

2

TITLE

4

Many ways to make darker flies: Intra- and inter-specific variation in *Drosophila* body
6 pigmentation components

8 AUTHORS

10 Elvira Lafuente^{1,2} *, Filipa Alves¹, Jessica G King^{1,3}, Carolina M Peralta^{1,4}, Patrícia
Beldade^{1,5*}

12

AFFILIATIONS

14

¹ Instituto Gulbenkian de Ciência, Oeiras, Portugal

16 ² Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic
Ecology, Dübendorf, Switzerland

18 ³ Institute of Evolutionary Biology, School of Biological Sciences, University of
Edinburgh, United Kingdom

20 ⁴ Max Planck Institute for Evolutionary Biology, Plön, Germany

22 ⁵ Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences,
University of Lisbon, Portugal

24 CORRESPONDING AUTHORS

26 Email: elafuentemaz@gmail.com; pbeldade@fc.ul.pt

28

ABSTRACT

30

Body pigmentation is an evolutionarily diversified and ecologically relevant trait that
32 shows variation within and between species, and important roles in animal survival and
reproduction. Insect pigmentation, in particular, provides some of the most compelling
34 examples of adaptive evolution and its ecological and genetic bases. Yet, while
pigmentation includes multiple aspects of color and color pattern that may vary more or
36 less independently, its study frequently focuses on one single aspect. Here, we develop
a method to quantify color and color pattern in *Drosophila* body pigmentation,
38 decomposing thorax and abdominal pigmentation into distinct measurable traits, and we
quantify different sources of variation in those traits. For each body part, we measured
40 overall darkness, as well as four other pigmentation properties distinguishing between
background color and color of the darker pattern elements that decorate the two body
42 parts. By focusing on two standard *D. melanogaster* laboratory populations, we show
that pigmentation components vary and co-vary in different manners depending on sex,
44 genetic background, and developmental temperature. By studying three natural
populations of *D. melanogaster* along a latitudinal cline and five other *Drosophila*
46 species, we then show that evolution of lighter or darker bodies can be achieved by
changing distinct component traits. Our study underscores the value of detailed
48 phenotyping for a better understanding of phenotypic variation and diversification, and
the ecological pressures and genetic mechanisms underlying them.

50

KEYWORDS

52

quantitative phenotyping; decomposing phenotypes; developmental plasticity; thermal
54 plasticity; genetic and environmental variance

56 INTRODUCTION

58 Diversity in body coloration provides some of the most compelling examples of
59 adaptive evolution. Insect body coloration, in particular, includes text book cases such
60 as industrial melanism (e.g. van't Hof et al. 2011; Cook and Saccheri 2013), mimicry
61 (e.g. Mallet & Joron 1999; Nadeau 2016), and clinal variation (e.g. Bastide et al. 2014;
62 Endler et al. 2016). Studies in different species have illustrated the ecological
63 significance of variation in body pigmentation, including visual communication
64 between individuals of the same (e.g. mate attraction and mate choice; e.g. Wiernasz
65 1995; Guillermo-Ferreira et al. 2014) or different species (e.g. predator avoidance via
66 camouflage or aposematism; e.g. Reichstein et al. 1968; Futahashi and Fujiwara 2008;
67 van Bergen and Beldade 2019), as well as thermoregulation (e.g. Rajpurohit et al. 2008;
68 Sibilia et al. 2018). Moreover, insect pigmentation is tightly associated with various
69 other traits that are closely related to fitness (see Wittkopp and Beldade 2009;
70 Mckinnon and Pierotti 2010). The diversity of insect pigmentation across species,
71 populations, sexes, and individuals of the same sex has been the focus of many eco-evo-
72 devo studies, providing key insight into the genetic basis of variation in pigmentation
73 (e.g. Pool and Aquadro 2007; Futahashi and Fujiwara 2008; Miyagi et al. 2015; Massey
74 and Wittkopp 2016; Zhang et al. 2017; Orteu and Jiggins 2020) and exploring important
75 phenomena such as developmental plasticity (e.g. Solensky and Larkin 2009; Shearer et
76 al. 2016; Monteiro et al. 2020), the origin of novelty (e.g. Shirai et al. 2012; Vargas-
77 Lowman et al. 2019), and evolutionary constraints (Beldade et al. 2002b; Allen et al.
78 2008).

80 Variation in body pigmentation can arise from differences in color and/or in the
81 spatial arrangement of colors into specific patterns. These two aspects rely on largely
82 distinct classes of genes involved in pigmentation development: those encoding the
83 enzymes responsible for pigment synthesis, and those encoding the transcription factors
84 regulating those enzymes' expression at the appropriate time and place (see True 2003;
85 Wittkopp et al. 2003; Wittkopp and Beldade 2009). Changes in genes associated with
86 each of these steps can result in changes in pigmentation between individuals and
87 between body parts (e.g. Wittkopp et al. 2002). In this respect, body pigmentation can
88 be thought of as a multi-dimensional trait, made up of several components representing
89 aspects of actual color and of color pattern, and which might develop and evolve more

90 or less independently. This has been explored in studies focusing on specific color
91 pattern elements, including on butterfly wings (e.g. Nijhout 2001; Monteiro 2015;
92 Beldade and Peralta 2017), as well as on fly wings and abdomens (e.g. Jeong et al.
93 2006; Werner et al. 2010). Yet, rarely do studies of body pigmentation variation
94 combine quantitative analysis of multiple color and color pattern traits.

96 Studies of *Drosophila* body and wing pigmentation have provided very valuable
97 insight about the genetic and environmental bases of variation between species,
98 populations of the same species, and individuals of the same population (e.g. Hollocher
100 et al. 2000; Wittkopp et al. 2003; Gibert et al. 2007; Pool and Aquadro 2007; Massey
101 and Wittkopp 2016). These studies characterized effects of environmental factors, such
102 as nutrition (e.g. Shakhmantir et al. 2014) and temperature (e.g. David et al. 1990), as
103 well as allelic variants of both subtle (e.g. Bastide et al. 2013) and large phenotypic
104 effect (e.g. Carbone et al. 2005). Variation in *Drosophila* pigmentation has been
105 associated to clinal and seasonal variation in desiccation resistance, thermo-regulation,
106 and UV protection (e.g. Rajpurohit et al. 2008; Matute and Harris 2013; Parkash et al.
107 2014), and shown to correlate with other traits, such as reproductive success, behavior,
108 and immunity (e.g. Dombeck and Jaenike 2004; Takahashi 2013; Massey et al. 2019).
109 While studies of *Drosophila* pigmentation have included focus on different body parts
110 (e.g. trident on thorax, e.g. David et al. 1985; melanic patches on wings, e.g. True et al.
111 1999; dark bands of abdominal segments, e.g. Dembeck et al. 2015), these studies
112 typically analyze single and often qualitative properties of pigmentation (but see e.g.
113 Saleh Ziabari and Shingleton 2017). Indeed, the detail in quantitative phenotyping of
114 body pigmentation does not match the sophistication of the analysis of its genetic and
115 developmental bases. This is not unique to *Drosophila* pigmentation; the need for more
116 attention to be given to phenotyping has been called for repeatedly (Gerlai 2002; Houle
117 et al. 2010; Kühl and Burghardt 2013; Deans et al. 2015; Laughlin and Messier 2015).

118 Here, we quantify various traits encompassing aspects of both color and color
119 pattern of abdomen and thorax pigmentation in *Drosophila* adults. We investigate how
120 each of these pigmentation components (or traits) and the associations between them
121 differ between genotypes and developmental temperatures, within and across species.
122 We show that different pigmentation components can vary rather independently, and
123 that fly bodies can be made lighter or darker by changing different pigmentation

124 components. We discuss our results in the context of the potential for evolutionary
diversification of pigmentation.

126

128

RESULTS

130

To investigate patterns and sources of variation in *Drosophila* body pigmentation, we
132 developed a quantitative method to define five pigmentation traits that include aspects
134 of color and color pattern (see Figure S1 and Materials and Methods). We focused on
136 the dorsal surface of thoraxes and abdomens, characterized for having different types of
138 dark “pattern elements” on a lighter “background” color: a trident at the center of the
140 thorax and posterior bands on each segment of the abdomen. Flies were imaged under a
142 binocular scope in controlled light conditions. For each body part, we defined a transect
144 between an anterior and a posterior landmark and collected color information for each
146 pixel along these transects (Figure 1A, Figure S1). Using that information, we
148 quantified a series of traits for each body part: overall darkness (Odk), relative length of
150 transect occupied by the darker “ornamental” pattern (Pat), actual color of both
background (Cbk) and “ornamental” pattern elements (Cpa), and the distance in RGB
space between the darkest and the lightest that corresponds to the range of color
variation (Ran). We investigated how these pigmentation components vary and co-vary
between sexes and between rearing temperatures in *D. melanogaster* representing
152 standard laboratory strains, and natural populations from different geographical
locations, as well as in five additional *Drosophila* species. For each dataset (*D. melanogaster*
154 laboratory strains, *D. melanogaster* clinal populations, and *Drosophila*
species), the multivariate multiple regression analyses showed that pigmentation
156 differed significantly between strains/genotypes/species, sexes, and temperatures, with
effects that depended on body part (Table S1).

