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ABSTRACT  

Biological processes are inherently continuous, and the chance of phenotypic discovery is 

significantly restricted by discretising them. Using multi-parametric active regression we introduce 

a novel concept to describe and explore biological data in a continuous manner. We have 

implemented Regression Plane (RP), the first user-friendly discovery tool enabling class-free 

phenotypic supervised machine learning. 

  

MAIN TEXT 

Large-scale imaging scenarios, including high-content screening (HCS) and digital pathology 

imaging, have become the de facto tools for discovering drugs, genes and understanding tissue 

physiologies and pathologies, including cancer heterogeneity. This has induced a rapid growth in 

the amount of microscopy data, making it essential to elaborate appropriate bioinformatics tools to 

analyse them, and thus improve the current understanding of underlying biological processes 1,2,3. 

 

Machine learning provides automation for analysing big data, such as that acquired in large-scale, 

image-based experiments, and it has been successfully utilized for phenotypic analysis tasks 4. 

Although a great variety of software tools are available for performing imaging assays in a 

supervised manner (e.g. CellProfiler Analyst, Ilastik, CellCognition, Advanced Cell Classifier 5), 

all of them rely on the assumption that the underlying biological processes have stable steady 

states that can be dissected into discrete phenotypic classes (Fig. 1a). However, biological 

processes are inherently continuous, and modelling them as a set of discrete states may reduce the 

potential to properly understand biological phenomena.  
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The application of traditional classification models for single cell image analysis 6,7,8 is especially 

unreliable when the cells of interest change their morphological features gradually in the course of 

time. Annotation of such data is error-prone and laborious, and even field experts tend to make 

faulty decisions (e.g. in the case of samples with interclass properties), often leading to arbitrary 

labelling. Additionally, user defined classes may obscure the real underlying distribution by 

inappropriate discretization. 

 

Currently, none of the available and widely used software tools enable single-cell based image 

analysis in a continuous, supervised manner. Instead, unsupervised models, such as Lineage 

Reconstruction Techniques (LRT) 9 and Dynamic Time Warping (DTW) prevail. Cycler 8 is an 

LRT and embeds 5 pre-selected image-based single-cell features to a one dimensional (1D) 

continuous space called the cell-cycle trajectory. Similarly, Cai et al. used DTW to align mitotic 

cells into the mitotic standard time based on 6 selected features 10. Indeed, these tools provide 

robust solutions for their targeted tasks, but the lack of expert interaction significantly reduces the 

potential to customize these methods for various purposes. Therefore, another set of tools known 

as Visual Analytics (VA) was developed, offering various techniques for experts to interactively 

change the machine learning model through a visualization interface, which is most often a 

continuous space (visualization map) 11,12. CellCognition was a pioneer of supervised tools, 

designed with the intent to efficiently analyse biological processes, however still using 

classification 7. 

 

Here, we propose a novel methodology called Regression Plane (RP), an interface for fully 

supervised, continuous machine learning appropriate for image-based single-cell analysis. The idea 
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originates from a study of an influenza A virus entry in which histone deacetylase-mediated 

reorganisation of the microtubules led to various endosomal morphological and trafficking 

phenotypes that affected influenza infection 13. The scatteredness of late endosomes and lysosomes 

(single output variable) was determined using regression instead of classification. Restricting the 

output to a single dimension prohibited the modelling of branching, circulating (e.g. cell cycle), 

parallel and crossing processes. Therefore, we have introduced a novel approach to utilize a 2D 

plane (Fig. 1a, Fig. 2a, e). Considering cellular steady-states as graph nodes and gradual changes 

between the states as edges, the biological systems that correspond to planar graphs can be 

modelled with RP. Further extension of the modelling to 3D would increase the complexity of 

labelling and raise the chance of annotation errors. Additionally, to improve the quality of the 

annotated sets and decrease the time required from experts, we have incorporated novel active 

learning methods appropriate for regression-based phenotyping. 

 

Regression Plane is implemented as an open-source module of Advanced Cell Classifier (ACC) 6, 

and it has been available since ACC v3.0. RP was incorporated into traditional phenotypic 

classification in a hierarchical manner: each class may be extended with a distinct regression plane, 

allowing multiple regression planes to be incorporated into a single project. RP is easy to use, well 

documented and supported by video tutorials (Suppl. Materials 1-3). Annotation is performed by 

assigning continuous labels to representative cells via placing them on a 2D plane. After training, 

RP predicts the position of every unlabelled cell and outputs versatile and easy-to-read visual 

representations at single-cell, population and treatment levels (for details see Online Methods). 
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Similarly to classification, a representative Training Set (TS) is also essential for RP. Active 

learning algorithms are routinely used in classification to find the most efficient TS 14 but are not 

widely used in regression 15. In this work, we introduce various active regression algorithms by 

extending those used in classical active learning tasks (Suppl. Fig. 1a). These methods propose 

cells whose automatic prediction on the regression plane is uncertain or ambiguous. Details are 

reported in Online Methods. 

 

To analyse data discovery capabilities of RP, we have generated a synthetic HCS image dataset 

simulating drugs perturbing cell shape and protein expression (Fig. 2a-c). Details about the 

modelled biological processes are reported in Online Methods. Ten microscopy experts were 

asked to identify the distinct underlying processes in the experiment (Suppl. Note 1). The first 

group of five experts used ACC v2.1 to annotate cells with discrete labels, while the other group 

used RP only (ACC v3.0). Despite the great variety of the regression planes created by the 

microscopists (Suppl. Fig. 2), the results obtained using RP significantly outperformed the 

classification, both in terms of precision and recall (Fig. 2d). Specifically, the experts using RP 

performed better in estimating the number of ongoing processes, and achieved, on average, an 

improvement of approximately 20% in precision and 5% in recall, upon defining image sets 

containing cells with similar behaviour.  

