

1 **Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms**

2

3 Alex Cheong¹, Chad Johnson², Hanxiao Wan¹, Aiping Liu³, John Kernien², Angela Gibson³, Jeniel

4 Nett^{1,2}, Lindsay R. Kalan^{1,2}

5 ¹ Department of Medical Microbiology and Immunology

6 ² Department of Medicine, Division of Infectious Disease

7 ³ Department of Surgery

8 University of Wisconsin–Madison, School of Medicine and Public Health, USA

9

10

11 **Abstract**

12 A hallmark of chronic infections are polymicrobial biofilms. The forces governing assembly and
13 maturation of these microbial ecosystems are largely unexplored but the consequences on host
14 response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm
15 and a stable microbial community structure is associated with impaired tissue repair resulting in a non-
16 healing chronic wound. These types of wounds can persist for years simmering below the threshold of
17 classical clinical infection or cycling through phases of recurrent infection. In the most severe outcome
18 amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological
19 perspective to study priority effects and competitive exclusion on overall biofilm community structure in
20 a three-membered community of microbes derived from a chronic wound. We find that priority effects
21 occur across both biotic and abiotic substrates, and ecological interactions can alter both fungal
22 physiology and host inflammatory response. We show that bacterial-competition occurs for binding to
23 fungal structures, and some species trigger the yeast-hyphae switch, resulting in enhanced neutrophil
24 killing and inflammation. Collectively, the results presented here facilitate our understanding of fungal-
25 bacterial microbial community dynamics and their effects on, host-microbe interactions, pathogenesis,
26 and ultimately, wound healing.

27

28 **Introduction**

29 Diverse microbial communities colonize nearly every ecosystem across the human body.
30 Microbe-microbe interactions within specific niches can play a significant role in driving community
31 assembly and subsequent structural and functional properties. However, the forces governing these
32 processes within the context of tissue microenvironment and host responses are largely undefined.
33 Although a diverse microbiome is often associated with human health (Cho and Blaser 2012), chronic
34 infections are frequently polymicrobial. An archetypal example is diabetic foot ulcers (DFU). The
35 development of DFUs can be attributed to numerous host-associated factors such as hyperglycemia,
36 vascular disease, and neuropathy (Kalan and Brennan 2018). These factors lead to the colonization

37 and assembly of a distinct and diverse wound microbiome within the tissue, often absent clinical signs
38 of infection (Dowd et al. 2008, 2011; Rhoads et al. 2012, Gardner et al. 2013, Wolcott et al. 2016,
39 Loesche et al. 2017, Tipton et al. 2017, Kalan et al. 2019, Sloan et al. 2019, Hunter et al. 2020, Min et
40 al. 2020). The microbes in chronic wounds are hypothesized to exist as polymicrobial biofilms more
41 resistant to antimicrobials and attack by the host immune system. Once a microbial biofilm forms it can
42 then lead to impaired wound healing and the development of a chronic wound. It has been shown that
43 up to 60% of all chronic wounds contain a biofilm (Malone 2017, Johani et al. 2017, Percival et al.
44 2018). Chronic DFUs significantly impact a person's quality of life and frequently lead to spreading
45 tissue infections, necrosis, bone infections and at worst amputation. Up to 25% of all diabetics will
46 develop a DFU in their lifetime (Singh et al. 2005) equating to ~9 million people in the United States
47 alone. Beyond the staggering healthcare costs up to 19 billion per year, the five-year mortality rate is
48 between 43-55% and increases to 74% if an amputation occurs (Robbins et al. 2008, Rice et al. 2014,
49 Raghav et al. 2018, Olsson et al. 2019).

50 The microbiome of DFUs comprise bacteria and fungi, exhibit inter-individual variation, and
51 include skin commensals and skin pathogens, along with microbes typically found in the environment.
52 Both cross-sectional and longitudinal studies have demonstrated that microbial community stability, or
53 less change over time, is associated with worse wound healing outcomes (Kalan et al. 2016, Loesche
54 et al. 2017, Tipton et al. 2017, Hunter et al. 2020). Several studies have described associations
55 between the microbiome and host factors, such as circulation, glycemic control, and wound duration
56 and size. The majority of these studies focus on bacterial communities, yet fungi have been reported to
57 be present in up to 75% of DFUs (Dowd et al. 2011, Chellan et al. 2012, Kalan et al. 2016). The
58 presence of fungi is associated with poorer wound outcomes and higher amounts of necrosis or dead
59 tissue (Kalan et al. 2016). Fungal-bacterial colonization can also complicate DFU treatment by requiring
60 antifungal treatment in addition to antibacterial antibiotics (Chellan et al. 2012, Townsend et al. 2017).
61 Thus, cross-kingdom fungal-bacterial interactions are of interest as they can be critical in shaping

62 microbial community structure and effects on physiology, pathogenesis, and host responses (Turner et
63 al. 2014, Stacy et al. 2016, O'Brien and Fothergill 2017, Lewin et al. 2019).

64 *Candida albicans* is one of most common fungal species found in DFU and is known to interact
65 with phylogenetically diverse bacteria. This includes Gram-positive species prevalent in DFU such as
66 those in the *Staphylococcus* and *Streptococcus* genera. These interactions are synergistic and enabled
67 via cell-cell adhesion and cross-feeding mechanisms (Xu et al. 2014, Förster et al. 2016, Bertolini and
68 Dongari-Bagtzoglou 2019). This data suggests fungi may act as keystone species that can stabilize
69 microbial communities by providing physical scaffolding for bacterial attachment and growth (Deveau et
70 al. 2018, Tipton et al. 2018). Such networks can be highly complex and dependent on microbe-microbe
71 interactions. For example, the Gram-negative bacterium *Pseudomonas aeruginosa* can have both
72 synergistic and antagonistic effects on *C. albicans*, where the latter results in fungal death (Hogan and
73 Kolter 2002, Hogan et al. 2004, Mear et al. 2013, O'Brien and Fothergill 2017, Bergeron et al. 2017,
74 Bisht et al. 2020), signifying the complicated and dynamic interactions occurring within microbial
75 communities. Furthermore, the physical orientation of fungal-bacterial biofilms suggests that their
76 assembly and growth likely involves a temporal component (Wake et al. 2016, De Tender et al. 2017,
77 Douterelo et al. 2018, Kim and Koo 2020, Kim et al. 2020). During the process of assembly and
78 succession, ecological factors such as priority effects and competition may alter community structure.
79 Priority effects encompass the idea that early colonizers influence the growth of later colonizers and
80 have been studied in multiple microbial systems (Van Grembergh et al. 2009, Peay et al. 2012, Olsen
81 et al. 2019).

82 We hypothesize that fungal and bacterial interactions, especially priority effects and competition,
83 can change the physical and compositional structure of a biofilm community. Here, we utilize fungal and
84 bacterial isolates (*Candida albicans*, *Citrobacter freundii*, and *Staphylococcus aureus*) isolated from a
85 DFU in both an *in vitro* biofilm model and an *ex vivo* live human skin wound model. We show that
86 ecological interactions, including priority effects and interbacterial competition, shape community
87 structure and pathogenesis.

88

89 **Results**

90 **Priority effects alter biofilm species composition and growth interactions.**

91 The most common fungal and bacterial species detected in DFU are *Candida albicans* (Ca) and
92 *Staphylococcus aureus* (Sa), found in 47% and 95% of DFUs respectively (Chellan et al. 2010, Dowd et
93 al. 2011, Rhoads et al. 2012, Gardner et al. 2013, Wolcott et al. 2016, Kalan et al. 2016, 2019; Loesche
94 et al. 2017). Interactions mediated by attachment of Sa to Ca in biofilms are well studied (Peters et al.
95 2010, Schlecht et al. 2015) and serve as model for studying cross-kingdom interactions. For example,
96 antibiotic tolerance and virulence are enhanced when Ca and Sa co-infect, compared to either species
97 alone (Kong et al. 2016, Kean et al. 2017, Todd et al. 2019a, b). Since DFU microbiomes are more
98 complex, comprised of multiple bacterial species alongside Ca and Sa, and can persist for weeks or
99 months, we wondered how biofilm community assembly is affected by the growth and timing of
100 introduction of individual species within the community. To address this question, we have developed a
101 simple community of microbes isolated from a single diabetic foot ulcer sample with established Ca
102 colonization (Kalan et al. 2016). From this sample, Ca was cultivated alongside Sa and the Gram-
103 negative bacterium *Citrobacter freundii* (Cf). Priority effects, or the impact of an early colonizer on a
104 later colonizer within a community (Drake 1991, Fukami 2015, Fukami et al. 2016) were tested to
105 evaluate how species competition shapes the overall community structure.

106 We first focused on fungal-bacterial pairings because Ca-Sa interactions are well studied and
107 they form robust biofilms (Carolus et al. 2019). Biofilms were inoculated under three conditions. The
108 first condition represents neutral or no priority, where both microbes are co-inoculated simultaneously
109 and incubated for 48 h. Then priority effects were tested by staggering inoculation, where one partner
110 was given priority and grown for 24 h before the second was inoculated and allowed to grow for an
111 additional 24 h. Biofilms were harvested and viable cell counts were used to quantify absolute
112 abundances of each microbe. We then calculated compositional abundance of each species in the
113 biofilm across the three conditions. We broadly found that priority effects led to an increase in the

114 relative abundance of the early colonizer while the late colonizer correspondingly decreased in relative
115 abundance (Fig. 1A) compared to monoculture controls. Under the first condition of neutrality, Ca made
116 up 2.4% of the community, but this proportion increased to 26.6% when given priority as an early
117 colonizer. However, under conditions as a late colonizer, the proportion of Ca decreases 1000-fold to
118 0.026%. Similarly, Sa made up 97.6% of the community under neutral priority conditions with Ca, and
119 increased to 99.97% as an early colonizer with priority. As a late colonizer, the proportion of Sa fell to
120 73.4%. To identify the changes in absolute microbial counts driving these compositional changes, we
121 compared absolute abundances from viable cell counts of mixed-cultures to time-matched monoculture
122 controls. We found that priority effects favoring a higher overall relative abundance of the early
123 colonizer were the result of a decrease in the absolute abundance of the late colonizer while having
124 neutral or no effect on the early colonizer. When Ca is given priority and allowed to colonize first, its
125 absolute abundance ($6.4 \pm 0.4 \log_{10}$ CFU/well) is equivalent to a time-matched 48 h mono-culture
126 control ($6.6 \pm 0.3 \log_{10}$ CFU/well). However, as a late colonizer to Sa, Ca growth significantly decreased
127 on average by $2.2 \log_{10}$ CFU (p adj. < 0.0001) to $4.1 \pm 0.2 \log_{10}$ CFU as compared to $6.3 \pm 0.2 \log_{10}$
128 CFU/well in a time-matched 24 h monoculture control (Fig. 1B, D, E). Similarly, Sa growth as an early
129 colonizer ($7.7 \pm 0.1 \log_{10}$ CFU/well) is equivalent to a time-matched 48 h mono-culture control (7.8 ± 0.2
130 \log_{10} CFU/well) and decreases significantly by an average of $0.81 \log_{10}$ CFU (p adj. < 0.05) to 6.6 ± 0.6
131 \log_{10} CFU/well from $7.4 \pm 0.2 \log_{10}$ CFU/well in a time-matched 24 h monoculture control (Fig 1B, D, E).
132 When neither partner is given priority, Ca growth was $0.31 \log_{10}$ CFU/well lower (p adj. < 0.05), while
133 Sa grew to equivalent cell densities, as time-matched monocultures (48 h monocultures; Fig. 1B, C).
134 These results demonstrate that although Ca and Sa form robust mixed-species biofilm, priority effects
135 can affect overall community composition and alter fungal-bacterial growth dynamics.

136 These experiments were repeated with Ca and Cf. Similarly, we found that priority effects
137 increased compositional abundance of the early colonizer (Fig. 2A), again driven by a lower absolute
138 abundance of the late colonizer (Fig. 2B). Within the Ca-Cf pairing, Ca made up 0.33% of the
139 community when co-inoculated under neutral priority with Cf, and increased to 39.6% when given

140 priority, with an absolute abundance ($6.3 \pm 0.4 \log_{10}$ CFU/well) equivalent to a time-matched 48 h
141 mono-culture control ($6.5 \pm 0.3 \log_{10}$ CFU/well). As a late colonizer, Ca's community proportion
142 decreased to 0.012%, driven by an average $2.8 \log_{10}$ CFU (p adj. < 0.0001) decrease to $3.5 \pm 0.1 \log_{10}$
143 CFU as compared to $6.3 \pm 0.2 \log_{10}$ CFU/well in a time-matched 24 h monoculture control (Fig. 2B, D,
144 E). Under neutral priority conditions, Cf, made up 99.67% of the community but increased to 99.99% as
145 an early colonizer. The absolute abundance of early colonizing Cf ($7.5 \pm 0.1 \log_{10}$ CFU/well) was
146 equivalent to a time-matched 48 h mono-culture control ($7.6 \pm 0.1 \log_{10}$ CFU/well). However, as a late
147 colonizer, Cf's community proportion decreased to 60.4%, driven by an average $1 \log_{10}$ CFU (p adj. <
148 0.0001) reduction to $6.7 \pm 0.1 \log_{10}$ CFU as compared to $7.6 \pm 0.6 \log_{10}$ CFU/well in a time-matched 24
149 h monoculture control (Fig. 2B, D, E). When neither partner is given priority, Ca absolute abundance
150 was $0.9 \log_{10}$ CFU/well (p adj. < 0.0001) lower than time-matched monoculture while Cf absolute
151 abundance was $0.4 \log_{10}$ CFU/well higher (p adj. < 0.05; 48 h monocultures; Fig. 2B, C) higher. As
152 observed with Ca-Sa interactions, priority effects can alter the compositional abundance and growth
153 interactions within fungal-bacterial biofilms. Further, we note that low proportional representation in a
154 community (i.e., low relative abundance) does not necessarily correspond to a low absolute
155 abundance. This is especially relevant for Ca, where a community relative abundance of less than 1%
156 may still equate to an absolute abundance of more than 10^5 CFUs (Fig. 1&2).

