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ABSTRACT 

Evidence from both model organisms and clinical genetics suggests close coordination between 

the developing brain and face1–8, but it remains unknown whether this developmental link 

extends to genetic variation that drives normal-range diversity of face and brain shape. Here, we 

performed a multivariate genome-wide association study of cortical surface morphology in 

19,644 European-ancestry individuals and identified 472 genomic loci influencing brain shape at 

multiple levels. We discovered a substantial overlap of these brain shape association signals with 

those linked to facial shape variation, with 76 common to both. These shared loci include 

transcription factors with cell-intrinsic roles in craniofacial development, as well as members of 

signaling pathways involved in brain-face crosstalk. Brain shape heritability is equivalently 

enriched near regulatory regions active in either brain organoids or in facial progenitor cells. 

However, brain shape association signals shared with face shape are distinct from those shared 

with behavioral-cognitive traits or neuropsychiatric disorder risk. Together, we uncover common 

genetic variants and candidate molecular players underlying brain-face interactions. We propose 

that early in embryogenesis, the face and the brain mutually shape each other through a 

combination of structural effects and paracrine signaling, but this interplay may have little 

impact on later brain development associated with cognitive function.  
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MAIN 

The human cerebral cortex forms the outer layer of gray matter of the brain and underpins 

cognitive function. It is characterized by complex folding patterns that vary between species and 

individuals9,10. Family- and twin-based studies indicate substantial heritability of brain shape11,12, 

and a recent genome-wide association study (GWAS) found that brain shape is highly polygenic 

and shows genetic correlations with a broad range of neuropsychiatric disorders and behavioral-

cognitive phenotypes13. These studies focused on pre-defined, univariate measures of brain 

shape, such as total or regional surface area, extracted from structural magnetic resonance 

imaging (MRI) scans14, and which cannot capture the morphological complexities of the cortical 

surface. We recently developed a data-driven approach to phenotyping complex, 

multidimensional traits15; this fully multivariate approach, when applied to facial surface images, 

revealed a large number of novel loci associated with variation in human face shape15,16. Here, 

we implemented this approach to discover associations between common genetic variants and 

brain shape, using MRI data from largely healthy, middle-aged participants in the UK Biobank 

(UKB).  

 

In addition to sharing complex morphologies, the development of the brain and face is highly 

integrated as a result of shared developmental lineage, spatial proximity, and signaling crosstalk 

between the two structures. Early in embryonic development, the rostral end of the ectodermally-

derived neural tube gives rise to the forebrain, which in turn gives rise to the cerebrum that 

encompasses the cerebral cortex. Just before forebrain formation, a subset of neuroepithelial cells 

within the neural folds give rise to facial progenitor cells called cranial neural crest cells 

(CNCCs). Following specification, CNCCs undergo an epithelial-to-mesenchymal (EMT) 
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transition and migrate ventrally, later giving rise to most of the craniofacial skeleton and 

connective tissue. Early growth rates of the brain can modulate both the positioning and 

outgrowth of the facial prominences1,2, as well as induce flexion and bone deposition of the 

CNCC-derived basicranial bones3,17 and neurocranial sutures18,19, respectively. Finally, paracrine 

factors secreted by either the developing forebrain20–23 or CNCCs5,6,24 modulate the development 

of the face or brain, respectively.  

 

These physical and molecular interactions have been detailed by studies in the developing chick 

and mouse embryos, but are also supported by widespread co-occurrence of neurodevelopmental 

and craniofacial malformations in rare human syndromes7. This phenomenon was noticed as 

early as 1964, when Demyer et al. coined the phrase “the face predicts the brain” to describe the 

correlation between the severity of brain abnormalities and facial malformations in patients with 

holoprosencephaly8. While in some cases this co-occurrence may be caused by pleiotropic 

functions of the affected gene, a number of such human syndromes have been mapped to genes 

known to function in brain-face crosstalk through paracrine signaling25–27.  Nonetheless, close 

developmental links between face and brain are often underappreciated; whether and how they 

extend to common human genetic variation that influences the diversity of brain and face shape 

is unknown.   

 

Multivariate GWAS of brain shape 

We adapted our previously published data-driven phenotyping approach15 to brain shape, as 

measured by MRI scans of 19,644 individuals in UKB. Participants included were of primarily 

European ancestry, such that results do not pertain to cross-population differences in brain shape. 
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All of our analyses focused on the mid-cortical surface (midway between the white-grey matter 

interface and the pial surface with the cerebrospinal fluid, as extracted using FreeSurfer14), which 

we refer to as brain shape. Given the complete dataset of mid-cortical surfaces each represented 

by a homologous mesh of spatially dense 3D vertices, the method segments brain shape in a 

global-to-local manner, yielding multivariate brain segments at different hierarchical levels of 

scale. Within each segment, principal component analysis (PCA) is used to describe effects in 

multivariate shape-space explaining between-individual variation, and canonical correlation 

analysis (CCA) is used to define, for each variant tested in the genome, the linear combination of 

PCs maximally associated with single nucleotide polymorphism (SNP) dosage. In agreement 

with findings of nonzero but low heritability of thickness and surface area asymmetry28, we 

observed that independent processing and GWAS of left and right hemispheres showed highly 

concordant results (Extended Data Fig. 1). Therefore, all subsequent analyses were performed 

using the left-right hemisphere averaged surface data. 

 

Applying this pipeline to the UKB MRI data, we defined 285 hierarchical segments (Fig. 1, 

Supplementary Table 1), decomposing brain shape into different levels of detail, from larger 

brain segments with more integrated shape variation, to more smaller brain segments with more 

local effects. Each hierarchical level is a bipartition of its parent; thus, the first level consisted of 

the entire brain, while the second and third levels segmented the whole brain into halves and 

quadrants, respectively, and the final, ninth level resulted in numerous smaller segments (Figure 

1b, right). Many smaller segments from the seventh hierarchical level onwards were discarded 

due to their small surface areas, resulting in fewer total segments than the 511 (29 - 1) expected.  

The segmentation broadly agreed with the commonly-used Desikan-Killiany29, Destrieux30, and 
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Glasser31 atlases of brain regions (Extended Data Fig. 2). In total, we conducted 285 multivariate 

GWAS using CCA, each corresponding to one segment. 38,630 SNPs showed genome-wide 

significant (P < 5 x 10-8) association with brain shape variation in at least one segment; of these, 

23,413 reached study-wide significance (P < 2.07 x 10-10 as assessed by permutation, see 

Methods) in at least one segment. Collapsing these SNPs into independent signals based on 

linkage disequilibrium and distance yielded 472 and 242 loci reaching genome- and study-wide 

significance, respectively (Supplementary Table 2). Most of the 472 loci showed effects on 

multiple segments (305/472, 65%), and many showed effects on multiple quadrants (158/472, 

33%) (Figure 1, Supplementary Table 2), consistent with global-to-local effects at multiple levels 

of brain shape. Associations between these loci and brain shape were generally depleted from the 

frontal lobe segments (except for the most anterior orbitofrontal cortex) and enriched in the 

occipital and temporal lobe segments (Extended Data Fig. 3), mostly in agreement with point-

wise heritability estimates across the brain surface (Extended Data Fig. 4). 

 

We assessed the overlap between the 472 loci and previous GWAS of brain surface areas or 

subcortical volumes13,32–36. The 472 loci recapitulated 27-78% of the associations reported in 

previous studies; the highest overlap of 78% was with a recent study of univariate brain surface 

area13, which is the phenotype most comparable to the shape measures studied here (Extended 

Data Table 1). In total, of the 472 loci, 121 overlapped with those reported in previous studies on 

brain surface area or subcortical volume, while 351 represent novel associations with brain 

morphology. To assess the reproducibility of the 472 loci on the same shape measures, we 

analyzed MRI data from the Adolescent Brain Cognitive Development (ABCD) study37. Of the 

472 loci, 466 were available for replication testing (see Methods). At 5% FDR, we replicated at 
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least one associated segment for 305 of 466 (65.4%) loci, and 2,645 of 3,586 (73.8%) tested 

locus-segment combinations (Supplementary Table 3). This replication rate is notable given the 

substantial difference in age of the ABCD cohort (9-10 years versus 40-70 years in UKB). Thus, 

despite the known continued growth and morphological changes of the brain throughout 

adolescence and into adulthood38, the high reproducibility of GWAS results between the two 

cohorts suggests that many of the observed associations with brain shape originate during 

development and are maintained throughout life.  

 

We next used FUMA39 and GREAT40 to identify pathways enriched among genes near the 472 

loci, as well as curated gene panels used to guide rare disease diagnoses from whole-genome 

sequencing41 to identify disease associations (see Methods for details). As expected, we found 

strong enrichment for brain-specific processes (i.e. neurogenesis, axonogenesis, neuron 

differentiation, nervous system development, neuron projection guidance), morphogenesis-

related processes (i.e. anatomical structure morphogenesis, animal organ morphogenesis), and 

neurodevelopmental disorders (i.e. intellectual disability, malformations of cortical development, 

ciliopathies). We also observed a weak enrichment of terms related to the formation and closure 

of the neural tube, suggesting that early developmental events impact adult brain shape variation. 

