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Abstract 

DNA methylation is an epigenetic mark that is altered in cancer and aging tissues. The effects of 

extrinsic factors on DNA methylation remain incompletely understood. Microbial dysbiosis is a 

hallmark of colorectal cancer, and infections have been linked to aberrant DNA methylation in 

cancers of the GI tract. To determine the microbiota’s impact on DNA methylation, we studied 

the methylomes of colorectal mucosa in germ-free (no microbiota) and specific-pathogen-free 

(controlled microbiota) mice, as well as in Il-10 KO mice (Il10-/-) which are prone to 

inflammation and tumorigenesis in the presence of microbiota. The presence of microbiota was 

associated with changes in 5% of the methylome and Il10-/- mice showed alterations in 4.1% of 

the methylome. These changes were slightly more often hypo than hypermethylation and 

affected preferentially CpG sites located in gene bodies and intergenic regions. Mice with both 

Il-10 KO and microbiota showed much more pronounced alterations, affecting 18% of the 

methylome. When looking specifically at CpG island methylation alterations, a hallmark of 

aging and cancer, 0.4% were changed by the microbiota, 0.4% were changed by Il10-/-, while 4% 

were changed by both simultaneously. These effects are comparable to what is typically seen 

when comparing colon cancer to normal. We next compared these methylation changes to those 

seen in aging, and after exposure to the colon carcinogen Azoxymethane (AOM). Aging was 

associated with alterations in 18% of the methylome, and aging changes were accelerated in the 

Il10-/- /SPF mice. By contrast, AOM induced profound hypomethylation that was distinct from 

the effects of aging or of the microbiota. CpG sites modified by the microbiota were over-

represented among DNA methylation changes in colorectal cancer. Thus, the microbiota affects 

the DNA methylome of colorectal mucosa in patterns reminiscent of what is observed in aging 

and in colorectal cancer. 
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Introduction 

DNA methylation is an epigenetic mark with a profound impact on gene regulation and 

expression. This mark consists of the addition of a methyl group to a cytosine residue of a CG 

dinucleotide(Deaton and Bird, 2011; Issa, 2014). Approximately 80% of CpG sites in the human 

genome are methylated(Jelinek et al., 2012). Some CpG sites are located in CpG islands (CGIs); 

these islands are 500-2000 bp stretches of DNA heavily enriched for C or G bases. They remain 

generally unmethylated and are primarily located around transcription start sites (TSS). 

Methylation of TSS CGIs leads to gene silencing, but intergenic or gene body methylation can 

have varying effects, depending on the gene and the exact site that is methylated(Yang et al., 2014). 

Disruption of DNA methylation patterns is associated with aging and disease; this is characterized 

by global hypomethylation and aberrant hypermethylation of CGIs(Issa, 2014). CGI 

hypermethylation leads to the down-regulation of key genes, including tumor suppressor genes, 

which can directly result in tumorigenesis(Baylin and Jones, 2011; Yu et al., 2014). Consequently, 

studying the causes of aberrant methylation is essential to our understanding of both aging and 

cancer. Cell intrinsic factors such as the density of repetitive elements, baseline gene expression 

and binding by PCG proteins can affect the propensity to aberrant DNA methylation in 

cancer(Baylin and Jones, 2011; Estécio et al., 2012; Estécio et al., 2010; Estécio and Issa, 2011; 

Zhang et al., 2012). Cell extrinsic factors that modulate DNA methylation are less well defined, 

but they include aging, diet, and chronic inflammation(Chiba et al., 2012; Issa, 2014; Issa et al., 

2001; Sapienza and Issa, 2016; Wallace et al., 2010). 

