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Abstract

DNA methylation is an epigenetic mark that is altered in cancer and aging tissues. The effects of
extrinsic factors on DNA methylation remain incompletely understood. Microbial dysbiosis is a
hallmark of colorectal cancer, and infections have been linked to aberrant DNA methylation in
cancers of the Gl tract. To determine the microbiota’s impact on DNA methylation, we studied
the methylomes of colorectal mucosa in germ-free (no microbiota) and specific-pathogen-free
(controlled microbiota) mice, as well as in 11-10 KO mice (11107) which are prone to
inflammation and tumorigenesis in the presence of microbiota. The presence of microbiota was
associated with changes in 5% of the methylome and 1110”7~ mice showed alterations in 4.1% of
the methylome. These changes were slightly more often hypo than hypermethylation and
affected preferentially CpG sites located in gene bodies and intergenic regions. Mice with both
11-10 KO and microbiota showed much more pronounced alterations, affecting 18% of the
methylome. When looking specifically at CpG island methylation alterations, a hallmark of
aging and cancer, 0.4% were changed by the microbiota, 0.4% were changed by 11107, while 4%
were changed by both simultaneously. These effects are comparable to what is typically seen
when comparing colon cancer to normal. We next compared these methylation changes to those
seen in aging, and after exposure to the colon carcinogen Azoxymethane (AOM). Aging was
associated with alterations in 18% of the methylome, and aging changes were accelerated in the
11107 /SPF mice. By contrast, AOM induced profound hypomethylation that was distinct from
the effects of aging or of the microbiota. CpG sites modified by the microbiota were over-
represented among DNA methylation changes in colorectal cancer. Thus, the microbiota affects
the DNA methylome of colorectal mucosa in patterns reminiscent of what is observed in aging
and in colorectal cancer.
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Introduction

DNA methylation is an epigenetic mark with a profound impact on gene regulation and
expression. This mark consists of the addition of a methyl group to a cytosine residue of a CG
dinucleotide(Deaton and Bird, 2011, Issa, 2014). Approximately 80% of CpG sites in the human
genome are methylated(Jelinek et al., 2012). Some CpG sites are located in CpG islands (CGIs);
these islands are 500-2000 bp stretches of DNA heavily enriched for C or G bases. They remain
generally unmethylated and are primarily located around transcription start sites (TSS).
Methylation of TSS CGls leads to gene silencing, but intergenic or gene body methylation can
have varying effects, depending on the gene and the exact site that is methylated(Yang et al., 2014).
Disruption of DNA methylation patterns is associated with aging and disease; this is characterized
by global hypomethylation and aberrant hypermethylation of CGls(Issa, 2014). CGlI
hypermethylation leads to the down-regulation of key genes, including tumor suppressor genes,
which can directly result in tumorigenesis(Baylin and Jones, 2011; Yu et al., 2014). Consequently,
studying the causes of aberrant methylation is essential to our understanding of both aging and
cancer. Cell intrinsic factors such as the density of repetitive elements, baseline gene expression
and binding by PCG proteins can affect the propensity to aberrant DNA methylation in
cancer(Baylin and Jones, 2011; Estécio et al., 2012; Estécio et al., 2010; Estécio and Issa, 2011;
Zhang et al., 2012). Cell extrinsic factors that modulate DNA methylation are less well defined,
but they include aging, diet, and chronic inflammation(Chiba et al., 2012; Issa, 2014; Issa et al.,
2001; Sapienza and Issa, 2016; Wallace et al., 2010).

