for each bacteria incubated under their optimal growth temperatures, and visualized 210 

as heat maps for comparison, with ‘+’ and ‘-‘ indicating groups of nutrients that either belonged or 211 

not to the “food group,” respectively (Fig 3Aii, Bii, Cii, Dii). The average maximum metabolic rate 212 

for carbohydrates was greater than that of non-carbohydrates for B. anthracis (31.32 for 213 

carbohydrates, 23.46 for non-carbohydrates, p = 0.0005), B. subtilis (16.19 for carbohydrates, 214 

10.80 for non-carbohydrates, p = 0.0030), and S. aureus (23.52 for carbohydrates, 16.84 for non-215 

carbohydrates, p = 0.0084, all unpaired Student’s t-test) (Fig 3A). This stands in contrast to amino 216 

acids and lipids, where no statistically significant differences were observed between nutrients 217 

categorized under these properties (Fig 3B and 3C). As for hydrophobicity, the median value of 218 

xLogP for all nutrients, -2.3, was used as the dividing point, with xLogP less than or equal to the 219 

median as being deemed relatively hydrophilic and greater as hydrophobic. All four species of 220 

bacteria incubated under their optimal temperature had average raw maximum metabolic rates 221 

for hydrophilic nutrients greater than hydrophobic nutrients (for B. anthracis, ≤ median 29.74 and 222 

> median 24.39, p = 0.0183; for B. cereus, ≤ median 20.04 and > median 13.53, p = 0.0115; for 223 

B. subtilis, ≤ median 16.75 and > median 9.67, p < 0.0001; for S. aureus, ≤ median 23.28 and > 224 

median 16.43, p = 0.0067; unpaired Student’s t-test) (Fig 3D). These results highlight facile 225 

metabolic utilization of carbohydrates for these bacteria, as opposed to amino acids and lipids, 226 

when bacteria are constrained to primarily one nutrient as their carbon source. Superior utilization 227 
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of hydrophilic nutrients is also suggestive of carbohydrate metabolism, as 76% of hydrophilic 228 

molecules (68 out of 89) are carbohydrates, as opposed to 29% (30 out of 102) for hydrophobic 229 

nutrients. Further suggestive of the importance carbohydrates play in carbon metabolism of these 230 

bacteria can be observed when chemical formula of the nutrients themselves are examined. 231 

When modular arithmetic is applied to the number of carbon atoms in nutrients, there exists 232 

statistical correlation between the remainder after divisions by five and six and classification of 233 

molecules as carbohydrates when ANOVA is performed (mod 5, p < 0.00072; mod 6, p = 3.74 x 234 

10-10). This can be visualized when raw maximum metabolic rates are plotted by their remainders 235 

after division by five or six (pentoses have remainder of 0 and 5 after division by 5 and 6, and 236 

hexoses have remainder of 1 and 0 after division by 5 and 6), as nutrients that have number of 237 

carbon number atoms that fit the modular arithmetic for pentoses and hexoses have greater 238 

maximum metabolic rates (mod 5: p < 0.0001; mod 6: p < 0.0001, one-way ANOVA) (S4A and B 239 

Fig).  240 

 241 

Carbohydrate pathways in carbon metabolism of bacteria 242 

 To examine pathways in carbohydrate metabolism for each nutrient, KEGG was queried 243 

and each nutrient’s pathway participation was examined [42]. We sought to extract information 244 

from metabolic utilization data to determine which metabolic pathways are utilized more efficiently 245 

while avoiding a priori knowledge of the organism and its metabolic network biasing our analysis. 246 

Nutrients classified into pathways involved in carbohydrate metabolism were selected for this 247 

analysis, following our determination from the previous section that carbohydrates were preferred 248 

than other nutrients. Average standardized metabolic maximum rates for nutrients grouped into 249 

15 different carbohydrate pathways showed overall elevation of utilization across bacteria with 250 

the exception of B. cereus at its suboptimal temperature of 37 degrees (Fig 4A). The pentose 251 

phosphate pathway had the highest normalized maximum rate at 30 degrees for all bacteria 252 

(0.917 for B. cereus, 1.488 for B. anthracis, and 1.239 for B. subtilis). Of particular note was the 253 
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comparison in number of nutrients that showed higher utilization associated with carbohydrate 254 

pathways between B. anthracis, B. cereus, and B. subtilis that emphasize the distinctiveness of 255 

B. anthracis’ carbohydrate metabolism. At 30 degrees, the top four carbohydrate pathways for B. 256 

anthracis were amino and nucleotide sugar metabolism, inositol phosphate metabolism, pentose 257 

and glucoronate conversion, and pentose phosphate pathway (1, 10, 11, and 12). (Fig 4B). While 258 

most of these pathways were found to have high metabolic rates for B. cereus and B. subtilis as 259 

well, an exception was noted for inositol phosphate pathway, which had negative normalized 260 

maximum metabolic rate indicating that it was not utilized well by these two bacteria (0.7938 for 261 