 The human gut microbiome is composed of approximately 1013 bacteria, which 

practically match the number of human cells in the body(Sender et al., 2016). The gut 

microbiome has co-evolved with the host, forming a symbiotic relationship contributing to 

energy and nutrient extraction from diets, shaping immune response, maintaining intestinal 

mucosal barrier integrity, and performing key xenobiotic metabolism(Holmes et al., 2012; 

Hooper et al., 2012; Koppel et al., 2017; Sonnenburg and Bäckhed, 2016; Turnbaugh and 

Gordon, 2009). The gut microbiome is linked to inflammatory diseases, a major risk factor for 

cancer. In addition, the microbiome has been implicated in both aging and inflammation. Germ-

free mice raised and maintained without microbiota have extended lifespans relative to their 

normal counterparts(Tazume et al., 1991). The microbiota has the ability to induce 

inflammation(Tsilimigras et al., 2017) and, in turn, inflammation has been shown to significantly 

alter microbiota composition(Arthur et al., 2012).  

Because of the common link to inflammation, there has been an interest in studying 

potential microbiota/epigenetic interactions. Microbiota has been shown to induce large-scale, 

diet-dependent changes in histone modifications(Krautkramer et al., 2016). A study of 8 

pregnant women examined the microbial composition and DNA methylation in the gut, finding 

that CGI methylation profiles differed based on microbial composition(Kumar et al., 2014). 

Additionally, infections have been linked to DNA methylation changes in cancer: Infection with 

H. pylori led to methylation of CGI promoters including TSGs in gastric cancer(Maekita et al., 

2006). Also in gastric cancer, a hypermethylation phenotype termed CpG Island Methylator 

Phenotype (CIMP) has been linked to Epstein-Barr virus (EBV) presence(Chang et al., 2006). It 

was also shown that a specific family of bacteria, Fusobacteria, is markedly enriched in 

colorectal cancers (CRCs) with CIMP, but much less so in cancers without CIMP(Tahara et al., 

2014b). Based on these data, we hypothesized that the microbiota could induce changes in DNA 

methylation. To test this hypothesis directly, we compared DNA methylomes in the intestines of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2020. ; https://doi.org/10.1101/2020.08.28.268367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.268367
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

germ-free (GF) mice and mice inoculated with microbiota that was specific-pathogen-free (SPF). 

We also studied interactions between the presence of microbiota and the methylomes of Il-10 

KO mice (prone to inflammation and tumorigenesis), aging mice, and mice exposed to the 

carcinogen Azoxymethane (AOM).  
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Methods 

Mouse tissues for microbiota, Il10-/- and AOM studies were obtained from previously 

described experiments testing the effects of microbiota on colonic tumors(Arthur et al., 2012). 

Germ-free (GF) Il10-/- and WT mice (129SvEv) were raised in sterile conditions and kept free of 

microbiota. Specific-pathogen-free (SPF) mice were kept in controlled conditions and free of 

pathogenic microbes. Mouse tissues for aging studies were obtained from 6 mice kept in sterile 

conditions on regular diets and sacrificed at 4 and 30-33 months of age. We studied a total of 48 

mice overall (Table 1). 

 

Table 1: Type and number of mice studied for DNA methylation 

Mouse Model Number of Mice Comment 

WT/GF 6 Germ-free (GF) mice – no microbiota 

WT/SPF 6 Mice with a Specific-Pathogen-Free (SPF) 

microbiota 

Il10-/-/GF 6 Il10-/- are predisposed to spontaneous 

inflammation but only in the presence of 

microbiota  Il10-/-/SPF 6 

WT/SPF + AOM 6 Azoxymethane (AOM) is a colon 

carcinogen 

Il10-/-/GF + AOM 6 Predisposed to spontaneous inflammation 

and tumorigenesis but only in the 

presence of microbiota Il10-/-/SPF + AOM 6 

C57/B6 WT 6 Ages 4, 4, 4, 30, 33 and 33 months 

 

We performed Digital Restriction Enzyme Analysis of Methylation (DREAM) on DNA 

extracted from mouse proximal colon tissues, as described3. DREAM is a quantitative, deep-

sequencing based method of measuring DNA methylation at CpG sites within the CCCGGG 

sequence. DNA is sequentially treated with two restriction enzymes: SmaI and XmaI, which act 

on the same DNA sequence, but leave different 5’ ends of fragments. SmaI is blocked by CpG 

methylation, but XmaI is not. By treating DNA first with SmaI, then XmaI, we created distinct 

signatures for unmethylated and methylated CpG sites at the edges of restriction fragments3. 

