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updated August 20, 2020)
1Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287

2Department of Mathematics, University of Tennessee, Knoxville, TN 37996
3Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

4Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan

5School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
1 Introduction 3

2 Methods 5
2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Dynamics of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 FRET Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Model Inference via HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Model Inference via HMJPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Computational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Acquisition of Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results 12
3.1 Simulated Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Acquisition of Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Comparison of HMJPs with HMMs on Simulated Data . . . . . . . . . . . . . . . . . . . 12

3.2 Experimental Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Analysis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Comparison of HMJPs with HMMs on Experimental Data . . . . . . . . . . . . . . . . . 19

4 Discussion 20

A Supporting Material 25
A.1 Comparison of HMJP and HMM for Simulated Data with Slow Switching Kinetics . . . . . . . . 25
A.2 Performance of HMJP for Simulated Data with Fast Switching Kinetics over a Range of Bin Sizes 26
A.3 HMJP Estimates for Additional Experimental smFRET Data . . . . . . . . . . . . . . . . . . . . 27
A.4 Modeling Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.4.1 Hidden Markov Jump Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.4.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4.3 Overview of the Sampling Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4.4 Background Photon Emission Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.5 Notation and Analysis Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Correspondence: spresse@ asu.edu, Web: https://cbp.asu.edu/content/steve-presse-lab

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.28.267468doi: bioRxiv preprint 

https://cbp.asu.edu/content/steve-presse-lab
https://doi.org/10.1101/2020.08.28.267468
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Our goal is to learn kinetic rates from single molecule FRET (smFRET) data even if these exceed the data
acquisition rate. To achieve this, we develop a variant of our recently proposed hidden Markov jump process
(HMJP) with which we learn transition kinetics from parallel measurements in donor and acceptor channels.
Our HMJP generalizes the hidden Markov model (HMM) paradigm in two critical ways: (1) it deals with
physical smFRET systems as they switch between conformational states in continuous time; (2) it estimates
the transition rates between conformational states directly without having recourse to transition probabilities
or assuming slow dynamics (as is necessary of the HMM). Our continuous time treatment learns transition
kinetics and photon emission rates for dynamical regimes inaccessible to the HMM which treats system
kinetics in discrete time. We validate the robustness of our framework on simulated data and demonstrate its
performance on experimental data from FRET labeled Holliday junctions.
Keywords: smFRET | fluorescence | hidden Markov jump process | continuous time process | single molecule

data analysis
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Fig. 1. An illustration of single molecule switching kinetics and corresponding measurements. In panels (a1) and
(a2), we provide the simulated trajectory (cyan) of the single molecule between two states (σ1, σ2). The photon emission
rates, i.e., number of emitted photons per unit time in the absence of noise in both donor and acceptor channels associated
with the conformation states σ1 and σ2 are labeled with µσ1 and µσ2 , respectively. This simulated experiment provided
in this figure starts at t0 = 0.05 s and ends at tN = 10 s with data acquisition period ∆t = 0.05 s. Here in panels (a1)
and (b1), for visual purposes, we assume that the measurements are acquired by a detector with fixed exposure period
τ = 50 ms in donor (green) and acceptor (red) channels. As the molecule switches between states σ1, σ2 during an
integration period, the measurements represent the number of emitted photons that capture the average of the photons
emitted with rates µσ1 , µσ2 associated with the visited states. In this figure, panels (a1)-(a2) represent the simulated data
where the molecule switching kinetics between the conformation states are slower than the data acquisition rate. On the
other hand, in panels (b1)-(b2), we demonstrate a single molecule trajectory (cyan) when the molecule’s switching kinetics
are faster than the data acquisition rate. In panel (a2), slow kinetics of the molecule give rise to well separated state
occupancy histograms in donor/acceptor channels around the average photon emission rates. By contrast, in panel (b2),
we don’t observe well separated histograms due to fast switching kinetics of the molecule.

1 Introduction

Fluorescence experiments based on single molecule Förster resonance energy transfer (smFRET) can probe the
switching kinetics between conformational states defined by different inter- and intra-molecular distances (1–10).
In a prototypical intra-molecular smFRET experiment, one portion of a molecule of interest is attached to a donor
fluorophore and another to an acceptor fluorophore (1–18). In such an experiment, the excitation wavelength is
most commonly adjusted to excite the donor (9, 14, 16–18). For a donor sufficiently far from the acceptor, the
donor is excited and emits shorter wavelength light as compared to the longer wavelength light emitted by the
acceptor in the case of energy transfer when donor and acceptor are in proximity (9, 14, 16–18). Due to the
difference in the wavelength of light emitted by the donor and acceptor, the photons emitted are registered across
different detectors (9, 14, 16–18). We refer to the recordings in the two detectors as the donor and acceptor
channels (9, 14, 16–18). As such, the sequence of photon detections (2) encodes the kinetics according to which
the distance varies between both fluorophores down to the µs timescale (1–9). Existing approaches to analyze
smFRET data include FRET efficiency histogram-based methods though such methods discard the important
temporal information encoded in donor and acceptor photon arrival sequences (5–9, 11–13, 15, 16, 19). What
is more, FRET efficiency histogram analysis is difficult to generalize beyond 2 conformational states as discussed
in (20). In addition, on account of the arbitrary binning required to construct histograms, such methods may
lead to inconclusive or erroneous estimates (5, 6, 21–27). For these reasons, modeling efforts have moved toward
more direct time series analysis (7, 20, 28–31).
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By relying on the hidden Markov model (HMM) paradigm (1, 3, 7, 10, 30, 32–36), time series analysis fully
considers the temporal arrangement (i.e., the sequence) of photon detections and avoids histogram binning
artifacts (1, 3, 7, 10, 32). This paradigm is especially fruitful in analyzing demanding experiments as the con-
formational states, treated as the hidden states of the HMMs, are themselves indirectly observed due to shot-
noise (1, 3) and also allows for inclusion of measurement noise and specialized detector characteristics in the
analysis (1, 3, 7, 10, 32).

HMMs and their variants, starting from (15) and motivating latter efforts such as the H2MMs (1, 3, 30, 35, 37)
and bl-ICON (7), are the state-of-the-art in the analysis of smFRET data. However, HMMs have built into them
important assumptions that we wish to lift in an effort to analyze conformational transitions occurring on time
scales faster than the data acquisition rate 1/∆t supported by the detectors. Before describing these assumptions,
we discuss ∆t (the bin size for photon collection) otherwise known as frame rate or temporal resolution. As ∆t
is determined mostly by the detectors, for simplicity we assume that the same ∆t applies on both channels.

In order to learn about rates exceeding the data acquisition rate, the most critical HMM assumptions that we
need to lift are the following:

• HMMs make the assumption that the state switches occur rarely as compared to ∆t. In other words, all
switching rates are assumed much slower than 1/∆t. For this reason, HMMs are formulated using transition
probabilities rather than transition rates.

• HMMs make the assumption that transitions occur precisely at the end of each data acquisition period (30,
35, 38–43). In other words, intra-frame motion does not occur. For this reason, HMMs represent only
instantaneous states and measurements.

The former assumption is particularly relevant to the present study as it requires, prior to the analysis, that
all transitions are slower than ∆t. In general, this is not only unknown but also practically difficult to quantify
beforehand. After all, the objective of many experiments is to determine the switching rates in the first place. The
latter assumption is also relevant to the present study as, prior to the analysis, it needs to balance two competing
requirements: an upper bound on ∆t set by the fastest switching rate and a lower bound on ∆t supported by the
detection hardware.

There have been few theoretical approaches proposed to overcome these challenges. For example, in the
H2MM (3), a time grid finer than the measurement time interval is imposed and a HMM is implemented on
this finer grid (3). This method is known to suffer from computational complexity (44) and it is for this reason
that formulations have been sought in continuous time (44, 45). Motivated by the H2MM (3), our goal is to
move to an exact continuous time treatment for smFRET systems with no approximation on the timescales of
the switching kinetics.

In Fig. 1 panels (a1),(b1), we illustrate an example of smFRET measurements. In panel (a1), we show an
example with slow kinetics (relative to ∆t). These data are primarily contaminated with shot-noise and can be
reliably analyzed within the HMM paradigm. On the other hand, in panel (b1), we demonstrate an example with
fast kinetics (relative to ∆t). On top of shot-noise, these data are contaminated with significant intra-frame
transitions, consequently they cannot be analyzed within the HMM paradigm. As the molecule undergoes fast
switching between the states during a data acquisition period, the measurement associated with that period
reports on the average signal from the molecule over that period and the state of the molecule cannot be deduced
from a model operating exclusively on instantaneous states such as within the HMMs paradigm. Nonetheless,
the information about the fast switching is itself encoded within that measurement. It is therefore necessary to
develop a method that can accommodate continuously evolving dynamics in order to learn the kinetics from the
measurements instead of invoking an HMM formulation that, by construction, violates this critical feature.
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To achieve this, a new method needs to: i) represent the dynamics of the molecule in continuous time; ii)
model the acquired measurements at each data acquisition times via the average dynamics of the molecule within
the associated data acquisition period; and iii) entail manageable computational cost so it allows for practical
applications.