157

158 **S. aureus and C. freundii compete for adhesion to C. albicans in mixed-species biofilms.**

159 Both Sa and Cf are reported to physically attach to Ca biofilms comprised of yeast and hyphae
160 (Peters et al. 2010, 2012; Kalan et al. 2016, Kean et al. 2017). We asked if bacterial competition could
161 occur for attachment sites to the fungal scaffold. To test this, Ca biofilms were grown for 48 h to ensure
162 biofilm maturity, followed by the addition of each bacterial species alone or together. Growth of each
163 species was quantified after 24 h under each of these conditions. When added alone, Sa grows to a
164 cell density of $5.6 \pm 0.7 \log_{10}$ CFU/well, representing 28.3% of the community, while Cf grows to a
165 density of $6.8 \pm 0.2 \log_{10}$ CFU/well representing 68.5% of the community. Ca, as the early colonizer,

166 grew to similar counts as a time-matched 48 h monoculture control and was not affected in growth by
167 late bacterial colonizers (Fig. 3C). When Cf and Sa are introduced simultaneously to Ca biofilms, Sa
168 growth is reduced by $1.6 \log_{10}$ CFU (p adj. < 0.001) to $4.1 \pm 0.2 \log_{10}$ CFU, resulting in an altered
169 community structure where the proportion of Sa drops to 0.71% (Fig. 3 A-C). Co-inoculation with Sa
170 does not affect growth of Cf ($6.8 \pm 0.2 \log_{10}$ CFU/well) compared to addition of Cf alone ($6.8 \pm 0.2 \log_{10}$
171 CFU/well), suggesting Cf competes with Sa for fungal attachment sites. Compositionally, the tri-culture
172 biofilms (31.9% Ca, 67.4% Cf, 0.71% Sa) were very similar to Ca then Cf biofilms (31.5% Ca, 68.5%
173 Cf). Together, our results demonstrate that priority effects and inter-species competition are important
174 factors influencing community assembly and biofilm formation.

175

176 **Fungal-bacterial interactions are replicated in an *ex vivo* human skin wound model.**

177 *In vitro* co-culture experiments are valuable for studying microbe-microbe interactions, however
178 they lack the spatially structured environment on a biotic substrate composed of host tissue matrices
179 (Sun et al. 2009, Dalton et al. 2011, Kucera et al. 2014, Roberts et al. 2015, Roche et al. 2019, Yoon et
180 al. 2019). We employed an *ex vivo* human skin wound model to determine if similar patterns of
181 community dynamics in the three-member community observed *in vitro* also occur in human tissues.
182 Human skin was obtained from donors undergoing elective surgery and used to create 6 mm excisional
183 wounds within a 12 mm biopsy of full-thickness tissue. We measured colonization efficiencies
184 compared to *in vitro* conditions and found that Cf and Ca mono-colonize the wound tissue at cell
185 densities similar to *in vitro*. In our hands, Sa consistently grew to lower absolute abundances *ex vivo* as
186 compared to *in vitro* conditions across both mono- and co-cultures (Fig 4A).

187 As observed in our *in vitro* model, fungal-bacterial interactions affected compositional
188 abundance within the *ex vivo* model (Fig 4B). Similar to results *in vitro*, for the Ca-Cf pairing, Ca
189 proportional abundance increased from 0.58% within a neutral priority co-inoculated model, to 2.7%
190 when it was given priority before Cf, and decreased to 0.003% when Cf had priority. Cf proportional
191 abundance was 99.42% when co-inoculated, increasing to >99.9% when Cf had priority, and

192 decreasing to 97.3% when Ca was given priority. For the Ca-Sa pairing, Ca proportional abundance
193 was 99.9% when neutral, 99.0% when Ca had priority, and 99.92% when Sa had priority. Interestingly,
194 Sa exhibited better colonization *ex vivo* when inoculated with or onto Ca biofilms; Sa proportional
195 abundance was 0.019% when neutral, 0.082% when Sa had priority, and 1.02% when Ca had priority.
196 The tri-culture biofilms (1.1% Ca, 98.8% Cf, 0.08% Sa) were very similar compositionally to Ca then Cf
197 biofilms (2.7% Ca, 97.3% Cf), further highlighting Cf competition with Sa.

198 The compositional differences in the Ca-Cf pairing were driven by negative priority effects on
199 the late colonizer, especially between Ca and Cf. Compared to time-matched monoculture controls, Ca
200 had a significantly lower absolute abundance both when co-inoculated with Cf for 48 h ($5.3 \pm 0.3 \log_{10}$
201 CFU/bisect, $1.4 \log_{10}$ CFU decrease, p adj. < 0.01) and when added to a pre-grown Cf biofilm (4.3 ± 0.2
202 \log_{10} CFU/bisect, $1.6 \log_{10}$ CFU decrease, p adj. < 0.001; [Fig. 4C, D](#)). Cf grew to a significantly lower
203 absolute abundance when added to a pre-grown Ca biofilm ($7.5 \pm 0.3 \log_{10}$ CFU/bisect, $1.3 \log_{10}$ CFU
204 decrease, p adj. < 0.05), but exhibited a growth advantage when it was inoculated 24 h before Ca (8.9
205 $\pm 0.3 \log_{10}$ CFU/bisect, $1.3 \log_{10}$ CFU increase, p adj. < 0.05; [Fig. 4C, E](#)). Across all conditions, Sa was
206 not significantly different from time-matched monoculture controls ([Fig. 4C, F](#)). Both *in vitro* and *ex vivo*
207 models demonstrate similar patterns in biofilm community dynamics through priority effects and
208 interspecies competition, especially for Ca and Cf. Although Sa did not colonize the *ex vivo* skin to the
209 same efficiency as *in vitro* culture conditions, the general trends remained consistent.

210

211 **Fungal-bacterial interactions alter biofilm structure and micron-scale biogeography within *ex*
212 *vivo* human skin wounds.**

213 To further characterize fungal-bacterial interactions, we proceeded to investigate the three-
214 dimensional organization of mixed-species biofilms and directly observe physical interactions between
215 Ca, Cf, and Sa in our human *ex vivo* wound model. Scanning electron microscopy (SEM) was used to
216 characterize biofilm morphologies and spatial organization of a subset of mono-, dual-, and tri-species
217 biofilms as reported above. Ca mono-infected wounds were covered with dense clusters of yeast cells

218 nested among open hyphal networks (Fig. 5A). Cf mono-infected wounds featured both dense bacterial
219 mats and small clusters associated with collagen fibers and extracellular polymeric substances (Fig.
220 S1A). We then imaged wounds co-infected with Ca and Cf where neither species was given priority
221 (i.e., co-inoculation). Under this condition, the wound bed was covered in extensive Ca hyphal
222 networks. Along each individual hypha, cells of Cf substantially attached to and colonized the structure,
223 clearly binding to Ca as opposed to forming clusters in the interstitial space (Fig. 5C). Further, structural
224 features such as putative pili were observed on the surface of individual rod-shaped bacterial cells (Fig.
225 5C inset). Collagen fibers coated in Cf were also clearly visible, indicating that both collagen and Ca are
226 viable substrates for Cf attachment. In contrast to the Ca mono-infected wounds, few clusters of yeast
227 cells were observed (Fig. 5C). We also imaged wounds inoculated under priority effects conditions
228 where Ca grew for 24 h before the addition of Cf. A similar phenotype was observed, consisting of
229 dense hyphal networks coated in bacteria (Fig. 5B). We observed fewer clusters of yeast cells but more
230 pseudohyphae compared to Ca-only wounds, suggesting that Cf may trigger the Ca yeast-to-hyphae
231 phenotypic transition. In contrast, when Cf grew for 24 h before the addition of Ca, no hyphae were
232 observed, and only few clusters of Ca yeasts were seen on dense beds of Cf, supporting a competitive
233 exclusion model (Fig. S1B).

234 In the Sa mono-infected wounds, we observed sparse Sa clusters adhering to both collagen and
235 aggregated red blood cells (Fig. S1C). Under conditions providing Ca with priority, we observed Sa
236 clusters bound to pre-formed Ca biofilms (Fig. S1D). Within the tri-culture competition model where Cf
237 and Sa were added to preformed Ca biofilms, we observed few Sa clusters adhered to Ca hyphae but
238 found extensive Cf colonization and adhesion to both yeast and hyphal forms of Ca. This data further
239 supports our hypothesis that Cf competes with Sa to adhere to Ca biofilms (Fig. 5D).

240

241 ***C. freundii* adheres to *C. albicans* via mannose-specific type I fimbriae, induces hyphae
242 formation, and enhances neutrophil killing**

243 Interestingly, our data suggests that Cf does not inhibit Ca growth or cause death, as is the case
244 with other Gram-negative bacteria such as *Pseudomonas aeruginosa* and *Acinetobacter baumanii*
245 (Hogan and Kolter 2002, Peleg et al. 2008). Based on our SEM observations, it appears that through
246 interactions with Cf, Ca biofilm structure and morphology are altered via an induction of the yeast-to-
247 hyphae transition. To monitor this interaction in a more controlled environment, we used a chambered
248 coverslip to permit observation of *in vitro* biofilms *in situ* with light microscopy. Similar to the
249 observations in *ex vivo* wounds, Ca has a marked increase in hyphal growth when cocultured with Cf
250 (Fig 6B). In contrast, Ca monoculture biofilms exhibit a more globular phenotype primarily consisting of
251 yeast cells and pseudohyphae (Fig. 6A). Bacterial species such as Sa are known to primarily bind Ca
252 hyphae via protein-protein interactions, such as Ca Als3p that is primarily expressed on hyphae (Peters
253 et al. 2010, 2012). Our data show Cf is able to bind to both yeast and hyphal cells, so we sought to
254 determine the mechanism of Cf adherence to Ca cells. Cf and other members of the
255 Enterobacteriaceae family are known to encode several pilins and fimbriae, including type 1 fimbriae
256 that binds specifically to mannose residues. Mannose residues exist as a core component of fungal cell
257 wall mannans and mannoproteins, and therefore are present across all morphologies of Ca (Shibata et
258 al. 2007, Machová et al. 2015, Burnham-Marusich et al. 2018). Yeast agglutination assays combine
259 yeast cells of *Saccharomyces cerevisiae* or *C. albicans* with bacterial cell suspensions, cell extracts, or
260 purified lectins, and are used to detect and study sugar-specificities of lectin activity such as of type I
261 fimbriae (Ofek et al. 1977, Mirelman et al. 1980, Abraham et al. 1988, Mrázková et al. 2019). As a
262 proxy for Cf adhesion to Ca within our model, we used Ca yeast agglutination by Cf cell suspensions to
263 determine that Ca-Cf physical interactions are mannose-sensitive, and that agglutination of Ca by Cf
264 can both be inhibited and reversed by mannose but not galactose (Fig S2). This data support mannose-
265 binding type I fimbriae as the likely mechanism of adhesion between Cf and Ca.

266 The hyphal morphology of Ca, along with the yeast-to-hyphae transition, are important virulence
267 traits (Sudbery 2011, Lewis et al. 2012, Mukaremera et al. 2017). Based on the observation that Cf
268 appears to promote the switch to Ca hyphal growth, we hypothesized that this fungal-bacterial

269 interaction could also alter interactions with host cells. To determine if mixed species biofilms of Cf and
270 Ca alter the inflammatory response, we tested neutrophil responses to mono or mixed-species biofilms.
271 Neutrophils are one of the first responders during the inflammatory phase of wound healing whose
272 primary role is to clean the wound of debris and contaminating microbes through phagocytosis (Wilgus
273 et al. 2013). Neutrophils also release neutrophil extracellular traps (NETs), which are web-like
274 structures of DNA and antimicrobial proteins that trap and kill microbes to prevent them from spreading
275 (Yousefi et al. 2020).

276 We exposed calcein-AM labelled human neutrophils to 24 h biofilms of Ca, Cf, and Ca+Cf
277 cocultures for 4 hours within a chambered coverslip. We then stained for membrane-permeabilized
278 neutrophils and extracellular DNA as a proxy for neutrophils that have released NETs. We then imaged
279 the neutrophils across each culture condition and quantified the ratio of the area of red (dead) to green
280 (viable) fluorescence. We found a significant increase in fluorescent extracellular DNA staining
281 associated with neutrophil death in the co-culture conditions, compared to both monoculture of Ca ($p <$
282 0.0001) and Cf ($p < 0.001$; [Fig. 6C-F](#)). These results suggest that fungal-bacterial interactions may
283 result in an increased neutrophil death response, leading to pro-inflammatory phenotypes.

