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ABSTRACT

Biological processes are inherently continuous, and the chance of phenotypic discovery is
significantly restricted by discretising them. Using multi-parametric active regression we introduce
a novel concept to describe and explore biological data in a continuous manner. We have
implemented Regression Plane (RP), the first user-friendly discovery tool enabling class-free

phenotypic supervised machine learning.

MAIN TEXT

Large-scale imaging scenarios, including high-content screening (HCS) and digital pathology
imaging, have become the de facto tools for discovering drugs, genes and understanding tissue
physiologies and pathologies, including cancer heterogeneity. This has induced a rapid growth in
the amount of microscopy data, making it essential to elaborate appropriate bioinformatics tools to

analyse them, and thus improve the current understanding of underlying biological processes %2,

Machine learning provides automation for analysing big data, such as that acquired in large-scale,
image-based experiments, and it has been successfully utilized for phenotypic analysis tasks *.
Although a great variety of software tools are available for performing imaging assays in a
supervised manner (e.g. CellProfiler Analyst, llastik, CellCognition, Advanced Cell Classifier °),
all of them rely on the assumption that the underlying biological processes have stable steady
states that can be dissected into discrete phenotypic classes (Fig. 1a). However, biological
processes are inherently continuous, and modelling them as a set of discrete states may reduce the

potential to properly understand biological phenomena.
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The application of traditional classification models for single cell image analysis ®”# is especially
unreliable when the cells of interest change their morphological features gradually in the course of
time. Annotation of such data is error-prone and laborious, and even field experts tend to make
faulty decisions (e.g. in the case of samples with interclass properties), often leading to arbitrary
labelling. Additionally, user defined classes may obscure the real underlying distribution by

inappropriate discretization.

Currently, none of the available and widely used software tools enable single-cell based image
analysis in a continuous, supervised manner. Instead, unsupervised models, such as Lineage
Reconstruction Techniques (LRT) ° and Dynamic Time Warping (DTW) prevail. Cycler & is an
LRT and embeds 5 pre-selected image-based single-cell features to a one dimensional (1D)
continuous space called the cell-cycle trajectory. Similarly, Cai et al. used DTW to align mitotic
cells into the mitotic standard time based on 6 selected features °. Indeed, these tools provide
robust solutions for their targeted tasks, but the lack of expert interaction significantly reduces the
potential to customize these methods for various purposes. Therefore, another set of tools known
as Visual Analytics (VA) was developed, offering various techniques for experts to interactively
change the machine learning model through a visualization interface, which is most often a
continuous space (visualization map) 2, CellCognition was a pioneer of supervised tools,
designed with the intent to efficiently analyse biological processes, however still using

classification ’.

Here, we propose a novel methodology called Regression Plane (RP), an interface for fully

supervised, continuous machine learning appropriate for image-based single-cell analysis. The idea


https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276089; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

originates from a study of an influenza A virus entry in which histone deacetylase-mediated
reorganisation of the microtubules led to various endosomal morphological and trafficking
phenotypes that affected influenza infection 3. The scatteredness of late endosomes and lysosomes
(single output variable) was determined using regression instead of classification. Restricting the
output to a single dimension prohibited the modelling of branching, circulating (e.g. cell cycle),
parallel and crossing processes. Therefore, we have introduced a novel approach to utilize a 2D
plane (Fig. 1a, Fig. 2a, e). Considering cellular steady-states as graph nodes and gradual changes
between the states as edges, the biological systems that correspond to planar graphs can be
modelled with RP. Further extension of the modelling to 3D would increase the complexity of
labelling and raise the chance of annotation errors. Additionally, to improve the quality of the
annotated sets and decrease the time required from experts, we have incorporated novel active

learning methods appropriate for regression-based phenotyping.

Regression Plane is implemented as an open-source module of Advanced Cell Classifier (ACC) ¢,
and it has been available since ACC v3.0. RP was incorporated into traditional phenotypic
classification in a hierarchical manner: each class may be extended with a distinct regression plane,
allowing multiple regression planes to be incorporated into a single project. RP is easy to use, well
documented and supported by video tutorials (Suppl. Materials 1-3). Annotation is performed by
assigning continuous labels to representative cells via placing them on a 2D plane. After training,
RP predicts the position of every unlabelled cell and outputs versatile and easy-to-read visual

representations at single-cell, population and treatment levels (for details see Online Methods).
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Similarly to classification, a representative Training Set (TS) is also essential for RP. Active
learning algorithms are routinely used in classification to find the most efficient TS 4 but are not
widely used in regression *°. In this work, we introduce various active regression algorithms by
extending those used in classical active learning tasks (Suppl. Fig. 1a). These methods propose
cells whose automatic prediction on the regression plane is uncertain or ambiguous. Details are

reported in Online Methods.