Next, we ligated Illumina sequencing adapters to the ends of the restriction fragments and 

sequenced the resulting libraries on Illumina HiSeq 2500 instrument at Fox Chase Cancer Center 

Genomics facility. We aligned the sequencing reads to the mouse genome (mm9) using Bowtie2, 

and counted signatures corresponding to unmethylated and methylated CpGs. We calculated 

methylation levels as the ratio of reads with the methylated signature to all reads mapping to 
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each respective site. We adjusted DNA methylation values at individual CpG sites based on 

spiked in standards and filtered for the minimum sequencing depth of 100 reads. 

 
The datasets generated during this study are available at GEO (accession number: 

GSE150333, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150333).  

 
 Statistical analyses were performed, and figures were generated using R(R Core Team, 

2019) (retrieved from https://www.R-project.org/). Volcano plots were generated by plotting the 

average difference in methylation for a given CpG site against the negative log10 of the p-value. 

Average methylation change was calculated by subtracting average methylation in one condition 

from another, and an unpaired t-test was used to calculate a p-value. Bar plots were generated by 

taking the number of sites meeting a condition dividing by the number of sites examined.  For 

each CpG site, we generated a multivariate linear regression for the relationship between 

methylation and microbiota, Il-10 deficiency, and AOM treatment. The linear equation is defined 

by y = bmxm + bixi + baxa + b0 + ε, where y is methylation, x is the respective condition (m = 

microbiota, i = inflammation, or a = azoxymethane respectively), and b is the respective 

regression coefficient.  UpSet plots were generated using the ggupset package(Ahlmann-Eltze, 

2020), while all other plots were generated using the ggplot2 package. All reported p-values are 

two-sided, and p≤0.05 was used as a threshold of significance.  
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Results 

 

The microbiota modulates DNA methylation 

We used DREAM to examine how the presence of microbiota affects DNA methylation. 

To do this, DREAM data for wild-type (WT) germ-free (GF) and wild-type specific-pathogen-

free (SPF) mice were analyzed and a volcano plot depicting the methylation differences between 

them was generated (Figure 1a). For most experiments, each group of mice consisted of 6 

animals (Table 1). DREAM detected the methylation status of 24,865 sites on average at a 

minimum of 10 reads/site. We considered sites to be “changed” if there was a statistically 

significant increase or decrease in average methylation of 5% or more. To ensure precision, we 

only analyzed CpG sites that had greater than 100 reads in at least 75% of the mice in each 

group. Overall, of 12,919 detectable sites, 3.7% decreased, and 1.3% of sites increased in 

methylation. Thus, 5% of CpG sites analyzed showed differences triggered by the presence of 

microbiota.  

Sites that are greater than 80% or less than 20% methylated at baseline tend to be more 

stable than intermediately methylated sites(Jelinek et al., 2012). Therefore, we examined how the 

microbiota affect different CpG compartments. Volcano plots were generated that looked only at 

sites with greater than 80% average methylation, sites with less than 20% methylation and sites 

with between 20 and 80 percent methylation in GF mice (Figure S1). Overall, 0.3% of 

unmethylated sites were affected by microbiota, compared to 1.1% of highly methylated sites, and 

3.8% of intermediately methylated sites. Figure 1d shows the distribution of sites that were 

changed at least 5% between GF and SPF mice, stratified by baseline methylation. CGI and CGI 

shore sites appear to be largely stable. The most vulnerable sites seem to be gene body or intergenic 

areas with baseline methylation of between 20% and 80%. Thus, the presence of microbiota 

significantly affects DNA methylation in colonic mucosa with slightly more pronounced 

hypomethylation than hypermethylation. 