For this reason, we now turn to Markov jump processes (MJPs) describing continuous time dynamics (46–50) for
which recent developments in computational statistics have suggested strategies for inferring rates using MJPs
from traditional, continuous time, data (44, 45, 51). The main challenge presented by smFRET experiments,
however, lie in the fact that measurements do not directly report back on the fast kinetics of molecules. Rather,
frame rates report on the average state of the molecule over the ∆t exposure window. This problem is exacerbated
for molecular kinetics fast as compared to ∆t. The focus of this work is really to validate a workaround, that
we call the Hidden MJP (HMJP), to this critical challenge. As we will see, the HMJP is a generalization of the
HMM. As such, the HMJP mathematically exactly reduces to the HMM in the limit that exposure period ∆t→ 0.

To achieve this, in Section 2, we start with our HMJP smFRET model description and also, briefly for sake
of comparison, summarize plain HMMs for smFRET applications. Next, in Section 3, we provide HMM and
HMJP analysis comparisons for simulated measurements. In the comparison of these two methods, we present
their performances in learning photon emission rates, transition probabilities (for HMMs) and kinetic rates (for
HMJPs). We demonstrate how HMJPs successfully outperform HMMs especially for fast kinetic rates as compared
to the data acquisition rate. Their comparison on slow switching kinetics of simulated smFRET data (where both
HMM and HMJP expectedly do well) is relegated to Appendix A. Subsequently, we move onto the analysis of
experimental data. We provide a comparison of HMJPs and HMMs in learning molecular trajectories, transition
probabilities and kinetic rates. Lastly, in Section 4, we discuss the broader potential of HMJPs for smFRET
applications.

2 Methods

Below, we provide the mathematical description of a physical system that models smFRET experiments. Subse-
quently we use this model in conjunction with given data to extract our estimates.

2.1 Model Description

2.1.1 Dynamics of the System

We denote the trajectory, describing the molecule’s conformational states at any given time, with T (·). Here,
T (t) corresponds to the molecule’s state at time t. Thus T (t) is a function over the time interval [t0, tN ]. The
accessible states of the molecule are labeled with σk and indexed with k = 1, . . . ,K. For example, these states
can be considered the K = 2 isomerization states of Holliday junctions (3). If the molecule is in state σk at time
t, then we denote it by T (t) = σk, (44, 45).

We model the transitions of the molecule as a memoryless process (35, 50, 52, 53) and assume exponentially
distributed waiting times in each state. Together, these define our Markov process. In particular, as we model
waiting times in continuous times, our Markov process is a Markov jump process (50).

In greater detail, we assume that the system chooses stochastically a state σk at the onset of the experiment that
is denoted by T (t0) = σk. The probability of determining this initial state σk is labeled with ρσk . The collection
of all initial probabilities is a probability vector and labeled with ρ̄ = (ρσ1 , ρσ2 , ..., ρσK ), (54–57).

Switching rates fully describe the switching kinetics of the molecule and they are labeled with λσk→σk′ for all
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possible states σk, σk′ where k, k′ = 1, 2, ...,K and λσk→σk = 0 by definition for k = 1, 2, ...,K. For mathematical
convenience, we keep track of the escape rates as an alternative parametrization of the switching kinetics which
are given by

λσk =
K∑
k′=1

λσk→σk′ . (1)

We collect all escape rates in λ̄ = (λσ1 , λσ2 , . . . , λσK ). Moreover, for computational convenience, we track the
normalized switching rates by the escape rates

πσk→σk′ =
λσk→σk′
λσk

. (2)

The collection of all normalized switching rates from state σk is denoted by π̄σk = (πσk→σ1 , πσk→σ2 , · · · , πσk→σM ).
We see that each π̄σk forms a probability vector (56). We can gather all transition probabilities in a matrix ¯̄π
that reads

¯̄π =


π̄σ1

π̄σ2
...

π̄σK

 . (3)

Given ρ̄ and λ̄, ¯̄π, the trajectory T (·) is obtained by a variant of the Gillespie algorithm (52) which determines a
succession of states for the conformations of the system s0, s1, · · · , sM−1 and their durations d0, d1, d2, · · · , dM−1.
These together define T (·) throughout the time course [t0, tN ] by

T (t) =



s0 if t0 ≤ t < t0 + d0

s1 if t0 + d1 ≤ t < t0 + d0 + d1
...

sM−1 if t0 + d0 + · · ·+ dM−2

≤ t < t0 + d0 + d1 + · · ·+ dM−1.

(4)

For clarity, we encode T (·) in a triplet (~S, ~D,M), where ~S = {s0, s1, ..., sM−1} and ~D = {d0, d1, ..., dM−1} and
M is the size of ~S, ~D.

2.1.2 Measurements

The measurements in a typical smFRET experiment report on the conformational state of the molecule as it
changes through time. These come in the form of two time series: wD =

(
wD1 , w

D
2 , ..., w

D
N

)
and wA =(

wA1 , w
A
2 , ..., w

A
N

)
which are the recordings in the donor and acceptor channels, respectively. In particular, the

subscripts here indicate the time level of measurements. For clarity, we assume that the measurements are time-
ordered, so the n = 1 label coincides with the earliest acquired measurement and the n = N label coincides with
the latest.

We assume that measurements occur on a regular time interval denoted by ∆t (although the switching of the
molecule between states occurs in continuous time). Here, the values of wDn and wAn report on a number of
photons collected between tn−1 and tn where tn = tn−1 +∆t. For completeness, we introduce an additional time
level t0 which precedes the first measurement time t1. This time level, t0 defines the experiment’s onset, which
is not associated to any measurement; see Fig. 1.
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One of the common assumptions of HMMs is that the instantaneous state of the molecule at tn determines the
measurements wDn and wAn . However, for realistic detectors, the reported values wDn and wAn are affected by
the entire photon trajectory of the molecule during the nth integration period represented by the time window
[tn − τ, tn]. Here, τ is the duration of each integration time for fluorescence experiments.

When we supplement our dynamical model (fully described in Section 2.1.1) with measurements, we must include
a distribution describing the measurement statistics. We do so by first discussing the state specific photon emission
rates in the donor and acceptor channels which we label with µDσk , µAσk , where the subscript highlights the state
dependence of the photon emission rate. For simplicity, we gather the state specific photon emission rates in
µ̄D = (µDσ1

, µDσ2
, . . . , µDσK ), µ̄A = (µAσ1

, µAσ2
, . . . , µAσK ).

If the molecule remains in a single state σk throughout an entire exposure period [tn− τ, tn], then the detector is
triggered by µDσk ,µAσk and ambient contributions (background) which we label with µDback and µAback for the donor
and acceptor channels, respectively. As such, the reported measurement, wDn , is similar to µDback + µDσk and wAn
is similar to µAback + µAσk . However, if the molecule switches between multiple states during the same exposure
period, the detector is influenced by the levels of every state attained. More specifically, the nth binned photon
counts triggering the detector during the nth exposure period, [tn − τ, tn], is obtained from the µDback + µDT (·) in
the donor channel and µAback +µAT (·) in the acceptor channel over this exposure. Mathematically, this is equivalent
to µDbackτ +

∫ tn
tn−τ dt µ

D
T (t) in the donor channel and µAbackτ +

∫ tn
tn−τ dt µ

A
T (t) in the acceptor channel.

