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ABSTRACT
Evidence from both model organisms and clinical genetics suggests close coordination between

the developing brain and face™™

, but it remains unknown whether this developmental link
extends to genetic variation that drives normal-range diversity of face and brain shape. Here, we
performed a multivariate genome-wide association study of cortical surface morphology in
19,644 European-ancestry individuals and identified 472 genomic loci influencing brain shape at
multiple levels. We discovered a substantial overlap of these brain shape association signals with
those linked to facial shape variation, with 76 common to both. These shared loci include
transcription factors with cell-intrinsic rolesin craniofacial development, as well as members of
signaling pathways involved in brain-face crosstalk. Brain shape heritability is equivalently
enriched near regulatory regions active in either brain organoids or in facial progenitor cells.
However, brain shape association signals shared with face shape are distinct from those shared
with behavioral-cognitive traits or neuropsychiatric disorder risk. Together, we uncover common
genetic variants and candidate molecular players underlying brain-face interactions. We propose
that early in embryogenesis, the face and the brain mutually shape each other through a

combination of structural effects and paracrine signaling, but this interplay may have little

impact on later brain devel opment associated with cognitive function.
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MAIN

The human cerebral cortex forms the outer layer of gray matter of the brain and underpins
cognitive function. It is characterized by complex folding patterns that vary between species and
individuals™'°. Family- and twin-based studies indicate substantial heritability of brain shape***?,
and a recent genome-wide association study (GWAYS) found that brain shape is highly polygenic
and shows genetic correlations with a broad range of neuropsychiatric disorders and behavioral-
cognitive phenotypes™®. These studies focused on pre-defined, univariate measures of brain
shape, such astotal or regional surface area, extracted from structural magnetic resonance
imaging (MRI) scans™, and which cannot capture the morphological complexities of the cortical
surface. We recently developed a data-driven approach to phenotyping complex,
multidimensional traits'™; this fully multivariate approach, when applied to facial surface images,
revealed alarge number of novel loci associated with variation in human face shape™'®. Here,
we implemented this approach to discover associations between common genetic variants and
brain shape, using MRI data from largely healthy, middle-aged participants in the UK Biobank

(UKB).

In addition to sharing complex morphologies, the development of the brain and face is highly
integrated as a result of shared developmental lineage, spatial proximity, and signaling crosstalk
between the two structures. Early in embryonic devel opment, the rostral end of the ectodermally-
derived neural tube gives rise to the forebrain, which in turn gives rise to the cerebrum that
encompasses the cerebral cortex. Just before forebrain formation, a subset of neuroepithelial cells
within the neural folds give riseto facial progenitor cells called cranial neural crest cells

(CNCCs). Following specification, CNCCs undergo an epithelial-to-mesenchymal (EMT)
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transition and migrate ventrally, later giving rise to most of the craniofacial skeleton and
connective tissue. Early growth rates of the brain can modulate both the positioning and
outgrowth of the facial prominences™?, aswell as induce flexion and bone deposition of the
CNCC-derived basicranial bones**” and neurocranial sutures'™*°, respectively. Finaly, paracrine
factors secreted by either the developing forebrain®®>2® or CNCCs”*?* modulate the devel opment

of the face or brain, respectively.

These physical and molecular interactions have been detailed by studies in the developing chick
and mouse embryos, but are also supported by widespread co-occurrence of neurodevelopmental
and craniofacial malformationsin rare human syndromes’. This phenomenon was noticed as
early as 1964, when Demyer et al. coined the phrase “the face predicts the brain” to describe the
correlation between the severity of brain abnormalities and facial malformations in patients with
holoprosencephaly®. While in some cases this co-occurrence may be caused by pleiotropic
functions of the affected gene, a number of such human syndromes have been mapped to genes
known to function in brain-face crosstalk through paracrine signaling®2’. Nonetheless, close
developmental links between face and brain are often underappreciated; whether and how they
extend to common human genetic variation that influences the diversity of brain and face shape

is unknown.

Multivariate GWAS of brain shape
We adapted our previously published data-driven phenotyping approach™ to brain shape, as
measured by MRI scans of 19,644 individualsin UKB. Participants included were of primarily

European ancestry, such that results do not pertain to cross-population differences in brain shape.
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All of our analyses focused on the mid-cortical surface (midway between the white-grey matter
interface and the pial surface with the cerebrospinal fluid, as extracted using FreeSurfer'®), which
we refer to as brain shape. Given the complete dataset of mid-cortical surfaces each represented
by a homologous mesh of spatially dense 3D vertices, the method segments brain shapein a
global-to-local manner, yielding multivariate brain segments at different hierarchical levels of
scale. Within each segment, principal component analysis (PCA) is used to describe effectsin
multivariate shape-space explaining between-individual variation, and canonical correlation
analysis (CCA) is used to define, for each variant tested in the genome, the linear combination of
PCs maximally associated with single nucleotide polymorphism (SNP) dosage. In agreement
with findings of nonzero but low heritability of thickness and surface area asymmetry®, we
observed that independent processing and GWAS of |eft and right hemispheres showed highly
concordant results (Extended Data Fig. 1). Therefore, all subsequent analyses were performed

using the left-right hemisphere averaged surface data.

Applying this pipeline to the UKB MRI data, we defined 285 hierarchical segments (Fig. 1,
Supplementary Table 1), decomposing brain shape into different levels of detail, from larger
brain segments with more integrated shape variation, to more smaller brain segments with more
local effects. Each hierarchical level isabipartition of its parent; thus, thefirst level consisted of
the entire brain, while the second and third levels segmented the whole brain into halves and
guadrants, respectively, and the final, ninth level resulted in numerous smaller segments (Figure
1b, right). Many smaller segments from the seventh hierarchical level onwards were discarded
dueto their small surface areas, resulting in fewer total segments than the 511 (2° - 1) expected.

The segmentation broadly agreed with the commonly-used Desikan-Killiany?, Destrieux®, and
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Glasser™ atlases of brain regions (Extended Data Fig. 2). In total, we conducted 285 multivariate
GWAS using CCA, each corresponding to one segment. 38,630 SNPs showed genome-wide
significant (P < 5 x 10°®) association with brain shape variation in at least one segment; of these,
23,413 reached study-wide significance (P < 2.07 x 10™*° as assessed by permutation, see
Methods) in at least one segment. Collapsing these SNPs into independent signals based on
linkage disequilibrium and distance yielded 472 and 242 loci reaching genome- and study-wide
significance, respectively (Supplementary Table 2). Most of the 472 loci showed effects on
multiple segments (305/472, 65%), and many showed effects on multiple quadrants (158/472,
33%) (Figure 1, Supplementary Table 2), consistent with global-to-local effects at multiple levels
of brain shape. Associations between these loci and brain shape were generally depleted from the
frontal lobe segments (except for the most anterior orbitofrontal cortex) and enriched in the
occipital and temporal lobe segments (Extended Data Fig. 3), mostly in agreement with point-

wise heritability estimates across the brain surface (Extended Data Fig. 4).

We assessed the overlap between the 472 loci and previous GWAS of brain surface areas or
subcortical volumes'32®, The 472 loci recapitulated 27-78% of the associations reported in
previous studies; the highest overlap of 78% was with a recent study of univariate brain surface
area™, which is the phenotype most comparable to the shape measures studied here (Extended
DataTable 1). In total, of the 472 loci, 121 overlapped with those reported in previous studies on
brain surface area or subcortical volume, while 351 represent novel associations with brain
morphology. To assess the reproducibility of the 472 loci on the same shape measures, we
analyzed MRI data from the Adolescent Brain Cognitive Development (ABCD) study®’. Of the

472 loci, 466 were available for replication testing (see Methods). At 5% FDR, we replicated at
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least one associated segment for 305 of 466 (65.4%) loci, and 2,645 of 3,586 (73.8%) tested
locus-segment combinations (Supplementary Table 3). Thisreplication rate is notable given the
substantial difference in age of the ABCD cohort (9-10 years versus 40-70 years in UKB). Thus,
despite the known continued growth and morphological changes of the brain throughout
adolescence and into adulthood®, the high reproducibility of GWAS results between the two
cohorts suggests that many of the observed associations with brain shape originate during

development and are maintained throughout life.