 

Deletion of Il10 affects DNA methylation 

Interleukin 10 (Il10) is an anti-inflammatory cytokine and mice lacking this gene develop 

spontaneous intestinal inflammation in the presence of microbiota(Sellon et al., 1998). To 

determine the effects of Il10 on intestinal DNA methylation independent of microbiota, DREAM 

data from GF/WT and GF/Il10-/- mice were analyzed; Figure 1b shows the volcano plot. Of all 

detectable sites, 2.4% decreased and 1.7% increased in methylation. Figure 1e shows the 

distribution of affected sites located in CGIs, CGI shores or other sites; Like Figure 1d, Figure 1e 

shows that relatively few CGI/shore sites were subject to change, and most of the changes that did 

occur were at variable sites with 20% to 80% methylation (also see Figure S1). GF/Il10-/- mice 

have little detectable inflammation; thus, the DNA methylation changes seen in these animals may 

be direct effects of Il10 deficiency or may be related to low grade/patchy inflammation that is not 

detectable using the usual assays. 

Il10 deficiency combined with microbiota results in inflammation and markedly 

accelerates colon tumorigenesis in mice(Uronis et al., 2009). By comparing DREAM data from 

GF/WT to SPF/Il10-/- mice, we were able to observe the effects of both conditions occurring 

simultaneously. In a differential methylation analysis (Figure 1e), we found that 8.1% of sites 
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increased and 9.9% of sites decreased in average methylation. In addition to more sites changing 

average methylation, the combined effects of inflammation susceptibility and microbiota appear 

to cause a specific increase in methylation at CGIs and CGI shores. Figure 1f shows that 2% of all 

sites were CGI/CGI shore sites that increased in average methylation between WT/GF and 

SPF/Il10-/- mice. This contrasted with the individual effects of IL10 deficiency or microbiota, 

which had little impact on CGIs or CGI shores. Figure 1g gives a broad overview of the effects of 

microbiota and Il10-/- on DNA methylation individually and together. Both microbiota and 

inflammation changed methylation at approximately 4-5% of sites. When combined, 

approximately 18% of sites experienced average methylation changes, with more sites decreasing 

in average methylation than increasing. When we examined CGIs exclusively (Figure 1h), 0.4% 

were changed by SPF, 0.5% were changed by Il10-/- while 3.5% were changed by both 

simultaneously. These dramatic differences in DNA methylation are comparable to what can be 

seen when comparing cancer to normal(Maegawa et al., 2010). 

 

Differential effects of azoxymethane and Il10-/- on DNA methylation 

Azoxymethane (AOM) is an agent commonly used to induce tumorigenesis in mouse 

models of colorectal cancer. We sought to determine if AOM and Il10-/- differed in their effects on 

DNA methylation profiles. We examined the effects of AOM alone, Il10-/- alone, and both in 

combination in the presence of microbiota (i.e. in SPF mice). A differential methylation analysis 

showed that AOM had a pronounced hypomethylating effect (Figure 2a). Approximately 8.1% of 

sites decreased in average methylation as a result of AOM, as opposed to only 1.2% of sites 

increasing in average methylation. It is interesting to note that in both sites with 80% or more 

average methylation and 20% or less average methylation, AOM caused overall decreases in 

average methylation (Figure 2b). In addition, AOM did not seem to target CGI or CGI shore sites 

and was most likely to cause a decrease in methylation of sites with medium levels of baseline 

methylation (20%<Me<80%, Figure 2b). By contrast, Il10-/- in SPF mice led to 5.7% of sites 

increasing in methylation and 6.2% of sites decreasing in methylation (Figure 2C). About 2% of 

sites were located in CGIs or CGI shores that increased in methylation (Figure 2D). Thus, AOM 

and IL10-/- both induced hypomethylation but, in the presence of microbiota, only Il10-/- induced 

substantial CGI hypermethylation, pointing to potentially different mechanisms for their effects 

on DNA methylation.  

