

1 **Favipiravir-resistant influenza A virus shows potential for**
2 **transmission**

3
4 Daniel H. Goldhill¹, Ada Yan², Rebecca Frise¹, Jie Zhou¹, Jennifer Shelley¹, Ana Gallego
5 Cortés¹, Shahjahan Miah³, Omolola Akinbami³, Monica Galiano^{3,†}, Maria Zambon³, Angie
6 Lackenby³ & Wendy S. Barclay^{1,*}

7
8 ¹Department of Infectious Disease, Imperial College, London, UK

9 ² Department of Infectious Disease Epidemiology, Imperial College, London, UK

10 ³ Public Health England, London, UK.

11 [#] Current address: Worldwide Influenza Centre, The Francis Crick Institute, London, UK

12 ^{*} Corresponding Author

13 Email: w.barclay@imperial.ac.uk

14
15 Short Title: Transmission of favipiravir-resistant influenza virus

16

17

18

19 **Abstract**

20 Favipiravir is a nucleoside analogue which has been licensed to treat influenza in
21 the event of a new pandemic. We previously described a favipiravir resistant influenza
22 A virus generated by in vitro passage in presence of drug with two mutations: K229R in
23 PB1, which conferred resistance at a cost to polymerase activity, and P653L in PA,
24 which compensated for the cost of polymerase activity. However, the clinical relevance
25 of these mutations is unclear as the mutations have not been found in natural isolates
26 and it is unknown whether viruses harbouring these mutations would replicate or
27 transmit in vivo. Here, we infected ferrets with a mix of wild type p(H1N1) 2009 and
28 corresponding favipiravir-resistant virus and tested for replication and transmission in
29 the absence of drug. Favipiravir-resistant virus successfully infected ferrets and was
30 transmitted by both contact transmission and respiratory droplet routes. However,
31 sequencing revealed the mutation that conferred resistance, K229R, decreased in
32 frequency over time within ferrets. Modelling revealed that due to a fitness advantage
33 for the PA P653L mutant, reassortment with the wild-type virus to gain wild-type PB1
34 segment in vivo resulted in the loss of the PB1 resistance mutation K229R. We
35 demonstrated that this fitness advantage of PA P653L in the background of our starting
36 virus A/England/195/2009 was due to a maladapted PA in first wave isolates from the
37 2009 pandemic. We show there is no fitness advantage of P653L in more recent pH1N1
38 influenza A viruses. Therefore, whilst favipiravir-resistant virus can transmit in vivo, the
39 likelihood that the resistance mutation is retained in the absence of drug pressure may
40 vary depending on the genetic background of the starting viral strain.

41

42

43

44 Author Summary

45 In the event of a new influenza pandemic, drugs will be our first line of defence
46 against the virus. However, drug resistance has proven to be particularly problematic to
47 drugs against influenza. Favipiravir is a novel drug which might be used against
48 influenza virus in the event of a new pandemic. Is resistance likely to be a problem for
49 the use of favipiravir? Our previous work has shown that resistance to favipiravir can be
50 generated in cell culture but we don't know whether there will be a cost preventing the
51 spread of resistance in whole organisms. Here, we used a mix of wild-type and resistant
52 influenza viruses from early in the 2009 pandemic to test whether viruses resistant to
53 favipiravir could transmit between ferrets. We found that the resistant viruses could
54 transmit but that the resistance mutation was selected against within some ferrets.
55 Using modelling and in vitro experiments, we found that the resistant mutation was
56 selected against in the influenza strain from our experiment but not in more recently
57 evolved strains. Our results show that favipiravir resistant viruses could spread if
58 resistance is generated but the probability will depend on the genetic background of the
59 virus.

60 **Introduction**

61

62 Influenza virus is a negative strand virus that causes significant morbidity and
63 mortality worldwide. Like most other RNA viruses, influenza virus has a fast rate of
64 evolution which allows it to evolve in response to immune pressure as well as antiviral
65 drugs(1-3). Antiviral resistance has been a major problem limiting the effectiveness of
66 antiviral drugs against influenza(4, 5). Significant resistance has evolved against the two
67 main classes of antiviral drugs, adamantanes and neuraminidase inhibitors, which have
68 been used clinically against influenza(5-8). Resistance can also evolve to baloxavir, a
69 recently approved drug that inhibits the cap-snatching ability of the polymerase(9).

70 When developing new drugs, it is vital to understand both the ease with which
71 resistance evolves and the likelihood that resistant variants will transmit especially in
72 the absence of drug pressure. This will inform whether a new drug can be effectively
73 used against influenza on a global scale.

74 Favipiravir is a novel antiviral drug licensed in Japan for the treatment of
75 influenza in the event of a new pandemic(10-12). Favipiravir is a nucleoside analogue
76 which targets the influenza polymerase and acts as a mutagen(13-15). Favipiravir is
77 active against influenza A and B viruses including strains that are resistant to other
78 classes of antiviral drugs(10, 16). Previously, we demonstrated that Influenza
79 A/England/195/2009 (Eng195), an early isolate from the 2009 H1N1 pandemic, could
80 evolve resistance to favipiravir(17). We showed that two mutations, K229R in PB1 and
81 P653L in PA, were needed to evolve resistance(17). K229R provided resistance to
82 favipiravir at a cost to polymerase activity which was compensated by P653L. K229R
83 has not been found in any natural pH1N1(2009) isolates, which is unsurprising as

84 favipiravir has not been widely used to treat influenza cases. The P653L mutation has
85 also not been found in any natural pH1N1(2009) isolates, which may suggest that it
86 does not confer a fitness advantage in vivo. Although the P653L fully compensated for
87 the cost to polymerase activity and virus replication in vitro, it is unknown whether the
88 resistant virus would replicate in vivo or transmit whilst maintaining resistance.

89 Transmission studies in animal models such as the ferret have revealed whether
90 drug resistant influenza viruses have fitness costs and can help inform about the
91 likelihood of the emergence of resistance(18-20). Early studies with the adamantane,
92 rimantadine, suggested that there was no fitness cost preventing transmission of
93 resistant influenza in a household setting(21) and resistance has indeed become
94 widespread. Oseltamivir resistant H1N1 viruses were originally shown to be unlikely to
95 transmit(22) but around 2007 additional mutations in the N1 neuraminidase emerged
96 that were subsequently shown to affect NA such that the resistance mutation actually
97 conferred a fitness advantage(5) and widespread resistance to oseltamivir ensued(23).
98 More recently, oseltamivir resistant pH1N1(2009)(24) and baloxavir resistant H3N2
99 influenza A virus have been shown to transmit between ferrets without a fitness
100 cost(25, 26). In humans so far, resistance to these drugs appears mostly limited to
101 treated patients or small outbreaks but these animal transmission studies suggest that
102 continued use of monotherapy may lead to more widespread resistance.

103 Interestingly, favipiravir resistant chikungunya virus containing the equivalent
104 mutation to K229R in influenza, has been shown to reproduce less efficiently in
105 mosquitos which led to slower transmission(27). This fitness cost in mosquitos was
106 unexpected as there was no difference in fitness between favipiravir resistant virus and
107 wild-type virus in mammalian cell culture(27, 28). In the present study, we infected
108 ferrets with a mixture of wild-type and resistant virus and tested whether resistant

109 virus would transmit or be outcompeted by the wild-type virus. We constructed a
110 simple model to explain the changes in genotype frequencies observed in our
111 experiment. Finally, we compared pH1N1 PA sequences from 2009-2010 to test
112 whether our results were contingent on the genetic background of the virus.