With measurement noise, such as shot-noise (22, 58–61), quantification noise (62–64), or amplification noise in
the case of EMCCD detectors (7, 65–67) and other degrading effects that are common in the detectors currently
available, each measurement wDn and wAn depends probabilistically upon the triggering signal (68–70). Of course,
the precise relationship depends on the detector employed in the experiment and differs between the various types
of cameras, single photon detectors or other devices used. Here, we continue with a shot-limited formulation,
which results in

wDn
∣∣T (·) ∼ Poisson

(
µDbackτ +

∫ tn
tn−τ dt µ

D
T (t)

)
(5)

wAn
∣∣T (·) ∼ Poisson

(
µAbackτ +

∫ tn
tn−τ dt µ

A
T (t)

)
. (6)

2.1.3 FRET Efficiency

Later we will be making use of the notion of FRET efficiency. For this reason we define two different types of FRET
efficiencies: the characteristic FRET efficiency (7, 15, 71–75) as well as the apparent FRET efficiency (7, 15, 71–
75). Characteristic FRET efficiency (7, 15, 71–75) labeled with εσk for k = 1, 2, ...,K is defined as follows

εσk =
µAσk

µDσk + µAσk
(7)

and only depends on the conformational states (7, 15, 71–75). By contrast, the apparent FRET efficiency (which
is often used as a proxy for εσk) is defined as follows

εan = wAn
wDn + wAn

(8)

for n = 1, 2, ..., N . Unlike the former, the latter is affected by artifacts such as measurement noise and back-
ground (15). As a result, the apparent efficiency may attain different values over time even when the molecule
does not switch its conformational state.
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2.2 Model Inference

Our goal is to learn the initial probabilities ρσk , photon emission rates µDσk , µ
A
σk

, switching rates λσk→σk′ for all
states and the trajectory of the system T (·) during the full time course [t0, tN ] of the experiment by using the
measurements wD,wA, and the model associated with the smFRET experiment that has just been described.
First, we will explain how we learn these quantities using time series analysis within the naive HMM paradigm (7,
74, 75). Subsequently, we will present how we tackle smFRET data using our continuous time HMJPs.

2.2.1 Model Inference via HMMs

HMMs inherently assume that each measurement wDn and wAn acquired at time tn depends only on the molecule’s
state at the time of data acquisition namely T (tn). Therefore, we have the following approximations for the
HMM formulation

∫ tn
tn−τ dtµ

D
T (t) ≈ µ

D
T (tn)τ and

∫ tn
tn−τ dtµ

A
T (t) ≈ µ

A
T (tn)τ during the exposure period [tn− τ, tn].

Consequently, Eq. (5) and Eq. (5) become

wDn
∣∣T (·) ∼ Poisson

(
µDbackτ + µDT (tn)τ

)
(9)

wAn
∣∣T (·) ∼ Poisson

(
µAbackτ + µAT (tn)τ

)
. (10)

Given the HMM formulation and the smFRET data wD,wA, we can directly learn the transition probabilities
that govern the transitions of the molecule between its conformational states at any data acquisition time tn
for all n = 1, 2, ..., N . We label a molecule’s state within the HMM paradigm at time tn with T (tn) = cn.
For clarity, transition probabilities determine the switching probabilities for a molecule’s transitions denoted by
cn−1 → cn → cn+1. Within the HMM formulation, Pcn−1→cn denotes the transition probability of the molecule
from state cn−1 to cn.

Given that there are K conformational states for the molecule, the number of transition probabilities Pσk→σ′k
becomes K2. We gather the transition probability from conformational state σk to any other conformational state
including itself in P̄σk = (Pσk→σ1 , Pσk→σ2 , · · · , Pσk→σK ) that is normalized as a probability vector (namely each
component sums up to 1). Eventually, we gather all transition probability vectors in a matrix called transition
probability matrix denoted by ¯̄P which reads as follows

¯̄P =


P̄σ1

P̄σ2
...

P̄σK

 . (11)

There is a connection between the transition probability matrix ¯̄P and the molecule’s switching rates λσk→σk′ and
escape rates λσk . Provided that we gather the switching rates and escape rates in the following matrix, called
generator,

¯̄G =


−λσ1 λσ1→σ2 . . . λσ1→σK
λσ2→σ1 −λσ2 . . . λσ2→σK

...
...

. . .
...

λσK→σ1 λσK→σ2 . . . −λσK

 (12)

then ¯̄P can be calculated based on ¯̄P = exp
( ¯̄G∆t

)
where exp (·) stands for the matrix exponential. Knowing

¯̄G determines ¯̄P uniquely; however, knowing ¯̄P provides only a proxy for ¯̄G. Specifically, if we assume that
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λσk∆t� 1 then we can use an approximation
¯̄P ≈ ¯̄I + ¯̄G∆t (13)

where ¯̄I is an identity matrix of size K×K. Thus we can calculate an approximation for ¯̄G that is ¯̄G ≈ ( ¯̄P− ¯̄I)/∆t.

Now, we provide the formulation for how to estimate the quantities including initial probabilities, ρ̄, transition
probabilities P̄σk , photon emission rates µ̄ and the trajectory of the system T (·) which is encoded by ~c =
(c0, c1, · · · , cN ), within an HMM paradigm. The HMM formulation is governed by the following statistical model

c0 ∼ Categorical (ρ̄) (14)
cn
∣∣cn−1 ∼ Categorical

(
P̄cn−1

)
(15)

wDn
∣∣cn ∼ Poisson

(
µDbackτ + µDcnτ

)
(16)

wAn
∣∣cn ∼ Poisson

(
µAbackτ + µAcnτ

)
. (17)

From now on, we follow the Bayesian paradigm (54, 76) which requires us to prescribe prior distributions for the
parameters.

We start with the prior distributions placed on the transition probabilities P̄σk for all k = 1, 2, ...,K and ρ̄. We
choose to place Dirichlet distributions with concentration parameters A and a for P̄σk and ρ̄, respectively, that
are conjugate to the Categorical distribution (30, 35, 57, 77) and formulated as follows

P̄σ1 ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(18)

P̄σ2 ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(19)

...

P̄σK ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(20)

ρ̄ ∼ Dirichlet
( α
K
,
α

K
, ...,

α

K

)
. (21)

Subsequently, we place priors on the photon emission rates µ̄D =
(
µDσ1

, µDσ2
, ..., µDσK

)
and µ̄A =

(
µAσ1

, µAσ2
, ..., µAσK

)
.

The prior that we choose to place is the Gamma distribution as it has positive support

µDσk ∼ Gamma
(
φD,

ψD

φD

)
(22)

µAσk ∼ Gamma
(
φA,

ψA

φA

)
(23)

with hyperparameters φD, ψD, φA, ψA.

We estimate the background photon emission rates µDback, µ
A
back by separate measurements that contain only

ambient contributions as we explain in Supporting Material (A). These measurements can be obtained either
after both donors and acceptors photobleach or, in a separate experiment, in which no FRET labeled molecule is
present.

With all priors specified, we form the full posterior distribution (7, 30, 31, 35, 37, 77, 78)

P
(
ρ̄, ¯̄P, µ̄D, µ̄A, T (·)

∣∣wD,wA
)

= P
(
ρ̄, ¯̄P, µ̄D, µ̄A,~c

∣∣wD,wA
)
. (24)
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Since we do not have an explicit formula for Eq. (24) we build a custom MCMC sampling scheme to generate
pseudorandom numbers from Eq. (24). Details of the computational scheme are provided in Section 2.2.3.

2.2.2 Model Inference via HMJPs

The HMJP does not require any approximations on the kinetics regime allowed and instead applies directly on the
formulation provided in Eq. (5) and Eq. (6). Just as with the HMM, for the HMJP formulation, we also operate
within the Bayesian paradigm (54, 76) and thus place prior distributions on ρ̄, ¯̄π, λ̄, µ̄D, µ̄A.

First, we prescribe the prior distributions on the escape rates λ̄ = (λσ1 , λσ2 , ..., λσK ). For these, we choose
Gamma distributions which are conjugate to the exponentially distributed holding times, i.e.,

λσk ∼ Gamma
(
η,
b

η

)
(25)

for all k = 1, 2, . . . ,K with hyperparameters η, b. Subsequently, we prescribe independent conjugate Dirichlet
distributions on the transition probabilities π̄σk for all k = 1, 2, ...,K

π̄σ1 ∼ Dirichlet
(

0, A

K − 1 , ...,
A

K − 1

)
(26)

π̄σ2 ∼ Dirichlet
(

A

K − 1 , 0, ...,
A

K − 1

)
(27)

...

π̄σK ∼ Dirichlet
(

A

K − 1 ,
A

K − 1 , ..., 0
)

(28)

with concentration hyperparameter A. Prior distributions placed on ρ̄, µ̄D and µ̄A are provided in Eq. (21)
and Eq. (23), respectively.

The full posterior distribution for the HMJP formulation is

P
(
ρ̄, ¯̄π, λ̄, µ̄D, µ̄A, T (·)

∣∣wD,wA
)

= P
(
ρ̄, ¯̄π, λ̄, µ̄D, µ̄A, (~S, ~D,M)

∣∣wD,wA
)
. (29)

Since we do not have an analytical formula for Eq. (29), we build a custom MCMC sampling scheme. Details of
the computational scheme are provided in Section 2.2.3.

