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Summary: Rare monogenic disorders of the primary cilium, termed ciliopathies, are characterized 
by extreme presentations of otherwise-common diseases, such as diabetes, hepatic fibrosis, and 
kidney failure. However, despite a revolution in our understanding of the cilium’s role in rare 
disease pathogenesis, the organelle’s contribution to common disease remains largely unknown. 
We hypothesized that common genetic variants affecting Mendelian ciliopathy genes might also 
contribute to common complex diseases pathogenesis more generally. To address this question, 
we performed association studies of 16,875 common genetic variants across 122 well-
characterized ciliary genes with 12 quantitative laboratory traits characteristic of ciliopathy 
syndromes in 378,213 European-ancestry individuals in the UK BioBank. We incorporated tissue-
specific gene expression analysis, expression quantitative trait loci (eQTL) and Mendelian 
disease information into our analysis, and replicated findings in meta-analysis to increase our 
confidence in observed associations between ciliary genes and human phenotypes. 73 
statistically-significant gene-trait associations were identified across 34 of the 122 ciliary genes 
that we examined (including 8 novel, replicating associations). With few exceptions, these ciliary 
genes were found to be widely expressed in human tissues relevant to the phenotypes being 
studied, and our eQTL analysis revealed strong evidence for correlation between ciliary gene 
expression levels and patient phenotypes. Perhaps most interestingly our analysis identified 
different ciliary subcompartments as being specifically associated with distinct sets of patient 
phenotypes, offering a number of testable hypotheses regarding the cilium’s role in common 
complex disease. Taken together, our data demonstrate the utility of a Mendelian pathway-based 
approach to genomic association studies, and challenge the widely-held belief that the cilium is 
an organelle important mainly in development and in rare syndromic disease pathogenesis. The 
continued application of techniques similar to those described here to other 
phenotypes/Mendelian diseases is likely to yield many additional fascinating associations that will 
begin to integrate the fields of common and rare disease genetics, and provide insight into the 
pathophysiology of human diseases of immense public health burden. 
Contact: theodore.drivas@gmail.com  
 
 
 
 
INTRODUCTION 
 

Found on nearly every human cell type, the primary cilium is a small, non-motile projection of the 
cell’s apical surface that acts as an antenna for the reception and integration of signals from the 
extracellular environment.1 Signaling at the cilium is mediated by cell surface receptors that are 
specifically trafficked to the cilium through a complex and highly regulated series of interactions.2,3 
Receptors destined for the ciliary space must first interact with a protein subcomplex known as 
the BBSome, which allows receptors to dock at the base of the cilium (the basal body) and 
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navigate through the diffusion barrier formed by the ciliary transition zone to enter the inner ciliary 
space.4,5 Once inside, cargo is specifically trafficked along the microtubule core of the cilium 
through a process known as intraflagellar transport (IFT), before being ultimately returned to the 
extraciliary space to complete signal transduction.6 
 
We now know that the interruption of any one of these critical ciliary pathways can lead to the 
development of devastating syndromic Mendelian disorders, collectively known as ciliopathies.7 
The list of confirmed ciliopathies is constantly expanding, and currently includes disorders such 
as Alström  syndrome, Bardet-Biedl syndrome, Joubert syndrome, Meckel-Gruber syndrome, 
Nephronophthisis, Senior–Løken syndrome, Sensenbrenner syndrome, and others.8–16 Much of 
the pathology of the ciliopathy syndromes can be attributed to the adverse effects of ciliary 
dysfunction on cell signaling pathways critical to embryologic development.7,17 Furthermore, 
although each ciliopathy is defined by its own unique constellation of characteristic phenotypic 
findings, many ciliopathies share similar or overlapping features.  
 
Phenotypes that are often observed in individuals with ciliary disease include renal failure, hepatic 
fibrosis, obesity, dyslipidemia, and diabetes.8–10 Interestingly, these very same phenotypes are 
characteristic of common diseases that affect large proportions of the population. Recent 
evidence suggests that the development of these phenotypes in ciliopathy patients may be driven 
by the perturbation of ciliary processes required for signaling through common disease-relevant 
pathways not previously known to be dependent on the cilium for signal transduction, such as 
insulin, IGF-1, PDGF, and TGFb.2,18–28 Together, these observations raise the possibility that the 
same ciliary genes causative of rare Mendelian disease may also be involved in the pathogenesis 
of common complex diseases, such as kidney failure or dyslipidemia, in the general population. 
 
To investigate this hypothesis, we set out to identify associations between common genetic 
variants in 122 well-characterized ciliary genes and 12 quantitative laboratory traits relevant to 
common disease in a large biobank cohort. We incorporated tissue-specific gene expression 
analysis, expression quantitative trait loci (eQTL), and Mendelian disease information into our 
analysis, and replicated findings in meta-analysis to increase our confidence in observed 
associations between ciliary genes and human phenotypes (Figure 1). The results of our analysis 
revealed 73 statistically significant associations between 34 ciliary genes and diverse laboratory 
traits (including 8 novel, replicating associations), and also identified distinct ciliary 
subcompartments associated with different disease processes and demonstrated pleiotropic 
effects for many ciliary genes across a number of phenotypes and organ systems. Our data 
challenge the widely-held belief that the cilium is an organelle important mainly in development 
and in rare syndromic disease pathogenesis, and establish a framework for the investigation of 
the common disease contributions of other Mendelian disease pathways. 
 
 
 
RESULTS 
 

34 ciliary gene loci are associated with diverse quantitative laboratory traits 
We examined 16,875 genotyped or imputed variants within genomic loci defined by the 
boundaries of 122 well-defined ciliary genes in 378,213 European ancestry individuals in the UK 
BioBank. We tested each variant for association with each of 12 quantitative laboratory traits: 
Alanine aminotransferase (ALT), Alkaline Phosphatase (AlkPhos), Aspartate aminotransferase 
(AST), Total Cholesterol (Cholesterol), Serum Creatinine (Creatinine), Gamma 
glutamyltransferase (GGT), Serum Glucose (Glucose), Glycated haemoglobin (A1c), HDL 
cholesterol (HDL), LDL cholesterol (LDL), Triglycerides, and Urea using linear regression, 
adjusting our model for age, sex, and ancestry PCs 1-10. ALT, AlkPhos, AST, and GGT are all 
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markers of liver disease, Creatinine and Urea are markers of kidney disease, perturbations in 
HDL, LDL, Total Cholesterol, or Triglyceride levels are the hallmark of dyslipidemia, while 
elevations in Glucose or A1c levels can be diagnostic of diabetes and impaired glucose 
homeostasis. The characteristics of the subjects and phenotypes included in the discovery 
analysis are summarized in Table S1. To replicate novel findings, large scale meta-analyses of 
the same 12 quantitative laboratory traits were carried out, as described in the methods section, 
for genetic variants contained within the same 122 ciliary genes as analyzed in our discovery set. 
Results of our discovery analysis and replication meta-analyses are displayed in Figures 2-5.  
 
Our discovery analysis identified 549 variants within 34 different ciliary genes reaching genome-
wide significance (p < 5e-8) for association with at least one of the 12 phenotypes (Figure 2-5, 
Table S2-13). Many ciliary gene loci were significantly associated with multiple traits, a 
phenomenon known as pleiotropy (with one locus, containing the gene IFT172, significantly 
associated with nine different traits). 73 significant gene-trait associations were identified 
altogether, and of these 27 (37%) represent replication of previously-known associations from the 
literature, whereas 46 (63%) represent previously-unreported associations (novel findings). 8 of 
these 46 (17%) unreported associations were found to replicate in our meta-analyses. These 
results are summarized in Table S14. Of the 8 replicating novel associations, five were for kidney-
related phenotypes, which is likely reflective of the fact that these phenotypes had the largest 
samples sizes in our meta-analysis (the meta-analysis of kidney related traits had a sample size 
of ~800,000 individuals, whereas no other meta-analyzed trait had a sample size greater than 
370,000). All replicating novel associations and interesting known associations are discussed in 
more detail below. 
 