284

285 **Discussion**

286 The structure of microbial communities in chronic wounds correlates with wound healing
287 outcomes (Kalan et al. 2016, 2019; Loesche et al. 2017, Sloan et al. 2019, MacDonald et al. 2019,
288 Verbanic et al. 2020). Here, we utilized a three-member community comprised of a fungal pathogen
289 and two bacterial species isolated from a DFU to probe community assembly and succession under
290 different conditions. We demonstrate that cooperative and competitive species interactions are
291 influenced by time to shape the overall community structure and pathogenicity. We show that priority
292 effects can significantly alter the compositional structure of biofilm communities of both the well-
293 characterized Ca-Sa pairing and the uncharacterized Ca-Cf pairing. These effects persist across
294 different model systems, including an *in vitro* biofilm model and a live *ex vivo* human skin model. While

295 fungi and bacteria both engage in niche competition for attachment to the underlying substrate such as
296 host tissue or an abiotic surface, bacteria have the additional advantage of being able to colonize
297 fungal cells directly. As a result, interbacterial competition between Cf and Sa occurs for attachment
298 and colonization to fungal structures. Using scanning electron microscopy, we qualitatively
299 characterized biofilm morphology and spatial organization within *ex vivo* human skin wounds. We found
300 that Cf adhesion to Ca is mediated by mannose-specific binding and triggers Ca hyphal growth both *ex*
301 *vivo* and *in vitro*. Finally, we showed that the interaction between Cf and Ca tunes neutrophil responses
302 leading to increased cell death as compared to monoculture. This supports the hypothesis that mixed-
303 species biofilms contribute to persistent inflammation. Collectively, these results illustrate how
304 competition during community assembly and succession processes can drastically affect community
305 structure and subsequent host response. Our results underscore the importance of including a temporal
306 lens in studying microbial interactions.

307 Physical interactions between fungi and bacteria have been shown to result in enhanced
308 persistence, virulence, and antimicrobial resistance across different disease contexts and
309 environments, including chronic wounds, dental caries, and the cystic fibrosis lung (Kalan et al. 2016,
310 Van Dijck and Jabra-Rizk 2017, He et al. 2017, Hwang et al. 2017, Tipton et al. 2018, Bisht et al. 2020,
311 Kim and Koo 2020). However, microbial communities also change over time through the cyclical
312 process of assembly and succession, especially after disruptions to the community occur. In the context
313 of chronic wounds, this occurs through standard care procedures such as wound cleansing and
314 mechanical disruption by debridement (Black and Costerton 2010, Wolcott et al. 2010, Johani et al.
315 2018, Verbanic et al. 2020). We found that priority effects alter the microbial community composition
316 between Ca and two different bacterial species (*C. freundii* and *S. aureus*; [Fig. 1-4](#)). Late colonizers
317 experience negative effects with a more significant fitness cost to late colonizing Ca. We hypothesize
318 that this is due to the physical nature of fungal-bacterial interactions. Fungi can be an order of
319 magnitude larger than a typical bacterial cell. Thus, fungi like Ca can play a structural role in providing
320 bacteria with a substrate to attach to, dampening the priority effect. Conversely, bacterial priority effects

321 exclude Ca, removing potential fungal attachment sites, and thereby de-stabilizes the community.
322 When Ca biofilms are allowed to establish, we find that bacteria compete for adherence to fungal
323 hyphal structures with Cf outcompeting the professional skin pathogen Sa. This is an intriguing finding,
324 suggesting community dynamics can limit the expansion of Sa by competitive exclusion. Over 95% of
325 DFU are colonized by Sa (Kalan et al. 2019), but a small proportion result in spreading infection. Our
326 findings may offer insights into mechanisms suppressing Sa virulence within the chronic wound
327 environment

328 We observed that Cf attaches to yeast, pseudohyphal, and hyphal forms of Ca. In contrast, *S.*
329 *aureus*, *P. aeruginosa*, and *A. baumanii* have all been reported to preferentially adhere to Ca hyphae
330 (Hogan and Kolter 2002, Peleg et al. 2008, Peters et al. 2010). This may account for the ability of Cf to
331 effectively outcompete Sa for binding if Ca biofilms of clinical isolates are not predominantly hyphae.
332 Furthermore, we found that Cf attachment to Ca cells induce hyphae formation, leading to more surface
333 area and movement through space as hyphae expand across the tissue surface to create a tangled
334 three-dimensional network. We observed cellular appendages on Cf that appear to mediate the
335 adhesion to Ca (Fig. 5C inset) and hypothesize that these appendages are type I pili, consistent with
336 our finding that Cf induced agglutination of Ca yeasts can be both inhibited and reversed by mannose
337 (Fig. S2). Mannose residues are a key component of the fungal cell wall regardless of morphology
338 (Meyer-Wentrup et al. 2007) and mannose-binding type I fimbriae are ubiquitous among the species in
339 the Enterobacteriaceae family, such as Cf (Mirelman et al. 1980, Jones et al. 1995). Further,
340 persistence of bacteria in the Enterobacteriaceae family has been reported as a microbial marker and
341 predictor of poor wound healing in DFUs localized to the heel of the foot (Sloan et al. 2019).

342 We used viable cell enumeration on selective plates to quantify growth within biofilms. A
343 limitation of this technique is that adhesive cell clusters and fungal hyphae, while functionally different
344 compared to a single cell, will also plate as one countable colony. Although we found that Ca CFUs
345 were reduced when in co-culture with Cf (Fig. 2), the magnitude of change may not be absolute
346 because of morphological differences in Ca due to Cf (Fig. 6A, B). Fungal hyphae in general are difficult

347 to quantify (Clemons and Stevens 2009). However, we want to note that our viable counts were
348 consistent and reproducible. Furthermore, our use of SEM to investigate the spatial structure of biofilms
349 supports our observations of reduced Ca cell counts due to hyphal induction, such as during Ca and Cf
350 co-colonization. These observations raise the question of what might be missed if we study pairwise
351 interactions by quantifying absolute abundances. Morphological changes in Ca may have a far greater
352 impact on virulence than overall viable cell counts (Sudbery et al. 2004, Sudbery 2011, Gow et al.
353 2011, Gow and Hube 2012). We reiterate that proportional representation in a community (i.e., relative
354 abundance) does not necessarily correspond to absolute abundance, and furthermore cannot capture
355 physical and functional characteristics of the resulting community (Gloor et al. 2017).

356 We found that Ca-Cf mixed biofilms increase neutrophil death. Neutrophils are among the first
357 responders during the inflammatory phase of wound healing. Their primary role is to clean the wound of
358 debris and contaminating microbes through phagocytosis. Neutrophils also undergo a cell death
359 process to release Neutrophil Extracellular Traps (NETs), which are web-like structures of DNA and
360 antimicrobial proteins that trap and kill microbes to prevent them from spreading. Mono-cultures of Ca
361 biofilms have been shown to inhibit NETosis (Johnson et al. 2016) but the increased length of hyphae
362 compared to yeast cells increases incomplete or “frustrated” phagocytosis and also alters reactive
363 oxygen signaling in the neutrophil response (Lewis et al. 2012, Warnatsch et al. 2017). Attachment of
364 Cf induces a morphological change in Ca and results in increased hyphae and neutrophil cell death. In
365 the context of diabetes, neutrophils in both diabetic mice models and diabetic patients are primed to
366 undergo NETosis (Wong et al. 2015, Fadini et al. 2016). It is thought that the increased inflammation
367 triggered by NETosis likely contributes to the delayed wound healing associated with this disease.
368 Thus, we hypothesize that a subset of neutrophil-associated inflammation may be due to fungal-
369 bacterial interactions.

370 Metagenomic and marker-gene-based surveys that move beyond bacterial 16S rRNA gene
371 sequencing have revealed that fungi are commonly missed yet key members of the DFU microbiome
372 (Chellan et al. 2010, Dowd et al. 2011, Kalan et al. 2016). The presence of pathogenic fungi in wounds

373 is correlated to poorer wound healing outcomes and can complicate treatment (Chellan et al. 2012,
374 Kalan et al. 2016, Townsend et al. 2017). A major component of the chronic wound microbiome is
375 community stability, or the lack of, as being a key factor for predicting wound outcomes (Loesche et al.
376 2017, Tipton et al. 2017). Fungi such as Ca, although representing a small proportion of a community,
377 provide a scaffold to colonizing bacterial species and contribute to overall community stability. We have
378 shown that this process is affected by ecological factors such as order of arrival to a community and
379 subsequent priority effects can drastically alter the physical and compositional structure of biofilm
380 communities. In turn, virulence traits and host responses are altered. We anticipate as we uncover
381 more ecological principles relevant to microbial growth within wounds, a combination of bottom-up
382 analyses building complexity within our models and top-down approaches such as metatranscriptomics
383 will add to our understanding of the microbial impact on wound healing with positive implications for
384 future basic and translation research.

385

386 **Materials and Methods**

387 **Strains and Culture Conditions**

388 **I) Fungal-bacterial biofilms in 96-well plates**

389 Isolates were streaked from glycerol stocks stored at -80°C and grown overnight at 37°C on yeast-
390 peptone-dextrose (YPD; *C. albicans*) or tryptone soy (bacteria) agar plates. Inoculums were made by
391 picking colonies and resuspending into sterile PBS followed by dilution in RPMI-1640 with 2% glucose
392 and 0.165 M MOPS (pH 7.0) to a final cell density of 1×10^5 CFU/mL. Biofilms were grown statically at
393 37°C in non-treated polystyrene 96-well plates (CC7672-7596; USA Scientific). For monocultures, 200
394 μ L of inoculum was added to each well and incubated for 24 h or 48 h with fresh media replaced at 24
395 h. For co-cultures (simultaneous inoculation), 200 μ L of inoculum was added to each well and
396 incubated for 48 h with fresh media replaced at 24 h. For co-cultures (staggered inoculation), 200 μ L of
397 inoculum was added to each well and allowed to grow statically for 24 h. The supernatant was gently

398 removed and 200 μ L of inoculum of the late colonizer was gently added to each well and allowed to
399 grow statically for another 24 h. For competitive bacterial binding to *C. albicans* biofilms, 200ul of *C.*
400 *albicans* inoculum was first added to each well. Plates were incubated for 48 h at 37°C to allow a
401 mature biofilm to form. The supernatants were then removed and 200 μ L of *C. freundii* and/or *S. aureus*
402 inoculums (1×10^5 CFU/mL each) were added to wells containing mature *C. albicans* biofilms to allow
403 for bacterial attachment and were incubated for another 24 h. To harvest biofilms, the media was
404 removed and each well was washed twice with 200 μ L PBS to remove non-adherent cells. Biofilms
405 were scraped with a pipet tip and resuspended in 200 μ L of PBS before serial dilution and spot plating
406 20 μ L for CFU counts on selective/differential media: YPD agar with 50 μ g/mL kanamycin (*C.*
407 *albicans*), TSA with 50 μ g/mL nystatin (*C. freundii* and *S. aureus*), and TSA with 7.5% NaCl and 50
408 μ g/mL nystatin (*S. aureus* in tri-culture).

409

410 **2) *Ex vivo* human skin wound model**

411 Human skin was obtained from patients undergoing elective reconstructive surgeries. The de-identified
412 samples were exempt from the regulation of University of Wisconsin-Madison Human Subjects
413 Committee Institutional Review Boards. The tissue was rinsed with PBS until clean. Partial-thickness
414 excisional wounds were made by puncturing the epidermis with a 6 mm biopsy punch and using
415 tweezers and scissors to lift, cut, and remove the entire epidermis and a portion of the dermis. A 12 mm
416 biopsy punch was used to make full-thickness skin biopsies around the 6 mm excisional wound. These
417 biopsies were rinsed in PBS and placed into 12-well plates containing 3 mL of a DMEM-agarose gel
418 (0.15x 1% agarose in PBS and 0.85x Dulbecco's modified Eagle medium (DMEM) supplemented with
419 10% fetal bovine serum (FBS)). Samples were incubated at 37°C with 5% CO₂ and transferred to a
420 new medium every 48 h. Isolates were streaked from glycerol stocks stored at -80°C and grown
421 overnight at 37°C on YPD (*C. albicans*) or tryptone soy (bacteria) agar plates. Colonies were
422 resuspended into sterile PBS and diluted to a cell density of 1×10^7 CFU/mL each. Wounds were

423 inoculated by applying 10 μ L of the inoculum for a final cell density of 1×10^5 CFU/wound. For
424 staggered colonization models, late colonizers were inoculated as described above, 24 h after
425 inoculation of the early colonizer. Following incubation, wounds were processed for scanning electron
426 microscopy (see below) or bisected and processed for viable cell enumeration. Bisects were vortexed
427 in 1 mL PBS with 0.2 g of 1 mm sterile glass beads for 10 m at full-speed on a VortexGenie 2 before
428 serial dilution and spot plating 20 μ L for CFU counts on selective/differential media: YPD agar with 50
429 μ g/mL kanamycin (*C. albicans*), TSA with 50 μ g/mL nystatin (*C. freundii* and *S. aureus*), and TSA with
430 7.5% NaCl and 50 μ g/mL nystatin (*S. aureus* in tri-culture).

431

432 **Scanning electron microscopy**

433 The following protocol is adapted from that described in Horton et al. (2020). Briefly, samples of *ex vivo*
434 human skin wounds were rinsed with PBS and fixed overnight in 5 mL of 1.5% glutaraldehyde in 0.1 M
435 sodium phosphate buffer (pH 7.2) at 4°C. Samples were rinsed with 0.1 M sodium phosphate buffer
436 (pH 7.2), and treated with 1% osmium tetroxide in 0.1 M sodium phosphate buffer (pH 7.2) for 1h, and
437 then washed again with 0.1 M sodium phosphate buffer (pH 7.2). Samples were dehydrated through a
438 series of ethanol washes (30% to 100%) followed by critical point drying (14 exchanges on low speed)
439 and were subsequently mounted on aluminum stubs with a carbon adhesive tab and carbon paint.
440 Silver paint was applied around the perimeter for improved conductivity. Samples were left to dry in a
441 desiccator overnight. Following sputter coating with platinum to a thickness of 20 nm, samples were
442 imaged in a scanning electron microscope (Zeiss LEO 1530-VP) at 3 kV. Micrographs were taken at
443 magnifications of 100x, 500x, 2 000x, and 10 000x for each feature of interest to enable localization
444 relative to the sample and provide both sub-millimeter and micron-scale biogeographic information. For
445 imaging of putative pili on Cf, magnification was increased to 20 000x as needed.

