

1 Regulation of Decay Accelerating Factor primes human germinal
2 center B cells for phagocytosis

3 **Short title:** Regulation of DAF and phagocytosis of GC B cells

4

5 Andy Dernstedt¹, Jana Leidig¹, Anna Holm², Jenny Mjösberg³, Clas Ahlm¹, Johan Henriksson⁴,
6 Magnus Hultdin⁵, Mattias NE Forsell¹

7

8 ¹Department of Clinical Microbiology, Section of Infection and Immunology, Umeå
9 University, Umeå, Sweden. ² Department of Clinical Sciences, Division of
10 Otorhinolaryngology, Umeå University, Umeå, Sweden. ³Center for Infectious Medicine,
11 Department of Medicine, Karolinska Institutet, Stockholm, Sweden. ⁴Molecular Infection
12 Medicine Sweden, Umeå University, Umeå, Sweden. ⁵Department of Medical Biosciences,
13 Pathology, Umeå University, Umeå, Sweden.

14

15 Corresponding author: Mattias NE Forsell

16 Department of Clinical Microbiology

17 Målpunkt R, Norrlands universitetssjukhus

18 901 85 Umeå

19 mattias.forsell@umu.se

20 +46730 211 221

21 Word count: 3946

22 Number of figures: 6

23 Number of references: 47

24

25 Keywords: Human B cell development, germinal center B cells, Decay Accelerating Factor
26 complement-mediated phagocytosis.

27

28 **Abstract**

29 Germinal centers (GC) are sites for extensive B cell proliferation and homeostasis is maintained
30 by programmed cell death. The complement regulatory protein Decay Accelerating Factor
31 (DAF) blocks complement deposition host cells and therefore also phagocytosis of cells. Here,
32 we show that B cells downregulate DAF upon BCR engagement and that T cell-dependent
33 stimuli preferentially led to activation of DAF^{lo} B cells. Consistent with this, a majority of light
34 and dark zone GC B cells were DAF^{lo} and susceptible to complement-dependent phagocytosis,
35 as compared with DAF^{hi} GC B cells. We could also show that the DAF^{hi} GC B cell subset had
36 increased expression of the plasma cell marker Blimp-1. DAF expression was also modulated
37 during B cell hematopoiesis in the human bone marrow. Collectively, our results reveal a novel
38 role of DAF to pre-prime activated human B cells for phagocytosis prior to apoptosis.

39

40 **Introduction**

41 High affinity memory B cells and plasma cells (PCs) have undergone two distinct selection
42 processes; during B cell development in the bone marrow¹ and during T cell-dependent
43 germinal center (GC) responses in secondary lymphoid organs²⁻⁷. The GC is traditionally
44 divided into two zones based on their histological appearance where proliferation and somatic
45 hypermutation occur in the dark zone (DZ) and T cell dependent selection in the light zone (LZ)
46⁸.

47 Both the bone marrow and GCs are sites of extensive B cell proliferation. Without BCR
48 engagement and co-stimulatory signals from CD4⁺ T cells, GC B cells undergo apoptosis and

49 die. The clearance of apoptotic cells by phagocytosis is a critical process to maintain
50 homeostasis and to restrict development of autoimmunity or inflammation^{9,10}. Approximately
51 50% of all B cells die every 6 hours during a GC reaction^{11,12}, and these are removed by tingible
52 body macrophages or marginal reticular cells¹³⁻¹⁶. It has been suggested that human GC B cells
53 are primed for apoptosis and phagocytosis¹⁷, but a mechanism for this priming has not been
54 demonstrated.

55

56 Covalent attachment of complement components to cell surfaces is an important cue for
57 phagocytosis¹⁸. This is facilitated by C3 convertase that facilitates attachment of C3b to the cell
58 surface. This process is regulated by a number of complement regulatory proteins that inhibit
59 complement mediated phagocytosis or lysis of healthy cells¹⁸. The Decay Accelerating Factor
60 (DAF or CD55) is a glycosylphosphatidylinositol (GPI) anchored protein that inhibits C3
61 convertase formation, and is highly expressed on B cells¹⁹. Nonsense mutations in the *CD55*
62 gene leads to increased deposition of C3d on T cells and severe disease²⁰. Another example of
63 DAF-deficiency is Paroxysmal nocturnal hemoglobinuria (PNH) where some hematopoietic
64 stem cells have defect anchoring of DAF to cell surfaces due to a somatic mutation that inhibits
65 generation of the GPI anchor²¹. As a consequence, downstream hematopoietic cells lack GPI
66 anchored proteins, including DAF. It was found that DAF-deficient B cells are unswitched and
67 mainly naïve in PNH patients, whereas their DAF-expressing counterparts appear normal²².
68 Since PNH patients lack all GPI anchored proteins on their DAF-deficient B cells, more
69 targeted investigations of DAF expression on healthy B cells are required to understand if the
70 complement regulatory protein may play a direct role in human T cell-dependent B cell
71 responses.

72

73 Due to its critical role for inhibition of C3 convertase, we hypothesized that GC B cells regulate
74 DAF expression to become pre-primed for phagocytosis. To test this hypothesis, we set out to
75 investigate if regulation of DAF occurs on specific subsets of human B cells in circulation,
76 tonsils, and in bone marrow.

77

78 **Results**

79 **Circulating DAF^{lo} B cells are expanded during viral infection**

80 While DAF is highly expressed on circulating B cells during steady-state¹⁹, we wanted to
81 understand if DAF can be regulated by extrinsic factors such as infection. Therefore, we
82 compared surface expression of DAF on B cells from healthy donors and from patients
83 diagnosed with hantavirus infection and Hemorrhagic Fever with Renal Syndrome (HFRS)²³.
84 There, we found that naïve B cells (CD27⁻ IgD⁺), unswitched memory B cells (CD27⁺ IgD⁺),
85 switched memory B cells (CD27⁺ IgD⁻) and CD27⁻ IgD⁻ B cells all had high surface expression
86 of DAF in healthy individuals (Figure 1A, B). In comparison, expression of DAF was overall
87 lower in HFRS patients, and most noticeable in the unswitched memory and the CD27⁻ IgD⁻ B
88 cells compartments (Figure 1C). DAF expression on PBMCs did not change following short-
89 term or long-term exposure to the causative agent of HFRS, the Puumala hantavirus
90 (Supplemental Figure S1). Additional analyses of the DAF^{lo} CD27⁻ IgD⁻ B cells revealed that
91 they comprised a major population of atypical B cells, characterized by low expression of the
92 complement receptor CD21, and high expression of the inhibitory Ig receptor-like Fcrl5 and
93 FAS-receptor CD95 during HFRS (Figure 1D). We did not observe a comparably strong
94 phenotype on CD27⁻ IgD⁻ B cells from healthy individuals. This suggested that the infection
95 had indirectly caused the accumulation of DAF^{lo} B cells in circulation.