113

114 **Results**

115

116 **Favipiravir resistant virus transmits between ferrets**

117 To test whether favipiravir resistant virus could transmit by direct or indirect
118 contact, we inoculated ferrets with a mix of resistant virus bearing PB1 K229R + PA
119 P653L and the corresponding wild-type virus, Eng195, a prototypical first wave pH1N1
120 2009 virus. By inoculating with a mix of virus, we could investigate whether there was a
121 detectable fitness difference between the favipiravir resistant and the wild-type virus.
122 We used a low percentage of wild-type virus to maximize the probability of resistant
123 virus transmitting in the event that there was a fitness cost to resistance in the ferrets.

124 Four donor ferrets were inoculated with K229R + P653L and Eng195 viruses in the
125 ratio of 95:5. After 24 hours, each donor ferret was housed with a direct contact sentinel
126 ferret to measure contact transmission. In addition, an indirect contact sentinel animal
127 was housed in a separate adjacent cage to measure airborne transmission.

128 All 4 donor ferrets were successfully infected and shed virus in the nasal wash
129 with a peak viral titre on day 2 and a secondary peak for most donors on day 4 or 5 as
130 has been seen previously for ferrets infected with this dose of pH1N1 virus(30) (Figure
131 1). All 4 direct contact sentinels became infected with the first positive nasal washes
132 occurring between days 2-5. 3 of the 4 indirect contact sentinels became infected and

133 their first positive nasal washes occurred between 3-7 days following infection of the
134 donors. The direct contact and indirect contact sentinels had peak viral titres
135 comparable to the donors suggesting that they were robustly infected.

136 Two time points were selected from the daily nasal washes collected from each
137 ferret to sequence virus shed in the nasal washes by both whole genome sequencing
138 and more targeted sequencing of the PB1 and PA segments (Figure 1). Different time
139 points were selected for each individual animal based on their shedding kinetics to give
140 an early snapshot of the diversity of viruses shortly after infection and a later time point
141 to show how viral genotypes change within a host ferret over time. PB1 and PA
142 sequencing revealed that RNA ratio in the inoculum was 95% K229R + P653L and 5%
143 Eng195. Sequencing of virus in the nasal wash showed high levels of both R229 in PB1
144 and L653 in PA in all infected ferrets indicating that the K229R + P653L virus could
145 productively infect ferrets and was efficiently transmitted both through direct and
146 indirect contact transmission routes (Figure 2). The earliest sample after acquisition of
147 virus in 2 of 4 contact ferrets and 2 of 3 indirect contact ferrets contained 100% K229R
148 + P653L, with no transmission of any wild-type segments.

149

150 **Whole genome sequencing reveals no additional changes in PB1 and PA**

151 Viruses shed in nasal wash underwent whole genome sequencing to search for
152 additional mutations which might be required for efficient transmission or to further
153 compensate for K229R or P653L. We found no additional mutations in polymerase
154 genes in any of the donor ferrets or the sentinel ferrets occurring above 5%. This
155 confirmed that the K229R + P653L virus was able to productively infect and transmit
156 between ferrets. There were a low number of mutations seen in direct contact and
157 respiratory sentinel ferrets which were likely due to bottlenecking occurring during

158 transmission as some of these mutations were present at low percentages in the
159 inoculum. There was no pattern of repeated mutations across different ferrets which
160 would have indicated positive selection.

161

162 **R229 mutation selected against over time within ferrets**

163 Next, we sought to understand how the K229R and P653L mutations might
164 change over time within an individual ferret. In all four donor ferrets, the proportion of
165 the PB1 wild-type amino acid, K229 increased compared to R229 from the inoculum at
166 the earliest time point and further increased at the later time point (Figure 2). From 5%
167 in the inoculum, K229 increased to an average of 10% in donors on day 2 and an
168 average of 32% at the second sequencing time point (day 4 or 5). The largest increase
169 was in donor 1 where K229 increased to 47%. By contrast, the percentage of the PA
170 mutations showed a very different pattern in the donor ferrets, with two ferrets
171 showing a slight increase in the wild-type PA amino acid P653, and two a decrease in
172 P653 on day 4/5. P653 increased slightly on average to 6% on day 2 and 6.5% on day
173 4/5. Sequencing of nasal wash from sentinel ferrets revealed that P653 never
174 transmitted whereas K229 was found in 2/4 contact sentinels and 1/3 aerosol
175 sentinels. When K229 transmitted to a sentinel ferret, the frequency of K229 increased
176 over time in a manner similar to the donor ferret.

177

178 **Modelling shows reassortment coupled with a selective advantage for the P653L 179 mutant drives genotype frequency changes**

180 Influenza virus has a segmented genome and the key mutations in our study are located
181 on discrete RNA segments. Next-generation sequencing does not allow detection of
182 linkage between segments, so it is not always possible to know the exact proportion of

183 genotypes of viruses in mixed samples. In the inoculum, PB1 K229 and PA P653 always
184 occur together in wild-type viruses but within the donor ferrets, the evolutionary
185 trajectory of K229 was decoupled from P653. This could have been either due to
186 reversion of the R229 resistance mutation, which is known to have a fitness cost, or to a
187 fitness advantage of reassortant viruses with the mutated PA segment. To understand
188 what processes could be driving the observed genetic changes in this experiment, we
189 constructed a simple model of virus growth dynamics. As significant frequency changes
190 occurred within donors between day 2 and 5 of our experiment when nasal wash titres
191 showed no increase in viral population size, we modelled a fixed maximum population
192 size for viruses and a fixed number of cells replenished each generation. We noted that
193 previous fitness data we generated in MDCK cells showed a large fitness disadvantage
194 for the K229R mutant, little difference between wild type and the double mutants, and
195 potentially, a slight fitness advantage for the P653L mutant(17). Therefore, for our
196 baseline model, we assigned equal fitness to the wild-type virus and K229R + P653L
197 mutant, a fitness advantage to the P653L mutant and set the fitness of the K229R
198 mutant to 0.01.

199 Allowing for reassortment coupled with a fitness advantage for the P653L
200 mutant, our model showed an increase in the frequency of K229 and a complete loss of
201 P653 due to the increase in the P653L reassortant (Figure 3a). The increase of
202 frequency in K229 was representative of the dynamics seen within the donor ferrets
203 where K229 increased from 5% to >40% in some ferrets. We tested whether the
204 observed increase of K229 could be driven solely by the fitness cost to the K229R
205 mutant. However, without a fitness advantage to the P653L single mutant, the
206 frequency of K229 did not rise above 5% in our model, the starting frequency in the
207 inoculum (Figure 3b). Next, we tested whether the fitness advantage of the P653L single

208 mutant was sufficient to drive the observed dynamics (Figure 3c). Even without a
209 fitness cost to the K229R mutant, there was still a large increase in the proportion of
210 K229 as in the original model as well as a small proportion of K229R single mutant
211 viruses which did not rise above 5%. Therefore, this model demonstrated that the
212 fitness advantage of the PA P653L single mutant was necessary and sufficient to explain
213 the loss of the R229 PB1 resistance mutation.