Surprisingly, we also observed strong enrichment of terms related specifically to CNCC 

development and migration, as well as weaker enrichments in broader terms encompassing 

skeletal system development, chondrogenesis, and osteogenesis (Supplementary Table 4). 

Furthermore, strong and weak enrichments were also found for craniosynostosis and clefting 

gene panels, respectively. These enrichments suggested a link between variation in brain shape 

and craniofacial skeletal development, which we set out to explore further. 
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Loci affecting both brain and face shape 

To more directly test for sharing of genetic effects between brain and face shape, we intersected 

the 472 loci described in this study with 203 loci we previously associated with face shape 

variation in European-ancestry individuals through a similar, open-ended phenotyping 

approach16. Thirty-seven of the loci for brain shape are in linkage (r2 > 0.2) with at least one of 

the face shape loci, significantly above random expectation (P = 2.03 x 10-22, OR = 10.6) and 

greater than the overlap with other traits that have similar numbers of genome-wide significant 

associations in the NCBI-EBI GWAS Catalog42 (Extended Data Fig. 5). Identifying signals 

showing genome-wide significant association with one of brain or face shape and genome-wide 

suggestive (P < 5 x 10-7) association with the other resulted in 76 brain-face shared loci (Figure 

2a), which we carried forward for further analysis.  

 

Genes near the 76 brain-face shared loci were strongly enriched for disease associations, 

including “skeletal disorders” and “hearing and ear disorders”, consistent with the contribution 

of CNCCs to craniofacial skeleton and ear structures. We next scanned the 76 brain-face shared 

loci for candidate genes with known roles in craniofacial or brain development from human 

syndromes and/or mouse knockouts (Supplementary Table 5). We observed that many of the 

shared brain-face loci are associated with genes encoding transcription factors (TFs) involved in 

neural crest formation and/or craniofacial skeletal development. Some of those TFs (for example 

DLX5/6, SOX9, ZEB2, ZIC2, ZIC3, TCF4) have known functions in both neural crest and brain 

development, and this pleiotropy may account for the shared genetic signals observed between 

the face and the brain. However, other shared brain-face signals are associated with TFs thought 
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to function primarily during neural crest rather than brain development, and whose mutations 

cause specific craniofacial defects; those TFs include ALX1 and ALX4 (associated with 

frontonasal dysplasias43,44), TWIST1 (associated with Saethre-Chotzen Syndrome45,46), PAX3 

(associated with Waardenburg syndrome47), and TFAP2B (associated with CHAR syndrome48). 

Consistent with the primary role of these TFs in facial development, transcriptome analysis 

showed their high expression in in-vitro derived human CNCCs and their chondrocyte 

derivatives49, but low/no expression in either glia or neurons of human forebrain organoids 

spanning a wide range of developmental stages50 (Figure 2b). These observations suggest that 

genetic variants influencing regulation of key craniofacial TFs have a greater than previously 

appreciated impact on brain shape. 

 

Interactions between face and brain can be architectural in nature, with the forebrain acting as a 

structural support for facial development, and facial skeletal structures flexing to accommodate 

early brain growth4.  However, these interactions can also involve paracrine signaling, with 

fibroblast growth factor (FGF), Hedgehog, and bone morphogenetic protein (BMP) pathways 

having documented roles in mediating the signaling from the developing brain to the face20–22. 

Interestingly, genes encoding members of all three aforementioned pathways, FGF (FGF2, 

FGF13, FGF18, SPRY2), Hedgehog (PTCH1), and BMP (BMP2, BMP4) are among the shared 

brain-face association loci. For example, mutations in PTCH1, the receptor for the sonic 

hedgehog ligand, cause holoprosencephaly51, a congenital, structural forebrain anomaly also 

associated with a range of craniofacial malformations. Conversely, CNCCs secrete anti-BMP 

signaling molecules which modulate forebrain development5,6, and expression of these BMP 

antagonists is dependent on the SIX family TFs, whose perturbation in CNCCs is associated with 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


craniofacial malformations, but also causes secondary pre-otic brain defects52; SIX1/4 is also 

among the shared brain-face loci identified in our study (Figure 2a). We further note that a 

number of genes linked to regulation of other signaling pathways, for which prominent roles in 

brain-face crosstalk have yet to be described, including Wnt (DAAM1, DAAM2, TNKS, AHI1, 

FBXW11, MCC) and transforming growth factor beta (LEMD3, PPP2R2A) are among the shared 

brain-face association loci, suggesting new candidate genes and pathways for future functional 

exploration. Not unexpectedly, and in contrast to the craniofacial TFs, the signaling pathway 

ligands, receptors and regulators are variably expressed between the in-vitro derived human 

CNCCs and brain organoids (Figure 2b).  

 

Phenotypically, these highlighted loci largely affect brain shape in the frontal and temporal 

lobes, and face shape in the forehead and nose, as exemplified by PAX3 and ALX1 (Figure 2c), 

consistent with the physical proximity of the frontonasal prominence and the forebrain during 

development. Phenotypic effects distinct from this pattern include effects of variants near BMP4 

and DLX6 on jaw and chin morphology, consistent with their known roles in mandibular 

development53,54, and effects of variants near PTCH1 on occipital lobe morphology (Figure 2c). 

Together, these results suggest that both cell-intrinsic mechanisms and paracrine signaling 

pathways contribute to the substantial number of loci with shared associations with brain and 

face shape. 

 

Genome-wide sharing of signals with neuropsychiatric disorders and behavioral-cognitive 

traits 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


We next asked whether the brain-face overlap among genome-wide significant loci was true 

across the genome, also considering GWAS of neuropsychiatric disorders and behavioral-

cognitive traits. Genetic correlations between univariate traits can be computed from signed 

summary statistics using LD score regression (LDSC)55. However, this approach is not 

applicable to the unsigned statistics yielded by CCA. We therefore applied an alternative method 

of assessing genome-wide sharing of signals between two GWAS, summarizing SNP p-values 

within approximately independent LD blocks and computing Spearman correlations between the 

two summarized profiles (see Methods for details). When applied to pairs of univariate GWAS, 

the Spearman correlation method was largely concordant with, albeit generally smaller in 

magnitude than, unsigned estimates of genetic correlations by LDSC (Extended Data Fig. 6), 

indicating that it is a conservative, robust measure for quantifying genome-wide sharing of 

GWAS signals.  

 

We first assessed sharing of association signals between 63 face segments and 285 brain 

segments (Supplementary Table 6). All four main facial quadrants, representing shape variation 

within the forehead, nose, lower face (mandible and cheeks) and philtrum, respectively, showed 

the most sharing with brain segments in the frontal lobe, particularly the most anterior portions 

such as the rostral prefrontal cortex, and the least sharing with segments in the parietal lobe 

(Figure 3a). Furthermore, among the facial quadrants, the forehead and nose showed more 

sharing with frontal lobe effects than the philtrum and lower face. These genome-wide 

correlations are consistent with the phenotypic effects of top brain-face shared loci (Figure 2c, 

Extended Data Fig. 7).  
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We next assessed sharing of signals with other phenotypes relevant to brain shape. We used 

publicly-available genome-wide summary statistics for a range of neuropsychiatric disorders, 

behavioral-cognitive traits, and subcortical brain volume measures from studies other than the 

UK Biobank, since our Spearman correlation measure does not control for sample overlap 

(Supplementary Table 7).  Subcortical volume measures showed the most sharing with brain 

shape in the corresponding regions, but the magnitude of these correlations was relatively low 

(on par with sharing between brain and face shape), indicating that our multivariate GWAS 

approach detects many effects beyond those resulting from changes in relative subcortical 

volume (Figure 3b). We found that disorders with primarily developmental etiology and that 

manifest early in life showed substantial sharing with brain shape in regions previously linked to 

these disorders. For instance, schizophrenia and attention deficit hyperactivity disorder (ADHD) 

showed sharing with shape variation in the primary auditory56,57 and prefrontal cortex regions58, 

respectively. In contrast, we did not observe this association with cortical surface shape in 

Alzheimer’s disease, caused by plaque buildup and neurodegeneration much later in life. 

Associations with behavioral-cognitive traits such as intelligence, neuroticism and worry showed 

broader patterns of sharing with brain shape across multiple regions, reflecting the presumed 

involvement of distributed cortical regions in these traits59–61 (Figure 3b).    