96

97 **Specific downregulation of DAF on human GC B cells**

98 To assess if downregulation of DAF occurs in lymphoid tissues, we performed a direct
99 comparison of DAF expression between B cell subsets in circulation and in tonsils. There, we
100 found that the frequency of DAF^{hi} B cells was reduced on all subsets in tonsils as compared to
101 blood but that this reduction was most prominent in the two tonsillar IgD⁻ subsets (Figure 2A).
102 By staining the cryosections of the corresponding tonsils, we could verify that DAF expression
103 was downregulated in the B cell follicles, and that this coincided with low or non-detectable
104 IgD staining (Figure 2B). In addition, low DAF detection occurred in areas of follicles that
105 exhibited high expression of the chemokine receptor CXCR4. This suggested that DAF was
106 specifically downregulated in GC B cells. We therefore assessed DAF expression on CD19⁺
107 CD20⁺ naive B cells (CD38⁻ IgD⁺), unswitched activated B cells (CD38⁺ IgD⁺), GC B cells
108 (CD38⁺ IgD⁻), memory B cells (CD38⁻ IgD⁻), and CD19⁺CD20⁺ plasmablasts (PB) (CD38⁺⁺
109 IgD⁻) from tonsils (Figure 2C). Consistent with the histology, we found that a majority of GC
110 B cells had downregulated DAF, whereas only a minor downregulation of DAF was detected
111 on other non-naïve subsets (Figure 2D).

112
113 By measurement of the cell cycle activity protein Ki67 and the transferrin receptor CD71, we
114 found that both DAF^{hi} and DAF^{lo} GC B cells demonstrated a comparably high level of
115 activation in contrast to naïve, unswitched or switched memory B cells (Figure 2E, F). We
116 could also identify that DAF^{hi} GC B cells had higher expression of both CD21 (Figure 2G) and
117 CD95 (Figure 2H) as compared with DAF^{lo} GC B cells. Since CD21 has been shown to reduce
118 the threshold for BCR stimulation, and CD95 is critical for the extrinsic apoptosis pathway, this
119 suggests that DAF^{lo} GC B cells have reduced potential for BCR stimulation and are less
120 sensitive to apoptosis than their DAF^{hi} counterparts^{24,25}.

121

122

123 **Transcriptomic profile of DAF^{hi} and DAF^{lo} GC B cells**

124 Next, we assessed the transcriptional profile of bulk sorted DAF^{hi} and DAF^{lo} GC B cells by a
125 Human Clariom-D microarray. Analysis of resulting data revealed that both DAF^{hi} and DAF^{lo}
126 GC B cells had a large number of genes that were more than two-fold differentially expressed
127 (Figure 3A, Supplementary table 3). Of note, DAF^{lo} GC B cells had upregulated genes, which
128 suggested on-going somatic hypermutation, such as *BACH2*, *FOXO1* and *AICDA*^{4,26-28},
129 whereas DAF^{hi} GC B cells showed elevated expression of genes involved in B cell
130 differentiation (*PRDM1*, *IRF4*, *CCR6*), class switching (*BATF*), gene editing (*APOBEC3B*),
131 and regulation of transcription (*MYC*)²⁹⁻³⁴. Surprisingly, the gene encoding DAF (*CD55*),
132 showed similar transcription levels between the two subsets and we could confirm this by RT-
133 qPCR (Figure 3B). Consistent with *PRDM1* being upregulated in the DAF^{hi} subset, we found
134 that the gene product Blimp1 was similarly upregulated in the DAF^{hi} subset (Figure 3C). These
135 data indicate that the CD19⁺CD20⁺IgD⁻CD38⁺DAF^{hi} B cell subset may comprise early GC-
136 derived PB or PCs.

137

138 Although many of the genes upregulated in DAF^{lo} GC B cells are typically associated with DZ
139 B cells, the expression of the DZ marker CXCR4 was not increased. Instead, the LZ marker
140 CD83 was increased in DAF^{lo} GC B cells and the DZ marker CXCR4 was increased in DAF^{hi}
141 GC B cells. This indicated that both the LZ and DZ comprise DAF^{hi} and DAF^{lo} B cells.
142 Therefore, we combined our transcriptional analysis of DAF^{hi} and DAF^{lo} GC B cells with
143 published data on sorted LZ and DZ B cells³⁵. Through this analysis, we found transcriptional
144 patterns that applied to both DZ and LZ from sorted DAF^{hi} and DAF^{lo} GC B cells (Figure 3D).
145 However, and consistent with our other data, the clustering suggested that DAF^{lo} B cells in the
146 DZ are proliferating and undergoing SHM, whereas DAF^{hi} B cells contained a transcriptional
147 profile indicative of final differentiation in the LZ.

148

149 **DAF expression in DZ and LZ of GCs**

150 Next, we used expression of CXCR4 and CD83 to analyze DAF expression on GC B cells in
151 DZ and LZ, respectively (Figure 4A). Consistent with our transcriptional analysis, we found
152 DAF^{hi} and DAF^{lo} populations in both zones, where the frequency of DAF^{hi} cells was slightly
153 decreased in the LZ (Figure 4B). It is established that B cells undergo apoptosis rather than
154 lysis in GCs. We therefore assessed expression of the complement regulatory protein CD59 that
155 inhibits formation of the membrane attack complex, and of complement receptors CD35 and
156 CD21, which are involved in both complement regulation, and B cell activation. We found that
157 CD59, CD35, and CD21 were expressed at similar levels regardless of zonal location or DAF
158 phenotype, although we observed a trend of higher expression of CD35 and CD21 on DAF^{hi}
159 cells in both zones. We could also confirm that GC B cells had increased expression of CD59,
160 as compared to non-GC B cell subsets, excluding PBs and PCs (Figure 4D). In addition, the
161 negative complement regulator CD46 (Figure 4E), which inactivates C4b and C3b, and the
162 complement receptor 1, CD35 (Figure 3F), was also reduced in DAF^{lo} GC B cells. These data
163 suggested that DAF^{lo} GC B cells may be primed for complement-dependent phagocytosis but
164 not lysis.

165

166 **B cell receptor stimulation leads to downregulation of DAF expression**

167 Although downregulation of DAF was most pronounced on GC B cells, DAF was also reduced
168 on a fraction of unswitched activated (CD38⁺IgD⁻) B cells in tonsils (Figure 2D). Hence, it was
169 possible that BCR-stimulation alone or in concert with co-stimulatory factors could directly
170 regulate DAF expression. To assess T cell-independent activation of B cells, we stimulated
171 PBMCs from healthy donors with anti-IgM/IgG with or without CpG for four days (Figure 5A).
172 We found that BCR-stimulation alone led to a reduction of DAF^{hi} B cells and that co-

173 stimulation with CpG enhanced this reduction (Figure 5B). In contrast, CpG alone had no effect
174 on the frequency of DAF^{hi} B cells. We proceeded to assess if T cell-dependent activation was
175 similarly effective to enhance BCR-induced downregulation of DAF by co-incubating with
176 anti-CD40, and recombinant IL-4 or IL-21, respectively (Figure 5C). Of these, IL-21 had a
177 minor but significant effect on the frequency of DAF^{hi} B cells in the presence of anti-IgM/IgG
178 (Figure 5D). These data demonstrated that DAF expression is regulated via BCR-stimulation,
179 and that selected co-stimulatory factors during both T cell-dependent and T cell-independent
180 activation of B cells enhanced the number of DAF^{lo} cells. Throughout all conditions used for T
181 cell-dependent and independent stimulation of B cells, we consistently found that Blimp-1 was
182 expressed at a higher level on DAF^{hi} than on DAF^{lo} B cells (Figure 5E). These data support our
183 findings that DAF^{hi} GC B cells comprise a subpopulation of early GC-derived PB/PC.
184 However, T cell-independent stimulation induced high level of Ki67 expression in both DAF^{hi}
185 and DAF^{lo} B cells but T cell-dependent stimulation preferentially led to activation of DAF^{lo} B
186 cells (Figure 5F). This demonstrated that the nature of co-stimulatory signals govern the
187 activation state of DAF^{hi} or DAF^{lo} B cells, respectively.