158

Variation in body pigmentation in *D. melanogaster* laboratory populations

160

We reared flies from two common laboratory genetic backgrounds (or strains) of *D. melanogaster*, Oregon R (OreR) and Canton S (CanS), at either 17°C or 28°C to assess
162 thermal plasticity and sexual dimorphism in our pigmentation traits (Figure 1, 2, Figure
S2, Table S2). We confirmed known patterns of thermal plasticity and sexual
dimorphism for body pigmentation, with flies reared at lower temperature being
generally darker than those reared at higher temperature, and males being darker than
females (Figure 1B, 2A, Figure S2). However, we found differences between strains
and body parts in the extent, and sometimes the direction of both thermal plasticity and

sexual dimorphism for our pigmentation traits (Figure 1B, 2A, Figure S2, Table S2), as

164 well as for the correlations between them (Figure 3A).

166 For overall darkness (Odk; dot plots in Figure 2A), flies reared at 17°C were
168 generally darker than those from 28°C, with the exception of CanS males (where
170 differences were not significant in either body part), and OreR females (where
172 abdomens were darker in flies from 28°C). The abdomens were lighter in females
174 relative to males (except for CanS from 17°C), but the thoraxes were lighter in males
176 relative to females (except for CanS from 28°C and OreR from 17°C). We also
178 observed differences between sexes and temperatures for the other pigmentation traits
180 (Pat, Ran, Cbk, and Cpa; radar plots in Figure 2A; dot plots in Figure S2, Table S2),
182 which depended on body part. While for the thorax the most striking differences were
184 seen in Ran (for females between temperatures), for the abdomen they were seen for Pat
186 (distinguishing females from 28°C from others) and Ran (extreme for OreR females)
188 (Figure S2). Variation was only loosely correlated between traits, with few significant
190 correlations, which differed between genetic backgrounds, sexes, and rearing
192 temperatures. Overall, correlations between traits were weaker across body parts
194 relative to within body parts, and in males relative to females (Figure 3A).

182 For those pigmentation traits found to be thermally plastic (i.e. significant

184 differences between individuals reared at different temperatures; cf. Figure S2, Table

186 S2), we investigated which stages of development were thermally responsive. To do so,

188 we compared phenotypes between individuals (specifically, female abdomens) differing

190 in temperature only for specific developmental time windows (Figure 3B, Figure S3,

192 Table S3). We tested nine thermal regimes (i.e. treatments), including three with

194 constant temperatures (whole development at 17°C, 23°C, or 28°C) and six where most

196 of the development took place at 23°C and only one specific stage (either late larval,

198 early pupal, or late pupal) took place at 17°C or at 28°C. Differences between constant

200 temperatures (T17, T23, and T28 treatments), revealed thermal reaction norms, i.e. the

202 representation of phenotype as a function of temperature (see Schlichting and Pigliucci

204 1998), of different shapes for different pigmentation components: T23 phenotype

206 intermediate between T17 and T28 (Ran in OreR; Figure 3B), equal to one of the

208 extreme temperatures (Pat; Figure 3B), or more extreme than both T17 and T28 (Odk;

196 Figure 3B). The period when exposure to a different temperature significantly affected phenotype also differed between traits and genetic backgrounds (Figure 3B, Figure S3).

198

200 **Body pigmentation differences between *D. melanogaster* natural populations and *Drosophila* species**

202 We quantified variation in pigmentation components in wild-caught populations sampled along a latitudinal cline in Europe: Finland, Austria, and Spain (samples from 204 the *DrosEU Consortium*; <http://droseu.net/>). We analyzed pigmentation traits in females from five genotypes (isofemale lines) established from each of the three geographical 206 locations, reared at either 17°C or 28°C. The analysis for each pigmentation component revealed differences between traits in their response to the various explanatory variables 208 and their interactions (Figure 1C, 2B, Table S4). Geographical populations differed in overall darkness (Odk; dot plots in Figure 2B) and in color (both Cbk and Cpa) for the 210 abdomen, but not the thorax (Figure 2B, Figure S5, Table S4). For the thorax, only Ran and Pat differed between locations (Figure 2B, Table S4). Most pigmentation traits 212 (except thorax color; Cpa and Cbk) were thermally plastic, with darker flies for development at 17°C relative to 28°C (Figure 1C, 2B, Figure S4). The Northern- and 214 Southern-most populations (i.e. Finland and Spain, respectively) did not necessarily show the most extreme phenotypes, neither in terms of overall darkness nor in the 216 extent of plasticity therein (Figure 2B, Figure S5). We also found significant differences between isofemale genotypes (and their plasticity) within each geographical location 218 (Figure 2B, Table S4).

220 Finally, we quantified pigmentation traits in flies from five additional *Drosophila* species (two genetic backgrounds for *D. simulans*, and one genetic background for all 222 other species or sub-species: *D. malerkotliana*, *D. repleta*, *D. mojavensis* *baja*, *D. mojavensis* *mojavensis*) reared at either 17°C or 28°C (Figure 1D, 2C). We found 224 differences between species in extent and direction of sexual dimorphism and of thermal plasticity for the different pigmentation traits (Figure 1D, 2C, Figure S2B, 226 Table S5). For instance, for Odk (dot plots in Figure 2C), while *D. malerkotliana* showed no differences between temperatures and clear differences between sexes, *D. simulans* had very high thermal plasticity but reduced sexual dimorphism (no 228 differences between females and males reared at 17°C). For the other pigmentation

230 traits (radar plots in Figure 2C and dot plots in Figure S2B), larger differences between
231 sexes and/or temperatures were observed for Pat and/or Ran, and less for actual colors
232 (Cpa and Cbk).

234 **DISCUSSION**

236 We decomposed *Drosophila* body pigmentation into different quantitative traits,
238 including overall darkness (Odk), and traits reflecting properties of color and color
240 pattern (Pat, Ran, Cbk, and Cpa) of both thoraxes and abdomens. We showed
242 differences in trait values, as well as in the extent and direction of thermal plasticity and
244 of sexual dimorphism for laboratory and natural populations of *D. melanogaster* and
across *Drosophila* species (Figures 1, 2). Different traits, corresponding to different
properties of body pigmentation, behaved in a largely independent manner, which was
also reflected in low levels of correlations between traits and in differences in the period
of development during which traits are thermally responsive (Figure 3).

246 *Drosophila* pigmentation has been the focus of various studies exploring aspects
of its ecology, development and evolution (e.g. Kopp et al. 2000; Williams et al. 2008;
248 Matute and Harris 2013; Shearer et al. 2016; Gibert et al. 2017). This has provided great
insight about the genetic basis and ecological significance of variation, across
250 temporally (e.g. seasonal variation) or geographically (e.g. clinal variation) distinct
populations (e.g. Parkash et al. n.d.; Hollocher et al. 2000b; Rajpurohit et al. 2008), as
252 well as across species (Hollocher et al. 2000a,b). Many of those studies focused on
specific pigmentation elements in particular species, and often used qualitative
254 assessments of pigmentation variation or presence/absence of specific pattern elements
(e.g. Hollocher et al. 2000; David et al. 2002). In *D. melanogaster* for instance, most
256 work has focused on abdominal pigmentation, and specifically on the dark bands of the
posterior-most segments, which is sexually dimorphic (males are generally darker than
258 females; e.g. Kopp et al. 2000) and thermally plastic (flies from lower developmental
temperatures are generally darker than flies from higher developmental temperatures;
260 e.g. David et al. 1990; Gibert et al. 2007, 2009). We extended the analysis of body
pigmentation to quantifying different properties of both abdomen and thorax
262 pigmentation in *D. melanogaster* and other *Drosophila* species. This more detailed
analysis ultimately painted a more complex picture of variation in *Drosophila* body
264 pigmentation. We did not, for instance, always find that males were darker than
females, or that flies reared at lower temperatures were darker than those from higher
266 temperatures, but rather, we found trait specificities in how pigmentation varied
between sexes and between developmental temperatures. This was true for overall

268 darkness (Odk) of the abdomen, the trait that would presumably be more similar to
269 previous (largely qualitative) characterizations of abdominal pigmentation (e.g. David et
270 al. 1990; Hollocher et al. 2000a), but also for other properties of body pigmentation,
271 including actual color of background and pattern elements (i.e. abdominal bands and
272 thoracic trident). Moreover, we also showed that pigmentation components, as well as
273 sexual dimorphism and thermal plasticity therein, vary greatly between species,
274 genotypes, and body parts. The mechanisms underlying such intra- and inter-specific
275 variation in different traits, as well as the trait-specific responses to temperature, remain
276 to be explored and might involve differences in the environmental sensitivities of the
277 regulatory regions (e.g. enhancers) controlling pigmentation-related genes (e.g. De
278 Castro et al. 2018).