 

Finally, we compared the degree to face shape shares signals with neuropsychiatric disorders, 

behavioral-cognitive traits, and subcortical volume measures. Brain shape shares significant 

(FDR 5%) signal with most neuropsychiatric traits, as well as all behavioral-cognitive and 

subcortical volume traits analyzed. In contrast, face shape does not show significant sharing with 

any of the neuropsychiatric disorders or behavioral-cognitive traits, and significant but weaker 
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sharing with the subcortical volume measures (Figure 3c). To confirm these patterns of sharing 

using standard univariate approaches for face shape, we performed GWAS on the most heritable 

individual PCs of full brain or face shape and computed standard genetic correlations using 

LDSC. Although genetic correlation estimates were noisy due to low heritability of shape 

GWAS using univariate approaches, they generally agreed with our Spearman correlation 

measure, finding non-zero genetic correlations between both brain and face shape and 

subcortical volume measures, and between brain shape and autism spectrum disorder (Extended 

Data Fig. 8).  Thus, the substantial sharing of signals between brain and face shape (Figure 3a) is 

mostly independent of neuropsychiatric disorder risk and behavioral-cognitive traits, likely due 

to the fact that mutual influences of face and brain shape on each other involve phenotypic 

effects on brain shape distinct from those important for risk of neuropsychiatric disorders and 

behavioral-cognitive traits.  

 

Cell-types influencing brain and face shape 

Our results thus far suggest that a substantial fraction of brain shape variation is underpinned by 

face shape variation, but that these effects are largely independent of effects shared between 

brain shape and other cognitive traits. To systematically test this idea further, we sought to 

identify the cell-types and tissues most enriched for heritability of brain shape, face shape, and 

other traits relevant to cognitive function. Partitioning heritability into cell-type specific 

functional annotations (i.e. open chromatin, enhancers, and promoters) via stratified LD score 

regression (S-LDSC) can prioritize trait-relevant cell-types and tissues, but was developed for 

univariate traits62; we thus sought to extend the theoretical framework of S-LDSC to multivariate 

traits such as the brain and face shape GWAS in this study. We proved that when applying 
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unstratified LDSC55 to χ2 statistics obtained from multivariate traits with independent 

dimensions and further corrected for trait dimensionality, the LDSC-estimated heritability is 

equal to the average heritability of the component univariate traits (see Methods, Supplementary 

Note), a proof that we validated through separate LDSC heritability analysis of each PC making 

up the full face (Extended Data Figure 9). By extension, heritability enrichments obtained by 

applying S-LDSC on multivariate, corrected χ2 statistics partitioned by a given functional 

annotation represent the average heritability enrichment for each component univariate trait (see 

Methods, Supplementary Note).  

 

We collected genome-wide data on open chromatin (inferred from ATAC-seq) and active 

regulatory regions (inferred from ChIP-seq of histone marks) from a variety of cell-types and 

tissues, including in-vitro derived CNCCs and their chondrocyte derivatives49,63, embryonic 

craniofacial tissue at different stages of development64, neuronal and glial cells from 3D 

forebrain organoids at various stages of differentiation50, and both fetal and adult brain tissue65. 

We first quantified brain and face shape heritability enrichments for these cell-type specific 

annotations (Supplementary Table 8). Face shape showed significant (5% FDR) heritability 

enrichment specific to regulatory regions in craniofacial cell-types (mean Z-score 4.58) (Figure 

4a). Brain shape showed significant and comparable heritability enrichments for regulatory 

regions in craniofacial cell-types and tissues, brain organoids, and primary fetal brain tissue 

(mean Z-scores 4.23, 3.23, 3.33, respectively) (Figure 4b). Within brain organoids, the strongest 

enrichments were for early-stage glial cells and even earlier-stage whole organoids (mean Z-

score 4.11) (Extended Data Fig. 10), consistent with the radial unit hypothesis and in agreement 

with enrichments of brain surface area heritability13. The strong enrichments for craniofacial 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


cell-types, which were substantially more significant than organoid enrichments in the 

orbitofrontal and medial temporal lobes (Extended Data Fig. 11), suggest that the shared GWAS 

signal between brain and face shape is mediated primarily by CNCCs and their derivatives early 

in embryonic development. Consistent with this idea, quantifying brain shape heritability 

enrichments with the 76 brain-face shared loci removed resulted in decreased enrichment for 

CNCCs (Z-score difference -0.68) and slightly increased enrichment for the most enriched 

organoid annotation (Z score difference 0.23) (Extended Data Fig. 12).  

 

Finally, we quantified heritability enrichments for neuropsychiatric disorders, behavioral-

cognitive traits, and subcortical volume measures. Neuropsychiatric disorders and behavioral-

cognitive traits showed heritability enrichment patterns somewhat distinct from those of brain 

shape, with significant enrichment for both fetal and adult brain tissue (mean Z-scores 2.17 and 

2.64, respectively), and broad enrichment across stages and cell-types of brain organoids (mean 

Z-score 2.46). In contrast to brain shape, these traits showed no enrichment for craniofacial cell-

types or tissues (mean Z-score -0.92) (Figure 4c). Subcortical volume measures showed mixed 

enrichment patterns, with some regions (amygdala, caudate) similar to those of multivariate brain 

shape and other regions (putamen) closer to those of neuropsychiatric disorders and behavioral-

cognitive traits. These results suggest that while a substantial portion of the shared genetic 

variation between brain and face shape are mediated by regulatory regions in CNCCs and their 

craniofacial derivatives, variation in these regulatory regions does not impact neuropsychiatric 

disorder risk or other behavioral-cognitive traits. 

 

DISCUSSION 
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Here, we applied a multivariate phenotyping approach to assess common genetic variation 

underlying brain shape, revealing a large number of novel loci with effects on brain volume or 

surface area. While these loci broadly implicate known pathways in brain development, the 

precise mechanisms by which they modulate brain shape are unknown, suggesting further 

avenues of investigation. As part of our study, we extended techniques for estimating and 

partitioning genome-wide heritability, originally developed for univariate traits, to multivariate 

traits. We anticipate that these and similar extensions will become increasingly useful with the 

greater availability of high-dimensional imaging or morphological data in large sample sizes.   

 

Our study revealed a striking convergence of common genetic variation affecting brain and face 

shape, which is at least in part mediated by the regulatory regions active in CNCCs and their 

more differentiated derivatives. These observations suggest a larger than previously appreciated 

role of the face in shaping development of the brain and its individual morphological variation. 

Importantly, however, these shared genetic effects do not appear to significantly impact 

neuropsychiatric disorder risk or cognitive functions. Our results are therefore consistent with a 

model whereby CNCCs and their derived cranial structures significantly influence brain shape 

through both physical interactions and paracrine signaling early in embryogenesis, but later 

shaping of the cortical morphology, through processes such as gyrification66, has a much more 

significant impact on cognitive traits. 

 

A number of developmental mechanisms could mediate the shared genetics of brain and face 

shape. One potential contribution comes from the common neuroepithelial origins of the two 

structures, with genes influencing growth, patterning and cell fate decisions within the neural 
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plate ultimately affecting cell allocation within distinct parts of the brain and face; examples of 

such neural plate genes within brain-face shared loci include ZIC2 and ZIC367–69. Another 

potential mechanism entails common genetic variation modulating expression of genes with 

pleiotropic, independent roles in both brain and face development. A good candidate for this type 

of mechanism may be the SOX9 gene, encoding a TF with key functions in neural crest 

development and chondrogenesis, but which is also required for gliogenesis70. Nonetheless, the 

fact that most brain-face shared genetic effects are concentrated on facial regions from the 

frontonasal prominence and anterior forebrain regions of the brain suggests additional, 

proximity-based mechanisms, which can be either structural in nature, or mediated by the 

paracrine signaling. While development of the brain and face must be tightly coordinated, the 

brain is thought to have greater structural effects on craniofacial development than the reverse, as 

the forebrain can act as a structural support for facial development4 as well as induce flexion of 

the basicranium and bone deposition at coronal sutures through tensile forces generated by its 

growth3,4,18. However, we find multiple brain-face shared loci lie near TFs with known, cell-

intrinsic roles in, and expression specific to, CNCCs and their derivatives. Furthermore, 

mutations in these TFs are associated with malformations of the frontal facial skeleton, such as 

coronal synostosis (TWIST1)45,46 or fronotonasal dysplasias (ALX1 and ALX4)43,44. One possible 

explanation for these results is that these TFs control regulatory programs that ultimately 

modulate the ability of the craniofacial skeleton to respond to and accommodate brain growth, 

thus causing subtle changes in brain shape. It is also possible, however, that these TFs exert 

some of their phenotypic effects on brain shape by regulating the expression of signaling ligands 

secreted from the face.  For example, CNCCs secrete BMP antagonists which modulate forebrain 

development by blocking BMP and FGF production in the anterior neural ridge (ANR)5,6. BMP 
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antagonist production in CNCCs is regulated by the SIX family TFs52, with the SIX1/4 locus 

representing one of the shared brain-face signals in our GWAS analyses (Figure 2a).  In the 

reverse direction, studies in chick embryos have shown that Fgf, Shh, and BMP ligands are 

secreted by the forebrain and regulate the formation of the frontonasal ectodermal zone (FEZ), a 

signaling center that in turn patterns the frontonasal prominence of the developing face20–22,71. 