188

189 **Phagocytosis of DAF^{lo} GC B cells is enhanced in the presence of complement**

190 A previous study demonstrated that DAF-deficient human T cells accumulate C3d on their cell
191 surfaces *in vitro*²⁰, and that this can facilitate phagocytosis³⁶. Therefore, we hypothesized that
192 DAF^{lo} GC B cells would be more efficiently phagocytosed than their DAF^{hi} counterparts, in a
193 complement-dependent manner. To test this hypothesis, we sorted CFSE-labeled DAF^{hi} and
194 DAF^{lo} GC B cells and co-cultivated these with primary human macrophages in the presence of
195 human serum prior or after heat inactivation of complement. Phagocytosis of B cells was then
196 assessed by counting Phalloidin⁺ macrophages that had internalized vesicles that contained the
197 CFSE dye from the sorted B cells. (Figure 5G). Consistent with our hypothesis, we could show

198 efficient and complement-dependent phagocytosis of DAF^{lo} GC B cells, in comparison with
199 DAF^{hi} GC B cells (Figure 5H). Together, these observations strongly suggest that GC B cells
200 are pre-primed for complement-dependent phagocytosis, and that this is regulated by a
201 reduction of DAF on their cell surface.

202

203 **Modulation of DAF expression during B cell hematopoiesis in the bone marrow**

204 Similar to GC structures in secondary lymphoid organs, the bone marrow represents another
205 site of extensive B cell proliferation. To understand if DAF may play a role also in early B cell
206 development, we obtained human bone marrow samples from routine biopsies and stratified
207 the stages of B cell development by flow cytometry³⁷. Briefly, we separated PCs (CD19⁺
208 CD38^{hi}) from other B cells and precursors (CD19⁺ CD38^{dim/lo}) (Figure 6A). Pro-B cells were
209 identified as CD34⁺ CD10⁺ (Figure 6B). Then, we used CD20 and CD10 identify Pre-B1 cells
210 (CD10⁺ CD20⁻), pre-B2 cells (CD10⁺ CD20⁺), transitional B cells (CD10^{dim} CD20⁺) and mature
211 B cells (CD10⁻ CD20⁺) (Figure 6C). The pre-B2 subset could then be further divided into large
212 and small cells, based on forward side scatter. Subsequent assessment of DAF on the different
213 B cell populations revealed that surface expression of DAF was low from the Pro-B stage until
214 the large immature stage, where the expression followed a bimodal pattern (Figure 6D). Small
215 pre-B2 cells showed uniformly low expression of DAF whereas large pre-B2 cells showed a
216 bimodal pattern of DAF expression. From the transitional B cell subset and onward, DAF
217 expression was uniformly high, where PCs demonstrated the highest surface expression of
218 DAF. Both MFI and %DAF^{hi} cells of parent followed this pattern throughout the developmental
219 stages (Figure 6E, 6F). Together, these data demonstrate that DAF is upregulated on a fraction
220 of cells at a late developmental stage where testing of the pre-BCR or formation of a functional
221 BCR occurs. These data demonstrate that, similar to GCs, DAF is regulated also during B cell
222 development in the bone marrow.

223

224 **Discussion**

225 The complement regulatory protein DAF is well known to inhibit complement activation on
226 cell surfaces. Here, we demonstrate that human GC B cells downregulate DAF on their cell
227 surfaces, and that one function of this downregulation is to prime GC B cells for complement-
228 dependent phagocytosis.

229

230 Our transcriptional data suggest that the distribution of DAF^{lo} and DAF^{hi} GC B cells are located
231 in both the DZ and LZ of the GC structure. Based on the preferential transcription of *AICDA*,
232 *FOXO1* and *BACH2*, DAF^{lo} GC B cells in the DZ undergo somatic hypermutation. Moreover,
233 we could also decipher that DAF^{hi} GC B cells that are located in the LZ comprise cells that
234 express *PRDM1* and *IRF4*, that are associated with PC differentiation. This was corroborated
235 by upregulation of Blimp1 also on the protein level. These data suggest that DAF may be a
236 useful marker to further study early PC differentiation in GCs.

237

238 Our *in vitro* experiments demonstrated that B cells downregulate surface expression of DAF
239 after BCR engagement alone. This is consistent with our data that show downregulation of DAF
240 on fractions of unswitched activated or memory B cells in circulation and in tonsils. We initially
241 had a hypothesis that DAF would be upregulated on GC B cells that undergo successful
242 selection, but addition of anti-CD40 to mimic interaction with T cells did only minorly affect
243 DAF expression, and then only in concert with addition of IL-21. Instead, we found that
244 addition of anti-CD40, IL4 or IL21 preferentially led to an upregulation of Ki67 on DAF^{lo} B
245 cells. Since entry of activated B cells into GC occurs via a T cell dependent checkpoint³⁸, this
246 could explain why 80-90% of all GC B cells are DAF^{lo}. However, during the on-going GC
247 reaction, DAF expression may be regulated largely independent from T cell-dependent

248 selection. In contrast, CpG lead to upregulation of Ki67 on both DAF^{hi} and DAF^{lo} B cells. It is
249 therefore possible that T cell-dependent or independent responses have different requirements
250 for modulation of DAF after activation. In this study, we did not find an overall downregulation
251 of the *CD55* gene on cells with low surface expression of DAF. This suggests that surface
252 expression of DAF is regulated either by post-translational cleavage or by alternative splicing³⁹
253 and studies are on-going to clarify the regulation of DAF.

254

255 The complement system is involved in both innate and adaptive immune responses but it also
256 facilitates the removal of dead or dying cells via a non-inflammatory process⁴⁰. Products of
257 cleaved complement protein C3, such as C3b and C3d, are involved in this process¹⁸. The
258 abundance of C3d in GCs is partially explained by the critical role of C3d for transport of
259 immune complexes into lymphoid follicles and activation of antigen-specific follicular B
260 cells⁴¹. However, data from several early investigations has suggested that GCs may be subject
261 to a local complement cascade, including attachment of complement to cells^{42,43}. The low DAF
262 expression on GC B cells may explain this, as this would allow for attachment of C3b on cell
263 surfaces¹⁸. Since our flow cytometric data was generated after gating on viable cells
264 (Supplementary Figure S2), they demonstrate that downregulation of DAF had not led to
265 apoptosis, nor lysis via the membrane-attack complex. This latter may be explained by
266 consistent expression of CD59 on GC B cells to hinder the generation of the membrane attack
267 complex by inhibition of C5 convertase⁴³. It has been described that regulation of complement
268 receptors on GC B cells can influence the threshold for BCR-mediated activation²⁴, enhance
269 antigen uptake⁴⁵, and also facilitate the attachment of these fragments onto B cells⁴⁶. We also
270 found that DAF expression was modulated during B cell hematopoiesis in the bone marrow.
271 This opens up a possibility that regulation of DAF may serve a similar function during B cell
272 development as we show for GC B cells; to prime cells for phagocytosis.

