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Abstract

Our goal is to learn kinetic rates from single molecule FRET (smFRET) data even if these exceed the data
acquisition rate. To achieve this, we develop a variant of our recently proposed hidden Markov jump process
(HMJP) with which we learn transition kinetics from parallel measurements in donor and acceptor channels.
Our HMJP generalizes the hidden Markov model (HMM) paradigm in two critical ways: (1) it deals with
physical smFRET systems as they switch between conformational states in continuous time; (2) it estimates
the transition rates between conformational states directly without having recourse to transition probabilities
or assuming slow dynamics (as is necessary of the HMM). Our continuous time treatment learns transition
kinetics and photon emission rates for dynamical regimes inaccessible to the HMM which treats system
kinetics in discrete time. We validate the robustness of our framework on simulated data and demonstrate its
performance on experimental data from FRET labeled Holliday junctions.

Keywords: smFRET | fluorescence | hidden Markov jump process | continuous time process | single molecule

data analysis
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Fig. 1. An illustration of single molecule switching kinetics and corresponding measurements. In panels (al) and
(a2), we provide the simulated trajectory (cyan) of the single molecule between two states (o1,02). The photon emission
rates, i.e., number of emitted photons per unit time in the absence of noise in both donor and acceptor channels associated
with the conformation states o1 and oo are labeled with 1y, and po,, respectively. This simulated experiment provided
in this figure starts at to = 0.05 s and ends at ty = 10 s with data acquisition period At = 0.05 s. Here in panels (al)
and (b1), for visual purposes, we assume that the measurements are acquired by a detector with fixed exposure period
7 = 50 ms in donor (green) and acceptor (red) channels. As the molecule switches between states o1,02 during an
integration period, the measurements represent the number of emitted photons that capture the average of the photons
emitted with rates pio,, o, associated with the visited states. In this figure, panels (al)-(a2) represent the simulated data
where the molecule switching kinetics between the conformation states are slower than the data acquisition rate. On the
other hand, in panels (b1)-(b2), we demonstrate a single molecule trajectory (cyan) when the molecule’s switching kinetics
are faster than the data acquisition rate. In panel (a2), slow kinetics of the molecule give rise to well separated state
occupancy histograms in donor/acceptor channels around the average photon emission rates. By contrast, in panel (b2),
we don’t observe well separated histograms due to fast switching kinetics of the molecule.

1 Introduction

Fluorescence experiments based on single molecule Férster resonance energy transfer (smFRET) can probe the
switching kinetics between conformational states defined by different inter- and intra-molecular distances (IHIOJ).
In a prototypical intra-molecular smFRET experiment, one portion of a molecule of interest is attached to a donor
fluorophore and another to an acceptor fluorophore (1H18). In such an experiment, the excitation wavelength is
most commonly adjusted to excite the donor (9, [14] [16H18). For a donor sufficiently far from the acceptor, the
donor is excited and emits shorter wavelength light as compared to the longer wavelength light emitted by the
acceptor in the case of energy transfer when donor and acceptor are in proximity (9} [14, 16HI8). Due to the
difference in the wavelength of light emitted by the donor and acceptor, the photons emitted are registered across
different detectors (9, 14} [I6H18). We refer to the recordings in the two detectors as the donor and acceptor
channels (9] [14] 16H18). As such, the sequence of photon detections (2]) encodes the kinetics according to which
the distance varies between both fluorophores down to the s timescale (IH9). Existing approaches to analyze
smFRET data include FRET efficiency histogram-based methods though such methods discard the important
temporal information encoded in donor and acceptor photon arrival sequences (5H9, 11HI3] [I5] 16, 19). What
is more, FRET efficiency histogram analysis is difficult to generalize beyond 2 conformational states as discussed
n (20). In addition, on account of the arbitrary binning required to construct histograms, such methods may
lead to inconclusive or erroneous estimates (5, [0, 21H27]). For these reasons, modeling efforts have moved toward
more direct time series analysis (7} 20, 28H3T]).
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By relying on the hidden Markov model (HMM) paradigm (I}, 3, [7, [10, [30, 32H36)), time series analysis fully
considers the temporal arrangement (i.e., the sequence) of photon detections and avoids histogram binning
artifacts (I, 3 [7, [10, B2)). This paradigm is especially fruitful in analyzing demanding experiments as the con-
formational states, treated as the hidden states of the HMMs, are themselves indirectly observed due to shot-
noise (I} [3) and also allows for inclusion of measurement noise and specialized detector characteristics in the
analysis (I}, 3 [7, 10, [32).

HMMs and their variants, starting from (15) and motivating latter efforts such as the H*MMs ({1}, 3| 130, 35| [37)
and bl-ICON (7)), are the state-of-the-art in the analysis of smFRET data. However, HMMs have built into them
important assumptions that we wish to lift in an effort to analyze conformational transitions occurring on time
scales faster than the data acquisition rate 1/At supported by the detectors. Before describing these assumptions,
we discuss At (the bin size for photon collection) otherwise known as frame rate or temporal resolution. As At
is determined mostly by the detectors, for simplicity we assume that the same At applies on both channels.

In order to learn about rates exceeding the data acquisition rate, the most critical HMM assumptions that we
need to lift are the following:

e HMMs make the assumption that the state switches occur rarely as compared to At. In other words, all
switching rates are assumed much slower than 1/At. For this reason, HMMs are formulated using transition
probabilities rather than transition rates.

e HMMs make the assumption that transitions occur precisely at the end of each data acquisition period (30,
35}, B8H43). In other words, intra-frame motion does not occur. For this reason, HMMs represent only
instantaneous states and measurements.

The former assumption is particularly relevant to the present study as it requires, prior to the analysis, that
all transitions are slower than At. In general, this is not only unknown but also practically difficult to quantify
beforehand. After all, the objective of many experiments is to determine the switching rates in the first place. The
latter assumption is also relevant to the present study as, prior to the analysis, it needs to balance two competing
requirements: an upper bound on At set by the fastest switching rate and a lower bound on At supported by the
detection hardware.

There have been few theoretical approaches proposed to overcome these challenges. For example, in the
HZ2MM (3), a time grid finer than the measurement time interval is imposed and a HMM is implemented on
this finer grid (3). This method is known to suffer from computational complexity (44) and it is for this reason
that formulations have been sought in continuous time (44, [45). Motivated by the H?MM (3), our goal is to
move to an exact continuous time treatment for smFRET systems with no approximation on the timescales of
the switching kinetics.

In Fig. [1| panels (al),(bl), we illustrate an example of smFRET measurements. In panel (al), we show an
example with slow kinetics (relative to At). These data are primarily contaminated with shot-noise and can be
reliably analyzed within the HMM paradigm. On the other hand, in panel (bl), we demonstrate an example with
fast kinetics (relative to At). On top of shot-noise, these data are contaminated with significant intra-frame
transitions, consequently they cannot be analyzed within the HMM paradigm. As the molecule undergoes fast
switching between the states during a data acquisition period, the measurement associated with that period
reports on the average signal from the molecule over that period and the state of the molecule cannot be deduced
from a model operating exclusively on instantaneous states such as within the HMMs paradigm. Nonetheless,
the information about the fast switching is itself encoded within that measurement. It is therefore necessary to
develop a method that can accommodate continuously evolving dynamics in order to learn the kinetics from the
measurements instead of invoking an HMM formulation that, by construction, violates this critical feature.
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To achieve this, a new method needs to: i) represent the dynamics of the molecule in continuous time; ii)
model the acquired measurements at each data acquisition times via the average dynamics of the molecule within
the associated data acquisition period; and iii) entail manageable computational cost so it allows for practical
applications.