B. anthracis, -0.0464 for B. cereus, -0.0605 for B. subtilis). At 37 degrees, a similar pattern of 262 

carbohydrate pathway utilization was observed for B. anthracis and B. cereus, with the same 263 

pathways being commonly well utilized and inositol phosphate pathway being underutilized in B. 264 

cereus. For S. aureus eleven out of fifteen carbohydrate pathways had positive normalized 265 

maximum metabolic rates, hinting at a more diversified use of carbohydrates (Fig 4C). Curiously, 266 

the inositol phosphate pathway was not one of the pathways well utilized for S. aureus (-0.0583), 267 

indicating that its utilization might be specific for B. anthracis.  268 

 269 

Individual nutrients and their metabolic pathway associations 270 

 Analysis of overall averages of metabolic rates suggests that there exist variations in 271 

metabolism at the level of individual nutrients. Using metabolic pathway assignments made for 272 

every nutrient in the previous analysis, individual nutrients and pathways were ordered by their 273 

standardized maximum metabolic rate at 37 degrees and laid out as heat maps for carbohydrate 274 

(Fig 5A) and amino acid pathways (Fig 5B). These rates for individual nutrients show that even 275 

within pathways that average high metabolic rate for nutrients tested, there exists a large variation 276 

of utilization of nutrients within individual pathways (for the pentose phosphate pathway, from 277 

6.279 for 5-keto-D-gluconic acid to -0.663 for D-gluconic acid in B. cereus, 4.558 for D-ribose to 278 

-0.773 for 2-deoxy-D-ribose for B. anthracis, 4.212 for D-ribose to -0.718 for D-glucosaminic acid 279 
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in S. aureus – as examples). There are universally well-utilized nutrients within carbohydrate 280 

pathways, such as L-arabinose (4.390 for B. cereus, 4.051 for B. anthracis, and 2.926 for S. 281 

aureus), which was consistently involved in the top three out of four pathways (amino sugar and 282 

nucleotide metabolism, pentose and glucoronate interconversion, and pentose phosphate 283 

pathway). In contrast, analysis of amino acid pathways reflects a more modest degree of 284 

utilization and does not show the heterogeneity as observed in carbohydrate pathways. This is 285 

more evident when the top and bottom ten nutrients in metabolic maximum rates are separately 286 

visualized for carbohydrate metabolism (Fig 5C) and amino acid metabolism (Fig 5D). B. cereus 287 

and S. aureus had a small group of nutrients metabolized exceptionally well even within the top 288 

ten (four nutrients with normalized rates greater than 3, which is equivalent to three-fold greater 289 

rates than the standard deviation, for B. cereus – 5-keto-D-gluconic acid, L-lyxose, D-ribose, and 290 

L-arabinose; and two nutrients for S. aureus – D-ribose and 5-keto-D-gluconic acid), while B. 291 

anthracis had seven nutrients with rates that exceeded the threshold rate of 3 (D-ribose, D-292 

glucosamine, D-xylose, L-arabinose, 5-keto-D-gluconic acid, D-arabinose, and L-lyxose). In 293 

contrast, none of the nutrients involved in amino acid pathways exceeded the threshold of 3. This 294 

high efficiency of metabolism observed for B. anthracis in carbohydrate pathways for a larger 295 

number of nutrients than B. cereus or S. aureus suggests that the carbohydrate metabolism of B. 296 

anthracis would be more efficient in environments with a limited variety of nutrients.  297 

 298 

Nutritional preferences of B. anthracis in serum 299 

 To better characterize the global nutrient requirement of pathogenic Bacillus under 300 

conditions designed to simulate growth in a mammalian host, carbon sources from the screen 301 

were supplemented with 40% fetal bovine serum (FBS) and the entire analysis repeated. 302 

Nutrients were ordered according to their maximum metabolic rates. Interestingly, nutrients well 303 

used in serum by B. anthracis were not identical to those in minimal media, with Spearman’s ρ of 304 
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0.5050 (Fig 6A). When nutrients are categorized by carbohydrates and amino acids, their 305 

utilization essentially flips in serum compared to media (carbohydrates: -0.2474 vs. non-306 

carbohydrates: 0.1809, amino acids: 0.2397 vs. non-amino acids: -0.0700, lipids: -0.0588 vs. non-307 

lipids: -0.0187) (Fig 6B). The most striking observation is that B. anthracis no longer utilizes 308 

carbohydrates well in serum (or perhaps uses them less), with amino acids now seemingly being 309 

the dominant nutrient of choice (carbohydrates: -0.2474, amino acids: 0.2397, p = 0.0264, 310 

unpaired Student’s t-test). This change of metabolism is most apparent when comparing the 311 

number of nutrients that have higher normalized metabolic rates in media as opposed to those in 312 

serum (for carbohydrates: 50 in media vs. 39 in serum, for amino acids: 11 in media vs. 19 in 313 

serum). This involvement of pathways in metabolic differences in serum is most readily seen when 314 

nutrients themselves are categorized by pathways. Out of 15 carbohydrate pathways catalogued, 315 

the average of standardized maximum metabolic rates for nutrients in 8 pathways are negative, 316 

whereas 12 out of 13 amino acid utilization pathways average in the positive (Fig 6C). For 317 

carbohydrate pathways, average maximum rates range from -0.788 for amino sugar and 318 

nucleotide metabolism to 0.661 for citric acid cycle. While lipid metabolism as a category contains 319 

both the lowest (-2.540 for fatty acid biosynthesis) and highest rates (1.581 for 320 

glycerophospholipid metabolism), no statistically significant trends could be discerned. On the 321 

other hand, amino acid metabolism pathways (with the exception of branched chain amino acid 322 

degradation), all ranged in positive from 0.106 (lysine degradation) to 0.548 (lysine biosynthesis), 323 

reflecting how nutrients involved in amino acid pathways are well utilized. Analyses of these 324 

pathways at the nutrient level for carbohydrates (S7A Fig) and amino acid pathways (S7B Fig) 325 

show that decreases in metabolic rates for carbohydrates for media to serum are the greatest for 326 

certain pentoses (D-xylose: -3.808, D-arabinose: -3.616, D-ribose: -4.243) and hexose derivatives 327 