2.2.3 Computational Inference

MCMC sampling from the full posterior distributions provided in Eq. (24) for the HMM and Eq. (29) for the
HMJP rely on Gibbs sampling (7, 30, 31, 35, 37, 44, 77, 78). To form a large number of samples from these
posteriors, we iterate the following

1. Update ~c for the HMM or (~S, ~D,M) for the HMJP;

2. Update transition probabilities, that is P̄σk for the HMM or π̄σk and λσk for the HMJP;

3. Update the initial probability vector ρ̄ for both the HMM and the HMJP;

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.28.267468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.267468
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Update photon emission rates µ̄D, µ̄A for both the HMM and the HMJP.

These samples allow us to reconstruct the posterior distribution P
(
ρ̄, ¯̄P, µ̄D, µ̄A,~c

∣∣wD,wA
)

for the HMM and

P
(
ρ̄, ¯̄π, λ̄, µ̄D, µ̄A, (~S, ~D,M)

∣∣wD,wA
)

for the HMJP. The estimation of switching rates λσk→σk′ with the HMJP
is carried out by Eq. (2) and by Eq. (13) for the HMM.

In Supporting Material (A), we present the equation summaries for both HMJP and HMM formulations. A
working code of the the implementation of our HMM and HMJP frameworks is made available through the
authors’ website.

2.3 Experimental Methods

Here, we introduce experimental methods. We start from sample preparation, next we move to presenting
experimental procedure.

2.3.1 Acquisition of Experimental Data

Sample Preparation

The Holliday Junction strands used in this work, and whose results are shown in Figs. 3 to 7, were purchased
from JBioS (Wako, Japan), of which sequences are given below

• R-strand: 5’-CGA TGA GCA CCG CTC GGC TCA ACT GGC AGT CG-3’

• H-strand: 5’-CAT CTT AGT AGC AGC GCG AGC GGT GCT CAT CG-3’

• X-strand: 5’-biotin-TCTTT CGA CTG CCA GTT GAG CGC TTG CTA GGA GGA GC-3’

• B-strand: 5’-GCT CCT CCT AGC AAG CCG CTG CTA CTA AGA TG-3’.

We note that T (H-strand) and T (B-strand) indicate thymine residues labeled with a FRET donor (ATTO-532)
and an acceptor (ATTO-647N) fluorophores, respectively, at position 6 from the 5’ end. The R, X, and B-strands
(1 µM, 30 µL) and H-strand (1 µM, 20 µL) were mixed in TN buffer (10 mM Tris with 50 mM NaCl, pH 8.0). The
mixture was annealed at 94◦C for 4 min, and then gradually cooled down (2-3◦C/min) to room temperature. We
used a sample chamber (Grace Bio-Labs SecureSeal, GBL621502) and a coverslip that is coated by Biotin-PEG-
SVA (Biotin-poly(ethylene glycol)-succinimidyl valerate) (79). Streptavidin (0.1 mg/mL in TN buffer, 100 µL)
was incubated for 20 min, which was followed by washing with TN buffer. The HJ solution (10 nM, 100 µL) was
injected for 3 s. The chamber was rinsed three times by measuring buffer (TN buffer with 10 mM MgCl2 and
2 mM Trolox).

Experiments

Broadband light, generated by super continuum laser (Fianium SC-400-4, f = 40 MHz), was filtered by a
bandpass filter (Semrock FF01-525/30-25) and focused on the upside coverslip surface using an objective lens
(Nikon Plan Apo IR 60×, N.A. = 1.27). The excitation power was set to be 20 µW at the entrance port of the
microscope. The fluorescence signals were collected by the same objective lens and guided to detectors through
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a multimode fiber (Thorlabs M50L02S-A). Fluorescence signals of donor and acceptor were divided by a dichroic
mirror (Chroma Technology ZT633rdc) and filtered by bandpass filters (Semrock FF01-585/40-25 for donor and
FF02-685/40-25 for acceptor), and then detected by hybrid detectors (Becker&Hickl HPM-100-40-C). For each
photon signal detected, the routing information was appended by a router (Becker&Hickl HRT-41). The arrival
time of the photon was measured by a Time-Correlated Single Photon Counting (TCSPC) module (Becker&Hickl
SPC-130-EM) with time tagging mode.

3 Results

In order to show how HMJPs work and to highlight the HMJPs’ advantages over HMMs, we initially benchmark
our method using simulated data that mimics smFRET experiments. Simulated data are ideal for this purpose
because they have a “ground truth”. Generation of such data relies on the Gillespie algorithm (52). Next, we
compare the strength of our HMJP method to HMMs on experimental data.

We focus on the following simulated dataset: a molecule that exhibits fast kinetics as compared to the data
acquisition rate, see Fig. 1. Analysis of datasets on slow kinetics is relegated to Supporting Material (A). The
results corresponding to the simulated dataset with fast kinetics for both HMJP and HMM are shown in Fig. 2.
Subsequently, we show the performance of our method on experimental dataset Fig. 3. We present the results
for the experimental data set in Figs. 4 to 7. Further analysis on different experimental datasets is also provided
in Supporting Material (A).

Hyperparameter values used in all analyses, as well as any other choices made are presented in Supporting
Material (A). For clarity, we only have access to the data demonstrated with the green and red dashes of panels
(a1) and (b1) of Fig. 1 not the cyan (ground truth) trajectories. These trajectories are unknown and to be
determined along with other model parameters.

3.1 Simulated Data Analysis

3.1.1 Acquisition of Simulated Data

In the generation of our simulated data, we assumed K = 2 attainable states, such as on/off or folded/unfolded
states for illustrative purposes only (our method trivially generalizes to more states). We assumed photon emission
rates which we set at µDσ1

= 800 photons/s, µDσ2
= 2000 photons/s and µAσ1

= 300 photons/s, µAσ2
= 700 pho-

tons/s where µDback = µAback = 200 photons/s. Additionally, we defined a data acquisition period of ∆t = 0.05 s
and consider the exposure period by setting τ equal to 100% of ∆t. The onset and concluding time of the
simulated data are at t0 = 0.095 s and tN = 10.05 s, respectively.

We use the following structure for the switching rates λσ1→σ2 , λσ2→σ1 in order to specify system kinetics, with a
parameter τf that sets the system kinetics time scale,

λσ1→σ2 = 2.2
τf
, λσ2→σ1 = 2.1

τf
(30)

in the analysis of fast switching rates. We simulate a case with τf = 0.1 s in Fig. 1 panel (b1), which involves
system kinetics that are faster than the data acquisition rate.