For this reason, we now turn to Markov jump processes (MJPs) describing continuous time dynamics (46H50]) for
which recent developments in computational statistics have suggested strategies for inferring rates using MJPs
from traditional, continuous time, data (44] 45| 51]). The main challenge presented by smFRET experiments,
however, lie in the fact that measurements do not directly report back on the fast kinetics of molecules. Rather,
frame rates report on the average state of the molecule over the At exposure window. This problem is exacerbated
for molecular kinetics fast as compared to At. The focus of this work is really to validate a workaround, that
we call the Hidden MJP (HMJP), to this critical challenge. As we will see, the HMJP is a generalization of the
HMM. As such, the HMJP mathematically exactly reduces to the HMM in the limit that exposure period At — 0.

To achieve this, in Section we start with our HMJP smFRET model description and also, briefly for sake
of comparison, summarize plain HMMs for smFRET applications. Next, in Section [3, we provide HMM and
HMJP analysis comparisons for simulated measurements. In the comparison of these two methods, we present
their performances in learning photon emission rates, transition probabilities (for HMMs) and kinetic rates (for
HMJPs). We demonstrate how HMJPs successfully outperform HMMs especially for fast kinetic rates as compared
to the data acquisition rate. Their comparison on slow switching kinetics of simulated smFRET data (where both
HMM and HMJP expectedly do well) is relegated to Appendix . Subsequently, we move onto the analysis of
experimental data. We provide a comparison of HMJPs and HMMs in learning molecular trajectories, transition
probabilities and kinetic rates. Lastly, in Section we discuss the broader potential of HMJPs for smFRET
applications.

2 Methods

Below, we provide the mathematical description of a physical system that models smFRET experiments. Subse-
quently we use this model in conjunction with given data to extract our estimates.

2.1 Model Description
2.1.1 Dynamics of the System

We denote the trajectory, describing the molecule’'s conformational states at any given time, with 7(-). Here,
T (t) corresponds to the molecule’s state at time t. Thus 7 (¢) is a function over the time interval [to,tn]. The
accessible states of the molecule are labeled with o, and indexed with £ = 1,..., K. For example, these states
can be considered the K = 2 isomerization states of Holliday junctions (3). If the molecule is in state o}, at time
t, then we denote it by 7 (t) = o, (44, [45)).

We model the transitions of the molecule as a memoryless process (35, [50, 52, 53)) and assume exponentially
distributed waiting times in each state. Together, these define our Markov process. In particular, as we model
waiting times in continuous times, our Markov process is a Markov jump process (50)).

In greater detail, we assume that the system chooses stochastically a state o, at the onset of the experiment that
is denoted by 7 (t9) = o). The probability of determining this initial state oy, is labeled with p,,. The collection
of all initial probabilities is a probability vector and labeled with p = (ps,, Poss s Poy ), (B4HET)).

Switching rates fully describe the switching kinetics of the molecule and they are labeled with A;, 5 , for all
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possible states o, o where k, k' = 1,2, ..., K and A,, _,,, = 0 by definition for k = 1,2, ..., K. For mathematical
convenience, we keep track of the escape rates as an alternative parametrization of the switching kinetics which

are given by
K
)\O'k = Z Aak—nrkw (1)
k=1
We collect all escape rates in A = (Ay,, Aoy, - - > Aoy ). Moreover, for computational convenience, we track the
normalized switching rates by the escape rates
AU’ — 0/
Top—0o, — ;\ = (2)
Ok
The collection of all normalized switching rates from state oy, is denoted by Ty, = (To) —s01» Top—00s " * s Ton—onr )
We see that each 7,, forms a probability vector (56). We can gather all transition probabilities in a matrix 7
that reads
Mo,
= 7?0-2
™= (3)
Mo g

Given p and A, 7, the trajectory 7 (-) is obtained by a variant of the Gillespie algorithm (52)) which determines a
succession of states for the conformations of the system sg, s1, -+ , spr—1 and their durations dg, dy,ds, - -+ ,dpr—1-
These together define T (+) throughout the time course [to,tn] by

So if to<t<tyg+dy
S1 if to+di <t<tyg+dy+d
T(t) = : (4)
SM—1 if t0+d0+"'+dM_2
<t<to+dy+di+---+dy_1.
For clarity, we encode T (-) in a triplet (g,ﬁ,M) where § = {50, 81, .., Snr—1} and D= {do,dq,...;dpr—1} and
M is the size of §,l3

2.1.2 Measurements

The measurements in a typical smFRET experiment report on the conformational state of the molecule as it
changes through time. These come in the form of two time series: w?” = (w{,wf,..,w}) and w# =
(wi', wg, ...,wq) which are the recordings in the donor and acceptor channels, respectively. In particular, the
subscripts here indicate the time level of measurements. For clarity, we assume that the measurements are time-
ordered, so the n = 1 label coincides with the earliest acquired measurement and the n = N label coincides with
the latest.

We assume that measurements occur on a regular time interval denoted by At (although the switching of the
molecule between states occurs in continuous time). Here, the values of w2 and w; report on a number of
photons collected between ¢,,_1 and t,, where t,, = t,,_1 + At. For completeness, we introduce an additional time
level ty which precedes the first measurement time t1. This time level, ¢y defines the experiment’s onset, which
is not associated to any measurement; see Fig.
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One of the common assumptions of HMMs is that the instantaneous state of the molecule at t,, determines the
measurements w? and w?. However, for realistic detectors, the reported values w2 and w7 are affected by
the entire photon trajectory of the molecule during the nt" integration period represented by the time window
[t, — 7,t,]. Here, 7 is the duration of each integration time for fluorescence experiments.

When we supplement our dynamical model (fully described in Section with measurements, we must include
a distribution describing the measurement statistics. We do so by first discussing the state specific photon emission
rates in the donor and acceptor channels which we label with ufk, uf}k, where the subscript highlights the state
dependence of the photon emission rate. For simplicity, we gather the state specific photon emission rates in

AP = (2 D D), it = (At ).

If the molecule remains in a single state o}, throughout an entire exposure period [t,, — 7, t,], then the detector is
triggered by ufk,ufk and ambient contributions (background) which we label with p2 . and il for the donor
and acceptor channels, respectively. As such, the reported measurement, wfb), is similar to ugck + /ig)k_ and w;;‘
is similar to ,ufack + ufk. However, if the molecule switches between multiple states during the same exposure
period, the detector is influenced by the levels of every state attained. More specifically, the nt" binned photon
counts triggering the detector during the n*" exposure period, [t, — T,t,], is obtained from the u2  + u%,) in

the donor channel and :uélack +/,L’74—(_) in the acceptor channel over this exposure. Mathematically, this is equivalent

to pl 7+ ftt,f dt u?(t) in the donor channel and il 7 + fttn"fT dt u‘;‘-(t) in the acceptor channel.

With measurement noise, such as shot-noise (22, 58H61l), quantification noise (62H64]), or amplification noise in
the case of EMCCD detectors ({7, [65H67]) and other degrading effects that are common in the detectors currently
available, each measurement w? and w; depends probabilistically upon the triggering signal (68H70). Of course,
the precise relationship depends on the detector employed in the experiment and differs between the various types
of cameras, single photon detectors or other devices used. Here, we continue with a shot-limited formulation,
which results in

w?|T (-) ~ Poisson (:u‘bDackT + f:iT dt ,u%t)> (5)
w;ﬂT() ~ Poisson (/L’b“ackT + f:n’LT dt M7A'(t)) . (6)

2.1.3 FRET Efficiency

Later we will be making use of the notion of FRET efficiency. For this reason we define two different types of FRET
efficiencies: the characteristic FRET efficiency (7, [15], [7IH75]) as well as the apparent FRET efficiency (7, 15} [T+
75)). Characteristic FRET efficiency (7, 15} [[TH75)) labeled with e, for k =1,2,..., K is defined as follows

_
pd + ug,

™

€oy

and only depends on the conformational states (7] [15] [[IH75). By contrast, the apparent FRET efficiency (which
is often used as a proxy for €,,) is defined as follows

’LUA

=——n (8)

ea

" wb A

forn = 1,2,...,N. Unlike the former, the latter is affected by artifacts such as measurement noise and back-
ground (I5)). As a result, the apparent efficiency may attain different values over time even when the molecule
does not switch its conformational state.
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2.2 Model Inference

Our goal is to learn the initial probabilities p,,, photon emission rates u?k,ug‘k, switching rates \,, 5, for all
states and the trajectory of the system 7T (-) during the full time course [to, tn] of the experiment by using the
measurements w”, w*, and the model associated with the smFRET experiment that has just been described.
First, we will explain how we learn these quantities using time series analysis within the naive HMM paradigm ({7}

74, [75]). Subsequently, we will present how we tackle smFRET data using our continuous time HMJPs.