280 Our results also highlight that the different components vary largely
281 independently, with only weak correlations between traits (Figure 3A) and differences
282 between traits in the extent and direction of thermal plasticity and of sexual dimorphism
283 (Figure 1, 2). Pigmentation components were shown to even differ in the period of
284 development in which they are responsive to temperature (Figure 3B). Similar
285 environmental effects on trait associations have been described previously; for instance,
286 cold temperature triggered a shift in the sign of the correlation between body size and
287 longevity in *D. melanogaster* (Norry and Loeschke 2002). Differing correlations
288 between body parts (or regions within a body part) have also been identified for *D. melanogaster*
289 pigmentation (e.g. Gibert et al. 2000; Bastide et al. 2014), with the extent
290 of genetic correlations decreasing with increasing distance between body segments
291 (Gibert et al. 2000). Ultimately, the dependency of trait associations on genetic and
292 environmental factors has the potential to influence adaptation (e.g. Marquez &
293 Knowles 2007; Manenti et al. 2016), as evolutionary change can result from both direct
294 and correlated responses to selection (e.g. Rajpurohit and Gibbs 2012). Altogether, our
295 results suggest a large degree of developmental and evolutionary independence between
296 pigmentation components, which could facilitate the diversification of body coloration
297 in *Drosophila*.

298

299 Studies exploring the ecological conditions driving the evolution of melanism in
300 *Drosophila* have documented correlations between body pigmentation and several eco-
301 geographic variables (e.g. latitude, altitude, temperature, humidity) (e.g. Rajpurohit et

302 al. 2008; Gibert et al. 2016; Shearer et al. 2016). Clinal variation in pigmentation, for
303 instance, has been shown for thoracic trident (e.g. David et al. 1985; Telonis-Scott et al.
304 2011) and for abdominal pigmentation (e.g. Pool and Aquadro 2007; Das 2009).
305 Generally, darker phenotypes in colder environments (e.g. at high latitudes or altitudes)
306 have been hypothesized to allow flies to better absorb solar radiation (c.f. thermal
307 budget or thermal melanism hypothesis; Trullas et al. 2007; Clusella-Trullas et al.
308 2008), to increase desiccation resistance (e.g. Parkash et al. 2008), and/or to provide
309 protection against UV radiation (e.g. Bastide et al. 2014). Plasticity, on the other hand,
310 is expected to be greater in environments that are more variable (Lande 2014), such as
311 those with larger seasonal fluctuations, often occurring at higher latitudes. However, our
312 analysis of the pigmentation patterns from *D. melanogaster* populations collected along
313 a European latitude cline (Finland, Austria, Spain) did not always revealed darker
314 pigmentation nor higher plasticity in the Northern-most population (i.e. Finland), which
315 may indicate that other environmental parameters and ecological conditions not
316 considered here could account for the differences between populations in the different
317 pigmentation components. Having only three populations from three latitudes may also
318 be limiting in terms of assessing latitudinal patterns in pigmentation and plasticity
319 therein.

320

321 In terms of a function in thermo-regulation favoring darker flies in cooler
322 environments (David et al. 1985; Hollocher et al. 2000a; Wittkopp et al. 2011; Matute
323 and Harris 2013; Shearer et al. 2016), we could expect our trait overall darkness (Odk)
324 to be the most relevant trait. Our analyses revealed that flies can become overall darker
325 (higher Odk) by changing actual colors of background or of pattern elements (Cbk and
326 Cpa, respectively) or the proportion of the abdomen/thorax length covered with the
327 darker bands/trident (Pat). For instance, males of CanS reared at 17°C and 28°C, show
328 the same overall darkness (Odk), but differ in what pigmentation components make that
329 up; Odk is mostly determined by color components at 17°C and by color pattern
330 components at 28°C (i.e. Cpa and Cbk are lower, while Pat and Ran are higher at 17°C
331 than at 28°C). It is unclear whether these traits are mere components of Odk or are
332 themselves under direct natural selection.

334

Variation in pigmentation between body parts, individuals, populations, and species can be caused by differences in actual color and/or in how colors are spatially organized to make up color patterns (Wittkopp and Beldade 2009; Nijhout 2010). However, seldom do studies of animal pigmentation consider and quantify distinct pigmentation component traits, and the extent to which they might be differently affected by genetic and/or environmental variation. The increased attention to studying the mechanisms underlying phenotypic variation resulted in great detail and sophistication in the characterization of its genetic underpinnings. However, the detail in describing and quantifying phenotypes has lagged behind. The lack of quantitative methods for phenotyping (see Gerlai 2002; Houle et al. 2010) can result in an oversimplification of complex phenotypes, dismissing that those phenotypes are often made up of distinct component traits that can respond to internal and external factors in different manners (e.g. Vrieling et al. 1994; Mateus et al. 2014). We attempted to provide a better resolution of variation in *Drosophila* body color, a visually compelling example of adaptive evolution. Combining it with existing genetic resources and with access to natural variation can provide a deeper resolution of the patterns and processes underlying phenotypic variation, within and between species.

352

354 **MATERIAL AND METHODS**

356 **Fly stocks**

358 *D. melanogaster* genetic backgrounds CantonS (CanS) and OregonR (OreR) and
360 *Drosophila* species *D. simulans*, *D. malerkotliana*, *D. repleta*, *D. mojavensis baja* and
362 *D. mojavensis mojavensis* were obtained from C. Mirth's lab. *D. melanogaster*
364 populations from Finland (Akaa; 61.1, 23.52; collected in July 2015), Austria
366 (Mauternbach; 48.38, 15.57; collected in July 2016) and Spain (Tomelloso; 39.16, 3.02;
368 collected in September 2015) were obtained from E. Sucena's lab and collected by
370 members of the *European Drosophila Population Genomics Consortium (DrosEu*;
372 <http://droseu.net>). All stocks were maintained in molasses food (45 gr. molasses, 75 gr.
374 sugar, 70 gr. cornmeal, 20 gr. Yeast extract, 10 gr. Agar, 1100 ml water and 25 ml of
376 Niapagin 10%). All stocks were kept at 25°C, 12:12 light-dark cycles. For the
378 experiments, we performed over-night egg-laying from ~20 females of each stock in
380 vials with *ad libitum* molasses food. Eggs were then placed at either 17°C or 28°C
382 throughout development. We controlled the population density by keeping between 20
and 40 eggs per vial.

372

374 For the experiment of the windows of sensitivity for pigmentation, we exposed
376 developing flies to 17°C or 28°C during one window of development while they were
378 kept at 23°C for the remaining stages. We tested four different treatments at 17°C and at
380 28°C: T (flies always kept at constant temperature), L (late larval development; staging
done by using tracheal and mouth hook morphology), p (only early pupal period; from
white pupa to the onset of eye pigmentation), P (only late pupal period; from the onset
of eye pigmentation until adult eclosion).

380

382 **Phenotyping pigmentation components**

384

386 Adult flies (8-10 days after eclosion) were placed in 2 ml microcentrifuge tubes and
frozen in liquid nitrogen. The tubes were shaken immediately after submersion in liquid
nitrogen to remove wings, legs and bristles. Headless bodies of flies were then mounted
on 3% Agarose in Petri dishes, dorsal side up, and covered with water to avoid specular
reflection of light upon imaging. Images containing 10 to 20 flies were collected with a

388 LeicaDMLB2 stereoscope and a Nikon E400 camera under controlled conditions of
389 illumination and white-balance adjustment. Images were later processed with a set of
390 custom-made interactive Mathematica notebooks (Wolfram Research, Inc.,
391 Mathematica, Version 10.2, Champaign, IL, 2015) to extract pigmentation
392 measurements. For this purpose, two transects were defined on each fly, one in the
393 thorax and one in the abdomen, using morphological landmarks (as shown in Figure
394 S1). To minimize image noise, for each pixel position along the transect line we
395 calculated the mean RGB (Red, Green, Blue) values of the closest five pixels located on
396 a small perpendicular line centered on the transect. For abdominal transects, when
397 necessary, we removed the sections corresponding to the membranous tissue that
398 occasionally is visible between abdominal segments. The few transects that were drawn
399 over debris particles were excluded from the analysis, as pigmentation measurements
400 could not be accurately extracted.