446

447 **Yeast-agglutination assay with sugar competition**

448 Isolates were streaked from glycerol stocks stored at -80°C and grown overnight at 37°C on YPD (*C.*
449 *albicans*) or TSA (*C. freundii*) plates. Dense suspensions were made by picking colonies and
450 resuspending into sterile PBS. 1:10 dilutions of the dense suspensions were used to quantify OD_{600nm}
451 with a goal of 1.0~1.5, corresponding to an undiluted OD_{600nm} of 10~15. To induce agglutination, 100 µL
452 of each microbe and 100 µL of PBS was added to a 1.5 mL microcentrifuge tube and shaken at 175
453 rpm in a 37°C incubator for 15 minutes. To test for inhibition of agglutination, 500 mM D-mannose in
454 PBS was added instead of PBS, with 500 mM D-galactose in PBS used as a control. To test for
455 reversal of agglutination, 50 µL of PBS, 500 mM D-mannose in PBS, or 500 mM D-galactose in PBS
456 was added to 50 µL of the agglutinated Ca and Cf suspension in PBS and briefly vortexed to mix.
457 Monoculture controls were 100 µL of dense suspensions and 200 µL of PBS in a 1.5 mL
458 microcentrifuge tube. Images were take using on a Nikon Eclipse E600 microscope equipped with a
459 Leica DFC420 camera using LAS v4.12 software. Objective used was the Nikon Plan Fluor 40x using
460 the Ph2 annulus on the sub-stage condenser.

461

462 **Human neutrophil collection**

463 Blood was obtained from volunteer donors with written informed consent through a protocol approved
464 by the University of Wisconsin Human Subjects Institutional Review Board. Neutrophils were isolated
465 with MACSxpress neutrophil isolation and MACSxpress erythrocyte depletion kits (Miltenyi Biotec, Inc.,
466 Auburn, CA) and suspended in RPMI 1640 (without phenol red) supplemented with 2% heat-inactivated
467 fetal bovine serum (FBS) and supplemented with glutamine (0.3 mg/ml). Incubations were at 37°C with
468 5% CO₂.

469

470 **Fluorescence imaging of neutrophil interactions *in vitro***

471 The following protocol is adapted from that described in Johnson et al. (2016). For fluorescent imaging,
472 100 µL of fungal and bacterial cells in RPMI1650 (1 x 10⁵ cells/mL) were loaded into the wells of a

473 tissue culture-treated μ -Slide (8 wells, ibidi, Fitchburg, WI) and grown on a 30° degree angle using a
474 well plate stand for 24 h at 37°C with 5% CO₂. Neutrophils, stained with calcein-AM (Thermo, Fisher
475 Scientific, Waltham, MA) at 0.5 μ g/ml in DPBS for 10 min at room temperature in the dark, were added
476 at a concentration of 1 \times 10⁵ cells/well and allowed to incubate flat for 4 h at 37°C with 5% CO₂. The
477 membrane-impermeable dye propidium iodide (3 μ M) incubated with samples for 15 min at 37°C was
478 used to visualize extracellular DNA (and neutrophils with disrupted membranes). Images were obtained
479 using a Nikon eclipse-TI2 inverted microscope equipped with a TI2-S-SS-E motorized stage and
480 ORCA-Flash 4.0 LT sCMOS camera using NIS elements imaging software on bright field, FITC, and
481 TexasRed channels using a 20x objective. Images were taken from random fields of view along the
482 biofilm leading edge. Exposure times and linear contrast (LUTs) for each channel were fixed and
483 consistent within each independent biological experiment. Image channels were exported separately
484 and analyzed using FIJI. Single channel images were converted to grayscale and the Auto Threshold
485 function using the IJ-IsoData algorithm on a dark background was used to identify neutrophils. The
486 pixel area occupied by neutrophils was calculated for each channel separately and the percent area of
487 the red channel divided by the green channel was reported as the red:green ratio to normalize for
488 varying amounts of neutrophils in each field of view. Brightfield, FITC, and TexasRed channels were
489 overlaid for display within Fig. 6.

490

491 **Data and Statistical Analysis.**

492 All *in vitro* experiments were performed with at least three independent biological replicates with at least
493 three technical replicates wells. All *ex vivo* experiments were performed with at least three separate
494 wounds from a single donor for each condition. Across all conditions, we used tissue from three
495 separate skin donors in total. Neutrophil experiments were performed with two independent biological
496 replicates, with multiple fields of view taken across three total wells for each condition.

497 All statistical analysis was performed using the R statistical package (R Core Team 2020). The
498 Shapiro-Wilk test for normality was used to determine if the data were distributed normally. For
499 normally distributed data, parametric tests were used. Welch's unpaired t-test was used to compare
500 differences in means between two samples. For comparisons between the means of multiple groups, a
501 one-way between subjects ANOVA was used for each microbe and differences between any two
502 groups were determined using Tukey's Honest Significant Differences test. For non-normally distributed
503 data, non-parametric tests were used. The Kruskal-Wallis test was used to compare between the
504 means of multiple groups, and the paired-Wilcoxon test with the Bonferroni correction was used to
505 correct for multiple comparisons. We used an α level of 0.05 for all statistical tests, significance at lower
506 α levels are indicated within figures as: * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P < 0.0001$.
507

508 **Acknowledgements**

509 The authors gratefully acknowledge use of facilities and instrumentation at the UW-Madison Wisconsin
510 Centers for Nanoscale Technology (wcnt.wisc.edu) partially supported by the NSF through the
511 University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415). The
512 authors also acknowledge Nate Holly for training and assistance with human tissue processing,
513 members of the Kalan Lab for helpful feedback and discussion, and Cameron Currie for microscope
514 access.

515 This work was supported by grants from the National Institutes of Health (NIGMS R35 GM137828
516 [L.R.K], NIAID R01 AI145939 [J.N]), UW-Madison Department of Medicine William A Craig Research
517 Award [L.R.K], the Burroughs Wellcome Fund (1012299 [J.N]), and the Doris Duke Charitable
518 Foundation (2017074, [J.N]).

519

520

521 **References**

522 Abraham, S. N., D. Sun, J. B. Dale, and E. H. Beachey (1988). Conservation of the D-mannose-

523 adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. *Nature*
524 336:682–684.

525 Bergeron, A. C., B. G. Seman, J. H. Hammond, L. S. Archambault, D. A. Hogan, and R. T. Wheeler
526 (2017). *Candida albicans* and *Pseudomonas aeruginosa* Interact To Enhance Virulence of
527 Mucosal Infection in Transparent Zebrafish. *Infection and Immunity* 85:1–18.

528 Bertolini, M., and A. Dongari-Bagtzoglou (2019). The Dysbiosis and Inter-Kingdom Synergy Model in
529 Oropharyngeal Candidiasis, a New Perspective in Pathogenesis. *Journal of Fungi* 5:87.

530 Bisht, K., J. Baishya, and C. A. Wakeman (2020). *Pseudomonas aeruginosa* polymicrobial interactions
531 during lung infection. *Current Opinion in Microbiology* 53:1–8.

532 Black, C. E., and J. W. Costerton (2010). Current Concepts Regarding the Effect of Wound Microbial
533 Ecology and Biofilms on Wound Healing. *Surgical Clinics of North America* 90:1147–1160.

534 Burnham-Marusich, A. R., B. Hubbard, A. J. Kvam, M. Gates-Hollingsworth, H. R. Green, E. Soukup, A.
535 H. Limper, and T. R. Kozel (2018). Conservation of Mannan Synthesis in Fungi of the Zygomycota
536 and Ascomycota Reveals a Broad Diagnostic Target. *mSphere* 3:1–14.

537 Carolus, H., K. Van Dyck, and P. Van Dijck (2019). *Candida albicans* and *Staphylococcus* Species: A
538 Threatening Twosome. *Frontiers in Microbiology* 10.

539 Chellan, G., K. Neethu, A. K. Varma, T. S. Mangalanandan, S. Shashikala, K. R. Dinesh, K. R.
540 Sundaram, N. Varma, R. V. Jayakumar, A. Bal, and H. Kumar (2012). Targeted treatment of
541 invasive fungal infections accelerates healing of foot wounds in patients with Type2 diabetes.
542 *Diabetic Medicine* 29:255–262.

543 Chellan, G., S. Shivaprakash, S. K. Ramaiyar, A. K. Varma, N. Varma, M. T. Sukumaran, J. R.
544 Vasukutty, A. Bal, H. Kumar, S. Karimassery Ramaiyar, A. K. Varma, et al. (2010). Spectrum and
545 prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes.
546 *Journal of Clinical Microbiology* 48:2097–102.

547 Cho, I., and M. J. Blaser (2012). The human microbiome: At the interface of health and disease. *Nature*
548 *Reviews Genetics* 13:260–270.

549 Clemons, K. V., and D. A. Stevens (2009). Conventional or molecular measurement of *Aspergillus* load.
550 Medical Mycology 47:S132–S137.

551 Dalton, T., S. E. Dowd, R. D. Wolcott, Y. Sun, C. Watters, J. A. Griswold, and K. P. Rumbaugh (2011).
552 An In Vivo Polymicrobial Biofilm Wound Infection Model to Study Interspecies Interactions. PLoS
553 ONE 6:e27317.

554 Deveau, A., G. Bonito, J. Uehling, M. Paoletti, M. Becker, S. Bindschedler, S. Hacquard, V. Hervé, J.
555 Labbé, O. A. Lastovetsky, S. Mieszkin, et al. (2018). Bacterial - Fungal Interactions: ecology,
556 mechanisms and challenges. FEMS Microbiology Reviews. <https://doi.org/10.1093/femsre/fuy008>

557 Van Dijck, P., and M. A. Jabra-Rizk (2017). Fungal-bacterial interactions: In health and disease.
558 *Candida albicans*: Cellular and Molecular Biology: Second Edition:115–143.

559 Douterelo, I., K. E. Fish, and J. B. Boxall (2018). Succession of bacterial and fungal communities within
560 biofilms of a chlorinated drinking water distribution system. Water Research 141:74–85.

561 Dowd, S. E., J. Delton Hanson, E. Rees, R. D. Wolcott, A. M. Zischau, Y. Sun, J. White, D. M. Smith, J.
562 Kennedy, and C. E. Jones (2011). Survey of fungi and yeast in polymicrobial infections in chronic
563 wounds. Journal of Wound Care 20:40–47.

564 Dowd, S. E., R. D. Wolcott, Y. Sun, T. McKeehan, E. Smith, and D. Rhoads (2008). Polymicrobial
565 nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX
566 amplicon pyrosequencing (bTEFAP). PLoS ONE 3.

567 Drake, J. A. (1991). Community-Assembly Mechanics and the Structure of an Experimental Species
568 Ensemble. The American Naturalist 137:1–26.

569 Fadini, G. P., L. Menegazzo, M. Rigato, V. Scattolini, N. Poncina, A. Bruttocao, S. Ciciliot, F.
570 Mammano, C. D. Ciubotaru, E. Brocco, M. C. Marescotti, et al. (2016). NETosis Delays Diabetic
571 Wound Healing in Mice and Humans. Diabetes 65:1061–71.

572 Förster, T. M., S. Mogavero, A. Dräger, K. Graf, M. Polke, I. D. Jacobsen, and B. Hube (2016).
573 Enemies and brothers in arms: *Candida albicans* and gram-positive bacteria. Cellular Microbiology
574 18:1709–1715.

575 Fukami, T. (2015). Historical Contingency in Community Assembly: Integrating Niches, Species Pools,
576 and Priority Effects. *Annual Review of Ecology, Evolution, and Systematics* 46:1–23.

577 Fukami, T., E. A. Mordecai, and A. Ostling (2016). A framework for priority effects. *Journal of*
578 *Vegetation Science* 27:655–657.

579 Gardner, S. E., S. L. Hillis, K. Heilmann, J. A. Segre, and E. A. Grice (2013). The neuropathic diabetic
580 foot ulcer microbiome is associated with clinical factors. *Diabetes* 62:923–30.

581 Gloor, G. B., J. M. Macklaim, V. Pawlowsky-Glahn, and J. J. Egozcue (2017). Microbiome datasets are
582 compositional: And this is not optional. *Frontiers in Microbiology* 8:1–6.

583 Gow, N. A. R., and B. Hube (2012). Importance of the *Candida albicans* cell wall during commensalism
584 and infection. *Current Opinion in Microbiology* 15:406–412.

585 Gow, N. A. R., F. L. van de Veerdonk, A. J. P. Brown, and M. G. Netea (2011). *Candida albicans*
586 morphogenesis and host defence: discriminating invasion from colonization. *Nature reviews.*
587 *Microbiology* 10:112–22.

588 Van Gremberghe, I., P. Vanormelingen, K. Van Der Gucht, C. Souffreau, W. Vyverman, and L. De
589 Meester (2009). Priority effects in experimental populations of the cyanobacterium *Microcystis*.
590 *Environmental Microbiology* 11:2564–2573.

591 He, J., D. Kim, X. Zhou, S.-J. Ahn, R. A. Burne, V. P. Richards, and H. Koo (2017). RNA-Seq Reveals
592 Enhanced Sugar Metabolism in *Streptococcus mutans* Co-cultured with *Candida albicans* within
593 Mixed-Species Biofilms. *Frontiers in Microbiology* 8:1036.

594 Hogan, D. A., and R. Kolter (2002). Pseudomonas-Candida interactions: An ecological role for
595 virulence factors. *Science* 296:2229–2232.

596 Hogan, D. A., Å. □ Vik, and R. Kolter (2004). A *Pseudomonas aeruginosa* quorum-sensing molecule
597 influences *Candida albicans* morphology. *Molecular Microbiology* 54:1212–1223.