We next used FUMA® and GREAT* to identify pathways enriched among genes near the 472
loci, aswell as curated gene panels used to guide rare disease diagnoses from whole-genome
sequencing™ to identify disease associations (see Methods for details). As expected, we found
strong enrichment for brain-specific processes (i.e. neurogenesis, axonogenesi s, neuron
differentiation, nervous system devel opment, neuron projection guidance), morphogenesis-
related processes (i.e. anatomical structure morphogenesis, animal organ morphogenesis), and
neurodevelopmental disorders (i.e. intellectual disability, malformations of cortical development,
ciliopathies). We also observed a weak enrichment of terms related to the formation and closure
of the neural tube, suggesting that early developmental events impact adult brain shape variation.
Surprisingly, we also observed strong enrichment of terms related specifically to CNCC
development and migration, as well as weaker enrichments in broader terms encompassing
skeletal system devel opment, chondrogenesis, and osteogenesis (Supplementary Table 4).
Furthermore, strong and weak enrichments were also found for craniosynostosis and clefting
gene panels, respectively. These enrichments suggested a link between variation in brain shape

and craniofacial skeletal development, which we set out to explore further.
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L oci affecting both brain and face shape

To more directly test for sharing of genetic effects between brain and face shape, we intersected
the 472 loci described in this study with 203 loci we previously associated with face shape
variation in European-ancestry individual s through a similar, open-ended phenotyping
approach™®. Thirty-seven of theloci for brain shape arein linkage (r* > 0.2) with at least one of
the face shape loci, significantly above random expectation (P = 2.03 x 10%, OR = 10.6) and
greater than the overlap with other traits that have similar numbers of genome-wide significant
associations in the NCBI-EBI GWAS Catalog™ (Extended Data Fig. 5). Identifying signals
showing genome-wide significant association with one of brain or face shape and genome-wide
suggestive (P < 5 x 10™") association with the other resulted in 76 brain-face shared loci (Figure

2a), which we carried forward for further analysis.

Genes near the 76 brain-face shared loci were strongly enriched for disease associations,
including “skeletal disorders’ and “hearing and ear disorders’, consistent with the contribution
of CNCCsto craniofacial skeleton and ear structures. We next scanned the 76 brain-face shared
loci for candidate genes with known rolesin craniofacial or brain development from human
syndromes and/or mouse knockouts (Supplementary Table 5). We observed that many of the
shared brain-face loci are associated with genes encoding transcription factors (TFs) involved in
neural crest formation and/or craniofacial skeletal development. Some of those TFs (for example
DLX5/6, SOX9, ZEB2, ZIC2, ZIC3, TCF4) have known functionsin both neural crest and brain
development, and this pleiotropy may account for the shared genetic signals observed between

the face and the brain. However, other shared brain-face signals are associated with TFs thought
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to function primarily during neural crest rather than brain development, and whose mutations
cause specific craniofacial defects; those TFsinclude ALX1 and ALX4 (associated with
frontonasal dysplasias™*), TWIST1 (associated with Saethre-Chotzen Syndrome®™“®), PAX3
(associated with Waardenburg syndrome®’), and TFAP2B (associated with CHAR syndrome™®).
Consigtent with the primary role of these TFs in facial development, transcriptome analysis
showed their high expression in in-vitro derived human CNCCs and their chondrocyte
derivatives®, but low/no expression in either glia or neurons of human forebrain organoids
spanning awide range of developmental stages™ (Figure 2b). These observations suggest that
genetic variantsinfluencing regulation of key craniofacial TFs have a greater than previously

appreciated impact on brain shape.

Interactions between face and brain can be architectural in nature, with the forebrain acting as a
structural support for facial development, and facial skeletal structures flexing to accommodate
early brain growth*. However, these interactions can also involve paracrine signaling, with
fibroblast growth factor (FGF), Hedgehog, and bone morphogenetic protein (BMP) pathways
having documented roles in mediating the signaling from the devel oping brain to the face® .
Interestingly, genes encoding members of all three aforementioned pathways, FGF (FGF2,
FGF13, FGF18, SPRY2), Hedgehog (PTCH1), and BMP (BMP2, BMP4) are among the shared
brain-face association loci. For example, mutations in PTCH1, the receptor for the sonic
hedgehog ligand, cause holoprosencephaly™, a congenital, structural forebrain anomaly also
associated with arange of craniofacial malformations. Conversely, CNCCs secrete anti-BMP
signaling molecules which modulate forebrain development™®, and expression of these BMP

antagonists is dependent on the SIX family TFs, whose perturbation in CNCCs s associated with
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craniofacial malformations, but also causes secondary pre-otic brain defects’?; SIX1/4 is also
among the shared brain-face loci identified in our study (Figure 2a). We further note that a
number of genes linked to regulation of other signaling pathways, for which prominent rolesin
brain-face crosstalk have yet to be described, including Wnt (DAAM1, DAAM2, TNKS, AHI1,
FBXW11, MCC) and transforming growth factor beta (LEMD3, PPP2R2A) are among the shared
brain-face association loci, suggesting new candidate genes and pathways for future functional
exploration. Not unexpectedly, and in contrast to the craniofacial TFs, the signaling pathway
ligands, receptors and regulators are variably expressed between the in-vitro derived human

CNCCs and brain organoids (Figure 2b).

Phenotypically, these highlighted loci largely affect brain shapein the frontal and temporal
lobes, and face shape in the forehead and nose, as exemplified by PAX3 and ALX1 (Figure 2c),
consistent with the physical proximity of the frontonasal prominence and the forebrain during
devel opment. Phenotypic effects distinct from this pattern include effects of variants near BMP4
and DLX6 on jaw and chin morphology, consistent with their known roles in mandibular

devel opment™>*

, and effects of variants near PTCH1 on occipital lobe morphology (Figure 2c).
Together, these results suggest that both cell-intrinsic mechanisms and paracrine signaling
pathways contribute to the substantial number of loci with shared associations with brain and

face shape.

Genome-wide sharing of signalswith neuropsychiatric disor dersand behavior al-cognitive

traits
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We next asked whether the brain-face overlap among genome-wide significant loci was true
across the genome, also considering GWAS of neuropsychiatric disorders and behavioral-
cognitive traits. Genetic correlations between univariate traits can be computed from signed
summary statistics using LD score regression (LDSC)™. However, this approach is not
applicable to the unsigned statistics yielded by CCA. We therefore applied an alternative method
of assessing genome-wide sharing of signals between two GWAS, summarizing SNP p-values
within approximately independent LD blocks and computing Spearman correlations between the
two summarized profiles (see Methods for details). When applied to pairs of univariate GWAS,
the Spearman correlation method was largely concordant with, albeit generally smaller in
magnitude than, unsigned estimates of genetic correlations by LDSC (Extended Data Fig. 6),
indicating that it is a conservative, robust measure for quantifying genome-wide sharing of

GWAS signals.

We first assessed sharing of association signals between 63 face segments and 285 brain
segments (Supplementary Table 6). All four main facial quadrants, representing shape variation
within the forehead, nose, lower face (mandible and cheeks) and philtrum, respectively, showed
the most sharing with brain segmentsin the frontal lobe, particularly the most anterior portions
such astherostral prefrontal cortex, and the least sharing with segments in the parietal lobe
(Figure 3a). Furthermore, among the facial quadrants, the forehead and nose showed more
sharing with frontal lobe effects than the philtrum and lower face. These genome-wide
correlations are cons stent with the phenotypic effects of top brain-face shared loci (Figure 2c,

Extended Data Fig. 7).
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We next assessed sharing of signals with other phenotypes relevant to brain shape. We used
publicly-available genome-wide summary statistics for a range of neuropsychiatric disorders,
behavioral-cognitive traits, and subcortical brain volume measures from studies other than the
UK Biobank, since our Spearman correlation measure does not control for sample overlap
(Supplementary Table 7). Subcortical volume measures showed the most sharing with brain
shape in the corresponding regions, but the magnitude of these correlations was relatively low
(on par with sharing between brain and face shape), indicating that our multivariate GWAS
approach detects many effects beyond those resulting from changes in relative subcortical
volume (Figure 3b). We found that disorders with primarily devel opmental etiology and that
manifest early in life showed substantial sharing with brain shape in regions previously linked to
these disorders. For instance, schizophrenia and attention deficit hyperactivity disorder (ADHD)

657 and prefrontal cortex regions™,

showed sharing with shape variation in the primary auditory
respectively. In contrast, we did not observe this association with cortical surface shapein
Alzheimer’ s disease, caused by plaque buildup and neurodegeneration much later in life.
Associations with behavioral-cognitive traits such as intelligence, neuroticism and worry showed

broader patterns of sharing with brain shape across multiple regions, reflecting the presumed

involvement of distributed cortical regionsin these traits>®* (Figure 3b).