214 Next, we removed reassortment from the model allowing genotypes to change
215 only through selection and mutation (Figure 3d). Without reassortment, there was very
216 little change in genotype frequencies following 20 generations of the model implying
217 that reassortment was necessary to accurately model the observed dynamics. This is
218 because co-infection with wild type and K229R + P653L, and thus the opportunity for
219 the P653L single mutant to be generated through reassortment, occurs much more
220 frequently than de novo mutation for the MOI and mutation rates assumed. This model
221 was robust to changes in values of the initial variables as shown in the sensitivity
222 analysis, unless the mutation rate and/or the fitness of the PA P653L mutant were much
223 larger (see Appendix).

224

225 **PA P653L does not show a fitness benefit in more recent viruses**

226 Given the large fitness advantage of the P653L mutant virus in ferrets, it is
227 surprising that the mutation has not been observed in pH1N1 isolates. We hypothesized
228 that one reason the mutation might not be present is that more recent mutations in the
229 pH1N1 virus polymerase also confer a fitness advantage, achieving the same increase in
230 polymerase activity as P653L. Our previous work showed that the polymerase of
231 Eng195 was less well adapted to human cells compared to later pandemic isolates and
232 identified the N321K PA mutation as being a key mutation that led to improved

233 polymerase activity in second and third wave pH1N1 virus isolates(29, 31). To test
234 whether there was epistasis between N321K and P653L, we introduced the N321K
235 mutation into Eng195 and tested polymerase using the minigenome activity (Figure 4a).
236 Eng195 PA N321K had higher polymerase activity compared to P653L (1-way ANOVA,
237 $p<0.001$). There was no difference in polymerase activity between N321K and N321K +
238 P653L (1-way ANOVA, $p=0.80$). This implied that N321K provides a greater increase in
239 polymerase activity than P653L and P653L provided no additional benefit to
240 polymerase activity in the presence of N321K.

241 Next, we wanted to test whether N321K could affect the evolution of resistance
242 of favipiravir by compensating for the defect in polymerase activity caused by PB1
243 K229R. Introducing both K229R and N321K into Eng195 showed that N321K partially
244 compensated for the loss of polymerase activity conferred by K229R but did not reach
245 the level of polymerase activity of P653L + K229R (Figure 4a). Adding the
246 compensatory mutation, P653L to K229R + N321K showed full compensation to the
247 level of N321K. Next we introduced the K229R and P653L mutations into the
248 polymerase of a representative 3rd wave pandemic H1N1 virus, Eng687, which already
249 contained N321K. As had been observed in the background of Eng195, Eng687 K229R
250 resulted in low but appreciable polymerase activity which was fully compensated by the
251 presence of P653L (Figure 4b). However, cost to polymerase activity caused by K229R
252 was noticeably less in Eng687 than in Eng195.

253

254 **Discussion**

255 In this study, we showed that favipiravir-resistant influenza A virus could
256 productively infect ferrets and transmit through contact transmission and via
257 respiratory droplets. By infecting ferrets with a mix of wild-type and favipiravir

258 resistant viruses, we sought to determine whether there was a fitness difference
259 between the viruses. Although, the PB1 R229 and PA L653 mutations were initially
260 present on two RNA segments within the same virus, their evolutionary trajectories
261 were decoupled over time in the ferrets. In individual ferrets where there was a mix of
262 K229 and R229, there was an increase in the wild-type PB1 K229 residue over time. Our
263 modelling showed that this was not due to the fitness cost of the R229 mutation as that
264 was adequately compensated by L653, but rather due to a fitness advantage for the
265 P653L single mutant. This fitness advantage was implied in our previous work where
266 the single PA mutation conferred higher polymerase activity in a minigenome assay as
267 well as a slight growth advantage in the virus at 24 hours in cell culture(17). Despite the
268 fitness advantage of the P653L single mutant, there was a slight increase in frequency of
269 P653 within some ferrets. (19)In the donor ferrets, two ferrets showed an increase and
270 two, a decrease in the proportion of P653. We suggest that this was likely due to
271 stochastic changes in the proportion of wild-type viruses to mutant viruses within the
272 donor ferrets. No ferret had a frequency of P653 higher than K229 confirming that the
273 main driver of frequency changes was the fitness advantage of the P653L single mutant.
274 P653 did not transmit to any of the sentinel ferrets almost certainly due to low
275 frequency of P653 and the small bottleneck size of transmission. Whilst our simple
276 model was capable of showing the rise in the P653L single mutant, it could not
277 reproduce the stochastic changes in the frequency of P653. A spatially explicit model
278 might have the additional complexity necessary to model these stochastic dynamics.

279 It is notable that in 4/5 ferrets where only R229 transmitted, K229 was not
280 generated by reversion of the K229R mutation demonstrating that reassortment was
281 necessary for the initial production of the K229 + L653 virus and that the R229 + L653
282 virus was fit and capable of a productive infection. The one exception was the group 3

283 ferret infected through indirect contact, which showed no K229 at the first sequencing
284 time point but 38% K229 at the second sequencing time point. Whilst this could have
285 been caused due to reversion to K from R229, it could have also been due to subsequent
286 reinfection from the donor (animals were exposed to donors throughout the
287 experiment) or by outgrowth of low levels of K229, which were initially present but
288 were not detected by sequencing. Our modelling supports that the virus with single PA
289 mutation L653 coupled with wild-type PB1 K229 was generated by reassortment in
290 vivo before increasing in frequency due to positive selection (Figure 5). The high levels
291 of coinfection and reassortment necessary for such a scenario have been previously
292 seen in experimental infections of ferrets and other animals(32, 33).

293 Despite the large fitness advantage of L653, this mutation is not found in
294 currently circulating pH1N1 viruses. We showed that one potential explanation for this
295 observation is that other PA mutations have evolved that ameliorate the maladapted PA
296 of the early pH1N1 isolates compared to more recent pH1N1 isolates. We have
297 previously shown that later isolates from the third wave could outcompete first wave
298 isolates in vitro due to the N321K mutation in PA(29). Here we showed that Eng195
299 polymerases reconstituted with PA harbouring N321K derive no additional fitness
300 benefit from L653. This is the most likely explanation for why L653 has not been seen in
301 sequenced isolates. Surprisingly, PA N321K could partially compensate for the low
302 polymerase activity of PB1 K229R despite not being structurally close to the active site.
303 This might imply that favipiravir-resistance could evolve more easily in more recent
304 pH1N1 viruses as the essential resistance mutation in PB1 does not suffer such a
305 dramatic fitness cost. However, in a polymerase constellation based on the third wave
306 virus Eng687 harbouring K229R in PB1, the P653L mutation was still required to fully
307 compensate and to attain comparative activity to the wild-type polymerase.