 

Next, we have evaluated whether siRNA perturbations of candidate genes, previously revealed to 

influence blood triglyceride (TG) levels in humans in a genome-wide association study 16, would 

affect the morphology of lipid droplets (LDs) in cultured hepatocytes (Huh7 cell line). Regarding 

their continuous changes in localization, number and size, LDs form a heterogeneous population 
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reflecting different cellular metabolic states 17. Thus, RP was used for the analysis of neutral lipids 

in lipid droplets labelled with LipidToxGreen (Suppl. Fig. 3a, b, c). To train the model, 457 cells 

were placed on the regression plane by a microscopy expert (Fig. 2e). We found that siRNA-

mediated knockdown of TM6SF2 (a gene associated with decreased blood TGs) led to increased 

intracellular staining of neutral lipids, as it had been expected from the earlier evidence of TM6SF2 

affecting hepatic lipid droplet content and TG secretion 18. In contrast, the cells transfected with 

siRNAs targeting CD300LG (a gene associated with increased blood TGs 16) showed a decreased 

amount of intracellular TGs, accompanied by the disappearance of (larger) LDs. Additional 

biochemical analysis measuring cellular TG levels confirmed these findings (Suppl. Fig. 3d). 

These data provide the first functional evidence for the role of CD300LG in regulating TG 

metabolism in hepatocytes. 

Intriguingly, the knockdown of TM4SF5 (a gene associated with decreased blood TGs) which 

codes for a protein functioning as an arginine sensor and mTORC1 regulator on lysosomal 

membranes 19, not shown earlier to affect triglyceride levels, promoted the increase of small LDs 

(Fig. 2f). Meta-visualization and clustering of the regression planes (Fig. 2g, Suppl. Fig. 3e-h) 

further supplemented the findings from an earlier study 16,  and suggest that CD300LG and 

TM4SF5 may have biological effects on hepatic TG levels and LD composition, to be further 

addressed in future studies. Details are reported in Online Methods.  

 

We tested the capabilities of RP on 2 different time-resolved datasets. First, RP has been 

demonstrated to be capable of reproducing an unsupervised mitotic time model developed in the 

MitoCheck project (www.mitocheck.org, for details see Online Methods). Secondly, hemocyte 

differentiation was evaluated in Drosophila melanogaster. Hemocytes are blood cells of 
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invertebrates that play a role in immune defense. Following infestation by a parasitic wasp, the 

larvae of D. melanogaster produce a special blood cell type called lamellocyte, to isolate the 

invader by forming a multilayer capsule around the wasp’s egg 20. Several lineage tracing studies 

have indicated that these capsule forming lamellocytes differentiate from phagocytic 

plasmatocytes upon immune induction - which were underscored by findings of the most recent 

transcriptome analyses 21,22,23. It has also been suggested that the lamellocyte pool actually consists 

of two cell types, including the larger type I lamellocyte and the smaller type II lamellocyte, of 

which only type II lamellocytes originate from plasmatocytes 24. To resolve this contradiction, we 

developed an ex vivo method for culturing Drosophila hemocytes, appropriate for monitoring their 

differentiation with time-lapse microscopy. Blood cell types can be characterized by their 

morphologies and in vivo transgenic reporter expression pattern 24. The regression plane was 

manually trained using 109 cells based on their morphology and reporter gene expression (Fig. 

2h). The analysis revealed that 5.6% of the plasmatocytes trans-differentiated into lamellocytes 

upon immune induction (wounding) of the larvae (the threshold line is indicated in Fig. 2j). 

However, instead of identifying 2 clearly separated subtypes I and II), we have observed that the 

differentiation processes are evenly distributed on the regression plane, as reflected by specific 

features (Fig. 2i, j, k). This finding suggests that type I and type II lamellocytes, both 

differentiating from plasmatocytes, are not definitely distinguishable cell types, but rather they are 

two extreme stages of a size continuum (Fig. 2l). Details are reported in Online Methods. 

 

Regression Plane increases the resolution of classification to represent subtle phenotypic 

differences by exploiting regression techniques, extended by active learning. First, using artificial 

datasets we have demonstrated its capability to outperform the available classification tools in 
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phenotypic discovery. Second, we have applied RP to analyze lipid droplets in cultured hepatic 

cells, serving as a model of a heterogeneous population that reflects different cellular metabolic 

states, and have revealed genes playing a crucial role in regulating triglyceride levels in 

hepatocytes. Finally, we have identified the previously undiscovered continuous characteristics of 

hemocyte differentiation in Drosophila melanogaster. Our findings indicate that RP is a promising 

tool to explore biological data in a continuous manner, reflecting the non-discrete nature of 

biological processes. 

 

METHODS 

Methods, including statements of data availability and associated accession codes and references 

are available in the online version of the paper. 

Note: Supplementary information and Source Data files are available in the online version of the 

paper. 

 

ACKNOWLEDGEMENTS 

The authors thank Antti Lehmussola and Pekka Ruusuvuori (Tampere University of Technology, 

Finland) for the information provided about the SIMCEP software; Samuli Ripatti and Ida Surakka 

(FIMM, Helsinki, Finland) for their valuable comments on our experiments related to the genes 

associated with dyslipidemia; Elina Ikonen and Anna Uro (Faculty of Medicine, University of 

Helsinki) for providing expertise in the biochemical quantification of lipid levels; the FIMM High 

Throughput Biomedicine Unit for providing access to high throughput robotics and siRNA library 

(HiLIFE, University of Helsinki and Biocenter Finland); Antti Hassinen and Olli Kallioniemi 

(FIMM, Helsinki, Finland) for their support with HC-imaging capabilities; Gabriella Tick and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Máté Görbe (BRC, Szeged, Hungary) for their help with the software documentation; Csaba 

Molnár (BRC, Szeged, Hungary) for his expertise on image analysis; the Finnish Grid and Cloud 

Infrastructure (urn:nbn:fi:research-infras-2016072533) for computational resources; Dóra Bokor 

(BRC, Szeged, Hungary) for proofreading the manuscript. 

 

FUNDING 

ASZ, BT, AB, EM and PH acknowledge support from the Hungarian National Brain Research 

Program (MTA-SE-NAP B-BIOMAG), from the LENDULET-BIOMAG Grant (2018-342), from 

the European Regional Development Funds (GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-

2016-00026, GINOP-2.3.2-15-2016-00037), from the H2020 (ERAPERMED-COMPASS, 

DiscovAIR), and from the Chan Zuckerberg Initiative (Deep Visual Proteomics). VP, LP and PH 

acknowledge support from the Finnish TEKES FiDiPro Fellow Grant 40294/13 and FIMM High 

Content Imaging and Analysis Unit (FIMM-HCA; HiLIFE-HELMI) and Biocenter Finland, 

Juselius Foundation, Academy of Finland Centre of Excellence in Translational Cancer Biology 

and Finnish Cultural Foundation. FP acknowledges support from the Union for International 

Cancer Control (UICC) for a UICC Yamagiwa-Yoshida (YY) Memorial International Cancer 

Study Grant (ref: UICC-YY/678329). VH acknowledges support from the National Research, 

Development and Innovation Office (OTKA K-131484). JP, LP acknowledges support from the 

Academy of Finland, decision numbers 295694, 313748, 327352 and 310552. 

