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Genes required for tumor proliferation and survival (dependencies) are
challenging to predict from cancer genome data, but are of high therapeutic
value. We developed an algorithm (network purifying selection [NPS]) that
aggregates weak signals of purifying selection across a gene’s first order
protein-protein interaction network. We applied NPS to 4,742 tumor genomes to
show that a gene’s NPS score is predictive of whether it is a dependency and
validated 58 NPS-predicted dependencies in six cancer cell lines. Importantly, we
demonstrate that leveraging NPS predictions to execute targeted CRISPR screens
is a powerful, highly cost-efficient approach for identifying and validating
dependencies quickly, because it eliminates the substantial experimental
overhead required for whole-genome screening.

Cells become tumorigenic when genomic driver events confer a positive selective
advantage on them. Examples of driver events are somatic mutations, copy number
alterations, or genomic fusions that promote cell growth and oncogenesis. Identifying
the genes affected by driver mutations in tumors is crucial to gaining mechanistic and
therapeutic insights into cancer etiology. Over the last decade, tens of thousands of
tumors have been sequenced and methods such as MutSig, Oncodrive, GISTIC, RAE
and MutPanning have identified hundreds of genes prone to driver events that promote
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tumor formation (Dietlein et al. 2020; Lawrence et al. 2014; Mermel et al. 2011; Mularoni
et al. 2016). Of equal, if not greater, therapeutic interest are genes under purifying
selection that when mutated negatively impact tumor development or maintenance.
Some genes (e.g., PIK3CA, ESR1 and AFF1) (Ghandi et al. 2019; llic et al. 2017) can
be both oncogenes and dependencies and are particularly attractive candidates for
pharmacological intervention.

Cancer mutation rates can be modeled as randomly distributed across the tumor
genome and are influenced by DNA sequence composition and genomic position,
replication timing, transcription-coupled DNA damage repair and mutational hotspots
(Dietlein et al. 2020; Lawrence et al. 2014; Weghorn & Sunyaev 2017). Therefore,
genes under purifying selection should, in principle, be detectable from cancer genome
data as those with fewer mutations than expected. However, because cancer genome
data are both noisy (e.g., due to mutation rate heterogeneity, germline variants in
sequencing data, gene copy number and mutation rates) and sparse (most genes are
not mutated), measuring a statistical signal for genes under purifying selection requires
large sample sizes (Tsherniak et al. 2017; Weghorn & Sunyaev 2017).

Despite these challenges, genes under purifying selection have been successfully
identified by constraining their search to highly specific features of the cancer genome.
These include genes that introduce a vulnerability through the loss of one allele as a
result of genomic copy number changes (e.g., CYCLOPS) (Nijhawan et al. 2012) and
functionally coherent gene sets derived from The Cancer Genome Atlas with mutually
exclusive loss-of-function signatures (Ryan et al. 2014). While important and pioneering,
none of these approaches can be applied in an unconstrained and genome-wide
manner to directly detect cancer vulnerabilities from the tens of thousands of available
cancer genomes.

Consequently, cancer researchers have historically executed small-scale gene
perturbation experiments in cancer cell lines to assess the resulting effects on cell
growth (Bass et al. 2009; Etemadmoghadam et al. 2010; Garraway & Lander 2013; Kim
& Sabatini 2004; Lopez & Hanahan 2002; Mansouri et al. 1998; Okhrimenko et al. 2005;
Ramsay & Gonda 2008). More recently, the development of genome-wide RNAI
knockdown and CRISPR-Cas9 knockout experiments has made it possible to
systematically study all genes in a wide range of cell lines (Cheung et al. 2011; Meyers
et al. 2017; Tsherniak et al. 2017; Wang et al. 2015). These screens have identified
many pan-essential and cell line-specific dependencies that can be reproducibly found
in independent screens (Dempster et al. 2019; Meyers et al. 2017) and it is now
possible to personalize these methods to identify unique, patient-specific dependencies
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Figure 1. Network Purifying Selection (NPS) applied to cancer dependency data sets. a) Study
overview depicting the calculation of the mutation burden in the neighborhood of a candidate cancer
dependency gene product, AFF2, and use of a permutation scheme to empirically derive the
significance of the aggregated mutation burden across its interaction network. b) Enrichment of
expected vs. observed mutation burden fold change of candidate genes from four dependency data
sets.

on a treatment-relevant timescale (Hong et al. 2016). Despite this tremendous progress,
the identification of all possible dependencies would require screening more than 5,000
cell lines, an extremely resource- and time-consuming endeavor (Tsherniak et al. 2017).
Therefore, a computational method that can reliably identify genes under purifying
selection directly from cancer genome data is highly relevant to oncology.