To analyse data discovery capabilities of RP, we have generated a synthetic HCS image dataset
simulating drugs perturbing cell shape and protein expression (Fig. 2a-c). Details about the
modelled biological processes are reported in Online Methods. Ten microscopy experts were
asked to identify the distinct underlying processes in the experiment (Suppl. Note 1). The first
group of five experts used ACC v2.1 to annotate cells with discrete labels, while the other group
used RP only (ACC v3.0). Despite the great variety of the regression planes created by the
microscopists (Suppl. Fig. 2), the results obtained using RP significantly outperformed the
classification, both in terms of precision and recall (Fig. 2d). Specifically, the experts using RP
performed better in estimating the number of ongoing processes, and achieved, on average, an
improvement of approximately 20% in precision and 5% in recall, upon defining image sets

containing cells with similar behaviour.

Next, we have evaluated whether siRNA perturbations of candidate genes, previously revealed to
influence blood triglyceride (TG) levels in humans in a genome-wide association study ¢, would
affect the morphology of lipid droplets (LDs) in cultured hepatocytes (Huh7 cell line). Regarding

their continuous changes in localization, number and size, LDs form a heterogeneous population
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reflecting different cellular metabolic states *”. Thus, RP was used for the analysis of neutral lipids
in lipid droplets labelled with LipidToxGreen (Suppl. Fig. 3a, b, ¢). To train the model, 457 cells
were placed on the regression plane by a microscopy expert (Fig. 2e). We found that sSiRNA-
mediated knockdown of TM6SF2 (a gene associated with decreased blood TGs) led to increased
intracellular staining of neutral lipids, as it had been expected from the earlier evidence of TM6SF2
affecting hepatic lipid droplet content and TG secretion 8. In contrast, the cells transfected with
siRNAs targeting CD300LG (a gene associated with increased blood TGs *¢) showed a decreased
amount of intracellular TGs, accompanied by the disappearance of (larger) LDs. Additional
biochemical analysis measuring cellular TG levels confirmed these findings (Suppl. Fig. 3d).
These data provide the first functional evidence for the role of CD300LG in regulating TG
metabolism in hepatocytes.

Intriguingly, the knockdown of TM4SF5 (a gene associated with decreased blood TGs) which
codes for a protein functioning as an arginine sensor and mTORCL1 regulator on lysosomal
membranes °, not shown earlier to affect triglyceride levels, promoted the increase of small LDs
(Fig. 2f). Meta-visualization and clustering of the regression planes (Fig. 2g, Suppl. Fig. 3e-h)
further supplemented the findings from an earlier study ¢, and suggest that CD300LG and
TM4SF5 may have biological effects on hepatic TG levels and LD composition, to be further

addressed in future studies. Details are reported in Online Methods.

We tested the capabilities of RP on 2 different time-resolved datasets. First, RP has been
demonstrated to be capable of reproducing an unsupervised mitotic time model developed in the
MitoCheck project (www.mitocheck.org, for details see Online Methods). Secondly, hemocyte

differentiation was evaluated in Drosophila melanogaster. Hemocytes are blood cells of
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invertebrates that play a role in immune defense. Following infestation by a parasitic wasp, the
larvae of D. melanogaster produce a special blood cell type called lamellocyte, to isolate the
invader by forming a multilayer capsule around the wasp’s egg ?°. Several lineage tracing studies
have indicated that these capsule forming lamellocytes differentiate from phagocytic
plasmatocytes upon immune induction - which were underscored by findings of the most recent
transcriptome analyses 22223, |t has also been suggested that the lamellocyte pool actually consists
of two cell types, including the larger type | lamellocyte and the smaller type Il lamellocyte, of
which only type Il lamellocytes originate from plasmatocytes 24, To resolve this contradiction, we
developed an ex vivo method for culturing Drosophila hemocytes, appropriate for monitoring their
differentiation with time-lapse microscopy. Blood cell types can be characterized by their
morphologies and in vivo transgenic reporter expression pattern 2. The regression plane was
manually trained using 109 cells based on their morphology and reporter gene expression (Fig.
2h). The analysis revealed that 5.6% of the plasmatocytes trans-differentiated into lamellocytes
upon immune induction (wounding) of the larvae (the threshold line is indicated in Fig. 2j).
However, instead of identifying 2 clearly separated subtypes I and Il), we have observed that the
differentiation processes are evenly distributed on the regression plane, as reflected by specific
features (Fig. 2i, j, k). This finding suggests that type | and type Il lamellocytes, both
differentiating from plasmatocytes, are not definitely distinguishable cell types, but rather they are

two extreme stages of a size continuum (Fig. 2I). Details are reported in Online Methods.

Regression Plane increases the resolution of classification to represent subtle phenotypic
differences by exploiting regression techniques, extended by active learning. First, using artificial

datasets we have demonstrated its capability to outperform the available classification tools in
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phenotypic discovery. Second, we have applied RP to analyze lipid droplets in cultured hepatic
cells, serving as a model of a heterogeneous population that reflects different cellular metabolic
states, and have revealed genes playing a crucial role in regulating triglyceride levels in
hepatocytes. Finally, we have identified the previously undiscovered continuous characteristics of
hemocyte differentiation in Drosophila melanogaster. Our findings indicate that RP is a promising
tool to explore biological data in a continuous manner, reflecting the non-discrete nature of

biological processes.