3.1.2 Comparison of HMJPs with HMMs on Simulated Data

Here, we compare HMJPs and HMMs on the analysis of simulated measurements given in Fig. 1 panel (a1).
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Fig. 2. HMJP and HMM photon emission rate, escape rate and transition probability estimates for fast switch-
ing kinetics in simulated measurements. Here, we provide posterior photon emission rate, escape rate and transition
probability estimates obtained with HMJP and HMM when the switching rate is faster than the data acquisition rate
1/∆t = 20 (1/s). We expect HMMs to perform poorly in estimating the true photon emission rates, escape rates and
transition probabilities when the system switching is fast. In this figure’s panels (a)-(b), we superposed the posterior
distributions over photon emission rates for HMJP (green for donor, orange for acceptor) and HMM (blue for donor, pink
for acceptor) along with their 95% confidence intervals and the true photon emission rates (dashed cyan line). Next, in
panels (c1)-(c2) and (d1)-(d2), we superposed the posterior distributions over escape rates and transition probabilities
(green for HMJP and blue for HMM) along with their 95% confidence intervals, true escape rates and true transition
probabilities (dashed cyan lines), respectively. In this figure’s panels (c1)-(c2) correspond to the posterior distribution of
escape rates that are labeled with λσk→σk′ for all k, k′ = 1, 2 with k 6= k′. Panels (d1)-(d2) correspond to the transition
probabilities labeled as Pσk→σk for all k = 1, 2. Here, simulated measurements are generated with the same parameters
as those provided in Fig. 1 panels (b1)-(b2).
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Fig. 3. An illustration of experimental smFRET measurements for data acquisition periods ∆t = 0.025, 0.05 s and
∆t = 0.1 s. In panels (a1), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding with
the data acquisition periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods τ = 0.025, 0.05 s and τ = 0.1 s in
donor (green) and acceptor (red) channels. Panels (a2), (b2) and (c2) are especially interesting to our analysis. Here, we
don’t observe well separated histograms due to fast switching kinetics of the molecule as shown in Fig. 1 panel (b2) for
simulated experiments.
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Fig. 4. HMJP and HMM photon emission rate, escape rate and transition probability estimates for experimental
smFRET measurements with ∆t = 0.025 s. Here, we provide posterior photon emission rate (panels (a)-(b)), escape
rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP and HMM for the
experimental data shown in Fig. 3 panel (a1). Here, we follow a similar color convention to that of Fig. 2. However, unlike
Fig. 3, ground truth information is not available for the photon emission rates, escape rates and transition probabilities as
the analysis is carried out for experimental data.
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Fig. 5. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate, escape rate
and diagonal transition probability estimates obtained with HMM for the measurements shown in Fig. 3 panels (a1), (b1)
and (c1). We expect HMM posterior estimates associated with 3 different exposure periods not to be consistent as the
switching kinetics approach the data acquisition rate. In panels (a)-(b), we superposed the posterior distributions for the
measurements associated with exposure periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s over photon emission rates for HMM
along with their 95% confidence intervals. Next, in panels (c1)-(c2), we superposed the posterior distributions over escape
rates along with their 95% confidence intervals. Finally, in panels (d1)-(d2), we superposed the posterior distributions
over transition probabilities and their 95% confidence intervals. Posterior distributions over photon emission rate, escape
rate and diagonal transition probability estimates for the integration periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s are
demonstrated in green, blue and purple, respectively.
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Fig. 6. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate, escape rate and
diagonal transition probability estimates obtained with HMJP for the measurements shown in Fig. 3 panels (a1), (b1) and
(c1). We expect HMJP posterior estimates associated with 3 different exposure periods to be consistent across examples
even if the switching kinetics exceed data acquisition rate. In panels (a)-(b), we superposed the posterior distributions for
the measurements associated with exposure periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s over photon emission rates for
the HMJP along with their 95% confidence intervals. Next, in panels (c1)-(c2), we superposed the posterior distributions
over escape rates along with their 95% confidence intervals. Finally, in panels (d1)-(d2), we superposed the posterior
distributions over transition probabilities and their 95% confidence intervals. Here, we follow a similar color convention to
that of Fig. 5.
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Fig. 7. HMM and HMJP FRET efficiency estimates for experimental smFRET measurements with ∆t =
0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior FRET efficiency estimates obtained with HMM and HMJP
for the measurements shown in Fig. 3 panels (a1), (b1) and (c1). We expect inconsistent posterior FRET efficiency
estimates for HMMs associated with 3 different exposure periods; see panel (a). On the other hand, we expect HMJPs
to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b). Here, in
panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET efficiency
(yellow). In this figure, we follow a similar color convention to that of Fig. 5.

We expect HMJPs to perform better than HMMs as the simulated data are generated with switching rates 5%
faster than the data acquisition rate (and thus many transitions occur during the data acquisition time). In this
regime of switching rates, the approximation in Eq. (13) required by HMMs fails.

Given the measurements, we estimate the posterior distribution over the quantities of interest including the trajec-
tory, T (·), initial transition probability matrix, ρ̄, transition probabilities ¯̄π (and ¯̄P in HMM), photon emission rates,
µ̄D, µ̄A and escape rates, λ̄. To achieve these estimates, we use HMJP and HMM samplers as introduced in Sec-
tion 2.2.3 to generate pseudorandom numbers from the posterior distributions P

(
ρ̄, ¯̄π, λ̄, µ̄D, µ̄A,

(
~S, ~D,M

) ∣∣wD,wA
)

and P
(
ρ̄, ¯̄P, µ̄,~c

∣∣wD,wA
)

, respectively.

We first show emission and escape rates estimates in Fig. 2. In Fig. 2 panels (a)-(b), (c1)-(c2), (d1)-(d2), we
observe that the ground truths for photon emission rates, escape rates and transition probabilities lie within the
95% credible intervals for the corresponding HMJP estimates. By contrast, the HMM performs poorly due to the
failure of the approximation in Eq. (13) resulting in unsatisfactory photon emission rate and escape rate estimates.

In particular, from Fig. 2 panels (a)-(b), we see that the HMM overestimates (by about 12% namely HMM
provides estimates that are approximately 1.12 times the ground truth values for µDσ1

and µAσ1
) µDσ1

and µAσ1
and

underestimates (about 5%) µDσ2
and µAσ2

. The failure of the HMM is more pronounced when looking at λσ1 and
λσ2 . For example, in Fig. 2 panels (c1)-(c2), the HMM provides narrow distributions over escape rates by grossly
underestimating both λσ1 and λσ2 (by about 50%). On the other hand, in Fig. 2 panels (c1)-(c2), we see that
HMJP posterior distribution mode coincides with the ground truth.

The HMM’s inability to capture fast kinetics is also reflected by its wide posterior distributions over transition
probabilities Pσ1→σ1 , Pσ2→σ2 as shown in Fig. 2 panels (d1)-(d2).

In Supporting Material (A) Fig. S1, we provide the analysis on slow switching kinetics for the HMJP and HMM
estimate comparisons as in Fig. 2 where both HMJP and HMM perform well.
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Subsequently, in Supporting Material (A) Fig. S2, we provide the robustness of HMJP posterior estimates over
photon emission rates, escape rates and transition probabilities for the data set provided in Fig. 1 panel (b1). We
observe that when the kinetic rates are more than 4 times the data acquisition rate then the HMJP starts failing in
providing consistent posterior estimates over over photon emission rates, escape rates and transition probabilities.

3.2 Experimental Data Analysis

We now move onto the analysis of experimental data sets.

3.2.1 Analysis Overview

Having benchmarked our HMJP on the simulated smFRET data set, we now move on to assessing the HMJP’s
performance on experimental smFRET data provided in Fig. 3, for Holliday junctions (HJ) as described in sample
preparation. We deliberately start from single photon arrival data sets. Such data sets give us the flexibility to
bin data as we please in order to mimic experimental data collected over broad range binning conditions as is the
case in (5, 6, 21–27). In particular, we bin using 3 data acquisition periods: ∆t = 0.025 s (with results shown
in Figs. 4 to 7), ∆t = 0.05 s (with results shown in Figs. 4 to 7) and ∆t = 0.1 s (with results shown in Figs. 4
to 7). We pick these bin sizes for a particular reason. We estimate for the smallest bins the rates ∼ 35 − 45
(1/s). Then, we consider data acquisition rates that are twice and four times bigger. We also set the exposure
period, τ to 100% of the ∆t namely τ = 0.025, 0.05 s and τ = 0.1 s. As we will see, the HMJP returns values
for the rates that are consistent across bin sizes as would be expected for a method that can learn transition rates
slower or faster than the data acquisition rate. By contrast, the failure of HMM becomes apparent due to the
inconsistency of the estimates for the switching kinetics as a function of data bin size. The HJs we use have two
well characterized conformational states (3, 80). Here, our goal is to estimate the HJ emission and switching
rates in addition to the trajectory of HJs simultaneously.

In Fig. 3 panels (a1), (b1), (c1), we show the data under all 3 different bin sizes. From the data, we estimate
the posterior distribution over the trajectory, T (·), initial transition probability matrix, ρ̄, transition probabilities
¯̄π (and ¯̄P in HMM), photon emission rates, µ̄D, µ̄A and escape rates, λ̄. In Fig. 4, we show a direct comparison
of the HMJP and HMM under the smallest bin size, where we anticipate both HMM and HMJP to be consistent
with one another. As we move to larger bin sizes, the HMJP remains consistent with the result that we obtain for
the smallest bin but the HMM eventually shows a lack of consistency as the bin size increases. This is apparent
from Fig. 5, where we look at increasing bin size for HMM and in Fig. 6 where we look at increasing bin size for
the HMJP. Finally in Fig. 7, we show the estimates over FRET efficiencies where we increase bin sizes for the
case of both HMM and HMJP.

3.2.2 Comparison of HMJPs with HMMs on Experimental Data

We begin with an HMJP and HMM comparison for the smallest bin size, ∆t = 0.025 s; see Fig. 3 panel (a1),
on the photon emission rates, escape rates and transition probability estimates provided in Fig. 4. We point out
that the simulated dataset provided in Fig. 1 mimic the dataset provided in Fig. 3. Even though, for experimental
data Fig. 3 panels (a1), “ground truth” photon emission rates, escape rates and transition probabilities are not
known, we suspect that similar observations provided in Fig. 2 hold for Fig. 4.