Tissue-specific analysis demonstrates widespread expression of significant ciliary genes 
For all genes with significant associations in our discovery analysis, we examined tissue-specific 
expression in the GTEx version 8 database database29 to determine if each gene was expressed 
in tissues relevant to the detected phenotype association (Figure 6, Table S15). As the cilium is 
a nearly ubiquitous organelle,30 we were not surprised to find that the majority of ciliary genes 
examined (20 of 34, 59%) were broadly expressed in all tissues (Figure 6).  Four genes, however, 
stood out as being poorly expressed in all or nearly all examined tissues – CENPF, RP1, RP1L1, 
and WDPCP. Why these four specific ciliary genes were the only ones found to be poorly 
expressed is not entirely clear. 
 
Trait-significant variants are enriched for and correlate with eQTLs of ciliary genes 
The majority of the 549 ciliary gene variants statistically significantly associated with laboratory 
traits lay within untranslated regions of the genome. To explore the possibility that these variants 
might be exerting their effect on laboratory traits by modulating ciliary gene expression, we 
performed an eQTL analysis of each of the 73 significant gene-trait pairs (Figures S1-S34). 
Utilizing the GTEx version 8 database of cis-eQTL variants,29 we plotted the association peaks 
for each significant gene-trait pair in chromosomal space, overlaying the relevant eQTL 
information for each ciliary candidate gene using eQTpLot.31,32 We simultaneously generated 
plots illustrating enrichment of ciliary candidate gene eQTLs among trait-significant variants, and 
generated p-p plots (plotting, for each variant, the p-value of association with candidate gene 
expression (peQTL) against the p-value of association with laboratory trait level(ptrait)) to illustrate 
and identify significant correlations between variants’ effects on candidate gene expression and 
their effects on laboratory traits, as determined by linear regression and calculation of the Pearson 
correlation coefficient and p-value of correlation. 
 
Interestingly, we found that for 70 of the 73 (96%) significant gene-trait pairs, the detected 
association peaks were significantly enriched for eQTLs of the candidate ciliary gene (p< 7e-4). 
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Furthermore, for 48 of the 70 (69%) significant gene-trait pairs that demonstrated eQTL 
enrichment, there was a significant correlation between ptrait and peQTL (Pearson correlation 
coefficient >0.25, p-value of correlation <3.5e-4). These data indicate that the majority of  
association signals are being driven by genetic variants that are similarly associated with 
significant changes in expression of candidate ciliary genes. Together, these findings are 
consistent with the hypothesis that the detected laboratory trait associations are driven by 
changes in ciliary gene expression. 
 
Novel Associations 
Our discovery analysis identified 46 previously-unreported genome-wide significant associations, 
8 of which were found to replicate in our meta-analyses at either the variant or gene level: 
 

BBS2 
We found a significant association between variants within the BBS2 gene and HDL cholesterol 
levels (most significant association with rs118024138, p-value 5.73e-37). This same locus was 
found to be significantly associated with HDL in our meta-analysis (Figure 2). BBS2 encodes a 
BBSome-associated protein critical in the regulation of cargo transport through the ciliary space.33 
Biallelic pathogenic variants in the gene have been associated with Bardet-Biedl syndrome, 
characterized by retinal degeneration, kidney failure, obesity, impaired glucose handling, and, 
interestingly, dyslipidemia.8,34,35 Furthermore, BBS2 was found to be significantly expressed in 
both liver and adipose tissue (Figure 6), with a majority of variants significantly associated with 
HDL levels also found to be significantly associated with BBS2 expression in the GTEx database 
(Figure S3), lending a number of lines of supporting evidence to this novel association. 
 

CLUAP1 
A significant association was detected between variants within the CLUAP1 gene and serum 
creatinine levels (most significant association for variant rs9790, p-value 2.56e-12), with variant-
level replication of this finding in our meta-analysis (Figure 3). Although CLUAP1 exists in a gene-
dense region of the genome, the peak of association was confined specifically to within the 
CLUAP1 gene boundaries (Figure S8). We found CLUAP1 to be significantly expressed in kidney 
tissues (Figure 6), with a majority of the variants significantly associated with creatinine also 
significantly associated with CLUAP1 expression levels in the GTEx eQTL database (Figure S8). 
CLUAP1 encodes the intraflagellar transport (IFT)-associated protein CLUAP1/IFT38, a 
component of the ciliary IFT-B complex important for anterograde transport of cargo along the 
ciliary axoneme. Biallelic pathogenic variants in the gene have been associated with an overlap 
syndrome similar to Joubert syndrome and Orofaciodigital syndrome in one individual.36 While 
this individual was not found to have evidence of renal disease, renal disease is a common feature 
of Joubert syndrome patients more generally.9 Interestingly, this individual was also noted to be 
obese (a common feature of ciliopathy syndromes); the CLUAP1 locus has been published as 
associated with BMI and type 2 diabetes in previous GWAS studies.37–40  
 

CSNK1D 
A single variant within the CSNK1D gene, rs11653735, was found to be significantly associated 
with urea levels with a p-value of 2.08e-10, with this same variant found to replicate in our meta-
analysis (Figure 3). CSNK1D encodes the protein kinase CK1δ that has been found to play a 
critical role in regulating ciliogenesis.41 Variants in CSNK1D have not been implicated in any 
classic ciliopathy syndrome. The rs11653735 variant is a deep intronic variant, and if/how it affects 
CK1δ function is unclear. Intriguingly, the genomic region surrounding CSNK1D contains the gene 
CCDC57, a poorly characterized gene associated with the centriole and cilium that was not 
included in our study.42 The peak of association for urea levels spans the entirety of the CCDC57 
gene (Figure S9), with a strong correlation between variants associated with urea and those 
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associated with CCDC57 expression (Figure S35), raising the possibility that this locus is 
associated with urea levels through perturbation of either or both of these ciliary genes, CCDC57 
and CSNK1D.  
 

IQCB1 
We found a number of variants within and surrounding the IQCB1 locus to be significantly 
associated with both serum creatinine (a known association, most significant p-value of 
association in our discovery analysis 3.05e-09 for SNP rs9823335) and urea levels (a novel 
association, most significant p-value of association in our discovery analysis 2.56e-09 for 
rs75382826). Both of these associations were found to replicate at the variant and gene level in 
our meta-analysis (Figure 3). IQCB1 is significantly expressed in the kidney (Figure 6), and nearly 
every variant in the IQCB1 locus that was found to be significantly associated with urea/creatinine 
levels was also found to be significantly associated with IQCB1 expression, with strong evidence 
for correlation between levels of IQCB1 expression and creatinine/urea levels (Figure S16). 
IQCB1 encodes a well-characterized protein of the same name that is a critical component of the 
ciliary transition zone. Rare pathogenic biallelic variants in IQCB1 are a major cause of Senior-
Løken syndrome, a disorder characterized by retinal degeneration and progressive kidney 
failure.14 The novel association of the IQCB1 locus with blood urea levels corroborates the known 
association with creatinine/glomerular filtration rate, and adds further evidence supporting the role 
of IQCB1 in kidney function more generally. 
 