METHODS
Methods, including statements of data availability and associated accession codes and references
are available in the online version of the paper.

Note: Supplementary information and Source Data files are available in the online version of the

paper.
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(a) Classification vs regression. The classical way to model a biological process includes the
phenotypical analysis of cells (i.e. subdividing cells into classes). However, in a high-content
screening scenario, the multitude of different phenotypes makes it extremely challenging to create
a set of representative classes. A possible solution builds on using a regression line, allowing to
represent a single effect without the need of discretization. Nonetheless, biological processes are
typically characterized by numerous ongoing effects. Thus, the regression plane represents a good
trade-off between visualization capabilities and annotation complexity. Basically, it allows to
represent a biological process with the limits of a planar graph. (b) Active regression. The aim of
an active regression algorithm is to improve the training set (TS) to achieve better prediction
performance. It is an iterative process where a cell that is difficult to annotate is proposed to the

oracle who annotates it, and by doing so moves it to the TS used to train the regression model.


https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276089; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

i‘ ® &9 ‘l fclassiﬁcitiof o 7_1_ - A
O 9eee 00 L

NN B E®ee

vtV sreee

ff‘_!t; ‘h L B A ) _!!_ 56
olderiejeee =

S AVERAGE
NEGATIVE
CONTROLS


https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276089; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Synthetic dataset. Image from the synthetic dataset, generated using SIMCEP. (b) RP ground
truth. Regression plane generated by automatically placing 300 cells on it. We modelled 6
continuous biological processes, plus an extra process with uniformly distributed cells (latent
process 7). (c) Ground truth processes. The 6 continuous processes are modelled between two
fixed endpoints: green cells of highly irregular shape and red, rounded cells. To assign a colour to
the middle point of each process we interpolated between white (process 1) and blue (process 6).
(d) Classification vs regression applied on synthetic data. Comparison of the performance of
regression and classification. Statistics: precision, recall and the number of identified processes. (e)
Lipid droplet dataset. Regression plane of 457 cells representing various lipid morphologies,
created by an expert biologist. (f) RP output. Kernel Density Estimation (KDE)-maps of the
predicted regression positions for cells treated with selected siRNAs. Arrows originate from the
peak of the control KDE-map, and point to the peaks of the selected KDE-maps. (g) HCS
analysis. Plate-based analysis performed by comparing well-based KDE-maps. Meta-visualization
is obtained by extracting the principal components (PC1 and PC2) of the flattened KDE-maps. (h)
Hemocyte dataset analysis. 109 cells were placed on the regression plane by a microscopy expert.
Cells were segmented by applying the NucleAlzer ?° deep learning method on brightfield
microscopy images. (i) Single cell features. Colour-coded feature values overlay on the predicted
cells. (j) Density plots. Top: Kernel Density Estimation of single cells. Bottom: 2,323 cell
trajectories on the regression plane. (k) Histogram plots. Top: Cell differentiation speed on the
regression plane. Bottom: Trajectory histogram (2D on the regression plane and 1D projection
with trajectory counts) including only those trajectories that reach beyond the green line in (j). (I)

Selected cell trajectories. Representative phenotypes highlighted in (j).
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ONLINE METHODS

Synthetic dataset

We generated a synthetic dataset by modelling 6 continuous biological processes representing
continuous changes from one cell state to another, plus an extra process (latent process 7) formed
from uniformly distributed cells (Fig. 2b). To generate the dataset we used a customized version of
SIMCEP 2, provided as Supplementary Material 4. Synthetic microscopy images were
organized into a 24-well plate format, and the dataset was composed of 9 images/well, for a total
of 216 images and approximately 10,000 cells. The images of each well were generated by
considering a predominant process mixed with other ones. To model the continuous processes we
fixed two endpoints: green cells of highly irregular shape, and red, rounded cells (Fig. 2c). The
degree of cell shape deformation decreases from the green to the red endpoint. Next, for each
process we selected a middle point, and assigned a colour to that, ranging from white (process 1)
to blue (process 6). The colour of the cells in each process was then defined by linear interpolation
between the colour of the middle point and one of the two endpoints. The generated dataset was
deposited to the Broad Bioimage Benchmark Collection (BBBC), and it is freely available at:

https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID: BBBC031).

Lipid droplet dataset

Lipid droplets are storage units for neutral lipids, including triglycerides, and play a significant
role in several disorders, including e.g. cardiovascular diseases. The lipid droplet dataset evaluated
with RP was derived from a previous genome-wide association study, in which hepatocytes