In Fig. 4 panels (a)-(b), we observe that HMM overestimates µσ1 and underestimates µσ2 compared to HMJP
estimates for µσ1 and µσ2 . In addition, as can be seen in Fig. 4 panels (c1)-(c2), HMM provides narrow
distributions over escape rates for both λσ1 and λσ2 . This contradicts with the escape rate posterior of the
HMJP; see panels (c1)-(c2) of Fig. 4. We speculate that as HMM is unable to resolve fast switching kinetics,
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missed kinetic transitions are reflected in terms of underestimation/overestimation of photon emission rates or
escape rates; see Fig. 4 panels (a)-(b) and (c1)-(c2). In Fig. 4 panels (d1)-(d2), we observe that HMM and
HMJP estimates for Pσ1→σ1 are overlapping although they have distinct posterior distributions for Pσ2→σ2 .

Next, we show in Fig. 5 that the HMMs’ photon emission rates, escape rates and transition probability estimates
grow inconsistent for larger bin sizes, ∆t = 0.05, 0.1 s (see Fig. 3 panels (b)-(c)). As a result of binning, we
have multiple different apparent photon emission rates that appear. This could be overinterpreted as noise by
the HMM; see panels (a)-(b). Indeed, HMMs interpret the various photon emission rates as an increased noise
variance. As a related artifact, the HMM misses multiple transitions and therefore grossly underestimates escape
rates.

As we see in panels (c1)-(c2), HMMs start underestimating escape rates as bin sizes become larger from ∆t =
0.025 s to ∆t = 0.05, 0.1 s. We emphasize that these escape estimates are approximate escape rate estimates
obtained from the transition probability estimates for the HMM (see Eq. (13)) because a HMM does not directly
report on kinetic rates. We observe in Fig. 5 panels (d1)-(d2) that the uncertainty around the HMM transition
probability estimates increase and are furthermore not consistent as bin sizes increase. Subsequently, we repeat
the exact same analysis as we did for the HMM for the HMJP. In particular there is an exact correspondence
between Fig. 5 panels (a)-(b), (c1)-(c2), (d1)-(d2) and Fig. 6 panels (a)-(b), (c1)-(c2), (d1)-(d2). Details are
provided in the captions however the important message is that HMJP escape rate estimates (see Fig. 6 panels
(c1)-(c2)) has remained consistent across increased bin sizes.

Finally, in Fig. 7 panels (a), (b), we provide the posterior distributions over FRET efficiencies for the HMM and
the HMJP. Here, we observe that HMMs provide inconsistent posterior FRET efficiency estimates for larger bin
sizes; see panel (a). On the other hand HMJPs provide consistent FRET efficiency estimates; see panel (b).

In Supporting Material (A), we provide similar analysis for two other experimental smFRET data sets; see Fig. S3,
Fig. S4. These analyzed data sets provided in Fig. S3, Fig. S4 were acquired under same experimental conditions
as presented here. By analyzing these additional data sets, we justify the robustness of our method; see Figs. S4
to S10.

4 Discussion

Single molecule FRET data has the potential of revealing switching kinetics occurring on time scales at or even
exceeding the measurement time scale (1, 3, 10, 32). This is especially helpful for smFRET data collected in
a binned fashion (5, 6, 21–27). To achieve this, we have extended the HMM paradigm, previously used in the
analysis of smFRET, by treating physical processes as they occur in nature (1, 3, 5–7, 10, 21–27, 32); that is, as
continuous time processes using a Markov jump process framework (15, 47, 71–75, 81, 82).

The framework that we present here can treat multiple different data collection regimes. For example, it can treat
different exposure periods, it can also treat different measurement models and variable background levels. Our
framework reduces to existing frameworks, such as the HMM, in specific limits. For example, when the exposure
period (τ) is as long as the data acquisition period (∆t), and the only measurements available are those precisely
at the data acquisition time, then our model reduces to the HMM. Similarly, our method is more general than the
H2MM (3) a previously developed method that treats the continuously evolving molecule trajectory by discretizing
this process on a finer time scale than the data acquisition period. In the infinitely small discretization of this
grid, the H2MM recovers our HMJP (3).

Finally, our method for smFRET data analysis goes beyond existing methods such as the H2MMs (3) or others (1)
by not only making point estimates for the molecular trajectory, switching kinetics and photon emission rates.
Rather, the Bayesian paradigm (54, 76) within which we operate allows us to compute full posterior distributions
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over these estimated quantities.

As a final note, our framework might also be extended in multiple different ways. Trivially, we can change the
detector model of Eq. (5) and Eq. (6) to incorporate different kinds of detector models such as for sCMOS cameras
used in (7, 62, 65) this is equivalent to a change of Eq. (5) and Eq. (6). In addition, we can extend our framework
to account for photophysical states of the fluorophores as well as accounting for spectral cross bleeding between
donor and acceptor channels (7) by changing the measurement model such that the photon emission rates are
affected by the photophysical states of the fluorophores. A non trivial extension of our work is to consider a single
photon arrival framework for smFRET as opposed to dealing with binned data (1, 3). Additionally, it would be
possible to leverage the strengths of Bayesian nonparametrics to learn the number of conformational states within
the HMJP (7, 30, 31, 35, 37, 49, 77, 78, 83). Overcoming these difficulties is the focus of future work.
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A Supporting Material

A.1 Comparison of HMJP and HMM for Simulated Data with Slow Switching Kinetics

Fig. A.1. HMJP and HMM photon emission rate, escape rate and transition probability estimates for slow
switching kinetics in simulated measurements. Here, we provide posteriors over the photon emission rate, escape rate
and transition probability estimates obtained with HMJPs and HMMs when the switching rate is slower than the data
acquisition rate 1/∆t = 20 (1/s). We expect HMMs to perform poorly in estimating the true photon emission rates,
escape rates and instead perform better in estimating transition probabilities when the system switching is slow. Here, we
provide the posterior distributions with the same color convention as in Fig. 2. Simulated measurements used here are
generated with the same parameters as those provided in Fig. 1 panels (a1)-(a2).
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A.2 Performance of HMJP for Simulated Data with Fast Switching Kinetics over a Range of Bin
Sizes

Fig. A.2. HMJP photon emission rate, escape rate and transition probability estimates for fast switching kinetics in
simulated measurements. Here, we provide posterior photon emission rate, escape rate and diagonal transition probability
estimates obtained with HMJP for the measurements shown in Fig. 1 panels (b1). Here, we expect HMJP posterior
estimates to be consistent for the first 3 data acquisition periods (∆t = 0.05, 0.075, 0.1 s) and not consistent for ∆t = 0.15 s.
In this figure’s each panel, we have the same content information as in Fig. A.1. Posterior distributions over photon
emission rate, escape rate and diagonal transition probability estimates for the integration periods ∆t = 0.05, 0.075, 0.1 s
and ∆t = 0.15 s are demonstrated in dark green, green, blue and purple, respectively.
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A.3 HMJP Estimates for Additional Experimental smFRET Data

Fig. A.3. An illustration of experimental smFRET measurements for data acquisition periods ∆t = 0.025, 0.05 s
and ∆t = 0.1 s. In panels (a1), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding
with the data acquisition periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods τ = 0.025, 0.05 s and τ = 0.1 s in
donor (green) and acceptor (red) channels.
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Fig. A.4. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMM for the
experimental data shown in Fig. A.3 panels (a1),(b1) and (c1). Here, we follow a similar color convention as in Fig. 5.
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Fig. A.5. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP for the
experimental data shown in Fig. A.3 panels (a1),(b1) and (c1). Here, we follow a similar color convention as in Fig. A.4.

Fig. A.6. HMJP and HMM FRET efficiency estimates for experimental smFRET measurements with ∆t =
0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate and FRET efficiency estimates obtained
with HMJP for the measurements shown in Fig. A.3 panels (a1), (b1) and (c1). We expect inconsistent posterior FRET
efficiency estimates for HMM associated with 3 different exposure periods; see panel (a). On the other hand, we expect
HMJP to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b).
Here, in panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET
efficiency (yellow). In this figure, we follow a similar color convention to that of Fig. 5.
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Fig. A.7. An illustration of experimental smFRET measurements for data acquisition periods ∆t = 0.025, 0.05 s
and ∆t = 0.1 s. In panels (a1), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding
with the data acquisition periods ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods τ = 0.025, 0.05 s and τ = 0.1 s in
donor (green) and acceptor (red) channels.
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Fig. A.8. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMM for the
experimental data shown in Fig. A.7 panels (a1),(b1) and (c1). Here, we follow a similar color convention as in Fig. 5.
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Fig. A.9. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with ∆t = 0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior emission rate (panels (a)-(b)), escape
rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP for the experimental
data shown in Fig. A.7 panels (a1),(b1) and (c1). Here, we follow a similar color convention as in Fig. A.4.