Notably, our GWAS analyses implicate all three of these signaling pathways, nominating 

specific ligands and receptors within those pathways whose modulation may be associated with 

the brain-face crosstalk. Furthermore, our study nominates other signaling pathways, such as 

Wnt and TGF-beta, for further investigation in paracrine signaling between the brain and face. 

Altogether, we uncovered common genetic variants yielding a wealth of candidate molecular 

players whose diverse mechanistic roles in mediating brain-face interactions during development 

can be examined in future studies. 

 

Relationships of facial shape with cognitive and personality traits fascinated humans since 

ancient times, from the Ancient Greeks, who introduced the term ‘physiognomy’ to describe a 

practice of assessing a person's personality from their facial appearance72, through the Vedic 

traditions of Samudrika Shastra73 and to the Chinese art of face reading74. The concept of 

physiognomy was revived in the late 18th century by Johan Kaspar Lavater, and later gave rise to 

a related pseudoscientific theory, phrenology, popularized by Franz Josef Gall. Both theories 

have a troubled history, as they have been used to justify racial discrimination as well as eugenic 

theories75,76. While physiognomy in its original formation has been largely debunked, modern 

studies have found correlations between facial width-to-height ratios and aggressive tendencies 

and behaviors77, with regrettable renewed efforts in using machine learning approaches to detect 
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such correlations raising serious ethical concerns78,79. However, our results argue that while the 

ancient human intuition of a close relationship between the face and the brain has genetic support 

at the level of morphology, there is no genetic evidence for the supposed predictive value of face 

shape in behavioral-cognitive traits, which formed the core of physiognomy and related theories.  

 

METHODS 

UK Biobank data preprocessing 

The UK Biobank project (UKB) is a large dataset of about 500,000 British volunteers with 

informed consent containing genetics, non-imaging variables and brain imaging data acquired 

using a fixed protocol80. Hereby, brain T1-weighted magnetic resonance imaging (MRI) scans of 

the UKB, as well as genotyping and covariate information (e.g. sex, age, height, weight, among 

others), were obtained and used as the discovery dataset. More specifically, we utilized the data 

release v1.5 of August 2018 which holds a cohort of 21,780 subjects with these three sources of 

information. This cohort was composed of an adult population (40 to 70 years old, mean of 60 

years old), with slightly more females than males (51.6% vs. 48.4% respectively), a 

predominantly self-reported white British ancestry (97.1%), and an average body mass index 

(BMI) of 26.6.  

For the list of 21,780 subjects, we processed the raw MRI data for a surface-based analysis of the 

cerebral cortex using the following four-step procedure:  

First, the cortical surfaces were segmented and reconstructed from the MRI volumetric data 

using recon-all (FreeSurfer81 v.6.0.0; URL section). In this step 20,409 images were processed 

successfully.  
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Second, to obtain a minimally preprocessed pipeline similar to the one of the Human 

Connectome Project (HCP – URL Section) CIFTIFY (Connectivity Informatics Technology 

Initiative file format - URL section) was used to convert FreeSurfer’s recon-all command output 

to a HCP-style file format and structure82. This protocol converts the data into GIFTI and CIFTI 

“gray ordinate” file formats, and then performs surface-based alignment of the cortical mesh to 

the fs_LR Conte69 space using MSMSulc and volume-based registration of subcortical 

structures to the MNI152 space. High dimensional cortical meshes were down sampled to lower 

resolution meshes of 32,492 3D vertices (average ~2mm spacing) and 64,980 triangular faces. 

Left and right hemispheres were aligned to each other. Due to the alignment of individual brain 

images with a common brain surface atlas (Conte69), the cerebral cortex was represented by 

surfaces that were also homologous from one individual to another83: a single vertex of a 

subject’s brain mesh was in very good anatomical correspondence with a single vertex of another 

subject’s brain mesh, and this for all 32,492 vertices of the meshes. All but one of the images 

were processed without error in this step.  

Third, from the output of CIFTIFY, we selected the mid-cortical surfaces of the left and right 

hemisphere, which is the surface that runs at the mid-distance between the white surface (which 

lies at the interface between gray and white matter) and the pial surface (which is the external 

cortical surface)84. The mid-cortical surface does not over or under-represent gyri or sulci85, but 

besides that our choice for this specific surface is arbitrary. The white and/or pial surfaces could 

have been used alternatively. The vertices from the sub-cortical part of the surface, are typically 

excluded from surface-based cortex analysis, and were therefore removed based on the sub-

cortical vertex index provided by the Conte69 atlas. The final count of vertices for each of the 

mid-cortical surfaces left and right was 29,759. For each hemisphere and each individual, we 
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also computed the centroid size as the average Euclidean distance of all mesh vertices to the 

point of gravity, which is a standard measure of size in geometric morphometrics. In the 

remainder of this work, cortical brain structure or brain shape for short, is represented and 

referred to by the mid-cortical surface. 

Fourth, as quality control for each hemisphere separately, we checked the resulting mid-cortical 

surfaces for mesh artifacts in a semi-automatic manner. This was done by first measuring the 

Mahalanobis distance for each individual’s mid-cortical surface to the overall average mid-

cortical surface in a generalized Procrustes shape-space spanned by an orthogonal basis of 

principal components that captures 98% of the total variation. From the distribution of 

Mahalanobis distances, a z-score for each mid-cortical surface was then established, and each 

mid-cortical surface with a z-score equal to or larger than three was manually inspected for 

meshing errors (e.g. triangles stretched too far or triangles folded). All images after step 3 passed 

this quality control, resulting in a set of 20,407 processed images.  

For the list of 20,407 subjects with preprocessed images, we selected genomic data from the UK 

Biobank, which consisted of the version 3 (March 2018) imputed SNP genotypes, imputed to the 

Haplotype Reference Consortium and merged UK10K and 1000 Genomes (phase 3) panels. 

First, European individuals only were selected using principal component analysis (PCA) after 

excluding SNPs in linkage disequilibrium (LD) from the 1000G Phase 3 dataset (Plink 1.9, 50 

variant window-size, 5 variant step size, 0.2 r2). A k-nearest neighbor algorithm, using the first 

25 reference ancestry principal components, was used to assign a 1000G super population label 

to each individual, and individuals with the 1000G super population EURO label were selected 

for analysis only. Second, we filtered the imputed UK Biobank SNPs by removing indels and 

multi-allelic SNPs, missing genotypes across individuals (<=50%), minor allele frequency 
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(<1%), and Hardy-Weinberg equilibrium (p < 1e-6). Third, in order to remove related individuals 

and capture population structure we pruned the filtered SNP set for LD (Plink 1.9, 50 variant 

window-size, 5 variant step size, 0.2 r2). Subsequently, related individuals were identified and 

removed when the proportion of identity by descent (IBD) was higher than 0.125. Finally, 

population structure was captured using principal components analysis (PCA). This ultimately 

resulted in 9,705,931 filtered SNPs for GWAS analysis on 19,670 unrelated subjects of European 

descent.  

For the list of 19,670 subjects with preprocessed brain and genetic data, we collected the 

following available list of covariates to control for during statistical testing: genetic sex, age, 

age-squared, height, weight, diastolic blood pressure, and systolic blood pressure. Additionally, 

to adjust for population structure the first 20 genetic principal components were included as 

covariates. Furthermore, the following imaging specific parameters were also included, 

following Elliot et al.86: volumetric scaling from T1 head image to standard space, XYZ-position 

of brain mask in scanner co-ordinates, Z-position of table/coil in scanner co-ordinates, date of 

attending assessment center, and assessment center (coded as a dummy variable for each of the 

21 centers). For each of the covariate variables, except for assessment center, missing data was 

replaced by the average value of the respective variables. 26 subjects were removed due to 

extreme outlying covariate information (>6 times the standard deviation) in weight (11 

individuals), diastolic blood pressure (1 individual), systolic blood pressure (3 individuals), X-

position of brain mask (6 individuals), Y-position of brain mask (4 individuals), Z-position of 

table/coil (1 individual). Next, to symmetrize brain shape, the right hemisphere was reflected to 

the side of the left hemisphere, by simply changing the sign of the x-coordinate for all of the 

29,759 3D vertices on the surface of the right hemisphere. Second, we performed a generalized 
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Procrustes superimposition (GPA)87, thus eliminating differences in position, orientation, and 

scale (measured by centroid size) of all left and right hemispheres pooled together. We computed 

the symmetric brain component as the vertex-wise averaged brain surface of paired and 

superimposed left and right hemispheres. This resulted in a final discovery dataset of 19,644 

subjects containing preprocessed MRI image data on the mid-cortical symmetrized surface, 

9,705,931 imputed SNPs and 54 covariates. 

 

ABCD study data preprocessing 

The Adolescent Brain Cognitive Development Study (ABCD) (URL section) is a longitudinal 

study following brain development and health through adolescence37. A total of 11,411 MRI 

scans with additional information on sex and age were available for download from the data 

release of April 2019 and of those 11,393 images were processed successfully using the four-step 

imaging preprocessing described above. 