 

Shared and unique DNA methylation changes  

With multiple simultaneous treatments, it is not possible to determine in a simple 

differential methylation test whether the methylation is affected by a single treatment or a 

combination of treatments. To elucidate and compare the individual effects of an SPF microbiota, 

Il10 deficiency, and AOM treatment on DNA methylation, we built an additive linear regression 

model that incorporates data from all 42 mice studied. Using an FDR of 0.05, we found that the 

linear model recapitulated the trends seen in the individual comparisons. Using this model (Figure 

3a), we determined that microbiota (SPF) induced changes in 13.5% of sites (6.9% hyper and 6.5% 

hypomethylated), and Il10 deficiency induced changes in 10.5% of sites (9% hyper and 1.5% 

hypomethylated), while AOM induced changes in 5.9% of sites (1% hyper and 4.9% 

hypomethylated). AOM continued to show a pronounced hypomethylating effect, while Il10-/- 

continued to show a strong hypermethylating effect. Microbiota show equal hypomethylating and 
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hypermethylating effects. We used UpSet plots to determine the overlap in effects of the different 

exposures on CpG methylation, examined separately for hypomethylation (Fig. 3b) and 

hypermethylation (Fig. 3c). Microbiota and Il10-/- have the most shared events, particularly when 

it came to hypermethylation. Thus, of 865 sites hypermethylated by the microbiota, 671 (78%) 

were also affected by Il10-/-. There was less conservation when it came to hypomethylation (22% 

of sites affected by the microbiota were also affected by Il10-/-). AOM had mostly unique effects. 

These data suggest that the microbiota and Il10-/- have shared methylome interaction mechanisms, 

while AOM has an independent mechanism of action. 

 

The microbiota and inflammation accelerate age-related methylation drift 

Methylation drift characterized by a global loss of DNA methylation with simultaneous 

hypermethylation in CGI promoters occurs as a result of aging(Maegawa et al., 2014; Maegawa et 

al., 2017). To compare this to microbiota effects, we first generated DREAM data for old (aged 30 

months) and young (aged 4-5 months) mouse colon (Figure 4a). Looking at aging in C57/Bl6 wild 

type mice, we found that of ~20,000 detectable sites, 6.6% decreased in methylation, and 11.5% 

increased in methylation. Hypermethylated CGIs accounted for 7% of the changes. We analyzed 

the overlap between sites that changed in methylation due to aging and sites that changed due to 

microbiota, Il10 deficiency or AOM. Aging had the largest effect individually but there were many 

shared hypomethylation (Figure 4b) and hypermethylation (Figure 4c) events between aging and 

the extrinsic exposures. For example, out of 472 sites hypomethylated upon the microbiota 

exposure, 139 (29%) were also affected by age; of the 272 sites affected by Il10-/-, 31% were also 

affected by age; of the 1121 sites hypomethylated in inflamed mice (SPF-Il10-/-), 31% were 

hypomethylated in aging mice. Similarly, out of 166 sites hypermethylated upon the microbiota 

exposure, 18% were also affected by age; of the 199 sites affected by Il10-/-, 33% were also affected 

by age; of the 926 sites hypomethylated in inflamed mice (SPF-Il10-/-), 35% were also 

hypermethylated in aging mice. This corroborates previous data demonstrating partial overlap 

between inflammation-related and age-related methylation(Hahn et al., 2008), and implicates the 

microbiota in this process. 

One drawback to this analysis is the use of a threshold of 5% change in average methylation 

to consider a site affected by inflammation, microbiota, or aging; this threshold could lead to 

underestimation of conservation because of sites that may change at a lower magnitude in one 

condition. To address this, we focused on the large number of sites that change with age and 

generated scatterplots comparing a site’s average change with age to change caused by exposures. 

Interestingly, the correlation coefficients were positive and statistically significant for all 

exposures with the strongest correlations for inflammation (SPF-Il10-/-, r=0.46, p<0.0001) 

followed by microbiota (r=0.39, p<0.0001), AOM exposure (r=.36, p<0.0001) and IL10 deficiency 

(r=0.09, p<0.0001). Taken together, these data indicate that the vast majority of sites that change 

with aging were affected by microbiota/inflammation combination. There were also sites that were 

affected by exposures but not by aging (Figure S4), most evident in mice with inflammation 

triggered by the combined effects of SPF and IL10-/-. 