2.2.1 Model Inference via HMMs

HMMs inherently assume that each measurement w2 and w? acquired at time ¢,, depends only on the molecule’s
state at the time of data acquisition namely T (¢,). Therefore, we have the following approximations for the
. tn t . .

HMM formulation [;" _dtu? ., ~ p#, 7 and [;" dtug‘—(t) ~ u‘;‘_(tn)T during the exposure period [t, — T, t,].

Consequently, Eq. and Eq. become

wE‘T(-) ~ Poisson (prackT + M?’(tn)T) ©)

w;ﬂT(-) ~ Poisson (H?ackT + ué(tn)r) . (10)

Given the HMM formulation and the smFRET data w?”,w*, we can directly learn the transition probabilities
that govern the transitions of the molecule between its conformational states at any data acquisition time %,
for all n = 1,2,..., N. We label a molecule's state within the HMM paradigm at time t,, with T (¢,) = c¢,.
For clarity, transition probabilities determine the switching probabilities for a molecule's transitions denoted by
Cn—1 —> Cn — Cpy1. Within the HMM formulation, P._ _,_,. denotes the transition probability of the molecule
from state ¢,,_1 to ¢,.

Given that there are K conformational states for the molecule, the number of transition probabilities Pak-—m;.

becomes K2. We gather the transition probability from conformational state o}, to any other conformational state
including itself in Py, = (Pyy—015s Pry—oss " » Poy—ox ) that is normalized as a probability vector (namely each
component sums up to 1). Eventually, we gather all transition probability vectors in a matrix called transition

probability matrix denoted by P which reads as follows

p=|"71. (11)

There is a connection between the transition probability matrix P and the molecule’s switching rates Aoy—o,, and
escape rates A5, . Provided that we gather the switching rates and escape rates in the following matrix, called

generator,
—Aoy Ao1 s -0 Aoioox
b Aoy—roq —Aoy R P (12)
Aox—o1 Aog—os -+  —Aog

then P can be calculated based on P = exp (C:}At) where exp (-) stands for the matrix exponential. Knowing

G determines P uniquely; however, knowing P provides only a proxy for G. Specifically, if we assume that
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Ao, At < 1 then we can use an approximation

P~T+GAt (13)

where I is an identity matrix of size K x K. Thus we can calculate an approximation for G thatis G ~ (Pff)/At.

Now, we provide the formulation for how to estimate the quantities including initial probabilities, p, transition
probabilities P,,, photon emission rates ji and the trajectory of the system 7 (-) which is encoded by ¢ =

(co,c1,-+ ,cn), within an HMM paradigm. The HMM formulation is governed by the following statistical model
¢o ~ Categorical (p) (14)

cn|cn_1 ~ Categorical (Pcn_l) (15)

wf’cn ~ Poisson (upq 7 + 12 7) (16)

w;ﬂcn ~ Poisson (ufhr + ,LLCAnT) . (17)

From now on, we follow the Bayesian paradigm (54, [76]) which requires us to prescribe prior distributions for the
parameters.

We start with the prior distributions placed on the transition probabilities P,, for all k =1,2,..., K and p. We
choose to place Dirichlet distributions with concentration parameters A and a for P,, and p, respectively, that
are conjugate to the Categorical distribution (30} 35} 57, [77]) and formulated as follows

_ . A A A
P,, ~ Dirichlet (K’ T K) (18)
_ L. A A A
P,, ~ Dirichlet (K’ T K) (19)
_ . A A A
P, ~ Dirichlet (K’ T K) (20)
B . a a «
p ~ Dirichlet (?, T ?> . (21)

Subsequently, we place priors on the photon emission rates i” = (u2 , p2 ... 12 ) and i = (p2, pd ..o pd).
The prior that we choose to place is the Gamma distribution as it has positive support

pl ~ Gamma <¢D, ;ﬁg) (22)
4 Gamma ((;5‘4 W) (23)
N’o’k ? ¢A

with hyperparameters ¢2, ?, ¢4, 4.

We estimate the background photon emission rates ubDack,uéck by separate measurements that contain only
ambient contributions as we explain in Supporting Material . These measurements can be obtained either
after both donors and acceptors photobleach or, in a separate experiment, in which no FRET labeled molecule is
present.

With all priors specified, we form the full posterior distribution (7, 30} 3], 35}, 37} [77] [78])

—P (ﬁ, P, /ZD,/]A,E'WD,WA) . (24)
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Since we do not have an explicit formula for Eq. we build a custom MCMC sampling scheme to generate
pseudorandom numbers from Eq. (24). Details of the computational scheme are provided in Section [2.2.3]

2.2.2 Model Inference via HMJPs

The HMJP does not require any approximations on the kinetics regime allowed and instead applies directly on the
formulation provided in Eq. (5)) and Eq. @ Just as with the HMM, for the HMJP formulatlon we also operate
within the Bayesian parad/gm (54, [76)) and thus place prior distributions on p, T, DT

First, we prescribe the prior distributions on the escape rates A = (MAoys Aoys ooy Aoy ). For these, we choose
Gamma distributions which are conjugate to the exponentially distributed holding times, i.e.,

Ao, ~ Gamma <7), f]) (25)

for all k = 1,2,..., K with hyperparameters 7,b. Subsequently, we prescribe independent conjugate Dirichlet
distributions on the transition probabilities 7,, for all k =1,2,.... K

- A
7o, ~ Dirichlet (O7 TR (26)
.. A A
o, ~ Dirichlet (K — 0o 1) (27)
Dirichlet A 0 (28)
K K-1 K N

with concentration hyperparameter A. Prior distributions placed on p, i’ and i are provided in Eq.
and Eq. (23), respectively.

The full posterior distribution for the HMJP formulation is

i, (5,0, M)|wP,wh). (29)

Since we do not have an analytical formula for Eq. , we build a custom MCMC sampling scheme. Details of
the computational scheme are provided in Section [2.2.3]

2.2.3 Computational Inference

MCMC sampling from the full posterior distributions provided in Eq. for the HMM and Egq. for the
HMJP rely on Gibbs sampling (7, 30, 31}, 35} [37] [44] [77| [78). To form a large number of samples from these
posteriors, we iterate the following

1. Update  for the HMM or (S, D, M) for the HMJP;
2. Update transition probabilities, that is P,, for the HMM or 75, and \,, for the HMJP;

3. Update the initial probability vector p for both the HMM and the HMJP;

10
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4. Update photon emission rates i, it for both the HMM and the HMJP.

These samples allow us to reconstruct the posterior distribution P (ﬁ, P, ﬁD,ﬂA,E"wD,wA) for the HMM and

P (,5, T\ P, A, (5, 13, M)’wD, w? ) for the HMJP. The estimation of switching rates Aoy o, With the HMJP
is carried out by Eq. and by Eq. (13)) for the HMM.

In Supporting Material , we present the equation summaries for both HMJP and HMM formulations. A
working code of the the implementation of our HMM and HMJP frameworks is made available through the
authors’ website.

2.3 Experimental Methods

Here, we introduce experimental methods. We start from sample preparation, next we move to presenting
experimental procedure.