402 The sequence of averaged RGB pixel values corresponding to each transect was
403 then used to define each of the five pigmentation components as follows. For each
404 pixel, we calculated a normalized darkness value as $D_{max}-D_{bk}$, where D_{max} is the
405 largest possible Euclidean distance between two colors in the RGB color space (in this
406 case $D_{max}=\sqrt{3}$), and D_{bk} is the distance of the pixel's color coordinates to the color
407 black ($R=0$, $G=0$, $B=0$). Overall darkness (O_{dk}) was calculated as the sum of the
408 normalized darkness values for each pixel divided by the number of pixels in the
409 transect. Taking the sequence of normalized darkness values along a transect, we
410 estimated its two enveloping lines (blue and green lines in Figure S1A) by calculating
411 the baselines of the original and negated values using the Statistics-sensitive Non-linear
412 Iterative Peak-clipping (SNIP) algorithm (Ryan et al. 1988). The median line of this
413 envelope (red line in Figure S1A) was then used to separate the transect pixels into two
414 clusters, where the pixels above or below this line correspond, respectively, to the
415 pattern element (trident in the thorax and darker bands in the abdomen) or to the
416 background. Pattern (Pat) was calculated as the proportion of pixels corresponding to
417 the pattern element relative to the transect length. Color of the pattern element (C_{pa}) is
418 the angle defined in the RGB color space between the best-fitted line going through the
419 color coordinates of the pixels in the transect that correspond to the pattern element
420 (trident and/or darker bands) in the transect and the gray vector (the black to white
diagonal in the RGB color space). Similarly, color of the background (C_{bk}) was

422 calculated as the angle between the best-fitted line that goes through the color
423 coordinates of the background pixels in the transect and the gray vector. Pixels
424 corresponding to pattern element and/or background were defined by grouping all RGB
425 values in the transect into two clusters each containing 95% of the light or dark pixels
426 respectively. Range (Ran) was calculated as the Euclidean distance between the median
427 values of the 20 darkest and the 20 lightest pixels along the transects. The colors
428 represented in Figure 1 correspond to the mean R, mean G and mean B values for each
429 strain/species, sex, and temperature, which were calculated from Cpa for color of
430 pattern elements and from Cbk for color of the background, respectively.

432 Statistical analyses

434 All analyses were conducted in R v 3.6.2 (R Core Team 2019), using the following R
435 packages: *tidyverse* (Wickham and Henry 2020) to arrange datasets, *ggplot2* (Wickham
436 2009) to produce all plots, *lme4* (Bates et al. 2015) and *lmerTest* (Kuznetsova et al.
437 2017) to perform linear mixed-effects models, *corrplot* (Taiyun and Viliam 2017) to
438 compute correlation matrices, and *emmeans* (Lenth et al. 2018) to perform post-hoc
439 pairwise comparisons between groups. The statistical models described below are given
440 in package-specific R syntax (shown in italics).

442 Multivariate multiple regression was performed for the data on *D. melanogaster*
443 laboratory populations to test for the effect of strain, sex, temperature (fixed explanatory
444 variables), and interaction terms in all pigmentation traits by combining all traits using
445 the *cbind* function (model $lm(cbind(Odk, Pat, Ran, Cbk, Cpa) \sim Strain * Sex * Temperature)$). A similar analysis was performed for the data on *D. melanogaster* clinal
446 populations testing for the fixed effects and interactions of location, genotype (i.e.
447 isogenic line; nested within location), and temperature (model $lm(cbind(Odk, Pat, Ran, Cbk, Cpa) \sim Location * Genotype * Temperature)$), and for the *Drosophila* species,
448 testing for the fixed effects and interactions of species, strain (nested within species),
449 sex, and temperature (model $lm(cbind(Odk, Pat, Ran, Cbk, Cpa) \sim Species * Species/Strain * Sex * Temperature)$), where *Strain* corresponds to the different genetic
450 backgrounds analyzed in *D. melanogaster* (CanS and OreR) and in *D. simulans* (*D. sim*
451 *A* and *D. sim B*).

456 Linear mixed effect models were then used to test for the (fixed) effects of
457 different explanatory fixed variables (strains, genotypes or species, sex and
458 temperature) and their interactions on each of the pigmentation traits (noted as *trait* in
459 the model notations below). *Replicate* was included as random effect in the models
460 (corresponding to the $(I|Replicate)$ factor in the R syntax below). For *D. melanogaster*
461 laboratory strains: model $\text{lm}(\text{Trait} \sim \text{Sex} * \text{Temperature} + (I|Replicate))$. The same
462 model was used for all *Drosophila* species, except for *D. simulans*, where we also
463 included the factor *Strain* which corresponds to the different genetic backgrounds
464 studied in this species (*D. sim A* and *D. sim B*) (model: $\text{lm}(\text{Trait} \sim \text{Strain} * \text{Sex} * \text{Temperature} + (I|Replicate))$). For the clinal populations: model: $\text{lm}(\text{Trait} \sim \text{Location} * \text{Location/Genotype} * \text{Temperature} + (I|Replicate))$. For all the aforementioned mixed
465 models, we used Satterthwaite's method (via *anova* function in *lmerTest* package;
466 Kuznetsova et al. 2017) for approximating degrees of freedom and estimating F-
467 statistics and P-values. For the data on the sensitive stages of development, we used
468 linear effect models to test for the effect and interaction of strain and thermal regime
469 (model: $\text{lm}(\text{Trait} \sim \text{Strain} * \text{Regime})$).

472

473 We used *post-hoc* pairwise comparisons (Tukey's honest significant differences)
474 to identify differences between strains, sexes, temperatures and/or thermal regimes.
475 Pearson's correlations were used to check correlations between traits and across
476 temperatures.

478

DATA ACCESIBILITY

480

482 All data will be made publicly available in Dryad Digital Repository upon acceptance of
the manuscript.

484 AUTHOR CONTRIBUTIONS

486 E.L. and P.B. conceived and designed the study. E.L., J.G.K., and C.M.P. performed the
experiments. F.A. developed the quantitative method for color pattern analysis and the
488 respective computational tools. E.L. analyzed the data. E.L. and P.B. wrote the
manuscript.

490

492 ACKNOWLEDGMENTS

494

496 We are grateful to Emanuel Fernandes for collecting preliminary data on the
developmental windows of thermal sensitivity, to Christen Mirth for sharing the
Drosophila species, to Élio Sucena and the *Drosophila Population Genomics*
498 Consortium (*DrosEU*; <http://droseu.net/>), funded by a Special Topic Networks (STN)
grant from the European Society for Evolutionary Biology (ESEB), for access to the *D.
melanogaster* European populations. We thank Gabriel Martins and the Imaging
Facility at the IGC for support in setting up the image acquisition system.

500

502 CONFLICT OF INTEREST STATEMENT

504

506 We declare that no conflict of interest exists. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

508 FUNDING

510 512 Financial support for this work was provided by the Portuguese science funding agency,
Fundação para a Ciência e Tecnologia, FCT: PhD fellowship to E.L.
(SFRH/BD/52171/2013), and research grants to P.B. (PTDC/BIA-EVF/0017/2014 and
PTDC/BEX-BID/5340/2014).

REFERENCES

514

Allen, C. E., P. Beldade, B. J. Zwaan, P. M. Brakefield, D. Ramos, B. J. Zwaan, and L. Mueller. 2008. Differences in the selection response of serially repeated color pattern characters: Standing variation, development, and evolution. *BMC Evol. Biol.* 8:94. BioMed Central.

Bastide, H., A. Betancourt, V. Nolte, R. Tobler, P. Stöbe, A. Futschik, and C. Schlötterer. 2013. A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in *Drosophila melanogaster*. *PLoS Genet.* 9:e1003534. Public Library of Science.

Bastide, H., A. Yassin, E. J. Johanning, and J. E. Pool. 2014. Pigmentation in *Drosophila melanogaster* reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. *BMC Evol. Biol.* 14:179. BioMed Central.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* 67:1–48.

Beldade, P., P. M. Brakefield, and A. D. Long. 2002a. Contribution of Distal-less to quantitative variation in butterfly eyespots. *Nature* 415:315–8.

Beldade, P., K. Koops, and P. M. Brakefield. 2002b. Modularity, individuality, and evo-devo in butterfly wings. *Proc. Natl. Acad. Sci. U. S. A.* 99:14262–7. National Academy of Sciences.

Beldade, P., and C. M. Peralta. 2017. Developmental and evolutionary mechanisms shaping butterfly eyespots. *Curr. Opin. insect Sci.* 19:22–29.

Carbone, M. A., A. Llopart, M. deAngelis, J. A. Coyne, and T. F. C. Mackay. 2005. Quantitative Trait Loci Affecting the Difference in Pigmentation Between *Drosophila yakuba* and *D. santomea*. *Genetics* 171:211–225.

Clusella-Trullas, S., J. S. Terblanche, T. M. Blackburn, and S. L. Chown. 2008. Testing the thermal melanism hypothesis: a macrophysiological approach. *Funct. Ecol.* 22:232–238. Blackwell Publishing Ltd.

Cook, L. M., and I. J. Saccheri. 2013. The peppered moth and industrial melanism: evolution of a natural selection case study. *Heredity (Edinb)*. 110:207–212.

Das, A. 2009. Abdominal pigmentation in *Drosophila melanogaster* females from natural Indian populations. *J. Zool. Syst. Evol. Res.* 33:84–87. John Wiley & Sons, Ltd.

548 David, J., P. Capy, V. Payant, and S. Tsakas. 1985. Thoracic trident pigmentation in
Drosophila melanogaster: Differentiation of geographical populations. *Genet. Sel. Evol.* 17:211–24. BioMed Central.

550 David, J. R., P. Capy, and J.-P. Gauthier. 1990. Abdominal pigmentation and growth
temperature in *Drosophila melanogaster*: Similarities and differences in the norms
552 of reaction of successive segments. *J. Evol. Biol.* 3:429–445.