 

CpG sites affected by the microbiota are hypermethylated in colon cancer 
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To determine the impact of microbiota, inflammation, and/or aging on methylation in colon 

cancer, we analyzed data from The Cancer Genome Atlas (TCGA). To correspond mouse to human 

data, we focused on promoters (defined as -1500 to 500 of transcription start site), and we used 

data on the CpG site closest to the transcription start site. Converging DREAM data with TCGA 

data, we were able to analyze 2,042 genes in total. Figure 5a shows scatter plots of methylation 

changes in colon cancer patients included in the TCGA data set (β value of methylation difference 

between tumor and normal) plotted on the y-axis, and methylation changes in our datasets (based 

on the volcano plot for aging and on the linear model for individual exposures) plotted on the x-

axis. The plots demonstrate a strong concordance between methylation changes in TCGA and each 

of aging, microbiota exposure, and IL10 deficiency. We calculated odds ratios to quantitate this 

concordance, at a threshold of 5% change in TCGA and in the extrinsic exposures. For 

hypermethylation, the odds ratios for enrichment were 15.5 (95% CI 10.6-22.9; q = 3.0x10-54) for 

age, 0 (95% CI 0-0; q = 1) for azoxymethane, 2.3 (95% CI 1.1-4.5; q = 0.039) for IL10-/-, and 4.1 

(95% CI 1.8-9.0; q = 9.4x10-4) for microbiota. For hypomethylation, odds ratios were 2.0 (95% CI 

0.04-13.9; q = 0.47) for age, 9.4 (95% CI 1.6-38.9; q = 0.015) for azoxymethane, 9.2 (95% CI 0.2-

116.2; q = 0.18) for IL10-/- and 11.5 (95% CI 2.6-41.1; q = 0.003) for microbiota.  Thus, as 

previously reported, aging has a major impact on whether a gene becomes hypermethylated in 

cancer, but we also find that genes affected by microbiota and by Il10 deficiency are also 

overrepresented among genes hypermethylated in CRC. 
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Discussion 

We show here that the presence of microbiota causes changes in DNA methylation that 

affect 5% of the methylome, a high number when one considers the fact that DNA methylation is 

very carefully controlled with relatively low levels of inter-individual variability(Jelinek et al., 

2012). These effects are compounded by the presence of inflammation – mice with both Il-10 

deficiency and exposure to the microbiota showed alterations in 18% of the methylome, and the 

differences were particularly striking at CpG islands, regions that are normally very stable and 

highly protected from DNA methylation(Bird, 2002). This strikingly high number is quantitatively 

similar to what can be seen when comparing mice at the extremes of their lifespan(Maegawa et 

al., 2010), and the pattern of change is very similar to what can be seen in colon cancers (CGI 

hypermethylation, intergenic hypomethylation). Indeed, CpG sites affected by the microbiota are 

overrepresented among genes hypermethylated in colon cancer, suggesting that microbiota could 

have an important influence on shaping cancer epigenomes, as previously suggested(Tahara et al., 

2014b). Interestingly, while the presence of microbiota accelerates age-related methylation drift, 

there are also epigenetic changes specific to the different extrinsic factors studied (microbiota, 

inflammation, AOM) suggesting distinct mechanisms rather than non-specific effects of cycles of 

injury and stem cell proliferation. It is also worth noting that the effects we observe are related to 

pathogen-free microbiota. It would be interesting to determine whether more profound changes 

are seen when pathogenic bacteria are introduced into the mix. 

Our results are consistent with recent studies but extend the findings substantially. Three 

studies reported that microbiota affects the physiology and DNA methylation patterns in 

developing intestinal epithelium(Ansari et al., 2020; Pan et al., 2018; Yu et al., 2015). 