(Huh7) were transfected with 1-7 siRNAs (10 nM/gene) for 72 h to silence the expression of
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specific genes, allowing to examine their relationship with lipid formation. The effects of SIRNAs
on cellular neutral lipids (TG and cholesteryl esters) were scored by using a probe validated for
quantitative analysis of neutral lipids. The cells were displaced into a 384-well plate, and after 72 h
of siRNA transfection they were fixed with 4% paraformaldehyde, followed by staining for LDs
with  Green™ (Invitrogen) and for nuclei using 300 nM DAPI (Sigma-Aldrich) for 30 min at
room temperature. Finally, 9 images/well were acquired per channel for 2 identical plates with an
automated epifluorescence ScanR microscope (Olympus) equipped with a 150W Mercury-Xenon
mixed gas arc burner, a 20x long working distance objective (UIS2) and a digital monochrome
CCD camera (Hamamatsu), yielding a total of 3,956 images of 232,084 cells (>2,200 cells per
SiRNA). The list of the siRNAs used and the corresponding target genes is provided as
Supplementary Material 6. The generated dataset was deposited to FigShare, and it is
permanently available at: https://doi.org/10.6084/m9.figshare.c.5067638.v1. To validate our
findings, additional biochemical analysis was performed by siRNA-transfecting Huh7 cells,
collected in 0.2 N NaOH, followed by extracting the lipids. TGs and cholesteryl esters were

resolved on TLC plates using hexane/diethyl ether/acetic acid (80:20:1) as the mobile phase.

MitoCheck dataset

Cai et al. ** analysed cell mitosis by performing time-lapse experiments to establish a canonical
model for the morphological changes appearing during the mitotic progression of human cells. In
particular, they reorganized the feature space according to the mitotic standard time instead of the
imaging time (see Fig. 2d in %), and by applying an unbiased peak-detection method in the warped

feature space they identified up to 20 mitotic stages. The model was then used to integrate dynamic
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concentration data of several fluorescently knocked-in mitotic proteins, and to create a generic
dynamic protein atlas of human cell division.

Their public data include 3D images and segmented masks of 31 z-stacks. We intended to analyse
this dataset without using prior feature information about the underlying process by exploiting
regression techniques to characterize mitosis.

In our analysis, a field expert created a regression plane representing the process of mitosis,
resulting in a training set of 585 cells (Suppl. Fig. 4a). After prediction, the cells followed the
designed circular path recalling canonical mitotic phases (Suppl. Fig. 4b-c), while they also
represented subtle phenotypic changes and single-cell differences in the regression plane. Finally,
we compared the results of the original methodology presented by Cai et al. (Multi-dimensional
Dynamic Time Warping for creating the standard mitotic time, Suppl. Fig. 4d) with the results
obtained by RP (Suppl. Fig. 4e), and we concluded that RP is capable of reproducing a mitotic
time model equivalent to the original one. This indicates that RP is able to compete with complex
analysis techniques, such as DTW. Additionally, RP provides the flexibility to customize the

output space, enabling higher resolution analysis of user-defined sections of the biological process.

Blood cell differentiation dataset

The fruit fly, Drosophila melanogaster, serves as a popular model system to study innate immune
functions, such as phagocytosis, wound healing and capsule formation ?°. In the larva, these
functions are executed by hemocytes, which are categorized into three main cell types: (1)
phagocytic plasmatocytes, accounting for the majority of circulating hemocytes, (2) crystal cells,
which play a role in melanization and wound healing, and (3) lamellocytes, which are large flat

cells that appear only in certain tumorous genetic backgrounds or following immune induction 2
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Such an immune induction appears in nature as a result of egg-laying by a parasitoid wasp,
Leptopilina boulardi. Following infestation, newly differentiating lamellocytes, together with
27,28,29.

plasmatocytes, eliminate the invader by forming a multilayer capsule around the wasp’s egg

Lamellocytes are also produced when larvae are wounded with an insect pin *. (Suppl. Fig. 5¢)

Cell lineage-tracing studies revealed that plasmatocytes, which had previously been considered as
terminally differentiated phagocytic cells, show plasticity, and are capable of differentiating into
encapsulating lamellocytes upon immune induction 31:323%21 This trans-differentiation process has
been underlined by recent single-cell RNA sequencing studies 2223, However, the cells
intermediate of the plasmatocyte-lamellocyte transition process have not been characterized
morphologically in detail so far, and the routes of differentiation are still controversial. A study by
Anderl et al. 2 described two types of lamellocytes, and suggested that only the smaller type |1
lamellocytes (Suppl. Video 1) differentiate from plasmatocytes, while the regular, flattened type I

lamellocytes (Suppl. Video 2) originate from dedicated precursors.

To clarify the potential routes of differentiation, we set up an ex vivo method for hemocyte
culturing and differentiation. According to Anderl et al. 24, for the live experiments, we used

eaterGFP as a marker of plasmatocytes, and MSNFOMOMCherry as a marker of lamellocytes.

Early third instar Me larvae (eaterGFP, MSNFOMOmMCherry; ?) were immune induced by
wounding the cuticle with an Austerlitz Insect Pin® of 0.2 mm in diameter. Wounded larvae were
kept on standard Drosophila food at 25 °C. Circulating blood cells were isolated 12 hours after
wounding. Blood samples of 10 larvae were collected, pooled in 300 pul Schneider’s medium
(Lonza, Cat: 04-351 Q) supplemented with 10% fetal bovine serum (FBS; Gibco, Cat: 10270) plus

0.01 mg/ml gentamicin (Sigma, Cat: G3632), 0.065 mg/ml penicillin (Sigma, Cat: P7794) and 0.1
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mg/ml streptomycin (Sigma, Cat: S6501). Next it was spread into a well chamber of an 8-well p-

slide (Ibidi, Cat: 80826). Both sample storage and microscopic analysis were carried out at 25 °C.