308 Our results have interesting implications for transmission dynamics of
309 favipiravir resistant viruses in the absence of drug. We have demonstrated that the
310 virus can transmit between ferrets that are untreated with drug, which means that a
311 localised epidemic of drug resistant virus would be possible. However, we also found
312 that the K229R mutation was lost over time within a single ferret which implies that if
313 the virus can be outcompeted, resistance is less likely to spread in the absence of drug.
314 The exact probability of resistance emerging and resistance then spreading will likely
315 depend on the precise genetic background of the virus. For example, although the
316 K229R resistance mutation was lost over time in our experiment based on a first wave
317 pH1N1 2009 virus, K229R might not have been lost, at least by reassortment with wild-
318 type virus, in more modern pH1N1 viruses where there is no benefit to polymerase
319 activity of the compensatory mutation P653L in the absence of K229R. In the event of a
320 new pandemic the specific fitness effects of both resistance mutations as well as of
321 compensatory mutations will determine the likelihood of drug resistance emerging and
322 spreading. Given that the compensatory mutation, P653L, has not been found in
323 sequenced isolates, it suggests that robust resistance will always require multiple
324 mutations. However, if resistance does arise, resistant viruses might continue to spread
325 locally in the absence of drug pressure in a permissive genetic background.

326

327 **Materials and Methods**

328

329 **Cells and Virus**

330 Madin-Darby canine kidney (MDCK; ATCC) and HEK293T (293T) were grown in
331 Dulbecco's modified Eagle's medium (DMEM; Invitrogen) supplemented with 10% fetal

332 bovine serum (FBS; labtech.com), 1% penicillin-streptomycin (Invitrogen) and 1% non-
333 essential amino acids (Gibco) at 37 °C and 5% CO₂.
334 A/England/195/2009 (Eng195) is a first-wave isolate from the 2009 A(H1N1)
335 pandemic grown from a reverse genetic virus(29). Favipiravir resistant Eng195 virus
336 (K229R + P653L) containing a K229R mutation in PB1 and a P653L mutation in PA was
337 constructed as described previously(17).
338

339 **P653L proportions in sequenced viruses**

340 pH1N1 (2009) viruses with full length PA segments were downloaded from GISAID.
341 They were aligned to an Eng195 reference and all mutants at location 653 were
342 analysed in Geneious.
343

344 **Animal Studies**

345 Female ferrets (20–24 weeks old) weighing 750–1000 g were acclimatized for 14 days
346 before inoculation. Donor ferrets were lightly anaesthetized with ketamine (22 mg/kg)
347 and xylazine (0.9 mg/kg) and then inoculated intranasally with virus diluted in
348 phosphate buffered saline (PBS) (0.1 ml per nostril). The virus inoculum was ~10,000
349 plaque forming units consisting of a mix of K229R + P653L virus and Eng195 in the
350 ratio 95:5. Sentinel ferrets were introduced day 1 post infection and remained for the
351 duration of the experiment. Ferret body weight was measured daily to check for
352 significant weight loss due to sickness. Ferrets were nasal washed daily, while
353 conscious, by instilling 2 ml PBS into the nostrils, and the expectorate was collected in
354 250 ml centrifuge tubes. Virus titre in the nasal wash expectorate was calculated by
355 plaque assay. The nasal wash was stored with 4% Bovine Serum Albumin Factor V
356 (Gibco) at -80 °C prior to RNA extraction. All sentinel ferrets were handled before donor

357 ferrets to prevent accidental transmission of virus. All animal research described in this
358 study was approved and carried out under a United Kingdom Home Office License, PPL
359 70/7501 in accordance with the approved guidelines.

360

361 **Sequencing**

362 Samples were chosen at multiple time points for each ferret (Figure 1) and sequenced at
363 Public Health England. Viral RNA was extracted using easyMAG (bioMérieux) and one
364 step Reverse-Transcription-PCR was performed with Superscript III (Invitrogen),
365 Platinum Taq HiFi Polymerase (Thermo Fisher) and influenza specific primers. To
366 ensure coverage of PB1 and PA, gene specific primers were used to amplify PB1 and PA
367 which were sequenced in parallel with the whole genome samples. Sequencing libraries
368 were prepared using Nextera library preparation kit (Illumina) and sequenced on an
369 Illumina MiSeq generating 150-bp paired end reads. Reads were mapped with BWA
370 v0.7.5 and converted to BAM files using SAMTools (1.1.2). Variants were called using
371 QuasiBAM, an in-house script at Public Health England. Raw sequences have been
372 deposited at <https://www.ebi.ac.uk/ena> (project number PRJEB39934.)

373

374 **Modelling**

375 Viral evolution was modelled over the time using an individual-based model. The
376 model tracked the proportion of free virions of the wild-type virus Eng195, the resistant
377 virus K229R + P653L and viruses containing a single mutation, K229R or P653L. The
378 model was initialised with 10^6 virions, a mix of K229R + P653L virus and Eng195 in the
379 ratio 95:5, as in the inoculum, and assumes a well-mixed population with virions
380 infecting cells randomly. Evolution of the virus was tracked over 20 generations of
381 replication, with 10^6 cells available for infection during each generation giving an

382 average MOI of 1. Both the number of virions and the population of cells stayed constant
383 between generations. We allowed for varying amounts of reassortment by adjusting the
384 ratio of viruses to cells. During each replication cycle, each virion enters a random cell.
385 The burst size from each cell was Poisson distributed, with mean proportional to the
386 summed fitnesses of the virion(s) infecting that cell. In the baseline model, Eng195,
387 K229R, P653L and K229R + P653L were assigned a relative fitness, with default values
388 equal to 1, 0.01, 1.25 and 1 respectively. Within a cell, new segments were produced
389 with a probability equal to the proportion of founding virions in that cell. These
390 segments were randomly combined into virions, allowing reassortment, assuming each
391 virus RNA segment in the cell had an equal chance, unrelated to genotype, of being
392 incorporated into progeny virus. Newly produced virions mutated either PB1 or PA
393 with probability $\mu = 2 \times 10^{-4}$ ⁽¹⁾. Excess virions were discarded randomly to maintain the
394 viral population size.

395 For the model with mutation only, each cell produced whole virions for each strain,
396 proportional to the founding virions for each strain in that cell. The newly produced
397 virions were mutated as per above.

398 Code to reproduce model results can be found at <https://github.com/ada-w-yan/reassortment/>.

400

401 **Minigenome Assay**

402 To measure polymerase activity, pCAGGS plasmids containing genes encoding PB1, PB2,
403 PA and NP from Eng195 or A/England/687/2010 (Eng687) were transfected into 293T
404 cells using Lipofectamine 3000 (Thermo Fisher). Plasmids containing the K229R PB1,
405 N321K PA and P653L PA mutations were constructed by site-directed mutagenesis.
406 Plasmid quantities per well were PB1- 0.08 µg, PB2- 0.08 µg, PA- 0.04 µg and NP- 0.12

407 μ g. In addition, a PolI-luc plasmid (0.08 μ g), encoding a firefly luciferase minigenome
408 reporter with influenza A segment 8 promoter sequences, was transfected with a
409 pCAGGS-*Renilla* luciferase control (0.1 μ g). After 21 hours, cells were lysed and
410 luciferase activity measured using the Dual-Luciferase Reporter Assay kit (Promega).
411 Polymerase activity was expressed as the ratio of Firefly:*Renilla*. Polymerase
412 combinations were compared using 1-way ANOVA with p-values adjusted using
413 Dunnett's Multiple Comparison test.