The human gut microbiome is composed of approximately 10 bacteria, which
practically match the number of human cells in the body(Sender et al., 2016). The gut
microbiome has co-evolved with the host, forming a symbiotic relationship contributing to
energy and nutrient extraction from diets, shaping immune response, maintaining intestinal
mucosal barrier integrity, and performing key xenobiotic metabolism(Holmes et al., 2012;
Hooper et al., 2012; Koppel et al., 2017; Sonnenburg and Béckhed, 2016; Turnbaugh and
Gordon, 2009). The gut microbiome is linked to inflammatory diseases, a major risk factor for
cancer. In addition, the microbiome has been implicated in both aging and inflammation. Germ-
free mice raised and maintained without microbiota have extended lifespans relative to their
normal counterparts(Tazume et al., 1991). The microbiota has the ability to induce
inflammation(Tsilimigras et al., 2017) and, in turn, inflammation has been shown to significantly
alter microbiota composition(Arthur et al., 2012).

Because of the common link to inflammation, there has been an interest in studying
potential microbiota/epigenetic interactions. Microbiota has been shown to induce large-scale,
diet-dependent changes in histone modifications(Krautkramer et al., 2016). A study of 8
pregnant women examined the microbial composition and DNA methylation in the gut, finding
that CGI methylation profiles differed based on microbial composition(Kumar et al., 2014).
Additionally, infections have been linked to DNA methylation changes in cancer: Infection with
H. pylori led to methylation of CGI promoters including TSGs in gastric cancer(Maekita et al.,
2006). Also in gastric cancer, a hypermethylation phenotype termed CpG Island Methylator
Phenotype (CIMP) has been linked to Epstein-Barr virus (EBV) presence(Chang et al., 2006). It
was also shown that a specific family of bacteria, Fusobacteria, is markedly enriched in
colorectal cancers (CRCs) with CIMP, but much less so in cancers without CIMP(Tahara et al.,
2014b). Based on these data, we hypothesized that the microbiota could induce changes in DNA
methylation. To test this hypothesis directly, we compared DNA methylomes in the intestines of
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germ-free (GF) mice and mice inoculated with microbiota that was specific-pathogen-free (SPF).
We also studied interactions between the presence of microbiota and the methylomes of 11-10
KO mice (prone to inflammation and tumorigenesis), aging mice, and mice exposed to the
carcinogen Azoxymethane (AOM).
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Methods

Mouse tissues for microbiota, 11107-and AOM studies were obtained from previously
described experiments testing the effects of microbiota on colonic tumors(Arthur et al., 2012).
Germ-free (GF) 11107 and WT mice (129SvEv) were raised in sterile conditions and kept free of
microbiota. Specific-pathogen-free (SPF) mice were kept in controlled conditions and free of
pathogenic microbes. Mouse tissues for aging studies were obtained from 6 mice kept in sterile
conditions on regular diets and sacrificed at 4 and 30-33 months of age. We studied a total of 48
mice overall (Table 1).

Table 1: Type and number of mice studied for DNA methylation

Mouse Model Number of Mice | Comment

WT/GF 6 Germ-free (GF) mice — no microbiota

WT/SPF 6 Mice with a Specific-Pathogen-Free (SPF)
microbiota

11107/GF 6 11207 are predisposed to spontaneous
inflammation but only in the presence of

11207-/SPF 6 microbiota

WT/SPF + AOM 6 Azoxymethane (AOM) is a colon
carcinogen

11107/GF + AOM 6 Predisposed to spontaneous inflammation
and tumorigenesis but only in the

11207-/SPF + AOM 6 presence of microbiota

C57/B6 WT 6 Ages 4, 4, 4, 30, 33 and 33 months

We performed Digital Restriction Enzyme Analysis of Methylation (DREAM) on DNA
extracted from mouse proximal colon tissues, as described®. DREAM is a quantitative, deep-
sequencing based method of measuring DNA methylation at CpG sites within the CCCGGG
sequence. DNA is sequentially treated with two restriction enzymes: Smal and Xmal, which act
on the same DNA sequence, but leave different 5° ends of fragments. Smal is blocked by CpG
methylation, but Xmal is not. By treating DNA first with Smal, then Xmal, we created distinct
signatures for unmethylated and methylated CpG sites at the edges of restriction fragments®.
Next, we ligated Illumina sequencing adapters to the ends of the restriction fragments and
sequenced the resulting libraries on lllumina HiSeq 2500 instrument at Fox Chase Cancer Center
Genomics facility. We aligned the sequencing reads to the mouse genome (mm9) using Bowtie2,
and counted signatures corresponding to unmethylated and methylated CpGs. We calculated
methylation levels as the ratio of reads with the methylated signature to all reads mapping to
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each respective site. We adjusted DNA methylation values at individual CpG sites based on
spiked in standards and filtered for the minimum sequencing depth of 100 reads.