554 David, J. R., P. Gibert, G. Pétavy, and B. Moreteau. 2002. Variable modes of
inheritance of morphometrical traits in hybrids between *Drosophila melanogaster*
and *Drosophila simulans*. *Proc. R. Soc. B Biol. Sci.* 269:127–135.

556 De Castro, S., F. Peronnet, J.-F. Gilles, E. Mouchel-Vielh, and J.-M. Gibert. 2018. *bric*
à *brac* (*bab*), a central player in the gene regulatory network that mediates thermal
558 plasticity of pigmentation in *Drosophila melanogaster*. *PLOS Genet.* 14:e1007573.

560 Deans, A. R., S. E. Lewis, E. Huala, S. S. Anzaldo, M. Ashburner, J. P. Balhoff, D. C.
Blackburn, J. A. Blake, J. G. Burleigh, B. Chanet, L. D. Cooper, M. Courtot, S.
562 Csösz, H. Cui, W. Dahdul, S. Das, T. A. Dececchi, A. Dettai, R. Diogo, R. E.
Druzinsky, M. Dumontier, N. M. Franz, F. Friedrich, G. V. Gkoutos, M. Haendel,
L. J. Harmon, T. F. Hayamizu, Y. He, H. M. Hines, N. Ibrahim, L. M. Jackson, P.
564 Jaiswal, C. James-Zorn, S. Köhler, G. Lecointre, H. Lapp, C. J. Lawrence, N. Le
Novère, J. G. Lundberg, J. Macklin, A. R. Mast, P. E. Midford, I. Mikó, C. J.
566 Mungall, A. Oellrich, D. Osumi-Sutherland, H. Parkinson, M. J. Ramírez, S.
Richter, P. N. Robinson, A. Ruttenberg, K. S. Schulz, E. Segerdell, K. C.
568 Seltmann, M. J. Sharkey, A. D. Smith, B. Smith, C. D. Specht, R. B. Squires, R.
W. Thacker, A. Thessen, J. Fernandez-Triana, M. Vihinen, P. D. Vize, L. Vogt, C.
570 E. Wall, R. L. Walls, M. Westerfeld, R. A. Wharton, C. S. Wirkner, J. B. Woolley,
M. J. Yoder, A. M. Zorn, and P. Mabee. 2015. Finding Our Way through
572 Phenotypes. *PLoS Biol.* 13:e1002033. Public Library of Science.

574 Dembeck, L. M., W. Huang, M. M. Magwire, F. Lawrence, R. F. Lyman, and T. F. C.
Mackay. 2015. Genetic Architecture of Abdominal Pigmentation in *Drosophila*
melanogaster. *PLOS Genet.* 11:e1005163. Public Library of Science.

576 Dombeck, I., and J. Jaenike. 2004. Ecological Genetics of Abdominal Pigmentation in
Drosophila falleni: A Pleiotropic Link to Nematode Parasitism. Society for the
578 Study of Evolution.

580 Endler, L., A. J. Betancourt, V. Nolte, and C. Schlötterer. 2016. Reconciling
Differences in Pool-GWAS Between Populations: A Case Study of Female

582 Abdominal Pigmentation in *Drosophila melanogaster*. *Genetics* 202:843–55.
582 Genetics.

584 Futahashi, R., and H. Fujiwara. 2008. Identification of stage-specific larval camouflage
584 associated genes in the swallowtail butterfly, *Papilio xuthus*. *Dev. Genes Evol.*
218:491–504. Springer.

586 Gerlai, R. 2002. Phenomics: fiction or the future? *Trends Neurosci.* 25:506–509.
586 Elsevier Current Trends.

588 Gibert, J.-M. M., F. Peronnet, and C. Schlötterer. 2007. Phenotypic plasticity in
588 *Drosophila* pigmentation caused by temperature sensitivity of a chromatin
590 regulator network. *PLoS Genet.* 3:0266–0280. Public Library of Science.

592 Gibert, J.-M., E. Mouchel-Vielh, S. De Castro, and F. Peronnet. 2016. Phenotypic
592 plasticity through transcriptional regulation of the evolutionary hotspot gene tan in
592 *Drosophila melanogaster*. *PLOS Genet.* 12:e1006218. Public Library of Science.

594 Gibert, J.-M., E. Mouchel-Vielh, and F. Peronnet. 2017. Modulation of yellow
594 expression contributes to thermal plasticity of female abdominal pigmentation in
596 *Drosophila melanogaster*. *Sci. Rep.* 7:43370.

598 Gibert, P., B. Moreteau, and J. R. David. 2000. Developmental constraints on an
598 adaptive plasticity: reaction norms of pigmentation in adult segments of
598 *Drosophila melanogaster*. *Evol. Dev.* 2:249–260. John Wiley & Sons, Ltd
600 (10.1111).

602 Gibert, P., B. Moreteau, and J. R. David. 2009. Phenotypic plasticity of abdomen
602 pigmentation in two geographic populations of *Drosophila melanogaster*: male-
602 female comparison and sexual dimorphism. *Genetica* 135:403–413. Springer.

604 Guillermo-Ferreira, R., E. M. Therézio, M. H. Gehlen, P. C. Bispo, and A. Marletta.
604 2014. The Role of Wing Pigmentation, UV and Fluorescence as Signals in a
606 Neotropical Damselfly. *J. Insect Behav.* 27:67–80. Springer.

608 Hollocher, H., J. L. Hatcher, and E. G. Dyreson. 2000a. Evolution of abdominal
608 pigmentation differences across species in the *Drosophila dunni* subgroup.
608 *Evolution* 54:2046–56.

610 Hollocher, H., J. L. Hatcher, and E. G. Dyreson. 2000b. Genetic and developmental
610 analysis of abdominal pigmentation differences across species in the *Drosophila*
612 *dunni* subgroup. *Evolution (N. Y.)* 54:2057–2071. Blackwell Publishing Ltd.

614 Houle, D., D. R. Govindaraju, and S. Omholt. 2010. Phenomics: the next challenge.
614 *Nat. Rev. Genet.* 11:855–866. Nature Publishing Group.

Jeong, S., A. Rokas, and S. B. Carroll. 2006. Regulation of Body Pigmentation by the
616 Abdominal-B Hox Protein and Its Gain and Loss in *Drosophila* Evolution. *Cell*
125:1387–1399. Cell Press.

618 Kodric-Brown, A. 1993. Female choice of multiple male criteria in guppies: interacting
effects of dominance, coloration and courtship. *Behav. Ecol. Sociobiol.* 32:415–
620 420. Springer Berlin Heidelberg.

622 Kopp, A., I. Duncan, and S. B. Carroll. 2000. Genetic control and evolution of sexually
dimorphic characters in *Drosophila*. *Nature* 408:553–559.

624 Kühl, H. S., and T. Burghardt. 2013. Animal biometrics: Quantifying and detecting
phenotypic appearance.

626 Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. *lmerTest Package:*
Tests in Linear Mixed Effects Models . *J. Stat. Softw.* 82:1–26. Foundation for
Open Access Statistic.

628 Lande, R. 2014. Evolution of phenotypic plasticity and environmental tolerance of a
labile quantitative character in a fluctuating environment. *J. Evol. Biol.* 27:866–
630 875.

632 Laughlin, D. C., and J. Messier. 2015. Fitness of multidimensional phenotypes in
dynamic adaptive landscapes. Elsevier Ltd.

634 Lenth, R., H. Singman, J. Love, P. Buerkner, and M. Herve. 2018. R package emmeans:
Estimated marginal means.

636 Mallet, J., and M. Joron. 1999. Evolution of Diversity in Warning Color and Mimicry:
Polymorphisms, Shifting Balance, and Speciation. *Annu. Rev. Ecol. Syst.* 30:201–
233. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA
638 94303-0139, USA.

640 Manenti, T., J. G. Sørensen, N. N. Moghadam, and V. Loeschcke. 2016. Few genetic
and environmental correlations between life history and stress resistance traits
affect adaptation to fluctuating thermal regimes. *Heredity (Edinb)*. 117:149–154.

642 Marquez, E. J., and L. L. Knowles. 2007. Correlated evolution of multivariate traits:
detecting co-divergence across multiple dimensions. *J. Evol. Biol.* 20:2334–2348.

644 Massey, J. H., D. Chung, I. Siwanowicz, D. L. Stern, and P. J. Wittkopp. 2019. The
yellow gene influences *drosophila* male mating success through sex comb
646 melanization. *eLife* 8. eLife Sciences Publications Ltd.

648 Massey, J. H., and P. J. Wittkopp. 2016. The Genetic Basis of Pigmentation Differences
Within and Between *Drosophila* Species. *Curr. Top. Dev. Biol.* 119:27–61. NIH

Public Access.

650 Mateus, A. R., M. Marques-Pita, V. Oostra, E. Lafuente, P. M. P. M. Brakefield, B. J. B. J. Zwaan, and P. Beldade. 2014. Adaptive developmental plasticity: Compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. *BMC Biol.* 12:97. BioMed Central.

652

654 Matute, D. R., and A. Harris. 2013. The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of *Drosophila*. *Evolution (N. Y.)*. 67:2451–2460.