598 Horton, M. V., C. J. Johnson, J. F. Kernien, T. D. Patel, B. C. Lam, J. Z. A. Cheong, J. J. Meudt, D.
599 Shanmuganayagam, L. R. Kalan, and J. E. Nett (2020). *Candida auris* Forms High-Burden
600 Biofilms in Skin Niche Conditions and on Porcine Skin. *mSphere* 5:1–8.

601 Hunter, P., E. Greco, K. Cross, and J. Perry (2020). Topical Oxygen Therapy Shifts Microbiome
602 Dynamics in Chronic Diabetic Foot Ulcers. *Wounds* 32:81–85.

603

604 Hwang, G., Y. Liu, D. Kim, Y. Li, D. J. Krysan, and H. Koo (2017). *Candida albicans* mannans mediate
605 *Streptococcus mutans* exoenzyme GtfB binding to modulate cross-kingdom biofilm development in
606 vivo. *PLOS Pathogens* 13:e1006407.

607 Johani, K., M. Malone, S. Jensen, I. Gosbell, H. Dickson, H. Hu, and K. Vickery (2017). Microscopy
608 visualisation confirms multi-species biofilms are ubiquitous in diabetic foot ulcers. *International
609 Wound Journal* 14:1160–1169.

610 Johani, K., M. Malone, S. O. Jensen, H. G. Dickson, I. B. Gosbell, H. Hu, Q. Yang, G. Schultz, and K.
611 Vickery (2018). Evaluation of short exposure times of antimicrobial wound solutions against
612 microbial biofilms: From in vitro to in vivo. *Journal of Antimicrobial Chemotherapy* 73:494–502.

613 Johnson, C. J., J. Cabezas-Olcoz, J. F. Kernien, S. X. Wang, D. J. Beebe, A. Huttenlocher, H. Ansari,
614 and J. E. Nett (2016). The Extracellular Matrix of *Candida albicans* Biofilms Impairs Formation of
615 Neutrophil Extracellular Traps. *PLOS Pathogens* 12:e1005884.

616 Jones, C. H., J. S. Pinkner, R. Roth, J. Heuser, A. V. Nicholes, S. N. Abraham, and S. J. Hultgren
617 (1995). FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the
618 Enterobacteriaceae. *Proceedings of the National Academy of Sciences of the United States of
619 America* 92:2081–2085.

620 Kalan, L., M. Loesche, B. P. Hodkinson, K. Heilmann, G. Ruthel, S. E. Gardner, and E. A. Grice (2016).
621 Redefining the chronic-wound microbiome: Fungal communities are prevalent, dynamic, and
622 associated with delayed healing. *mBio* 7:e01058-16.

623 Kalan, L. R., and M. B. Brennan (2018). The role of the microbiome in nonhealing diabetic wounds.
624 *Annals of the New York Academy of Sciences*. <https://doi.org/10.1111/nyas.13926>

625 Kalan, L. R., J. S. Meisel, M. A. Loesche, J. Horwinski, I. Soaita, X. Chen, A. Uberoi, S. E. Gardner,
626 and E. A. Grice (2019). Strain- and Species-Level Variation in the Microbiome of Diabetic Wounds

627 Is Associated with Clinical Outcomes and Therapeutic Efficacy. *Cell Host & Microbe*:1–15.

628 Kean, R., R. Rajendran, J. Haggarty, E. M. Townsend, B. Short, K. E. Burgess, S. Lang, O. Millington,
629 W. G. Mackay, C. Williams, and G. Ramage (2017). *Candida albicans* mycofilms support
630 *Staphylococcus aureus* colonization and enhances miconazole resistance in dual-species
631 interactions. *Frontiers in Microbiology* 8:1–11.

632 Kim, D., J. P. Barraza, R. A. Arthur, A. Hara, K. Lewis, Y. Liu, E. L. Scisci, E. Hajishengallis, M.
633 Whiteley, and H. Koo (2020). Spatial mapping of polymicrobial communities reveals a precise
634 biogeography associated with human dental caries. *Proceedings of the National Academy of
635 Sciences* 117:12375–12386.

636 Kim, D., and H. Koo (2020). Spatial Design of Polymicrobial Oral Biofilm in Its Native Disease State.
637 *Journal of Dental Research*. <https://doi.org/10.1177/0022034520909313>

638 Kong, E. F., C. Tsui, S. Kucharíková, D. Andes, P. Van Dijck, and M. A. Jabra-Rizk (2016). Commensal
639 Protection of *Staphylococcus aureus* against Antimicrobials by *Candida albicans* Biofilm Matrix.
640 *mBio* 7:1–12.

641 Kucera, J., M. Sojka, V. Pavlik, K. Szuszkievicz, V. Velebny, and P. Klein (2014). Multispecies biofilm
642 in an artificial wound bed—A novel model for in vitro assessment of solid antimicrobial dressings.
643 *Journal of Microbiological Methods* 103:18–24.

644 Lewin, G. R., A. Stacy, K. L. Michie, R. J. Lamont, and M. Whiteley (2019). Large-scale identification of
645 pathogen essential genes during coinfection with sympatric and allopatric microbes. *Proceedings
646 of the National Academy of Sciences of the United States of America* 116:19685–19694.

647 Lewis, L. E., J. M. Bain, C. Lowes, C. Gillespie, F. M. Rudkin, N. A. R. Gow, and L. P. Erwig (2012).
648 Stage specific assessment of *Candida albicans* phagocytosis by macrophages identifies cell wall
649 composition and morphogenesis as key determinants. *PLoS Pathogens* 8.

650 Loesche, M., S. E. Gardner, L. Kalan, J. Horwinski, Q. Zheng, B. P. Hodkinson, A. S. Tyldsley, C. L.
651 Franciscus, S. L. Hillis, S. Mehta, D. J. Margolis, and E. A. Grice (2017). Temporal Stability in
652 Chronic Wound Microbiota Is Associated With Poor Healing. *Journal of Investigative Dermatology*

653 137:237–244.

654 MacDonald, A., J. D. Brodell, J. L. Daiss, E. M. Schwarz, and I. Oh (2019). Evidence of differential
655 microbiomes in healing versus non-healing diabetic foot ulcers prior to and following foot salvage
656 therapy. *Journal of Orthopaedic Research* 37:1596–1603.

657 Machová, E., L. Fiačanová, A. Čížová, and J. Korcová (2015). Mannoproteins from yeast and hyphal
658 form of *Candida albicans* considerably differ in mannan and protein content. *Carbohydrate*
659 *Research* 408:12–17.

660 Malone, M. (2017). The Microbiome of Diabetic Foot Ulcers and the Role of Biofilms. *The Microbiology*
661 *of Skin, Soft Tissue, Bone and Joint Infections*:41–56.

662 Méar, J.-B., E. Kipnis, E. Faure, R. Dessein, G. Schurtz, K. Faure, and B. Guery (2013). *Candida*
663 *albicans* and *Pseudomonas aeruginosa* interactions: More than an opportunistic criminal
664 association? *Médecine et Maladies Infectieuses* 43:146–151.

665 Meyer-Wentrup, F., A. Cambi, C. G. Figdor, and G. J. Adema (2007). Detection of fungi by mannose-
666 based recognition receptors. In *Immunology of Fungal Infections*. Springer Netherlands, pp. 293–
667 307.

668 Miller, L. S., and J. S. Cho (2011). Immunity against *Staphylococcus aureus* cutaneous infections.
669 *Nature Reviews Immunology* 11:505–518.

670 Min, K. R., A. Galvis, K. L. B. Nole, R. Sinha, J. Clarke, R. S. Kirsner, and D. Ajdic (2020). Association
671 between baseline abundance of *Peptoniphilus*, a Gram-positive anaerobic coccus, and wound
672 healing outcomes of DFUs. *PLoS ONE* 15:1–20.

673 Mirelman, D., G. Altmann, and Y. Eshdat (1980). Screening of bacterial isolates for mannose-specific
674 lectin activity by agglutination of yeasts. *Journal of Clinical Microbiology* 11:328–331.

675 Mrázková, J., L. Malinovská, and M. Wimmerová (2019). Microscopy examination of red blood and
676 yeast cell agglutination induced by bacterial lectins. *PLoS ONE* 14:1–23.

677 Mukaremera, L., K. K. Lee, H. M. Mora-Montes, and N. A. R. Gow (2017). *Candida albicans* yeast,
678 pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. *Frontiers in*

679 Immunology 8:1–12.

680 O'Brien, S., and J. L. Fothergill (2017). The role of multispecies social interactions in shaping
681 *Pseudomonas aeruginosa* pathogenicity in the cystic fibrosis lung. *FEMS Microbiology Letters*
682 364:1–10.

683 Ofek, I., D. Mirelman, and N. Sharon (1977). Adherence of *escherichia coli* to human mucosal cells
684 mediated by mannose receptors [13]. *Nature* 265:623–625.

685 Olsen, N. M. C., H. L. Røder, J. Russel, J. S. Madsen, S. J. Sørensen, and M. Burmølle (2019). Priority
686 of early colonizers but no effect on cohabitants in a synergistic biofilm community. *Frontiers in*
687 *Microbiology* 10:1–8.

688 Olsson, M., K. Järbrink, U. Divakar, R. Bajpai, Z. Upton, A. Schmidtchen, and J. Car (2019). The
689 humanistic and economic burden of chronic wounds: A systematic review. *Wound Repair and*
690 *Regeneration* 27:114–125.

691 Peay, K. G., M. Belisle, and T. Fukami (2012). Phylogenetic relatedness predicts priority effects in
692 nectar yeast communities. *Proceedings of the Royal Society B: Biological Sciences* 279:749–758.

693 Peleg, A. Y., E. Tampakakis, B. B. Fuchs, G. M. Eliopoulos, R. C. Moellering, and E. Mylonakis (2008).
694 Prokaryote-eukaryote interactions identified by using *Caenorhabditis elegans*. *Proceedings of the*
695 *National Academy of Sciences* 105:14585–14590.

696 Percival, S. L., M. Malone, D. Mayer, A.-M. Salisbury, and G. Schultz (2018). Role of anaerobes in
697 polymicrobial communities and biofilms complicating diabetic foot ulcers. *International Wound*
698 *Journal* 15:776–782.

699 Peters, B. M., M. A. Jabra-Rizk, M. A. Scheper, J. G. Leid, J. W. Costerton, and M. E. Shirtliff (2010).
700 Microbial interactions and differential protein expression in *Staphylococcus aureus* -*Candida*
701 *albicans* dual-species biofilms. *FEMS Immunology and Medical Microbiology* 59:493–503.

702 Peters, B. M., E. S. Ovchinnikova, B. P. Krom, L. M. Schlecht, H. Zhou, L. L. Hoyer, H. J. Busscher, H.
703 C. van der Mei, M. A. Jabra-Rizk, and M. E. Shirtliff (2012). *Staphylococcus aureus* adherence to
704 *Candida albicans* hyphae is mediated by the hyphal adhesin Als3p. *Microbiology (United*

705 Kingdom) 158:2975–2986.

706 R Core Team (2020). R: A Language and Environment for Statistical Computing. [Online.] Available at
707 <https://www.r-project.org/>.

708 Raghav, A., Z. A. Khan, R. K. Labala, J. Ahmad, S. Noor, and B. K. Mishra (2018). Financial burden of
709 diabetic foot ulcers to world: a progressive topic to discuss always. Therapeutic Advances in
710 Endocrinology and Metabolism 9:29–31.

711 Rhoads, D. D., R. D. Wolcott, Y. Sun, S. E. Dowd, D. D. Rhoads, R. D. Wolcott, Y. Sun, and S. E.
712 Dowd (2012). Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds.
713 International Journal of Molecular Sciences 13:2535–2550.

714 Rice, J. B., U. Desai, A. K. G. Cummings, H. G. Birnbaum, M. Skornicki, and N. B. Parsons (2014).
715 Burden of Diabetic Foot Ulcers for Medicare and Private Insurers. Diabetes Care 37:651–658.

716 Robbins, J. M., G. Strauss, D. Aron, J. Long, J. Kuba, and Y. Kaplan (2008). Mortality rates and
717 diabetic foot ulcers: is it time to communicate mortality risk to patients with diabetic foot ulceration?
718 Journal of the American Podiatric Medical Association 98:489–93.

719 Roberts, A. E. L., K. N. Kragh, T. Bjarnsholt, and S. P. Diggle (2015). The Limitations of in Vitro
720 Experimentation in Understanding Biofilms and Chronic Infection. Journal of Molecular Biology
721 427:3646–3661.

722 Roche, E. D., E. J. Woodmansey, Q. Yang, D. J. Gibson, H. Zhang, and G. S. Schultz (2019).
723 Cadexomer iodine effectively reduces bacterial biofilm in porcine wounds ex vivo and in vivo.
724 International Wound Journal:674–683.

725 Schlecht, L. M., B. M. Peters, B. P. Krom, J. A. Freiberg, G. M. Hänsch, S. G. Filler, M. A. Jabra-Rizk,
726 and M. E. Shirtliff (2015). Systemic *Staphylococcus aureus* infection mediated by *Candida*
727 *albicans* hyphal invasion of mucosal tissue. Microbiology (United Kingdom) 161:168–181.

728 Shibata, N., A. Suzuki, H. Kobayashi, and Y. Okawa (2007). Chemical structure of the cell-wall mannan
729 of *Candida albicans* serotype A and its difference in yeast and hyphal forms. Biochemical Journal
730 404:365–372.

731 Singh, N., D. G. Armstrong, and B. A. Lipsky (2005). Preventing foot ulcers in patients with diabetes.

732 *Journal of the American Medical Association*. [Online.] Available at
733 <http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.293.2.217>.