Finally, we compared the degree to face shape shares signals with neuropsychiatric disorders,
behavioral-cognitive traits, and subcortical volume measures. Brain shape shares significant
(FDR 5%) signal with most neuropsychiatric traits, aswell as all behavioral-cognitive and
subcortical volume traits analyzed. In contrast, face shape does not show significant sharing with

any of the neuropsychiatric disorders or behavioral-cognitive traits, and significant but weaker
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sharing with the subcortical volume measures (Figure 3c). To confirm these patterns of sharing
using standard univariate approaches for face shape, we performed GWAS on the most heritable
individual PCs of full brain or face shape and computed standard genetic correlations using
LDSC. Although genetic correlation estimates were noisy due to low heritability of shape
GWAS using univariate approaches, they generally agreed with our Spearman correlation
measure, finding non-zero genetic correlations between both brain and face shape and
subcortical volume measures, and between brain shape and autism spectrum disorder (Extended
DataFig. 8). Thus, the substantial sharing of signals between brain and face shape (Figure 3a) is
mostly independent of neuropsychiatric disorder risk and behavioral-cognitive traits, likely due
to the fact that mutual influences of face and brain shape on each other involve phenotypic
effects on brain shape distinct from those important for risk of neuropsychiatric disorders and

behavioral-cognitive traits.

Cell-typesinfluencing brain and face shape

Our results thus far suggest that a substantial fraction of brain shape variation is underpinned by
face shape variation, but that these effects are largely independent of effects shared between
brain shape and other cognitive traits. To systematically test thisidea further, we sought to
identify the cell-types and tissues most enriched for heritability of brain shape, face shape, and
other traits relevant to cognitive function. Partitioning heritability into cell-type specific
functional annotations (i.e. open chromatin, enhancers, and promoters) via stratified LD score
regression (S-LDSC) can prioritize trait-relevant cell-types and tissues, but was developed for
univariate traits”%; we thus sought to extend the theoretical framework of S-.LDSC to multivariate

traits such asthe brain and face shape GWAS in this study. We proved that when applying


https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.269258; this version posted August 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

unstratified LDSC™ to y? statistics obtained from multivariate traits with independent
dimensions and further corrected for trait dimensionality, the LDSC-estimated heritability is
equal to the average heritability of the component univariate traits (see Methods, Supplementary
Note), a proof that we validated through separate LDSC heritability analysis of each PC making
up the full face (Extended Data Figure 9). By extension, heritability enrichments obtained by
applying S-LDSC on multivariate, corrected y? statistics partitioned by a given functional
annotation represent the average heritability enrichment for each component univariate trait (see

Methods, Supplementary Note).

We collected genome-wide data on open chromatin (inferred from ATAC-seq) and active
regulatory regions (inferred from ChlP-seq of histone marks) from avariety of cell-types and

tissues, including in-vitro derived CNCCs and their chondrocyte derivatives™®

, embryonic
craniofacial tissue at different stages of development®, neuronal and glial cells from 3D
forebrain organoids at various stages of differentiation™, and both fetal and adult brain tissue®.
We first quantified brain and face shape heritability enrichments for these cell-type specific
annotations (Supplementary Table 8). Face shape showed significant (5% FDR) heritability
enrichment specific to regulatory regions in craniofacial cell-types (mean Z-score 4.58) (Figure
4a). Brain shape showed significant and comparable heritability enrichments for regulatory
regions in craniofacial cell-types and tissues, brain organoids, and primary fetal brain tissue
(mean Z-scores 4.23, 3.23, 3.33, respectively) (Figure 4b). Within brain organoids, the strongest
enrichments were for early-stage glial cells and even earlier-stage whole organoids (mean Z-

score 4.11) (Extended Data Fig. 10), consistent with the radial unit hypothesis and in agreement

with enrichments of brain surface area heritability™. The strong enrichments for craniofacial
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cdll-types, which were substantially more significant than organoid enrichmentsin the
orbitofrontal and medial temporal lobes (Extended Data Fig. 11), suggest that the shared GWAS
signal between brain and face shape is mediated primarily by CNCCs and their derivatives early
in embryonic development. Consistent with thisidea, quantifying brain shape heritability
enrichments with the 76 brain-face shared loci removed resulted in decreased enrichment for
CNCCs (Z-score difference -0.68) and dightly increased enrichment for the most enriched

organoid annotation (Z score difference 0.23) (Extended Data Fig. 12).

Finally, we quantified heritability enrichments for neuropsychiatric disorders, behavioral-
cognitive traits, and subcortical volume measures. Neuropsychiatric disorders and behavioral-
cognitive traits showed heritability enrichment patterns somewhat distinct from those of brain
shape, with significant enrichment for both fetal and adult brain tissue (mean Z-scores 2.17 and
2.64, respectively), and broad enrichment across stages and cell-types of brain organoids (mean
Z-score 2.46). In contrast to brain shape, these traits showed no enrichment for craniofacial cell-
types or tissues (mean Z-score -0.92) (Figure 4c). Subcortical volume measures showed mixed
enrichment patterns, with some regions (amygdala, caudate) similar to those of multivariate brain
shape and other regions (putamen) closer to those of neuropsychiatric disorders and behavioral-
cognitive traits. These results suggest that while a substantial portion of the shared genetic
variation between brain and face shape are mediated by regulatory regionsin CNCCs and their
craniofacial derivatives, variation in these regulatory regions does not impact neuropsychiatric

disorder risk or other behavioral-cognitive traits.

DISCUSSION
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Here, we applied a multivariate phenotyping approach to assess common genetic variation
underlying brain shape, revealing alarge number of novel loci with effects on brain volume or
surface area. While these loci broadly implicate known pathways in brain development, the
preci se mechanisms by which they modulate brain shape are unknown, suggesting further
avenues of investigation. As part of our study, we extended techniques for estimating and
partitioning genome-wide heritability, originally developed for univariate traits, to multivariate
traits. We anticipate that these and similar extensions will become increasingly useful with the

greater availability of high-dimensional imaging or morphological datain large sample sizes.

Our study revealed a striking convergence of common genetic variation affecting brain and face
shape, whichisat least in part mediated by the regulatory regions active in CNCCs and their
more differentiated derivatives. These observations suggest a larger than previously appreciated
role of the face in shaping development of the brain and itsindividual morphological variation.
Importantly, however, these shared genetic effects do not appear to significantly impact
neuropsychiatric disorder risk or cognitive functions. Our results are therefore consistent with a
model whereby CNCCs and their derived cranial structures significantly influence brain shape
through both physical interactions and paracrine signaling early in embryogenesis, but later
shaping of the cortical morphology, through processes such as gyrification®, has a much more

significant impact on cognitive traits.

A number of developmental mechanisms could mediate the shared genetics of brain and face
shape. One potential contribution comes from the common neuroepithelial origins of the two

structures, with genes influencing growth, patterning and cell fate decisions within the neural


https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.269258; this version posted August 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

plate ultimately affecting cell allocation within distinct parts of the brain and face; examples of
such neural plate genes within brain-face shared loci include ZIC2 and ZIC3%%°. Another
potential mechanism entails common genetic variation modulating expression of genes with
pleotropic, independent roles in both brain and face devel opment. A good candidate for this type
of mechanism may be the SOX9 gene, encoding a TF with key functionsin neural crest
development and chondrogenesis, but which is also required for gliogenesis™. Nonetheless, the
fact that most brain-face shared genetic effects are concentrated on facial regions from the
frontonasal prominence and anterior forebrain regions of the brain suggests additional,
proximity-based mechanisms, which can be either structural in nature, or mediated by the
paracrine signaling. While development of the brain and face must be tightly coordinated, the
brain is thought to have greater structural effects on craniofacial devel opment than the reverse, as
the forebrain can act as a structural support for facial development* as well as induce flexion of
the basi cranium and bone deposition at coronal sutures through tensile forces generated by its
growth®**8, However, we find multiple brain-face shared loci lie near TFs with known, cell-
intrinsic roles in, and expression specific to, CNCCs and their derivatives. Furthermore,
mutations in these TFs are associated with malformations of the frontal facial skeleton, such as
corona synostosis (TWIST1)*“ or fronotonasal dysplasias (ALX1 and ALX4)**. One possible
explanation for these resultsis that these TFs control regulatory programs that ultimately
modulate the ability of the craniofacial skeleton to respond to and accommodate brain growth,
thus causing subtle changes in brain shape. It is also possible, however, that these TFs exert
some of their phenotypic effects on brain shape by regulating the expression of signaling ligands
secreted from the face. For example, CNCCs secrete BM P antagonists which modulate forebrain

development by blocking BMP and FGF production in the anterior neural ridge (ANR)>®. BMP
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antagonist production in CNCCsis regulated by the SIX family TFs*, with the SIX1/4 locus
representing one of the shared brain-face signalsin our GWAS analyses (Figure 2a). In the
reverse direction, studies in chick embryos have shown that Fgf, Shh, and BMP ligands are
secreted by the forebrain and regulate the formation of the frontonasal ectodermal zone (FEZ), a
signaling center that in turn patterns the frontonasal prominence of the developing face®® "
Notably, our GWAS analyses implicate all three of these signaling pathways, nominating
specific ligands and receptors within those pathways whose modulation may be associated with
the brain-face crosstalk. Furthermore, our study nominates other signaling pathways, such as
Wnt and TGF-beta, for further investigation in paracrine signaling between the brain and face.
Altogether, we uncovered common genetic variants yielding a wealth of candidate molecular

players whose diverse mechanistic roles in mediating brain-face interactions during devel opment

can be examined in future studies.