We previously developed NetSig, a robust statistic that combines cancer mutation data
with protein network information to discover cancer driver genes (Horn et al., 2018).
Here, we used an analogous approach to create Network Purifying Selection (NPS), a
statistic that aggregates weak signals of negative selection across a gene’s first order,
high-confidence, protein-protein interaction (PPI) network and we show that this
signature is predictive of the gene itself being under purifying selection. To calculate the
signal of purifying selection for a given gene, we considered the first order interactors of
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its encoded protein (hereafter designated as neighborhood) from PPI evidence (InWeb3
and InBio Map (Lage et al. 2007; Li et al. 2017), see Online Methods) integrated with
cancer genome data (Lawrence et al. 2014) (Fig. 1a). We calculated a gene-specific
NPS statistic using the genetic data from 4,742 human cancers across 21 cancer types
and obtained a set of 91 gene dependencies that we call NPS5000 (as it consists of
about 5,000 patient samples and to follow the naming convention of previous work
(Horn et al. 2018; Lawrence et al. 2014)) (Supplementary Table 1).

To account for knowledge contamination, we used a permutation scheme that considers
the network topology of the neighborhood. Briefly, this strategy consists in replacing
every neighbor of a given gene with a gene having a similar connectivity in the network
(see Methods for more details) and calculate the mutation burden of this permuted
neighborhood. We determined the predictive performance of the NPS algorithm on four
well-established gene dependency data sets (Fig. 1b). First, we applied NPS to
CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS)
and found a strong enrichment of the NPS5000 gene set (fold change = 4.6; P < 0.01,
hypergeometric test) (Nijhawan et al. 2012). Second, we examined ExAC, a human
population genetic data set of ~80,000 exomes (pLI > 0.9) and found a significant
NPS5000 enrichment (fold change = 1.6, P < 0.001, hypergeometric test) (Lek et al.
2016). The third data set used for assessing the NPS predictions was obtained from a
small-scale gene knockout experiment in cancer cell lines using CRISPR-Cas9 and
Gene-trap technologies (hereafter referred to as the Wang-CRISPR data set (Wang et
al. 2015)). We found strong enrichment of our candidate genes (fold change = 3.3, P <
4.3e-23, hypergeometric test) as expected from a study focusing on genes that are
essential to cell function. Lastly, we looked at dependency probabilities in one of the
largest gene knockout studies available, the Cancer Dependency Map project (DepMap
2020), a genome-wide CRISPR-Cas9 knockout in 769 cell lines, and here too found
strong enrichment of the NPS5000 dependency gene set (fold change = 5.23, P =
3.73-28, hypergeometric test) (Tsherniak et al. 2017).

To determine whether the NPS algorithm is predicting pan-essential genes or
nominating potential cancer cell line-specific dependencies, we first stratified the
NPS5000 candidate genes by their EXAC pLI score (pLI > 0.9), which reflects the
tolerance of a given gene to the loss of function and can therefore be seen as
representative of the evolutionary constraints acting on genes. We next used the
DepMap Avana 20Q2 data set to confirm that the 91 NPS-identified genes are
pan-essential (Supplementary Table 2). Strikingly, genes classified as dependencies
in the EXAC data set tend to also be pan-dependencies in cell lines (P = 2.93e-05,
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Wilcoxon signed-rank test), indicating that NPS is able to predict pan-essential genes
from tumor sequencing data. Based on both the EXAC pLI and calculated dependency
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Figure 2. In vitro validation of Network Purifying Selection (NPS)-predicted cancer
dependencies. a,b) Comparison of sgRNA effects on gene expression (fold change) (a) and CERES
gene scores (b) in DepMap and CRISPR Dropout data of 58 genes in three cell lines. Dots represent

each of the 58 genes. ¢c) CERES gene scores (copy number corrected gene scores) for all genes in the
6 tested cell lines.

scores, we selected 58 genesand 40 predicted pan-dependent gene controls for
experimental validation. We tested the 58 candidate genes for essentiality in tumor
development in a small scale experiment using the DepMap CRISPR-Cas9 knockout
protocol. We selected six cell lines that are representative of diverse tissues (see
Methods for more details) and of which three have since been tested in the DepMap
project, meaning that our validation data has been replicated in another study and
contains unique cell types. We analyzed the screening results using CERES to account
for sgRNA multi-target effects (Meyers et al. 2017)(Supplementary Tables 3 & 4).
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Compared with DepMap results, our candidate genes displayed similar behavior in the
three tested cell lines (A375, G401, PANC1) (Fig. 2a,b).