(D-galactonic acid-g-lactone: -2.897, D-glucosamine: -4.053), demonstrating that these simpler 328 

carbohydrates, while well utilized in nutrient-poor conditions, no longer become efficient carbon 329 

sources for metabolism in environment rich with diverse nutrients. These results suggest that 330 
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there are massive changes to carbon metabolism that is dependent on the environment the 331 

bacteria find themselves in, with B. anthracis switching to favor catabolism of amino acids in 332 

serum. 333 

 334 

Discussion 335 

 From this study, we are able to establish that: i) metabolic activity of bacteria can be 336 

measured colorimetrically through chemical reduction potential, ii) nutrients have different 337 

degrees of utilization among different bacteria, iii) the choice of which nutrients to use is impacted 338 

by temperature; generally, the nutrient preferences track with whether the species grows in the 339 

environment versus the host, iv) the chemical properties of the nutrients affect their metabolic 340 

utilization rate; carbohydrates and hydrophilic nutrients are generally preferred in media, v) within 341 

carbohydrate metabolism, higher metabolic rates are limited to few specific pathways that use a 342 

handful of same nutrients, and vi) in serum, B. anthracis’ nutrient preferences are vastly different 343 

then in defined media; mainly, the nutrient preference shifts from carbohydrates to amino acids.  344 

Infection of a host by bacteria requires these pathogens to be adaptable metabolically in 345 

nutritionally austere environments. One component of a host’s nutritional immunity to starve out 346 

pathogens would be to keep down the level of free amino acids and lipids. Pathogens would then 347 

be expected to tune their metabolism to use freely available nutrients such as carbohydrates. 348 

Since previous studies have shown that pathogens thrive in carbohydrate-rich environments, we 349 

expected to observe a high degree of metabolic utilization for carbohydrates in general; our data 350 

reinforces this notion [43-46]. However, the type of carbohydrate each species preferred varied 351 

substantially. The data suggests that not all carbohydrate metabolic pathways are equally tuned 352 

for utilization. Indeed, there would be resource costs involved in creating and maintaining 353 

metabolic pathways that remain unused or underutilized, and these pathogens would only need 354 

to have in preparation pathways involved in metabolizing nutrients frequently encountered during 355 
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their lifecycle. For the experiment performed in auxotrophic media, where a single nutrient is the 356 

predominant source of carbon, bacterial maximum metabolic rate measured reflects the readiness 357 

of bacteria’s metabolic pathways to utilize that nutrient. This raises a point noted during both 358 

nutrient and pathway analyses: why are pentoses utilized better than other forms of carbohydrates 359 

in B. anthracis? High metabolic utilization observed for nutrients involved in the pentose 360 

phosphate pathway offers an explanation. In addition to being catabolized for energy production, 361 

these pentoses can also be readily used for anabolism to build up metabolic machinery through 362 

the pentose phosphate pathway. These newly synthesized metabolic components in turn allow 363 

for even better utilization of pentoses provided in the environment, creating a positive feedback 364 

loop that allows B. anthracis to thrive in a nutrient limited environment. B. anthracis would normally 365 

encounter nutritionally restricted surroundings during parts of its infectious cycle, such as 366 

attempting to survive within a macrophage’s endosomes. B. anthracis relies on toxins to further 367 

progress in its course of infection, and ability to remain metabolically active in nutritionally deficient 368 

condition would be valuable. Nutrients that result in high metabolic yield under an ideal condition 369 

may not be the best nutrient for every situation, especially when bacteria must deal with resource-370 

poor environment. This may be the reason why certain hexoses such as glucose, which are 371 

previously known to be well utilized by various pathogens during infection, do not result in 372 

particularly high metabolic rate when they are provisioned as the sole source of carbon. 373 

Conversely, in the nutrient-rich environment tested in this experiment with 40% fetal bovine 374 

serum, bacteria no longer need to focus on taking a balanced approach; instead, maximum 375 

metabolic rate is primarily determined by total capacity for metabolism. In fetal bovine serum 376 

supplemented media, B. anthracis is no longer restricted to one carbon source for both energy 377 

and anabolism, and the nutrient screen thus serves as a proxy for which nutrients allow for most 378 

expansion of metabolic pathway capacity. This would result in nutrients utilized in amino acid 379 

metabolism generally giving higher metabolic rates, as these nutrients would be directly used in 380 
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anabolism to expand metabolic pathways to allow higher maximum rates. This hypothesis will 381 

need to be tested. 382 

 Our results show that the chemical properties of the nutrient can correlate with their 383 

metabolic utilization. One intriguing chemical property we observed is the partition coefficient for 384 

nutrients (LogP), which is a quantitative measure of a physical property of molecules as opposed 385 

to a descriptive categorical variable. Many cases of high metabolic rates observed for low partition 386 

coefficient molecules could be explained by the presence of well-metabolized carbohydrates, 387 

which are hydrophilic molecules. However, there were exceptions to this as seen by nutrients with 388 

low partition coefficients that are carbohydrate-derivatives but still not utilized well by bacteria. On 389 

the other hand, hydrophobic molecules with their larger number of energetic carbon-carbon bonds 390 

may initially appear as energy-dense molecules that yield higher metabolic payoff. However, 391 

considering the fact that pathogenic Bacillus must spend majority of its lifecycle inside the animal 392 

host with water as the primary matrix, it follows that these Bacillus would be proficient at uptaking 393 

and utilizing nutrients that are hydrophilic and water soluble (with low partition coefficient). High 394 

metabolic utilization for bacteria implies that a transport mechanism already is in place to import 395 

these nutrients from the environment, as well as having pathogens ready to convert the primary 396 

metabolism’s products into biological building blocks for anabolism. Given that these Bacillus are 397 

much more likely to encounter these hydrophilic nutrients during a course of infection, they would 398 

also have ways to utilize these nutrients. Conversely, these hosts also employee nutritional 399 

immunity during bacterial infection to counter these Bacillus and other bacterial pathogens. 400 