Relationships of facial shape with cognitive and personality traits fascinated humans since
ancient times, from the Ancient Greeks, who introduced the term ‘ physiognomy’ to describe a
practice of assessing a person's personality from their facial appearance’, through the Vedic
traditions of Samudrika Shastra” and to the Chinese art of face reading™. The concept of
physiognomy was revived in the late 18" century by Johan Kaspar Lavater, and later gave rise to
arelated pseudoscientific theory, phrenology, popularized by Franz Josef Gall. Both theories
have atroubled history, as they have been used to justify racial discrimination as well as eugenic

theories™"®

. While physiognomy in its original formation has been largely debunked, modern
studies have found correlations between facial width-to-height ratios and aggressive tendencies

and behaviors'’, with regrettable renewed efforts in using machine learning approaches to detect
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such correlations raising serious ethical concerns’®’®. However, our results argue that while the
ancient human intuition of a close relationship between the face and the brain has genetic support
at the level of morphology, thereis no genetic evidence for the supposed predictive value of face

shape in behavioral-cognitive traits, which formed the core of physiognomy and related theories.

METHODS

UK Biobank data preprocessing

The UK Biobank project (UKB) is alarge dataset of about 500,000 British volunteers with
informed consent containing genetics, non-imaging variables and brain imaging data acquired

using a fixed protocol*

. Hereby, brain T1-weighted magnetic resonance imaging (MRI) scans of
the UKB, aswell as genotyping and covariate information (e.g. sex, age, height, weight, among
others), were obtained and used as the discovery dataset. More specifically, we utilized the data
release v1.5 of August 2018 which holds a cohort of 21,780 subjects with these three sources of
information. This cohort was composed of an adult population (40 to 70 years old, mean of 60
years old), with slightly more females than males (51.6% vs. 48.4% respectively), a
predominantly self-reported white British ancestry (97.1%), and an average body mass index
(BMI) of 26.6.

For thelist of 21,780 subjects, we processed the raw MRI data for a surface-based analysis of the
cerebral cortex using the following four-step procedure:

First, the cortical surfaces were segmented and reconstructed from the MRI volumetric data

using recon-all (FreeSurfer®™ v.6.0.0; URL section). In this step 20,409 images were processed

successfully.


https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.269258; this version posted August 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Second, to obtain a minimally preprocessed pipeline similar to the one of the Human
Connectome Project (HCP — URL Section) CIFTIFY (Connectivity Informatics Technology
Initiative file format - URL section) was used to convert FreeSurfer’s recon-all command output
to a HCP-style file format and structure®™. This protocol converts the datainto GIFTI and CIFTI
“gray ordinate’ file formats, and then performs surface-based alignment of the cortical mesh to
the fs LR Conte69 space using MSMSulc and volume-based registration of subcortical
structures to the MNI152 space. High dimensional cortical meshes were down sampled to lower
resolution meshes of 32,492 3D vertices (average ~2mm spacing) and 64,980 triangular faces.
Left and right hemispheres were aligned to each other. Due to the alignment of individual brain
images with a common brain surface atlas (Conte69), the cerebral cortex was represented by
surfaces that were also homologous from one individual to another®: a single vertex of a
subject’ s brain mesh was in very good anatomical correspondence with a single vertex of another
subject’s brain mesh, and this for all 32,492 vertices of the meshes. All but one of the images
were processed without error in this step.

Third, from the output of CIFTIFY, we selected the mid-cortical surfaces of the left and right
hemisphere, which is the surface that runs at the mid-distance between the white surface (which
lies at the interface between gray and white matter) and the pial surface (which is the external
cortical surface)®. The mid-cortical surface does not over or under-represent gyri or sulci®, but
besides that our choice for this specific surface is arbitrary. The white and/or pia surfaces could
have been used alternatively. The vertices from the sub-cortical part of the surface, are typically
excluded from surface-based cortex analysis, and were therefore removed based on the sub-
cortical vertex index provided by the Conte69 atlas. The final count of vertices for each of the

mid-cortical surfaces left and right was 29,759. For each hemisphere and each individual, we
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also computed the centroid size as the average Euclidean distance of all mesh vertices to the
point of gravity, which is a standard measure of size in geometric morphometrics. In the
remainder of this work, cortical brain structure or brain shape for short, is represented and
referred to by the mid-cortical surface.

Fourth, as quality control for each hemisphere separately, we checked the resulting mid-cortical
surfaces for mesh artifacts in a semi-automatic manner. This was done by first measuring the
Mahalanobis distance for each individual’s mid-cortical surface to the overall average mid-
cortical surface in a generalized Procrustes shape-space spanned by an orthogonal basis of
principal components that captures 98% of the total variation. From the distribution of
Mahalanobis distances, a z-score for each mid-cortical surface was then established, and each
mid-cortical surface with a z-score equal to or larger than three was manually inspected for
meshing errors (e.g. triangles stretched too far or triangles folded). All images after step 3 passed
this quality control, resulting in a set of 20,407 processed images.

For the list of 20,407 subjects with preprocessed images, we selected genomic data from the UK
Biobank, which consisted of the version 3 (March 2018) imputed SNP genotypes, imputed to the
Haplotype Reference Consortium and merged UK10K and 1000 Genomes (phase 3) panels.
First, European individuals only were selected using principal component analysis (PCA) after
excluding SNPs in linkage disequilibrium (LD) from the 1000G Phase 3 dataset (Plink 1.9, 50
variant window-size, 5 variant step size, 0.2 r’). A k-nearest neighbor algorithm, using the first
25 reference ancestry principal components, was used to assign a 1000G super population label
to each individual, and individuals with the 1000G super population EURO label were selected
for analysis only. Second, we filtered the imputed UK Biobank SNPs by removing indels and

multi-allelic SNPs, missing genotypes across individuals (<=50%), minor alele frequency
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(<1%), and Hardy-Weinberg equilibrium (p < 1€®). Third, in order to remove related individuals
and capture population structure we pruned the filtered SNP set for LD (Plink 1.9, 50 variant
window-size, 5 variant step size, 0.2 r?). Subsequently, related individuals were identified and
removed when the proportion of identity by descent (IBD) was higher than 0.125. Finally,
population structure was captured using principal components analysis (PCA). This ultimately
resulted in 9,705,931 filtered SNPs for GWAS analysis on 19,670 unrelated subjects of European
descent.

For the list of 19,670 subjects with preprocessed brain and genetic data, we collected the
following available list of covariates to control for during statistical testing: genetic sex, age,
age-squared, height, weight, diastolic blood pressure, and systolic blood pressure. Additionally,
to adjust for population structure the first 20 genetic principal components were included as
covariates. Furthermore, the following imaging specific parameters were aso included,
following Elliot et al.?®: volumetric scaling from T1 head image to standard space, XY Z-position
of brain mask in scanner co-ordinates, Z-position of table/coil in scanner co-ordinates, date of
attending assessment center, and assessment center (coded as a dummy variable for each of the
21 centers). For each of the covariate variables, except for assessment center, missing data was
replaced by the average value of the respective variables. 26 subjects were removed due to
extreme outlying covariate information (>6 times the standard deviation) in weight (11
individuals), diastolic blood pressure (1 individual), systolic blood pressure (3 individuals), X-
position of brain mask (6 individuals), Y-position of brain mask (4 individuals), Z-position of
table/coil (1 individual). Next, to symmetrize brain shape, the right hemisphere was reflected to
the side of the left hemisphere, by ssmply changing the sign of the x-coordinate for all of the

29,759 3D vertices on the surface of the right hemisphere. Second, we performed a generalized
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Procrustes superimposition (GPA)*, thus eiminating differences in position, orientation, and
scale (measured by centroid size) of all left and right hemispheres pooled together. We computed
the symmetric brain component as the vertex-wise averaged brain surface of pared and
superimposed left and right hemispheres. This resulted in a final discovery dataset of 19,644
subjects containing preprocessed MRI image data on the mid-cortical symmetrized surface,

9,705,931 imputed SNPs and 54 covariates.

ABCD study data preprocessing

The Adolescent Brain Cognitive Development Study (ABCD) (URL section) is a longitudina
study following brain development and health through adolescence®. A total of 11,411 MRI
scans with additional information on sex and age were available for download from the data
release of April 2019 and of those 11,393 images were processed successfully using the four-step
imaging preprocessing described above.