In total 10,627 individuals from the ABCD dataset provided with genetic data on 517,724 SNP 

variants. These were sent for imputation via the Odyssey88 pipeline using the SHAPEIT489 and 

IMPUTE590 workflow to phase and impute respectively. The Haplotype Reference Consortium 

(HRC)91 reference panel was used for imputation. Standard data cleaning and quality assurance 

practices were performed based on the GRCh37 (hg19) genome assembly. Quality control of the 

data prior to phasing and imputation includes using the McCarthy Group’s Imputation 

preparation program (URL section) to check and fix strand, alleles, position, and 

reference/alternative problems as well as removing ambiguous A/T and G/C SNPS with minor 

allele frequencies greater than 0.4. Variants that had a missing rate greater than 10% as well as 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


individuals who had more than 10% of missing variants were also excluded from phasing and 

imputation. 

To assess for ancestry, pre-phased quality controlled genotyped variants underwent a filter for 

Hardy-Weinberg Equilibrium (P < 1 x 10-6) and were merged with the 1000 Genomes Phase 37 

and the Human Genome Diversity Project reference panels. Variants that were in common 

between the datasets were assessed for LD and then pruned using a 1,500 kb window, 50 bp step 

size, and a 0.4 r2 threshold. This pruned dataset which contained 14,068 individuals from the 

reference and ABCD datasets were used in a PCA to construct an ancestry space. Using the 

eigenvalues that were found to explain more than 5% of the total amount of variance, an X-

dimensional centroid was created from reference samples designated as having European 

ancestry. This in term created a “European centroid.” Only participants that were within 3 

standard deviations of the centroid were retained to obtain a relatively homogenous sample. 

Following QC and ancestry assessment the ABCD dataset was trimmed down to 5,622 

individuals and 484,000 variants. Following phasing and imputation, variants were filtered based 

on the imputation quality control INFO metric (INFO score > 0.7), which resulted in 15.3M 

imputed ABCD variants.  

For the 5,622 individuals of primarily European ancestries, the genotyped and imputed variants 

were filtered by removing indels and multi-allelic SNPs, missing genotypes across individuals 

(<50%), minor allele frequency (<1%), and Hardy-Weinberg equilibrium (p < 1e-6). 

Subsequently, in order to remove related individuals and capture population structure we pruned 

the filtered genotyped SNP set for LD (Plink 1.9, 50 variant window-size, 5 variant step size, 0.2 

r2). Subsequently, 1,009 related individuals were identified and removed when the proportion of 

identity by descent (IBD) was higher than 0.125. Finally, population structure was captured 
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using PCA. Of the 4,613 unrelated subjects of European ancestries, 143 did not have a 

preprocessed brain image. This resulted in a final replication dataset of 4,470 individuals with 

preprocessed MRI image data, representing brain shape, 15.3M imputed SNPs and 7 covariates 

(sex, age and the first 5 genetic PCs). The minimum and maximum age of this final replication 

dataset, was 8.9 years and 11 years, respectively, with a mean age of 9.9 years. 46.5% are female 

and 53.5% are male.  

 

Auxiliary traits GWAS summary statistics  

We collected publicly available genome-wide summary statistics for 22 auxiliary traits 

encompassing neuropsychiatric disorders92–97, behavioral-cognitive traits98–100, and subcortical 

volume measures33–35. In Supplementary Table 7, we provide links to relevant publications and 

URLs for these summary statistics. 

 

Point-wise SNP-heritability estimation of the mid-cortical surface 

For each of the 29,759 vertices of the averaged mid-cortical 3D surfaces in the UK Biobank we 

computed a multivariate (X, Y and Z coordinate per vertex) narrow-sense heritability from 

common SNP variants using a linear mixed model (LMM). A genomic relationship matrix 

(GRM) modelled as random effects in the LMM was computed from LD pruned SNP data (Plink 

1.9, 50 variant window-size, 5 variant step size, 0.2 r2). The first 10 genomic principal 

components and additional covariates (sex, age, height, weight, diastolic and systolic blood 

pressure) were modelled as fixed effects in the LMM. We used the open-source software 

SNPLib (URL Section)101, whose implementation is equivalent to the widely used GCTA 

software102 for a homogenous population.      
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Global-to-local (G2L) segmentation of the mid-cortical surface 

The UK Biobank (n=19,644) served as discovery cohort using a data-driven global-to-local 

(G2L) segmentation of brain shape similar to previous work on face shape15,16. First, the 

superimposed and symmetrized mid-cortical surfaces were corrected using a partial least-squares 

regression (PLSR, function plsregress from Matlab 2019b) for all UK Biobank covariates listed 

above, augmented with centroid size to eliminate allometric effects of size on brain shape87. 

Second, pair-wise structural connections based on the multivariate generalization of the Pearson 

correlation, or RV-coefficient103, between each pair of 3D surface vertices generated a squared 

similarity matrix (29,759 x 29,759). Third, a Laplacian transformation was applied to enhance 

similarities prior to an eigendecomposition of this squared matrix. Finally, within the eigen 

spectral map, K-means++ clustering was used to group highly correlated vertices, that, when 

mapped back to the brain surface, result in a segmentation of the brain into separate modules. 

This was done in a bifurcating hierarchical manner using eight levels, resulting in a total of 511 

hierarchically linked facial segments, with 1, 2, 4, 8, 16, 32, 64, 128, 256 non-overlapping 

modules at levels 0, 1, 2, 3, 4, 5, 6, 7, 8. In contrast to our work on facial shape15,16, we pruned 

down segments with fewer vertices than 1% of the total vertex count. I.e., segments with less 

than 30 vertices were removed as to safeguard the minimum size of each segment. This resulted 

into the pruning of 226 segments, generating a final G2L segmentation of brain shape consisting 

of 285 segments across eight levels as depicted in Figure 1. The hierarchical design provided a 

shape decomposition focused at different levels of detail, going from the full hemisphere, and 

larger brain segments, to more local smaller brain segments. This allowed the investigation of 
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localized shape variations on the one hand, towards larger, more integrated shape variations on 

the other hand.   

For each of the 285 brain segments separately, the group of surface vertices in a segment were 

subjected to a new GPA. As such, a multivariate shape-space for each brain segment was 

constructed independently of the other segments and its relative positioning within the full 

hemisphere. Subsequently, after GPA, each segment’s shape-space was spanned by a 

multivariate orthogonal basis using PCA on the pooled x, y and z coordinates of the collection of 

superimposed vertices in that segment. Finally, we retained enough PCs to explain up to 80% of 

the total shape variation within each segment. This is in slight contrast to our previous work on 

facial shape, where we used a parallel analysis (PA) instead. By choosing those PCs explaining 

up to 80% of the variation we typically retained 50% of the components otherwise retained using 

PA (e.g. 437 instead of ~1000 for the full hemisphere). However, the number of components 

retained using PA became computationally intractable in a GWAS context. Therefore, we opted 

to further reduce the number of PCs per brain segment, knowing that these certainly represent 

non-noisy shape variations, confirmed by the PA.    

 

Overlap of brain atlases with G2L segmentation 

We investigated the overlap of brain segments at each of the eight levels from our G2L 

segmentation with brain regions from three commonly used brain atlases (Desikan Killiany (34 

distinct gyral based regions)29, Destrieux (74 distinct gyral and sulcal based regions)30, and the 

Glasser (180 distinct multi-modal based regions)31) that were also defined within the HCP 

project data format and thus defined on the same surface mesh of 29,759 vertices. For each of the 

G2L levels separately, every brain surface vertex has a unique label of the G2L brain segment it 
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belongs to at that level and a unique label of the atlas brain region it belongs to. Using these two 

labels per vertex the normalized mutual information across all vertices provided a measure of 

overlap from 0 (no overlap) to 1 (complete overlap), for each G2L level with each of the three 

atlases. Additionally, each brain segment and each brain region defined a subset of vertices, and 

therefore, for each segment we defined the intersection of vertices with each brain region, and 

for each brain region we defined the intersection of vertices with each brain segment, expressed 

as percentages.   

 

G2L multivariate genome-wide discovery 

The global-to-local phenotyping partitioned cortical brain shape into overlapping (across 

different hierarchical levels), as well as non-overlapping (within a single hierarchical level) 

segments, each of which was represented by a different subset of mid-cortical surface vertices 

and spanned by multiple dimensions of variation (principal components, PCs). For each brain 

segment separately, canonical correlation analysis (CCA, canoncorr from Matlab 2019b), was 

therefore used as a multivariate testing framework (note that CCA is also implemented in Plink 

1.9 for multivariate phenotypes). CCA extracts the linear combination of PCs spanning the brain 

segment that correlates maximally with the SNP variant being tested, and therefore reveals a 

latent shape trait within the shape-space of the brain segment. The correlation of this latent shape 

trait with the SNP variant is tested for significance based on a Chi-squared (X2) statistic (right-

tail, one-sided test), with degrees of freedom equal to the dimensionality or number of principal 

components of the brain segment under investigation. Using CCA, we tested each SNP 

(n=9,705,931) individually under an additive genetic model in the UK Biobank (n=19,670) 

against each of the brain segments (n=285) separately. Note that CCA does not accommodate 
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adjustments for covariates, but effects of important covariates were corrected for (using PLSR) at 

the phenotyping stage. Additionally, we applied a similar correction for the covariates on each 

SNP, again using PLSR, excluding this time the covariates that were only relevant for the 

correction of imaging data (e.g. acquisition center). Therefore, the CCA analysis was performed 

under the reduced model, which was obtained after removing the effects of covariates on both 

the independent SNP variants as well as the dependent multivariate brain shape phenotypes.  