734 Sloan, T. J., J. C. Turton, J. Tyson, A. Musgrove, V. M. Fleming, M. M. Lister, M. W. Loose, R. E.

735 Sockett, M. Diggle, F. L. Game, and W. Jeffcoate (2019). Examining diabetic heel ulcers through
736 an ecological lens: microbial community dynamics associated with healing and infection. *Journal of*
737 *Medical Microbiology* 68:230–240.

738 Stacy, A., L. McNally, S. E. Darch, S. P. Brown, and M. Whiteley (2016). The biogeography of
739 polymicrobial infection. *Nature Reviews Microbiology* 14:93–105.

740 Sudbery, P. E. (2011). Growth of *Candida albicans* hyphae. *Nature Reviews Microbiology* 9:737–748.

741 Sudbery, P., N. Gow, and J. Berman (2004). The distinct morphogenic states of *Candida albicans*.

742 *Trends in Microbiology* 12:317–324.

743 Sun, Y., E. Smith, R. Wolcott, and S. E. Dowd (2009). Propagation of anaerobic bacteria within an
744 aerobic multi-species chronic wound biofilm model. *Journal of Wound Care* 18:426–431.

745 De Tender, C., L. I. Devriese, A. Haegeman, S. Maes, J. Vangeyte, A. Cattrijse, P. Dawyndt, and T.

746 Ruttink (2017). Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the
747 North Sea. *Environmental Science & Technology* 51:7350–7360.

748 Tipton, C. D., M. E. Mathew, R. A. Wolcott, R. D. Wolcott, T. Kingston, and C. D. Phillips (2017).

749 Temporal dynamics of relative abundances and bacterial succession in chronic wound
750 communities. *Wound Repair and Regeneration* 25:673–679.

751 Tipton, L., C. L. Müller, Z. D. Kurtz, L. Huang, E. Kleerup, A. Morris, R. Bonneau, and E. Ghedin (2018).

752 Fungi stabilize connectivity in the lung and skin microbial ecosystems. *Microbiome* 6:12.

753 Todd, O. A., P. L. Fidel, J. M. Harro, J. J. Hilliard, C. Tkaczyk, B. R. Sellman, M. C. Noverr, and B. M.

754 Peters (2019a). *Candida albicans* augments *Staphylococcus aureus* virulence by engaging the
755 Staphylococcal agr quorum sensing system. *mBio* 10:1–16.

756 Todd, O. A., M. C. Noverr, and B. M. Peters (2019b). *Candida albicans* Impacts *Staphylococcus aureus*

757 Alpha-Toxin Production via Extracellular Alkalization. *mSphere* 4:1–12.

758 Townsend, E. M., L. Sherry, R. Kean, D. Hansom, W. G. Mackay, C. Williams, J. Butcher, and G.

759 Ramage (2017). Implications of Antimicrobial Combinations in Complex Wound Biofilms

760 Containing Fungi. *Antimicrobial Agents and Chemotherapy* 61:e00672-17.

761 Turner, K. H., A. Stacy, M. Whiteley, J. L. Murray, and J. L. Connell (2014). Mechanisms of synergy in

762 polymicrobial infections. *Journal of Microbiology* 52:188–199.

763 Verbanic, S., Y. Shen, J. Lee, J. M. Deacon, and I. A. Chen (2020). Microbial predictors of healing and

764 short-term effect of debridement on the microbiome of chronic wounds. *npj Biofilms and*

765 *Microbiomes* 6:21.

766 Wake, N., Y. Asahi, Y. Noiri, M. Hayashi, D. Motooka, S. Nakamura, K. Gotoh, J. Miura, H. Machi, T.

767 Iida, and S. Ebisu (2016). Temporal dynamics of bacterial microbiota in the human oral cavity

768 determined using an *in situ* model of dental biofilms. *npj Biofilms and Microbiomes* 2:16018.

769 Warnatsch, A., T. D. Tsourouktsoglou, N. Branzk, Q. Wang, S. Reincke, S. Herbst, M. Gutierrez, and V.

770 Papayannopoulos (2017). Reactive Oxygen Species Localization Programs Inflammation to Clear

771 Microbes of Different Size. *Immunity* 46:421–432.

772 Wilgus, T. A., S. Roy, and J. C. McDaniel (2013). Neutrophils and Wound Repair: Positive Actions and

773 Negative Reactions. *Advances in Wound Care* 2:379–388.

774 Wolcott, R. D., J. D. Hanson, E. J. Rees, L. D. Koenig, C. D. Phillips, R. A. Wolcott, S. B. Cox, and J. S.

775 White (2016). Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA

776 pyrosequencing. *Wound Repair and Regeneration* 24:163–174.

777 Wolcott, R. D., K. P. Rumbaugh, G. James, G. Schultz, P. Phillips, Q. Yang, C. Watters, P. S. Stewart,

778 and S. E. Dowd (2010). Biofilm maturity studies indicate sharp debridement opens a time-

779 dependent therapeutic window. *Journal of Wound Care* 19:320–328.

780 Wong, S. L., M. Demers, K. Martinod, M. Gallant, Y. Wang, A. B. Goldfine, C. R. Kahn, and D. D.

781 Wagner (2015). Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

782 *Nature Medicine* 21:815–819.

783 Xu, H., H. F. Jenkinson, and A. Dongari-Bagtzoglou (2014). Innocent until proven guilty: mechanisms
784 and roles of *Streptococcus-Candida* interactions in oral health and disease. *Molecular Oral
785 Microbiology* 29:99–116.

786 Yoon, D. J., D. R. Fregoso, D. Nguyen, V. Chen, N. Strbo, J. J. Fuentes, M. Tomic-Canic, R. Crawford,
787 I. Pastar, and R. R. Isseroff (2019). A tractable, simplified *ex vivo* human skin model of wound
788 infection. *Wound Repair and Regeneration* 27:421–425.

789 Yousefi, S., D. Simon, D. Stojkov, A. Karsonova, A. Karaulov, and H.-U. Simon (2020). *In vivo* evidence
790 for extracellular DNA trap formation. *Cell Death & Disease* 11:300.

791

792 **Figure legends:**

793 **Figure 1. Ca-Sa growth interactions are altered by priority effects.**

794 **A)** Relative abundance plots of *in vitro* Ca-Sa biofilms growth in RPMI-1640 media at 37°C using the
795 staggered inoculation model where the early colonizer has priority. Stacked bars represent means of
796 CFU quantification shown in panels C-E. **B)** Summary of Overall priority effects on mixed-species
797 culture. Co-cultures were subtracted from time-matched monoculture controls. Data points show mean
798 differences with 95% confidence intervals calculated from CFU data shown in panels C-E for each
799 microbe using a one-way ANOVA followed by a Tukey HSD test. Differences are significant if
800 confidence intervals do not include 0. **C)** CFUs for Ca-Sa biofilms where Ca and Sa were inoculated
801 simultaneously (no priority effect) and grown for 48 h, and time-matched monoculture controls (48 h) **D)**
802 CFUs for Ca-Sa biofilms where Ca was inoculated 24h before Sa (Ca exerts priority effect) and grown
803 for 48 h, and time-matched monoculture controls (Ca 48 h, Sa 24 h). **E)** CFUs for Ca-Sa biofilms where
804 Sa was inoculated 24 h before Ca (Sa exerts priority effects and grown for 48 h, and time-matched
805 monoculture controls (Sa 48 h, Ca 24 h). For panels C-E, each data point represents one replicate well;
806 horizontal bars show means of ≥ 9 replicates; data are pooled from $n \geq 3$ independent experiments. * =
807 $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P < 0.0001$.

808

809 **Figure 2. Ca-Cf growth interactions are altered by priority effects.**

810 **A)** Relative abundance plots of *in vitro* Ca-Cf biofilms growth in RPMI-1640 media at 37°C when
811 inoculated simultaneously (no priority effect) or staggered (early colonizer has priority). Stacked bars
812 calculated from means of CFU data shown in panels C-E. **B)** Summary of priority effects on growth in
813 co-culture subtracted from time-matched monoculture controls. Data points show mean differences with
814 95% confidence intervals calculated from CFU data shown in panels C-E for each microbe using a one-
815 way ANOVA followed by a Tukey HSD test. Differences are significant if confidence intervals do not
816 include 0. **C)** CFUs for Ca-Cf biofilms inoculated simultaneously (no priority effect) and grown for 48 h
817 and time-matched monoculture controls (48 h). **D)** CFUs for Ca-Cf biofilms where Ca was inoculated 24

818 h before Cf (Ca exerts priority effect) and grown for 48 h, and time-matched monoculture controls (Ca
819 48 h, Cf 24 h). **E)** CFUs for Ca-Cf biofilms where Cf was inoculated 24h before Ca (Cf exerts priority
820 effect) and grown for 48h, and time-matched monoculture controls (Cf 48h, Ca 24h). For panels C-E,
821 each data point represents one replicate well; horizontal bars show means of ≥ 9 replicates; data are
822 pooled from $n \geq 3$ independent experiments. * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P <$
823 0.0001.

824

825 **Figure 3. Cf and Sa compete when attaching to established Ca biofilms.**

826 **A)** Relative abundance plots of *in vitro* biofilms in RPMI-1640 media at 37°C where bacteria (Cf, Sa, or
827 Cf+Sa) are inoculated onto pre-established 48 h Ca biofilms and are allowed to grow for an additional
828 24 h. Stacked bars calculated from means of CFU data shown in panels C. **B)** Summary of
829 interbacterial competition effects on growth on pre-established Ca biofilms subtracted from monoculture
830 controls. Data points show mean differences with 95% confidence intervals calculated from CFU data
831 shown in panel C for each microbe using a one-way ANOVA followed by a Tukey HSD test. Differences
832 are significant if confidence intervals do not include 0. **C)** CFUs for fungal-bacterial biofilms where
833 bacteria (Cf, Sa, or Cf+Sa) are inoculated onto pre-established Ca 48 h biofilms. For panel C, each
834 data point represents one replicate well; horizontal bars show means of ≥ 9 replicates; data are pooled
835 from $n \geq 3$ independent experiments. * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P < 0.0001$.

836

837 **Figure 4. Priority effect interactions are recapitulated within *ex vivo* wound model**

838 CFUs for fungal-bacterial biofilms using both staggered and simultaneous inoculation models. Microbes
839 were grown for up to 48 h in 6 mm excisional wounds on 12 mm punch biopsies of human skin
840 suspended in a DMEM-agarose gel at 37°C, 5% CO₂. Each data point represents one replicate bisect
841 of a biopsy; horizontal bars show means of ≥ 3 replicates. **A)** Correlation plot between CFU counts from
842 *ex vivo* and *in vitro* models. Data points represent means with error bars showing standard deviation.
843 Dashed line represents line where $y = x$. **B)** Relative abundance of Ca, Cf, and Sa across priority effect

844 models. Stacked bars calculated from means of CFU data shown in panels D-F. **C)** Summary of CFU
845 differences between priority effects models and time-matched monocultures. Data points show mean
846 differences of microbes in co-infections to mono-infections with 95% confidence intervals calculated
847 from CFU data shown in panels D-F for each microbe using a one-way ANOVA followed by a Tukey
848 HSD test. Differences are significant if confidence intervals do not include 0. **D)** Ca CFUs across
849 inoculation conditions. **E)** Cf CFUs across inoculation conditions. **F)** Sa CFUs across inoculation
850 conditions. Each data point represents one replicate bisect of a biopsy; horizontal bars show means of
851 ≥ 3 replicates from a single skin donor. * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P < 0.0001$.
852

853 **Figure 5. Fungal-bacterial interactions and morphological heterogeneity within wound
854 environments.**