2.3.1 Acquisition of Experimental Data
Sample Preparation

The Holliday Junction strands used in this work, and whose results are shown in Figs. [3| to [7} were purchased
from JBioS (Wako, Japan), of which sequences are given below

R-strand: 5'-CGA TGA GCA CCG CTC GGC TCA ACT GGC AGT CG-3

H-strand: 5'-CAT CTT AGT AGC AGC GCG AGC GGT GCT CAT CG-3'

X-strand: 5’-biotin-TCTTT CGA CTG CCA GTT GAG CGC TTG CTA GGA GGA GC-3'

B-strand: 5'-GCT CCT CCT AGC AAG CCG CTG CTA CTA AGA TG-3'.

We note that T (H-strand) and T (B-strand) indicate thymine residues labeled with a FRET donor (ATTO-532)
and an acceptor (ATTO-647N) fluorophores, respectively, at position 6 from the 5" end. The R, X, and B-strands
(1 uM, 30 pL) and H-strand (1 uM, 20 pL) were mixed in TN buffer (10 mM Tris with 50 mM NaCl, pH 8.0). The
mixture was annealed at 94°C for 4 min, and then gradually cooled down (2-3°C/min) to room temperature. We
used a sample chamber (Grace Bio-Labs SecureSeal, GBL621502) and a coverslip that is coated by Biotin-PEG-
SVA (Biotin-poly(ethylene glycol)-succinimidyl valerate) (79)). Streptavidin (0.1 mg/mL in TN buffer, 100 ulL)
was incubated for 20 min, which was followed by washing with TN buffer. The HJ solution (10 nM, 100 pL) was
injected for 3 s. The chamber was rinsed three times by measuring buffer (TN buffer with 10 mM MgCI2 and
2 mM Trolox).

Experiments

Broadband light, generated by super continuum laser (Fianium SC-400-4, f = 40 MHz), was filtered by a
bandpass filter (Semrock FF01-525/30-25) and focused on the upside coverslip surface using an objective lens
(Nikon Plan Apo IR 60x, N.A. = 1.27). The excitation power was set to be 20 W at the entrance port of the
microscope. The fluorescence signals were collected by the same objective lens and guided to detectors through
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a multimode fiber (Thorlabs M50L02S-A). Fluorescence signals of donor and acceptor were divided by a dichroic
mirror (Chroma Technology ZT633rdc) and filtered by bandpass filters (Semrock FF01-585/40-25 for donor and
FF02-685/40-25 for acceptor), and then detected by hybrid detectors (Becker&Hickl HPM-100-40-C). For each
photon signal detected, the routing information was appended by a router (Becker&Hickl HRT-41). The arrival
time of the photon was measured by a Time-Correlated Single Photon Counting (TCSPC) module (Becker&Hickl
SPC-130-EM) with time tagging mode.

3 Results

In order to show how HMJPs work and to highlight the HMJPs' advantages over HMMs, we initially benchmark
our method using simulated data that mimics smFRET experiments. Simulated data are ideal for this purpose
because they have a “ground truth”. Generation of such data relies on the Gillespie algorithm (52). Next, we
compare the strength of our HMJP method to HMMs on experimental data.

We focus on the following simulated dataset: a molecule that exhibits fast kinetics as compared to the data
acquisition rate, see Fig. . Analysis of datasets on slow kinetics is relegated to Supporting Material . The
results corresponding to the simulated dataset with fast kinetics for both HMJP and HMM are shown in Fig. [2
Subsequently, we show the performance of our method on experimental dataset Fig. We present the results
for the experimental data set in Figs. [4]to[7] Further analysis on different experimental datasets is also provided
in Supporting Material (A).

Hyperparameter values used in all analyses, as well as any other choices made are presented in Supporting
Material . For clarity, we only have access to the data demonstrated with the green and red dashes of panels
(al) and (bl) of Fig. [I] not the cyan (ground truth) trajectories. These trajectories are unknown and to be
determined along with other model parameters.

3.1 Simulated Data Analysis
3.1.1 Acquisition of Simulated Data

In the generation of our simulated data, we assumed K = 2 attainable states, such as on/off or folded/unfolded
states for illustrative purposes only (our method trivially generalizes to more states). We assumed photon emission
rates which we set at 12 = 800 photons/s, uZ = 2000 photons/s and 5 = 300 photons/s, 12 = 700 pho-
tons/s where pl , = uil . = 200 photons/s. Additionally, we defined a data acquisition period of At = 0.05 s
and consider the exposure period by setting 7 equal to 100% of At. The onset and concluding time of the
simulated data are at ty = 0.095 s and ¢t = 10.05 s, respectively.

We use the following structure for the switching rates Ay, 5,, Asy—o, in order to specify system kinetics, with a
parameter 7 that sets the system kinetics time scale,
22 2.1

A0’1—)(72 - ) )\0'2—>0'1 =

(30)
Tf Tf

in the analysis of fast switching rates. We simulate a case with 7y = 0.1 s in Fig. [I| panel (b1), which involves
system kinetics that are faster than the data acquisition rate.

3.1.2 Comparison of HMJPs with HMMs on Simulated Data
Here, we compare HMJPs and HMMs on the analysis of simulated measurements given in Fig. [1| panel (al).
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Fig. 2. HMJP and HMM photon emission rate, escape rate and transition probability estimates for fast switch-
ing kinetics in simulated measurements. Here, we provide posterior photon emission rate, escape rate and transition
probability estimates obtained with HMJP and HMM when the switching rate is faster than the data acquisition rate
1/At = 20 (1/s). We expect HMMs to perform poorly in estimating the true photon emission rates, escape rates and
transition probabilities when the system switching is fast. In this figure's panels (a)-(b), we superposed the posterior
distributions over photon emission rates for HMJP (green for donor, orange for acceptor) and HMM (blue for donor, pink
for acceptor) along with their 95% confidence intervals and the true photon emission rates (dashed cyan line). Next, in
panels (c1)-(c2) and (d1)-(d2), we superposed the posterior distributions over escape rates and transition probabilities
(green for HMJP and blue for HMM) along with their 95% confidence intervals, true escape rates and true transition
probabilities (dashed cyan lines), respectively. In this figure's panels (c1)-(c2) correspond to the posterior distribution of
escape rates that are labeled with Ay, ., for all k,k' = 1,2 with k # k. Panels (d1)-(d2) correspond to the transition
probabilities labeled as Py, ., for all k = 1,2. Here, simulated measurements are generated with the same parameters
as those provided in Fig. [1] panels (b1)-(b2).
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Fig. 3. An illustration of experimental smFRET measurements for data acquisition periods At = 0.025,0.05 s and
At =0.1s. In panels (al), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding with
the data acquisition periods At = 0.025,0.05 s and At = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods 7 = 0.025,0.05 s and 7 = 0.1 s in
donor (green) and acceptor (red) channels. Panels (a2), (b2) and (c2) are especially interesting to our analysis. Here, we
don't observe well separated histograms due to fast switching kinetics of the molecule as shown in Fig. |1| panel (b2) for
simulated experiments.
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Fig. 4. HMJP and HMM photon emission rate, escape rate and transition probability estimates for experimental
smFRET measurements with At = 0.025 s. Here, we provide posterior photon emission rate (panels (a)-(b)), escape
rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP and HMM for the
experimental data shown in Fig. E panel (al). Here, we follow a similar color convention to that of Fig. E However, unlike
Fig.[3 ground truth information is not available for the photon emission rates, escape rates and transition probabilities as
the analysis is carried out for experimental data.
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Fig. 5. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate, escape rate
and diagonal transition probability estimates obtained with HMM for the measurements shown in Fig. B panels (al), (b1)
and (c1). We expect HMM posterior estimates associated with 3 different exposure periods not to be consistent as the
switching kinetics approach the data acquisition rate. In panels (a)-(b), we superposed the posterior distributions for the
measurements associated with exposure periods At = 0.025,0.05 s and At = 0.1 s over photon emission rates for HMM
along with their 95% confidence intervals. Next, in panels (c1)-(c2), we superposed the posterior distributions over escape
rates along with their 95% confidence intervals. Finally, in panels (d1)-(d2), we superposed the posterior distributions
over transition probabilities and their 95% confidence intervals. Posterior distributions over photon emission rate, escape
rate and diagonal transition probability estimates for the integration periods At = 0.025,0.05 s and At = 0.1 s are
demonstrated in green, blue and purple, respectively.
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Fig. 6. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate, escape rate and
diagonal transition probability estimates obtained with HMJP for the measurements shown in Fig. E panels (al), (b1) and
(c1). We expect HMJP posterior estimates associated with 3 different exposure periods to be consistent across examples
even if the switching kinetics exceed data acquisition rate. In panels (a)-(b), we superposed the posterior distributions for
the measurements associated with exposure periods At = 0.025,0.05 s and At = 0.1 s over photon emission rates for
the HMJP along with their 95% confidence intervals. Next, in panels (c1)-(c2), we superposed the posterior distributions
over escape rates along with their 95% confidence intervals. Finally, in panels (d1)-(d2), we superposed the posterior
distributions over transition probabilities and their 95% confidence intervals. Here, we follow a similar color convention to
that of Fig. E
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Fig. 7. HMM and HMJP FRET efficiency estimates for experimental smFRET measurements with At =
0.025,0.05 s and At = 0.1 s. Here, we provide posterior FRET efficiency estimates obtained with HMM and HMJP
for the measurements shown in Fig. [3 panels (al), (b1) and (c1). We expect inconsistent posterior FRET efficiency
estimates for HMMs associated with 3 different exposure periods; see panel (a). On the other hand, we expect HMJPs
to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b). Here, in
panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET efficiency
(vellow). In this figure, we follow a similar color convention to that of Fig. E}