Given the burden of multiple comparisons, a strict significance threshold of P ≤ 5 x 10-8 was 

used to declare “genome-wide significance”, which corresponds to a Bonferroni correction for 1 

million independent tests and is mostly applicable in a GWAS on a European-ancestry cohort104. 

Due to 285 multivariate GWAS runs, the multiple comparisons burden was magnified. 

Therefore, we also determined a more stringent threshold for declaring “study-wide significance” 

corresponding to an additional adjustment for the effective number of independent tests. In a first 

instance, looking at the number of eigenvalues larger than one of a pairwise multivariate 

correlation (RV-coefficient) matrix (285 x 285) across all segments105, determined a total of 210 

independent tests. In a second instance, an empirical estimate of the number of independent tests 

was also obtained using the 472 lead SNPs representing the genome-wide associated independent 

genetic loci (see description below), to keep the estimations computationally tractable. First, for 

a single SNP we randomly permuted the genotypes in the UK Biobank, essentially creating 

genotypes that have a noisy association with multivariate brain shape. Then, we performed the 

CCA associations of the randomized genotypes to each of the 285 brain segments and retained 

the lowest or “best” p-value out of the 285 p-values obtained. Step 1 and 2, were repeated 10,000 

times. Subsequently, we divided 0.05 by the 5th percentile of the 10,000 permuted best CCA p-

values, and this was done for each of the 472 SNPs. Based on these 472 outcomes, the mean 
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estimation of the number of empirical independent tests based on 285 brain segments is 241.46 

(11.09 standard deviation). Because the empirical estimation was more conservative compared to 

the eigenvalue-based estimation we opted for the former and determined the study-wide 

significance threshold to be 2.0707 x 10-10 (i.e., 5 x 10-8 / 241.46).   

 

Peak detection, overlap and annotations 

We observed 38,630 SNPs and 23,413 SNPs at the level of genome-wide and study-wide 

significance, respectively. These were clumped into 472 (genome-wide) and 243 (study-wide) 

independent loci in three steps. First, starting with the best associated or lead SNP (lowest p-

value), SNPs within 10kb or within 1Mb but with r2 > 0.01 were clumped into the same locus 

represented by the lead SNP. This process was repeated until all SNPs were assigned into 509 

loci. Second, based on the lead SNPs only, a wider window of +/- 10Mb was tested for r2 > 0.01, 

reducing the number of loci (n=502) by merging seven lead SNPs. Third, any locus with a 

singleton lead SNP (without additionally clumped SNPs) below the study-wide threshold was 

removed (n=30). r2 values were computed using the genotypes from the UK Biobank. 

To study the functional enrichment for genes near the 472 genome-wide lead SNPs, we 

performed gene ontology (GO) analysis using GREAT40 (v4.0.4) and FUMA39 (v1.3.6) using 

default settings. GO terms that were significant by both binomial and hypergeometric tests (False 

Discovery Rate (FDR) q-value < 0.05) across three or two windows were reported as strongly 

and weakly enriched respectively.  

In determining overlap between lead SNPs from different GWAS, we used a similar strategy: 

two lead SNPs tag the same genetic locus if they are within 10kb of each other or if they are 

within  1Mb of each other and with r2 > 0.2. For considering and quantifying overlap between 
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the 472 brain shape loci and 430 other studies from the NCBI-EBI GWAS Catalog, we defined 

LD blocks of 0.2 around the 472 loci using Plink 1.9, and then calculated odds ratio and P for the 

overlap between these blocks and any given GWAS using bedtools v2.27.1, fisher function. 

In determining brain-face shared loci, we first started from the 472 genome-wide lead SNPs from 

the brain GWAS and looked for any SNP within  10kb or within 1Mb and LD > 0.2 of these lead 

SNPs with at least a genome-wide suggestive (P < 5 x 10-7) association in the facial multivariate 

GWAS16. This resulted in 57 loci with evidence of association in brain and face shape. Then we 

took the 203 genome-wide lead SNPs reported in the face GWAS16, and clumped them if two 

lead SNPs were within 10kb or within  10Mb but with r2 > 0.01.  For the resulting 197 

independent genome-wide facial lead SNPs we selected any SNP within 10kb or within 1Mb and 

with r2 > 0.2 with at least a genome-wide suggestive (P < 5 x 10-7) association in the brain shape 

GWAS. This resulted in another 54 loci with evidence of association in brain and face shape and 

together with the previous 57 loci they were clumped (within 10kb or within 1Mb and r2 > 0.2) 

into a final set of 76 independent brain-face shared loci. 

We identified candidate genes in the vicinity of the 76 brain-face shared loci through a manual 

process. For each locus, we first considered all genes within 500kb of the lead SNP. We 

primarily relied on evidence for these genes’ involvement in a human craniofacial or 

neurodevelopmental syndrome, or for evidence of craniofacial or neurodevelopmental defects in 

knockouts of their orthologs in mice. Secondarily, we also considered associations with Gene 

Ontology (GO) terms related to craniofacial development, neurodevelopment, or skeletal system 

development. In some cases (i.e. SOX9, where enhancer-promoter interactions over 1Mb have 

been described49), we extended the window to within 750kb of the lead SNP.    
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ABCD replication testing 

The ABCD study data (n=4,470) was used as replication panel, with the UK Biobank discovery 

cohort used as a phenotyping reference. First, the GPA superimposed and symmetrized mid-

cortical shapes were corrected for the confounders of sex, age, and the first five genomic PCs, 

augmented with centroid size to eliminate allometric effects of size on brain shape87 using PLSR. 

Second, the PLSR residuals that were centered on the overall average brain shape of the ABCD 

study, were added to the overall average brain shape of the UK Biobank. Third, the corrected and 

re-centered brain shapes were segmented using the G2L segmentation and projected onto the 

principal components of the segments from the UK Biobank. This ensured consistency in brain 

segment delineation and shape-space across both datasets. 

For a particular discovery lead SNP in a particular brain segment the replication panel was 

projected onto the latent shape trait of the lead SNP. This generated univariate projection scores 

as phenotypes106 to test for in the replication panel that are equivalent to the latent shape traits or 

phenotypes in the discovery panel, i.e. the latent shape trait, once discovered using CCA, was 

fixed and explicitly measured in the replication cohort. Replication was therefore tested using a 

standard univariate linear regression (two-sided, regstats Matlab 2019b). This was done for each 

of the 466 lead SNPs for which the exact SNP or a proxy SNP (within 10kb or within 1Mb and r2 

> 0.2) was available for analysis in the ABCD cohort, and in each of the 285 segments that were 

associated at P < 5 x 10-8, which resulted in 3,586 replication tests. From all replication efforts 

combined (n=3,586), we computed a 5% FDR-adjusted significance threshold107 equal to P < 

0.0369.  

 

Clinical gene-panel overlap  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


Gene panels were downloaded from the Genomics England PanelApp website. Only panels that 

will be used for clinical interpretation in the 100,000 Genomes project were selected (provided 

by PanelApp41). The clinical gene-panels were merged in disease (sub)categories according to 

the 100,000 Genomes Project criteria (e.g. the clinical gene panel “Intellectual Disability” 

belongs to the sub-category “Neurodevelopmental Disorders”, which is part of the “Neurology 

and Neurodevelopment” disease category). Only genes with a high level of confidence for gene-

disease association were included in the clinical gene panels. We calculated the overlap between 

genes from clinical panels/subcategories/categories and different gene-sets allowing for a 200kb, 

500kb or 1Mb window around the loci. Permutation testing was done to see if this overlap was 

higher than expected by chance. In brief, we generated 10,000 random panels for each clinical 

panel/subcategory/category with equal size using a list of 19,198 protein-coding genes. P-values 

were obtained by dividing “the number of times the overlap random panel and gene-set was 

larger than the overlap clinical gene-panel/subcategory/category and gene-set” and “number of 

random gene-panels created (10,000)”. Clinical panels/subcategories/categories were interpreted 

as strongly or weakly enriched if they showed significance (P < 0.05) across three or two 

different gene-sets respectively. 