 

AUTHOR CONTRIBUTIONS 

PH conceived and led the project. ASZ developed the Regression Plane tool. ASZ and AB 

developed the trajectory tool. TB debugged and released the software. ASZ, FP, TB, IGV, EM, LP, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


ST, VP and VH designed and performed the experiments. ASZ, FP, AB and VP tested the software 

tool. YY, IA, JP and PH supervised the project. FP prepared the documentation and website. ASZ, 

FP, VP, VH and PH, wrote the manuscript. ASZ, FP and IB prepared the figures included in the 

paper. All authors read and approved the final manuscript. 

 

COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial interests.  

 

REFERENCES (MAIN TEXT)  

 

1. Carragher, N., Piccinini, F., Tesei, A., Trask Jr, O. J., Bickle, M., & Horvath, P. Concerns, 

challenges and promises of high-content analysis of 3D cellular models. Nature Reviews Drug 

Discovery, 17(8), 606-606 (2018). 

 

2. Caicedo, J. C., Cooper, S., Heigwer, F., Warchal, S., Qiu, P., Molnar, C., Vasilevich, A. S., 

Barry, J. D., Bansal, H. S., Kraus, O., Wawer, M., Paavolainen, L., Herrmann, M. D., Rohban, M., 

Hung, J., Hennig, H., Concannon, J., Smith, I., Clemons, P. A., Singh, S., Rees, P., Horvath, P., 

Linington, R. G., & Carpenter, A. E. Data-analysis strategies for image-based cell profiling. 

Nature Methods, 14(9), 849-863 (2017). 

 

3. Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., & Van Valen, D. Deep learning for 

cellular image analysis. Nature Methods, 16, 1233–12461 (2019).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Sommer, C., & Gerlich, D. W. Machine learning in cell biology–teaching computers to 

recognize phenotypes. Journal of Cell Science, 126(24), 5529-5539 (2013). 

 

5. Smith, K., Piccinini, F., Balassa, T., Koos, K., Danka, T., Azizpour, H., & Horvath, P. 

Phenotypic image analysis software tools for exploring and understanding big image data from 

cell-based assays. Cell Systems, 6(6), 636-653 (2018). 

 

6. Piccinini, F., Balassa, T., Szkalisity, A., Molnar, C., Paavolainen, L., Kujala, K., Buzas, K., 

Sarazova, M., Pietiainen, V., Kutay, U., Smith, K., & Horvath, P. Advanced cell classifier: user-

friendly machine-learning-based software for discovering phenotypes in high-content imaging 

data. Cell Systems, 4(6), 651-655 (2017).  

 

7. Held, M., Schmitz, M. H., Fischer, B., Walter, T., Neumann, B., Olma, M. H., Peter, M., 

Ellenberg, J., & Gerlich, D. W. CellCognition: time-resolved phenotype annotation in high-

throughput live cell imaging. Nature Methods, 7(9), 747-754 (2010). 

 

8. Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L., & Liberali, P. Trajectories of cell-cycle 

progression from fixed cell populations. Nature Methods, 12(10), 951-954 (2015). 

 

9. Kester, L., & van Oudenaarden, A. Single-cell transcriptomics meets lineage tracing. Cell Stem 

Cell, 23(2), 166-179 (2018). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Cai, Y., Hossain, M. J., Hériché, J. K., Politi, A. Z., Walther, N., Koch, B., Wachsmuth, M., 

Nijmeijer, B., Kueblbeck, M., Martinic-Kavur, M., Ladurner, R., Alexander, S., Peters, J. M., & 

Ellenberg, J. Experimental and computational framework for a dynamic protein atlas of human cell 

division. Nature, 561(7723), 411-415 (2018). 

 

11. Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Peltonen, J., Weiskopf, D., North, S. C., & 

Keim, D. A. What you see is what you can change: Human-centered machine learning by 

interactive visualization. Neurocomputing, 268, 164-175 (2017). 

 

12. Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., & Chen, L. Data 

visualization with multidimensional scaling. Journal of Computational and Graphical Statistics, 

17(2), 444-472 (2008). 

 

13. Yamauchi, Y., Boukari, H., Banerjee, I., Sbalzarini, I. F., Horvath, P., & Helenius, A. Histone 

deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathogens, 

7(10), e1002316 (2011). 

 

14. Sverchkov, Y., & Craven, M. A review of active learning approaches to experimental design 

for uncovering biological networks. PLoS Computational Biology, 13(6), e1005466 (2017). 

 

15. Kumar, P., & Gupta, A. Active Learning Query Strategies for Classification, Regression, and 

Clustering: A Survey. Journal of Computer Science and Technology, 35(4), 913-945 (2020). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nature 

Genetics, 47(6), 589-597 (2015). 

 

17. Olzmann, J. A., & Carvalho, P. Dynamics and functions of lipid droplets. Nature Reviews 

Molecular Cell Biology, 20(3), 137-155 (2019). 

 

18. Mahdessian, H., Taxiarchis, A., Popov, S., Silveira, A., Franco-Cereceda, A., Hamsten, A., 

Eriksson, P. & van't Hooft, F. TM6SF2 is a regulator of liver fat metabolism influencing 

triglyceride secretion and hepatic lipid droplet content. Proceedings of the National Academy of 

Sciences, 111(24), 8913-8918 (2014). 

 

19. Jung, J. W., Macalino, S. J. Y., Cui, M., Kim, J. E., Kim, H. J., Song, D. G., Song, G., Nam, S. 

H., Kim, S., Choi, S., & Lee, J. W. Transmembrane 4 L six family member 5 senses arginine for 

mTORC1 signaling. Cell Metabolism, 29(6), 1306-1319 (2019). 

 

20. Evans, C. J., Hartenstein, V., & Banerjee, U. Thicker than blood: conserved mechanisms in 

Drosophila and vertebrate hematopoiesis. Developmental Cell, 5(5), 673-690 (2003). 