273

274 Here, we demonstrate a role of DAF for phagocytosis of GC B cells. While we did not
275 investigate if modulation of DAF could have other beneficial functions for GC B cells, DAF
276 deficient mouse macrophages and dendritic cells have been shown to present antigen more
277 efficiently to T cells than their DAF expressing counterparts⁴⁷. It is therefore possible that the
278 regulation of DAF may serve a dual role where it also allows activated GC B cells to more
279 easily interact with T cells. This would also be in line with previous observations that
280 complement interaction facilitates antigen uptake in B cells⁴⁵.

281

282 Collectively, our data demonstrates a novel role of DAF for regulation of phagocytosis of GC
283 B cells and that modulation of DAF may also play an important role during B cell development.
284 This may explain how B cell homeostasis is maintained at locations where extensive
285 proliferation and apoptosis occurs.

286

287 Materials and methods

288 Donors and tissues

289

290 The research was carried out according to The Code of Ethics of the World Medical
291 Association (Declaration of Helsinki). Ethical permits were obtained from
292 the Swedish Ethical review authority (No: 2016/53-31, 04-113M, 07-162M and 2014/233)
293 and all samples were collected after receiving informed consent from patient or patient's
294 guardian. Briefly, blood was collected in EDTA tubes and PBMCs were isolated using a
295 Ficoll-Paque density gradient centrifugation. Tonsillar cell suspensions were prepared by
296 tissue homogenizing in RPMI-1640 medium and passed through a 70 µm cell strainer. Red
297 blood cells were lysed using BD PharmLyse lysis buffer according to manufacturer's

298 instructions. PBMCs from healthy donors were isolated by Ficoll-Paque density gradient from
299 buffy coats from routine blood donations at the Blood Central at Umeå University Hospital,
300 Umeå, Sweden. All cell suspensions except bone marrow aspirates were frozen in fetal bovine
301 serum (FBS) (Gibco) with 10% DMSO and stored in liquid N₂. Bone marrow aspirates were
302 obtained from routine sampling at the Department of Pathology, Umeå University Hospital.

303

304 **Flow cytometry**

305 Antibodies used are listed in supplementary table 1. Frozen suspensions of PBMCs and tonsils
306 were thawed, washed and resuspended in PBS with 2% FBS, then stained with Fixable Viability
307 Stain 780 (BD Biosciences), followed by antibody staining for 30 minutes at 4°C. Intracellular
308 staining for transcription factors was performed using the eBioscience FoxP3/Transcription
309 Factor Staining Buffer set according to manufacturer's instruction (ThermoFisher). Cells were
310 acquired on a BD LSRII or BD FACSAria III. Cell sorting was done on BD FACSAria III.
311 Bone marrow samples were processed by routine diagnostic procedures and acquired on a BD
312 FACSCanto II. All data were analyzed using the FlowJo v10 software.

313

314 **Tissue immunofluorescence**

315 Tonsils were fixed for 4 hours in PBS + 4% paraformaldehyde, then incubated overnight in
316 30% sucrose. Samples were embedded in OCT (HistoLab) and stored at -80°C. 20 µm sections
317 of the tissues were cut in a cryostat. The sections were blocked for 1 hour at room temperature
318 in PBS + 5% FBS + 0.1% Triton, then stained with antibodies against CD19, IgD, CXCR4 and
319 DAF. Full details of antibodies are listed in supplementary table 2. Stained sections were
320 imaged on a Zeiss LSM 710 confocal microscope with 405, 488, 561 and 647 nm laser lines,
321 using a Plan Apochromat 20x objective.

322

323 **Cell culture**

324 PBMCs from healthy donors were seeded at 1x10⁶ cells/ml in a 96-well plate containing RPMI-
325 1640, L-Glutamine (Gibco), 10% fetal bovine serum (Gibco) and 100 U/L Penicillin-
326 Streptomycin (Gibco). Cells were then stimulated with 10 µg/ml goat-anti human IgM+IgG
327 (Jackson Laboratories), 2.5 µM CpG B (ODN 2006, Invivogen), 1 µg/ml anti-CD40 (G28.5,
328 Abcam), 25 ng/ml IL-4 (Abcam) or 25 ng/ml IL-21 (Abcam). All incubations were at 37°C,
329 5%CO₂.

330

331 **Microarray**

332 DAF^{hi} and DAF^{lo} GC B cells (CD19⁺ CD20⁺ CD38⁺ IgD⁻) were resuspended in RLT cell lysis
333 buffer (Qiagen) after flow cytometric sorting. Total RNA was extracted (Qiagen) and
334 microarray was performed using Affymetrix Human Clariom D microarrays (Bioinformatics
335 and Expression Analysis core facility at Karolinska Institutet, Huddinge, Sweden). Data were
336 analyzed in R. First the data was RMA normalized. Next, limma was used to solve the
337 differential expression regression problems using empirical Bayes. In all cases we regressed
338 out donor effects (~x+donor, where x is e.g. DAF^{hi} vs DAF^{lo}).

339

340 **RT-qPCR of DAF expression**

341 5000 each of DAF^{hi} and DAF^{lo} GC B cells were resuspended in RLT buffer after FACS sorting.
342 RNA was extracted using Qiagen RNEasy Micro Kit according to instructions. One-step RT-
343 qPCR was performed with LightCycler 480 RNA Master Hydrolysis Probes (Roche) and
344 commercially available *CD55* and *ACTB* TaqMan primers and probes during 5 min at 60°C, 1
345 min at 95°C, then 15s 95°C and 1 min 60°C for 45 cycles. RNA was loaded in triplicates and
346 the reaction was run on a QuantStudio 5 Real-Time PCR System machine. *CD55* expression
347 was normalized to *ACTB* expression to obtain the delta Ct values.

348

349 **Phagocytosis assay**

350 Primary human macrophages were cultivated from purified PBMCs from a healthy donor. 1.5
351 million PBMCs/well were plated in RPMI-1640 supplemented with 10% FBS and 1% Pen-
352 Strep on 13 mm circular coverslips in a 24-well plate for 2h. Non-adherent cells were rinsed
353 off with PBS, and RPMI-1640 supplemented as described and with additional 20 mM Hepes
354 and 25 ng/ml M-CSF (R&D Systems). Medium was changed every third day and the cells were
355 allowed to differentiate for 10 days. Normal human serum was collected and pooled from 6
356 healthy donors and stored at -80°C immediately after isolation. After a 1h incubation of sorted
357 DAF^{lo} or DAF^{hi} GC B cells with macrophages in RPMI-1640, supplemented with 10µM CaCl₂
358 and 10µM MgCl₂ and 10% of either thawed or heat-inactivated human serum, samples were
359 fixed with 4% paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100, followed
360 by staining with AlexaFluor-546 phalloidin (ThermoFisher). Phagocytosis was quantified by
361 microscopy where phalloidin⁺ macrophages were counted, and macrophages containing CFSE
362 signal and phagocytic vesicles were considered as phagocytosing. A total of 200 macrophages
363 per well were counted.