 

Expression analyses of candidate genes at brain-face overlapping loci  

Gene expression levels (log2(TPM) values) for three-dimensional forebrain organoids and 

purifying neuronal or glial lineages were obtained from Trevino et al50 (GSE132403). Raw 

RNA-seq reads from CNCCs at passages 1-4, as well as day 9 chondrocytes derived from P4 

CNCCs, were obtained from Long et al49 (GSE145327), and TPM values were quantified using 

kallisto108 with sequence-biased bias correction enabled. 
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LD score regression SNP-heritability for multivariate traits  

In the Supplementary Note, we provide a general proof showing that when applying LD score 

regression (LDSC) to summary statistics of a multivariate GWAS, albeit with a small correction 

to the resulting χ2 statistics, the heritability estimated by the LDSC slope is equal to 

�

�
������Σ�Σ�

���, which is a D-dimensional generalization of heritability for genetic and 

phenotypic covariance matrices Σ� and Σ�
��, respectively. When the dimensions of the 

multivariate trait are either genetically or phenotypically uncorrelated, as is the case in both the 

brain and face GWAS, this expression simplifies to the average SNP-heritability across 

dimensions, but we also demonstrate extensions for correlated dimensions. Similarly, when 

applying stratified LD Score regression (S-LDSC), one obtains enrichments for this partitioned 

average heritability. We further show that 
�

�
������Σ�Σ�

��� is an appropriate multivariate 

generalization of heritability since it is the only measure to satisfy the following four properties: 

1) invariance to units of measurement, 2) coordinate-free, 3) linear in Σ�, and 4) maximized with 

a value of 1 when  Σ� 	 Σ�
��.  

Thus, for brain and face shape, we applied LDSC and S-LDSC using the published software 

(URL section) to corrected χ2 statistics from GWAS of each brain or face segment, since a full 

multivariate GWAS was performed in each segment. We used unmodified chi-squared values for 

the univariate traits analyzed (including indicated cases where we performed individual, 

univariate GWAS for each PC in brain and face segment 1). While using unmodified chi-square 

values results in a small bias, we used unmodified statistics for univariate traits for consistency 

with previous studies. For S-LDSC analyses, we limited ourselves to traits with SNP-heritability 

Z-scores > 7, as done in Finucaine et al62, unless otherwise indicated. 
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Functional annotations for stratified LD score regression 

We downloaded a range of publicly available cell-type and sample-specific annotations 

representing open chromatin and/or active regulatory regions. Specifically, we obtained data on 

open chromatin (all ATAC-seq peaks) from brain organoids50, fetal brain tissue109, and CNCCs 

and derived chondrocytes49. Raw ATAC-seq reads from Long et al were mapped to hg19 with 

bowtie2110 with default settings, and peaks were called using MACS2111 with default settings. 

Annotations for active regulatory regions (based on a range of epigenomic marks) were obtained 

from CNCCs63, embryonic craniofacial tissues64, fetal and adult brain tissue65, and broad 

groupings of cell-types62. For CNCC data from Prescott et al112, we combined all regions 

annotated as enhancers (weak, intermediate, strong) or promoters (weak and strong); For 

embryonic craniofacial tissues, we combined all regions with the following annotations from the 

25-state chromHMM model: ‘Enh,’ ‘TxReg,’ ‘PromD1,’ ‘PromD2,’ ‘PromU,’ ‘TssA.’ For fetal 

and adult brain tissue, we combined all regions with the following annotations from the 15-state 

chromHMM model: ‘1_TssA,’ ‘2_TssAFlnk,’ ‘7_Enh,’ ‘6_EnhG.’ Each annotation was 

individually added to the baselineLD model from Finucaine et al, which includes various 

annotations of genes, conserved regions, and general enhancers and promoters. The resulting S-

LDSC output (heritability fold-enrichment magnitude and significance, as well as coefficient Z-

scores) are provided in Supplementary Table 8. When quantifying heritability enrichments with 

brain-face shared loci removed, we removed all SNPs within the same approximately 

independent LD block113 as one of the 76 brain-face shared loci and re-computed LD scores as 

well.   
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Quantifying sharing of signals between pairs of GWAS 

To assess the extent to which genome-wide profiles of association were shared between a pair of 

phenotypes (e.g. multivariate brain and/or face segments and/or univariate neuropsychiatric, 

behavioral-cognitive, and subcortical volumes), we computed a Spearman correlation between 

two vectors of LD-block organized association p-values. First, as is done in LDSC, genome-wide 

SNPs were selected to overlap with the HapMap3 SNPs114 and SNPs within the major 

histocompatibility complex (MHC) region were removed. Second, we downloaded the locations 

of 1,725 blocks in the human genome that can be treated as approximately independent LD 

blocks in individuals of European ancestries113, and organized all SNPs within these blocks. For 

every LD block we computed the mean SNP –log10(p-value), and then computed a rank-based 

Spearman correlation using the averaged association values (n=1,725) for each LD block. A 

standard error of the Spearman correlation was estimated using statistical resampling with 100 

bootstrap cycles with replacement from the 1,725 LD blocks. 
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URLs 

UK biobank: https://www.ukbiobank.ac.uk/about-biobank-uk/ 

Human Connectome Project: http://www.humanconnectomeproject.org/  

Adolescent Brain Cognitive Development (ABCD) study: https://abcdstudy.org/about/ 

SNPLIB: https://github.com/jiarui-li/SNPLIB 

Freesurfer: https://surfer.nmr.mgh.harvard.edu/ 

Ciftify: https://github.com/edickie/ciftify and https://www.nitrc.org/projects/cifti/ 

Conte69 Atlas: http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas 

McCarthy Tools. https://www.well.ox.ac.uk/~wrayner/tools/   

LDSC: https://github.com/bulik/ldsc/wiki 
 

Data availability 

All the data and detailed information for the UK Biobank, including genetic markers, covariates 

and MRI images are available to bona fide researchers via the UK Biobank data access process 

(see http://www.ukbiobank.ac.uk/register-apply/). 

All the data and detailed information for the ABCD study, including genetic markers, covariates 

and MRI images are also available to bona fide researchers through the ABCD data depository 

(https://nda.nih.gov/abcd/request-access) 

Relevant data and materials from the facial GWAS study are available online 

(https://doi.org/10.6084/m9.figshare.c.4667261). The full facial GWAS summary statistics will 

be uploaded to GWAS catalog (https://www.ebi.ac.uk/gwas/) upon publication of that work that 

is currently formerly accepted at Nature Genetics. The facial GWAS paper is currently accessible 
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on bioRXiv (https://www.biorxiv.org/content/10.1101/2020.05.12.090555v1). Furthermore, 

relevant files generated from the face and brain GWAS summary statistics as input to (S-)LDSC 

regression and spearman correlations are available on FigShare, see table below. The full brain 

GWAS summary statistics will be uploaded to the GWAS Catalog upon publication. 

 

All relevant additional data related to this work are provided in the FigShare repository for this 

work (https://figshare.com/s/bfc96fe9375e9f787b4b). This includes additional figures, input files 

and updated implementations, listed in the table below. 

 

Name Filename Description 

Brain shape phenotypes PHENOTYPEDATA_summary.mat Matfile containing principal component 
Eigenvectors and Eigenvalues for each of 
the 285 hierarhical brain segments 

Hierarchical shape 
segmentation functions 

Hierarchical3DShapeSegmentation.m 
BuildRVmatrix.m 

Scripts to perform hierarchical shape 
segmentation adapted to brain MRIs 

Brain segment coordinates G2LBrainSegmentation.mat 
SupplementaryTable1.xlsx 

Information on 285 hierarchical 
segments and vertex coordinates in 
matfile  

471 brain shape loci 
phenotypic effects 

One .png file for each locus Polar dendrograms and hierarchical 
displays of -log10(P) of associations 
between each lead SNP and brain shape 
in each segment 

76 brain-face share loci 
phenotypic effects 

Two .png files for each locus Polar dendrograms and hierarchical 
displays of -log10(P) of associations 
between each lead SNP and brain or face 
shape in each segment 

Spearman correlations 
brain-brain 

One .png file for each brain segment 
correlated with others 

Hierarchical displays of spearman 
correlations between brain segments 

Spearman correlations face-
face 

One .png file for each face segment 
correlated with others 

Hierarchical displays of spearman 
correlations between face segments 

Spearman correlations 
brain-face 

One .png file for each brain (face) 
segment correlated with other face 
(brain) segments 

Hierarchical displays of spearman 
correlations between brain and face 
segments 

Spearman correlations One .png file for each univariate trait Hierarchical displays of spearman 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.29.269258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/


brain-trait correlations between univariate traits and 
brain segments 

Spearman correlations face-
trait 

One .png file for each univariate trait Hierarchical displays of spearman 
correlations between univariate traits and 
face segments 

Brain shape GWAS 
summary statistics 

One .txt.gz file for each brain segment Summary statistics used for S-LDSC or 
spearman correlation calculation 

Face shape GWAS 
summary statistics 

One .txt.gz file for each face segment Summary statistics used for S-LDSC or 
spearman correlation calculation 

 

 

Code availability 

Matlab implementations of the hierarchical spectral clustering to obtain phenotypic shape 

segmentations are available from a previous publication 

https://doi.org/10.6084/m9.figshare.7649024.v1). Updated implementations used in this work are 

provided as described in the Figshare table above. The statistical analyses in this work were 

based on functions of the statistical toolbox in Matlab as mentioned throughout the Methods. 