In total 10,627 individuals from the ABCD dataset provided with genetic data on 517,724 SNP
variants. These were sent for imputation via the Odyssey® pipeline using the SHAPEIT4* and
IMPUTES® workflow to phase and impute respectively. The Haplotype Reference Consortium
(HRC)™ reference panel was used for imputation. Standard data cleaning and quality assurance
practices were performed based on the GRCh37 (hgl19) genome assembly. Quality control of the
data prior to phasing and imputation includes usng the McCarthy Group’s Imputation
preparation program (URL section) to check and fix strand, alleles, position, and
reference/alternative problems as well as removing ambiguous A/T and G/C SNPS with minor

alele frequencies greater than 0.4. Variants that had a missing rate greater than 10% as well as
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individuals who had more than 10% of missing variants were also excluded from phasing and
imputation.

To assess for ancestry, pre-phased quality controlled genotyped variants underwent a filter for
Hardy-Weinberg Equilibrium (P < 1 x 10®) and were merged with the 1000 Genomes Phase 37
and the Human Genome Diversity Project reference panels. Variants that were in common
between the datasets were assessed for LD and then pruned using a 1,500 kb window, 50 bp step
size, and a 0.4 r* threshold. This pruned dataset which contained 14,068 individuals from the
reference and ABCD datasets were used in a PCA to construct an ancestry space. Using the
eigenvalues that were found to explain more than 5% of the total amount of variance, an X-
dimensional centroid was created from reference samples designated as having European
ancestry. This in term created a “European centroid.” Only participants that were within 3
standard deviations of the centroid were retained to obtain a relatively homogenous sample.
Following QC and ancestry assessment the ABCD dataset was trimmed down to 5,622
individuals and 484,000 variants. Following phasing and imputation, variants were filtered based
on the imputation quality control INFO metric (INFO score > 0.7), which resulted in 15.3M
imputed ABCD variants.

For the 5,622 individuals of primarily European ancestries, the genotyped and imputed variants
were filtered by removing indels and multi-allelic SNPs, missing genotypes across individuals
(<50%), minor alde frequency (<1%), and Hardy-Weinberg equilibrium (p < 1€°).
Subsequently, in order to remove related individuals and capture population structure we pruned
the filtered genotyped SNP set for LD (Plink 1.9, 50 variant window-size, 5 variant step size, 0.2
r?). Subsequently, 1,009 related individuals were identified and removed when the proportion of

identity by descent (IBD) was higher than 0.125. Finally, population structure was captured
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using PCA. Of the 4,613 unrelated subjects of European ancestries, 143 did not have a
preprocessed brain image. This resulted in a final replication dataset of 4,470 individuals with
preprocessed MRI image data, representing brain shape, 15.3M imputed SNPs and 7 covariates
(sex, age and the first 5 genetic PCs). The minimum and maximum age of this final replication
dataset, was 8.9 years and 11 years, respectively, with a mean age of 9.9 years. 46.5% are female

and 53.5% are male.

Auxiliary traits GWAS summary statistics
We collected publicly available genome-wide summary statistics for 22 auxiliary traits

s¥1%  and subcortical

encompassing neuropsychiatric disorders™®’, behavioral-cognitive trait
volume measures™ . In Supplementary Table 7, we provide links to relevant publications and

URLSs for these summary statistics.

Point-wise SNP-heritability estimation of the mid-cortical surface

For each of the 29,759 vertices of the averaged mid-cortical 3D surfaces in the UK Biobank we
computed a multivariate (X, Y and Z coordinate per vertex) narrow-sense heritability from
common SNP variants using a linear mixed model (LMM). A genomic relationship matrix
(GRM) modelled as random effectsin the LMM was computed from LD pruned SNP data (Plink
1.9, 50 variant window-size, 5 variant step size, 0.2 r®). The first 10 genomic principa
components and additional covariates (sex, age, height, weight, diastolic and systolic blood
pressure) were modelled as fixed effects in the LMM. We used the open-source software
SNPLib (URL Section)'®, whose implementation is equivalent to the widely used GCTA

software'® for a homogenous popul ation.
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Global-to-local (G2L) segmentation of the mid-cortical surface

The UK Biobank (n=19,644) served as discovery cohort using a data-driven global-to-local
(G2L) segmentation of brain shape similar to previous work on face shape™'°. First, the
superimposed and symmetrized mid-cortical surfaces were corrected using a partial least-squares
regression (PLSR, function plsregress from Matlab 2019b) for all UK Biobank covariates listed
above, augmented with centroid size to eiminate allometric effects of size on brain shape®’.
Second, pair-wise structural connections based on the multivariate generalization of the Pearson
correlation, or RV-coefficient'®, between each pair of 3D surface vertices generated a squared
similarity matrix (29,759 x 29,759). Third, a Laplacian transformation was applied to enhance
similarities prior to an eigendecomposition of this squared matrix. Finally, within the eigen
spectral map, K-means++ clustering was used to group highly correlated vertices, that, when
mapped back to the brain surface, result in a segmentation of the brain into separate modules.
This was done in a bifurcating hierarchical manner using eight levels, resulting in a total of 511
hierarchically linked facial segments, with 1, 2, 4, 8, 16, 32, 64, 128, 256 non-overlapping
modules at levels 0, 1, 2, 3, 4, 5, 6, 7, 8. In contrast to our work on facial shape™®, we pruned
down segments with fewer vertices than 1% of the total vertex count. |.e., segments with less
than 30 vertices were removed as to safeguard the minimum size of each segment. This resulted
into the pruning of 226 segments, generating a final G2L segmentation of brain shape consisting
of 285 segments across eight levels as depicted in Figure 1. The hierarchical design provided a
shape decomposition focused at different levels of detail, going from the full hemisphere, and

larger brain segments, to more local smaller brain segments. This allowed the investigation of
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localized shape variations on the one hand, towards larger, more integrated shape variations on
the other hand.

For each of the 285 brain segments separately, the group of surface vertices in a segment were
subjected to a new GPA. As such, a multivariate shape-space for each brain segment was
constructed independently of the other segments and its relative positioning within the full
hemisphere. Subsequently, after GPA, each segment’'s shape-space was spanned by a
multivariate orthogonal basis using PCA on the pooled x, y and z coordinates of the collection of
superimposed vertices in that segment. Finally, we retained enough PCs to explain up to 80% of
the total shape variation within each segment. Thisis in slight contrast to our previous work on
facial shape, where we used a parallel analysis (PA) instead. By choosing those PCs explaining
up to 80% of the variation we typically retained 50% of the components otherwise retained using
PA (e.g. 437 instead of ~1000 for the full hemisphere). However, the number of components
retained using PA became computationally intractable in a GWAS context. Therefore, we opted
to further reduce the number of PCs per brain segment, knowing that these certainly represent

non-noisy shape variations, confirmed by the PA.

Overlap of brain atlaseswith G2L segmentation

We investigated the overlap of brain segments at each of the eight levels from our G2L
segmentation with brain regions from three commonly used brain atlases (Desikan Killiany (34
distinct gyral based regions)®, Destrieux (74 distinct gyral and sulcal based regions)®, and the
Glasser (180 distinct multi-modal based regions)®) that were also defined within the HCP
project data format and thus defined on the same surface mesh of 29,759 vertices. For each of the

G2L levels separately, every brain surface vertex has a unique label of the G2L brain segment it
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belongs to at that level and a unique label of the atlas brain region it belongs to. Using these two
labels per vertex the normalized mutual information across all vertices provided a measure of
overlap from O (no overlap) to 1 (complete overlap), for each G2L level with each of the three
atlases. Additionally, each brain segment and each brain region defined a subset of vertices, and
therefore, for each segment we defined the intersection of vertices with each brain region, and
for each brain region we defined the intersection of vertices with each brain segment, expressed

as percentages.

G2L multivariate genome-wide discovery

The global-to-local phenotyping partitioned cortical brain shape into overlapping (across
different hierarchical levels), as well as non-overlapping (within a single hierarchical level)
segments, each of which was represented by a different subset of mid-cortical surface vertices
and spanned by multiple dimensions of variation (principal components, PCs). For each brain
segment separately, canonical correlation analysis (CCA, canoncorr from Matlab 2019b), was
therefore used as a multivariate testing framework (note that CCA is also implemented in Plink
1.9 for multivariate phenotypes). CCA extracts the linear combination of PCs spanning the brain
segment that correlates maximally with the SNP variant being tested, and therefore reveals a
latent shape trait within the shape-space of the brain segment. The correlation of this latent shape
trait with the SNP variant is tested for significance based on a Chi-squared (X?) statistic (right-
tail, one-sided test), with degrees of freedom equal to the dimensionality or number of principal
components of the brain segment under investigation. Using CCA, we tested each SNP
(n=9,705,931) individually under an additive genetic model in the UK Biobank (n=19,670)

against each of the brain segments (n=285) separately. Note that CCA does not accommodate
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adjustments for covariates, but effects of important covariates were corrected for (using PLSR) at
the phenotyping stage. Additionally, we applied a similar correction for the covariates on each
SNP, again using PLSR, excluding this time the covariates that were only relevant for the
correction of imaging data (e.g. acquisition center). Therefore, the CCA analysis was performed
under the reduced model, which was obtained after removing the effects of covariates on both
the independent SNP variants as well as the dependent multivariate brain shape phenotypes.