We expect HMJPs to perform better than HMMs as the simulated data are generated with switching rates 5%
faster than the data acquisition rate (and thus many transitions occur during the data acquisition time). In this
regime of switching rates, the approximation in Eq. required by HMMs fails.

Given the measurements, we estimate the posterior distribution over the quantities of interest including the trajec-

tory, 7 (-), initial transition probability matrix, p, transition probabilities 7 (and P in HMM), photon emission rates,

AP, i and escape rates, . To achieve these estimates, we use HMJP and HMM samplers as introduced in Sec-

tion|[2.2.3|to generate pseudorandom numbers from the posterior distributions [P (ﬁ, 7T\ P, A, (5, 5, M) ‘WD, WA)

and P (ﬁ, ]3,,&, 8|WD,WA), respectively.

We first show emission and escape rates estimates in Fig. 2l In Fig. [2 panels (a)-(b), (c1)-(c2), (d1)-(d2), we
observe that the ground truths for photon emission rates, escape rates and transition probabilities lie within the
95% credible intervals for the corresponding HMJP estimates. By contrast, the HMM performs poorly due to the
failure of the approximation in Eq. resulting in unsatisfactory photon emission rate and escape rate estimates.

In particular, from Fig. [2| panels (a)-(b), we see that the HMM overestimates (by about 12% namely HMM
provides estimates that are approximately 1.12 times the ground truth values for ufl and /J?l) ufl and uﬁl and
underestimates (about 5%) pZ and g, . The failure of the HMM is more pronounced when looking at A, and
Aoy. For example, in Fig. [2| panels (c1)-(c2), the HMM provides narrow distributions over escape rates by grossly
underestimating both \,, and \,, (by about 50%). On the other hand, in Fig. [2| panels (c1)-(c2), we see that
HMJP posterior distribution mode coincides with the ground truth.

The HMM's inability to capture fast kinetics is also reflected by its wide posterior distributions over transition
probabilities Py, 5,, Pry—0, as shown in Fig. [2] panels (d1)-(d2).

In Supporting Material Fig. S1, we provide the analysis on slow switching kinetics for the HMJP and HMM
estimate comparisons as in Fig. [2] where both HMJP and HMM perform well.
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Subsequently, in Supporting Material Fig. S2, we provide the robustness of HMJP posterior estimates over
photon emission rates, escape rates and transition probabilities for the data set provided in Fig. [1| panel (b1). We
observe that when the kinetic rates are more than 4 times the data acquisition rate then the HMJP starts failing in
providing consistent posterior estimates over over photon emission rates, escape rates and transition probabilities.

3.2 Experimental Data Analysis
We now move onto the analysis of experimental data sets.
3.2.1 Analysis Overview

Having benchmarked our HMJP on the simulated smFRET data set, we now move on to assessing the HMJP's
performance on experimental smFRET data provided in Fig. (3} for Holliday junctions (HJ) as described in sample
preparation. We deliberately start from single photon arrival data sets. Such data sets give us the flexibility to
bin data as we please in order to mimic experimental data collected over broad range binning conditions as is the
case in (B} [0, 2IH27)). In particular, we bin using 3 data acquisition periods: At = 0.025 s (with results shown
in Figs. i to[7)), At = 0.05 s (with results shown in Figs. 4| to[7)) and At = 0.1 s (with results shown in Figs.
to . We pick these bin sizes for a particular reason. We estimate for the smallest bins the rates ~ 35 — 45
(1/s). Then, we consider data acquisition rates that are twice and four times bigger. We also set the exposure
period, T to 100% of the At namely 7 = 0.025,0.05 s and 7 = 0.1 s. As we will see, the HMJP returns values
for the rates that are consistent across bin sizes as would be expected for a method that can learn transition rates
slower or faster than the data acquisition rate. By contrast, the failure of HMM becomes apparent due to the
inconsistency of the estimates for the switching kinetics as a function of data bin size. The HJs we use have two
well characterized conformational states (3} 80). Here, our goal is to estimate the HJ emission and switching
rates in addition to the trajectory of HJs simultaneously.

In Fig. [3] panels (al), (bl), (cl), we show the data under all 3 different bin sizes. From the data, we estimate
the postgrior distribution over the trajectory, 7 (-), initial transition probability matrix, p, transition probabilities

7 (and P in HMM), photon emission rates, i, it and escape rates, X. In Fig. |4 we show a direct comparison
of the HMJP and HMM under the smallest bin size, where we anticipate both HMM and HMJP to be consistent
with one another. As we move to larger bin sizes, the HMJP remains consistent with the result that we obtain for
the smallest bin but the HMM eventually shows a lack of consistency as the bin size increases. This is apparent
from Fig. [B] where we look at increasing bin size for HMM and in Fig. [6] where we look at increasing bin size for
the HMJP. Finally in Fig. [7/} we show the estimates over FRET efficiencies where we increase bin sizes for the
case of both HMM and HMJP.

3.2.2 Comparison of HMJPs with HMMs on Experimental Data

We begin with an HMJP and HMM comparison for the smallest bin size, At = 0.025 s; see Fig. |3| panel (al),
on the photon emission rates, escape rates and transition probability estimates provided in Fig. |4l We point out
that the simulated dataset provided in Fig. [1| mimic the dataset provided in Fig.|3] Even though, for experimental
data Fig. [3| panels (al), “ground truth” photon emission rates, escape rates and transition probabilities are not
known, we suspect that similar observations provided in Fig. [2 hold for Fig.

In Fig. 4] panels (a)-(b), we observe that HMM overestimates ., and underestimates y,, compared to HMJP
estimates for gy, and ps,. In addition, as can be seen in Fig. [4| panels (c1)-(c2), HMM provides narrow
distributions over escape rates for both A,, and A,,. This contradicts with the escape rate posterior of the
HMJP; see panels (c1)-(c2) of Fig. |4, We speculate that as HMM is unable to resolve fast switching kinetics,
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missed kinetic transitions are reflected in terms of underestimation/overestimation of photon emission rates or
escape rates; see Fig. [4| panels (a)-(b) and (c1)-(c2). In Fig. {4] panels (d1)-(d2), we observe that HMM and
HMJP estimates for P, _,,, are overlapping although they have distinct posterior distributions for Py,_,.,.