The datasets generated during this study are available at GEO (accession number:
GSE150333, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150333).

Statistical analyses were performed, and figures were generated using R(R Core Team,
2019) (retrieved from https://www.R-project.org/). Volcano plots were generated by plotting the
average difference in methylation for a given CpG site against the negative log10 of the p-value.
Average methylation change was calculated by subtracting average methylation in one condition
from another, and an unpaired t-test was used to calculate a p-value. Bar plots were generated by
taking the number of sites meeting a condition dividing by the number of sites examined. For
each CpG site, we generated a multivariate linear regression for the relationship between
methylation and microbiota, 11-10 deficiency, and AOM treatment. The linear equation is defined
by y = bmXm + DiXi + baXa + bo + €, where y is methylation, x is the respective condition (m =
microbiota, i = inflammation, or a = azoxymethane respectively), and b is the respective
regression coefficient. UpSet plots were generated using the ggupset package(Ahlmann-Eltze,
2020), while all other plots were generated using the ggplot2 package. All reported p-values are
two-sided, and p<0.05 was used as a threshold of significance.
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Results

The microbiota modulates DNA methylation

We used DREAM to examine how the presence of microbiota affects DNA methylation.
To do this, DREAM data for wild-type (WT) germ-free (GF) and wild-type specific-pathogen-
free (SPF) mice were analyzed and a volcano plot depicting the methylation differences between
them was generated (Figure 1a). For most experiments, each group of mice consisted of 6
animals (Table 1). DREAM detected the methylation status of 24,865 sites on average at a
minimum of 10 reads/site. We considered sites to be “changed” if there was a statistically
significant increase or decrease in average methylation of 5% or more. To ensure precision, we
only analyzed CpG sites that had greater than 100 reads in at least 75% of the mice in each
group. Overall, of 12,919 detectable sites, 3.7% decreased, and 1.3% of sites increased in
methylation. Thus, 5% of CpG sites analyzed showed differences triggered by the presence of
microbiota.

Sites that are greater than 80% or less than 20% methylated at baseline tend to be more
stable than intermediately methylated sites(Jelinek et al., 2012). Therefore, we examined how the
microbiota affect different CpG compartments. VVolcano plots were generated that looked only at
sites with greater than 80% average methylation, sites with less than 20% methylation and sites
with between 20 and 80 percent methylation in GF mice (Figure S1). Overall, 0.3% of
unmethylated sites were affected by microbiota, compared to 1.1% of highly methylated sites, and
3.8% of intermediately methylated sites. Figure 1d shows the distribution of sites that were
changed at least 5% between GF and SPF mice, stratified by baseline methylation. CGI and CGI
shore sites appear to be largely stable. The most vulnerable sites seem to be gene body or intergenic
areas with baseline methylation of between 20% and 80%. Thus, the presence of microbiota
significantly affects DNA methylation in colonic mucosa with slightly more pronounced
hypomethylation than hypermethylation.

Deletion of 1110 affects DNA methylation

Interleukin 10 (1110) is an anti-inflammatory cytokine and mice lacking this gene develop
spontaneous intestinal inflammation in the presence of microbiota(Sellon et al., 1998). To
determine the effects of 1110 on intestinal DNA methylation independent of microbiota, DREAM
data from GF/WT and GF/II107 mice were analyzed; Figure 1b shows the volcano plot. Of all
detectable sites, 2.4% decreased and 1.7% increased in methylation. Figure le shows the
distribution of affected sites located in CGls, CGI shores or other sites; Like Figure 1d, Figure 1e
shows that relatively few CGl/shore sites were subject to change, and most of the changes that did
occur were at variable sites with 20% to 80% methylation (also see Figure S1). GF/11107 mice
have little detectable inflammation; thus, the DNA methylation changes seen in these animals may
be direct effects of 1110 deficiency or may be related to low grade/patchy inflammation that is not
detectable using the usual assays.