KIF17 
We identified a very strong novel association between variants within the KIF17 locus with 
AlkPhos levels (most significant p-value of association 4.09e-47 for rs61778523), which replicated 
at the gene level in our meta-analysis (Figure 4). Interestingly, we did not find KIF17 to be 
significantly expressed in hepatic tissue (Figure 6), and there did not appear to be a significant 
correlation between variants associated with KIF17 expression levels and AlkPhos levels (Figure 
S17). KIF17 encodes a motor protein important in driving IFT-B-mediated anterograde ciliary 
transport, but no Mendelian disease has yet been associated with dysfunction of this gene.43 Thus 
altogether there is minimal corroborating evidence to support KIF17 as the causative gene of this 
novel association. 
 

LUZP1 
We found variants within the LUZP1 gene to be significantly associated with both GGT levels 
(most significant p-value 1.41e-08 for variant rs56087807) and serum creatinine levels (most 
significant p-value 5.23e-11 for variant rs1208930), with both of these findings replicating at both 
the variant and gene level in our meta-analysis (Figures 3-4). The association between common 
variants near the LUZP1 locus and GGT levels has been reported,44 but the association with 
creatinine is novel. LUZP1 was found to be significantly expressed in all tissues relevant to these 
phenotypes (Figure 6), and nearly every variant significantly associated with creatinine/GGT 
levels was also found to be significantly associated with LUZP1 expression, with evidence for 
correlation between levels of LUZP1 expression and creatinine/GGT levels (Figure S18). LUZP1 
encodes a ciliary basal body protein that has recently been shown to play important roles in 
regulating ciliogenesis.45,46 While there is no Mendelian disease yet known to result from 
disruption of the LUZP1 gene, recent work has shown reduced LUZP1 expression in fibroblasts 
derived from Townes-Brockes syndrome (characterized by renal disease, among other findings) 
patients,47 suggesting that LUZP1 may play a role in the pathogenesis of this disorder. 
 

PIBF1 
A significant, novel association was detected between variants within the PIBF1 gene and serum 
creatinine levels (most significant p-value 1.08e-09 for variant rs111440455), with this finding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.275685doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275685
http://creativecommons.org/licenses/by-nc-nd/4.0/


replicating at both the variant and gene level in our meta-analysis (Figure 3). We found PIBF1 to 
be significantly expressed in the kidney (Figure 6), with nearly every variant significantly 
associated with creatinine levels also found to be significantly associated with PIBF1 expression, 
with strong evidence for correlation between levels of PIBF1 expression and creatinine levels 
(Figure S21). PIBF1 encodes the protein PIBF1/CEP90, a component of the basal body essential 
for ciliogenesis and has been implicated as a cause of Joubert syndrome with kidney disease.48–

50 Altogether there appear to be a number of lines of evidence supporting this novel association. 
 

WDPCP 
A number of variants within the WDPCP gene were found to be significantly associated with GGT 
(most significant p-value 1.79e-10 for variant rs7566031), total cholesterol (most significant p-
value 1.21e-08 for variant rs7566031), and LDL cholesterol (most significant p-value 1.79e-12 for 
variant rs7566031) levels (Figures 2,4). None of these associations have been previously 
reported for any variant within 100kb of the WDPCP locus, and the association with LDL was 
specifically found to replicate, at both the variant and gene level, in our meta-analysis. WDPCP 
was only found to be significantly expressed in adipose tissue, of all the tissues investigated 
(Figure 6), and although nearly every variant significantly associated with LDL levels was also 
significantly associated with WDPCP expression levels (Figure S33), the nature of the association 
peak would suggest that the peak within the WDPCP locus may represent the tail of an 
association peak centered over the neighboring gene, EHBP1, which has been previously 
reported as associated with LDL and total cholesterol levels.51,52 That being said, the EHBP1 gene 
has not been implicated in any Mendelian genetic disorders, whereas bi-allelic pathogenic 
variants in WDPCP have been shown to cause Bardet-Biedl syndrome, a disorder characterized, 
in part, by hepatic fibrosis and dyslipidemia, both phenotypes characterized by perturbed GGT 
and LDL cholesterol levels.8,35  
 
Replication of known associations 
Of the 27 significant gene-trait associations we identified that replicate previously-known 
associations from the literature, 11 have been reported as mapping to the ciliary candidate genes 
that we set out to study: CENPF with Creatinine,53,54 CEP164 with HDL,44,55  POC5 with 
Cholesterol LDL and HDL,51,52,56,57 PROSER3 with HDL,52 RP1 with Cholesterol and LDL,51,58,59 
RP1L1 with Triglycerides,51,52 SDCCAG8 with Creatinine,53,55,60 and SPATA7 with Creatinine54 
(Figures 2-3, S5-6, S22-23, S25-28 ). Our study adds further evidence to the hypothesis that 
these ciliary genes play in important role in affecting these laboratory phenotypes in the general 
population.  
 
The remaining 16 significant, previously-reported associations mapped to 5 ciliary genes in our 
study (CEP170, DYNC2LI1, IFT172, TRIM32, TTC8), all of which exist within gene-dense regions 
of the genome. In these cases, the previously-reported mapped gene for the associated locus 
was different than the ciliary gene being investigated. In all cases, we found that the peak of 
association spanned multiple genes, making the identification of a single causative gene difficult. 
Four of these genes are discussed in more detail below.  
 

CEP170 and TTC8 
Interestingly, in the case of CEP170 and TTC8, the previously-mapped gene for each association 
peak was a different ciliary gene, and in both cases were ciliary genes that we also identified as 
significantly associated with the same trait. We found variants within the CEP170 gene to be 
significantly associated with creatinine (Figure 3), with the association at this locus previously 
reported as mapping to the neighboring SDCCAG8 gene (also found in our study); we found 
variants within the TTC8 gene to also be significantly associated with creatinine (Figure 3), with 
the association at this locus previously reported as mapping to the neighboring SPATA7 gene 
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(also found in our study). All four of these ciliary genes are significantly expressed in the kidney 
(Figure 6). The association peak at the SPATA7/TTC8 locus spans five genes altogether, with 
our eQTL analysis more supportive of SPATA7, rather than TTC8, as the potentially causative 
gene at this locus (Figures S28, S32). The association peak at the SDCCAG8/CEP170 locus, on 
the other hand, spans only these two ciliary genes, with our eQTL analysis showing strong 
evidence for correlation between expression levels of both of these genes and creatinine levels 
(Figures S7, S27). In fact, our eQTL analysis shows that each variant associated with changes in 
expression of SDCCAG8 has the same direction of effect on CEP170 expression.  
 

DYNC2LI1 and IFT172 
Two additional ciliary genes with significant, previously-reported associations bear mention: 
DYNC2LI1 and IFT172. Both of these genes, critical components of the ciliary IFT machinery,61,62 
are located in gene-dense regions of the genome that have previously been associated with a 
number of patient phenotypes. The DYNC2LI1 gene neighbors the genes ABCG5 and ABCG8, 
both known to be important in cholesterol metabolism,51,52,59,63 while the IFT172 gene abuts the 
GCKR gene, which has been extensively associated with blood glucose, triglyceride, LDL, GGT, 
AlkPhos, and creatinine levels.44,51–54,64–69  
 
We found the DYNC2LI1 locus to be significantly associated with LDL and total cholesterol, as 
has been previously published, but also found significant associations with A1c (most significant 
p-value 4.50e-13 for rs116520905), Creatinine (most significant p-value 1.14e-08 for 
rs116520905), and ALT levels (most significant p-value 4.29e-14 for rs56266464) – all of them 
previously unreported, and none of which replicated in our meta-analysis (Figures 2-5). The 
DYNC2LI1 gene is known to be causative of two Mendelian ciliopathy syndromes, Ellis-van 
Creveld syndrome and short rib polydactyly syndrome, both syndromes sometimes characterized 
by kidney and liver disease.62,70 eQTL analysis was not particularly supportive of the DYNC2LI1 
gene being the causative gene in the locus for any of these associations (Figure S10), and 
altogether it seems that these associations may be driven by the significant variants’ effects on 
neighboring genes such as ABCG5 and ABCG8. 
 