Next, we show in Fig. [5] that the HMMs’ photon emission rates, escape rates and transition probability estimates
grow inconsistent for larger bin sizes, At = 0.05,0.1 s (see Fig. |3| panels (b)-(c)). As a result of binning, we
have multiple different apparent photon emission rates that appear. This could be overinterpreted as noise by
the HMM; see panels (a)-(b). Indeed, HMMs interpret the various photon emission rates as an increased noise
variance. As a related artifact, the HMM misses multiple transitions and therefore grossly underestimates escape
rates.

As we see in panels (c1)-(c2), HMMs start underestimating escape rates as bin sizes become larger from At =
0.025 s to At = 0.05,0.1 s. We emphasize that these escape estimates are approximate escape rate estimates
obtained from the transition probability estimates for the HMM (see Eq. ) because a HMM does not directly
report on kinetic rates. We observe in Fig. [5| panels (d1)-(d2) that the uncertainty around the HMM transition
probability estimates increase and are furthermore not consistent as bin sizes increase. Subsequently, we repeat
the exact same analysis as we did for the HMM for the HMJP. In particular there is an exact correspondence
between Fig. [5| panels (a)-(b), (c1)-(c2), (d1)-(d2) and Fig. [] panels (a)-(b), (c1)-(c2), (d1)-(d2). Details are
provided in the captions however the important message is that HMJP escape rate estimates (see Fig. @ panels
(c1)-(c2)) has remained consistent across increased bin sizes.

Finally, in Fig. [7| panels (a), (b), we provide the posterior distributions over FRET efficiencies for the HMM and
the HMJP. Here, we observe that HMMs provide inconsistent posterior FRET efficiency estimates for larger bin
sizes; see panel (a). On the other hand HMJPs provide consistent FRET efficiency estimates; see panel (b).

In Supporting Material , we provide similar analysis for two other experimental smFRET data sets; see Fig. S3,
Fig. S4. These analyzed data sets provided in Fig. S3, Fig. S4 were acquired under same experimental conditions
as presented here. By analyzing these additional data sets, we justify the robustness of our method; see Figs. S4
to S10.

4 Discussion

Single molecule FRET data has the potential of revealing switching kinetics occurring on time scales at or even
exceeding the measurement time scale (I}, 3] [10, [32). This is especially helpful for smFRET data collected in
a binned fashion (5| [6, 21H27)). To achieve this, we have extended the HMM paradigm, previously used in the
analysis of smFRET, by treating physical processes as they occur in nature (I, 3, [BH7, [10, 21H27, [32)); that is, as
continuous time processes using a Markov jump process framework (15, [47, [7TH75], [8T], [82]).

The framework that we present here can treat multiple different data collection regimes. For example, it can treat
different exposure periods, it can also treat different measurement models and variable background levels. Our
framework reduces to existing frameworks, such as the HMM, in specific limits. For example, when the exposure
period (7) is as long as the data acquisition period (At), and the only measurements available are those precisely
at the data acquisition time, then our model reduces to the HMM. Similarly, our method is more general than the
HZMM (3)) a previously developed method that treats the continuously evolving molecule trajectory by discretizing
this process on a finer time scale than the data acquisition period. In the infinitely small discretization of this
grid, the H*MM recovers our HMJP (3).

Finally, our method for smFRET data analysis goes beyond existing methods such as the H*MMs (3) or others (1))
by not only making point estimates for the molecular trajectory, switching kinetics and photon emission rates.
Rather, the Bayesian paradigm (54, [76) within which we operate allows us to compute full posterior distributions
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over these estimated quantities.

As a final note, our framework might also be extended in multiple different ways. Trivially, we can change the
detector model of Eq. and Eq. @ to incorporate different kinds of detector models such as for sCMOS cameras
used in (7, 62, [65) this is equivalent to a change of Eq. (5)) and Eq. (6). In addition, we can extend our framework
to account for photophysical states of the fluorophores as well as accounting for spectral cross bleeding between
donor and acceptor channels ([7]) by changing the measurement model such that the photon emission rates are
affected by the photophysical states of the fluorophores. A non trivial extension of our work is to consider a single
photon arrival framework for smFRET as opposed to dealing with binned data (I}, [3). Additionally, it would be
possible to leverage the strengths of Bayesian nonparametrics to learn the number of conformational states within
the HMJP ({7, 30}, 31}, 35}, 37, 49, [77, [78, [83). Overcoming these difficulties is the focus of future work.
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A Supporting Material

A.1 Comparison of HMJP and HMM for Simulated Data with Slow Switching Kinetics

(a) Donor channel 800 (b) Acceptor channel

o 2000 ——

4 5 !

%)

5 £ 1500 600

2 5

QL =

£ 21000 400 )

] T T i
0 0.005 0.01 0.015 0.02 0 0.01 0.02 0.03

Post. prob. distr. Post. prob. distr.

(c2)

N
o

Escape rate
S9!
o S
S

20 1

0
0 01 02 03 04 0 005 01 015 02
Post. prob. distr. Post. prob. distr.
d1 d2
0.9 @ 0.8 (d2)
2
:_Cu E 0.8
58 0o
8 907
[areN
0.6 0.4
0 5 10 0 5 10
Post. prob. distr. Post. prob. distr.
{ 95% conf. int. { 95% conf. int.
"1 HMJP estimated, bin size =0.05 (s)  \[___] HMJP estimated, bin size = 0.05 (s)
95% conf. int. 95% conf. int.,
{I:I HMM estimated, bin size = 0.05 (s) {:I HMM estimated, bin size = 0.05 (s)
True emission rate True emission rate
(escape rate, diagonal probability) (escape rate, diagonal probability)
Prior distr. Prior distr.

Fig. A.1. HMJP and HMM photon emission rate, escape rate and transition probability estimates for slow
switching kinetics in simulated measurements. Here, we provide posteriors over the photon emission rate, escape rate
and transition probability estimates obtained with HMJPs and HMMs when the switching rate is slower than the data
acquisition rate 1/At = 20 (1/s). We expect HMMSs to perform poorly in estimating the true photon emission rates,
escape rates and instead perform better in estimating transition probabilities when the system switching is slow. Here, we
provide the posterior distributions with the same color convention as in Fig. [ Simulated measurements used here are
generated with the same parameters as those provided in Fig.|1| panels (al)-(a2).
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A.2 Performance of HMJP for Simulated Data with Fast Switching Kinetics over a Range of Bin

Sizes
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Fig. A.2. HMJP photon emission rate, escape rate and transition probability estimates for fast switching kinetics in
simulated measurements. Here, we provide posterior photon emission rate, escape rate and diagonal transition probability
estimates obtained with HMJP for the measurements shown in Fig. [1| panels (bl). Here, we expect HMJP posterior
estimates to be consistent for the first 3 data acquisition periods (At = 0.05,0.075,0.1 s) and not consistent for At = 0.15 s.
In this figure's each panel, we have the same content information as in Fig. ﬂ Posterior distributions over photon
emission rate, escape rate and diagonal transition probability estimates for the integration periods At = 0.05,0.075,0.1 s
and At = 0.15 s are demonstrated in dark green, green, blue and purple, respectively.
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A.3 HMJP Estimates for Additional Experimental smFRET Data
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Fig. A.3. An illustration of experimental smFRET measurements for data acquisition periods At = 0.025,0.05 s
and At = 0.1 s. In panels (al), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding
with the data acquisition periods At = 0.025,0.05 s and At = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods T = 0.025,0.05 s and 7 = 0.1 s in
donor (green) and acceptor (red) channels.
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Fig. A.4. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMM for the
experimental data shown in Fig. panels (al),(b1) and (c1). Here, we follow a similar color convention as in Fig. E

28


https://doi.org/10.1101/2020.08.28.267468
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.267468; this version posted August 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Donor channel 600 (b) Acceptor channel
[
*@ @ 1000
c & 400
S o
o 2
g2 0 200
E 2
w
0 0
0 0.005 0.01 0.015 0 0.02 0.04 0.06 0.08
Post. prob. distr. Post. prob. distr.
c2)
(c1) 100( )
80
2 80
Y
Q —~ 60
S0
g 40
w
20
0 0.05 0.1 0 0.05 0.1
Post. prob. distr. Post. prob. distr.
d2
0.8 (@2)
2
23 0.6
o]
8 9o
oo 0.4
0 5 10 0 5 10
Post. prob. distr. Post. prob. distr.
{ 95% conf. int. { 95% conf. int.
[ HMJP estimated, bin size = 0.025 (s) ] HMJP estimated, bin size = 0.025 (s)
{ 95% conf. int. { 95% conf. int.
[ HMJP estimated, bin size = 0.05 () L] HMJP estimated, bin size = 0.05 (s)

{ 95% conf. int. { 95% cont. int.
[ HMJP estimated, bin size = 0.1 () 1 HMJP estimated, bin size = 0.1 (s)
Prior distr.