[110 deficiency combined with microbiota results in inflammation and markedly
accelerates colon tumorigenesis in mice(Uronis et al., 2009). By comparing DREAM data from
GF/WT to SPF/II107- mice, we were able to observe the effects of both conditions occurring
simultaneously. In a differential methylation analysis (Figure 1e), we found that 8.1% of sites
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increased and 9.9% of sites decreased in average methylation. In addition to more sites changing
average methylation, the combined effects of inflammation susceptibility and microbiota appear
to cause a specific increase in methylation at CGls and CGI shores. Figure 1f shows that 2% of all
sites were CGI/CGI shore sites that increased in average methylation between WT/GF and
SPF/1110"- mice. This contrasted with the individual effects of IL10 deficiency or microbiota,
which had little impact on CGls or CGI shores. Figure 1g gives a broad overview of the effects of
microbiota and 11107 on DNA methylation individually and together. Both microbiota and
inflammation changed methylation at approximately 4-5% of sites. When combined,
approximately 18% of sites experienced average methylation changes, with more sites decreasing
in average methylation than increasing. When we examined CGls exclusively (Figure 1h), 0.4%
were changed by SPF, 0.5% were changed by 11107 while 3.5% were changed by both
simultaneously. These dramatic differences in DNA methylation are comparable to what can be
seen when comparing cancer to normal(Maegawa et al., 2010).

Differential effects of azoxymethane and 11107-on DNA methylation

Azoxymethane (AOM) is an agent commonly used to induce tumorigenesis in mouse
models of colorectal cancer. We sought to determine if AOM and 11107 differed in their effects on
DNA methylation profiles. We examined the effects of AOM alone, 11107 alone, and both in
combination in the presence of microbiota (i.e. in SPF mice). A differential methylation analysis
showed that AOM had a pronounced hypomethylating effect (Figure 2a). Approximately 8.1% of
sites decreased in average methylation as a result of AOM, as opposed to only 1.2% of sites
increasing in average methylation. It is interesting to note that in both sites with 80% or more
average methylation and 20% or less average methylation, AOM caused overall decreases in
average methylation (Figure 2b). In addition, AOM did not seem to target CGI or CGI shore sites
and was most likely to cause a decrease in methylation of sites with medium levels of baseline
methylation (20%<Me<80%, Figure 2b). By contrast, 11107 in SPF mice led to 5.7% of sites
increasing in methylation and 6.2% of sites decreasing in methylation (Figure 2C). About 2% of
sites were located in CGls or CGI shores that increased in methylation (Figure 2D). Thus, AOM
and 1L107 both induced hypomethylation but, in the presence of microbiota, only 11107 induced
substantial CGI hypermethylation, pointing to potentially different mechanisms for their effects
on DNA methylation.