The IFT172 locus, on the other hand, was found to be significantly associated with nine separate 
phenotypes (A1c, AlkPhos, Cholesterol, Creatinine, GGT, Glucose, LDL, Triglycerides, 
Urea)(Figures 2-5), all of which had been previously reported and mapped to the neighboring 
GCKR gene. IFT172 is a critically important gene known to be causative of at least five severe 
ciliopathy syndromes characterized by renal disease, obesity, impaired glucose handling, 
dyslipidemia, and hepatic fibrosis.61,71,72 We found IFT172 to be ubiquitously expressed in all 
tissues we examined (Figure 6), and our eQTL analysis revealed significant correlations between 
ptrait and peQTL for IFT172 and a number of hepatic, liver, and lipid phenotypes (Figure S13), 
providing further evidence linking IFT172 to the associated phenotypes. Thus altogether it 
remains difficult to confidently assign causality at this locus to either GCKR or IFT172 alone.  
 
DiCE/pathway analysis reveals divergent phenotype associations for different ciliary 
compartments 
To integrate the multiple lines of evidence we had gathered linking each ciliary gene to each 
significantly associated phenotype, we employed a Diverse Convergent Evidence73 (DiCE) 
analysis to estimate the strength of available corroborating data supporting a given gene-trait 
association. Each gene-trait pair with a significant association in our discovery analysis was given 
a DiCE score based on the reproducibility of the association, tissue expression analysis, eQTL 
analysis, and associated Mendelian disease phenotypes. The smallest score received was a 3 
(given to KIF17-AlkPhos and NIN-Creatinine), whereas four genes received the maximum 
possible score of 11 (IFT172-Glucose, Triglycerides; IQCB1-Creatinine; SDCCAG8-Creatinine; 
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TRIM32-Creatinine). These DiCE scores were used to generate a schematic (Figure 7) illustrating 
the strength of evidence supporting each ciliary gene’s association with a given phenotype 
domain. 
 
Using this approach, interesting patterns emerged in the data implicating different ciliary 
compartments in different disease processes. The DiCE score for genes affecting each phenotype 
domain were summed, by ciliary compartment, to generate a 4x4 contingency table (Table S16). 
A chi-square test performed on this data revealed significant difference across groups (p = 
2.728e-05), primarily driven by the relative overabundance of basal body-associated genes and 
underabundance of IFT-associated genes within the kidney phenotype group (Figure S41). Of the 
12 genes important to ciliary basal body function, 9 (75%) were found to associate with kidney 
phenotypes, whereas only 3 (25%) were found to associate with either liver or lipid traits, and only 
1 (8%) was found to associate with glucose traits (Figure 7). At the same time, IFT-related genes 
accounted for 50% of the genes significantly associated with glucose traits and 42% of genes 
significantly associated with liver and lipid traits, but for only 21% of genes associated with kidney 
traits (Figure 7). Taken together, these data indicate that components of the ciliary basal body 
appear to play an important role in the normal function of the kidney, while ciliary genes involved 
in IFT appear more critical to liver-, lipid-, and glucose-related traits. 
 
Yet another pattern that emerged in the data regarded differences in pleiotropy across different 
phenotypes. A majority of genes associated with either glucose (83%), lipid (67%), or liver-related 
(57%) traits demonstrated pleiotropic effects, being significantly associated with multiple traits 
across these three domains, whereas only 5 of 19 (26%) genes associated with kidney function 
demonstrated any pleiotropy at all (Figure 7). Interestingly, all five of the genes significantly 
associated with kidney phenotypes that were found to exhibit pleiotropy were specifically also 
associated with liver traits, with three (DYNC2LI1, IFT172, and RP1L1) exhibiting pleiotropic 
affects across all four phenotypic domains.  
 
Taken together, the data yielded by our DiCE/Pathway analysis, seem to indicate that there exist 
divergent ciliary genetic pathways, one more specific to kidney function, and the other more 
specific to liver, lipid, and glucose physiology.  
 
 
 
DISCUSSION 
 

Our study set out to investigate associations between common variants in genes important to 
primary cilium structure/function and 12 diverse quantitative laboratory traits associated with 
common complex diseases. Our analysis identified 73 statistically-significant gene-trait 
associations across 34 of the 122 ciliary genes that we examined. With few exceptions, these 
ciliary genes were found to be widely expressed in human tissues relevant to the phenotypes 
being studied. In the vast majority of cases, significant trait-associated variants were also found 
to act as eQTLs for the ciliary genes being investigated, with strong evidence for correlation 
between gene expression levels and patient phenotypes. Strikingly, in many cases, the 
phenotypes significantly associated with the ciliary gene being studied were features of the 
Mendelian ciliopathies caused by rare loss of function variants in the same gene. Together, our 
data provide a number of lines of evidence supporting the cilium’s role in the pathogenesis of 
common disease, and challenge the widely-held belief that the cilium is an organelle important 
mainly in development and in rare syndromic disease pathogenesis. 
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The finding that the primary cilium is involved in common disease pathogenesis is an important 
milestone in our understanding of this organelle’s role in human physiology. Just as the cilium 
had been overlooked for decades before being rediscovered as a major player in rare Mendelian 
disease, the discovery of the cilium’s role in common complex disease pathogenesis may 
represent a new rethinking of the importance of this tiny organelle. Perhaps even more exciting, 
however, is the possibility that common pathologic pathways might underlie the development of 
both rare syndromic and common complex disease. This possibility is further highlighted by 
perhaps the most interesting and unexpected finding of our study – that different ciliary 
subcompartments are specifically associated with distinct sets of patient phenotypes. This 
concept, that even within a single organelle, distinct subsets of genes/proteins may act together 
to affect patient phenotypes in divergent ways, is not new to Mendelian disease, but is an 
interesting and fascinating finding in common disease genetics. In fact, the recognition that 
particular ciliary pathways/complexes may be specifically involved in divergent common disease 
processes leaves the door open for novel targeted therapeutics and diagnostic approaches for 
common disease, informed by our extensive knowledge of ciliopathy pathogenesis and rare 
disease pathways. The further characterization of these previously unknown links between the 
cilium and common complex disease will establish a new field of study that has the potential to 
fundamentally transform our understanding of common disease pathogenesis. 
 
An unexpected result of our analysis was the identification of four ciliary genes that were not 
significantly expressed in any tissues we examined in the GTEx database – CENPF, WDPCP, 
RP1, and RP1L1 (Figure 5, Table S15). In the case of CENPF and WDPCP, this is a surprising 
finding, as rare variants in each of these genes are known to cause complex, multisystem 
ciliopathy disorders,74–76 suggesting broad expression across multiple tissue types. We cannot 
rule out the possibility that these genes are expressed broadly only during fetal development but 
not adulthood, that they are expressed only in a small but critical subset of cells, or that the 
corresponding mRNAs are unstable, making their detection in the GTEx database unlikely. 
 