656

658 Mckinnon, J. S., and M. E. R. Pierotti. 2010. Colour polymorphism and correlated characters: genetic mechanisms and evolution. *Mol. Ecol.* 19:5101–5125. John Wiley & Sons, Ltd (10.1111).

660 Miyagi, R., N. Akiyama, N. Osada, and A. Takahashi. 2015. Complex patterns of cis-regulatory polymorphisms in *ebony* underlie standing pigmentation variation in *Drosophila melanogaster*. *Mol. Ecol.* 24:5829–5841.

662

664 Monteiro, A. 2015. Origin, development, and evolution of butterfly eyespots. *Annu. Rev. Entomol.* 60:253–271.

666

668 Monteiro, A., X. Tong, A. Bear, S. F. Liew, S. Bhardwaj, B. R. Wasik, A. Dinwiddie, C. Bastianelli, W. F. Cheong, M. R. Wenk, H. Cao, and K. L. Prudic. 2015. Differential expression of Ecdysone receptor leads to variation in phenotypic plasticity across serial homologs. *PLOS Genet.* 11:e1005529. Public Library of Science.

670 Nadeau, N. J. 2016. Genes controlling mimetic colour pattern variation in butterflies. *Curr. Opin. Insect Sci.* 17:24–31.

672 Nijhout, H. F. 2001. Elements of butterfly wing patterns. *J. Exp. Zool.* 291:213–225. John Wiley & Sons, Ltd.

674 Nijhout, H. F. 2010. Molecular and Physiological Basis of Colour Pattern Formation. Pp. 219–265 in *Advances in Insect Physiology*. Academic Press.

676 Norry, F. M., and V. Loeschcke. 2002. Temperature-induced shifts in associations of longevity with body size in *Drosophila melanogaster*. *Evolution (N. Y.)*. 56:299–306. Blackwell Publishing Ltd.

680

Orteu, A., and C. D. Jiggins. 2020. The genomics of coloration provides insights into adaptive evolution. *Nature Research*.

682 Parkash, R., C. Lambhod, and D. Singh. 2014. Thermal developmental plasticity affects body size and water conservation of *Drosophila nepalensis* from the Western

Himalayas. Bull. Entomol. Res. 104:504–516. Cambridge University Press.

684 Parkash, R., S. Rajpurohit, and S. Ramniwas. 2008. Changes in body melanisation and
desiccation resistance in highland vs. lowland populations of *D. melanogaster*. J.
686 Insect Physiol. 54:1050–1056.

Parkash, R., S. Singh, and S. Ramniwas. n.d. Seasonal changes in humidity level in the
688 tropics impact body color polymorphism and desiccation resistance in *Drosophila*
jambulina—Evidence for melanism-desiccation hypothesis. , doi:
690 10.1016/j.jinsphys.2009.01.008.

Pool, J. E., and C. F. Aquadro. 2007. The genetic basis of adaptive pigmentation
692 variation in *Drosophila melanogaster*. Mol. Ecol. 16:2844–2851.

R Core Team. 2019. R: A language and environment for statistical computing.

694 Rajpurohit, S., and A. G. Gibbs. 2012. Selection for abdominal tergite pigmentation and
correlated responses in the trident: a case study in *Drosophila melanogaster*. Biol.
696 J. Linn. Soc. 106:287–294.

Rajpurohit, S., R. Parkash, and S. Ramniwas. 2008. Body melanization and its adaptive
698 role in thermoregulation and tolerance against desiccating conditions in
drosophilids. Entomol. Res. 38:49–60. Blackwell Publishing Asia.

700 Reichstein, T., J. Von Euw, J. A. Parsons, and M. Rothschild. 1968. Heart poisons in
the monarch butterfly. American Association for the Advancement of Science.

702 Ryan, C. G., E. Clayton, W. L. Griffin, S. H. Sie, and D. R. Cousens. 1988. SNIP, a
statistics-sensitive background treatment for the quantitative analysis of PIXE
704 spectra in geoscience applications. Nucl. Inst. Methods Phys. Res. B 34:396–402.
North-Holland.

706 Saleh Ziabari, O., and A. W. Shingleton. 2017. Quantifying Abdominal Pigmentation in
Drosophila melanogaster J. Vis. Exp., doi: 10.3791/55732.

708 Schlichting, C., and M. Pigliucci. 1998. Phenotypic evolution: a reaction norm
perspective. Sinauer.

710 Shakhmantir, I., N. L. Massad, and J. A. Kennell. 2014. Regulation of cuticle
pigmentation in *drosophila* by the nutrient sensing insulin and TOR signaling
712 pathways. Dev. Dyn. 243:393–401.

Shearer, P. W., J. D. West, V. M. Walton, P. H. Brown, N. Svetec, and J. C. Chiu. 2016.
714 Seasonal cues induce phenotypic plasticity of *Drosophila suzukii* to enhance winter
survival. BMC Ecol. 16:11. BioMed Central.

716 Shirai, L. T., S. V Saenko, R. A. Keller, M. A. Jerónimo, P. M. Brakefield, H.

718 Descimon, N. Wahlberg, and P. Beldade. 2012. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. *BMC Evol. Biol.* 12:21.

720 Sibilia, C. D., K. A. Brosko, C. J. Hickling, L. M. Thompson, K. L. Grayson, and J. R. Olson. 2018. *Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae)*. *J. Insect Sci.* 18. Oxford University Press.

724 Solensky, M. J., and E. Larkin. 2003. Temperature-induced Variation in Larval Coloration in *Danaus plexippus* (Lepidoptera: Nymphalidae). *Ann. Entomol. Soc. Am.* 96:211–216. Oxford Academic.

726 Taiyun, W., and S. Viliam. 2017. R package “corrplot”: visualization of a correlation matrix.

730 Takahashi, A. 2013. Pigmentation and behavior: potential association through pleiotropic genes in *Drosophila*. *Genes Genet. Syst.* 88:165–74.

732 Telonis-Scott, M., A. A. Hoffmann, and C. M. Sgrò. 2011. The molecular genetics of clinal variation: A case study of ebony and thoracic trident pigmentation in *Drosophila melanogaster* from eastern Australia. *Mol. Ecol.* 20:2100–2110.

734 True, J. R. 2003. Insect melanism: the molecules matter. *Trends Ecol. Evol.* 18:640–647.

736 True, J. R., K. A. Edwards, D. Yamamoto, and S. B. Carroll. 1999. *Drosophila* wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. *Curr. Biol.* 9:1382–91.

740 Trullas, S. C., J. H. van Wyk, and J. R. Spotila. 2007. Thermal melanism in ectotherms. *J. Therm. Biol.* 32:235–245. Pergamon.

742 van't Hof, A. E., N. Edmonds, M. Dalíková, F. Marec, and I. J. Saccheri. 2011. Industrial melanism in British peppered moths has a singular and recent mutational origin. *Science* 332:958–60. American Association for the Advancement of Science.

744 van Bergen, E., and P. Beldade. 2019. Seasonal plasticity in anti-predatory strategies: Matching of color and color preference for effective crypsis. *Evol. Lett.*, doi: 10.1002/evl3.113. John Wiley & Sons, Ltd.

748 Vargas-Lowman, A., D. Armisen, C. F. Burguez Floriano, I. da Rocha Silva Cordeiro, S. Viala, M. Bouchet, M. Bernard, A. Le Bouquin, M. E. Santos, A. Berlioz-Barbier, A. Salvador, F. F. Figueiredo Moreira, F. Bonneton, and A. Khila. 2019.

750

752 Cooption of the pteridine biosynthesis pathway underlies the diversification of
embryonic colors in water striders. *Proc. Natl. Acad. Sci. U. S. A.* 116:19046–
19054. National Academy of Sciences.

754 Vrieling, H., D. M. J. Duhl, S. E. Millar, K. A. Miller, and G. S. Barsh. 1994.
Differences in dorsal and ventral pigmentation result from regional expression of
756 the mouse agouti gene. *Proc. Natl. Acad. Sci. U. S. A.* 91:5667–5671. Proc Natl
Acad Sci U S A.

758 Werner, T., S. Koshikawa, T. M. Williams, and S. B. Carroll. 2010. Generation of a
novel wing colour pattern by the Wingless morphogen. *Nature* 464:1143–1148.
760 Nature Publishing Group.

Wickham, H. 2009. *Ggplot2 : elegant graphics for data analysis*. Springer.

762 Wickham, H., and L. Henry. 2020. *tidy: Tidy Messy Data*.

764 Wiernasz, D. C. 1995. Male choice on the basis of female melanin pattern in *Pieris*
butterflies. *Anim. Behav.* 49:45–51. Academic Press.

766 Williams, T. M., J. E. Selegue, T. Werner, N. Gompel, A. Kopp, and S. B. Carroll.
2008. The regulation and evolution of a genetic switch controlling sexually
dimorphic traits in *Drosophila*. *Cell* 134:610–623.

768 Wittkopp, P. J., and P. Beldade. 2009. Development and evolution of insect
pigmentation: genetic mechanisms and the potential consequences of pleiotropy.
770 *Semin. Cell Dev. Biol.* 20:65–71.