 

21. Honti, V., Csordás, G., Kurucz, É., Márkus, R., & Andó, I. The cell-mediated immunity of 

Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and 

regulation. Developmental & Comparative Immunology, 42(1), 47-56 (2014). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Cattenoz, P. B., Sakr, R., Pavlidaki, A., Delaporte, C., Riba, A., Molina, N., Hariharan, N., 

Mukherjee, T., & Giangrande, A. Temporal specificity and heterogeneity of Drosophila immune 

cells. The EMBO Journal, e104486 (2020). 

 

23. Tattikota, S. G., Cho, B., Liu, Y., Hu, Y., Barrera, V., Steinbaugh, M. J., Yoon, S. H., 

Comjean, A., Li, F., Dervis, F., Hung, R. J., Nam, J. W., Sui, S. H., Shim, J., & Perrimon, N. A 

single-cell survey of Drosophila blood. Elife, 9, e54818 (2020). 

 

24. Anderl, I., Vesala, L., Ihalainen, T. O., Vanha-Aho, L. M., Andó, I., Rämet, M., & Hultmark, 

D. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila 

melanogaster larvae after wasp infection. PLoS Pathogens, 12(7), e1005746 (2016). 

 

25. Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar, C., Mathe, B., Grexa, I., Molnar, J., 

Balind, A., Gorbe, M., Kovacs, M., Migh, E., Goodman, A., Balassa, T., Koos, K., Wang, W., 

Caicedo, J. C., Bara, N., Kovacs, F., Paavolainen, L., Danka, T., Kriston, A., Carpenter, A. E., 

Smith, K., & Horvath, P. nucleAIzer: A parameter-free deep learning framework for nucleus 

segmentation using image style transfer. Cell Systems, 10(5), 453-458 (2020).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE LEGENDS 

Figure 1 

 

 

 

(a) Classification vs regression. The classical way to model a biological process includes the 

phenotypical analysis of cells (i.e. subdividing cells into classes). However, in a high-content 

screening scenario, the multitude of different phenotypes makes it extremely challenging to create 

a set of representative classes. A possible solution builds on using a regression line, allowing to 

represent a single effect without the need of discretization. Nonetheless, biological processes are 

typically characterized by numerous ongoing effects. Thus, the regression plane represents a good 

trade-off between visualization capabilities and annotation complexity. Basically, it allows to 

represent a biological process with the limits of a planar graph. (b) Active regression. The aim of 

an active regression algorithm is to improve the training set (TS) to achieve better prediction 

performance. It is an iterative process where a cell that is difficult to annotate is proposed to the 

oracle who annotates it, and by doing so moves it to the TS used to train the regression model. 
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Figure 2 
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(a) Synthetic dataset. Image from the synthetic dataset, generated using SIMCEP. (b) RP ground 

truth. Regression plane generated by automatically placing 300 cells on it. We modelled 6 

continuous biological processes, plus an extra process with uniformly distributed cells (latent 

process 7). (c) Ground truth processes. The 6 continuous processes are modelled between two 

fixed endpoints: green cells of highly irregular shape and red, rounded cells. To assign a colour to 

the middle point of each process we interpolated between white (process 1) and blue (process 6). 

(d) Classification vs regression applied on synthetic data. Comparison of the performance of 

regression and classification. Statistics: precision, recall and the number of identified processes. (e) 

Lipid droplet dataset. Regression plane of 457 cells representing various lipid morphologies, 

created by an expert biologist. (f) RP output. Kernel Density Estimation (KDE)-maps of the 

predicted regression positions for cells treated with selected siRNAs. Arrows originate from the 

peak of the control KDE-map, and point to the peaks of the selected KDE-maps. (g) HCS 

analysis. Plate-based analysis performed by comparing well-based KDE-maps. Meta-visualization 

is obtained by extracting the principal components (PC1 and PC2) of the flattened KDE-maps. (h) 

Hemocyte dataset analysis. 109 cells were placed on the regression plane by a microscopy expert. 

Cells were segmented by applying the NucleAIzer 25 deep learning method on brightfield 

microscopy images. (i) Single cell features. Colour-coded feature values overlay on the predicted 

cells. (j) Density plots. Top: Kernel Density Estimation of single cells. Bottom: 2,323 cell 

trajectories on the regression plane. (k) Histogram plots. Top: Cell differentiation speed on the 

regression plane. Bottom: Trajectory histogram (2D on the regression plane and 1D projection 

with trajectory counts) including only those trajectories that reach beyond the green line in (j). (l) 

Selected cell trajectories. Representative phenotypes highlighted in (j).  
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ONLINE METHODS 

 

Synthetic dataset 

We generated a synthetic dataset by modelling 6 continuous biological processes representing 

continuous changes from one cell state to another, plus an extra process (latent process 7) formed 

from uniformly distributed cells (Fig. 2b). To generate the dataset we used a customized version of 

SIMCEP 26, provided as Supplementary Material 4. Synthetic microscopy images were 

organized into a 24-well plate format, and the dataset was composed of 9 images/well, for a total 

of 216 images and approximately 10,000 cells. The images of each well were generated by 

considering a predominant process mixed with other ones. To model the continuous processes we 

fixed two endpoints: green cells of highly irregular shape, and red, rounded cells (Fig. 2c). The 

degree of cell shape deformation decreases from the green to the red endpoint. Next, for each 

process we selected a middle point, and assigned a colour to that, ranging from white (process 1) 

to blue (process 6). The colour of the cells in each process was then defined by linear interpolation 

between the colour of the middle point and one of the two endpoints. The generated dataset was 

deposited to the Broad Bioimage Benchmark Collection (BBBC), and it is freely available at: 

https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID: BBBC031). 

 

Lipid droplet dataset 

Lipid droplets are storage units for neutral lipids, including triglycerides, and play a significant 

role in several disorders, including e.g. cardiovascular diseases. The lipid droplet dataset evaluated 

with RP was derived from a previous genome-wide association study, in which hepatocytes 

(Huh7) were transfected with 1-7 siRNAs (10 nM/gene) for 72 h to silence the expression of 
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specific genes, allowing to examine their relationship with lipid formation. The effects of siRNAs 

on cellular neutral lipids (TG and cholesteryl esters) were scored by using a probe validated for 

quantitative analysis of neutral lipids. The cells were displaced into a 384-well plate, and after 72 h 

of siRNA transfection they were fixed with 4% paraformaldehyde, followed by staining for LDs 

with   GreenTM (Invitrogen) and for nuclei using 300 nM DAPI (Sigma-Aldrich) for 30 min at 

room temperature. Finally, 9 images/well were acquired per channel for 2 identical plates with an 

automated epifluorescence ScanR microscope (Olympus) equipped with a 150W Mercury-Xenon 

mixed gas arc burner, a 20× long working distance objective (UIS2) and a digital monochrome 

CCD camera (Hamamatsu), yielding a total of 3,956 images of 232,084 cells (>2,200 cells per 

siRNA). The list of the siRNAs used and the corresponding target genes is provided as 

Supplementary Material 6. The generated dataset was deposited to FigShare, and it is 

permanently available at: https://doi.org/10.6084/m9.figshare.c.5067638.v1. To validate our 

findings, additional biochemical analysis was performed by siRNA-transfecting Huh7 cells, 

collected in 0.2 N NaOH, followed by extracting the lipids. TGs and cholesteryl esters were 

resolved on TLC plates using hexane/diethyl ether/acetic acid (80:20:1) as the mobile phase. 