364

365 **Statistics**

366 All statistic calculations were performed using GraphPad Prism 7. For comparisons between
367 populations within the same patient, we performed Wilcoxon matched-pairs signed rank test.
368 For the comparisons between different groups, we used the Mann-Whitney test. P-values lower
369 than 0.05 were considered as significant.

370

371 **Data availability**

372 The microarray data is available under accession GEO (GSE153741). The R code is available
373 at Github (<https://github.com/henriksson-lab/mattias-daf>).

374

375

376 **Authorship**

377 Contributions:

378 A.D. designed and performed experiments and wrote the manuscript. J.L. assisted with
379 experimental work and critically read the manuscript. A.H. organized tonsillectomies and
380 provided expertise in sample processing, and critically read the manuscript. J.M. provided
381 conceptual suggestions, assisted with microarray, and critically read the manuscript. C.A.
382 provided HFRS samples and supervised the project. J.H. assisted with bioinformatic analysis
383 and critically read the manuscript. M.H. arranged bone marrow sampling and analysis, provided
384 expertise in B cell development, and critically read the manuscript. M.N.E.F. conceived and
385 supervised the study, designed experiments, and wrote the manuscript.

386

387 **Acknowledgements**

388

389 The authors thank Remigius Gröning for commenting on the manuscript; Ellen Ernhill, MD
390 and Anders Erlandsson, MD, for providing tonsils; Elin Arvidsson for processing and
391 acquisition of the bone marrow samples; Myriam Martin and Anna Blom at Lunds University
392 for constructive discussions with regards to complement activation. We also would like to thank
393 the Affymetrix core facility at Novum, BEA, Bioinformatics and Expression Analysis, which
394 is supported by the board of research at the Karolinska Institute and the research committee at
395 the Karolinska hospital.

396

397 **Conflicts of interest**

398 The authors declare no conflicts of interest.

399

400 **References**

401

402 1. Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immunoglobulin
403 genes coding for variable and constant regions. 1976 [classical article]. *J Immunol.*
404 2004;173(7):4260-4264.

405 2. Talmage DW. Allergy and immunology. *Annu Rev Med.* 1957;8:239-256.

406 3. Burnet FM. A modification of Jerne's theory of antibody production using the
407 concept of clonal selection. *CA Cancer J Clin.* 1976;26(2):119-121.

408 4. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class
409 switch recombination and hypermutation require activation-induced cytidine deaminase (AID),
410 a potential RNA editing enzyme. *Cell.* 2000;102(5):553-563.

411 5. McKean D, Huppi K, Bell M, Staudt L, Gerhard W, Weigert M. Generation of
412 antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin.
413 *Proc Natl Acad Sci U S A.* 1984;81(10):3180-3184.

414 6. Berek C, Berger A, Apel M. Maturation of the immune response in germinal
415 centers. *Cell.* 1991;67(6):1121-1129.

416 7. Neuberger MS, Lanoue A, Ehrenstein MR, Batista FD, Sale JE, Williams GT.
417 Antibody diversification and selection in the mature B-cell compartment. *Cold Spring Harb
418 Symp Quant Biol.* 1999;64:211-216.

419 8. Victora GD, Nussenzweig MC. Germinal centers. *Annu Rev Immunol.*
420 2012;30:429-457.

421 9. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. *Cell*
422 *Death Differ.* 2016;23(6):915-926.

423 10. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in
424 homeostasis. *Nat Immunol.* 2015;16(9):907-917.

425 11. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of
426 hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and
427 repopulation potential. *J Exp Med.* 2000;191(2):253-264.

428 12. Mayer CT, Gazumyan A, Kara EE, et al. The microanatomic segregation of
429 selection by apoptosis in the germinal center. *Science.* 2017;358(6360).

430 13. Flemming W. Studien über Regeneration der Gewebe. *Arch Mikr Anat.*
431 1885;24:50.

432 14. Swartzendruber DC, Congdon CC. Electron microscope observations on tingible
433 body macrophages in mouse spleen. *J Cell Biol.* 1963;19(3):641-646.

434 15. Smith JP, Burton GF, Tew JG, Szakal AK. Tingible body macrophages in
435 regulation of germinal center reactions. *Dev Immunol.* 1998;6(3-4):285-294.

436 16. Sato K, Honda SI, Shibuya A, Shibuya K. Cutting Edge: Identification of
437 Marginal Reticular Cells as Phagocytes of Apoptotic B Cells in Germinal Centers. *J Immunol.*
438 2018;200(11):3691-3696.

439 17. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC.
440 Mechanism of antigen-driven selection in germinal centres. *Nature.* 1989;342(6252):929-931.

441 18. Martin M, Blom AM. Complement in removal of the dead - balancing
442 inflammation. *Immunol Rev.* 2016;274(1):218-232.

443 19. Eldewi DM, Alhabibi AM, El Sayed HME, et al. Expression levels of
444 complement regulatory proteins (CD35, CD55 and CD59) on peripheral blood cells of patients
445 with chronic kidney disease. *Int J Gen Med.* 2019;12:343-351.

446 20. Ozen A, Comrie WA, Ardy RC, et al. CD55 Deficiency, Early-Onset Protein-
447 Losing Enteropathy, and Thrombosis. *N Engl J Med.* 2017;377(1):52-61.

448 21. Takeda J, Miyata T, Kawagoe K, et al. Deficiency of the GPI anchor caused by a
449 somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. *Cell.*
450 1993;73(4):703-711.

451 22. Richards SJ, Morgan GJ, Hillmen P. Immunophenotypic analysis of B cells in
452 PNH: insights into the generation of circulating naive and memory B cells. *Blood.*
453 2000;96(10):3522-3528.

454 23. Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus
455 ecology, epidemiology, and disease. *Clin Microbiol Rev.* 2010;23(2):412-441.

456 24. Cherukuri A, Cheng PC, Sohn HW, Pierce SK. The CD19/CD21 complex
457 functions to prolong B cell antigen receptor signaling from lipid rafts. *Immunity.*
458 2001;14(2):169-179.

459 25. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1
460 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the
461 receptor. *Embo J.* 1995;14(22):5579-5588.

462 26. Miura Y, Morooka M, Sax N, et al. Bach2 Promotes B Cell Receptor-Induced
463 Proliferation of B Lymphocytes and Represses Cyclin-Dependent Kinase Inhibitors. *J*
464 *Immunol.* 2018;200(8):2882-2893.

465 27. Muto A, Tashiro S, Nakajima O, et al. The transcriptional programme of antibody
466 class switching involves the repressor Bach2. *Nature.* 2004;429(6991):566-571.

467 28. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kuroski T. The transcription
468 factor Foxo1 controls germinal center B cell proliferation in response to T cell help. *J Exp Med.*
469 2017;214(4):1181-1198.

470 29. Turner CA, Jr., Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing
471 protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells.
472 *Cell*. 1994;77(2):297-306.

473 30. Sciammas R, Davis MM. Modular nature of Blimp-1 in the regulation of gene
474 expression during B cell maturation. *J Immunol*. 2004;172(9):5427-5440.

475 31. Calado DP, Sasaki Y, Godinho SA, et al. The cell-cycle regulator c-Myc is
476 essential for the formation and maintenance of germinal centers. *Nat Immunol*.
477 2012;13(11):1092-1100.