Studies have demonstrated that abundance of glucose during bacterial infection correlate with 401 

poorer outcome, while switching of the host’s metabolism away from carbohydrates towards lipid 402 

and amino acid consumption can aid the host in battling the infection [43-45, 47-50]. This role 403 

nutrition plays during infection has been principally investigated in context of host immunity and 404 

inflammation, but our study suggests that this topic also merits consideration from the perspective 405 

of bacterial nutrition consumption as well [51-54]. Our findings indicate that through the readiness 406 
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of Bacillus for such nutrients, partition coefficient of nutrients is another one of factors that can 407 

influence growth of a pathogen in the host. We demonstrate in this study that approaching 408 

nutrients as a limited resource that must be utilized by pathogens offers another perspective to 409 

host-pathogen interaction, especially in the context of all the nutrients that are available at that 410 

time. 411 

 The connection between nutrition and bacterial infection has been so far primarily 412 

approached from the perspective of host malnutrition and dysfunction of host’s immune response, 413 

as it had been assumed that bacteria are indiscriminate in their preferences to utilize all possible 414 

categories of nutrients [55]. And while the host’s responses regarding nutrients occur at the 415 

organismal level, direct nutritional tug-of-war between host and bacterial pathogens occurs at the 416 

molecular level. As our study demonstrates, bacterial pathogens are more metabolically proficient 417 

when consuming certain nutrients and it is reasonable to expect them to be more pathogenic 418 

toward the host when encountering an optimal combination of nutrients. One well-characterized 419 

component of host’s nutritional immunity is the sequestration of key micronutrients, such as iron, 420 

which removes these linchpins of metabolism from being accessible to pathogens through 421 

biochemical means [5,6]. Is it possible that mammalian hosts deploy a similar strategy with 422 

macronutrients? In humans, the concentrations of various amino acids in blood are kept in the 423 

micromolar range. Given the heightened metabolic utilization of amino acids and associated 424 

nutrients by B. anthracis in serum observed here, keeping the concentration of amino acids low 425 

could also be a part of nutritional immunity. On other hand, physiological concentrations of 426 

carbohydrates can be in the millimolar range. While situationally lowering this already high 427 

concentration of carbohydrate in blood as a part of response against infection might be impractical 428 

for the host, more achievable would be to lower the amino acid concentrations, which may 429 

adversely affect pathogen protein anabolism. In this study, we also demonstrate that even among 430 

the same class of nutrients, metabolic utilization can vastly differ from one nutrient to another. 431 

This suggests that when either depriving or interfering with a bacterial pathogen’s metabolism of 432 
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nutrients, only targeting a handful of nutrients and pathways that have high utilization might be 433 

sufficient for disarmament. Unlike antibiotics that target one component of a bacterial cellular 434 

process (usually essential), this method of metabolism control would aim to shut down a 435 

bacterium’s ability to derive energy or build larger biomolecules. 436 

 As pertaining to the direct control of metabolism, a handful of nutrients were metabolized 437 

with maximum rates that were much lower than the average of all nutrients screened. While some 438 

nutrients by definition were expected to be metabolized at lower rates than the average, 439 

observations that some of these nutrients also had equally lower metabolic maximum rate in the 440 

enriched condition as tested with serum was surprising, for this indicated that metabolism of B. 441 

anthracis was outright slow with these nutrients. There are two possible explanations for this 442 

decreased metabolic activity in the presence of these nutrients: one is that nutrients themselves 443 

are utilized at a slower rate, and decreased maximum rate observed is due to lack of additive 444 

effects normally found between the nutrients and enriched media. More intriguing possibility is 445 

that nutrients directly interfere with metabolic consumption of other resources from enriched 446 

media. Nutrients involved in amino acid metabolism resulted in faster metabolic maximum rates 447 

than the overall average for B. anthracis (Fig 6C, S7B and S7C Fig), and only a limited number 448 

of nutrients (21) had higher rate than the negative control without supplemental nutrients. Given 449 

these two facts, it stands to reason that B. anthracis in a nutritionally plentiful environment can be 450 

selective as to which nutrients to utilize in metabolism and choose to leave alone nutrients that 451 

would not result in efficient usage. While this may explain why the majority of nutrients 452 

supplemented did not result in increased maximum rate, there were five nutrients where the 453 

maximum rate did not even reach 30% of the negative control: capric acid, β-methyl-D-glucoside, 454 

glyoxylic acid, 2-hydroxy benzoic acid, and itaconic acid. This decrease in the maximum metabolic 455 

rates supports the scenario where the interference of metabolism by the nutrient itself must be 456 

considered as a possible cause for this decrease in the metabolic maximum rate. How could the 457 