 

MitoCheck dataset 

Cai et al. 10 analysed cell mitosis by performing time-lapse experiments to establish a canonical 

model for the morphological changes appearing during the mitotic progression of human cells. In 

particular, they reorganized the feature space according to the mitotic standard time instead of the 

imaging time (see Fig. 2d in 10), and by applying an unbiased peak-detection method in the warped 

feature space they identified up to 20 mitotic stages. The model was then used to integrate dynamic 
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concentration data of several fluorescently knocked-in mitotic proteins, and to create a generic 

dynamic protein atlas of human cell division. 

Their public data include 3D images and segmented masks of 31 z-stacks. We intended to analyse 

this dataset without using prior feature information about the underlying process by exploiting 

regression techniques to characterize mitosis. 

In our analysis, a field expert created a regression plane representing the process of mitosis, 

resulting in a training set of 585 cells (Suppl. Fig. 4a). After prediction, the cells followed the 

designed circular path recalling canonical mitotic phases (Suppl. Fig. 4b-c), while they also 

represented subtle phenotypic changes and single-cell differences in the regression plane. Finally, 

we compared the results of the original methodology presented by Cai et al. (Multi-dimensional 

Dynamic Time Warping for creating the standard mitotic time, Suppl. Fig. 4d) with the results 

obtained by RP (Suppl. Fig. 4e), and we concluded that RP is capable of reproducing a mitotic 

time model equivalent to the original one. This indicates that RP is able to compete with complex 

analysis techniques, such as DTW. Additionally, RP provides the flexibility to customize the 

output space, enabling higher resolution analysis of user-defined sections of the biological process.  

 

Blood cell differentiation dataset 

The fruit fly, Drosophila melanogaster, serves as a popular model system to study innate immune 

functions, such as phagocytosis, wound healing and capsule formation 20. In the larva, these 

functions are executed by hemocytes, which are categorized into three main cell types: (1) 

phagocytic plasmatocytes, accounting for the majority of circulating hemocytes, (2) crystal cells, 

which play a role in melanization and wound healing, and (3) lamellocytes, which are large flat 

cells that appear only in certain tumorous genetic backgrounds or following immune induction 21 
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Such an immune induction appears in nature as a result of egg-laying by a parasitoid wasp, 

Leptopilina boulardi. Following infestation, newly differentiating lamellocytes, together with 

plasmatocytes, eliminate the invader by forming a multilayer capsule around the wasp’s egg 27,28,29. 

Lamellocytes are also produced when larvae are wounded with an insect pin 30. (Suppl. Fig. 5c) 

Cell lineage-tracing studies revealed that plasmatocytes, which had previously been considered as 

terminally differentiated phagocytic cells, show plasticity, and are capable of differentiating into 

encapsulating lamellocytes upon immune induction 31,32,33,21. This trans-differentiation process has 

been underlined by recent single-cell RNA sequencing studies 22,23. However, the cells 

intermediate of the plasmatocyte-lamellocyte transition process have not been characterized 

morphologically in detail so far, and the routes of differentiation are still controversial. A study by 

Anderl et al. 24 described two types of lamellocytes, and suggested that only the smaller type II 

lamellocytes (Suppl. Video 1) differentiate from plasmatocytes, while the regular, flattened type I 

lamellocytes (Suppl. Video 2) originate from dedicated precursors. 

To clarify the potential routes of differentiation, we set up an ex vivo method for hemocyte 

culturing and differentiation. According to Anderl et al. 24, for the live experiments, we used 

eaterGFP as a marker of plasmatocytes, and MSNF9MOmCherry as a marker of lamellocytes. 

Early third instar Me larvae (eaterGFP, MSNF9MOmCherry; 24) were immune induced by 

wounding the cuticle with an Austerlitz Insect Pin® of 0.2 mm in diameter. Wounded larvae were 

kept on standard Drosophila food at 25 °C. Circulating blood cells were isolated 12 hours after 

wounding. Blood samples of 10 larvae were collected, pooled in 300 µl Schneider’s medium 

(Lonza, Cat: 04-351 Q) supplemented with 10% fetal bovine serum (FBS; Gibco, Cat: 10270) plus 

0.01 mg/ml gentamicin (Sigma, Cat: G3632), 0.065 mg/ml penicillin (Sigma, Cat: P7794) and 0.1 
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mg/ml streptomycin (Sigma, Cat: S6501). Next it was spread into a well chamber of an 8-well µ-

slide (Ibidi, Cat: 80826). Both sample storage and microscopic analysis were carried out at 25 °C.  

We acquired 15-frame image sequences/field (141 fields) on 3 channels: brightfield, mCherry, and 

EGFP, with 2-hour-gaps between the subsequent frames. Images were acquired with a high-

content screening microscope (Operetta, Perkin Elmer) equipped with a 60× high-numeric-aperture 

objective and a digital high resolution 14-bit CCD camera, yielding a total of 4,230 images (2 

plates, 2,115 images in each). The image size was 1360×1024 pixels and 8-bit per channel, in TIFF 

format. The generated dataset was deposited to FigShare, and it is permanently available at: 

https://doi.org/10.6084/m9.figshare.c.5075093.v1.  

Using the method described above, we found that 5.6% of the plasmatocytes are capable of trans-

differentiation into lamellocytes (Suppl. Videos 3-4), which is well reflected by the expression of 

cell type specific transgenes. After the formation of lamellocytes, no significant alterations in their 

cell size were observed, indicating that all types of lamellocytes are terminally differentiated cells. 