Shared and unique DNA methylation changes

With multiple simultaneous treatments, it is not possible to determine in a simple
differential methylation test whether the methylation is affected by a single treatment or a
combination of treatments. To elucidate and compare the individual effects of an SPF microbiota,
1110 deficiency, and AOM treatment on DNA methylation, we built an additive linear regression
model that incorporates data from all 42 mice studied. Using an FDR of 0.05, we found that the
linear model recapitulated the trends seen in the individual comparisons. Using this model (Figure
3a), we determined that microbiota (SPF) induced changes in 13.5% of sites (6.9% hyper and 6.5%
hypomethylated), and 1110 deficiency induced changes in 10.5% of sites (9% hyper and 1.5%
hypomethylated), while AOM induced changes in 5.9% of sites (1% hyper and 4.9%
hypomethylated). AOM continued to show a pronounced hypomethylating effect, while 11107
continued to show a strong hypermethylating effect. Microbiota show equal hypomethylating and
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hypermethylating effects. We used UpSet plots to determine the overlap in effects of the different
exposures on CpG methylation, examined separately for hypomethylation (Fig. 3b) and
hypermethylation (Fig. 3c). Microbiota and 1110”7~ have the most shared events, particularly when
it came to hypermethylation. Thus, of 865 sites hypermethylated by the microbiota, 671 (78%)
were also affected by 11107 There was less conservation when it came to hypomethylation (22%
of sites affected by the microbiota were also affected by 11107). AOM had mostly unique effects.
These data suggest that the microbiota and 11107 have shared methylome interaction mechanisms,
while AOM has an independent mechanism of action.

The microbiota and inflammation accelerate age-related methylation drift

Methylation drift characterized by a global loss of DNA methylation with simultaneous
hypermethylation in CGI promoters occurs as a result of aging(Maegawa et al., 2014; Maegawa et
al., 2017). To compare this to microbiota effects, we first generated DREAM data for old (aged 30
months) and young (aged 4-5 months) mouse colon (Figure 4a). Looking at aging in C57/BI16 wild
type mice, we found that of ~20,000 detectable sites, 6.6% decreased in methylation, and 11.5%
increased in methylation. Hypermethylated CGlIs accounted for 7% of the changes. We analyzed
the overlap between sites that changed in methylation due to aging and sites that changed due to
microbiota, 1110 deficiency or AOM. Aging had the largest effect individually but there were many
shared hypomethylation (Figure 4b) and hypermethylation (Figure 4c) events between aging and
the extrinsic exposures. For example, out of 472 sites hypomethylated upon the microbiota
exposure, 139 (29%) were also affected by age; of the 272 sites affected by 11107, 31% were also
affected by age; of the 1121 sites hypomethylated in inflamed mice (SPF-11107"), 31% were
hypomethylated in aging mice. Similarly, out of 166 sites hypermethylated upon the microbiota
exposure, 18% were also affected by age; of the 199 sites affected by 11107, 33% were also affected
by age; of the 926 sites hypomethylated in inflamed mice (SPF-11107), 35% were also
hypermethylated in aging mice. This corroborates previous data demonstrating partial overlap
between inflammation-related and age-related methylation(Hahn et al., 2008), and implicates the
microbiota in this process.

One drawback to this analysis is the use of a threshold of 5% change in average methylation
to consider a site affected by inflammation, microbiota, or aging; this threshold could lead to
underestimation of conservation because of sites that may change at a lower magnitude in one
condition. To address this, we focused on the large number of sites that change with age and
generated scatterplots comparing a site’s average change with age to change caused by exposures.
Interestingly, the correlation coefficients were positive and statistically significant for all
exposures with the strongest correlations for inflammation (SPF-11107, r=0.46, p<0.0001)
followed by microbiota (r=0.39, p<0.0001), AOM exposure (r=.36, p<0.0001) and IL10 deficiency
(r=0.09, p<0.0001). Taken together, these data indicate that the vast majority of sites that change
with aging were affected by microbiota/inflammation combination. There were also sites that were
affected by exposures but not by aging (Figure S4), most evident in mice with inflammation
triggered by the combined effects of SPF and 1L10™".