antagonistic relation between these added nutrients and enriched pool of chemical resources 458 
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occur? For these five nutrients, not one classification of pathways seems to explain the reason 459 

why these degrade metabolism. Glyoxylic acid features prominently in multiple pathways as a key 460 

component of glyoxylate shunt, an alternative pathway to citric acid cycle, but other four nutrients 461 

are not widely utilized at all [56]. This dichotomy in pathway utilization hints that there could be 462 

two distinct ways in which these nutrients adversely affect the metabolism. One possible 463 

explanation is that the nutrient itself directly acts as an inhibitor of metabolic enzymes. Given that 464 

these four nutrients are not normally used as metabolites, it can be argued that these molecules 465 

may be inhibitors that slow down metabolism as either drug-like or signal molecules. Indeed, in 466 

case of itaconic acid, the ability of such chemical derivatives of metabolites to inhibit the bacterial 467 

growth through metabolic interference has been previously demonstrated [57]. The other 468 

explanation, which may be the reason for glyoxylic acid, is that these nutrients themselves tune 469 

down the metabolism through feedback. In case of glyoxylic acid, a key piece in glyoxylate shunt 470 

which is operated to synthesize carbohydrates from other carbon sources when B. anthracis is 471 

only provisioned with non-carbohydrate carbons, proper functioning of overall metabolism might 472 

not be possible even when the pathway itself is present [58,59]. While it remains to be seen 473 

whether it would be feasible to achieve pharmacologically relevant local concentrations of these 474 

metabolism antagonists at the bacterial level to block the proliferation of B. anthracis in vivo, our 475 

study offers glimpses into how such strategy could be utilized when these nutrients are applied 476 

as antibiotics. 477 

 At the level of organism, chemical categories of nutrients do not seem to be specific 478 

enough to distinguish one bacteria from another by metabolic performance alone. Rather, it is at 479 

the pathway level where nutrient utilization can differentiate one bacteria to another. While most 480 

nutrients were either universally well-utilized or poorly-utilized, there still were a number of 481 

nutrients where high utilization was restricted to one species. These species-level utilization 482 

signatures were found across multiple nutrient utilization pathways, indicating that their 483 

uniqueness arose as a part of bacteria’s specialization into their ecological niches with specific 484 
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mixture of nutrients. While B. anthracis spends only a part of its lifecycle in soil, one which is 485 

considered metabolically inert (the spore), it is widely accepted that B. cereus and B. subtilis thrive 486 

on soil [13,17,20]. All three bacteria share soil as the backdrop for a big part of their lifecycle, yet 487 

they still differ greatly in metabolic utilization of same nutrients. This hints that their metabolic 488 

specializations arose not just as a product of nutrient availability, but their interactions with host 489 

organisms as pathogens as well. This raises the intriguing possibility of tailoring therapeutics 490 

using nutrient classes that can specifically target metabolic specializations at a species-specific 491 

level. This might be especially useful at selectively targeting certain pathobionts amongst a myriad 492 

of beneficial or non-pathogenic commensal species, for example, in the gastrointestinal tract.  493 

 494 

Materials and methods 495 

Preparation of bacteria for assays 496 

Frozen bacterial stocks of B. anthracis Sterne, B. cereus 10987 (ATCC), B. subtilis 2091 497 

(ATCC), and S. aureus LAC were added to 1 mL of Luria Bertani (LB) media at 1% inoculum and 498 

incubated in 30°C or 37°C overnight with 160 rpm orbital shaking to stationary growth phase 499 

(OD600 > 1.5). Kanamycin was added to the medium for selection (50 µg/mL for B. anthracis and 500 

B. cereus). One mL of bacterial culture was washed twice with 1 mL of deionized water after 501 

spinning down in Beckman Coulter centrifuge (Indianapolis, IN, USA) for 3 minutes at 17000xG. 502 

Washed cells were diluted in IF-0a inoculating fluid from Biolog (Hayward, CA, USA) – here 503 

referred to as minimal media – to 81% transmittance equivalent (OD600 ~0.093) as measured by 504 

spectrophotometer (Beckman Coulter).  505 

 506 

Bacterial growth assay 507 
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For growth on 96-well Phenotype MicroArrayTM carbon utilization assay plates (Biolog), 508 

880 µL of washed bacterial cells were added to the assay media of following composition: 10 mL 509 

of IF-0a inoculating fluid (Biolog) and 1.12 mL of deionized water for total volume of 12 mL. The 510 

list of nutrients in Phenotype MicroArrayTM carbon utilization assay plates can be found in 511 

supplemental information (S1 Table). Well number 7 of the Phenotype MicroArray plate 2 512 

contained gelatin, which due to its heterogenous composition was excluded from all further 513 

analysis. The assay media had following concentration of additives: 2 mM MgCl2·6H2O, 1 mM 514 

CaCl2·2H2O, 25 µM L-arginine HCl, 50 µM L-glutamine Na, 12.5 µM L-cystine, 25 µM 5’-UMP 515 

2Na, 0.005% yeast extract, and 0.005% Tween 80. 100 µL of bacterial cells in the assay media 516 

were dispensed into each well of Phenotype MicroArrayTM plate, and plates were incubated at 517 

stationary position in 30°C or 37°C for 24 hours in SynergyTM plate reader (BioTek, Winooski, VT, 518 

USA) with 550 and 600 nm absorbance readings taken every 15 minutes.  519 

 520 

Metabolic utilization assay 521 

To measure metabolic utilization of various carbon sources by bacteria, Phenotype 522 