Fig. A.10. HMJP and HMM FRET efficiency estimates for experimental smFRET measurements with ∆t =
0.025, 0.05 s and ∆t = 0.1 s. Here, we provide posterior photon emission rate and FRET efficiency estimates obtained
with HMJP for the measurements shown in Fig. A.7 panels (a1), (b1) and (c1). We expect inconsistent posterior FRET
efficiency estimates for HMM associated with 3 different exposure periods; see panel (a). On the other hand, we expect
HMJP to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b).
Here, in panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET
efficiency (yellow). In this figure, we follow a similar color convention to that of Fig. 5.
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A.4 Modeling Summary

A.4.1 Hidden Markov Jump Process Model

For K = 2, the full set of HMJP equations is

ρ̄ ∼ Dirichlet
(α

2 ,
α

2

)
(A.1)

λσ1 ∼ Gamma
(
η,
b

η

)
(A.2)

λσ2 ∼ Gamma
(
η,
b

η

)
(A.3)

µDσ1
∼ Gamma

(
φD,

ψD

φD

)
(A.4)

µDσ2
∼ Gamma

(
φD,

ψD

φD

)
(A.5)

µAσ1
∼ Gamma

(
φA,

ψA

φA

)
(A.6)

µAσ2
∼ Gamma

(
φA,

ψA

φA

)
(A.7)

π̄σ1 ∼ Dirichlet (0, A) (A.8)
π̄σ2 ∼ Dirichlet (A, 0) (A.9)
s0
∣∣ρ̄ ∼ Categorical (ρ̄) (A.10)

dm|sm, λσ1 , λσ2 ∼ Exponential (λsm) for m = 0, 1, 2, ...,M − 1 (A.11)

sm+1|sm, π̄σ1 , π̄σ2 ∼ Categorical (π̄sm) for m = 0, 1, 2, ...,M − 1 (A.12)

wDn |T (.) , µDback, µ
D
σ1
, µDσ2

∼ Poisson

µDbackτ +
tn∫

tn−τ

dtµDT (t)

 for m = 1, 2, ...,M (A.13)

wAn |T (.) , µAback, µ
A
σ1
, µAσ2

∼ Poisson

µAbackτ +
tn∫

tn−τ

dtµAT (t)

 for m = 1, 2, ...,M (A.14)

where T (·) is formulated as follows

T (t) =


s0 if t0 ≤ t < t0 + d0

s1 if t0 + d1 ≤ t < t0 + d0 + d1
...

sM−1 if t0 + d0 + · · ·+ dM−2 ≤ t < t0 + d0 + d1 + · · ·+ dM−1

(A.15)

with M determined based on the first time

t0 +
M−1∑
m=0

dm ≥ tN . (A.16)
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A.4.2 Hidden Markov Model

For K = 2, the full set of HMM equations is

ρ̄ ∼ Dirichlet
(α

2 ,
α

2

)
(A.17)

P̄σ1 ∼ Dirichlet
(
A

2 ,
A

2

)
(A.18)

P̄σ2 ∼ Dirichlet
(
A

2 ,
A

2

)
(A.19)

µDσ1
∼ Gamma

(
φD,

ψD

φD

)
(A.20)

µDσ2
∼ Gamma

(
φD,

ψD

φD

)
(A.21)

µAσ1
∼ Gamma

(
φA,

ψA

φA

)
(A.22)

µAσ2
∼ Gamma

(
φA,

ψA

φA

)
(A.23)

c0|ρ̄ ∼ Categorical (ρ̄) (A.24)
cn|cn−1, P̄σ1 , P̄σ2 ∼ Categorical

(
P̄cn−1

)
for n = 2, ..., N (A.25)

wDn |cn, µDσ1
, µDσ2

∼ Poisson
(
µDbackτ + µDcnτ

)
for m = 1, 2, ...,M (A.26)

wAn |cn, µAσ1
, µAσ2

∼ Poisson
(
µAbackτ + µAcnτ

)
for m = 1, 2, ...,M (A.27)

A.4.3 Overview of the Sampling Updates

In order to produce samples from the full posterior distributions P
(
ρ̄, ¯̄P, µ̄D, µ̄A,~c

∣∣wD,wA
)

for the HMM and

P
(
ρ̄, ¯̄π, λ̄, µ̄D, µ̄A, (~S, ~D,M)

∣∣wD,wA
)

for the HMJP, we use Gibbs sampling (7, 30, 31, 35, 37, 44, 77, 78).
Specifically, we repeat the following steps:

1. Update ~c for the HMM or (~S, ~D,M) for the HMJP;

2. Update transition probabilities, that is P̄σk for the HMM or π̄σk and λσk for the HMJP;

3. Update the initial probability vector ρ̄ for both the HMM and the HMJP;

4. Update photon emission rates µ̄D, µ̄A for both the HMM and the HMJP.

Here, we present the equation summaries for sampling photon emission rates.

Sampling photon emission rates for HMJP In order to produce proposals for the Metropolis Hastings algorithm,
we use Hamiltonian Monte Carlo (HMC). This method is very fruitful as Hamiltonian dynamics preserve volume
in (q, p) space therefore we can use the trajectories to define complex mappings. Here the target distribution we
have is the following

P
(
µ̄A, µ̄D

∣∣wD,wA,
(
~S, ~D,M

))
. (A.28)
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There are two main variables, these are the position that is labeled with q and the momentum, p. Here we collect
the parameter of interest to be sampled in q such that

q =
(
µ̄D, µ̄A

)
=
(
µDσ1

, µDσ2
, µAσ1

, µAσ2

)
. (A.29)

We have the following potential

U(q) = − log
(
P
(
µDσ1

, µDσ2
, µAσ1

, µAσ2

∣∣wD,wA,
(
~S, ~D,M

)))
(A.30)

= − log
(
P
(

wD
∣∣µDσ1

, µDσ2
,
(
~S, ~D,M

)))
− log

(
P
(
µDσ1

, µDσ2

))
(A.31)

− log
(
P
(

wA
∣∣µAσ1

, µAσ2
,
(
~S, ~D,M

)))
− log

(
P
(
µAσ1

, µAσ2

))
(A.32)

= −
N∑
n=1

(
wDn log

(
µDbackτ + τµDσ1

Nn∑
k=1

(χσ1 (sk)) tFk + τµDσ2

Nn∑
k=1

(χσ2 (sk)) tFk

))
(A.33)

+
N∑
n=1

(
µDbackτ + τµDσ1

Nn∑
k=1

(χσ1 (sk)) tFk + τµDσ2

Nn∑
k=1

(χσ2 (sk)) tFk

)
(A.34)

+
2∑
j=1

((
1− φD

)
log
(
µDσj

)
+ φD

ψD
µDσj

)
(A.35)

−
N∑
n=1

(
wAn log

(
µAbackτ + τµAσ1

Nn∑
k=1

(χσ1 (sk)) tFk + τµAσ2

Nn∑
k=1

(χσ2 (sk)) tFk

))
(A.36)

+
Nn∑
n=1

(
µAbackτ + τµAσ1

Nn∑
k=1

(χσ1 (sk)) tFk + τµAσ2

Nn∑
k=1

(χσ2 (sk)) tFk

)
(A.37)

+
2∑
j=1

((
1− φA

)
log
(
µAσj

)
+ φA

ψA
µAσj

)
. (A.38)

We also need the gradient of U(q) namely, ∂U
∂µDσ1

, ∂U
∂µDσ2

, ∂U
∂µAσ1

, ∂U
∂µAσ2

.