Given the burden of multiple comparisons, a strict significance threshold of P < 5 x 10® was
used to declare “genome-wide significance’, which corresponds to a Bonferroni correction for 1
million independent tests and is mostly applicablein a GWAS on a European-ancestry cohort'®.
Due to 285 multivariate GWAS runs, the multiple comparisons burden was magnified.
Therefore, we also determined a more stringent threshold for declaring “ study-wide significance”
corresponding to an additional adjustment for the effective number of independent tests. In afirst
instance, looking a the number of eigenvalues larger than one of a parwise multivariate
correlation (RV-coefficient) matrix (285 x 285) across all segments'®, determined a total of 210
independent tests. In a second instance, an empirical estimate of the number of independent tests
was also obtained using the 472 lead SNPs representing the genome-wide associ ated independent
genetic loci (see description below), to keep the estimations computationally tractable. First, for
a single SNP we randomly permuted the genotypes in the UK Biobank, essentially creating
genotypes that have a noisy association with multivariate brain shape. Then, we performed the
CCA associations of the randomized genotypes to each of the 285 brain segments and retained
the lowest or “best” p-value out of the 285 p-values obtained. Step 1 and 2, were repeated 10,000
times. Subsequently, we divided 0.05 by the 5th percentile of the 10,000 permuted best CCA p-

values, and this was done for each of the 472 SNPs. Based on these 472 outcomes, the mean
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estimation of the number of empirical independent tests based on 285 brain segments is 241.46
(11.09 standard deviation). Because the empirical estimation was more conservative compared to
the eigenvalue-based estimation we opted for the former and determined the study-wide

significance threshold to be 2.0707 x 10 (i.e., 5 x 10/ 241.46).

Peak detection, overlap and annotations

We observed 38,630 SNPs and 23,413 SNPs at the level of genome-wide and study-wide
significance, respectively. These were clumped into 472 (genome-wide) and 243 (study-wide)
independent loci in three steps. First, starting with the best associated or lead SNP (lowest p-
value), SNPs within 10kb or within IMb but with r* > 0.01 were clumped into the same locus
represented by the lead SNP. This process was repeated until all SNPs were assigned into 509
loci. Second, based on the lead SNPs only, a wider window of +/- 10Mb was tested for r*> 0.01,
reducing the number of loci (n=502) by merging seven lead SNPs. Third, any locus with a
singleton lead SNP (without additionally clumped SNPs) below the study-wide threshold was
removed (n=30). r? values were computed using the genotypes from the UK Biobank.

To study the functional enrichment for genes near the 472 genome-wide lead SNPs, we
performed gene ontology (GO) analysis using GREAT® (v4.0.4) and FUMA® (v1.3.6) using
default settings. GO terms that were significant by both binomial and hypergeometric tests (False
Discovery Rate (FDR) g-value < 0.05) across three or two windows were reported as strongly
and weakly enriched respectively.

In determining overlap between lead SNPs from different GWAS, we used a similar strategy:
two lead SNPs tag the same genetic locus if they are within 10kb of each other or if they are

within 1Mb of each other and with r* > 0.2. For considering and quantifying overlap between
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the 472 brain shape loci and 430 other studies from the NCBI-EBlI GWAS Catalog, we defined
LD blocks of 0.2 around the 472 loci using Plink 1.9, and then calculated oddsratio and P for the
overlap between these blocks and any given GWAS using bedtools v2.27.1, fisher function.

In determining brain-face shared loci, we first started from the 472 genome-wide lead SNPs from
the brain GWAS and looked for any SNP within 10kb or within IMb and LD > 0.2 of these lead
SNPs with at least a genome-wide suggestive (P < 5 x 10™") association in the facial multivariate
GWAS'™. This resulted in 57 loci with evidence of association in brain and face shape. Then we
took the 203 genome-wide lead SNPs reported in the face GWAS'™®, and clumped them if two
lead SNPs were within 10kb or within 10Mb but with r* > 0.01. For the resulting 197
independent genome-wide facial lead SNPs we selected any SNP within 10kb or within IMb and
with r? > 0.2 with at least a genome-wide suggestive (P < 5 x 10™") association in the brain shape
GWAS. This resulted in another 54 loci with evidence of association in brain and face shape and
together with the previous 57 loci they were clumped (within 10kb or within 1Mb and r* > 0.2)
into afinal set of 76 independent brain-face shared loci.

We identified candidate genes in the vicinity of the 76 brain-face shared loci through a manual
process. For each locus, we first considered all genes within 500kb of the lead SNP. We
primarily relied on evidence for these genes' involvement in a human craniofacial or
neurodevelopmental syndrome, or for evidence of craniofacial or neurodevelopmental defectsin
knockouts of their orthologs in mice. Secondarily, we also considered associations with Gene
Ontology (GO) terms related to craniofacial development, neurodevel opment, or skeletal system
development. In some cases (i.e. SOX9, where enhancer-promoter interactions over 1Mb have

been described™), we extended the window to within 750kb of the lead SNP.
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ABCD replication testing

The ABCD study data (n=4,470) was used as replication panel, with the UK Biobank discovery
cohort used as a phenotyping reference. First, the GPA superimposed and symmetrized mid-
cortical shapes were corrected for the confounders of sex, age, and the first five genomic PCs,
augmented with centroid size to eliminate allometric effects of size on brain shape®” using PLSR.
Second, the PLSR residuals that were centered on the overall average brain shape of the ABCD
study, were added to the overall average brain shape of the UK Biobank. Third, the corrected and
re-centered brain shapes were segmented using the G2L segmentation and projected onto the
principal components of the segments from the UK Biobank. This ensured consistency in brain
segment delineation and shape-space across both datasets.

For a particular discovery lead SNP in a particular brain segment the replication panel was
projected onto the latent shape trait of the lead SNP. This generated univariate projection scores
as phenotypes'® to test for in the replication panel that are equivalent to the latent shape traits or
phenotypes in the discovery pand, i.e. the latent shape trait, once discovered using CCA, was
fixed and explicitly measured in the replication cohort. Replication was therefore tested using a
standard univariate linear regression (two-sided, regstats Matlab 2019b). This was done for each
of the 466 lead SNPs for which the exact SNP or a proxy SNP (within 10kb or within IMb and r
> (0.2) was available for analysisin the ABCD cohort, and in each of the 285 segments that were
associated at P < 5 x 10-8, which resulted in 3,586 replication tests. From all replication efforts
combined (n=3,586), we computed a 5% FDR-adjusted significance threshold™”’ equal to P <

0.0369.

Clinical gene-panel overlap
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Gene panels were downloaded from the Genomics England Panel App website. Only panels that
will be used for clinical interpretation in the 100,000 Genomes project were selected (provided
by Panel App™). The clinical gene-panels were merged in disease (sub)categories according to
the 100,000 Genomes Project criteria (e.g. the clinical gene panel “Intellectual Disability”
belongs to the sub-category “Neurodevel opmental Disorders’, which is part of the “Neurology
and Neurodevelopment” disease category). Only genes with ahigh level of confidence for gene-
disease association were included in the clinical gene panels. We calculated the overlap between
genes from clinical panels/subcategories/categories and different gene-sets allowing for a 200kb,
500kb or IMb window around the loci. Permutation testing was done to see if this overlap was
higher than expected by chance. In brief, we generated 10,000 random panels for each clinical
panel/subcategory/category with equal size using alist of 19,198 protein-coding genes. P-values
were obtained by dividing “the number of times the overlap random panel and gene-set was
larger than the overlap clinical gene-panel/subcategory/category and gene-set” and “number of
random gene-panels created (10,000)”. Clinical panels/subcategories/categories were interpreted
as strongly or weakly enriched if they showed significance (P < 0.05) across three or two

different gene-sets respectively.