414

415
416 **Bibliography**
417

- 418 1. Pauly MD, Procario MC, Lauring AS. A novel twelve class fluctuation test reveals
419 higher than expected mutation rates for influenza A viruses. *Elife*. 2017;6:e26437.
420 2. Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, et al.
421 Parallel evolution of influenza across multiple spatiotemporal scales. *Elife*. 2017;6:e26875.
422 3. Petrova VN, Russell CA. The evolution of seasonal influenza viruses. *Nature Reviews
423 Microbiology*. 2018;16(1):47.
424 4. Bright RA, Medina M-j, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, et al. Incidence of
425 adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to
426 2005: a cause for concern. *The Lancet*. 2005;366(9492):1175-81.
427 5. Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the
428 evolution of influenza oseltamivir resistance. *Science*. 2010;328(5983):1272-5.
429 6. Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, et al. The genesis
430 and spread of reassortment human influenza A/H3N2 viruses conferring adamantane
431 resistance. *Molecular biology and evolution*. 2007;24(8):1811-20.
432 7. Furuse Y, Suzuki A, Oshitani H. Large-scale sequence analysis of M gene of influenza
433 A viruses from different species: mechanisms for emergence and spread of amantadine
434 resistance. *Antimicrobial agents and chemotherapy*. 2009;53(10):4457-63.
435 8. Pielak RM, Schnell JR, Chou JJ. Mechanism of drug inhibition and drug resistance of
436 influenza A M2 channel. *Proceedings of the National Academy of Sciences*.
437 2009;106(18):7379-84.
438 9. Omoto S, Speranzini V, Hashimoto T, Noshi T, Yamaguchi H, Kawai M, et al.
439 Characterization of influenza virus variants induced by treatment with the endonuclease
440 inhibitor baloxavir marboxil. *Scientific reports*. 2018;8(1):9633.
441 10. Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, et al. In Vitro and In
442 Vivo Activities of Anti-Influenza Virus Compound T-705. *Antimicrobial Agents and
443 Chemotherapy*. 2002;46(4):977-81.
444 11. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, et al. T-705
445 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral
446 infections. *Antiviral Res*. 2009;82(3):95-102.

- 447 12. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of
448 viral RNA polymerase. *Proc Jpn Acad Ser B Phys Biol Sci.* 2017;93(7):449-63.
- 449 13. Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, et al.
450 Mechanism of action of T-705 against influenza virus. *Antimicrob Agents Chemother.*
451 2005;49(3):981-6.
- 452 14. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, et al. T-705
453 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. *J Virol.*
454 2013;87(7):3741-51.
- 455 15. Goldhill DH, Langat P, Xie H, Galiano M, Miah S, Kellam P, et al. Determining the
456 mutation bias of favipiravir in influenza virus using next-generation sequencing. *Journal of*
457 *virology.* 2019;93(2):e01217-18.
- 458 16. Sleeman K, Mishin VP, Deyde VM, Furuta Y, Klimov AI, Gubareva LV. In vitro antiviral
459 activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses.
460 *Antimicrob Agents Chemother.* 2010;54(6):2517-24.
- 461 17. Goldhill DH, te Velthuis AJ, Fletcher RA, Langat P, Zambon M, Lackenby A, et al. The
462 mechanism of resistance to favipiravir in influenza. *Proceedings of the National Academy of*
463 *Sciences.* 2018;115(45):11613-8.
- 464 18. Bouvier NM, Lowen AC, Palese P. Oseltamivir-resistant influenza A viruses are
465 transmitted efficiently among guinea pigs by direct contact but not by aerosol. *Journal of*
466 *virology.* 2008;82(20):10052-8.
- 467 19. Frise R, Bradley K, Van Doremalen N, Galiano M, Elderfield RA, Stilwell P, et al.
468 Contact transmission of influenza virus between ferrets imposes a looser bottleneck than
469 respiratory droplet transmission allowing propagation of antiviral resistance. *Scientific*
470 *Reports.* 2016;6:29793.
- 471 20. Lee LYY, Zhou J, Frise R, Goldhill DH, Koszalka P, Mifsud EJ, et al. Baloxavir treatment
472 of ferrets infected with influenza A (H1N1) pdm09 virus reduces onward transmission. *PLoS*
473 *pathogens.* 2020;16(4):e1008395.
- 474 21. Hayden FG, Belshe RB, Clover RD, Hay AJ, Oakes MG, Soo W. Emergence and
475 apparent transmission of rimantadine-resistant influenza A virus in families. *New England*
476 *Journal of Medicine.* 1989;321(25):1696-702.
- 477 22. Herlocher ML, Truscon R, Elias S, Yen H-L, Roberts NA, Ohmit SE, et al. Influenza
478 viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. *Journal of*
479 *Infectious Diseases.* 2004;190(9):1627-30.
- 480 23. Dharan NJ, Gubareva LV, Meyer JJ, Okomo-Adhiambo M, McClinton RC, Marshall SA,
481 et al. Infections with oseltamivir-resistant influenza A (H1N1) virus in the United States.
482 *Jama.* 2009;301(10):1034-41.
- 483 24. Seibert CW, Kaminski M, Philipp J, Rubbenstroth D, Albrecht RA, Schwalm F, et al.
484 Oseltamivir-resistant variants of the 2009 pandemic H1N1 influenza A virus are not
485 attenuated in the guinea pig and ferret transmission models. *Journal of virology.*
486 2010;84(21):11219-26.
- 487 25. Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, et
488 al. Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese
489 patients are fit and transmit through respiratory droplets. *Nature microbiology.* 2019;1-7.
- 490 26. Takashita E, Kawakami C, Ogawa R, Morita H, Fujisaki S, Shirakura M, et al. Influenza
491 A (H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic
492 subunit I38T substitution detected from a hospitalised child without prior baloxavir
493 treatment, Japan, January 2019. *Eurosurveillance.* 2019;24(12):1900170.

- 494 27. Delang L, Yen P-S, Vallet T, Vazeille M, Vignuzzi M, Failloux A-B. Differential
495 Transmission of Antiviral Drug-Resistant Chikungunya Viruses by Aedes Mosquitoes.
496 MSphere. 2018;3(4):e00230-18.
- 497 28. Delang L, Segura Guerrero N, Tas A, Querat G, Pastorino B, Froeyen M, et al.
498 Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-
499 705), a broad-spectrum antiviral. J Antimicrob Chemother. 2014;69(10):2770-84.
- 500 29. Elderfield RA, Watson SJ, Godlee A, Adamson WE, Thompson CI, Dunning J, et al.
501 Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza
502 virus in humans in the United Kingdom. J Virol. 2014;88(22):13269-83.
- 503 30. Roberts KL, Shelton H, Stilwell P, Barclay WS. Transmission of a 2009 H1N1 pandemic
504 influenza virus occurs before fever is detected, in the ferret model. PLoS One.
505 2012;7(8):e43303.
- 506 31. Peacock TP, Swann OC, Staller E, Leung PB, Goldhill DH, Zhou H, et al. Swine ANP32A
507 supports avian influenza virus polymerase. BioRxiv. 2020.
- 508 32. Nicolle Marshall LP, Ende Z, Steel J, Lowen AC. Influenza virus reassortment occurs
509 with high frequency in the absence of segment mismatch. PLoS pathogens. 2013;9(6).
- 510 33. Richard M, Herfst S, Tao H, Jacobs NT, Lowen AC. Influenza A virus reassortment is
511 limited by anatomical compartmentalization following coinfection via distinct routes.
512 Journal of virology. 2018;92(5):e02063-17.
- 513
- 514
- 515
- 516

517 **Figure Legends**

518 **Figure 1.** 4 donor ferrets were infected with 10⁴ PFU of a virus mix of wildtype
519 Eng195 and K229R+P653L. Direct contact and indirect sentinels were exposed from
520 day 1. Ferrets were nasal washed each day and virus infectivity in nasal wash titred by
521 plaque assay. 2 samples were chosen for sequencing from each ferret and are denoted
522 by the black outlined symbols.