We acquired 15-frame image sequences/field (141 fields) on 3 channels: brightfield, mCherry, and
EGFP, with 2-hour-gaps between the subsequent frames. Images were acquired with a high-
content screening microscope (Operetta, Perkin Elmer) equipped with a 60x high-numeric-aperture
objective and a digital high resolution 14-bit CCD camera, yielding a total of 4,230 images (2
plates, 2,115 images in each). The image size was 1360x1024 pixels and 8-bit per channel, in TIFF
format. The generated dataset was deposited to FigShare, and it is permanently available at:

https://doi.org/10.6084/m9.figshare.c.5075093.v1.

Using the method described above, we found that 5.6% of the plasmatocytes are capable of trans-
differentiation into lamellocytes (Suppl. Videos 3-4), which is well reflected by the expression of
cell type specific transgenes. After the formation of lamellocytes, no significant alterations in their
cell size were observed, indicating that all types of lamellocytes are terminally differentiated cells.
Most of the plasmatocytes (94.4%), however, did not differentiate into lamellocytes, but either
spread out, increasing their cell size, or kept their size and morphology during the experiment,

which is in line with the results of in vivo studies on blood cell differentiation in Drosophila.

Image segmentation and feature extraction

In order to classify the cells in an image, ACC requires the position and features of each cell to be
analyzed. For this purpose, we first flattened illumination distortions of the acquired images by
using CIDRE 34, Then, we used CellProfiler % and the NucleAlzer deep learning framework % to

segment the cells and extract the standard features describing morphology, intensity and texture
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characteristics. Details of the image analysis and the regression models used in each experiment

are reported in Supplementary Note 2.

Regression models

Regression methods, a subgroup of supervised machine learning techniques, are aiming at
approximating continuous target variables. Alike for classification, various models have been
proposed for regression, ranging from linear regression to neural networks and random forests *°.
The diverse set of regression models raise the problem of model selection for RP. As the RP is
completely user-defined, it is impossible to have any prior assumptions on the function to be
learnt, hence model selection should be data-driven. RP provides cross-validation assessment of
model performance by root mean squared error measure (RMSE) and relative RMSE ',
Additionally, two important aspects are to be considered when selecting the model.

First, the two-dimensional output format of RP requires the use of multi-target regression, as we
require a 2D position (expressed by 2 coordinates) to be predicted. Traditionally, regression
models aim at predicting a single continuous variable, which may be naturally extended for
multiple dimensions by considering the outputs as independent variables, also called the single-
target (ST) method 3. On the contrary, it has been reported several times that multi-target models
that exploit the possible correlation between the output variables may yield significantly better
results than the ST methods 3°“°. Consequently, when a strong relationship between the output
variables is evident, choosing a multi-target regression model is more appropriate.

Secondly, models that are capable of providing a probabilistic output (i.e. those that provide not
only the predictive mean, but also some sort of uncertainty) are less wide-spread for regression
than for classification. However, uncertainties provide valuable information to assess the model’s

performance, and most of the active learning strategies essentially rely on them.
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Gaussian processes (GPs) can be used as non-parametric regression models with a probabilistic
output . Instead of providing a single prediction for each cell, GP returns a normal distribution
whose mean can be used as the predicted value. More importantly, its variance is an estimate for
the uncertainty of the given cell. GP is originally considered as a single-target method, however,
its multi-target extensions also exist and are known as co-kriging #>%.

Although GP is a non-parametric method (hence training is not required in principle), it still has
hyperparameters (mean, covariance, likelihood, inference functions and their parameters) that can
be optimized for enhanced performance. The most frequently applied iterative optimization
methods (gradient descents) require initial hyperparameter settings which significantly affect the
quality of the ultimate hyperparameter set. Consequently, we have designed heuristical
hyperparameter initialization methods for several mean and covariance functions as described in
Supplementary Note 3. Due to the broad selection of implementable models, RP provides an
interface (via Object Oriented Programming) to facilitate the extension of implemented regression
methods. By default, the package contains bridges to several models from Weka 3, Mulan ** and
Matlab’s Deep Learning Toolbox. The full list and instructions on how to include new models are

provided in Supplementary Note 4.

Active regression

Usually, the most time consuming part of statistical learning for biomedical applications (including
shallow and deep learning) is the procedure of annotation, and — as transfer learning is rarely used
— it is often repeated for new experiments. Active learning *° aims at reducing the number of
training samples needed to achieve the most representative training set by automatically proposing

cells for annotation. It has previously been shown by Smith and Horvath “° that active learning
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reduces the time cost of annotation in HCS compared to classical labelling. Most of the active
classification methods are based solely on the predicted class labels, enabling the underlying
model to be freely modified. However, these methods are not directly applicable for regression, as
they assume that the predicted label is discrete. Active regression methods were developed by
Cohn et al. #7, based on variance reduction for Neural Networks, Mixture of Gaussians and Locally
Weighted Regression. Here we present novel active regression methods inspired by the general
active classification approaches, and a specific method for Gaussian Processes utilizing its
properties (Suppl. Fig. 1).