RP1 and RP1L1, on the other hand, represent more interesting cases. These two genes are highly 
homologous to each other, with mutations in each being well-established causes of Mendelian 
disorders characterized by retinal degeneration.77,78 In both cases, the genes are thought to be 
expressed exclusively in the retina.78 In our discovery analysis, both gene loci were found to be 
significantly associated with numerous laboratory phenotypes spanning multiple organ systems 
(RP1: AST, GGT, LDL, Cholesterol; RP1L1: A1c, AlkPhos, ALT, AST, Cholesterol, Creatinine, 
and GGT), which is not consistent with retina-only expression of either gene. In both cases, the 
variants significantly associated with each phenotype were also found to significantly affect 
RP1/RP1L1 expression levels based on our eQTL analysis, with evidence for correlation between 
gene expression levels and laboratory trait levels (Figures S25-26). RP1 exists in a locus with 
only one nearby gene, SOX17; interestingly, there did not appear to be a significant correlation 
between variants associated with SOX17 expression and any laboratory trait level (Figure S36), 
suggesting that the association between variants in this locus and AST, GGT, and LDL may, in 
fact, be mediated by changes in RP1 expression, through currently unclear mechanisms. RP1L1 
exists in a locus with a number of neighboring genes – C8orf74, PINX1, PRSS55, SOX7– and 
although our eQTL analysis found that the variants significantly associated with each trait also 
associated with the expression of many of these genes, by far the strongest correlation was with 
RP1L1 expression (figure S26, S37-40). Clearly, further work is needed to understand if and how 
genetic variants in these two apparently retina-specific genes are affecting non-retinal 
phenotypes. 
 
Another interesting consequence of our analysis was the identification of gene-dense genomic 
loci, containing at least one ciliary gene, that were found to strongly associate with laboratory 
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traits. It has traditionally been difficult to attribute causality to a single gene in loci such as this, 
which display high degrees of linkage disequilibrium across multiple genes.  In two cases, the loci 
we identified contained two different ciliary genes (CEP170 and SDCCAG8; TTC8 and SPATA7) 
(Figures S7, S27, S28, S32). These examples suggest that a single genomic locus might be 
associated with a given phenotype through the perturbation of expression of multiple genes 
operating within the same pathway. In fact, the primary cilium may serve as an excellent model 
for observing such associations and testing this hypothesis.  
 
In a different case, we identified variants within the critically important ciliary IFT gene IFT172 as 
being significantly associated with nine separate phenotypes – A1c, AlkPhos, Cholesterol, 
Creatinine, GGT, Glucose, LDL, Triglycerides, and Urea (Figure S13). IFT172 neighbors the gene 
GCKR, which has traditionally been considered the mostly likely causal candidate gene in this 
locus. GCKR encodes a well-studied regulatory protein important in controlling glucose flux 
through the glycolytic pathway, and has been shown in vitro to have significant effects on 
triglyceride and glucose metabolism.79 Previous fine mapping work of the GCKR locus has 
identified a relatively common missense variant in the gene as the putative causal variant 
responsible for the strong association of this locus with these multiple phenotypes.80 However, 
there is minimal evidence that the protein encoded by the GCKR gene actually plays an important 
role in disease pathogenesis; knockout mice completely deficient in GCKR are normoglycemic 
except under extreme dietary conditions, and express no other apparent health phenotypes,81,82 
and domestic cats have been shown to be completely deficient in GCKR mRNA and protein 
product as a species.83 It seems unlikely that a gene that, in other species, can be completely 
abolished without obvious health effects could be solely responsible for so many robust human 
phenotype associations. IFT172, on the other hand, is a critically important gene known to be 
causative of at least five severe ciliopathy syndromes characterized by renal disease, obesity, 
impaired glucose handling, dyslipidemia, and hepatic fibrosis,61,71,72 and seems a much more 
likely candidate gene for the association peak based solely on it’s known pathogenic potential. 
Furthermore, unlike GCKR, which is expressed primarily in the liver,84 IFT172 was found to be 
ubiquitously expressed in all tissues we examined, with our eQTL analysis revealing significant 
correlations between ptrait and peQTL for IFT172 and a number of hepatic, liver, and lipid 
phenotypes. This situation is reminiscent of the ongoing discussion surrounding the FTO locus – 
countless GWAS and fine mapping studies have linked the locus surrounding the FTO gene to 
body mass index and body fat percentage, but recent evidence suggests that the neighboring 
ciliary gene RPGRIP1L, may at least be partially driving these associations.85–87 Clearly more 
work is needed to disentangle the contributions of both GCKR and IFT172 to the many patient 
phenotypes associated with this genomic locus.  
 
Altogether, our data demonstrate the utility of a Mendelian disease-based approach to common 
variant association studies, and show that Mendelian disease genes can play an important role 
in common disease pathogenesis. Our data implicate the primary cilium as an important player in 
common disease, challenging the widely-held belief that the cilium is an organelle important 
mainly in development and in rare syndromic disease pathogenesis. It is not altogether surprising 
that such a critically important organelle, causative of rare ciliopathies characterized by 
phenotypes ranging from kidney failure to hepatic fibrosis, has important roles in the function of 
these same organ systems more generally; it stands to reason that a pathway important in rare 
disease might also be important for common disease affecting the same organ systems. The 
continued application of techniques similar to those described here to other 
phenotypes/Mendelian diseases is likely to yield many additional fascinating associations that will 
begin to integrate the fields of common and rare disease genetics, and provide insight into the 
pathophysiology of human diseases of immense public health burden. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.275685doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.275685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
ACKNOWLEDGMENTS 
 

We would like to thank Michael P. Hart and Pinar S. Gurel for their careful reading of the 
manuscript and helpful comments. 
 
 
 
FUNDING 
 

TGD is supported in part by the NIH T32 training grant 5T32GM008638-23.  MDR is supported in 
part by NIH R01 AI077505. 
 
 
 
METHODS 
 

Selection of cilium genes for analysis 
122 genes with well-characterized roles in ciliary biology17 were selected for analysis. In all cases, 
gene transcript coordinates were defined using reported transcriptional start and stop sites that 
yielded the maximum transcript length for each gene. A complete list of the genes included in this 
study, along with the genomic coordinates used, is included in Table S17. All genes were 
classified as being components of ciliary sub-compartments (basal body, transition zone, 
BBsome, or IFT-associated) based on literature review17,88. Mendelian disease associations for 
each gene were obtained from the Online Mendelian Inheritance in Man (OMIM)89 database and 
literature review. 
 
Preparation of UKBB Genotype data 
The UKBB cohort release version 2 has deep genetic and phenotypic data on ~500,000 subjects 
across the United Kingdom. Subjects were genotyped on two similar genotype arrays across 106 
batches and imputed to 96 million variants.90 Quality control of genotype data was performed 
largely as previously described.90 Subjects with poor quality genotype data were excluded from 
our analysis. Genetically related subjects (second-degree or closer with pi-hat larger than 0.25) 
were also excluded. European ancestry subjects were extracted using a combination of self-
reported European ancestry (UKBB Data-Field: 21000) and genetic principal component analysis 
(UKBB Data-Field: 22006). We next filtered variants to retain only those with a minor allele 
frequency between 0.4 and 0.01, and which fell within the genomic regions defined by our set of 
122 ciliary genes. This final set of variants was subjected to linkage disequilibrium (LD) pruning 
with an r2 threshold of 0.5 using a 50 variant window shifted by 5 variant steps. After quality control 
378,213 subjects and 16,874 genetic variants were included in our discovery association 
analyses. Principle components of genomic data that were subsequently used as covariates for 
association studies were provided in the UKBB data release. 
 