523

524 **Figure 2.** Targeted sequencing of PA and PB1 using NGS showed the percentage of PB1
525 K229R and PA P653L mutations for donor, contact and indirect contact ferrets. The top
526 pie chart shows the percentage of each genotype for residue 229 in PB1 with the mutant
527 (R229) in red and the wild type (K229) in black. The bottom pie chart shows the
528 percentage of each genotype for residue 653 in PA with the mutant (L653) in blue and
529 the wild type (P653) in black. The inoculum shows 5% K229 and 5% P653. For each

530 infected ferret, two sequenced time points (as described in Figure 1) are shown. The
531 group 4 indirect contact was not infected.

532

533 **Figure 3. a)** The proportion of each virus genotype are shown over 20 rounds of
534 replication for a model with reassortment and mutation. The starting proportions are
535 5% Wild type and 95% K229R + P653L. Strain fitness for Wild type, K229R, P653L and
536 K229R + P653L were set at 1, 0.01, 1.25 and 1 respectively. 10^6 viruses are modelled
537 with 10^6 cells with a mutation rate, $\mu = 2 \times 10^{-4}$. **b)** As **a** but the strain fitness for Wild
538 type, K229R, P653L and K229R + P653L were set at 1, 0.01, 1 and 1 respectively. **c)** As **a**
539 but the strain fitness for Wild type, K229R, P653L and K229R + P653L were set at 1, 1,
540 1.25 and 1 respectively. **d)** As **a** but there was no reassortment allowed during
541 coinfection, only mutation. All graphs show results from 100 replicates (the line width is
542 from the 2.5th to the 97.5th percentile).

543

544 **Figure 4.** Minigenome assays were performed in 293T cells. Pol I -firefly luciferase
545 minigenome reporter, at 0.08 μ g and PCAGGS-Renilla, at 0.1 μ g were transfected with
546 PCAGGS plasmids coding for wildtype and mutated polymerase subunits (PB1, PB2 and
547 PA) and NP at 0.08, 0.08, 0.04 and 0.12 μ g respectively derived from **a)** Eng195 first
548 wave and **b)** Eng687 third wave pH1N1 virus. Luciferase signal was read 24 hours post-
549 transfection. Polymerase activity is given as a ratio Firefly to Renilla signals. One-way
550 ANOVA with Dunnett's multiple comparison test, *** $p < 0.001$, **** $p < 0.0001$, ns= not
551 significant.

552

553 **Figure 5.** Schematic explaining how virus populations change for the donor and direct
554 contact ferrets from Group 1. Large pie charts show the percentage of PB1 K229R + PA

555 P653L mutant (purple) and wild-type viruses (black). Reassortment leads to the
556 generation of the single mutant PA P653L (blue) in the donor which is transmitted to
557 the direct contact. The proportion of PA P653L increases over time due to positive
558 selection. Wildtype virus did not transmit and increases (or decreases) stochastically
559 over time in donor ferrets. Smaller pie charts on each ferret show the sequencing
560 results for PB1 and PA as in Figure 2.

561

562 **S1- Appendix.** This appendix details the sensitivity analysis for the modelling described in
563 Figure 3.