• ∂U
∂µDσ1

= −
N∑
n=1

 wn

Nn∑
k=1

(χσ1 (sk))tFk

µDback+µDσ1

Nn∑
k=1

(χσ1 (sk))tFk +µDσ2

Nn∑
k=1

(χσ2 (sk))tFk
− τ

Nn∑
n=1

(
(χσ1 (sk)) tFk

)+ (1−φD)
µDσ1

+ φD

ψD

• ∂U
∂µDσ2

= −
N∑
n=1

 wn

Nn∑
k=1

(χσ2 (sk))tFk

µDback+µDσ1

Nn∑
k=1

(χσ1 (sk))tFk +µDσ2

Nn∑
k=1

(χσ2 (sk))tFk
− τ

Nn∑
n=1

(
(χσ2 (sk)) tFk

)+ (1−φD)
µDσ2

+ φD

ψD

• ∂U
∂µAσ1

= −
N∑
n=1

 wn

Nn∑
k=1

(χσ1 (sk))tFk

µAback+µAσ1

Nn∑
k=1

(χσ1 (sk))tFk +µAσ2

Nn∑
k=1

(χσ2 (sk))tFk
− τ

Nn∑
n=1

(
(χσ1 (sk)) tFk

)+ (1−φA)
µAσ1

+ φA

ψA

• ∂U
∂µAσ2

= −
N∑
n=1

 wn

Nn∑
k=1

(χσ2 (sk))tFk

µAback+µAσ1

Nn∑
k=1

(χσ1 (sk))tFk +µAσ2

Nn∑
k=1

(χσ2 (sk))tFk
− τ

Nn∑
n=1

(
(χσ2 (sk)) tFk

)+ (1−φA)
µAσ2

+ φA

ψA
.
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Sampling photon emission rates for HMM Similarly with above, we use HMC on the target distribution

P
(
µ̄A, µ̄D

∣∣wD,wA,~c
)
. (A.39)

There are two main variables, these are the position that is labeled with q and the momentum, p. Here we collect
the parameter of interest to be sampled in q such that

q =
(
µ̄D, µ̄A

)
=
(
µDσ1

, µDσ2
, µAσ1

, µAσ2

)
. (A.40)

We have the following potential

U(q) = − log
(
P
(
µDσ1

, µDσ2
, µAσ1

, µAσ2

∣∣wD,wA,~c
))

(A.41)
= − log

(
P
(
wD
∣∣µDσ1

, µDσ2
,~c
))
− log

(
P
(
µDσ1

, µDσ2

))
(A.42)

− log
(
P
(
wA
∣∣µAσ1

, µAσ2
,~c
))
− log

(
P
(
µAσ1

, µAσ2

))
(A.43)

= −
N∑
n=1

(
wDn log

(
µDbackτ + τµDσ1

(χσ1 (cn)) + τµDσ2
(χσ2 (cn))

))
(A.44)

+
N∑
n=1

(
µDbackτ + τµDσ1

(χσ1 (cn)) tFk + τµDσ2
(χσ2 (cn))

)
(A.45)

+
2∑
j=1

((
1− φD

)
log
(
µDσj

)
+ φD

ψD
µDσj

)
(A.46)

−
N∑
n=1

(
wAn log

(
µAbackτ + τµAσ1

(χσ1 (cn)) + τµAσ2
(χσ2 (cn))

))
(A.47)

+
N∑
n=1

(
µAbackτ + τµAσ1

(χσ1 (cn)) tFk + τµAσ2
(χσ2 (cn))

)
(A.48)

+
2∑
j=1

((
1− φA

)
log
(
µAσj

)
+ φA

ψD
µAσj

)
. (A.49)

We also need the gradient of U(q) namely, ∂U
∂µDσ1

, ∂U
∂µDσ2

, ∂U
∂µAσ1

, ∂U
∂µAσ2

.

• ∂U
∂µDσ1

= −
N∑
n=1

(
wDn (χσ1 (cn))

µDback+µDσ1(χσ1 (cn))+µDσ2(χσ2 (cn)) − τ (χσ1 (cn))
)

+ (1−φD)
µDσ1

+ φD

ψD

• ∂U
∂µDσ2

= −
N∑
n=1

(
wDn (χσ2 (cn))

µDback+µDσ1(χσ1 (cn))+µDσ2(χσ2 (sn)) − τ (χσ2 (cn))
)

+ (1−φD)
µDσ2

+ φD

ψD

• ∂U
∂µAσ1

= −
N∑
n=1

(
wAn (χσ1 (cn))

µAback+µAσ1(χσ1 (cn))+µAσ2(χσ2 (cn)) − τ ((χσ1 (cn)))
)

+ (1−φA)
µAσ1

+ φA

ψA

• ∂U
∂µAσ2

= −
N∑
n=1

(
wAn (χσ2 (sn))

µAback+µAσ1(χσ1 (cn))+µAσ2(χσ2 (cn)) − τ ((χσ2 (cn)))
)

+ (1−φA)
µAσ2

+ φA

ψA
.

A.4.4 Background Photon Emission Rates

We estimate the values of µDback, µ
A
back from portions of the time traces without signal, where µDσk = µAσk =

0 photons/s. We analyze these portions, labeled with wD
back =

(
wD1,back, w

D
2,back, ..., w

D
Nback,back

)
and wA

back =
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(
wA1,back, w

A
2,back, ..., w

A
Nback,back

)
, to estimate the background photon emission rates based on the formulation

provided below

µDback ∼ Gamma
(
ξD,

νD

ξD

)
(A.50)

µAback ∼ Gamma
(
ξA,

νA

ξ

)
(A.51)

wDn,back|µDback ∼ Poisson
(
µDbackτ

)
(A.52)

wAn,back|µAback ∼ Poisson
(
µAbackτ

)
(A.53)

for all n = 1, 2, ..., Nback with hyperparameters ξD, νD, ξA, νA.

Therefore, we have the following posterior distribution for the background photon emission rates for the donor
channel

P
(
µDback|wD

back
)
∝ P

(
wD

back|µDback
)
P
(
µDback

)
=
(

N∏
n=1

P
(
wDn,back|µDback

))
P
(
µDback

)
(A.54)

∝ exp
(
−µDback

(
ξD

νD
+

N∑
n=1

τ

))
µDback

(
ξD+

N∑
n=1

wDn,back−1

)
(A.55)

= Gamma

µDback; ξD +
N∑
n=1

wDn,back,
1

ξD

νD
+

N∑
n=1

τ

 . (A.56)

We can then estimate µDback via the mean of the above posterior distribution, which is equal to
ξD+

N∑
n=1

wDn,back

ξD

νD
+

N∑
n=1

τ

. As

the prior becomes non-informative (54, 76, 84); that is, at the limit ξD → 0, our estimate reduces to

µ̂Dback =

N∑
n=1

wDn,back

Nτ
. (A.57)

We obtain the estimator µ̂Aback in the acceptor channel similarly.
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A.5 Notation and Analysis Options

Table A.1. Notation Conventions

Description Variable Units

Total number of measurements N −
Total number of conformational states K −
Total number of jumps M −
Sequence of system states {c0, c1, ..., cN} ~c −
HMM trajectory T (.) = ~c −
State of the system in HMM at time tn cn −
State of the system in HMJP at nth jump sn −
Holding time of the system in HMJP at nth jump dn+1 s
HMJP trajectory T (.) =

(
~S, ~D,M

)
−

Initial transition probability matrix ρ̄ −
Transition probability matrix in HMM ¯̄P −
Probability of transitioning from state σk to σk′ in HMM Pσk→σk′ −
Transition probability for the embedded discrete Markov chain in HMJP ¯̄π −
Escape rate for the kth state of the system λσK = −qσk→σk 1/s
Absolute escape rate vector λ̄ −
photon emission rates µ̄D, µ̄A photons/s
Background photon emission rate estimates µ̂Dback, µ̂

A
back photons/s

Generator matrix in HMJP ¯̄G 1/s
Rate of transitioning form state σk to σk′ in HMJP λσk→σk′ 1/s
Initial time of the experiment t0 s
End time of the experiment tN s
Fixed exposure period τ s
Fixed inactive period of detector τD s
Fixed data acquisition period ∆t s
Data acquisition rate 1/∆t 1/s
Representative of nth data acquisiton period [tn−1, tn] −
Representative of nth exposure period [tn − τ, tn] −
Concentration parameter for ρ̄ α −
Concentration parameter for ¯̄π and ¯̄P A −
Shape parameter η −
Scale parameter b −
Emission rate shape φD, φA −
Emission rate scale ψD/φD, ψA/φA −
Background emission rate shape ξD, ξA −
Background emission rate scale νD/ξD, νA/ξA −

Indicator χu (v) =
{

1 v 6= u

0 v 6= u
−

.
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Table A.2. Parameter Choices and Units

- ψD, ψA φD, φA η b A α ∆t
Units photons/s - - 1/s - - s

Fig. 1 total photon counts/total duration 1 2 100 1 1 0.05
Fig. 2 total photon counts/total duration 1 2 100 1 1 0.05
Fig. 3 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. 4 total photon counts/total duration 1 2 100 1 1 0.025
Fig. 5 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. 6 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. 7 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.1 total photon counts/total duration 1 2 300 1 1 0.05
Fig. A.1 total photon counts/total duration 1 2 300 1 1 0.05
Fig. A.2 total photon counts/total duration 1 2 300 1 1 0.05, 0.075, 0.1, 0.15
Fig. A.3 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.4 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.5 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.6 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.7 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.8 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.9 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1
Fig. A.10 total photon counts/total duration 1 2 100 1 1 0.025, 0.05, 0.1

.
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