Preparation of UKBB Phenotype data 
For all 378,213 subjects passing genotype quality control, laboratory measurement information 
from the UKBB cohort release version 2 was extracted for the following phenotypes: Alanine 
aminotransferase (ALT; UKBB Data-Field: 30620), Alkaline Phosphatase (AlkPhos; UKBB Data-
Field: 30610), Aspartate aminotransferase (AST; UKBB Data-Field: 30650), Cholesterol (UKBB 
Data-Field: 30690), Creatinine (UKBB Data-Field: 30700), Gamma glutamyltransferase (GGT)( 
UKBB Data-Field: 30730), Glucose (UKBB Data-Field: 30740), Glycated haemoglobin (A1c; 
UKBB Data-Field: 30750), HDL cholesterol (HDL; UKBB Data-Field: 30760), LDL cholesterol 
(LDL; UKBB Data-Field: 30780), Triglycerides (UKBB Data-Field: 30870), and Urea (UKBB Data-
Field: 30670). For each subject, only baseline initial encounter laboratory measurements were 
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included. For each phenotype, outlier subjects with laboratory measurements greater than three 
standard deviations from the mean were excluded. For each phenotype, values were subjected 
to BoxCox91 or natural log transformation to maximize the normalcy of distribution. Following 
these quality control steps, the following number of subjects, per phenotype, were included in 
association analyses: A1c (n= 354,174), AlkPhos (n= 357,629), ALT (n= 354,959), AST (n= 
355,215), Cholesterol (n= 359,024), Creatinine (n= 358,650), GGT (n= 354,772), Glucose (n= 
324,597), HDL (n= 327,335), LDL (n= 358,417), Triglycerides (n= 354,118), Urea (n= 357,364). 
Summary statistics for the laboratory data used for our analysis can be found in Table S1.  The 
UKBB data was accessed using application #32133. 
 
Discovery Association Studies 
Association studies were performed using the genotype and phenotype data prepared as 
described above using the PLatform for the Analysis, Translation, and Organization of large-scale 
data (PLATO)92,93, a standalone program developed by the Ritchie lab for the performance of 
phenome-wide linear/logistic regression of genetic variants against participant phenotypes. Linear 
regression, assuming an additive genetic model, was performed across all 16,874 ciliary genetic 
variants and the 12 phenotypes listed above. Regression models were adjusted by age, sex, and 
the first ten principle components of the corresponding genomic data for all 378,213 European 
ancestry subjects.  
 
Meta-analyses 
Transethnic meta-analyses were carried out using the Stouffer method in the program METAL94 
using publicly-available GWAS44,95–97 and meta-analysis53,56,58,98–100 summary statistics. Studies 
were analyzed together only if performed on the same trait, with the exception of Glucose (where 
studies looking at both fasting and non-fasting glucose levels were analyzed together) and 
Creatinine (where studies looking at both serum creatine and estimated glomerular filtration rate 
(eGFR, a metric derived from the serum creatinine, along with age, sex, and race) were analyzed 
together). In all cases, variants were filtered to retain only those which fell within the genomic 
regions defined by our set of 122 ciliary genes. Where necessary, variant nomenclature was 
standardized to ensure that identical variants were appropriately analyzed across studies. The 
studies included for meta-analysis contained no overlapping sample sets, with the exception of 
the meta-analyses of Creatinine/eGFR, and Urea. In both these cases, there was an overlap of 
6,492 individuals between the large meta-analysis of eGFR and Urea traits (n = 567,460) 
conducted by Wuttke et al.53 (which contained samples from an earlier release of the BioVu 
dataset), and a GWAS performed on the current BioVU dataset97 (urea n = 33,322, creatinine n 
= 33,493). In both cases, we performed separate meta-analyses both including and excluding the 
current BioVu dataset (Figure S42) and found no differences in terms of the number of significant 
replicating loci identified. The meta-analyses including both of these data sets, with the small 
number of overlapping samples, are displayed in the main figures of the manuscript. The total 
transethnic sample size for each trait meta-analyzed was: A1c (n = 215,760), AlkPhos (n = 
178,929), ALT (n = 208,562), AST (n = 208,165), Cholesterol (n = 369,671), Creatinine/eGFR (n 
= 831,567), GGT (n = 136,161), Glucose fasting/non-fasting (n = 229,080), HDL (n = 311,121), 
LDL (n = 312,410), Triglycerides (n = 346,901), and Urea (n = 798,670). A more detailed 
description of the studies included in our meta-analyses can be found in Table S18.  
 
Significance Thresholds and Novel Findings 
For all 12 traits in our discovery analysis, analyzed across 16,874 ciliary variants, the Bonferroni-
corrected p-value significance threshold was calculated at 2.5e-7, but we chose to only report as 
significant those associations reaching the more stringent, commonly-accepted genome-wide p-
value significance threshold of 5e-8. Our meta-analyses included many more variants than those 
in our discovery analysis, and thus we defined significant replication in our meta-analyses in two 
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ways; at the variant level, and at the gene level. At the variant level, analyzing only the union of 
variants present in both the discovery analysis and meta-analysis for a given trait, a variant-trait 
association was deemed to replicate if: (1) the variant was significantly associated with the trait in 
our discovery analysis with p<5e-8 and (2) the p-value of association for the same variant, with 
the same trait, in the meta-analysis was below the Bonferroni-corrected significance threshold for 
the number of tests performed, defined as the number of variants shared between the discovery 
analysis and replication meta-analysis for a given trait. Listed here, for each trait, is the total 
number of variants shared between the discovery analysis and replication meta-analysis, along 
with the corresponding Bonferroni-adjusted significance threshold used to determine significant 
variant-level replication: A1c (14,271; 3.5e-6), AlkPhos (15,197; 3.3e-6), ALT (15,197; 3.3e-6), 
AST (15,186; 3.3e-6), Cholesterol (15,143; 3.3e-6), Creatinine/eGFR (13,331; 3.8e-6), GGT 
(15,171; 3.3e-6), Glucose (15,132; 3.3e-6), HDL (15,143; 3.3e-6), LDL (15,143; 3.3e-6), 
Triglycerides (15,143; 3.3e-6), Urea (13,336; 3.8e-6). The experiment-wise error rate for all tests 
across all phenotypes/variants in this analysis was calculated at 2.8e-7. At the gene level, a gene-
trait association was deemed to replicate if: (1) any variant within the gene was found to be 
significantly associated with the trait in our discovery set with p<5e-8 and (2) the p-value of 
association between the same trait and any variant within the same gene in the meta-analysis 
was below the Bonferroni-corrected significance threshold for tests performed, defined using the 
total number of variants analyzed in the meta-analysis for a given trait. Listed here, for each trait, 
is the total number of variants in the replication meta-analysis, along with the corresponding 
Bonferroni-adjusted significance threshold used to determine significant gene-level replication: 
A1c (104,706; 4.8e-7), AlkPhos (153,637; 3.3e-7), ALT (153,186; 3.3e-7), AST (149,729; 3.3e-7), 
Cholesterol (92,118; 5.4e-7), Creatinine/eGFR (42,925; 1.2e-6), GGT (146,818; 3.4e-7), Glucose 
(91,397; 5.5e-7), HDL (92,106; 5.4e-7), LDL (92,012; 5.4e-7), Triglycerides (92,107; 5.4e-7), Urea 
(42,701; 1.2e-6). The experiment-wise error rate for all tests across all phenotypes/variants in this 
analysis was calculated at 4e-8. We defined novel findings as those that (1) were significant in 
our discovery analysis with p<5e-8, (2) replicated at the gene and/or variant level (as defined 
above) in meta-analysis, and (3) were at least 100kb away from any other variant previously 
reported as significantly associated with the given phenotype. The Bonferroni-corrected 
significance threshold for all 1,456,062 independent association tests performed in our entire 
study was calculated to be 3.4e-8. 
 