Figure 1

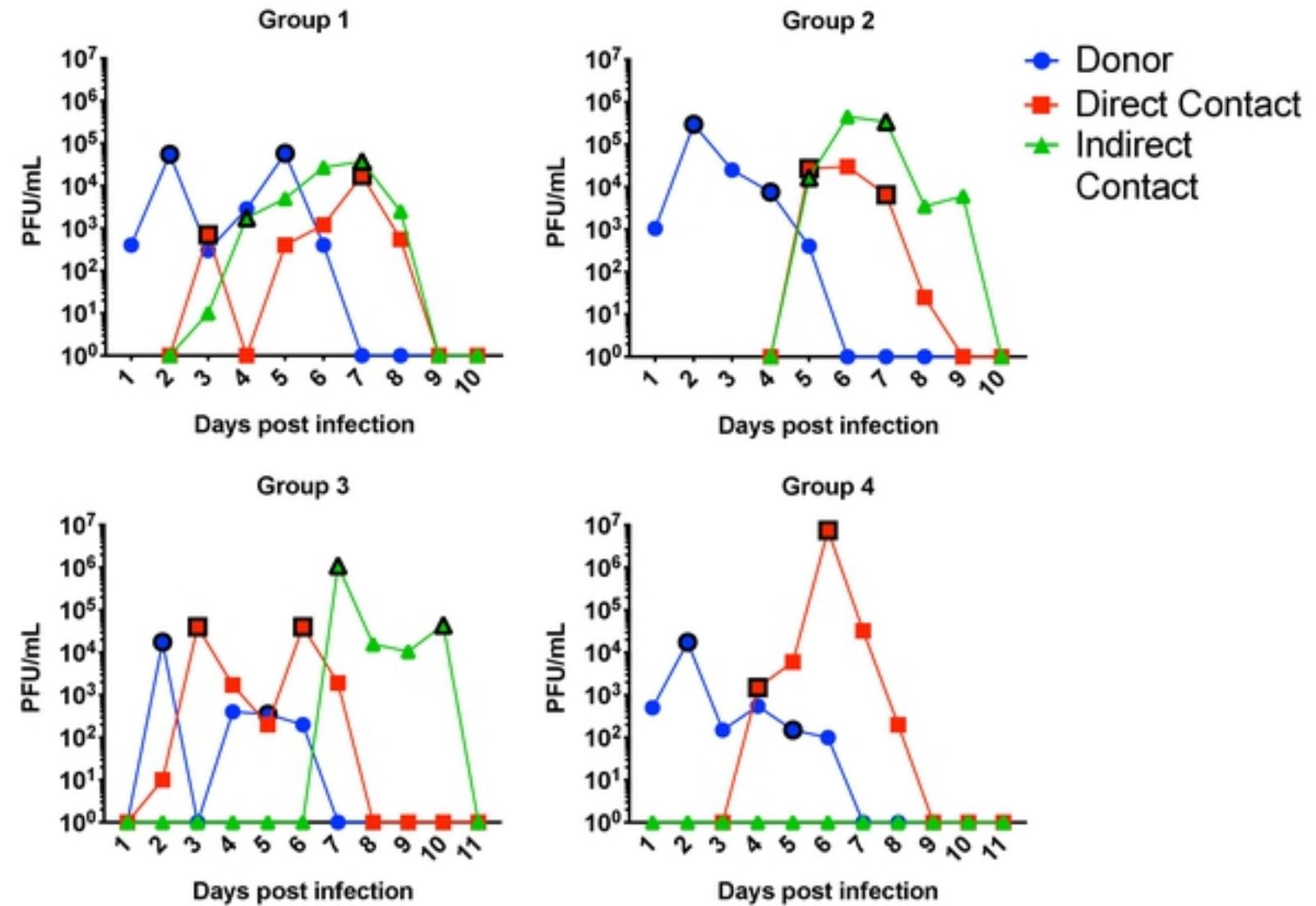


Figure 2

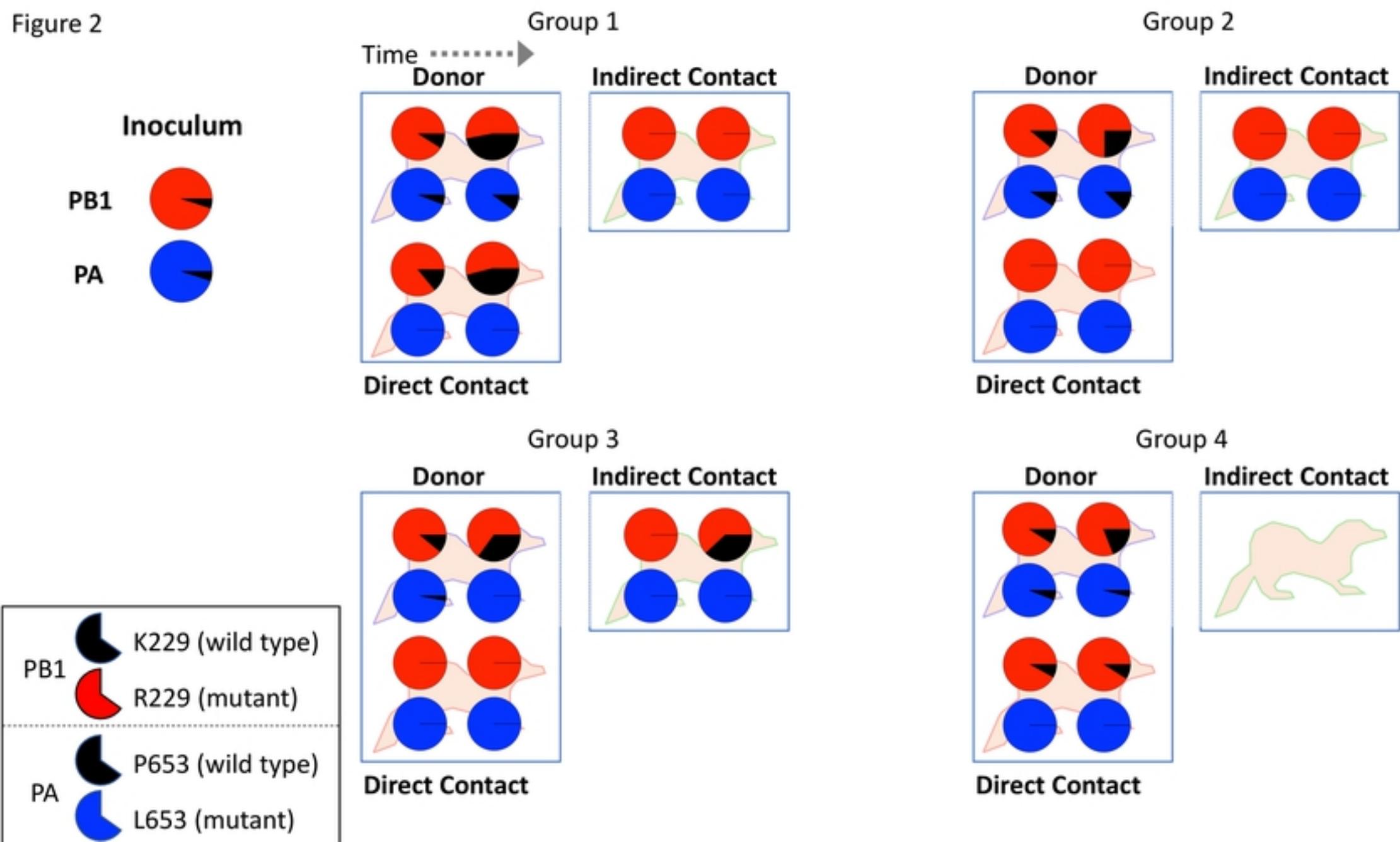
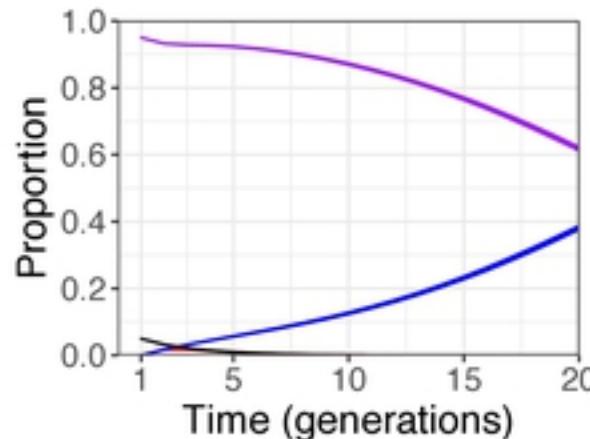
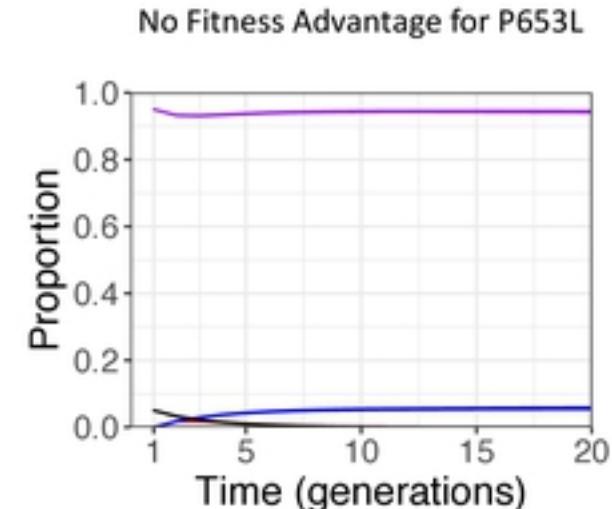
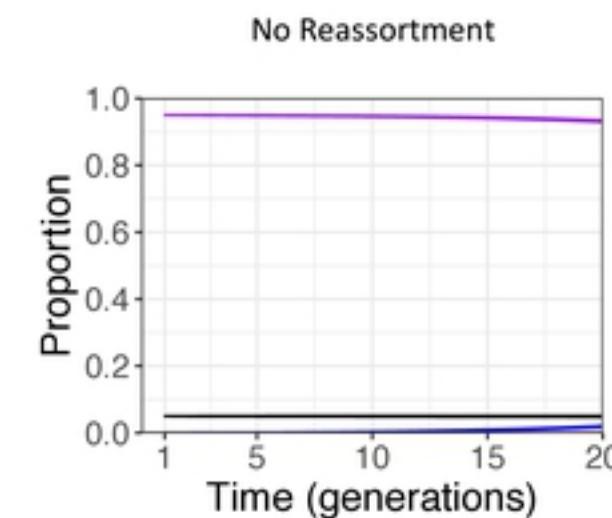