772 Wittkopp, P. J., S. B. Carroll, and A. Kopp. 2003. Evolution in black and white: Genetic
control of pigment patterns in *Drosophila*. *Trends Genet.* 19:495–504.

774 Wittkopp, P. J., G. Smith-Winberry, L. L. Arnold, E. M. Thompson, A. M. Cooley, D.
C. Yuan, Q. Song, and B. F. McAllister. 2011. Local adaptation for body color in
Drosophila americana. *Heredity (Edinb)*. 106:592–602. Nature Publishing Group.

776 Wittkopp, P. J., K. Vaccaro, and S. B. Carroll. 2002. Evolution of yellow gene
regulation and pigmentation in *Drosophila*. *Curr. Biol.* 12:1547–56.

778 Zhang, L., A. Martin, M. W. Perry, K. R. L. van der Burg, Y. Matsuoka, A. Monteiro,
and R. D. Reed. 2017. Genetic basis of melanin pigmentation in butterfly wings.
780 *Genetics* 205:1537–1550. Genetics Society of America.

782

FIGURE LEGENDS

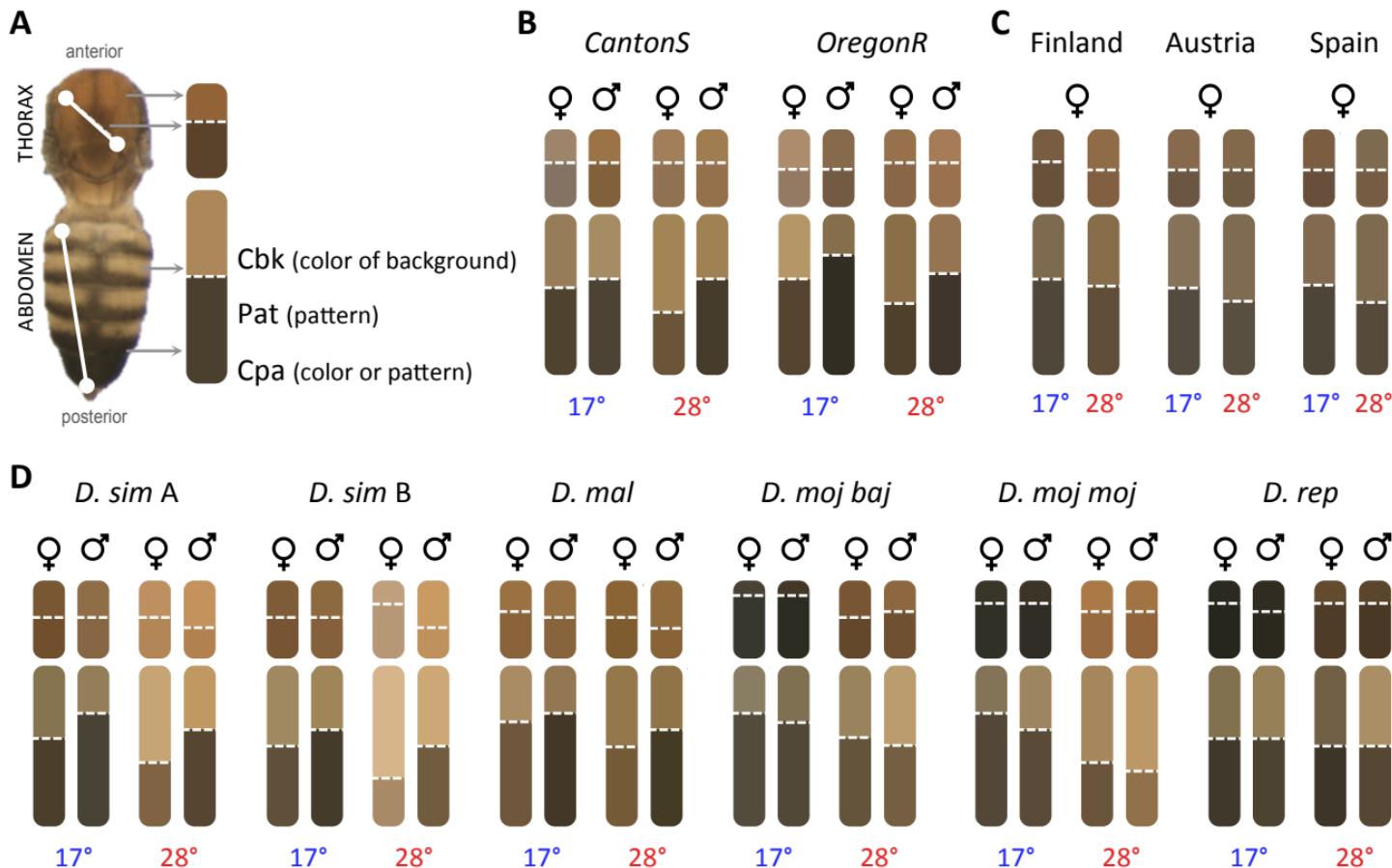
784

Figure 1. Intra- and inter- specific variation in *Drosophila* pigmentation

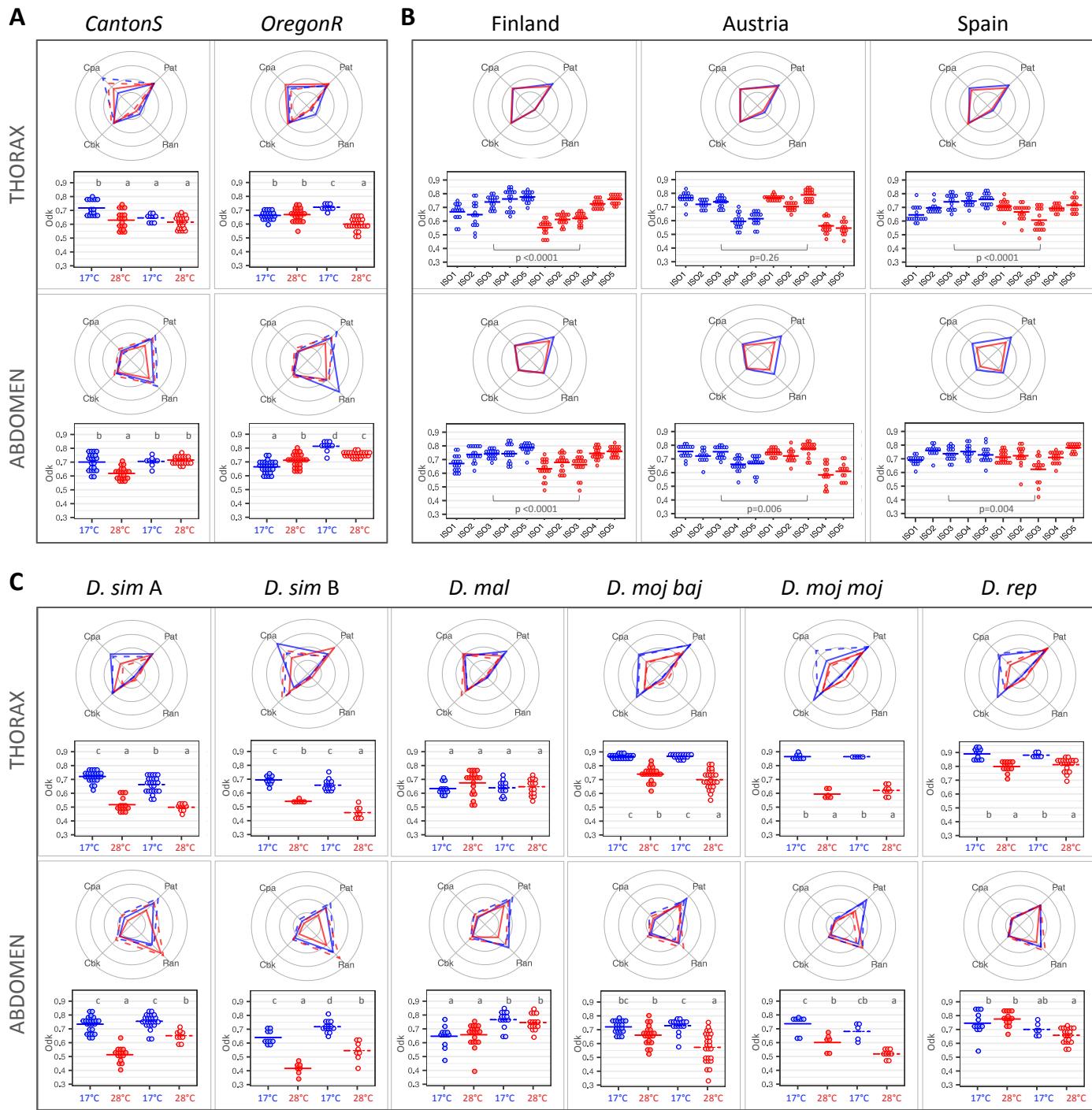
786 **A.** Example of a mounted *D. melanogaster* headless-body showing the dorsal side of
788 the thorax and abdomen with transects, and the scheme we used to represent
790 pigmentation traits for thorax (top rounded rectangle) and abdomen (bottom rounded
792 rectangle). For each of these, the horizontal dashed line separates the color of pattern
794 element (Cpa) and the color of background (Cbk). These are shown in mean color (RGB
796 values) for same-group individuals, and the height of the dashed line represents the
798 proportion of the transect that is occupied by pattern versus background (Pat). See more
details in Figure S1. **B.** Pigmentation schemes per strain, sex, and temperature in *D.*
794 *melanogaster* laboratory populations. **C.** Pigmentation schemes in *D. melanogaster*
796 clinal populations, showing mean values from the five genotypes (i.e. isogenic lines)
798 per location. **D.** Pigmentation schemes in five *Drosophila* species with one genetic
background per species except *D. simulans* where two genetic backgrounds (*D. sim* A
and *D. sim* B) were studied.