Fig. A.5. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP for the
experimental data shown in Fig. panels (al),(b1) and (c1). Here, we follow a similar color convention as in Fig.
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Fig. A.6. HMJP and HMM FRET efficiency estimates for experimental snFRET measurements with At =
0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate and FRET efficiency estimates obtained
with HMJP for the measurements shown in Fig. panels (al), (b1) and (c1). We expect inconsistent posterior FRET
efficiency estimates for HMM associated with 3 different exposure periods; see panel (a). On the other hand, we expect
HMJP to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b).
Here, in panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET
efficiency (yellow). In this figure, we follow a similar color convention to that of Fig. @
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Fig. A.7. An illustration of experimental snFRET measurements for data acquisition periods At = 0.025,0.05 s
and At = 0.1 s. In panels (al), (b1) and (c1), we provide the measurements for the same smFRET experiment coinciding
with the data acquisition periods At = 0.025,0.05 s and At = 0.1 s. Here, we assume that the measurements are acquired
by detectors with fixed exposure periods coinciding with the data acquisition periods T = 0.025,0.05 s and 7 = 0.1 s in
donor (green) and acceptor (red) channels.
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Fig. A.8. HMM photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate (panels (a)-
(b)), escape rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMM for the
experimental data shown in Fig. panels (al),(b1) and (c1). Here, we follow a similar color convention as in Fig. E
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Fig. A.9. HMJP photon emission rate, escape rate and transition probability estimates for experimental smFRET
measurements with At = 0.025,0.05 s and At = 0.1 s. Here, we provide posterior emission rate (panels (a)-(b)), escape
rate (panels (c1)-(c2)) and transition probability (panels (d1)-(d2)) estimates obtained with HMJP for the experimental
data shown in Fig. panels (al),(b1) and (c1). Here, we follow a similar color convention as in Fig.
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Fig. A.10. HMJP and HMM FRET efficiency estimates for experimental smFRET measurements with At =
0.025,0.05 s and At = 0.1 s. Here, we provide posterior photon emission rate and FRET efficiency estimates obtained
with HMJP for the measurements shown in Fig. panels (al), (b1) and (c1). We expect inconsistent posterior FRET
efficiency estimates for HMM associated with 3 different exposure periods; see panel (a). On the other hand, we expect
HMUJP to provide consistent posterior estimates over FRET efficiencies for 3 different exposure periods; see panel (b).
Here, in panels (a)-(b), we superposed the posterior distributions over FRET efficiencies along with the apparent FRET
efficiency (yellow). In this figure, we follow a similar color convention to that of Fig. @
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A.4 Modeling Summary

A.4.1 Hidden Markov Jump Process Model

For K = 2, the full set of HMJP equations is

p ~ Dirichlet ( a) (A.1)
Ao, ~ Gamma (n, > (A.2)
Ao, ~ Gamma (7], ) (A.3)
wD
pD ~ Gamma (ng ) (A.4)
wD
pl, ~ Gamma (¢D ) (A.5)
wA
ufl ~ Gamma (¢A ) (A.6)
wA
ufz ~ Gamma ( A ) (A.7)
~ Dirichlet (0, (A.8)
Ty ~ Dirichlet (A, 0) (A.9)
so|p ~ Categorical (p) (A.10)
dm|Sm, Aoy s Aon ~ Exponential (Xg, ) for m=0,1,2,....,M —1 (A.11)
Sm+1|Sm, Toy» Moy ~ Categorical (7s,) for m=0,1,2,...,M —1 (A.12)
tn
WP T (), phee 2 1l ~ Poisson | pllor + / dtu%t) for m=1,2,.. M (A.13)
tpn—T
tn
WT (), ik e, s 11 ~ Poisson | pisgT + / dtu?—(t) for m=1,2,..,.M (A.14)
tn—T
where T (+) is formulated as follows
S0 if to<t<tg+dy
S1 if to+di <t<tg+do+di
T(t) = _ (A.15)
sp—1 if to+do+ - +dy—o<t<to+do+di+---+dpy-1
with M determined based on the first time
M—1
to+ D dm >ty (A.16)
m=0
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A.4.2 Hidden Markov Model

For K = 2, the full set of HMM equations is

_ i a o
p ~ Dirichlet (5, 5) (A.17)
- A A
P,, ~ Dirichlet (2, 2) (A.18)
- A A
P,, ~ Dirichlet <2, 2) (A.19)
D'~ Gamma | ¢” ﬁ (A.20)
/‘Lal ) ¢D .
D'~ Gamma | ¢” ﬁ (A.21)
ILLUQ ) ¢D .
1 ~aG o4 v (A.22)
Lo, amma v .
A a7
Ky, ~ Gamma ( ¢ vy (A.23)
co|p ~ Categorical (p) (A.24)
¢nlcn-1, Py, , P,, ~ Categorical (P, ) for n=2,..,N (A.25)
w£|cn,u?1,u?2 ~ Poisson (MbDackT + ME’LT) for m=1,2,.... M (A.26)
wi|en, ufl , uﬁz ~ Poisson (u{:‘ackT + ufnT) for m=1,2,...M (A.27)

A.4.3 Overview of the Sampling Updates

In order to produce samples from the full posterior distributions P (ﬁ, P, ﬂD,ﬂA,é"wD,wA) for the HMM and

P (ﬁ,%,j\,ﬂD,ﬂA,(§757M)’WD,WA) for the HMJP, we use Gibbs sampling ({7, [30] [31] 35 37, 44, [77, [78]).
Specifically, we repeat the following steps:

Update ¢ for the HMM or (S, D, M) for the HMJP;
Update transition probabilities, that is ng for the HMM or 7,, and A, for the HMJP;
Update the initial probability vector p for both the HMM and the HMJP;

el

Update photon emission rates ji”, ji* for both the HMM and the HMJP.

Here, we present the equation summaries for sampling photon emission rates.

