

1 **Optimized DNA isolation method for microbiome analysis of human tissues**
2
3 Carlijn Bruggeling¹, Daniel R. Garza², Soumia Achouiti¹, Wouter Mes³, Bas E. Dutilh^{2,4}, Annemarie
4 Boleij^{1*}
5

6 ¹Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university
7 medical center (Radboudumc), the Netherlands

8 ²Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life
9 Sciences (RIMLS), Radboud university medical center (Radboudumc), the Netherlands

10 ³Department of Animal Ecology & Physiology and Department of Microbiology, Institute for Water and
11 Wetland Research (IWWR), Radboud university , the Netherlands

12 ⁴Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands

13

14 **Funding:** A. Boleij is supported by Netherlands Organization for Scientific Research (NWO) Veni grant
15 016.166.089. C.E. Bruggeling, D.R. Garza and A. Boleij are supported by the Dutch cancer society
16 (KWF kankerbestrijding) KUN 2015-7739. B.E. Dutilh is supported by Netherlands Organization for
17 Scientific Research (NWO) Vidigrant 864.14.004 and ERC Consolidator grant 865694: DiversiPHI.

18

19 * Corresponding Author

20 Dr. Annemarie Boleij

21 Radboudumc, Department of Pathology, hp824

22 Geert Grootplein-Zuid 10,

23 6525 GA Nijmegen, The Netherlands

24 Tel: +31-243618945

25 Email: Annemarie.Boleij@radboudumc.nl

26

27

28 **Abstract**

29 Recent advances in microbiome sequencing have rendered new insights into the role of the
30 microbiome in human health with potential clinical implications. Unfortunately, developments in the
31 field of tissue microbiomes have been hampered by the presence of host DNA in isolates which
32 interferes with the analysis of the bacterial content. Here, we present a DNA isolation protocol from
33 tissue samples including reduction of host DNA without distortion of microbial abundance profiles. We
34 evaluated which concentrations of Triton and saponin lyse host cells and leave bacterial cells intact,
35 which was combined with DNase treatment to deplete released host DNA. We applied our protocol to
36 extract microbial DNA from *ex vivo* and *in vivo* acquired human colon biopsies (~2-5 mm in size) and
37 assessed the relative abundance of bacterial and human DNA by qPCR. Saponin at a concentration of
38 0.0125% in PBS lysed host cells, resulting in a 4.5-fold enrichment of bacterial DNA while preserving
39 the relative abundance of *Firmicutes*, *Bacteroidetes*, γ -*Proteobacteria* and *Actinobacteria*. Our
40 protocol combined with shotgun metagenomic sequencing revealed a colon tissue microbiome profile
41 with a Shannon diversity index of 3.2 and an UniFrac distance of 0.54, which is comparable to reported
42 numbers based on amplicon sequencing. Hereby, we present the first protocol for enriching bacterial
43 DNA from tissue biopsies that allows efficient isolation of rigid Gram-positive bacteria without
44 depleting the more sensitive Gram-negative bacteria. Our protocol facilitates analysis of a wide
45 spectrum of bacteria of clinical tissue samples improving their applicability for microbiome research.

46

47

48 **Introduction**

49 The rapidly growing field of microbiome research is steadily revealing a role of the microbiome in
50 human health and diseases. Functions of the gut microbiome are diverse and essential for many
51 biological processes involved in metabolism, tissue homeostasis and immunity (1). Changes in
52 microbiome composition have been associated with a wide variety of diseases, ranging from intestinal
53 inflammatory diseases to colorectal cancer to diseases outside the gastrointestinal tract (1). Such
54 compositional changes are well-studied by microbiome profiling through sequencing of DNA isolates.
55 While a vast amount of research has been performed on stool, recent technologies have facilitated
56 bacterial profiling on colon tissues, which allows more localized analysis (2) and may be more accurate
57 in differentiating between healthy and diseased states (3). Importantly, DNA isolation methods have a
58 major impact on the evaluation of microbiota composition (3-11). Hence, a well-developed and
59 standardized protocol for stool and tissues will contribute to consensus in microbiome research.
60