Other materials and external software used mentioned throughout the Methods are available 

online (see URL section). 
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Fig. 1: Multivariate genome-wide association study (GWAS) of brain shape. a, Upstream 

processing of UKB MRI images. b, in the polar dendrogram on the left, each concentric ring of 

filled circles corresponds to a hierarchical level (labeled i-ix) shown on the right, and the filled 

circle colors correspond to the respective segments in the same hierarchical level. c, Ideogram 
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showing genomic locations and regional effects of 472 genome-wide significant loci for brain 

shape. Circles and diamonds represent associations passing the study-wide or genome-wide 

significance thresholds, colors represent broad regions of the brain with the indicated effects. 
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Fig. 2: Loci affecting both brain and face shape. a, Miami plot of GWAS for brain (top) and 

face (bottom) shape. For each SNP, p-values aggregated across all brain or face segments are 

plotted. All 76 loci reaching genome-wide (P < 5 x 10-8) significance in one study and genome-

wide suggestive (P < 5 x 10-7) significance in the other are highlighted by unfilled circles. Loci 

near candidate genes highlighted in the text and in b and c are labeled, generally on the side 

where they show greater significance of association. b, Expression (in transcripts per million, 

TPM) of candidate genes near brain-face shared loci in cranial neural crest cells (CNCCs) of 

different passages, representing different stages of maturation, from early (P1) to late (P4) and 

their chondrocyte (Chond. D9) derivatives49 (left), and three dimensional forebrain organoids at 
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various stages of differentiation50 (right), further sorted into glial or neuronal lineages or profiled 

as whole organoids. c, Regional phenotypic effects of four candidate loci, showing effects of 

linked SNPs on brain (left) or face (right) shape. Segments shown are of hierarchical level v, -

log10(p-values) are normalized to the maximum at each locus. Full face and brain images from all 

76 brain-face shared loci corresponding to all hierarchical levels can be found online (see Data 

Availability) 
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Fig. 3: Genome-wide sharing of signals with neuropsychiatric disorders and behavioral-

cognitive traits. Genome-wide sharing of signals between any two given GWAS was assessed 

by Spearman correlation of LD block-average SNP -log10(p-values) (Methods). a, Spearman 

correlations between GWAS of indicated facial quadrants and brain segments. b, Spearman 

correlations between GWAS of selected neuropsychiatric disorders, behavioral-cognitive traits, 

or subcortical volume measures and brain segments. All brain segments in a,b are from 

hierarchical level v segmentation, with the exception of Hippocampus, where hierarchical level 
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vi segmentation shows a strong correlation of shape of the hippocampal region with volume. c, 

Spearman correlations between shape effects on the full brain (left) or face (right) with the 

indicated traits. * 5% FDR based on bootstrapped p-value (Methods). Images of brain-trait 

correlations at all six hierarchical levels can be found online (see Data Availability). 

Abbreviations: ADHD, Attention Deficity Hyperactivity Disorder ;GEN, generalized epilepsy; 

JME, juvenile myoclonic epilepsy; ICV, intracranial volume. 
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Fig. 4: Partitioned heritability enrichments based on cell-type-specific regulatory 

annotations. Heritability enrichment Z-scores, as estimated by S-LDSC, of a) multivariate shape 

for the first 7 face segments, b) multivariate shape for the first 7 brain segments, excluding 

segment 4 which had low heritability, c) neuropsychiatric disorders, d) behavioral cognitive 
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traits, and e) subcortical volume measures. Heritability enrichments were estimated for 

annotations based on open chromatin (based on ATAC-seq), regulatory regions (based on ChIP-

seq of multiple histone modifications), or a combination of the two. Annotations for the indicated 

samples, representing in-vitro-derived cell-types, primary tissues, or a combination of both (see 

Methods for source papers), were added to the S-LDSC baseline model, and the resulting Z-score 

was scaled by column to visualize relative enrichments between traits. * 5% FDR based on 

unscaled Z-scores. Trait abbreviations as in Figure 3, with AN representing anorexia nervosa. 
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Extended Data Fig. 1 Miami plot of brain shape in left (top) and right (bottom) 

hemispheres in the UK Biobank. Global-to-local segmentation and CCA-based GWAS was 

performed independently within each hemisphere. For each SNP, the aggregated p-values across 

all left (n=241) or right (n=201) hemisphere segments are plotted. 
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Extended Data Fig. 2 Overlap of global-to-local segmentation of brain shape with 

commonly used brain atlases.  
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Extended Data Fig. 3 Number of independent genome-wide significant associations 

discovered by hierarchical segments. Among segments of each hierarchical level (indicated by 

lower-case Roman numerals and corresponding to concentric circles in the polar dendrogram), 

the number of independent genome-wide significant associations is shown. 
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Extended Data Fig. 4 Point-wise SNP heritability estimates across the mid-cortical surface. 
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Study # loci tested # lead SNP P < 
5x10-8 

# proxy SNP P < 
5x10-8 

% overlap 

Subcortical 
combined31-34 

65 15 18 27.6 

Grasby et al13 301 195 236 78.4 
Zhao et al35 494 212 273 55 
 
Extended Data Table 1. Overlap between previous GWAS of brain surface areas or 

subcortical volumes with brain shape GWAS in this study. ‘Subcortical combined’ refers to a 

combined set of loci from four studies of subcortical volume measures32–35.  
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Extended Data Fig. 5 Overlap between genome-wide significant brain shape loci and 

genome-wide significant loci from 430 other studies. GWAS hits (number on x-axis) for other 

studies were obtained from the NCBI-EBI GWAS Catalog, and P-values (left, y-axis) and odds 

ratios (right, y-axis) for significance of overlap with regions in LD (> 0.2) with brain shape loci 

were computed using bedtools’ fisher function (see Methods). Note that relative to other traits 

with equivalent numbers of GWAS hits, face shape shows overlap with brain shape loci greater 

in both significance and magnitude than.  
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Extended Data Fig. 6 Comparison of LDSC genetic correlations and Spearman correlation 

between pairs of univariate traits. Each point represents a pair of univariate traits (of all those 

considered in this study, see Methods), while the x- and y-axes indicate the absolute value of the 

LDSC-estimated genetic correlation and the estimated genome-wide sharing of effects by the 

Spearman correlation method. Point colors and shapes indicate significance (P < 0.05) from 

LDSC or the Spearman correlation method, respectively. 
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Extended Data Fig. 7 Regional associations of genome-wide significant loci for brain shape 

stratified by shared effects on facial shape. For the indicated sets of genome-wide significant 

brain shape loci, the number of associations with each brain segment (shown at hierarchical 

levels iv-vi) was plotted. The top and bottom 57 face-shared or brain-specific loci were chosen as

57 is the number of brain shape loci which have at least suggestive (P < 5x10-7) association with 

face shape. 
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Extended Data Fig. 8 Genetic correlations between the most heritable brain (top) or face  

(bottom) shape PCs and other traits. Genetic correlations (rg) between the top five shape PCs 

(for segment 1, the full brain or face) with heritability z-score > 4 and each of the indicated 

univariate traits using LD score regression. Error bars represent 95% confidence intervals. *, 5% 

FDR for indicated PC; +, 10% FDR. 
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Extended Data Fig. 9 SNP heritability of individual face shape PCs and multivariate face 

shape estimated by LDSC. Error bars represent 95% confidence intervals. The red line 

represents the mean heritability of all 70 PCs, and the blue line indicates the heritability obtained 

by applying LDSC to corrected χ2 statistics from the multivariate CCA GWAS using all 70 PCs.  
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Extended Data Fig. 10 Partitioned heritability enrichments for brain shape with respect to 

stage- and cell-type-specific brain organoid open chromatin. S-LDSC coefficient Z-scores 

and heritability fold-enrichment for annotations corresponding to the indicated cell-type and 

differentiation day were computed as described in Methods. Regression lines represent the linear 

best fit with intercept and organoid differentiation day as dependent variable, and grey areas 

represent 95% confidence intervals.  
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Extended Data Fig. 11 Partitioned heritability enrichments in craniofacial cell-types and 

brain organoids for brain shape within hierarchical segments. For each segment at the 

indicated hierarchical level, scaled S-LDSC Z-scores from all craniofacial (a) or brain organoid 

(b) annotations as indicated in Figure 4 were averaged, and the difference in mean Z-score 

between the two averages (c) was also computed.  
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Extended Data Fig. 12 Partitioned heritability enrichments for brain shape with respect to 

open chromatin in CNCCs or early glial organoid cells, with or without 76 brain-face 

shared loci. S-LDSC Z-scores were calculated using full brain shape as the trait and the most 

enriched craniofacial (top) or brain organoid (bottom) ATAC-seq dataset as annotations. Z-

scores were re-estimated (blue) after removing all SNPs in the same approximately independent 

LD block as one of the 76 brain-face shared loci (see Methods for details).   
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