Figure 3

a


b

c

d

PB1 K229R + PA P653L
Wildtype
PA P653L
PB1 K229R

Figure 4

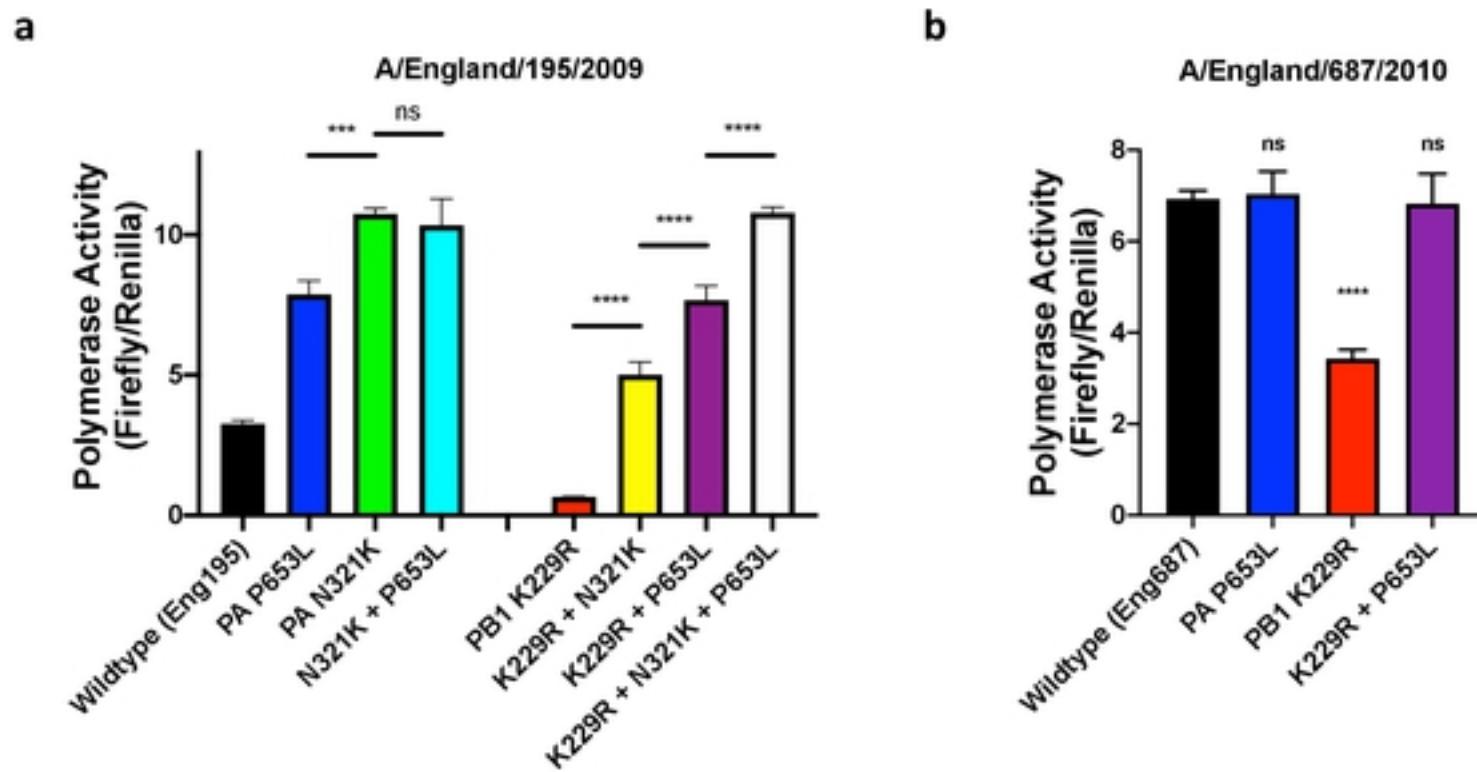
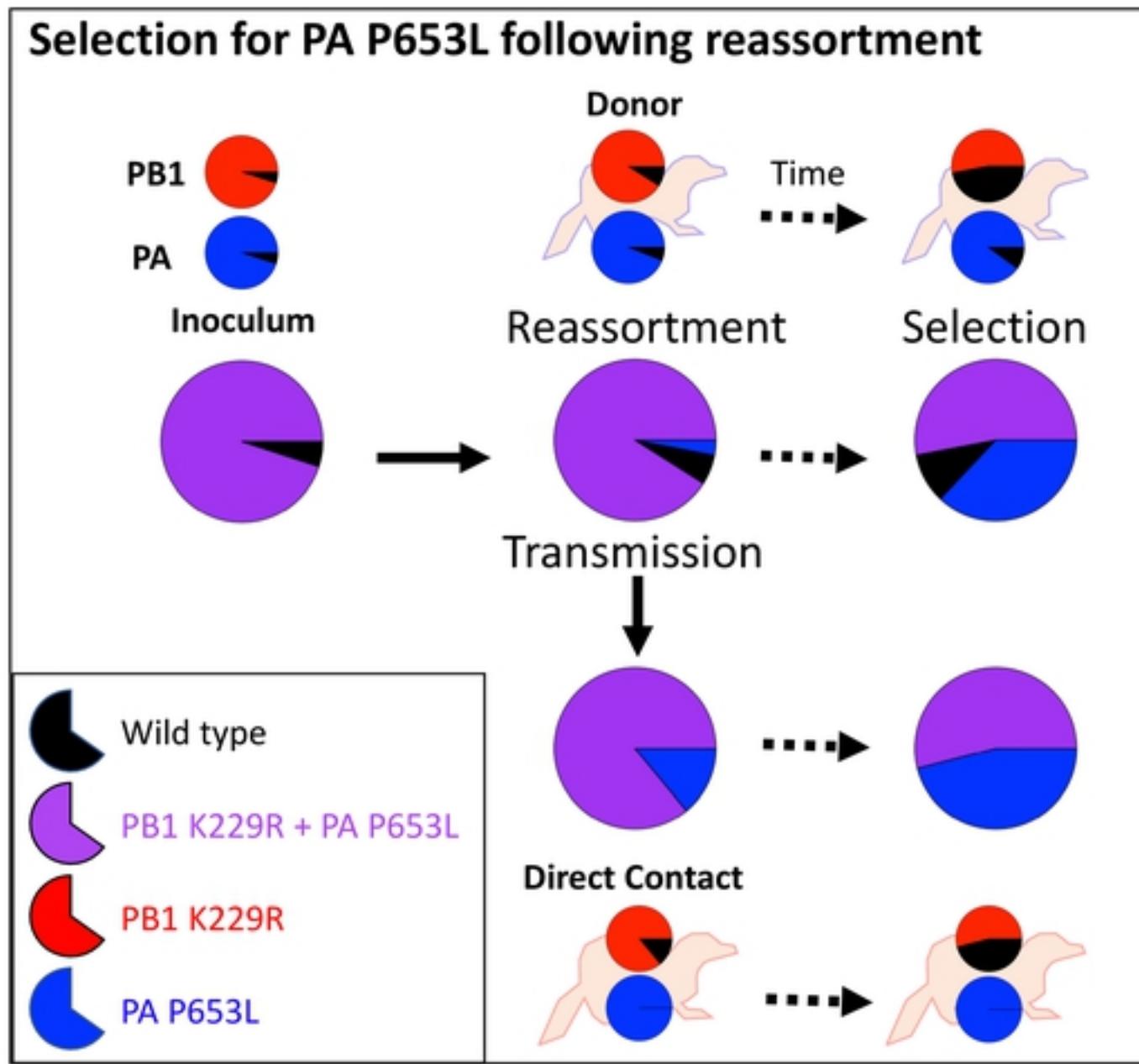



Figure 5