CpG sites affected by the microbiota are hypermethylated in colon cancer
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To determine the impact of microbiota, inflammation, and/or aging on methylation in colon
cancer, we analyzed data from The Cancer Genome Atlas (TCGA). To correspond mouse to human
data, we focused on promoters (defined as -1500 to 500 of transcription start site), and we used
data on the CpG site closest to the transcription start site. Converging DREAM data with TCGA
data, we were able to analyze 2,042 genes in total. Figure 5a shows scatter plots of methylation
changes in colon cancer patients included in the TCGA data set (§ value of methylation difference
between tumor and normal) plotted on the y-axis, and methylation changes in our datasets (based
on the volcano plot for aging and on the linear model for individual exposures) plotted on the x-
axis. The plots demonstrate a strong concordance between methylation changes in TCGA and each
of aging, microbiota exposure, and IL10 deficiency. We calculated odds ratios to quantitate this
concordance, at a threshold of 5% change in TCGA and in the extrinsic exposures. For
hypermethylation, the odds ratios for enrichment were 15.5 (95% CI 10.6-22.9; q = 3.0x10°*) for
age, 0 (95% CI 0-0; q = 1) for azoxymethane, 2.3 (95% CI 1.1-4.5; q = 0.039) for IL107", and 4.1
(95% C1 1.8-9.0; q = 9.4x10™*) for microbiota. For hypomethylation, odds ratios were 2.0 (95% CI
0.04-13.9; g = 0.47) for age, 9.4 (95% CI 1.6-38.9; g = 0.015) for azoxymethane, 9.2 (95% CI 0.2-
116.2; q = 0.18) for 1L107 and 11.5 (95% CI 2.6-41.1; q = 0.003) for microbiota. Thus, as
previously reported, aging has a major impact on whether a gene becomes hypermethylated in
cancer, but we also find that genes affected by microbiota and by 1110 deficiency are also
overrepresented among genes hypermethylated in CRC.
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Discussion

We show here that the presence of microbiota causes changes in DNA methylation that
affect 5% of the methylome, a high number when one considers the fact that DNA methylation is
very carefully controlled with relatively low levels of inter-individual variability(Jelinek et al.,
2012). These effects are compounded by the presence of inflammation — mice with both 11-10
deficiency and exposure to the microbiota showed alterations in 18% of the methylome, and the
differences were particularly striking at CpG islands, regions that are normally very stable and
highly protected from DNA methylation(Bird, 2002). This strikingly high number is quantitatively
similar to what can be seen when comparing mice at the extremes of their lifespan(Maegawa et
al., 2010), and the pattern of change is very similar to what can be seen in colon cancers (CGI
hypermethylation, intergenic hypomethylation). Indeed, CpG sites affected by the microbiota are
overrepresented among genes hypermethylated in colon cancer, suggesting that microbiota could
have an important influence on shaping cancer epigenomes, as previously suggested(Tahara et al.,
2014b). Interestingly, while the presence of microbiota accelerates age-related methylation drift,
there are also epigenetic changes specific to the different extrinsic factors studied (microbiota,
inflammation, AOM) suggesting distinct mechanisms rather than non-specific effects of cycles of
injury and stem cell proliferation. It is also worth noting that the effects we observe are related to
pathogen-free microbiota. It would be interesting to determine whether more profound changes
are seen when pathogenic bacteria are introduced into the mix.

Our results are consistent with recent studies but extend the findings substantially. Three
studies reported that microbiota affects the physiology and DNA methylation patterns in
developing intestinal epithelium(Ansari et al., 2020; Pan et al., 2018; Yu et al., 2015).
Interestingly, the effects seen were primarily outside promoters (e.g. 3 end of genes and inter-
genic areas) while our results highlight the profound effect of microbiota and inflammation on
promoter CpG islands — the compartment most uniquely affected in aging and cancer(lssa, 2014).
Ansari also studied the effects of inflammation induced by Dextran Sodium Sulfate on DNA
methylation, and found primarily hypomethylation(Ansari et al., 2020), in marked contrast to what
we observed with inflammation induced by the combination of 11-10 deficiency and the presence
of microbiota. Dextran Sodium Sulfate’s effects are reminiscent of what we observed with
exposure to azoxymethane and raise the possibility that the effects seen are related to the
chemical’s effect more directly than to inflammation. Finally, Sobhani et al. introduced into germ-
free mice human fecal microbiota from patients with colon cancer or controls and also observed
alterations in DNA methylation(Sobhani et al., 2019), and some of the genes affected (such as
SFRP1) are known to show age-related methylation in human colon(Shen et al., 2007). In our
study, we show that even a pathogen-free microbiota affects DNA methylation at relatively high
levels. Our data uniquely highlight the effects of microbiota and inflammation on aberrant CpG
island DNA methylation and link it directly to the acceleration of aging effects on DNA
methylation. The data also suggest that microbiota/inflammation effects are potential precursors
to the aberrant DNA methylation seen in colorectal cancers.