800 **Figure 2. Quantitative phenotyping of *Drosophila* pigmentation component traits**

802 For each population, temperature, sex, and body part, dot plots represent variation for
804 Odk (individual data points and means) and radar plots represent variation for Pat, Ran,
806 Cpa, and Cbk (means; dotplots in Figure S2). Females/males are shown as closed/empty
808 circles (dot plots) or solid/dashed lines (radar plots), and flies reared at 17°C/28°C are
810 shown in blue/red. **A.** *D. melanogaster* laboratory populations. Results of statistical test
812 for the effect of sex, temperature, and their interaction on each of the traits are shown in
814 Table S2. Letters in dot plots indicate results of post-hoc pairwise comparisons between
816 groups: different letters when significantly different (p-value<0.05 for Tukey's honest
significance test). **B.** *D. melanogaster* clinal populations. For each geographical
818 population, we phenotyped females from five genotypes (i.e. isogenic lines). Results for
820 the effect of location, genotype, and temperature (and interactions) on the different
822 pigmentation traits are in Table S4. Results of the statistical test (p-value) for the effect
824 of temperature on each of the traits are shown in plots. **C.** *Drosophila* species. Results
826 of the statistical test for effect of sex, temperature and their interaction are in Table S5.
828 Letters in dot plots indicate results of post-hoc pairwise comparisons between groups:


816 different letters when significantly different (p-value<0.05 for Tukey's honest
significance test).

818


820 **Figure 3. Co-variation and thermal sensitivity of *D. melanogaster* pigmentation
components**

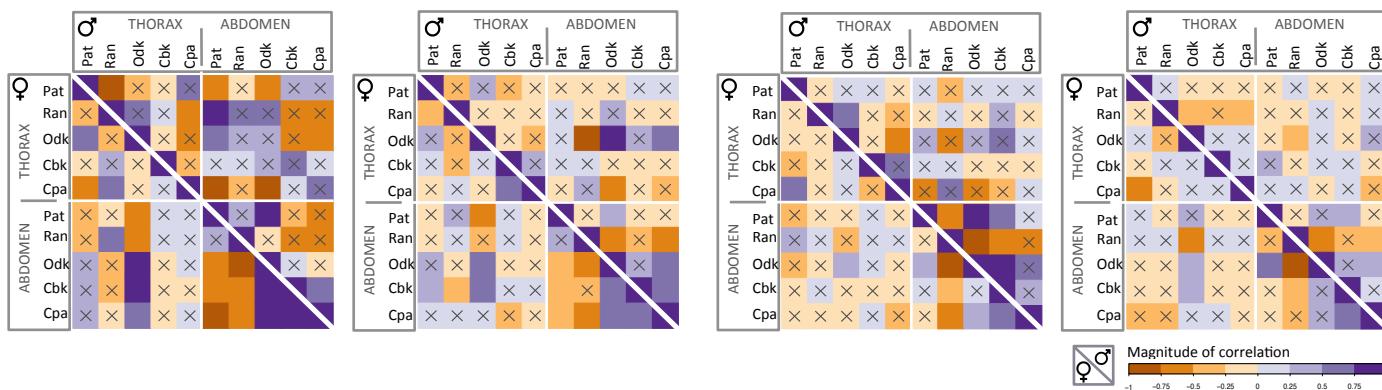
822 A. Heat map of Pearson's correlation coefficients for all pigmentation traits in
abdomens and thoraxes of CanS (left panels) and OreR (right panels) of flies reared at
17°C or 28°C. For each matrix, females are in the left corner and males in the right.
824 Positive correlations are shown in purple and negative correlations in orange.
Correlations not statistically significantly different from zero (p-value>0.05) are
826 indicated with a cross. B. Pigmentation traits (Y axis) in females of two *D.
melanogaster* genetic backgrounds (CanS and OreR) exposed to each of the temperature
828 regimes during development (X axis). The thermal regimes codes and corresponding
stages that were exposed to either 17°C or 28°C (instead of the basal temperature of
830 23°C) were: T (constant temperature), L (late larval development), p (early pupal
period) and, P (late pupal period). In each graph, dots represent phenotypes of single
832 individual females, and the horizontal bar is the mean of those values. The results of the
test for differences between strains and thermal regimes on the different plastic traits are
834 shown in Table S3. Letters indicate results of post-hoc pairwise comparisons between
836 groups: different letters when significantly different (p-value<0.05 for Tukey's honest
significance test).

Figure 1.

Figure 2.

Figure 3.

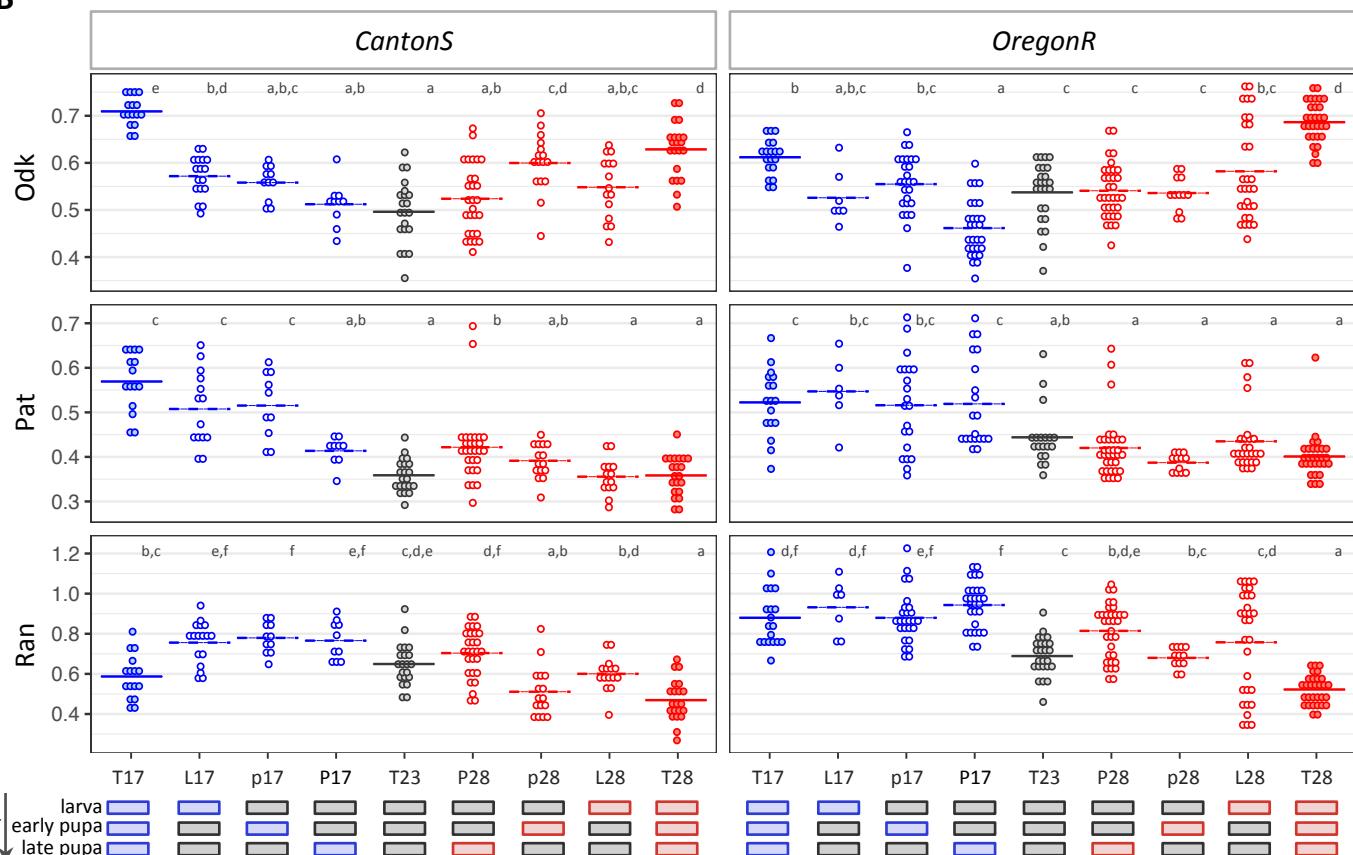
A


CantonS

17°

28°

OregonR


28°

B

CantonS

OregonR