478 32. Ise W, Kohyama M, Schraml BU, et al. The transcription factor BATF controls
479 the global regulators of class-switch recombination in both B cells and T cells. *Nat Immunol*.
480 2011;12(6):536-543.

481 33. Suan D, Kräutler NJ, Maag JLV, et al. CCR6 Defines Memory B Cell Precursors
482 in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant Low
483 Antigen Affinity. *Immunity*. 2017;47(6):1142-1153.e1144.

484 34. Zou J, Wang C, Ma X, Wang E, Peng G. APOBEC3B, a molecular driver of
485 mutagenesis in human cancers. *Cell Biosci*. 2017;7:29.

486 35. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R,
487 Nussenzweig MC. Identification of human germinal center light and dark zone cells and their
488 relationship to human B-cell lymphomas. *Blood*. 2012;120(11):2240-2248.

489 36. Gaither TA, Vargas I, Inada S, Frank MM. The complement fragment C3d
490 facilitates phagocytosis by monocytes. *Immunology*. 1987;62(3):405-411.

491 37. Theunissen P, Mejstrikova E, Sedek L, et al. Standardized flow cytometry for
492 highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. *Blood*.
493 2017;129(3):347-357.

494 38. Schwickert TA, Victora GD, Fooksman DR, et al. A dynamic T cell-limited
495 checkpoint regulates affinity-dependent B cell entry into the germinal center. *J Exp Med.*
496 2011;208(6):1243-1252.

497 39. Vainer ED, Meir K, Furman M, Semenenko I, Konikoff F, Vainer GW. Characterization
498 of novel CD55 isoforms expression in normal and neoplastic tissues. *Tissue Antigens.*
499 2013;82(1):26-34.

500

501 40. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with
502 wide-ranging implications in tissue kinetics. *Br J Cancer.* 1972;26(4):239-257.

503 41. Carroll MC, Isenman DE. Regulation of humoral immunity by complement.
504 *Immunity.* 2012;37(2):199-207.

505 42. Feucht HE, Jung CM, Gokel MJ, et al. Detection of both isotypes of complement
506 C4, C4A and C4B, in normal human glomeruli. *Kidney Int.* 1986;30(6):932-936.

507 43. Gajl-Peczalska KJ, Fish AJ, Meuwissen HJ, Frommel D, Good RA. Localization
508 of immunological complexes fixing beta1C (C3) in germinal centers of lymph nodes. *J Exp*
509 *Med.* 1969;130(6):1367-1393.

510 44. Rollins SA, Zhao J, Ninomiya H, Sims PJ. Inhibition of homologous complement
511 by CD59 is mediated by a species-selective recognition conferred through binding to C8 within
512 C5b-8 or C9 within C5b-9. *J Immunol.* 1991;146(7):2345-2351.

513 45. Brimnes MK, Hansen BE, Nielsen LK, Dziegiele MH, Nielsen CH. Uptake and
514 presentation of myelin basic protein by normal human B cells. *PLoS One.* 2014;9(11):e113388.

515 46. Nielsen CH, Pedersen ML, Marquart HV, Prodinger WM, Leslie RG. The role of
516 complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment
517 deposition and membrane attack complex formation on normal peripheral human B cells. *Eur*
518 *J Immunol.* 2002;32(5):1359-1367.

519 47. Fang C, Miwa T, Song WC. Decay-accelerating factor regulates T-cell immunity
520 in the context of inflammation by influencing costimulatory molecule expression on antigen-
521 presenting cells. *Blood*. 2011;118(4):1008-1014.

522

523

524 **Figures and figure legends**

525 **Figure 1**

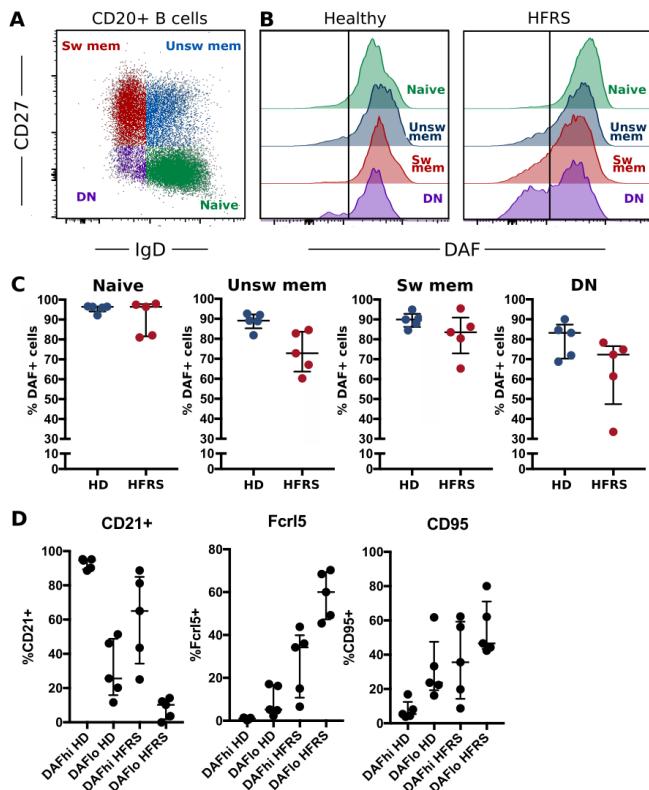
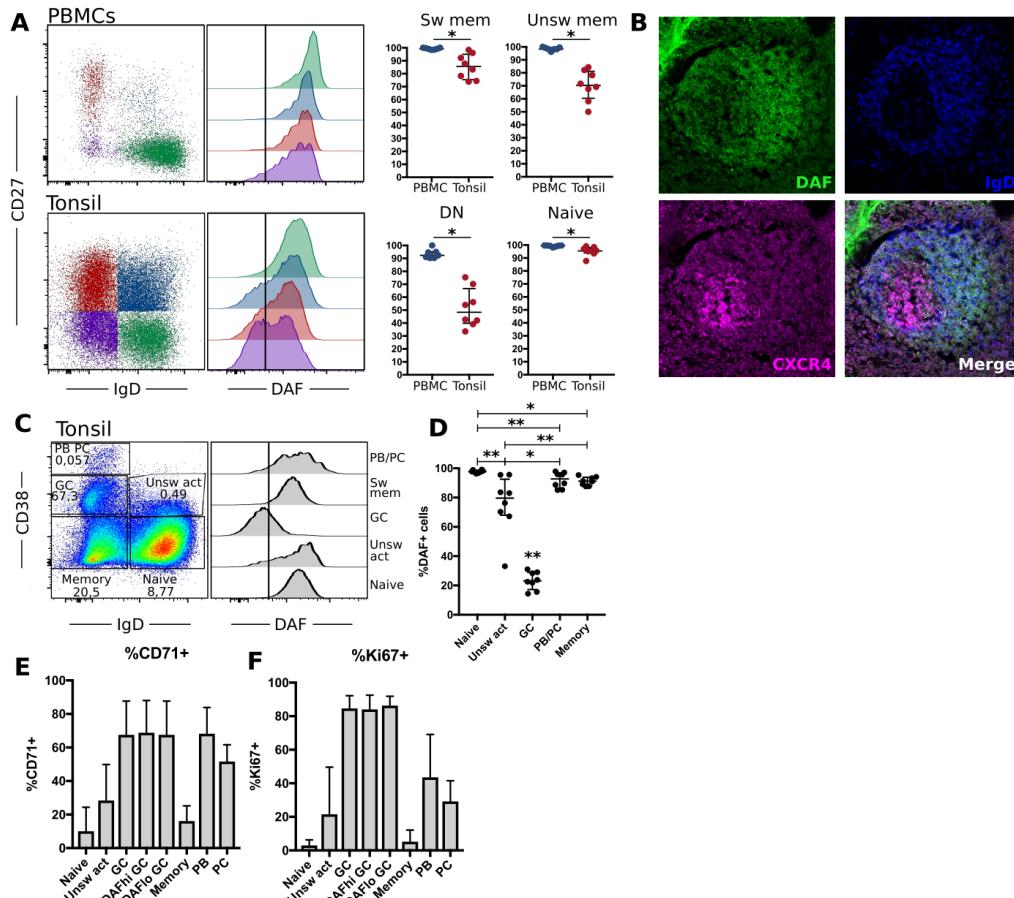
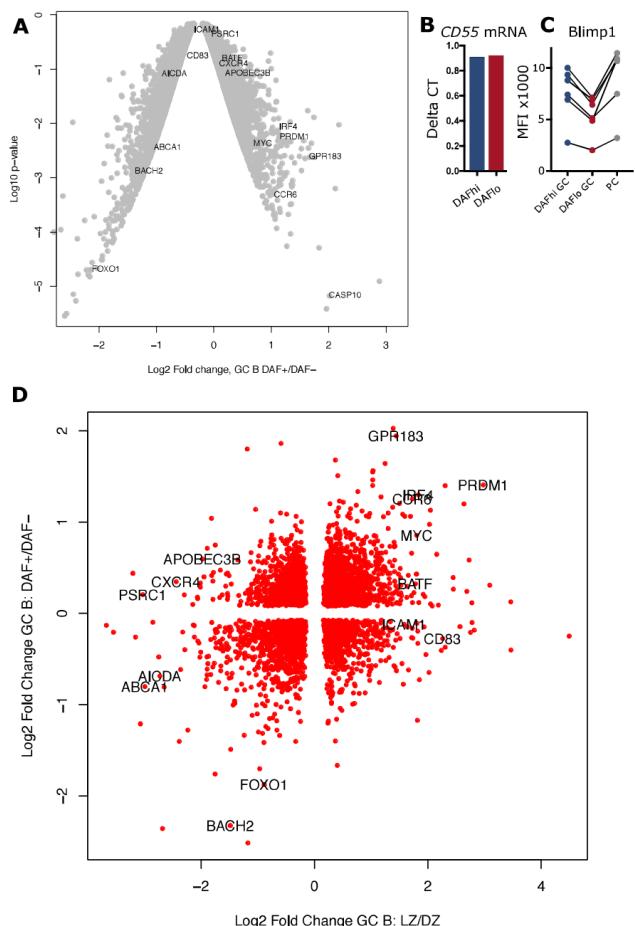