MicroArray carbon utilization assay plates were prepared in the same fashion as in the growth 523 

assay, but also with 120 µL of tetrazolium-based dye mix F (Biolog) added to the assay media to 524 

total volume of 12 mL. 100 µL of bacterial cells in the assay media were dispensed into each well 525 

as previously. Plates were incubated in OmniLogTM plate reader (Biolog) in static position at 30°C 526 

or 37°C for 24 hours, with metabolic activity reflected by the color change of dye from transparent 527 

to purple. Measurements of color changes were made every 15 minutes. Resulting raw data was 528 

first aggregated and processed through OmniLog PMTM program (Biolog) and exported as 529 

comma-separated values files for further analysis.  530 

 531 
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Extraction of metabolic endpoints and rates 532 

Raw metabolic data in form of comma-separated values file was imported into MATLAB 533 

(Mathworks, Natick, MA, USA) to obtain metabolic endpoints and maximum metabolic rates for 534 

each nutrient. Metabolic endpoint was defined as the increase of the metabolic value from the 535 

value of the metabolic curve at the beginning of its increase in value throughout the course of 536 

experiment and exponential moving average (EMA) of the metabolic curve at the conclusion of 537 

experiment. The threshold value for the beginning of metabolic curve increase was defined as 538 

metabolic activity at the timepoint when the metabolic value was 10% greater than the average 539 

of all previous timepoints. EMA was determined by the formula: 540 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 = 𝛼𝛼 �𝐼𝐼𝑛𝑛 + �(1 − 𝛼𝛼)𝑡𝑡𝐼𝐼(𝑛𝑛−𝑡𝑡)

𝑛𝑛

𝑡𝑡=0

� 541 

where I is the raw intensity reading, n is the number of datapoints, and α is the weighing coefficient 542 

which was set as 0.25 [60].  543 

To determine the maximum metabolic rate from the curve of color change over time, the 544 

rate of metabolism value change over the entire experiment was calculated and the largest rate 545 

change defined as the maximum metabolic rate. Fifth degree polynomials were fitted to raw 546 

metabolic curves using the MATLAB function polyfit to minimize the error from stochastic 547 

variations in metabolic curves from one time point to next. The polynomial generated by curve 548 

fitting was differentiated with diff function to symbolically derive a function of metabolic rates, a 549 

table of metabolic rates at all time points generated, and the maximum value from the metabolic 550 

rate table chosen.    551 

 552 

Hierarchical clustering of nutrients 553 
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For hierarchical clustering of by the chemical structure, chemical structures for nutrients 554 

in Phenotype MicroArrayTM carbon utilization screen were queried from PubChem Download 555 

Service as SDF files. SDF files were converted to atom distance pairs using R v3.5.3 with the 556 

package ChemmineR’s sdf2ap function, and fpSim function was used to calculate similarities and 557 

generate a distance matrix. The distance matrix of chemical structural similarities was used for 558 

R’s hierarchical clustering function hclust and visualized with heatmap.2. For hierarchical 559 

clustering by metabolic data, metabolic data was directly used to calculate a set of pairwise 560 

distances by MATLAB function pdist. Euclidean distance was used as the distance metric. 561 

Pairwise distances between nutrients were converted into a square matrix with function 562 

squareform. Resulting distance matrix generated was clustered with R function hclust and 563 

visualized with the function heatmap.2 [61]. 564 

 565 

Fetal bovine serum-supplementation metabolic assay 566 

880 µL of washed bacteria suspended in IF-0a media were added to 4.8 mL of fetal bovine 567 

serum (Gibco), 120 µL of dye mix F, and 6.2 mL of phosphate buffered saline, pH 7.8, for the final 568 

fetal bovine serum concentration of 40% v/v. 100 µL of this bacterial suspension in 40% fetal 569 

bovine serum was added to each well of Phenotype MicroArrayTM carbon utilization plates, and 570 

plates were incubated at static position in 30°C or 37°C for 24 hours in SynergyTM plate reader 571 

(BioTek) with the color change due to metabolic activity measured as 550 nm absorbance 572 

readings taken every 15 minutes. To verify that 550 nm absorbance reading correlated with 573 

metabolic activity obtained in the metabolic utilization assay, raw data from the Phenotype 574 

MicroArrayTM plate 2 from both metabolic utilization experiments were plotted linearly and R2 value 575 

calculated to confirm the degree of correlation (Data not shown). 576 

 577 
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Statistical analysis 578 

Unpaired Student’s t-test and one-way ANOVA with Tukey post-hoc test were performed 579 

on GraphPad Prism (GraphPad Software, La Jolla, CA, USA). Spearman’s rank correlation 580 

coefficients were calculated with Excel. Principal component analysis of metabolic data was 581 

performed with R’s prcomp function and visualized with fviz_pca_ind. On all statistical analysis, 582 

P-values less than or equal to 0.05 were considered significant and marked with an asterisk in 583 

the graphs. All visualization was performed through GraphPad Prism, R, or Tableau (Tableau 584 

Software, Mountain View, CA, USA). 585 
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Figures 777 