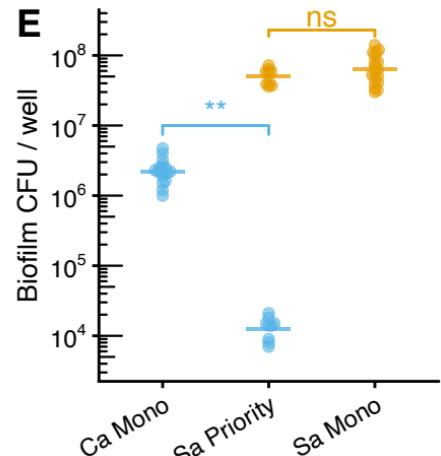
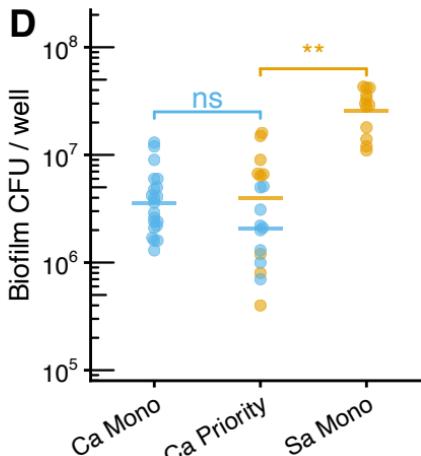
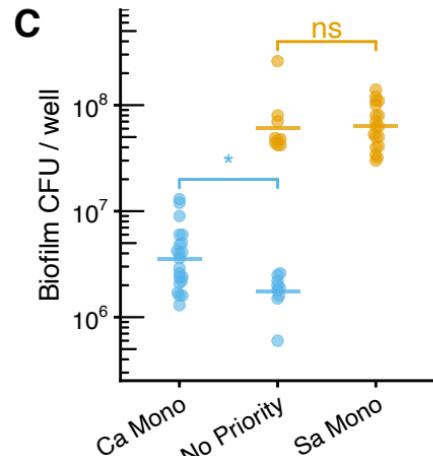
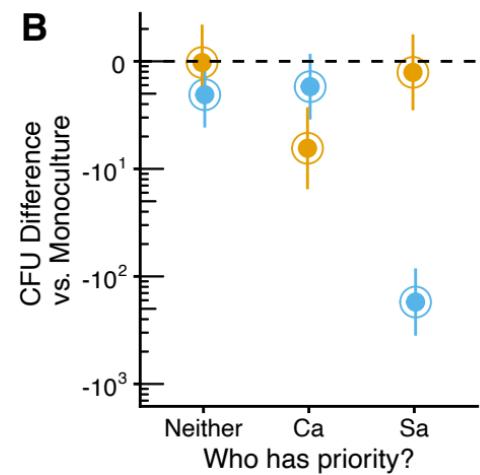
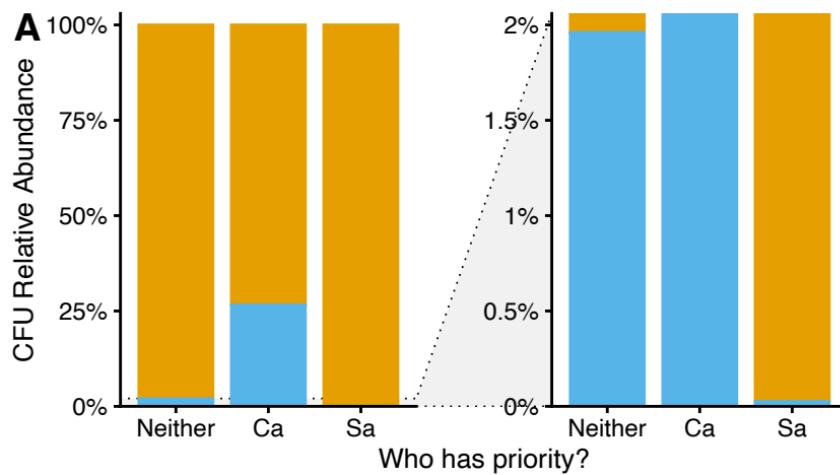
855 Scanning electron micrographs of *ex vivo* wounds at four different magnifications (100x, 500x, 2000x,
856 10000x). Fungal-bacterial biofilms were grown using both staggered and simultaneous inoculation
857 models in a subset of combinations to illustrate effects of priority and interbacterial competition.
858 Microbes were growth for up to 48 h before SEM processing in 6mm excisional wounds on 12mm
859 punch biopsies of human skin suspended in a DMEM-agarose gel at 37°C, 5% CO₂. **A)** Ca-only. **B)** Ca
860 as early colonizer and Cf as late colonizer. **C)** Ca and Cf simultaneously co-inoculated. **D)** Ca as early
861 colonizer and Cf+Sa as late colonizer. Dashed outlines represent region magnified.
862

863 **Figure 6. Ca-Cf interactions increase hyphal induction and neutrophil death.**

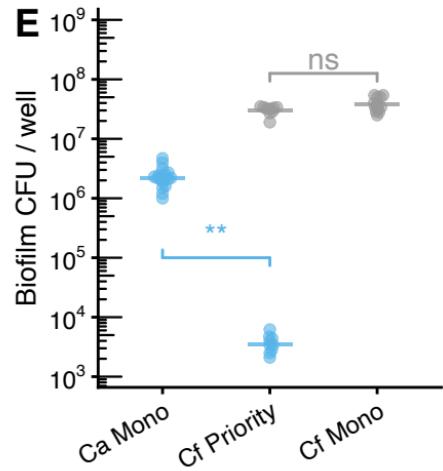
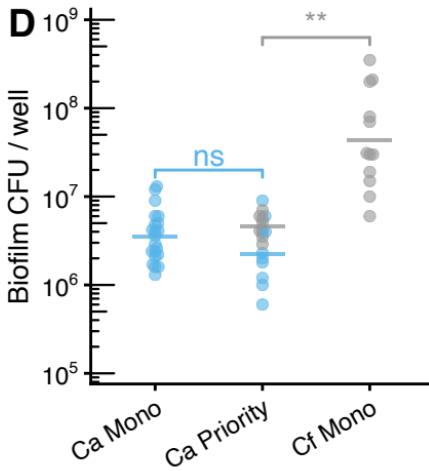
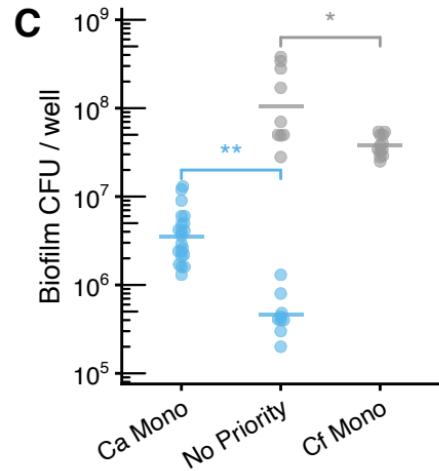
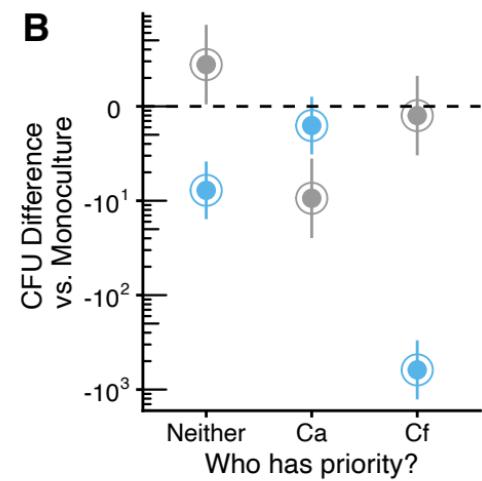
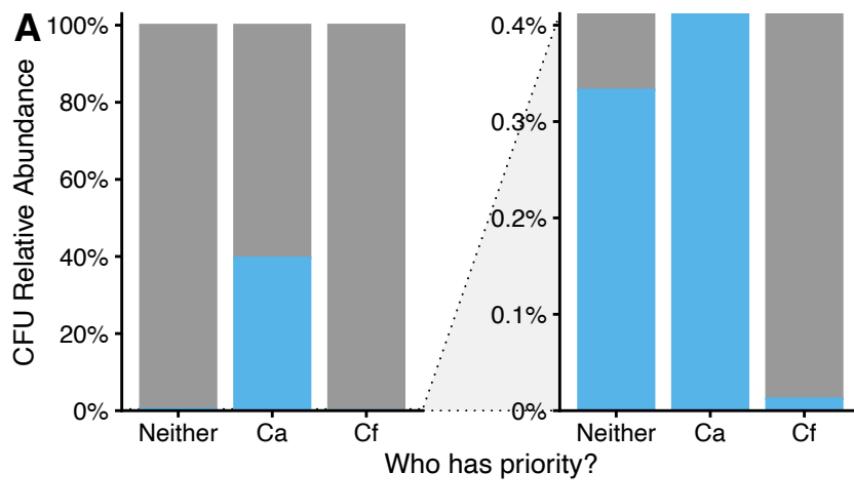
864 Mono- and co-culture biofilms of Ca and Cf were grown in RPMI-1640 media for 24 h at 37°C in
865 chambered coverslips set on a 30-degree angle to expose the biofilm edge for imaging. Ca has
866 increased hyphal biofilms when cocultured with Cf. **A)** Ca monoculture biofilm (10^5 CFU/mL seeding
867 density) presents a globular phenotype. **B)** Ca and Cf coculture biofilm (10^5 CFU/mL seeding density
868 each) develops long Ca hyphae. Black arrowheads point to examples of hyphae. Micrographs are
869 representative of at least three independent experiments. **C)** Human neutrophils were stained with

870 calcein-AM (green) and loaded onto chambered coverslips and allowed to interact with the biofilms for
871 4h. Propidium iodide (red) was then added to stain extracellular DNA and cells with permeabilized
872 membranes. Ca monoculture biofilm (10^5 CFU/mL seeding density) **D**) Cf monoculture biofilm (10^5
873 CFU/mL seeding density) **E**) Ca and Cf coculture biofilm (10^5 CFU/mL seeding density each).
874 Micrographs are representative of two independent experiments. **F**) Image quantification of red:green
875 fluorescence ratio. A Kruskal-Wallis test followed by the paired-Wilcoxon test with the Bonferroni
876 correction was used to compare between groups. * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$, **** = $P <$
877 0.0001.

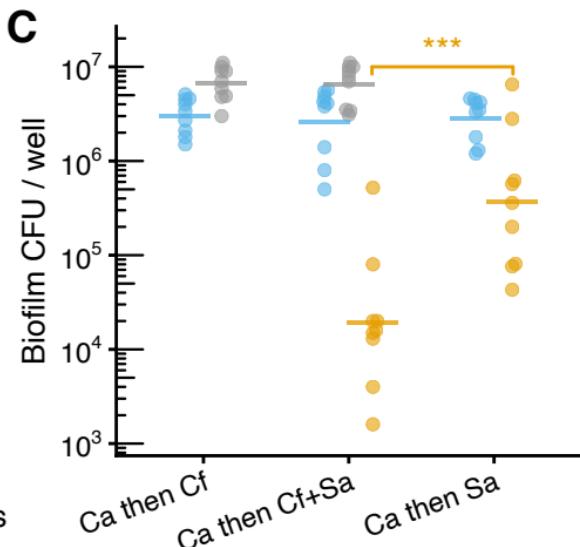
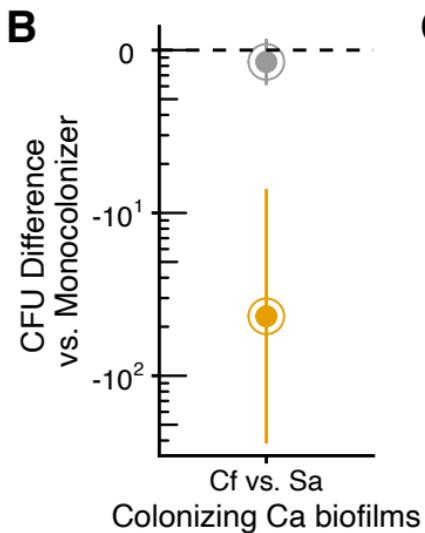
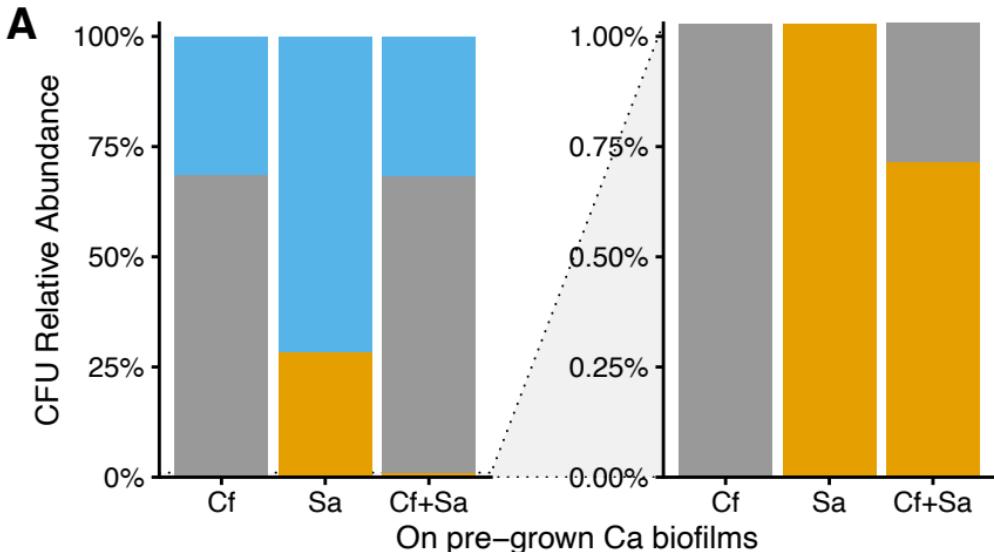
878

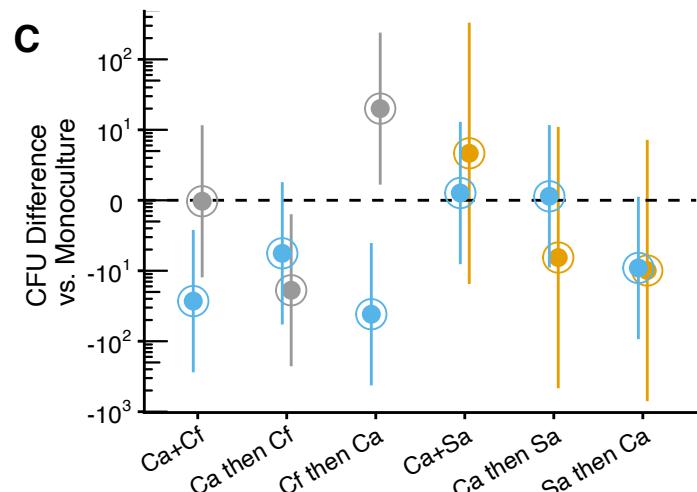
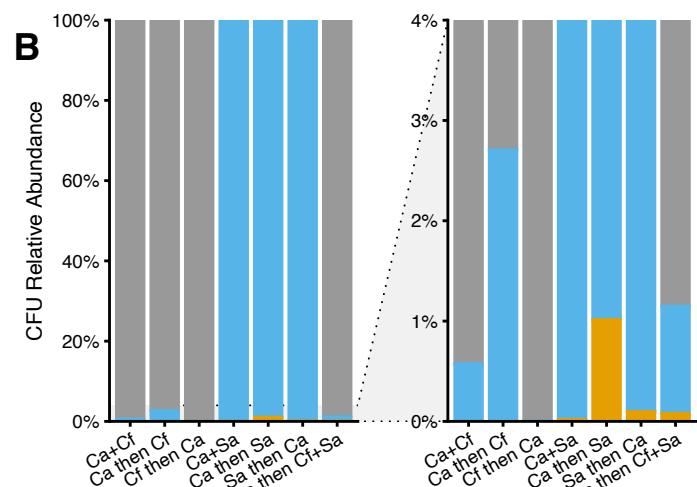
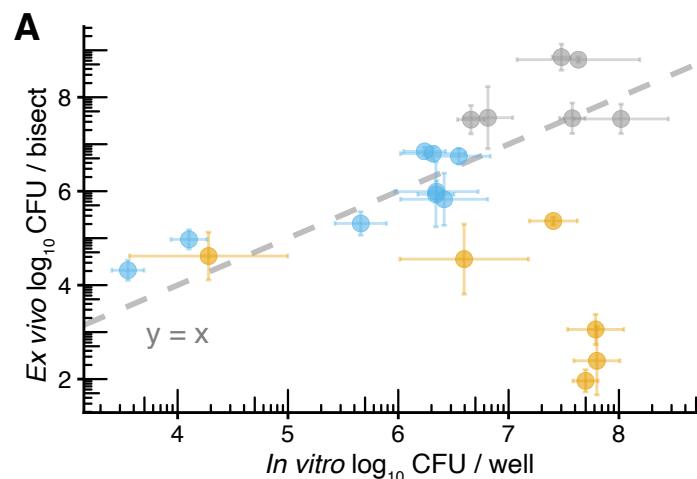