Interestingly, the effects seen were primarily outside promoters (e.g. 3’ end of genes and inter-

genic areas) while our results highlight the profound effect of microbiota and inflammation on 

promoter CpG islands – the compartment most uniquely affected in aging and cancer(Issa, 2014). 

Ansari also studied the effects of inflammation induced by Dextran Sodium Sulfate on DNA 

methylation, and found primarily hypomethylation(Ansari et al., 2020), in marked contrast to what 

we observed with inflammation induced by the combination of Il-10 deficiency and the presence 

of microbiota. Dextran Sodium Sulfate’s effects are reminiscent of what we observed with 

exposure to azoxymethane and raise the possibility that the effects seen are related to the 

chemical’s effect more directly than to inflammation. Finally, Sobhani et al. introduced into germ-

free mice human fecal microbiota from patients with colon cancer or controls and also observed 

alterations in DNA methylation(Sobhani et al., 2019), and some of the genes affected (such as 

SFRP1) are known to show age-related methylation in human colon(Shen et al., 2007). In our 

study, we show that even a pathogen-free microbiota affects DNA methylation at relatively high 

levels. Our data uniquely highlight the effects of microbiota and inflammation on aberrant CpG 

island DNA methylation and link it directly to the acceleration of aging effects on DNA 

methylation. The data also suggest that microbiota/inflammation effects are potential precursors 

to the aberrant DNA methylation seen in colorectal cancers. 

The mechanism by which microbiota affects DNA methylation remains to be elucidated. 

One possibility is via the production of metabolites which act as cofactors or inhibitors for 

epigenetic enzymes. For example, the microbial metabolites acetate, propionate, and butyrate are 

capable of inducing mass reprogramming of histone methylation and acetylation 

states(Krautkramer et al., 2016). Bacterial species producing these short-chain fatty acid 

metabolites are known to be decreased in cancer and inflammation. DNA methyltransferases 
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(DNMTs) have been shown to interact with modifications on histone tails(Baubec and Schübeler, 

2014), and as histone states change, DNA methylation patterns may as well. Additionally, the gut 

bacteria may cause alterations in host gene expression that affect the ability of host cells to uptake 

certain metabolites; for example, it has been demonstrated that E. coli is capable of downregulating 

a protein responsible for butyrate uptake(Kumar et al., 2015). Aberrant DNA methylation may 

also be directly initiated by the overproduction of oncogenic metabolites (oncometabolites). Loss 

of function mutations in citric acid cycle enzymes fumarate hydratase (FH) and succinate 

dehydrogenase (SDH) result in the accumulation of fumarate and succinate respectively(Yang et 

al., 2013). A neomorphic mutation in isocitrate dehydrogenase (IDH) causes the enzyme to 

produce 2-hydroxyglutarate (2HG) instead of α-ketoglutarate(Ward et al., 2010). Each of these 

mutations is found in certain types of CIMP positive cancer(Figueroa et al., 2010), though they are 

very rarely observed in colorectal cancer(Tahara et al., 2014a). 2HG binds to and inhibits α-

ketoglutarate dependent TET and methyltransferase enzymes, causing DNA hypermethylation and 

tumorigenesis(Figueroa et al., 2010). Succinate and fumarate have been shown to inhibit these 

enzymes in-vitro and there is overlap between the methylated genes associated with each 

metabolite anomaly, implying all three may act via this same mechanism(Yang et al., 2013). Thus, 

it is plausible that bacteria cause aberrant methylation in part via over-production of metabolites 

that modulate the function of the TET DNA demethylases.  

Previous studies also showed that inflammation alters the DNA methylome(Issa, 2014; 

Niwa et al., 2010), though the precise mechanisms by which this occurs is unknown. It has been 

proposed that inflammation increases cell turnover rate, and inflammation-induced methylation 

may simply be a reflection of an increased rate of age-related methylation(Sapienza and Issa, 

2016). The overlap we observed between inflammation and aging-associated changes are 

consistent with this. However, we found that microbiota and inflammation also induced 

methylation changes that were not observed in aging. It has been suggested that direct interactions 

with inflammatory cytokines alter a cell’s methylation profile(Gasche et al., 2011). It is also 

possible that the inflamed gut exerts different selective pressures on host intestinal epithelial cells 

than the non-inflamed gut, selecting for cells with unique DNA methylation profiles. It may 

eventually be possible to tease out inflammation-independent effects of extrinsic factors on DNA 

methylation. 