Fig 1. Colorimetric assay reflects metabolic activity in bacteria 778 

(A) Schematic showing the experimental setup using 96-well plates with nutrients providing a 779 

carbon source for bacteria being examined. (B) Examples of raw metabolic data outputs and 780 

polynomial fitting for metabolic curves. Metabolic curves over the course of experiment for three 781 

nutrients with different degrees of color change are shown: High activity (green) with a-D-glucose, 782 

medium activity (red) with L-proline, and low activity (blue) with 2-hydroxy benzoic acid. Light 783 

curves show raw metabolic data output as measured by the overall color change, and 784 

corresponding dark curves show polynomials fitted to determine metabolic rates. (C) Maximum 785 

metabolic rates of bacteria and conditions tested for selected nutrients. Maximum metabolic rates 786 

for twelve selected nutrients from the carbon utilization screen are shown to highlight the range 787 

of rates measured. Darker shades reflect higher rates, and lighter shades lower rates. Two 788 

experiments in separate temperatures (30°C and 37°C) were performed for B. anthracis and B. 789 

cereus and are shown in two columns. Maximum metabolic rates are averaged from three 790 

independent runs. 791 

 792 

Fig 2. Metabolic rates for carbon sources in bacteria show variations and groupings 793 

(A and B) Maximum metabolic rates of nutrients for bacteria incubated at 30°C (A) and 37°C (B). 794 

(i) Nutrients are hierarchically clustered by their chemical structures (dendrograms, left) and 795 

metabolic rates observed are shown as heatmaps (right) with each column representing results 796 

from different bacteria. (ii) Venn diagrams of nutrients are shown with numbers reflecting the count 797 

of nutrients that had metabolic rates statistically greater (p < 0.05) than the overall average rate. 798 

Unpaired Student’s t-test was used for comparison. (iii) Normalized maximum metabolic rates for 799 

nutrients well utilized by one bacteria are compared against nutrients well utilized by all bacteria. 800 
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Bars represent averages of all nutrients that had statistically higher metabolic rate than the overall 801 

average rate. Error bars represent standard error of the mean. Maximum metabolic rate for each 802 

nutrient is an average from three independent experiments (n = 3). *: p < 0.05 by unpaired 803 

Student’s t-test. 804 

 805 

Fig 3. Metabolic rates correspond to certain chemical properties of nutrients 806 

(A-D) Four chemical properties of nutrients examined with the structure of an example from each 807 

category (i): (A) carbohydrates (shown: D-glucose), (B) amino acids (shown: L-alanine), (C) lipids 808 

(shown: caproic acid), and (D) hydrophilicity as represented by partition coefficient (shown: 809 

tyramine and L-arginine). (ii) Heatmaps of maximum metabolic rates for nutrients with nutrients in 810 

the category for chemical property under question (+ or lesser) or did not (- or greater). Nutrients 811 

are hierarchically clustered by their chemical structural similarities using atom-pair distances. Ba: 812 

B. anthracis, Bc: B. cereus, Bs: B. subtilis, Sa: S. aureus. (iii) Average maximum metabolic rates 813 

for nutrients by chemical property (blue: carbohydrates, red: amino acids, green: lipids, yellow: 814 

hydrophilicity / partition coefficient). Bars represent averages of all nutrients categorized by 815 

chemical property. Error bars represent standard error of the mean. Maximum metabolic rate for 816 

each nutrient is an average from three independent experiments (n = 3). *: p < 0.05 by unpaired 817 

Student’s t-test.  818 

 819 

Fig 4. Certain carbohydrate pathways have superior utilization of nutrients 820 

(A) Heatmaps of normalized maximum metabolic rates for nutrients utilized by different 821 

carbohydrate pathways. Nutrients are categorized by which carbohydrate pathways they are 822 

utilized in, and average of all maximum metabolic rates from nutrients for each carbohydrate 823 

pathway are shown as heatmaps. (B and C) Bar graphs of normalized maximum metabolic rates 824 
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for nutrients in all carbohydrate pathways. (B) shows results from bacteria incubated at 30°C, and 825 

(C) shows results from 37°C. Each bar represents average maximum metabolic rates for all 826 

nutrients for each carbohydrate pathway. Error bars represent standard error of mean. Maximum 827 

metabolic rates are normalized to average of 0 and standard deviation of 1. Each nutrient’s 828 

maximum metabolic rate is an average from three independent experiments (n = 3). 829 

 830 

Fig 5. Nutrients are utilized in different pathways with wide range of metabolic rates 831 

(A and B) Heatmap showing normalized maximum metabolic rates for all nutrients associated 832 

with carbohydrate pathways (A) and amino acid pathways (B). For every nutrient (left column), 833 

normalized maximum metabolic rates for bacteria incubated in 37°C are shown in three columns 834 

(B. cereus, B. anthracis, and S. aureus) for all pathways that the nutrient is associated with. 835 

Nutrients are ordered from top to bottom by their overall average metabolic rate. Pathways are 836 

ordered from left to right by their average metabolic rate. (C and D) Bar graphs of normalized 837 

maximum metabolic rates for nutrients with top and bottom 10 metabolic rates involved in 838 

carbohydrate pathways (C) and amino acid pathways (D). For each bacteria, maximum metabolic 839 

rates for nutrients with 10 highest metabolic rates are shown in green, and 10 lowest metabolic 840 

rates are red. Maximum metabolic rates are normalized to average of 0 and standard deviation 841 

of 1. Gray lines indicate normalized rate of threshold of 3, which is equivalent to three standard 842 

deviations greater than the mean. Each nutrient’s maximum metabolic rate is an average from 843 

three independent experiments. (n = 3). 844 

 845 

Fig 6. B. anthracis has metabolic profile dependent on nutrient availability 846 

(A) Comparison of ordered lists of maximum metabolic rates between nutrient restricted (minimal 847 

media) and enriched (serum) environments. Color gradient shows rank of nutrients by their 848 
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metabolic rate. The ordered list from nutrient restricted condition (left) is shown ordered, and 849 

corresponding rank from nutrient enriched condition (right) is placed side as comparison. (B) 850 