879 **Supplementary Figure 1. Ca is competitively excluded from Cf biofilms while Sa adheres to Ca**
880 **biofilms.**

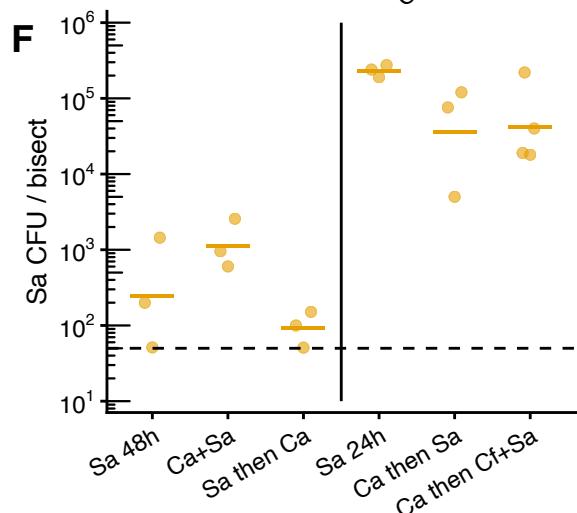
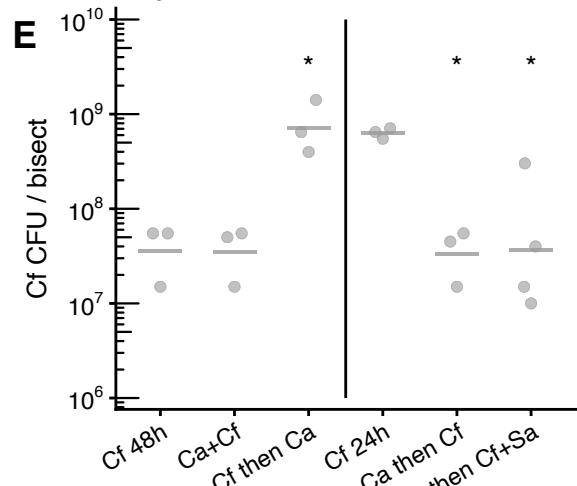
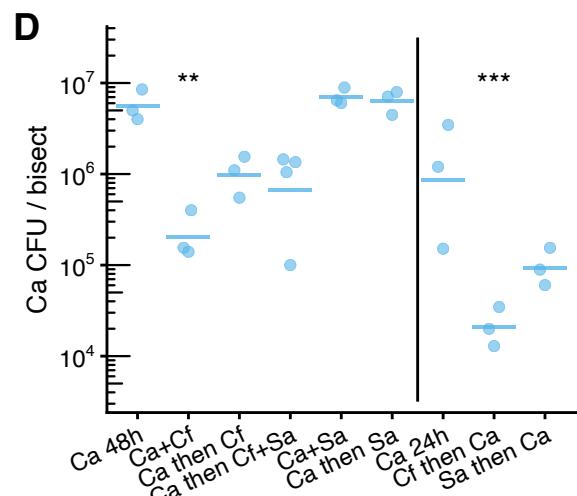
881 Scanning electron micrographs of *ex vivo* wounds at four different magnifications (100x, 500x, 2000x,
882 10000x). Fungal-bacterial biofilms were grown using both staggered and simultaneous inoculation
883 models in a subset of combinations to illustrate effects of priority and interbacterial competition.
884 Microbes were growth for up to 48h before SEM processing in 6mm excisional wounds on 12mm punch
885 biopsies of human skin suspended in a DMEM-agarose gel at 37°C, 5% CO₂. **A**) Cf only. **B**) Cf as early
886 colonizer and Ca as late colonizer **C**) Sa only **D**) Ca as early colonizer and Sa as late colonizer.
887 Dashed outlines represent region magnified.

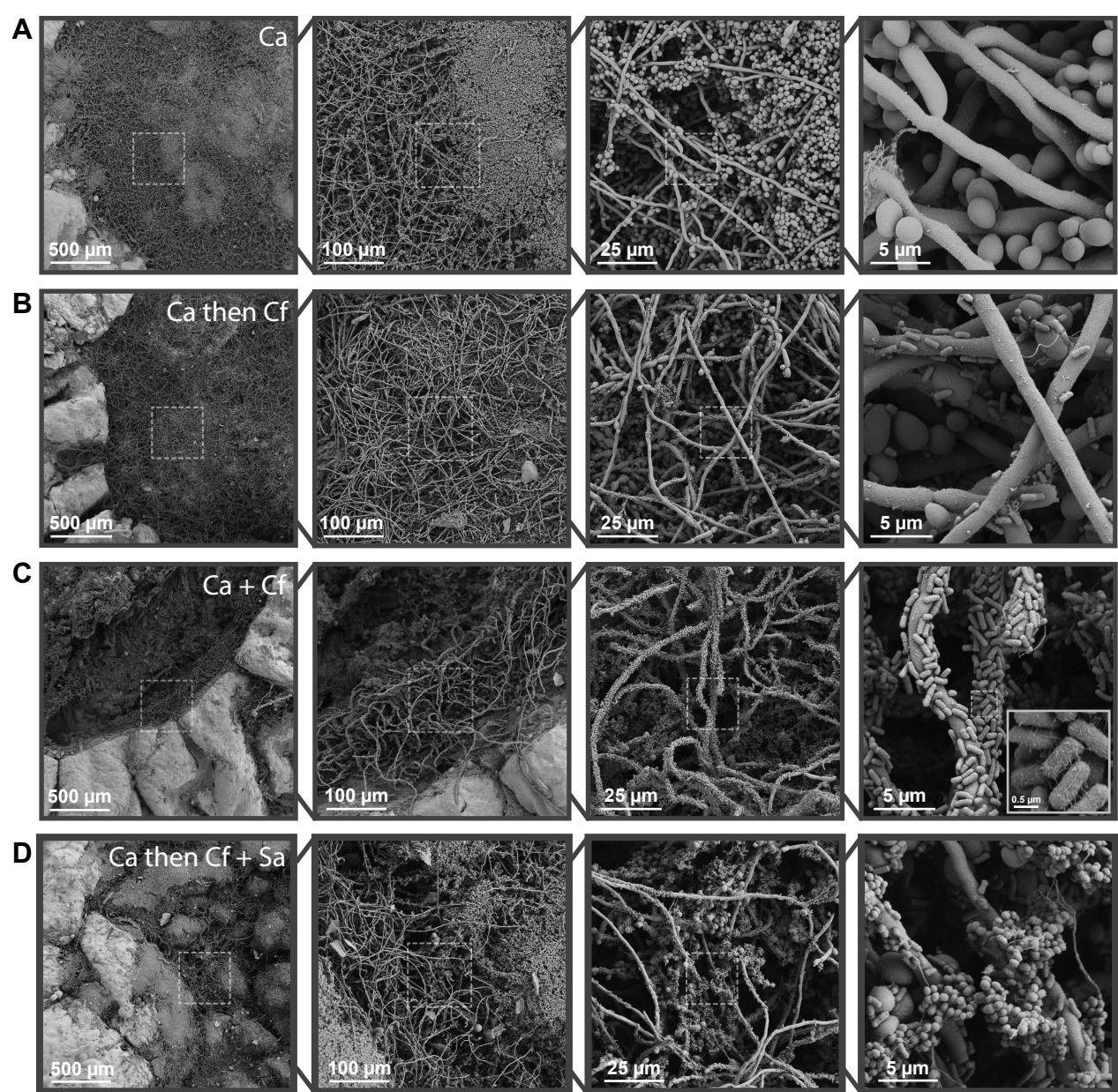





888

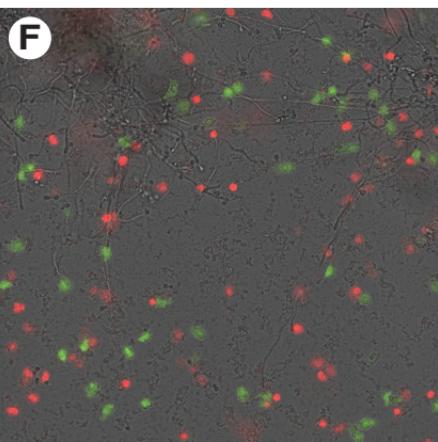
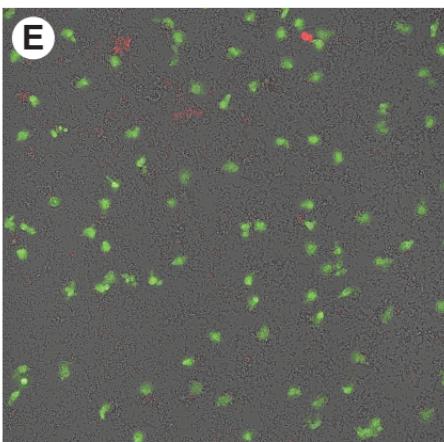
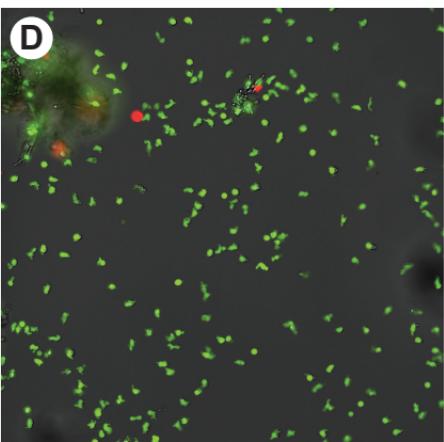
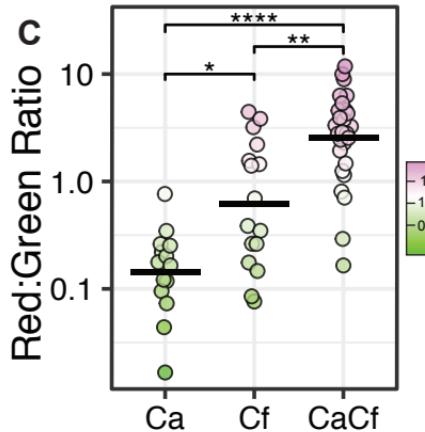
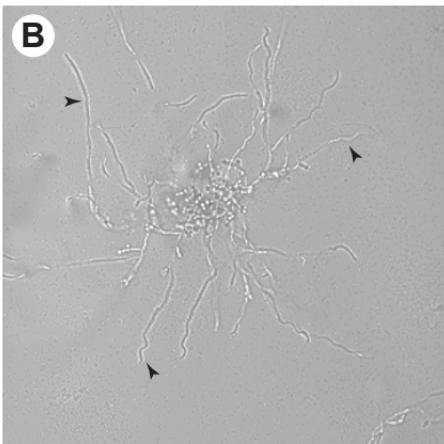
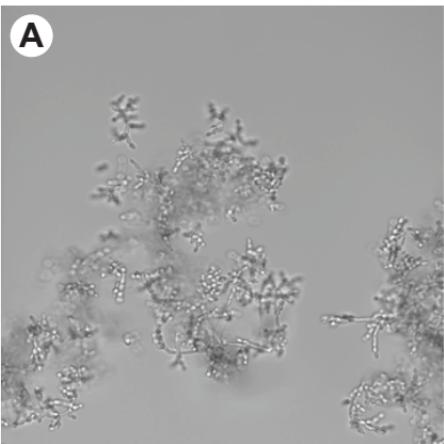
889 **Supplementary Figure 2. Cf-induced Ca agglutination is mannose-sensitive.**




890 Dense suspensions ($OD_{600nm} \sim 10-15$) of Ca and Cf in PBS were combined in a 1:1:1 ratio with PBS,
891 500 mM D-mannose, or D-galactose and shaken at 175 rpm for 15 m to induce agglutination. For
892 reversal, agglutinated Ca and Cf were combined with 500 mM D-mannose or D-galactose in a 1:1 ratio
893 and vortexed to mix. Phase contrast micrographs of fungal-bacterial suspensions at 40x magnification
894 showing agglutination of Ca yeast cells by Cf that can be both inhibited and reversed by the addition of
895 mannose but not galactose. Black arrowheads point to examples of agglutinated Ca clusters.




C. albicans *S. aureus*




C. albicans C. freundii









■ *C. albicans* ■ *C. freundii* ■ *S. aureus*

■ *C. albicans* ■ *C. freundii* ■ *S. aureus*