Committee Members. The Committee Members approach is inspired by the QueryByCommittee
active classification method. Similarly to cross-validation, a set of models (committee) is built up
from the available training samples, and a measure of disagreement is defined for the committee.
In case of regression, the classical measures cannot be applied directly for two reasons: (1) they
rely on the fact that the output is discrete, and (2) they require a probabilistic model. Thus, we
propose using the quadratic mean of the Euclidean distance between the committee consensus and
the single committee predictions. Hence, the next cell to be labelled by the expert is defined by the

following formula:

P _"'2
r® = argmax E d(#:. 9)
T = argmax —_—
- C

! =1
where C is the size of the committee, ¥: is the predicted position for x (a sample not taken from the
TS) by the i committee member, ¥ is the mean of Y, and d is the Euclidean distance.
Empty Regions. The Empty Regions method targets the cells which were predicted to the least
dense region of the regression plane in terms of training samples. This heuristic is supposed to

explore those cell types that are not presented in the TS.
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Out of Bounds. By design, the regression plane is represented by a unit-square, and has limits in
each direction. However, this limitation was not incorporated into the regression models,
consequently it is possible that cells are predicted outside of the regression plane’s boundaries.
Therefore, we propose a strategy that selects these cells for annotation, ranked by their distance
from the edges of the regression plane.

Uncertainty Sampling. When a probabilistic regression model (such as GP) is available, then,
instead of plain predictions, a posterior distribution is defined for each cell, enabling the
application of active learning methods aiming at decreasing the variance of this posterior. Our
proposed method targets the cell with the highest posterior variance, where the final value for the
selection is determined by taking either the mean, the sum, the product, the minimum or the
maximum of the 2 separate variances, calculated for each output dimension of the regression
plane.

Overall Uncertainty Sampling. GP has an intriguing property, namely that the posterior
distribution is independent of the actual TS positions; it only depends on the input features and the
hyperparameters of the GP. In consequence, given fixed hyperparameters, it is possible to exactly
calculate how the posterior variance changes, assuming that a new cell is included in the TS even
without knowing its position on the regression plane. Executing this calculation for all possible
candidates, the resulting cell proposed for annotation is the one that decreases overall variance the

most. This approach is formulated by:
N
x* = argmin fr e
pin( 3255

where N is the size of the full dataset (including the training dataset) and f i) is the variance for

Xi, supposing that the GP was trained on the available training set extended with x. The predictive
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variances for individual samples are calculated from the diagonal elements of the predictive
variance matrix according to ** by the following formula:

K(X, X.,) - K(X,, X)K(X, X)"'K(X,X.,))
where K is the kernel (covariance) function, X, is the feature matrix of samples not yet predicted,

and X is the feature matrix of the training set’s elements.

We assessed the performance of the proposed active learning methods with 4 regression models:
Random Forest, Gaussian Process, Neural Network and Support Vector Machine; on 2 of our
datasets: Lipid droplets and MitoCheck containing 457 and 586 annotated cells respectively. In
each scenario the experiment started with randomly isolating '3 of the available samples to a test
set, leaving the remaining %; in a pool. Then, 10 cells were randomly selected from the pool for
initializing the training set, followed by iteratively extending it with 290 cells according to the
active query strategy. In each iteration a regression model was trained, and the relative root mean
square error (RRMSE) was calculated on the test set.

The results from 50 independent runs are displayed on Supplementary Fig. 1b-c. In all but one
(Gaussian Process in the MitoCheck dataset) scenario there was at least one active learning
technique that outperformed random sampling, despite the high variance of error values among
different regression models. The Random Forest and Gaussian Process models achieved smaller
RRMSE values than the other two methods inhibiting the active strategies’ ability to significantly
improve the performance in these cases. Still, the CommitteeMembers strategy resulted in the
lowest average area under the curve value in 5 out of the 8 cases. We also note that although mean
prediction error is the most widespread measure of active learning, other aspects of the model

performance (e.g. model coverage) might be equally interesting for the users.
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Regression Plane output

RP provides output in various formats to satisfy the diverse needs of field experts

(Suppl. Material 3). The simplest output can be obtained by predicting an image in the main
window of ACC, by clicking on a cell to see its raw regression plane position. Alternatively, in the
regression plane one can select an arbitrary number of images, so that all cells in those images are
going to be visualized on the regression plane with their icon at their predicted position.
Importantly, these predictions can easily be added to the TS as well.