Differences of average metabolic rates between nutrient-restricted and enriched conditions by 851 

nutrient category. Bar graphs show differences between average maximum metabolic rates for 852 

nutrients by their categorization (blue: carbohydrates, red: amino acids, green: lipids). Error bars 853 

represent standard error of the mean. (C) Differences of average metabolic rates by pathways 854 

associated with nutrients. For each pathway, differences in maximum metabolic rates of all 855 

nutrients associated with that pathway between nutrient restricted and enriched conditions were 856 

averaged and shown as a bar graph. Colors represent pathway categories (blue: carbohydrates, 857 

red: amino acids, green: lipids).  858 

  859 
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Supporting Information 860 

S1 Fig. Maximum metabolic rates of bacteria in all conditions for all nutrients 861 

The full list of all nutrients examined in this study is shown with maximum metabolic rates for all 862 

bacteria and conditions tested. Darker shades reflect higher rates, and lighter shades lower rates.  863 

 864 

S2 Fig. Comparing rank lists for maximum metabolic rates and growth as measured by 865 

OD600 for three Bacillus species 866 

For B. anthracis, B. cereus, and B. subtilis, corresponding rank lists for maximum metabolic rate 867 

(left) and OD600 (right) are shown. Darker tones show higher ranking with higher metabolic rate 868 

and OD600, and lighter tones show lower ranking.  869 

 870 

S3 Fig. Maximum metabolic rates and metabolic endpoints for all nutrients 871 

For all bacteria and incubation temperatures (37°C: red, 30°C: blue) investigated in this study, 872 

maximum metabolic rate (A) and metabolic endpoints (B) observed for all nutrients are shown as 873 

box and whisker plots. Each dot represents an average of metabolic data observed for one 874 

nutrient. Whiskers represent 5th and 95th percentile range, while boxes represent 25th and 75th 875 

percentile with the middle line representing the median. Each nutrient’s metabolic data is an 876 

average from three independent experiments (n = 3).  877 

 878 

S4 Fig. Maximum metabolic rates by modular arithmetic on number of carbon atoms in 879 

nutrients 880 
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Maximum metabolic rates for nutrients are grouped by remainders after dividing number of carbon 881 

atoms in the nutrient by 5 (A) or 6 (B). Data shown are combined from bacteria incubated in their 882 

optimal temperature (37°C for B. anthracis and S. aureus, 30°C for B. cereus and B. subtilis). 883 

Each nutrient’s metabolic data is an average from three independent experiments (n = 3). One-884 

way ANOVA was performed for p-values and Tukey’s range test was used for pairwise 885 

comparisons (*: p < 0.05, **: p < 0.005, ***: p < 0.001). 886 

 887 

S5 Fig. Role of temperature in maximum metabolic rates observed by nutrient property 888 

Average maximum metabolic rates for nutrients by category are shown as bar graphs. Nutrient 889 

properties examined are carbohydrates (A), amino acids (B), lipids (C), and hydrophilicity / 890 

partition coefficient (D). Lighter shades represent average rates from 30°C, and darker shades 891 

from 37°C. Error bars represent standard error of the mean. Maximum metabolic rate for each 892 

nutrient is an average from three independent experiments (n = 3). p-values were obtained with 893 

unpaired Student’s t-test.  894 

 895 

S6 Fig. Maximum metabolic rates for nutrients by pathways from bacteria incubated at 896 

30°C 897 

(A and C) Heatmaps showing normalized maximum metabolic rates for all nutrients associated 898 

with carbohydrate pathways (A) and amino acid pathways (C). For every nutrient (left column), 899 

normalized maximum metabolic rates for bacteria incubated in 30°C are shown in three columns 900 

(B. cereus, B. anthracis, and B. subtilis) for all pathways that nutrient is associated with. Nutrients 901 

are ordered from top to bottom by their average metabolic rate. Pathways are ordered from left to 902 

right by their average metabolic rate. (B and D) Bar graph of normalized maximum metabolic rates 903 
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for nutrients with top and bottom 10 metabolic rates involved in carbohydrate pathways (B) and 904 

amino acid pathways (D). For every bacteria, maximum metabolic rates for nutrients with 10 905 

highest metabolic rates are shown in green, and 10 lowest metabolic rates are shown in red. 906 

Maximum metabolic rates are normalized to average of 0 and standard deviation of 1. Each 907 

nutrient’s maximum metabolic rate is an average from three independent experiments (n = 3). 908 

 909 

S7 Fig. Differences in B. anthracis metabolic profile between nutrient restricted and 910 

enriched environments 911 

(A and B) Maximum metabolic rates of nutrients associated with carbohydrate pathways (A) and 912 

amino acid pathways (B) are shown as heatmaps. Rates from nutrient restricted environment 913 

(minimal media, left), nutrient enriched environment (serum, middle), and difference between two 914 

(right) are shown. Nutrients associated with more than one pathway are listed in all associated 915 

pathways.  916 

 917 

S1 Table. List of nutrients in Phenotype MicroArray carbon utilization screen 918 

S2 Table. List of nutrients with normalized maximum metabolic rate greater than zero for 919 

all bacteria 920 
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