Our results show that NPS identifies cancer dependencies from tumor sequencing data
alone using a network-based approach that excludes mutation information of the gene
being tested, this way preventing biases introduced by the mutation rate of the index
gene. Enrichment analyses comparing the NPS-imputed genes with CYCLOPS and
CRISPR-Cas9 cancer cell-essential genes reveal significant NPS-enrichment, indicating
that a substantial subset of the genes identified through this network approach are
known cancer dependencies. The overlap between NPS-imputed genes and genes in
the EXAC database indicates that the NPS method has identified genes whose integrity
is essential to normal cell function, supporting that other genes significantly identified in
NPS but not in EXAC are likely to be tumor-specific dependencies. In addition, genes
predicted by NPS lead to statistically significant tumor growth aberrations when knocked
out (as determined in DepMap, Meyers et al., 2017), showing the direct relevance of
these genes in sustaining tumor proliferation. Importantly, we demonstrate that
leveraging NPS predictions to execute targeted CRISPR screens is a powerful and
highly cost-efficient approach for identifying and validating dependencies quickly,
because it eliminates the substantial experimental overhead required for whole-genome
screening.

Our approach corroborates previous studies on cancer dependencies while also
identifying a novel set of potential cancer vulnerabilities. Importantly, we illustrate that it
is possible to identify bona fide genes under purifying selection directly from cancer
genome data. We expect that NPS will be widely applicable as more cancer genomes
are sequenced. The NPS code is available at www.lagelab.org, and we make the latest
predictions using an updated network and mutational data available as a community
resource.
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Methods

Calculating the network purifying selection score

For a given index gene, the Network Purifying Selection statistic is formalized into a
probabilistic score that reflects the index-gene-specific composite purifying selection
(i.e., the aggregate of single-gene MutSig suite Q values reported in (Lawrence et al.
2014)) across its first order biological network and is calculated via a three-step
process. First, we identify all genes it interacts with directly at the protein level, only
including high-confidence quality-controlled data from the functional human networks
InWeb3 and InBio_Map (where the vast majority of connections stem from direct
physical interaction experiments at the protein level). Second, the composite purifying
selection score across members of the resulting network is quantified by aggregating
single-gene MutSig suite Q values from Lawrence et al. into one value ® using an
approach inspired by Fisher's method for combining P-values: ¢~-2k> i=0In(qgi) where q
is the MutSig suite Q value for gene i, and k is the number of genes in the first order
network of the index gene (i.e., the index gene’s degree). Third, by permuting the
neighborhood using a node permutation scheme, we compare the aggregated burden of
mutations to a random expectation. In this step, the degree of the index gene, as well as
the degrees of all genes in the index gene’s network is carefully considered to be of
similar connectivity. The final NPS score of an index gene is therefore an empirical P
value that reflects the probability of observing a lower composite mutation burden than
expected across its first order physical interaction partners (at the protein level)
normalized for the degree of the index gene as well as the degrees of all of its first order
interaction partners. Because we are interested in estimating the purifying selection
independent of the index gene, this gene is not included in the analysis and it does not
affect the NPS calculation.

Generating the NPS5000 set.

NPS probabilities were determined for every gene in InWeb 3 and InWeb_IM that was
covered by interaction data using 10”6 permutations. The FDR Q values were
calculated as described by Benjamini and Hochberg (Benjamini & Hochberg 1995),
based on the nominal P values. We saw a correlation between NPS significance and
the number of interactors of a given gene (R=0.39, Pearson) (Supplementary Figure
1). We calculated the consensus candidate gene set across 4,742 human cancer
genomes by taking the union of all nominally significant genes from InWeb 3 and all
significant genes after correction for multiple testing from InWeb_IM, which led to a set
of 91 genes namedNPS5000 and used in all downstream analyses.
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Dissecting tumor gene essentiality.

We tested the effects of NPS gene knockouts in four different data sets: 1) The
CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS)
data is induced haploinsufficiency due to copy number loss. We defined this set as
genes in their manuscript (Nijhawan et al. 2012). 2) EXAC (Exome Aggregation
Consortium) a source of about 80,000 exome data sets. We selected the set of genes
with pLI < 0.9 (Lek et al. 2016), indicating that these genes are under evolutionary
constraint. 3) The Wang-CRISPR data set of gene knockouts in cell lines using both
CRISPR and Gene trap (Wang et al. 2015). Defined dependency genes as genes in
their supplement. 4) The Dependency Map dataset version 20Q2 (DepMap 2020) of
cancer cell line dependencies.