Discovery/Replication Meta-analysis Result Visualization 
Results were visualized using a modified version of the Hudson R package101 to easily compare 
findings between our discovery analysis in the UKBB and replication meta-analyses of the same 
phenotype. For each Hudson plot, our discovery analysis results are plotted on the top half of the 
plot, with our meta-analysis results plotted in the bottom half of the plot. Each analyzed gene is 
given equal space, with all tested genetic variants for a given gene plotted at the midline of the 
gene block (i.e., variants are not represented in chromosomal space, but compressed to a single 
horizontal position per gene). For all Hudson plots, the study-wise Bonferroni-adjusted 
significance threshold (3.4e-8) is represented by a blue dashed line, while the Bonferroni-adjusted 
significance threshold for the trait being analyzed is represented by a red dashed line. 
 
Tissue Specific Expression Studies 
Tissue-specific expression data for each gene with significant associations in our discovery 
analysis was obtained from version 8 of the Genotype-Tissue Expression (GTEx) Project.29 The 
GTEx Project was supported by the Common Fund of the Office of the Director of the National 
Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the 
analyses described in this manuscript were obtained from the GTEx Portal on 5/20/2020. The 
tissues analyzed were limited to those deemed to be relevant to the studied phenotypes, and 
included data from kidney, liver, pancreas, adipose, and skeletal muscle. A gene was considered 
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to be significantly expressed in a given tissue if the GTEx-derived transcripts per million (TPM) 
for the gene in that tissue was greater than 1.5. A heatmap of tissue-specific expression 
information for each gene was generated using the ggplot2 package for R.102 
 
eQTL Plots 
The eQTpLot package was used to make all three eQTL plots; the R package is available on 
GitHub at https://github.com/RitchieLab/eQTpLot.31,32 
 
 eQTL Plot 
For each candidate gene with a significant association in our discovery analysis, we obtained a 
list of all variants associated with the gene’s expression level, across all tissues, from the GTEx 
version 8 dataset, as above. For each variant with significant associations with a given candidate 
gene’s expression in multiple tissues, we selected data only from the tissue with the most 
significant association. We defined a variant as an expression quantitative trait locus (eQTL) for 
the candidate gene if its p-value of association with gene expression (peQTL) was <0.05. We next 
defined a locus of interest (LOI) for each candidate gene to include the candidate gene’s 
coordinates, along with 200kb of flanking genomic material on either side. We repeated our 
association studies, as described in “Discovery Association Studies” above, for each significant 
candidate gene-trait pair, this time analyzing all variants in the LOI. To create the eQTL Plot, we 
plotted each variant in the LOI in chromosomal space on the x-axis, with the p-value of association 
with the phenotypic trait (ptrait) on the y-axis. If a variant was determined to be an eQTL for the 
candidate gene, it was plotted as a colored triangle – in blue, for variants that had congruent 
directions of effect (e.g. the variant was associated with increased transcript levels of the 
candidate gene, and also with an increase in the quantitative phenotype being studied), or in red 
for variants that had incongruous directions of effect (e.g. the variant was associated with 
increased transcript levels of the candidate gene, but with a decrease in the quantitative 
phenotype being studied), with a color gradient corresponding to the magnitude of peQTL. The size 
of each triangle was set to correspond to the eQTL normalized effect size for the variant, as 
obtained from GTEx, while the directionality of each triangle was set to correspond to the direction 
of effect of the variant for the phenotypic trait. Variants that were not found to be eQTLs (no eQTL 
data available, or peQTL >0.05) for the candidate gene were plotted as grey boxes. A depiction of 
the genomic positions of all genes within the LOI was added below the plot using the package 
Gviz for R103. 
 

eQTL Enrichment Plots 
For variants within the LOI with ptrait < 5e-8, the proportion that were also candidate gene eQTLs 
was calculated and plotted, and the same was done for variants with ptrait > 5e-8. Significant 
enrichment for eQTLs among the variants with significant association with the phenotypic trait 
was determined by Fisher’s exact test. Bonferroni-corrected significance thresholds for 
enrichment were set at p < 7e-4 (adjusting for testing for eQTL enrichment across the 73 gene-
trait pairs identified as significant in our discovery analysis). Variants with congruent and 
incongruent directions of effect, as described above, were considered separately.  
 

P-P Plots 
Each variant within a given LOI, as defined above, was plotted with peQTL along the x-axis, and 
ptrait along the y-axis. Correlation between the two probabilities was visualized by plotting a best-
fit linear regression over the points, with the line equation displayed on the plot. The Pearson 
correlation coefficient and p-value of correlation were computed and displayed on the plot as well. 
Separate plots were made and superimposed over each other for variants with congruent and 
incongruent directions of effect, as described above. Bonferroni-corrected significance thresholds 
for Pearson correlation were set at p < 3.5e-4 (adjusting for testing for correlation across the 73 
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gene-trait pairs identified as significant in our discovery analysis, once for congruent eQTLs and 
once for incongruent eQTLs).  
 
 
DiCE Analysis 
Each significant gene-trait pair was given a DiCE score73 ranging from 1 to 11 summarizing the 
amount of evidence linking the candidate gene with the associated trait. One point was assigned 
for the initial discovery association. One point was assigned if the association replicated in our 
meta-analysis (at either the variant or gene level), and two points were assigned if the association 
had been previously reported (for any variant within 100kb of the cilium candidate gene). One 
point was given if a gene was found to be expressed in at least one tissue relevant to the trait of 
interest, while two points were given if a gene was found to be expressed in all relevant tissue 
types (relevant tissue types considered were: Kidney (medulla) and Kidney (cortex) for 
Creatinine/Urea; Liver, Pancreas, and Muscle (skeletal) for Glucose/A1c; Liver, Adipose 
(subcutaneous) and Adipose (visceral) for Cholesterol/LDL/HDL/Triglycerides; Liver for 
AST/ALT/AlkPhos/GGT). If the association peak for a candidate gene was significantly enriched 
for candidate gene eQTLs, one point was assigned. If the Pearson correlation between ptrait and 
peQTL was greater than 0.25 with a p-value < 5e-5, one point was assigned. If both these outcomes 
were true, an additional one point was assigned. Lastly, if the associated trait was relevant to the 
Mendelian disease associated with the candidate gene, two additional points were assigned. As 
a single gene could be associated with multiple traits within a single trait domain (e.g. AlkPhos, 
ALT, AST, or GGT for Liver-related traits), the highest DiCE score within a trait domain was 
selected for each gene with multiple associations.  
  
 
Figure Legends: 
Figure 1. Schematic of analysis workflow for the data presented 
Phenotype and genotype data from the UKBB release version 2 was extracted and processed as 
indicated. Linear association studies between ciliary gene variants and patient phenotypes was 
performed, with genome-wide significant associations (p <5e-8) being studied further by tissue-
specific expression, eQTL, and replication meta-analysis. Using this data, a DiCE/Pathway 
analysis was performed to identify ciliary subcompartments associated with specific traits. 
 
Figure 2. Association study and meta-analysis results for lipid-related traits 
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-
analysis (bottom) of common variants within 122 ciliary gene with lipid-related traits. Data for 
cholesterol is in teal, HDL in red, LDL in purple, and triglycerides in orange. The study-wide 
Bonferroni-adjusted significance threshold (p<3.4e-8) is shown as a blue dashed line, while the 
experiment-wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, 
p<3.3e-6 for the meta-analysis) is shown as a red dashed line. Each analyzed gene is given equal 
space along the horizontal axis, with all tested genetic variants for a given gene plotted at the 
midline of the gene block. 
 