Most of the plasmatocytes (94.4%), however, did not differentiate into lamellocytes, but either 

spread out, increasing their cell size, or kept their size and morphology during the experiment, 

which is in line with the results of in vivo studies on blood cell differentiation in Drosophila. 

 

Image segmentation and feature extraction 

In order to classify the cells in an image, ACC requires the position and features of each cell to be 

analyzed. For this purpose, we first flattened illumination distortions of the acquired images by 

using CIDRE 34. Then, we used CellProfiler 35 and the NucleAIzer deep learning framework 25 to 

segment the cells and extract the standard features describing morphology, intensity and texture 
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characteristics. Details of the image analysis and the regression models used in each experiment 

are reported in Supplementary Note 2. 

 

Regression models 

Regression methods, a subgroup of supervised machine learning techniques, are aiming at 

approximating continuous target variables. Alike for classification, various models have been 

proposed for regression, ranging from linear regression to neural networks and random forests 36.  

The diverse set of regression models raise the problem of model selection for RP. As the RP is 

completely user-defined, it is impossible to have any prior assumptions on the function to be 

learnt, hence model selection should be data-driven. RP provides cross-validation assessment of 

model performance by root mean squared error measure (RMSE) and relative RMSE 37. 

Additionally, two important aspects are to be considered when selecting the model. 

First, the two-dimensional output format of RP requires the use of multi-target regression, as we 

require a 2D position (expressed by 2 coordinates) to be predicted. Traditionally, regression 

models aim at predicting a single continuous variable, which may be naturally extended for 

multiple dimensions by considering the outputs as independent variables, also called the single-

target (ST) method 38. On the contrary, it has been reported several times that multi-target models 

that exploit the possible correlation between the output variables may yield significantly better 

results than the ST methods 39,40. Consequently, when a strong relationship between the output 

variables is evident, choosing a multi-target regression model is more appropriate. 

Secondly, models that are capable of providing a probabilistic output (i.e. those that provide not 

only the predictive mean, but also some sort of uncertainty) are less wide-spread for regression 

than for classification. However, uncertainties provide valuable information to assess the model’s 

performance, and most of the active learning strategies essentially rely on them. 
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Gaussian processes (GPs) can be used as non-parametric regression models with a probabilistic 

output 41. Instead of providing a single prediction for each cell, GP returns a normal distribution 

whose mean can be used as the predicted value. More importantly, its variance is an estimate for 

the uncertainty of the given cell. GP is originally considered as a single-target method, however, 

its multi-target extensions also exist and are known as co-kriging 42,39. 

Although GP is a non-parametric method (hence training is not required in principle), it still has 

hyperparameters (mean, covariance, likelihood, inference functions and their parameters) that can 

be optimized for enhanced performance. The most frequently applied iterative optimization 

methods (gradient descents) require initial hyperparameter settings which significantly affect the 

quality of the ultimate hyperparameter set. Consequently, we have designed heuristical 

hyperparameter initialization methods for several mean and covariance functions as described in 

Supplementary Note 3. Due to the broad selection of implementable models, RP provides an 

interface (via Object Oriented Programming) to facilitate the extension of implemented regression 

methods. By default, the package contains bridges to several models from Weka 43, Mulan 44 and 

Matlab’s Deep Learning Toolbox. The full list and instructions on how to include new models are 

provided in Supplementary Note 4. 

 

Active regression  

Usually, the most time consuming part of statistical learning for biomedical applications (including 

shallow and deep learning) is the procedure of annotation, and – as transfer learning is rarely used 

– it is often repeated for new experiments. Active learning 45 aims at reducing the number of 

training samples needed to achieve the most representative training set by automatically proposing 

cells for annotation. It has previously been shown by Smith and Horvath 46 that active learning 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


reduces the time cost of annotation in HCS compared to classical labelling. Most of the active 

classification methods are based solely on the predicted class labels, enabling the underlying 

model to be freely modified. However, these methods are not directly applicable for regression, as 

they assume that the predicted label is discrete. Active regression methods were developed by 

Cohn et al. 47, based on variance reduction for Neural Networks, Mixture of Gaussians and Locally 

Weighted Regression. Here we present novel active regression methods inspired by the general 

active classification approaches, and a specific method for Gaussian Processes utilizing its 

properties (Suppl. Fig. 1). 

Committee Members. The Committee Members approach is inspired by the QueryByCommittee 

active classification method. Similarly to cross-validation, a set of models (committee) is built up 

from the available training samples, and a measure of disagreement is defined for the committee. 

In case of regression, the classical measures cannot be applied directly for two reasons: (1) they 

rely on the fact that the output is discrete, and (2) they require a probabilistic model. Thus, we 

propose using the quadratic mean of the Euclidean distance between the committee consensus and 

the single committee predictions. Hence, the next cell to be labelled by the expert is defined by the 

following formula: 

 

where C is the size of the committee,  is the predicted position for x (a sample not taken from the 

TS) by the ith committee member,  is the mean of , and d is the Euclidean distance. 

Empty Regions. The Empty Regions method targets the cells which were predicted to the least 

dense region of the regression plane in terms of training samples. This heuristic is supposed to 

explore those cell types that are not presented in the TS. 
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Out of Bounds. By design, the regression plane is represented by a unit-square, and has limits in 

each direction. However, this limitation was not incorporated into the regression models, 

consequently it is possible that cells are predicted outside of the regression plane’s boundaries. 

Therefore, we propose a strategy that selects these cells for annotation, ranked by their distance 

from the edges of the regression plane. 

Uncertainty Sampling. When a probabilistic regression model (such as GP) is available, then, 

instead of plain predictions, a posterior distribution is defined for each cell, enabling the 

application of active learning methods aiming at decreasing the variance of this posterior. Our 

proposed method targets the cell with the highest posterior variance, where the final value for the 

selection is determined by taking either the mean, the sum, the product, the minimum or the 

maximum of the 2 separate variances, calculated for each output dimension of the regression 

plane. 

Overall Uncertainty Sampling. GP has an intriguing property, namely that the posterior 

distribution is independent of the actual TS positions; it only depends on the input features and the 

hyperparameters of the GP. In consequence, given fixed hyperparameters, it is possible to exactly 

calculate how the posterior variance changes, assuming that a new cell is included in the TS even 

without knowing its position on the regression plane. Executing this calculation for all possible 

candidates, the resulting cell proposed for annotation is the one that decreases overall variance the 

most. This approach is formulated by: 

 

where N is the size of the full dataset (including the training dataset) and  is the variance for 

xi, supposing that the GP was trained on the available training set extended with x. The predictive 
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variances for individual samples are calculated from the diagonal elements of the predictive 

variance matrix according to 41 by the following formula: 

 

where K is the kernel (covariance) function,  is the feature matrix of samples not yet predicted, 

and X is the feature matrix of the training set’s elements. 