61 The study of microbiome composition of solid tissue samples however, does not come without
62 challenges. Whole tissue isolates contain large bulks of host DNA, overshadowing the presence of
63 single-cell organisms and viruses. While polymerase chain reaction (PCR) is a valuable technique to
64 identify minority sequences, the field of microbiome research is slowly moving towards shotgun
65 metagenomic sequencing as a preferred method. Shotgun metagenomic sequencing allows analysis of
66 all sequences in the DNA isolate, resulting in an increased species detection with higher accuracy (12).
67 Another major advantage of this technique is the ability to discriminate between microbial species and
68 analyze its gene content including potential virulence factors (12). This may be crucial to discriminate
69 between a pathogen and a commensal bacterium at species level (13). Unfortunately, the application
70 of shotgun metagenomic sequencing to study the microbiome of human tissue is complicated due to
71 the large amount of human DNA: large amounts of input DNA are required to reach enough depth for
72 sequence analysis of the microbial DNA fraction. Reduction of human DNA in tissue isolates is required
73 to increase sensitivity of shotgun metagenomic sequencing microbiome analysis of tissue.
74

75 Various methods have been developed to improve the bacterial to human DNA ratio. These methods
76 include filtering out human cells by cell size (14), antibody-mediated filtration of human DNA by
77 targeting non-methylated CpG dinucleotide motifs (14, 15) and human-specific cell lysis followed by
78 DNA degradation (7, 11, 14, 15), of which the latter results in most efficient bacterial DNA enrichment
79 (11, 14). Hence, bacterial DNA enrichment contributes to the identification of minority species and to
80 a higher resolution of the microbial genomes present in the sample, rendering improved bacterial
81 classification and analysis of genes of interest.
82

83 One of the caveats of bacterial DNA enrichment is that the method of DNA isolation affects the
84 microbiome profile (7, 9, 11, 14-17). Bacteria differ in their susceptibility to lysis, resulting in the
85 tendency of some bacteria to lyse too early during the isolation method (15, 16), while other bacteria
86 may require extra steps to release their DNA, e.g. by mechanical lysis through bead-beating (10, 18).
87 Addition of mechanical lysis has improved isolation of Gram-positive bacteria (4, 9, 16), without
88 impairing the isolation of Gram-negative bacteria (19). Additionally, enzymatic lysis with mutanolysin
89 may help to identify more Gram-positive bacteria (4, 20). The ultimate goal is to increase the bacterial
90 to human DNA ratio and have a DNA isolate that closely reflects the bacterial composition of the
91 sample.

92 The immense improvement by shotgun metagenomic sequencing in the field of the microbiome has
93 been based on clinical stool samples; not tissue. Thereby, the study of the bacteria that reside in closest
94 proximity to the host are left outside consideration, along with crucial information about their
95 localization in the gut (e.g. colonic segment or localization to tumors). Current protocols can be
96 optimized for analysis of the tissue microbiome, for which we present our improved method in this
97 paper. Our method combines important elements of the currently best performing methods for DNA
98 isolation so far: bacterial DNA enrichment, mutanolysin treatment, heat-shock and bead-beating. Our
99 protocol is designed for an unbiased isolation of diverse microbes rendering efficient lysis of Gram-
100 positive bacteria, while maintaining efficient isolation of Gram-negative bacteria. The inclusion of our
101 fine-tuned microbial DNA enrichment strategy enriches the bacterial content and results in a
102 reproducible analysis of microbial profiles of biopsies ranging from ~2-5 mm. Thus, this method will
103 contribute to reproducible research in the field of microbiome composition and functionality and will
104 be of value not only for gut-related tissue microbe analysis, but also for those tissues where microbes
105 are underrepresented (e.g. fish gills).

106

107 **Methods**

108

109 *Collection of human colon biopsies*

110 *Ex vivo* residual resected colon material was obtained at the department of pathology of the
111 Radboudumc in Nijmegen between 2017 and 2018, in accordance with Dutch legislation. No approval
112 from a research ethics committee was required for the study of residual colon resections, because
113 anonymous use of redundant tissue for research purposes is part of the standard treatment agreement
114 with patients in the Radboudumc, to which patients may opt out. None of the included patients
115 submitted an objection against use of residual materials and all material was processed anonymously.
116 Biopsies were resected with a scalpel, resulting in biopsies up to an estimated size of 5 mm.
117 Alternatively, a biopsy forceps was used to make biopsies of about 2 mm that were used as a proxy for
118 biopsies taken during colonoscopy. After collection, biopsies were snap-frozen in cryo-tubes in liquid
119 nitrogen and stored at -80°C.