For well-based analysis, a multi-component report can be generated for each plate. The first
component of the report is a pdf file containing a heatmap (simple cell count in a discretized
regression plane) and a kernel density estimation (KDE) visualizing the distribution of cells on the
regression plane in the particular well (Fig 2f-g). Besides, the difference and the most dense
position shift between single wells, and the average of user-defined control wells are also included.
Secondly, RP provides standard visualization tools (PCA, t-SNE “® and NeRV #°) for assessing the
relationships among the wells. Each of these methods can generate the figure of Plot of plots (PoP;
Fig 2h). In PoP each well is represented by its KDE/heatmap, and the distance between these
representations corresponds to the difference between the wells’ regression plane distributions (i.e.
similar wells are close in PoP, whilst differing ones are farther from each other). In case of plates
with higher well-numbers (e.g. 96 or 384) this may result in an overwhelmingly dense diagram, so
the PoPs can be re-loaded to RP where they can be examined interactively. Importantly, in the RP-
PoP, wells of similar perturbations (replicates) can be highlighted with colours. In addition to these
tools for visualization, a clustergram can also be generated, providing a way to compare the

perturbations by performing hierarchical clustering (Suppl. Fig. 3). The matrix in the middle of the
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clustergram visualizes pairwise Kullback-Leibler divergence between the cell-number weighted
average of the replicate wells.

Additionally, RP enables the analysis of underlying image features by the Colour Frame (CF)
module. CF works by visualizing the feature distribution of cells from the regression plane, using
an artificial colour scale. In particular, the user selects a specific feature and adjusts the
visualization settings to define a colour for each cell icon’s frame in the regression plane.

(Suppl. Fig. 5). Notably, CF can be used either for fine tuning of the TS, or for assessing features
of interest after prediction.

Finally, the Trajectory Plot (TP) facilitates the assessment of live-cell data composed of
time-resolved image sequences of the same fields. Organizing the corresponding single-cells into
trajectories using the predicted coordinates of the regression plane enables the visualization of the
dynamics of underlying processes (Fig. 2j-k). TP is a multifunctional visualization tool that
facilitates a better understanding of the continuous aspect of biological processes, and offers
several possibilities to investigate cell fates or to compare the development of particular cells as a
function of time. Filtering functions help to find subgroups of phenotypes with different
behaviours. Interestingly, the dynamics of the process can be perceived by animating the evolution

of trajectories (Supplementary Videos 5-9).

Code Availability

RP is a new module of ACC (current version 3.1). ACC is written in MATLAB (The MathWorks,
Inc., USA). ACC supports the most common image formats (e.g. tif, bmp, png) and it works under
Windows 64-bit, Linux, and OS X environments. Source code and standalone versions (which do

not require a MATLAB license), video tutorials, and help documentation files are publicly
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available at: www.cellclassifier.org. All the ACC materials are copyright protected and distributed

under GNU General Public License version 3 (GPLv3).

Data Availability
Synthetic dataset: https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID: BBBC031).
Lipid droplet dataset: https://doi.org/10.6084/m9.figshare.c.5067638.v1.

Drosophila dataset: https://doi.org/10.6084/m9.figshare.c.5075093.v1.
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SUPPLEMENTARY MATERIALS

Supplementary Material 1

Regression Plane user manual.

Supplementary Material 2

Video tutorial: “Regression Plane: Annotation Possibilities”.

Supplementary Material 3

Video tutorial: “Regression Plane: Output Possibilities”.

Supplementary Material 4
Customized version of SIMCEP, distributed as MATLAB source code under the GNU General

Public License version 3.

Supplementary Material 5
MATLAB script provided to the 5 microscopists analysing the synthetic dataset using standard

classification approaches.

Supplementary Material 6

Plate layout reporting the targeted genes of lipid droplet screen.


https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276089; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Note 1

Description of the synthetic data experiment.

Supplementary Note 2

Experiment specific Image Analysis pipelines and Regression models.

Supplementary Note 3

Technical details on hyperparameter initialization.

Supplementary Note 4
Software developer guide for extending the framework with new Predictors and Active Learning

methods.
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Supplementary Figure 1
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Active regression. (a) Schematic representation of four active regression algorithms implemented
in ACC. (b) Performance of the proposed methods measured as Relative Root Mean Squared Error
(RRMSE) (c) Performance of the proposed methods measured as the average Area Under RRMSE
Curve (lower is better). Methods showing superior performance to random sampling are
highlighted with green, and the best among these with pink. The plots in both (b) and (c) represent
the mean from 50 independent runs. Gaussian Processes were trained with constant mean function,
squared exponential covariance function with automatic relevance determination (covSEard) for
Lipids and with isotropic distance (covSEiso) for MitoCheck. The Neural Networks were trained
with a single layer containing 30 nodes with log-sigmoid activation function. Random Forest and
Support Vector Machine were trained with default parameters from Weka. The size of the

committee in the CommitteeMembers method was 3.
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Supplementary Figure 2

ground truth annotator 1 annotator 2

annotator 5

Synthetic dataset: Regression Planes. The ground truth regression plane and the annotations
created by the 5 microscopy experts (i.e. annotators) who analysed the synthetic dataset with RP.
The gray lines represent the identified processes and have been computed using a Kernel Density
Estimation function and an energy minimization algorithm for finding the shortest path between
process endpoints, using Dijkstra’s algorithm. Despite the great variety of the regression planes
generated by the annotators, in all the cases except for annotator 1, the six non-latent continuous