The mechanism by which microbiota affects DNA methylation remains to be elucidated.
One possibility is via the production of metabolites which act as cofactors or inhibitors for
epigenetic enzymes. For example, the microbial metabolites acetate, propionate, and butyrate are
capable of inducing mass reprogramming of histone methylation and acetylation
states(Krautkramer et al., 2016). Bacterial species producing these short-chain fatty acid
metabolites are known to be decreased in cancer and inflammation. DNA methyltransferases
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(DNMTSs) have been shown to interact with modifications on histone tails(Baubec and Schibeler,
2014), and as histone states change, DNA methylation patterns may as well. Additionally, the gut
bacteria may cause alterations in host gene expression that affect the ability of host cells to uptake
certain metabolites; for example, it has been demonstrated that E. coli is capable of downregulating
a protein responsible for butyrate uptake(Kumar et al., 2015). Aberrant DNA methylation may
also be directly initiated by the overproduction of oncogenic metabolites (oncometabolites). Loss
of function mutations in citric acid cycle enzymes fumarate hydratase (FH) and succinate
dehydrogenase (SDH) result in the accumulation of fumarate and succinate respectively(Yang et
al., 2013). A neomorphic mutation in isocitrate dehydrogenase (IDH) causes the enzyme to
produce 2-hydroxyglutarate (2HG) instead of a-ketoglutarate(Ward et al., 2010). Each of these
mutations is found in certain types of CIMP positive cancer(Figueroa et al., 2010), though they are
very rarely observed in colorectal cancer(Tahara et al., 2014a). 2HG binds to and inhibits o-
ketoglutarate dependent TET and methyltransferase enzymes, causing DNA hypermethylation and
tumorigenesis(Figueroa et al., 2010). Succinate and fumarate have been shown to inhibit these
enzymes in-vitro and there is overlap between the methylated genes associated with each
metabolite anomaly, implying all three may act via this same mechanism(Yang et al., 2013). Thus,
it is plausible that bacteria cause aberrant methylation in part via over-production of metabolites
that modulate the function of the TET DNA demethylases.

Previous studies also showed that inflammation alters the DNA methylome(lssa, 2014;
Niwa et al., 2010), though the precise mechanisms by which this occurs is unknown. It has been
proposed that inflammation increases cell turnover rate, and inflammation-induced methylation
may simply be a reflection of an increased rate of age-related methylation(Sapienza and Issa,
2016). The overlap we observed between inflammation and aging-associated changes are
consistent with this. However, we found that microbiota and inflammation also induced
methylation changes that were not observed in aging. It has been suggested that direct interactions
with inflammatory cytokines alter a cell’s methylation profile(Gasche et al., 2011). It is also
possible that the inflamed gut exerts different selective pressures on host intestinal epithelial cells
than the non-inflamed gut, selecting for cells with unique DNA methylation profiles. It may
eventually be possible to tease out inflammation-independent effects of extrinsic factors on DNA
methylation.

In conclusion, we find that microbiota has a profound effect on DNA methylation in the
gut and helps shape the aberrant methylomes seen in aging and cancer. The fact that extrinsic
factors (bacteria, inflammation, carcinogens) modulate the epigenome suggests potential ways to
intervene therapeutically for cancer prevention.

12


https://doi.org/10.1101/2020.08.28.268367
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.268367; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgments:
This work was supported by National Institutes of Health grants R0O1-CA214005.