Figure 2

534


535 **Figure 2. Germinal center B cells specifically downregulate DAF**

536 **(A)** Representative flow cytometric plots and quantification of DAF expression on CD19⁺
537 CD20⁺ naïve (CD27⁻ IgD⁺), unswitched memory (unsw mem, CD27⁺ IgD⁺), switched memory
538 (sw mem, CD27⁺ IgD⁻) or DN (CD27⁻ IgD⁻) B cells from circulation (N=7) and tonsils (N=8).
539 Individual dots for each sample are shown and lines indicate median with interquartile range.
540 **(B)** Representative tonsil section stained with DAF (green), IgD (blue) and CXCR4 (magenta).
541 **(C)** Representative plot for subset analysis of DAF expression on germinal center cells (GC,
542 CD38⁺, IgD⁺), naïve B cells (CD38⁻ IgD⁺), unswitched activated (unsw act, CD38⁺ IgD⁺),
543 memory cells (CD38⁻ IgD⁻), and plasmablasts (PB) (CD38⁺⁺ IgD⁻) of CD19⁺ CD20⁺ tonsillar B
544 cells. Vertical line indicates the cutoff to discriminate DAF^{hi} from DAF^{lo} cells. **(D)**
545 Quantification of DAF expression on tonsillar B cell subsets. Individual dots for each sample

546 are shown and lines indicate median with interquartile range. **(E)** Frequency of B cell subsets
547 with high expression of the transferrin receptor CD71. Data is represented as bar graphs
548 showing median and interquartile range. **(F)** Frequency of B cell subsets with high expression
549 of Ki67. Data is represented as bar graphs showing median and interquartile range. *P < 0,05;
550 **P < 0,01 by Wilcoxon signed-rank test.