processes are represented by separated lines.
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Supplementary Figure 3
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Lipid Droplet data analysis. Classification vs regression applied on real-world data. (a)
Starting from a regression plane including 457 cells created by a microscopy expert, we have
automatically selected 25 cells that were the closest to the center of the 4 quadrants of the
regression plane, representing the 4 main cell phenotypes. (b) To visualize the cells belonging to
the 4 different classes, we used borders of different colours (i.e. red, green, gray, blue). (c) Next,
we classified the unannotated cells, and simultaneously predicted their position in the regression
plane. The test revealed several cases of misclassifications: some cells with the same phenotype
were classified into different classes, while several cells with a clearly different phenotype were
classified into the same class. (d) Biochemical analysis. Intracellular TG levels in cultured
hepatocytes (Huh7). siRNA-mediated knockdown of TM6SF2 gene led to an increased level of
TGs. In contrast, sSiRNAs targeting CD300LG decreased intracellular TG levels. (e-h) Discovery
tool: clustergram. Clustergrams obtained by calculating symmetric Kullback-Leibler divergence
for the KDE-maps (regression) / class probability distributions (classification) of the wells treated
with different siRNAs. Bright (yellow) values indicate high divergence, meaning that the cells in
the wells compared to each other have different morphologies. Clustergrams from regression show
higher variation in the divergence values, better capturing subtle differences in the cell populations
treated with siRNAs. (e) Plate 01, classification; (f) Plate 01, regression; (g) Plate 02,

classification results; (h) Plate 02, regression results.
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Supplementary Figure 4
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Mitosis data analysis. (a) Regression plane of 585 cells annotated by a microscopy expert. (b)

Top: 505 trajectories for all the predicted cells. The median curve is shown in solid blue. Bottom:
Example of a single-cell trajectory with representative cell icons visualized. (c) Regression plane
with all (n = 20200) predicted cells. The borders of the cell icons correspond to their nuclear area

(Colour Frame module). Highlighted regions: Early prophase region, large nuclear area (red).


https://doi.org/10.1101/2020.09.01.276089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276089; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Metaphase region, nuclear area decreased (orange). Early-anaphase region, nuclear area is
increasing as spindle fibers are pulling chromosomes apart (yellow). Anaphase, nuclear area
dropped as the nucleus is considered as two separate objects with half the area (green). Late-
telophase, nuclear area increasing up to half of the initial value (blue).

(d) Top: Trend for the normalized nuclear area according to standard mitotic time. Gray lines
represent single cell trajectories. Bottom: Trend for the normalized nuclear area according to the
regression plane. Gray lines represent single cell trajectories. The coordinates predicted by RP
were converted to 1D by taking the angle argument of the polar coordinate representation as

illustrated in (a).
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Supplementary Figure 5

a

Blood Cells data validation and segmentation. (a) Exemplary composite image with 3 channels:
brightfield (gray), GFP (green), mCherry (red). (b) Corresponding results of deep-learning
segmentation performed on the brightfield channel. (c) Prediction of all the immune induced cells
on the regression plane. (d) Prediction of all cells from the control experiment on the regression

plane.
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Supplementary Videos 1-9

The supplementary videos are dynamically visualizing the regression plane analysis of live-cell
experiments. The rectangle in the videos represents the regression plane itself and the trajectories
are derived from the live-cells’ predicted positions on the plane. Each individual trajectory is
assigned to a single-cell and the animation shows how the cells traverse on the regression plane as

the live-cell screening progresses (the path between the actual frames were linearly interpolated).

Supplementary Video 1

Drosophila Plasmatocyte Differentiating into Type Il Lamellocyte

Supplementary Video 2

Drosophila Plasmatocyte Differentiating into Type | Lamellocyte

Supplementary Video 3

Drosophila Plasmatocyte Differentiation, dynamic visualization of trajectories using protein
expression. Trajectories are coloured dynamically, visualizing changes in 2 selected cell features.
Head-colour: integrated intensity value of eaterGFP representing its expression level.
Tail-colour: integrated intensity value of MSNFOMOMCherry representing its expression level.
Expression of eaterGFP was observed in a fraction of both type I and type Il lamellocytes,

however, type Il lamellocytes express GFP more frequently and at a higher level.
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Supplementary Video 4

Drosophila Plasmatocyte Differentiation, differentiation speed. Trajectories are coloured
dynamically visualizing the speed of the cells on the Regression Plane. According to the defined
training strategy, this reflects the speed of differentiation. Colours are ranging from blue (slow) to
red (fast). Following immune induction, type Il lamellocytes start differentiation later than type |

lamellocytes, however type Il lamellocytes differentiate faster and in a continuous manner.

Supplementary Video 5
Dynamic Visualization of Mitosis. Trajectories show how the cells are traversing on the

Regression Plane. The highlighted 4 cells are reported in detail in further supplementary videos.

Supplementary Videos 6-9

Separate, single-cell videos of the highlighted cells in Supplementary Video 5.
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