Expression analyses of candidate genes at brain-face overlapping loci

Gene expression levels (logx(TPM) values) for three-dimensional forebrain organoids and
purifying neuronal or glial lineages were obtained from Trevino et al*®® (GSE132403). Raw
RNA-seq reads from CNCCs at passages 1-4, as well as day 9 chondrocytes derived from P4
CNCCs, were obtained from Long et al*® (GSE145327), and TPM values were quantified using

kallisto'® with sequence-biased bias correction enabled.
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L D scoreregression SNP-heritability for multivariate traits

In the Supplementary Note, we provide a general proof showing that when applying LD score
regression (LDSC) to summary statistics of a multivariate GWAS, abeit with a small correction
to the resulting  statistics, the heritability estimated by the LDSC slopeis equal to

% trace(Z;Xz1), which is a D-dimensional generalization of heritability for genetic and
phenotypic covariance matrices X, and X5?, respectively. When the dimensions of the
multivariate trait are either genetically or phenotypically uncorrelated, asisthe case in both the
brain and face GWAS, this expression simplifies to the average SNP-heritability across

dimensions, but we also demonstrate extensions for correlated dimensions. Similarly, when

applying stratified LD Score regression (S-LDSC), one obtains enrichments for this partitioned
average heritability. We further show that % trace(Z;X71) isan appropriate multivariate

generalization of heritability since it isthe only measure to satisfy the following four properties:
1) invariance to units of measurement, 2) coordinate-free, 3) linear in X, and 4) maximized with
avaueof 1when X, = 25t

Thus, for brain and face shape, we applied LDSC and S-LDSC using the published software
(URL section) to corrected 2 statistics from GWAS of each brain or face segment, since a full
multivariate GWAS was performed in each segment. We used unmodified chi-squared values for
the univariate traits analyzed (including indicated cases where we performed individual,
univariate GWAS for each PC in brain and face segment 1). While using unmodified chi-square
values results in asmall bias, we used unmodified statistics for univariate traits for cons stency
with previous studies. For S-LDSC analyses, we limited ourselves to traits with SNP-heritability

Z-scores > 7, asdonein Finucaine et a®, unless otherwise indicated.
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Functional annotationsfor stratified L D scoreregression

We downloaded a range of publicly available cell-type and sample-specific annotations
representing open chromatin and/or active regulatory regions. Specifically, we obtained data on
open chromatin (all ATAC-seq peaks) from brain organoids™, fetal brain tissue'™™, and CNCCs
and derived chondrocytes®. Raw ATAC-seq reads from Long et al were mapped to hgl19 with
bowtie2'° with default settings, and peaks were called using MACS2™ with default settings.
Annotations for active regulatory regions (based on arange of epigenomic marks) were obtained
from CNCCs™, embryonic craniofacial tissues™, fetal and adult brain tissue®, and broad
groupings of cell-types™. For CNCC data from Prescott et al*'?, we combined all regions
annotated as enhancers (weak, intermediate, strong) or promoters (weak and strong); For
embryonic craniofacial tissues, we combined all regions with the following annotations from the
25-gstate chromHMM model: ‘Enh,” ‘TxReg,” ‘PromD1,” ‘PromD2,’ ‘PromU,” ‘TssA." For fetal
and adult brain tissue, we combined all regions with the following annotations from the 15-state
chromHMM model: ‘1 TssA,” ‘2 TssAFInk,” ‘7 _Enh,” ‘6 _EnhG.” Each annotation was
individually added to the baselineLD model from Finucaine et a, which includes various
annotations of genes, conserved regions, and general enhancers and promoters. The resulting S-
LDSC output (heritability fold-enrichment magnitude and significance, aswell as coefficient Z-
scores) are provided in Supplementary Table 8. When quantifying heritability enrichments with
brain-face shared loci removed, we removed all SNPs within the same approximately

11
k3

independent LD block™ as one of the 76 brain-face shared loci and re-computed LD scores as

well.
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Quantifying sharing of signals between pairsof GWAS

To assess the extent to which genome-wide profiles of association were shared between a pair of
phenotypes (e.g. multivariate brain and/or face segments and/or univariate neuropsychiatric,
behavioral-cognitive, and subcortical volumes), we computed a Spearman correlation between
two vectors of LD-block organized association p-values. First, asis donein LDSC, genome-wide
SNPs were selected to overlap with the HapMap3 SNPs'™ and SNPs within the major
histocompatibility complex (MHC) region were removed. Second, we downloaded the locations
of 1,725 blocks in the human genome that can be treated as approximately independent LD
blocks in individuals of European ancestries'™, and organized all SNPs within these blocks. For
every LD block we computed the mean SNP —og;o(p-value), and then computed a rank-based
Spearman correlation using the averaged association values (n=1,725) for each LD block. A
standard error of the Spearman correlation was estimated using statistical resampling with 100

bootstrap cycles with replacement from the 1,725 LD blocks.
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URLSs

UK biobank: https://www.ukbiobank.ac.uk/about-bi obank-uk/

Human Connectome Project: http://www.humanconnectomeproj ect.org/

Adolescent Brain Cognitive Development (ABCD) study: https://abcdstudy.org/about/

SNPLIB: https://qgithub.com/jiarui-li/SNPLIB

Freesurfer: https://surfer.nmr.mgh.harvard.edu/

Ciftify: https://github.com/edickie/ciftify and https.//www.nitrc.org/projects/cifti/

Conte69 Atlas: http://brainvis.wustl.edu/wiki/index.php//Caret: Atlases/Conte69 Atlas

McCarthy Tools. https.//www.well.ox.ac.uk/~wrayner/tools/

LDSC: https://qithub.com/bulik/Idsc/wiki

Data availability
All the data and detailed information for the UK Biobank, including genetic markers, covariates
and MRI images are available to bona fide researchers via the UK Biobank data access process

(see http://www.ukbiobank.ac.uk/register-apply/).

All the data and detailed information for the ABCD study, including genetic markers, covariates
and MRI images are also available to bona fide researchers through the ABCD data depository

(https://nda.ni h.gov/abcd/request-access)

Relevant data and materials from the facial GWAS study are available online

(https://doi.org/10.6084/m9.figshare.c.4667261). The full facial GWAS summary statistics will

be uploaded to GWAS catalog (https.//www.ebi.ac.uk/gwas/) upon publication of that work that

is currently formerly accepted at Nature Genetics. The facial GWAS paper is currently accessible
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on bhioRXiv (https://www.biorxiv.org/content/10.1101/2020.05.12.090555v1). Furthermore,

relevant files generated from the face and brain GWAS summary statistics as input to (S-)LDSC

regression and spearman correlations are available on FigShare, see table below. The full brain

GWAS summary statistics will be uploaded to the GWAS Catalog upon publication.

All relevant additional data related to thiswork are provided in the FigShare repository for this

work (https://figshare.com/s/bfc96fe9375e9f787b4b). Thisincludes additional figures, input files

and updated implementations, listed in the table below.

Name

Filename

Description

Brain shape phenotypes

PHENOTYPEDATA_summary.mat

Matfile containing principal component
Eigenvectors and Eigenvalues for each of
the 285 hierarhical brain segments

Hierarchical shape
segmentation functions

Hierarchical 3D ShapeSegmentation.m
BuildRVmatrix.m

Scripts to perform hierarchical shape
segmentation adapted to brain MRIs

Brain segment coordinates

G2L BrainSegmentation.mat
Supplementary Tablel.xlIsx

Information on 285 hierarchica
segments and vertex coordinatesin
matfile

471 brain shape loci
phenotypic effects

One .png file for each locus

Polar dendrograms and hierarchical
displays of -log10(P) of associations
between each lead SNP and brain shape
in each segment

76 brain-face share |l oci
phenotypic effects

Two .png files for each locus

Polar dendrograms and hierarchical
displays of -log10(P) of associations
between each lead SNP and brain or face
shape in each segment

Spearman correlations
brain-brain

One .png file for each brain segment
correlated with others

Hierarchical displays of spearman
correlations between brain segments

Spearman correlations face-
face

One .png file for each face segment
correlated with others

Hierarchical displays of spearman
correlations between face segments

Spearman correlations
brain-face

One .png file for each brain (face)
segment correlated with other face
(brain) segments

Hierarchical displays of spearman
correlations between brain and face
segments

Spearman correlations

One .png file for each univariate trait

Hierarchical displays of spearman
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brain-trait correlations between univariate traits and
brain segments