In conclusion, we find that microbiota has a profound effect on DNA methylation in the 

gut and helps shape the aberrant methylomes seen in aging and cancer. The fact that extrinsic 

factors (bacteria, inflammation, carcinogens) modulate the epigenome suggests potential ways to 

intervene therapeutically for cancer prevention. 
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Figure Legends 

Figure 1: microbiota influences DNA methylation. A-C) Volcano plot analysis showing 

methylation differences between SPF and GF mice (A), Il10-/- and GF mice (B), and SPF-Il10-/- 

and GF mice (C). The x-axis shows the difference in average methylation between SPF and GF 

mice for a given site. The y-axis is the negative log(10) of the p-value, which was determined with 

a Student’s t-test. All sites above the dotted line are significant at p≤0.05. Green sites change at a 

magnitude of 5% or greater. D-F) Bar graphs showing the proportion and type of CpG sites that 

change at least 5% between SPF and GF mice (D), Il10-/- and GF mice (E), and SPF-Il10-/- and GF 

mice (F). Shore indicates sites that are not in CGIs, but within 2000 bp of them. (G) Bar graph 

showing the proportion of CpG sites that show DNA methylation alterations in the volcano plots 

in A-C. (H) Bar graph showing the proportion of CpG sites within CpG islands that show DNA 

methylation alterations in the volcano plots in A-C. 

Figure 2: AOM is a potent hypomethylating carcinogen. (A) Volcano plot analysis showing 

methylation differences between SPF and SPF+AOM mice. See Figure 1 for graph details. (B) Bar 

graph showing the proportion and type of CpG sites that change at least 5% in (A). (C) Volcano 

plot analysis showing methylation differences between SPF and SPF-Il10-/- mice. See Figure 1 for 

graph details. (D) Bar graph showing the proportion and type of CpG sites that change at least 5% 

in (C). 

Figure 3: Linear regression model of the effects of microbiota, Il10-/-and AOM on DNA 

methylation. (A) Shows Volcano plots of FDR (0.05) corrected significant methylation changes 

attributed to each external exposure. The x-axis indicates the linear model slope for individual 

CpG sites (equivalent to % change in methylation) while the y-axis is the negative log(10) of the 

q-value. (B) Shows Upset plots of shared/unique hypomethylation events while (C) shows UpSet 

plots of shared/unique hypermethylation events. The number of shared or uniquely altered CpG 

sites is indicated on top of each vertical bar. 

Figure 4: microbiota and inflammation modify the same CpG sites subject to age-related 

methylation drift. (A) Volcano plot analysis showing methylation differences between young and 

old mice. See Figure 1A for graph details. (B) UpSet plots of shared/unique hypomethylation 

events between sites that decrease at least 5% during aging and in the different exposures analyzed 

in Figures 1-3. “Inflammation” refers to Il10-/-/SPF mice. (C) Same analysis as in B for sites that 

increase methylation at least 5%. (D) Scatterplot of average methylation change with age (x-axis) 

to average change by exposures (y-axis) for all sites that change at least 5% with age. Pearson r, 

p-value, and slope are indicated in each plot.  

Figure 5: Genes affected by extrinsic exposures are more likely to be altered in cancer. (A) Scatter 

plot of DNA methylation change by aging or exposure (x-axis) compared to DNA methylation 

change in colon cancer TCGA samples. (B) Odds ratios compute enrichment of genes altered by 

aging or different extrinsic exposures among genes altered in colon cancer (TCGA data). The odds 

ratios are computed separately for gene promoters hypomethylated (left) or hypermethylated 

(right) by exposures and in colon cancer.  
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