 

We assessed the performance of the proposed active learning methods with 4 regression models: 

Random Forest, Gaussian Process, Neural Network and Support Vector Machine; on 2 of our 

datasets: Lipid droplets and MitoCheck containing 457 and 586 annotated cells respectively. In 

each scenario the experiment started with randomly isolating ⅓ of the available samples to a test 

set, leaving the remaining ⅔ in a pool. Then, 10 cells were randomly selected from the pool for 

initializing the training set, followed by iteratively extending it with 290 cells according to the 

active query strategy. In each iteration a regression model was trained, and the relative root mean 

square error (RRMSE) was calculated on the test set. 

The results from 50 independent runs are displayed on Supplementary Fig. 1b-c. In all but one 

(Gaussian Process in the MitoCheck dataset) scenario there was at least one active learning 

technique that outperformed random sampling, despite the high variance of error values among 

different regression models. The Random Forest and Gaussian Process models achieved smaller 

RRMSE values than the other two methods inhibiting the active strategies’ ability to significantly 

improve the performance in these cases. Still, the CommitteeMembers strategy resulted in the 

lowest average area under the curve value in 5 out of the 8 cases. We also note that although mean 

prediction error is the most widespread measure of active learning, other aspects of the model 

performance (e.g. model coverage) might be equally interesting for the users. 
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Regression Plane output 

RP provides output in various formats to satisfy the diverse needs of field experts 

(Suppl. Material 3). The simplest output can be obtained by predicting an image in the main 

window of ACC, by clicking on a cell to see its raw regression plane position. Alternatively, in the 

regression plane one can select an arbitrary number of images, so that all cells in those images are 

going to be visualized on the regression plane with their icon at their predicted position. 

Importantly, these predictions can easily be added to the TS as well.  

For well-based analysis, a multi-component report can be generated for each plate. The first 

component of the report is a pdf file containing a heatmap (simple cell count in a discretized 

regression plane) and a kernel density estimation (KDE) visualizing the distribution of cells on the 

regression plane in the particular well (Fig 2f-g). Besides, the difference and the most dense 

position shift between single wells, and the average of user-defined control wells are also included.  

Secondly, RP provides standard visualization tools (PCA, t-SNE 48 and NeRV 49) for assessing the 

relationships among the wells. Each of these methods can generate the figure of Plot of plots (PoP; 

Fig 2h). In PoP each well is represented by its KDE/heatmap, and the distance between these 

representations corresponds to the difference between the wells’ regression plane distributions (i.e. 

similar wells are close in PoP, whilst differing ones are farther from each other). In case of plates 

with higher well-numbers (e.g. 96 or 384) this may result in an overwhelmingly dense diagram, so 

the PoPs can be re-loaded to RP where they can be examined interactively. Importantly, in the RP-

PoP, wells of similar perturbations (replicates) can be highlighted with colours. In addition to these 

tools for visualization, a clustergram can also be generated, providing a way to compare the 

perturbations by performing hierarchical clustering (Suppl. Fig. 3). The matrix in the middle of the 
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clustergram visualizes pairwise Kullback-Leibler divergence between the cell-number weighted 

average of the replicate wells.  

Additionally, RP enables the analysis of underlying image features by the Colour Frame (CF) 

module. CF works by visualizing the feature distribution of cells from the regression plane, using 

an artificial colour scale. In particular, the user selects a specific feature and adjusts the 

visualization settings to define a colour for each cell icon’s frame in the regression plane. 

(Suppl. Fig. 5). Notably, CF can be used either for fine tuning of the TS, or for assessing features 

of interest after prediction. 

Finally, the Trajectory Plot (TP) facilitates the assessment of live-cell data composed of 

time-resolved image sequences of the same fields. Organizing the corresponding single-cells into 

trajectories using the predicted coordinates of the regression plane enables the visualization of the 

dynamics of underlying processes (Fig. 2j-k). TP is a multifunctional visualization tool that 

facilitates a better understanding of the continuous aspect of biological processes, and offers 

several possibilities to investigate cell fates or to compare the development of particular cells as a 

function of time. Filtering functions help to find subgroups of phenotypes with different 

behaviours. Interestingly, the dynamics of the process can be perceived by animating the evolution 

of trajectories (Supplementary Videos 5-9). 

 

Code Availability 

RP is a new module of ACC (current version 3.1). ACC is written in MATLAB (The MathWorks, 

Inc., USA). ACC supports the most common image formats (e.g. tif, bmp, png) and it works under 

Windows 64-bit, Linux, and OS X environments. Source code and standalone versions (which do 

not require a MATLAB license), video tutorials, and help documentation files are publicly 
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available at: www.cellclassifier.org. All the ACC materials are copyright protected and distributed 

under GNU General Public License version 3 (GPLv3). 

 

Data Availability 

Synthetic dataset: https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID: BBBC031).  

Lipid droplet dataset: https://doi.org/10.6084/m9.figshare.c.5067638.v1. 

Drosophila dataset: https://doi.org/10.6084/m9.figshare.c.5075093.v1.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Material 1 

Regression Plane user manual. 

 

Supplementary Material 2 

Video tutorial: “Regression Plane: Annotation Possibilities”. 

 

Supplementary Material 3 

Video tutorial: “Regression Plane: Output Possibilities”. 

 

Supplementary Material 4 

Customized version of SIMCEP, distributed as MATLAB source code under the GNU General 

Public License version 3. 

 

Supplementary Material 5 

MATLAB script provided to the 5 microscopists analysing the synthetic dataset using standard 

classification approaches. 

 

Supplementary Material 6 

Plate layout reporting the targeted genes of lipid droplet screen. 
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Supplementary Note 1 

Description of the synthetic data experiment. 

 

Supplementary Note 2 

Experiment specific Image Analysis pipelines and Regression models. 

 

Supplementary Note 3 

Technical details on hyperparameter initialization. 