Spearman correlations face- | One .png file for each univariatetrait | Hierarchical displays of spearman

trait correlations between univariate traits and
face segments

Brain shape GWAS One .txt.gz file for each brain segment | Summary statistics used for S-LDSC or

summary statistics spearman correlation calculation

Face shape GWAS One .txt.gz file for each face segment | Summary statistics used for S-LDSC or

summary statistics spearman correlation calculation

Code availability
Matlab implementations of the hierarchical spectral clustering to obtain phenotypic shape
segmentations are available from a previous publication

https://doi.org/10.6084/m9.figshare. 7649024.v1). Updated implementations used in this work are

provided as described in the Figshare table above. The statistical analyses in this work were
based on functions of the statistical toolbox in Matlab as mentioned throughout the M ethods.
Other materials and external software used mentioned throughout the Methods are available

online (see URL section).
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Fig. 1. Multivariate genome-wide association study (GWAYS) of brain shape. a, Upstream
processing of UKB MRI images. b, in the polar dendrogram on the left, each concentric ring of
filled circles correspondsto a hierarchical level (labeled i-ix) shown on the right, and the filled

circle colors correspond to the respective segments in the same hierarchical level. ¢, Ideogram
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showing genomic locations and regional effects of 472 genome-wide significant loci for brain
shape. Circles and diamonds represent associ ations passing the study-wide or genome-wide

significance thresholds, colors represent broad regions of the brain with the indicated effects.
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Fig. 2: Loci affecting both brain and face shape. a, Miami plot of GWAS for brain (top) and
face (bottom) shape. For each SNP, p-values aggregated across all brain or face segments are
plotted. All 76 loci reaching genome-wide (P < 5 x 10°®) significance in one study and genome-
wide suggestive (P < 5 x 10°) significance in the other are highlighted by unfilled circles. Loci
near candidate genes highlighted in the text and in b and ¢ are labeled, generally on the side
where they show greater significance of association. b, Expression (in transcripts per million,
TPM) of candidate genes near brain-face shared loci in cranial neural crest cells (CNCCs) of
different passages, representing different stages of maturation, from early (P1) to late (P4) and

their chondrocyte (Chond. D9) derivatives® (left), and three dimensional forebrain organoids at
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various stages of differentiation™ (right), further sorted into glial or neuronal lineages or profiled
as whole organoids. ¢, Regiona phenotypic effects of four candidate loci, showing effects of
linked SNPs on brain (left) or face (right) shape. Segments shown are of hierarchical level v, -
logio(p-values) are normalized to the maximum at each locus. Full face and brain images from all
76 brain-face shared loci corresponding to all hierarchical levels can be found online (see Data

Availability)
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Fig. 3: Genome-wide sharing of signalswith neuropsychiatric disorders and behavioral-
cognitive traits. Genome-wide sharing of signals between any two given GWAS was assessed
by Spearman correlation of LD block-average SNP -log;o(p-values) (Methods). a, Spearman
correlations between GWAS of indicated facial quadrants and brain segments. b, Spearman
correlations between GWAS of selected neuropsychiatric disorders, behavioral-cognitive traits,
or subcortical volume measures and brain segments. All brain segmentsin a,b are from

hierarchical level v segmentation, with the exception of Hippocampus, where hierarchical level
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Vi segmentation shows a strong correlation of shape of the hippocampal region with volume. c,
Spearman correlations between shape effects on the full brain (left) or face (right) with the
indicated traits. * 5% FDR based on bootstrapped p-value (Methods). Images of brain-trait
correlations at all six hierarchical levels can be found online (see Data Availahility).
Abbreviations: ADHD, Attention Deficity Hyperactivity Disorder ;GEN, generalized epilepsy;

JME, juvenile myoclonic epilepsy; ICV, intracranial volume.
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Fig. 4: Partitioned heritability enrichments based on cell-type-specific regulatory
annotations. Heritability enrichment Z-scores, as estimated by S-LDSC, of a) multivariate shape
for thefirst 7 face segments, b) multivariate shape for the first 7 brain segments, excluding

segment 4 which had low heritability, c) neuropsychiatric disorders, d) behavioral cognitive
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traits, and e) subcortical volume measures. Heritability enrichments were estimated for
annotations based on open chromatin (based on ATAC-seq), regulatory regions (based on ChiP-
seq of multiple histone modifications), or acombination of the two. Annotations for the indicated
samples, representing in-vitro-derived cell-types, primary tissues, or a combination of both (see
M ethods for source papers), were added to the S-LDSC basdline model, and the resulting Z-score
was scaled by column to visualize rel ative enrichments between traits. * 5% FDR based on

unscaled Z-scores. Trait abbreviations asin Figure 3, with AN representing anorexia nervosa.
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Extended Data Fig. 1 Miami plot of brain shapein left (top) and right (bottom)
hemispheresin the UK Biobank. Global-to-local segmentation and CCA-based GWAS was
performed independently within each hemisphere. For each SNP, the aggregated p-values across

al left (n=241) or right (n=201) hemisphere segments are plotted.
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Extended Data Fig. 2 Overlap of global-to-local segmentation of brain shape with

commonly used brain atlases.
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Extended Data Fig. 3 Number of independent genome-wide significant associations
discovered by hierarchical segments. Among segments of each hierarchical level (indicated by
lower-case Roman numerals and corresponding to concentric circlesin the polar dendrogram),

the number of independent genome-wide significant associations is shown.
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Extended Data Fig. 4 Point-wise SNP heritability estimates across the mid-cortical surface.
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Study # loci tested #lead SNP P < # proxy SNP P < % overlap
5x10-8 5x10-8

Subcortical 65 15 18 27.6

combined®

Grasby et al™ 301 195 236 78.4

Zhao et al® 494 212 273 55

Extended Data Table 1. Overlap between previous GWAS of brain surface areasor

subcortical volumeswith brain shape GWAS in thisstudy. ‘ Subcortical combined’ refersto a

combined set of loci from four studies of subcortical volume measures® .
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Extended Data Fig. 5 Overlap between genome-wide significant brain shape loci and
genome-wide significant loci from 430 other studies. GWAS hits (number on x-axis) for other
studies were obtained from the NCBI-EBI GWAS Catalog, and P-values (left, y-axis) and odds
ratios (right, y-axis) for significance of overlap with regionsin LD (> 0.2) with brain shape loci
were computed using bedtools’ fisher function (see Methods). Note that relative to other traits
with equivalent numbers of GWAS hits, face shape shows overlap with brain shape loci greater

in both significance and magnitude than.


https://doi.org/10.1101/2020.08.29.269258
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.269258; this version posted August 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Spearman rho: 0.54

Spearman P< 0.05

e FALSE
4 TRUE

LDSCr, P<0.05
FALSE
e TRUE

Trait-trait Spearman correlation

0.00 0.25 0.50 075
Trait-trait LDSC Irgl

Extended Data Fig. 6 Comparison of LDSC genetic correlations and Spear man correation
between pairsof univariatetraits. Each point represents apair of univariate traits (of all those
considered in this study, see Methods), while the x- and y-axes indicate the absolute value of the
LDSC-estimated genetic correlation and the estimated genome-wide sharing of effects by the
Spearman correlation method. Point colors and shapes indicate significance (P < 0.05) from

LDSC or the Spearman correlation method, respectively.
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Extended Data Fig. 7 Regional associations of genome-wide significant loci for brain shape
stratified by shared effects on facial shape. For the indicated sets of genome-wide significant
brain shape loci, the number of associations with each brain segment (shown at hierarchical
levelsiv-vi) was plotted. The top and bottom 57 face-shared or brain-specific loci were chosen as
57 is the number of brain shape loci which have at least suggestive (P < 5x10™") association with

face shape.
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Extended Data Fig. 8 Genetic correlations between the most heritable brain (top) or face
(bottom) shape PCsand other traits. Genetic correlations (rg) between the top five shape PCs
(for segment 1, the full brain or face) with heritability z-score > 4 and each of the indicated
univariate traits using LD score regression. Error bars represent 95% confidence intervals. *, 5%

FDR for indicated PC; +, 10% FDR.
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Extended Data Fig. 9 SNP heritability of individual face shape PCsand multivariate face
shape estimated by L DSC. Error bars represent 95% confidence intervals. The red line
represents the mean heritability of al 70 PCs, and the blue line indicates the heritability obtained

by applying LDSC to corrected y* statistics from the multivariate CCA GWAS using all 70 PCs.
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Extended Data Fig. 10 Partitioned heritability enrichmentsfor brain shape with respect to

stage- and cell-type-specific brain organoid open chromatin. S-LDSC coefficient Z-scores

and heritability fold-enrichment for annotations corresponding to the indicated cell-type and

differentiation day were computed as described in Methods. Regression lines represent the linear

best fit with intercept and organoid differentiation day as dependent variable, and grey areas

represent 95% confidence intervals.
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Craniofacial cell-types

Dlﬁerence in S-LDSC Z-score

Extended Data Fig. 11 Partitioned heritability enrichmentsin craniofacial cell-typesand
brain organoidsfor brain shape within hierar chical segments. For each segment at the
indicated hierarchical level, scaled S-LDSC Z-scores from all craniofacial (a) or brain organoid
(b) annotations as indicated in Figure 4 were averaged, and the difference in mean Z-score

between the two averages (¢) was also computed.
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Extended Data Fig. 12 Partitioned heritability enrichmentsfor brain shape with respect to
open chromatin in CNCCsor early glial organoid cells, with or without 76 brain-face
shared loci. S-.LDSC Z-scores were calculated using full brain shape as the trait and the most
enriched craniofacial (top) or brain organoid (bottom) ATAC-seq dataset as annotations. Z-
scores were re-estimated (blue) after removing all SNPs in the same approximately independent

LD block as one of the 76 brain-face shared loci (see Methods for details).
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