Figure 3. Association study and meta-analysis results for kidney-related traits 
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-
analysis (bottom) of common variants within 122 ciliary gene with kidney-related traits. Data for 
creatinine is in teal, and data for urea is in red. The study-wide Bonferroni-adjusted significance 
threshold (p<3.4e-8) is shown as a blue dashed line, while the experiment-wide Bonferroni-
adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.8e-6 for the meta-
analysis) is shown as a red dashed line. Each analyzed gene is given equal space along the 
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horizontal axis, with all tested genetic variants for a given gene plotted at the midline of the gene 
block. 
 
Figure 4. Association study and meta-analysis results for liver-related traits 
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-
analysis (bottom) of common variants within 122 ciliary gene with liver-related traits. Data for 
AlkPhos is in teal, ALT in red, AST in purple, and GGT in orange. The study-wide Bonferroni-
adjusted significance threshold (p<3.4e-8) is shown as a blue dashed line, while the experiment-
wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.3e-6 for 
the meta-analysis) is shown as a red dashed line. Each analyzed gene is given equal space along 
the horizontal axis, with all tested genetic variants for a given gene plotted at the midline of the 
gene block. 
 
Figure 5. Association study and meta-analysis results for glucose-related traits 
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-
analysis (bottom) of common variants within 122 ciliary gene with glucose-related traits. Data for 
A1c is in teal, and data for glucose is in red. The study-wide Bonferroni-adjusted significance 
threshold (p<3.4e-8) is shown as a blue dashed line, while the experiment-wide Bonferroni-
adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.3e-6 for the meta-
analysis) is shown as a red dashed line. Each analyzed gene is given equal space along the 
horizontal axis, with all tested genetic variants for a given gene plotted at the midline of the gene 
block. 
 
Figure 6. Results of tissue-specific expression analysis 
Heatmap depicting the results of the tissue-specific expression analysis for each of the 34 genes 
with significant associations in our discovery analysis. The phenotype domain(s) significantly 
associated with each gene are indicated by the colored bars at the top of the graph. 
 
Figure 7. Schematics illustrating the results of DiCE/Pathway analysis, and a depiction of 
the primary cilium  
(A) To integrate the multiple lines of evidence supporting each ciliary gene’s association with a 
given phenotype domain, we employed a Diverse Convergent Evidence (DiCE) analysis approach 
estimating the strength of available corroborating data (detailed in Table S14). The DiCE scores 
for each gene, illustrating the strength of evidence supporting each ciliary gene’s association with 
a given phenotype domain, are displayed here, with the magnitude of the score indicated by the 
size of each gene bubble. For each phenotype domain, gene bubbles are displayed at the same 
location for ease of comparison. Genes are colored by ciliary subcompartment – green for IFT-
related genes, pink for the BBSome, orange for the transition zone, and grey for the basal body. 
A stacked bar graph is also displayed for each phenotype domain, illustrating the summed DiCE 
scores for all genes, by ciliary subcomparmtent, as a proportion of the total DiCE score per 
phenotype domain. (B) A schematic of the primary cilium. The basal body and centrioles are 
displayed in grey, the ciliary transition zone in orange, the IFT machinery in green, and the 
BBSome in pink. The core of 9 microtubule doublets and the overlying membrane of the organelle 
are shown, and receptors being trafficked into/along the cilium are shown in blue. 
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Figure 1. Schematic of analysis workflow for the data presented
Phenotype and genotype data from the UKBB release version 2 was extracted and processed as indicated. Linear association studies between ciliary gene 

variants and patient phenotypes was performed, with genome-wide significant associations (p <5e-8) being studied further by tissue-specific expression, eQTL, 

and replication meta-analysis. Using this data, a DiCE/Pathway analysis was performed to identify ciliary subcompartments associated with specific traits.
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Figure 2. Association study and meta-analysis results for lipid-related traits
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-analysis (bottom) of common variants within 122 ciliary gene 
with lipid-related traits. Data for cholesterol is in teal, HDL in red, LDL in purple, and triglycerides in orange. The study-wide Bonferroni-adjusted significance 
threshold (p<3.4e-8) is shown as a blue dashed line, while the experiment-wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, 
p<3.3e-6 for the meta-analysis) is shown as a red dashed line. Each analyzed gene is given equal space along the horizontal axis, with all tested genetic variants 
for a given gene plotted at the midline of the gene block.
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Figure 3. Association study and meta-analysis results for kidney-related traits
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-analysis (bottom) of common variants within 122 ciliary gene 
with kidney-related traits. Data for creatinine is in teal, and data for urea is in red. The study-wide Bonferroni-adjusted significance threshold (p<3.4e-8) is 
shown as a blue dashed line, while the experiment-wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.8e-6 for the meta-
analysis) is shown as a red dashed line. Each analyzed gene is given equal space along the horizontal axis, with all tested genetic variants for a given gene plotted 
at the midline of the gene block.
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Figure 4. Association study and meta-analysis results for liver-related traits
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-analysis (bottom) of common variants within 122 ciliary gene 
with liver-related traits. Data for AlkPhos is in teal, ALT in red, AST in purple, and GGT in orange. The study-wide Bonferroni-adjusted significance threshold 
(p<3.4e-8) is shown as a blue dashed line, while the experiment-wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.3e-6 
for the meta-analysis) is shown as a red dashed line. Each analyzed gene is given equal space along the horizontal axis, with all tested genetic variants for a given 
gene plotted at the midline of the gene block.
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Figure 5

Figure 5. Association study and meta-analysis results for glucose-related traits
Hudson plot illustrating the results of the discovery association analysis (top) and replication meta-analysis (bottom) of common variants within 122 ciliary gene 
with glucose-related traits. Data for A1c is in teal, and data for glucose is in red. The study-wide Bonferroni-adjusted significance threshold (p<3.4e-8) is shown 
as a blue dashed line, while the experiment-wide Bonferroni-adjusted significance threshold (p<3.0e-6 for the discovery analysis, p<3.3e-6 for the meta-analysis) 
is shown as a red dashed line. Each analyzed gene is given equal space along the horizontal axis, with all tested genetic variants for a given gene plotted at the 
midline of the gene block.
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Figure 6. Results of tissue-specific expression analysis
Heatmap depicting the results of the tissue-specific expression analysis for each of the 34 genes with significant associations in our discovery analysis. The 
phenotype domain(s) significantly associated with each gene are indicated by the colored bars at the top of the graph.
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Glucose Lipid Liver KidneyA. B.

Figure 7. Schematics illustrating the results of DiCE/Pathway analysis, and a depiction of the primary cilium
A. To integrate the multiple lines of evidence supporting each ciliary gene’s association with a given phenotype domain, we employed a Diverse Convergent 

Evidence (DiCE) analysis approach estimating the strength of available corroborating data (detailed in Table S14). The DiCE scores for each gene, illustrating 
the strength of evidence supporting each ciliary gene’s association with a given phenotype domain, are displayed here, with the magnitude of the score 
indicated by the size of each gene bubble. For each phenotype domain, gene bubbles are displayed at the same location for ease of comparison. Genes are 
colored by ciliary subcompartment – green for IFT-related genes, pink for the BBSome, orange for the transition zone, and grey for the basal body. A stacked 
bar graph is also displayed for each phenotype domain, illustrating the summed DiCE scores for all genes, by ciliary subcomparmtent, as a proportion of the 
total DiCE score per phenotype domain.

B. A schematic of the primary cilium. The basal body and centrioles are displayed in grey, the ciliary transition zone in orange, the IFT machinery in green, and 
the BBSome in pink. The core of 9 microtubule doublets and the overlying membrane of the organelle are shown, and receptors being trafficked into/along 
the cilium are shown in blue.
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