To select genes for downstream validation, we selected genes that had a > 50%
probability of being a dependency in any cell line in the Avana data and a pLI < 0.9 in
EXAC (to deplete non-cancer-specific dependencies).

Cell Lines

PANC1 and A375 cells were cultured in Dulbecco’s modified eagle medium (DMEM,
Gibco), NCIH1373 cells were cultured in RPMI 1640 medium (Gibco), HCT166 cells
were cultured in McCoy’s 5A medium (Gibco), and T47D cells were cultured in phenol
red-free RPMI 1640 medium (Gibco). All culture media was supplemented with 10%
(v/v) fetal bovine serum (Sigma-Aldrich), 100 units/mL penicillin, 100 ug/mL
streptomycin, and 2 mM L-glutamine (Gibco). Cells maintained at 37°C in 5% CO2, and
passaged 2-3x per week to maintain confluence between 20% and 80%. All cell lines
sourced from ATCC.

CRISPR-Cas9 Dropout Screen

Cas9-expressing cell lines were generated by lentiviral transduction of a Cas9
expression vector with a blasticidin resistance cassette (pLX _311-Cas9, Addgene
#96924). Cells were transduced by addition of viral media in the presence of 8 ug/mL
polybrene (Santa Cruz Biotechnology), centrifuged at 1178 x g for 30 minutes at 37C,
removing viral media after 16 hours. Transduced cells were selected by addition of 5-15
ug/mL blasticidin (Life Technologies, Inc) two days post-transduction, and cultured for at
least 14 days before screening. A library of 256 CRISPR sgRNA targeting 58 genes
was cloned into the CROP-Seq-Guide-Puro expression vector (Addgene #86708) and
packaged into lentivirus, then transduced as described above into respective Cas9
expressing cell lines across 3 replicates at a MOI<1, and at a representation of at least
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1 x 1073 cells per guide. Two days after transduction, cells were selected for 48 hours
with puromycin (Life Technologies, Inc) at 2-4 ug/mL. Cells were maintained at a
density of at least 0.3 x 10”6 to maintain library representation for 21 days (passaging
every 3-4 days), harvesting at least 0.3 x 10”6 cells per replicate by centrifugation at 4,
14, and 21 days post-transduction.

Next-Generation Sequencing

Cells are washed once with PBS, pelleted, and re-suspended in lysis buffer (1 mM
CaCl2, 3 mM MgClI, 1mM EDTA, 1% Triton X-100 (Sigma-Aldrich), 10 mM TrisHCI, pH
7.5) at a concentration of 10,000 cells/uL. Lysates were incubated at 65C for 10
minutes, then 95C for 15 minutes. Genomic regions containing guide sequences are
PCR amplified using paired primers with 25 uL 2x JumpStart Taq Polymerase Ready
Mix (Sigma-Aldrich), 1.5 uL 10 uM primer pair (CropSeq_NGS_P7, CropSeq_NGS_P5),
12.5 uL cell lysate, dH,0 up to 50 uL at the following cycling conditions: 95C for 5 min,
28 cycles at 95C for 20 s, 55C for 30s, 72C for 30s, and 72C for 4 minutes. Individual
samples are indexed with a second PCR step using paired 3’ and 5’ lllumina TruSeq
indexing primers, using 12.5 uL JumpStart Taq Polymerase Ready Mix, 1.25 uL 5 uM
index primer pair, 1.25 uL product from first PCR, and dH,0 to 25 uL at the following
cycling conditions: 95C for 5 mins, 18 cycles of 95C for 20s, 55C for 30s, 72C for 30s,
and 72C for 4 minutes. PCR products are pooled at equal volume ratios and run on an
agarose gel, gel purified, and quantified using a QuBit 4 Fluorometer (Invitrogen).
Samples sequenced on a Miniseq (lllumina) using standard lllumina protocols with a
20% PhiX spike-in.

CropSeq_NGS_P7 CTGGAGTTCAGACGTGTGCTCTTCCGATCaagcaccgactcggtgccac
CropSeq_NGS_P5 ACACGACGCTCTTCCGATCTtcttgtggaaaggacgaaac

Screen Data Analysis

Reads are deconvoluted by unique 5 and 3’ index pairs from raw sequencing using the
standard MiniSeq pipeline. For each replicate of one same sample, reads containing the
expected guide sequence were counted and normalized against total reads from that
sample. CERES scores were calculated as described in (Meyers et al. 2017). We did
not transform CERES scores into probabilities (as is standard in recent Dependency
Map publications) because our data set was too small to satisfy score calibration
requirements.
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