 

Supplementary Note 4 

Software developer guide for extending the framework with new Predictors and Active Learning 

methods. 
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Supplementary Figure 1 
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Active regression. (a) Schematic representation of four active regression algorithms implemented 

in ACC. (b) Performance of the proposed methods measured as Relative Root Mean Squared Error 

(RRMSE) (c) Performance of the proposed methods measured as the average Area Under RRMSE 

Curve (lower is better). Methods showing superior performance to random sampling are 

highlighted with green, and the best among these with pink. The plots in both (b) and (c) represent 

the mean from 50 independent runs. Gaussian Processes were trained with constant mean function, 

squared exponential covariance function with automatic relevance determination (covSEard) for 

Lipids and with isotropic distance (covSEiso) for MitoCheck. The Neural Networks were trained 

with a single layer containing 30 nodes with log-sigmoid activation function. Random Forest and 

Support Vector Machine were trained with default parameters from Weka. The size of the 

committee in the CommitteeMembers method was 3. 
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Supplementary Figure 2 

 

Synthetic dataset: Regression Planes. The ground truth regression plane and the annotations 

created by the 5 microscopy experts (i.e. annotators) who analysed the synthetic dataset with RP. 

The gray lines represent the identified processes and have been computed using a Kernel Density 

Estimation function and an energy minimization algorithm for finding the shortest path between 

process endpoints, using Dijkstra’s algorithm. Despite the great variety of the regression planes 

generated by the annotators, in all the cases except for annotator 1, the six non-latent continuous 

processes are represented by separated lines. 
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Supplementary Figure 3 
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Lipid Droplet data analysis. Classification vs regression applied on real-world data. (a) 

Starting from a regression plane including 457 cells created by a microscopy expert, we have 

automatically selected 25 cells that were the closest to the center of the 4 quadrants of the 

regression plane, representing the 4 main cell phenotypes. (b) To visualize the cells belonging to 

the 4 different classes, we used borders of different colours (i.e. red, green, gray, blue). (c) Next, 

we classified the unannotated cells, and simultaneously predicted their position in the regression 

plane. The test revealed several cases of misclassifications: some cells with the same phenotype 

were classified into different classes, while several cells with a clearly different phenotype were 

classified into the same class. (d) Biochemical analysis. Intracellular TG levels in cultured 

hepatocytes (Huh7). siRNA-mediated knockdown of TM6SF2 gene led to an increased level of 

TGs. In contrast, siRNAs targeting CD300LG decreased intracellular TG levels. (e-h) Discovery 

tool: clustergram. Clustergrams obtained by calculating symmetric Kullback-Leibler divergence 

for the KDE-maps (regression) / class probability distributions (classification) of the wells treated 

with different siRNAs. Bright (yellow) values indicate high divergence, meaning that the cells in 

the wells compared to each other have different morphologies. Clustergrams from regression show 

higher variation in the divergence values, better capturing subtle differences in the cell populations 

treated with siRNAs. (e) Plate 01, classification; (f) Plate 01, regression; (g) Plate 02, 

classification results; (h) Plate 02, regression results.  
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Supplementary Figure 4 

 

Mitosis data analysis. (a) Regression plane of 585 cells annotated by a microscopy expert. (b) 

Top: 505 trajectories for all the predicted cells. The median curve is shown in solid blue. Bottom: 

Example of a single-cell trajectory with representative cell icons visualized. (c) Regression plane 

with all (n = 20200) predicted cells. The borders of the cell icons correspond to their nuclear area 

(Colour Frame module). Highlighted regions: Early prophase region, large nuclear area (red). 
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Metaphase region, nuclear area decreased (orange). Early-anaphase region, nuclear area is 

increasing as spindle fibers are pulling chromosomes apart (yellow). Anaphase, nuclear area 

dropped as the nucleus is considered as two separate objects with half the area (green). Late-

telophase, nuclear area increasing up to half of the initial value (blue). 

 (d) Top: Trend for the normalized nuclear area according to standard mitotic time. Gray lines 

represent single cell trajectories. Bottom: Trend for the normalized nuclear area according to the 

regression plane. Gray lines represent single cell trajectories. The coordinates predicted by RP 

were converted to 1D by taking the angle argument of the polar coordinate representation as 

illustrated in (a). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.276089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 5 

 

Blood Cells data validation and segmentation. (a) Exemplary composite image with 3 channels: 

brightfield (gray), GFP (green), mCherry (red). (b) Corresponding results of deep-learning 

segmentation performed on the brightfield channel. (c) Prediction of all the immune induced cells 

on the regression plane. (d) Prediction of all cells from the control experiment on the regression 

plane.  
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Supplementary Videos 1-9 

The supplementary videos are dynamically visualizing the regression plane analysis of live-cell 

experiments. The rectangle in the videos represents the regression plane itself and the trajectories 

are derived from the live-cells’ predicted positions on the plane. Each individual trajectory is 

assigned to a single-cell and the animation shows how the cells traverse on the regression plane as 

the live-cell screening progresses (the path between the actual frames were linearly interpolated).  

 

Supplementary Video 1 

Drosophila Plasmatocyte Differentiating into Type II Lamellocyte 

 

Supplementary Video 2 

Drosophila Plasmatocyte Differentiating into Type I Lamellocyte 

 

Supplementary Video 3 

Drosophila Plasmatocyte Differentiation, dynamic visualization of trajectories using protein 

expression. Trajectories are coloured dynamically, visualizing changes in 2 selected cell features. 

Head-colour: integrated intensity value of eaterGFP representing its expression level. 

Tail-colour: integrated intensity value of MSNF9MOmCherry representing its expression level. 

Expression of eaterGFP was observed in a fraction of both type I and type II lamellocytes, 

however, type II lamellocytes express GFP more frequently and at a higher level. 
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Supplementary Video 4 

Drosophila Plasmatocyte Differentiation, differentiation speed. Trajectories are coloured 

dynamically visualizing the speed of the cells on the Regression Plane. According to the defined 

training strategy, this reflects the speed of differentiation. Colours are ranging from blue (slow) to 

red (fast). Following immune induction, type II lamellocytes start differentiation later than type I 

lamellocytes, however type II lamellocytes differentiate faster and in a continuous manner. 

 

Supplementary Video 5 

Dynamic Visualization of Mitosis. Trajectories show how the cells are traversing on the 

Regression Plane. The highlighted 4 cells are reported in detail in further supplementary videos. 

 

Supplementary Videos 6-9 

Separate, single-cell videos of the highlighted cells in Supplementary Video 5. 
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