Sampling photon emission rates for HMJP In order to produce proposals for the Metropolis Hastings algorithm,
we use Hamiltonian Monte Carlo (HMC). This method is very fruitful as Hamiltonian dynamics preserve volume
in (g, p) space therefore we can use the trajectories to define complex mappings. Here the target distribution we
have is the following

P (/]A,[LD‘WD,WA, (5,5,M)) . (A.28)
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There are two main variables, these are the position that is labeled with ¢ and the momentum, p. Here we collect
the parameter of interest to be sampled in ¢ such that

g = (A" 1) = (U2, Hops 1y 115,) - (A.29)
We have the following potential
U(g) = —log (IP (u l,uaz,ual,u02|w w (S’ D, M))) (A.30)
= —log (P(WP[ub, u2, (S, 0,M))) ~log (P (u], u2,)) (A.31)
—log (P (WA|M?1 , '“?2’ ( ))) log (P '“01 , ugz) (A.32)
N N, Ny,
= =) (wf log (uback7+7ug Z Xow (St + 72D (Xow ( )) (A.33)
n=1 k=1
N N, N,
+ ) (u@,cﬂ + 70 Y Koy (56t + 705> (Xo ( > (A.34)
n=1 k=1 k=1
d)D
+ 3 ((1 — ") 1og (u2) + wDMUDj) (A.35)
j=1
N N, N,
- > (w;i‘ log (ui.f‘acﬂ T (Xor (S + 715, Y (X ( )) (A.36)
n=1 k=1 k=1
N, N, N,
+ (u‘b“ackf T (Xow (S + 700, Y (X ( ) (A.37)
n=1 k=1 k=1
2 ¢A
+ Z ((1 — ¢*) log (ufj) + ?W‘M?") . (A.38)

ou ou ou oU
8HD ) GHD ’6;LA 9 8H02

We also need the gradient of U(q) namely,

Nn

N wn 3 (Xor (1)) N 14D
_ u —¢ D
D " = 3 (e o0t |+ S+ 45
Koy n=1 D F F n=1 Koy
Mback—"—MUDl Z(Xal (Sk’))tk +H§)2 Z(XUQ (sk))tk
k=1 k=1
>
N Wn Xog (sK))tF N 14D
- % ¢ D
* BBIJJD = - Z ~ = N, -7 ((XU2 (Sk)) tg) + ( D ) + %
Koy =l b n Y =i Koy P
U nBuAn2 D7 (o (SEE+BE, S (oo (sk))tE =
k=1 k=1
N'n,
N Wn Z(X{Tl (sk))tf N. 1 A
— n _¢ A
Y —— 7 3% (O s0t]) |+ S+ 25
Hay n=1 +F n=1 oy
B, Y (o (s8) )t +02, Z(on(Sk))
k=1 k=1
Np
U N wa ) (Xoo (51t Ny (1-9%) | ¢4
® 5.4 — Z N = N =T ((on (Sk)) tf) + a— + PA:
Hoy n=1 A F F n=1 Hoy
M F1E Z(Xﬂl(sk))tk +uz, Z(X‘W (sk))tk
k=1 k=1
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Sampling photon emission rates for HMM Similarly with above, we use HMC on the target distribution
P (a* uD’w w?,2). (A.39)

There are two main variables, these are the position that is labeled with ¢ and the momentum, p. Here we collect
the parameter of interest to be sampled in ¢ such that

= (1P 1Y) = (15, 1 15, 15, - (A.40)
We have the following potential
Ulg) = —log (P (uld,ul,,us, no,|w? wh, @) (A.41)
= —log (P(W”|ug,, 1o, ©)) — log (P (3. 15,)) (A.42)
*log (P (w2 11, ©)) —log (P (5, 113,)) (A.43)
= - Z w108 (ttback™ + Thgy (Xo (¢n)) + Tha, (Xos (¢n)))) (A.44)
N
+ Z (:“EackT + T,lt(?l (Xol (Cn)) tg + Tﬂg (on (Cn))) (A'45)
n=1
2 D
+ Y ((1 — ") log (uﬁ) + EZMUJ) (A.46)
j=1
JN
- Z (w;:‘ log (Ml?ackT + Tﬂfl (X(Tl (Cn)) + TILL?2 (Xo (Cn)))) (A-47)
n=1
N
+ Z (N?ackT + Tﬂfl (Xo, (cn)) t? + 7’/‘?2 (Xos (Cn))) (A'48)
n2_1 ¢A
+ 0y ((1 — ¢™) log (ué‘j) + W”ﬁj) : (A.49)

We also need the gradient of U(g) namely,

—

J

oU_ AU AU U
oul 1 oul, > oud > oug, -

N D
U (Xoy (en)) B (1-¢7) P
* a'u'g)l nzzjl (:“‘back"‘“al X<71 (Cn))+ﬂg2 (X(72 (Cn)) (XU] (Cn)) + Hf?l + PP
N D
U _ wy (Xoy(en)) _ (1-6") | 4P
* 8'“'52 B ngl (“back+ﬂol Xo1 (C7L))+Hc72 (sz (Sn)) T (XU2 (Cn))> + ,“'?2 T P
N A
U _ (X0 (cn)) (1-¢") | 42
* Ouz, n; (ubackﬂtal Xal(cn))ﬂLQ (xaz(cﬂ)) 7 ((Xo (C")))> + na + PA
=% eleslon) (o ) ) + U2 1 2
Oz, 2 \ gt (xoy (en))+0d, (xon (en)) g2 \n nd, PA

A.4.4 Background Photon Emission Rates

We estimate the values of ugck,yéck from portions of the time traces without signal, where ufk = ufk =

0 photons/s.

We analyze these portions, labeled with wl , =

D D
(wl,back’ w2,back7 ce
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(wﬁback,wéback,...,w]‘é,bachback), to estimate the background photon emission rates based on the formulation
provided below

D
ply ~ Gamma (§ ’§D) (A.50)
A A 8
Hpack ™~ Gamma <§ ag) (A51)
Wy back |t~ Poisson (pieT) (A.52)
w;?,back|ug‘ack ~ Poisson (:ubackT) (A53)

for all n = 1,2, ..., Npack With hyperparameters ¢P,vP ¢4 4.

Therefore, we have the following posterior distribution for the background photon emission rates for the donor

channel
D D D D D D D
P (Mbacklwback) x P (Wback|uback) P Mback (H n,back|/’6back)> P (Nback) (A54)
D N <§D+Z wr?,backl)
X exp _/j’bDack I/fD + Z T /”LbDack n=t (A55)
n=1
1
= Gamma ,ub’ixck; ED + Z wv?,backa N (A56)
D
n=1 % + Z T
n=1
N
§D+Z wv?,back
We can then estimate ul), via the mean of the above posterior distribution, which is equal to #. As

D+

Mz

n=1

the prior becomes non-informative (54, [76] [84)); that is, at the limit £¥ — 0, our estimate reduces to

N
2 n,back
Hback = 77' (A57)

We obtain the estimator i{. , in the acceptor channel similarly.
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A.5 Notation and Analysis Options

Table A.1. Notation Conventions
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Description Variable Units
Total number of measurements N —
Total number of conformational states K —
Total number of jumps M —
Sequence of system states {co, c1,...,cN } c -
HMM trajectory T()=¢ -
State of the system in HMM at time ¢, Cn, -
State of the system in HMJP at n'" jump Sn —
Holding time of the system in HMJP at n!* jump dnt1 s
HMJP trajectory T() = §7B7M> _
Initial transition probability matrix p —
Transition probability matrix in HMM P —
Probability of transitioning from state oy, to ox in HMM Py o, —
Transition probability for the embedded discrete Markov chain in HMJP 7 —
Escape rate for the k'" state of the system Aox = —lop—on 1/s
Absolute escape rate vector A —
photon emission rates T photons/s
Background photon emission rate estimates ﬂgck,ﬂéck photons/s
Generator matrix in HMJP G 1/s
Rate of transitioning form state oy to o in HMJP Ao oy 1/s
Initial time of the experiment to s
End time of the experiment tn s
Fixed exposure period T s
Fixed inactive period of detector ™D s
Fixed data acquisition period At s
Data acquisition rate 1/At 1/s
Representative of n' data acquisiton period [trn—1,tn] -
Representative of n'" exposure period [t — T, t] -
Concentration parameter for p Q@ —
Concentration parameter for 7 and P A —
Shape parameter n —
Scale parameter b —
Emission rate shape oP, oA —

Emission rate scale
Background emission rate shape
Background emission rate scale

Indicator
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Table A.2. Parameter Choices and Units

- PPt oV 0" b A o At

Units photons/s - - 1/)s - - s
total photon counts/total duration 1 2 100 1 1 0.05
total photon counts/total duration 1 2 100 1 1 0.05
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 300 1 1 0.05
total photon counts/total duration 1 2 30 1 1 0.05
total photon counts/total duration 1 2 300 1 1 0.05,0.075,0.1,0.15
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
total photon counts/total duration 1 2 100 1 1 0.025,0.05,0.1
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