551

Figure 3

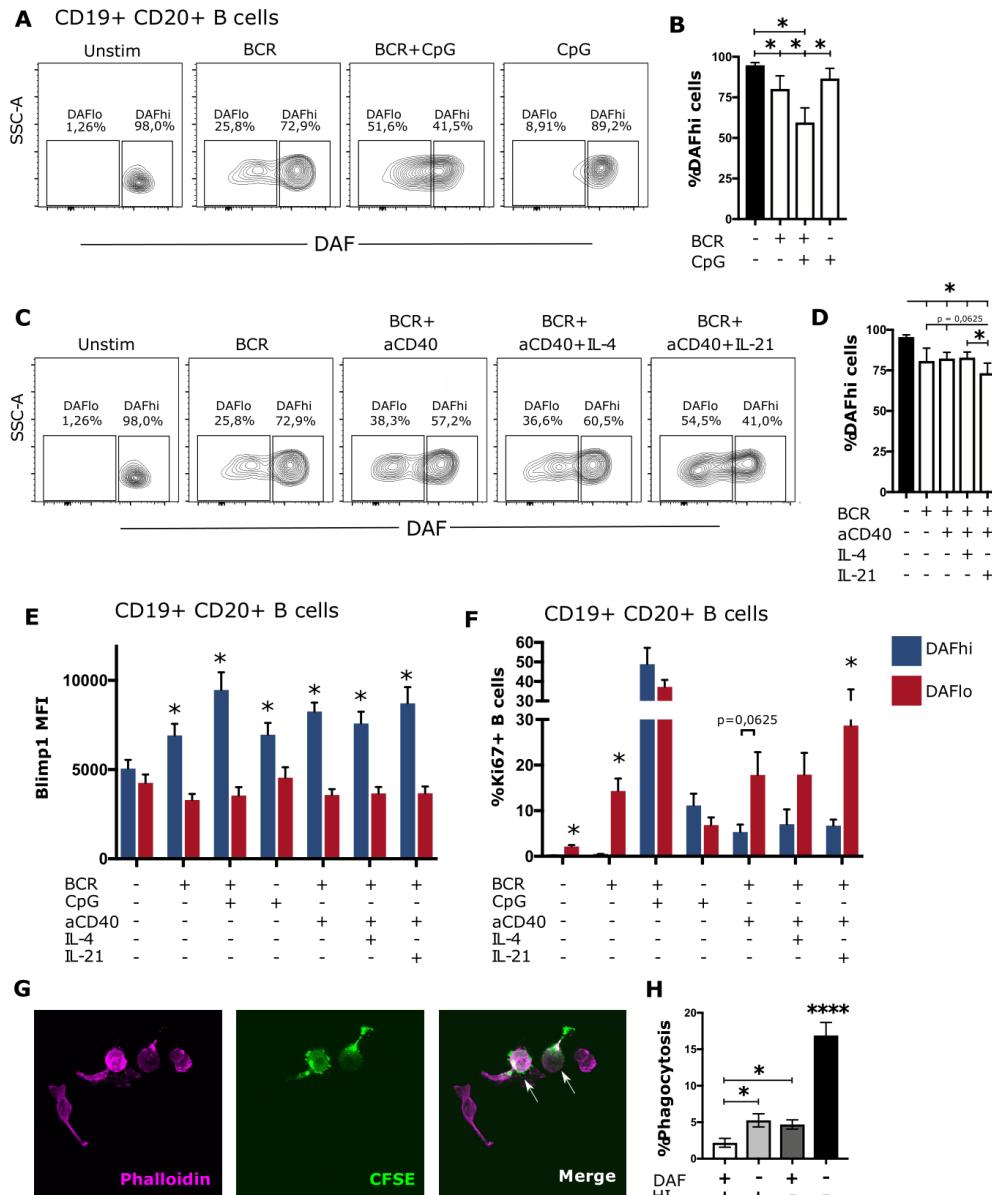
552

553 **Figure 3. Transcriptomic analysis of DAF^{hi} and DAF^{lo} germinal center B cells**

554 **(A)** Volcano plot showing differences in genes expressed by DAF^{hi} and DAF^{lo} GC B cells. **(B)**
555 Delta CT of *CD55* gene expression, normalized to *ACTB*. **(C)** Flow cytometric analysis of
556 Blimp1 expression on DAF^{hi}, DAF^{lo} GC B cells and plasma cells (PC) (N = 6). **(D)** Clustering

557 of DAF^{hi} and DAF^{lo} GC B cells in combination with transcriptomic data from sorted light zone
558 (LZ) and dark zone (DZ) GC B cells. LZ and DZ data were obtained from Victora et al³⁵.

Figure 4

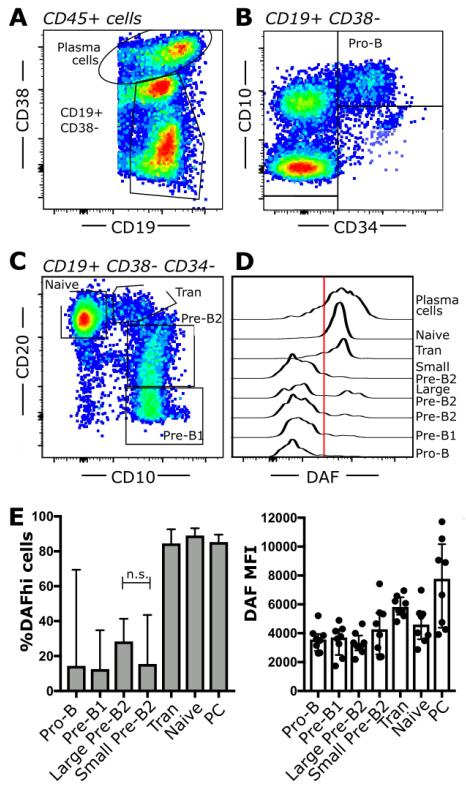

559

560 **Figure 4. DAF expression on DZ and LZ B cells**

561 **(A)** Representative gating strategy for light zone (LZ, CD83⁺ CXCR4⁺) and dark zone (DZ,
562 CD83⁻ CXCR4⁺) of CD19⁺ CD20⁺ CD38⁺ IgD⁻ B cells. **(B)** Frequency of DAF^{hi} cells within
563 the total GC B cell population and on LZ and DZ GC B cells. Bars represent median with
564 interquartile range. *P < 0,05 by Wilcoxon signed-rank test. **(C)** Expression of CD59, CD35
565 and CD21 on DAF^{hi} or DAF^{lo} GC B cells in DZ (left) or LZ (right). **(D)** Expression of CD59
566 on naïve, unswitched activated (Unsw act), DAF^{hi} or DAF^{lo} GC B cells, memory B cells,
567 plasmablasts (PB) and plasma cells (PC). **(E)** Expression of complement regulator CD46 on

568 DAF^{hi} and DAF^{lo} GC B cells. **(F)** Expression of CD35 in DAF^{hi} and DAF^{lo} GC B cells. Median
 569 fluorescence intensity (MFI) is represented as individual dots where lines indicate median with
 570 interquartile range. Data was acquired from multiple patients (n = 6).

Figure 5


571

572 **Figure 5. B cell receptor engagement leads to downregulation of DAF on B cells, *in vitro*.**

573 **(A)** Representative plots for discriminating DAF expression on CD19⁺ CD20⁺ B cells 4 days
 574 after stimulation with anti-IgM/IgG, CpG or a combination of both. **(B)** Quantification of data

575 from (A). N=6. Median and interquartile range is shown. **(C)** Representative plots for
576 discriminating DAF expression on CD19⁺ CD20⁺ B cells 4 days after stimulation with anti-
577 IgM/IgG, anti-CD40, IL-4, IL-21 or a combination of these. **(D)** Quantification of data from
578 (C). N=6. Median and interquartile range is shown. Intracellular expression of Blimp1 **(E)** or
579 Ki67 **(F)** in DAF^{hi} and DAF^{lo} B cells after 4 day stimulation with anti-IgM/IgG, CpG, anti-
580 CD40, IL-4, IL-21 or a combination of these. N=6. Median and interquartile range is shown.
581 *P < 0,05 by Wilcoxon signed-rank test. **(G)** Representative image of phalloidin labelled
582 primary human macrophages (magenta), CFSE stained sorted B cells (green) and phagocytosed
583 B cells (magenta and green). **(F)** Quantification of phagocytosed B cells after co-incubation of
584 sorted and CFSE labelled DAF^{hi} and DAF^{lo} GC B cells with human serum before or after heat
585 inactivation (HI). 200 macrophages were counted per slide and cells double positive for CFSE
586 and phalloidin were considered phagocytosing. Data from 3 independent experiments is shown
587 (GC B cells from three unique individuals). Mean and standard error of mean is shown. *P <
588 0,05; **P < 0,01; ****P < 0,0001 by Mann-Whitney test.

Figure 6

589

590 **Figure 6. Regulation of DAF expression during B cell hematopoiesis**

591 (A-C) Flow cytometric analysis of human bone marrow aspirates. Shown are (A) PCs (CD19⁺
592 CD38^{hi}) and B cells (CD19⁺ CD38^{dim/lo}), (B) Pro-B cells (CD34⁺ CD10⁺) and (C) Pre-B1 cells
593 (CD10⁺ CD20⁺), pre-B2 cells (CD10⁺ CD20⁺), transitional B cells (CD10^{dim} CD20⁺) and mature
594 B cells (CD10⁻ CD20⁺). (D) Representative histogram of DAF expression from respective B
595 cell subset in bone marrow. The line indicates the cut-off for determination of high or low DAF
596 expression. (E) Quantification of data from (D). Shown is median with interquartile range. n.s.
597 non-significant; *P < 0,05; **P < 0,01. N = 8.

598