Author Contributions:

Conceptualization, A.S. and J.J.1.; Methodology, A.S. and J.J.I.; Formal Analysis, A.S., L.C.,
S.M,, P.H.P,K.K., J.M., and J.J.; Investigation, A.S.; Resources, C.J.; Data Curation, A.S., S.M.,
and J.J; Writing — Original Draft, A.S., L.C., and J.J.I.; Writing — Review & Editing, A.S., C.J.,
and J.J.1.; Visualization, A.S., L.C., and J.J.1.; Supervision, J.J.I.; Project Administration, A.S.
and J.J.I; Funding Acquisition, J.J.I.

Conflicts of Interest
The authors have no conflicts of interest to declare.

13


https://doi.org/10.1101/2020.08.28.268367
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.268367; this version posted August 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure Legends

Figure 1: microbiota influences DNA methylation. A-C) Volcano plot analysis showing
methylation differences between SPF and GF mice (A), 11107 and GF mice (B), and SPF-1110"
and GF mice (C). The x-axis shows the difference in average methylation between SPF and GF
mice for a given site. The y-axis is the negative log(10) of the p-value, which was determined with
a Student’s t-test. All sites above the dotted line are significant at p<0.05. Green sites change at a
magnitude of 5% or greater. D-F) Bar graphs showing the proportion and type of CpG sites that
change at least 5% between SPF and GF mice (D), 11107 and GF mice (E), and SPF-1110"- and GF
mice (F). Shore indicates sites that are not in CGls, but within 2000 bp of them. (G) Bar graph
showing the proportion of CpG sites that show DNA methylation alterations in the volcano plots
in A-C. (H) Bar graph showing the proportion of CpG sites within CpG islands that show DNA
methylation alterations in the volcano plots in A-C.

Figure 2: AOM is a potent hypomethylating carcinogen. (A) Volcano plot analysis showing
methylation differences between SPF and SPF+AOM mice. See Figure 1 for graph details. (B) Bar
graph showing the proportion and type of CpG sites that change at least 5% in (A). (C) Volcano
plot analysis showing methylation differences between SPF and SPF-1110"- mice. See Figure 1 for
graph details. (D) Bar graph showing the proportion and type of CpG sites that change at least 5%
in (C).

Figure 3: Linear regression model of the effects of microbiota, 11107and AOM on DNA
methylation. (A) Shows Volcano plots of FDR (0.05) corrected significant methylation changes
attributed to each external exposure. The x-axis indicates the linear model slope for individual
CpG sites (equivalent to % change in methylation) while the y-axis is the negative log(10) of the
g-value. (B) Shows Upset plots of shared/unique hypomethylation events while (C) shows UpSet
plots of shared/unique hypermethylation events. The number of shared or uniquely altered CpG
sites is indicated on top of each vertical bar.

Figure 4: microbiota and inflammation modify the same CpG sites subject to age-related
methylation drift. (A) Volcano plot analysis showing methylation differences between young and
old mice. See Figure 1A for graph details. (B) UpSet plots of shared/unique hypomethylation
events between sites that decrease at least 5% during aging and in the different exposures analyzed
in Figures 1-3. “Inflammation” refers to 11107/SPF mice. (C) Same analysis as in B for sites that
increase methylation at least 5%. (D) Scatterplot of average methylation change with age (x-axis)
to average change by exposures (y-axis) for all sites that change at least 5% with age. Pearson r,
p-value, and slope are indicated in each plot.

Figure 5: Genes affected by extrinsic exposures are more likely to be altered in cancer. (A) Scatter
plot of DNA methylation change by aging or exposure (x-axis) compared to DNA methylation
change in colon cancer TCGA samples. (B) Odds ratios compute enrichment of genes altered by
aging or different extrinsic exposures among genes altered in colon cancer (TCGA data). The odds
ratios are computed separately for gene promoters hypomethylated (left) or hypermethylated
(right) by exposures and in colon cancer.
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