120

121 *In vivo* collected forceps biopsies for shotgun metagenomic sequencing were obtained from patients
122 that came for a screening colonoscopy and participated in either of the two studies: the BBC study
123 (NL57875.091.16), which were solely genetically confirmed Lynch syndrome patients, the BaCo study
124 (NL55930.091.16) which included ulcerative colitis patients and patients without known colon
125 diseases. Samples were collected between 2017 and 2018 in Radboudumc Nijmegen. Both studies
126 were approved by the Internal Revenue Board CMO-Arnhem Nijmegen (CMO 2016-2616 and CMO
127 2016-2818) and the board of the Radboudumc. Patients whom had taken antibiotics within the last 3
128 months prior to the colonoscopy were excluded. All patients were older than 18 years and signed an
129 informed consent. Biopsies were snap-frozen in cryo-tubes in liquid nitrogen instantly after collection
130 and stored at -80°C.

131

132 *Bacterial DNA isolation protocol*

133 The bacterial DNA isolation strategy involved bacterial DNA enrichment through human cell lysis and
134 DNase treatment (see figure 1, upper part), which was followed up by our previously optimized bead-
135 beating protocol (see figure 1, lower part) (21). Whereas the bead-beating protocol remained
136 unchanged throughout this paper, two alternative strategies were tested for the bacterial DNA
137 enrichment. For the first strategy, the Molzym DNA isolation (Ultra-Deep Microbiome prep, Molzym)
138 kit was used. The manufacturer's protocol was followed until and including the moldNAse inactivation
139 step. Subsequently, the bead-beating protocol was applied to assist in mechanical bacterial cell lysis,
140 because this was shown to result in a higher bacterial signal in qPCR (supplementary figure 1). For the
141 second strategy, we established our own alternative protocol including proteinase K (19133, Qiagen)

142 for tissue digestion, Phosphate buffered saline (PBS) (Braun, 220/12257974/1110) containing saponin
143 (47036-50G, Sigma-Aldrich) or Triton for selective lysis, and TurboDNase (AM2239, Qiagen) for host
144 DNA removal. We evaluated the effect of Triton or saponin at different concentrations for human cells
145 and experimented what was the best moment to include the biopsy wash (point A or B) in the DNA-
146 isolation process (Figure 1).

147 The lysis of bacterial cells included treatment with 0.5 KU/mL mutanolysin (SAE0092, Sigma Aldrich),
148 heat-shock and buffer C1 of the DNAeasy powerlyzer Powersoil kit from Qiagen (previously known as
149 the MoBio Powerlyzer PowerSoil DNA isolation kit from MoBio). Bead-beating was performed in the
150 Magnalyser (Roche) at 6400 rpm for 20 seconds twice, with 30 seconds on ice in between. After
151 bacterial lysis the manual of the DNA-isolation kit was followed. The final protocol is provided in
152 supplementary file 1. Our final bacterial enrichment protocol (figure 1, upper part and supplementary
153 file 1) was also tested by an independent laboratory (Institute for Water and Wetland Research,
154 Radboud University) for isolation of bacteria from zebrafish gills, but in combination with CTAB
155 extraction instead of the MoBio DNA isolation kit (supplementary file 2).

156

157 *Bacterial culturing*

158 *Collinsella intestinalis* (DSM13280), *Bacteroides vulgatus* (3775 SL(B)10), *Escherichia coli* (NTB5) and
159 *Streptococcus gallolyticus* subsp. *gallolyticus* (UCN34) were cultured on Brain-Heart-Infusion agar
160 plates supplemented with yeast extract L-cysteine Vitamin K, and Hemin (BHI-S; ATCC medium 1293).
161 *C. intestinalis* and *B. vulgatus* were grown on plates for 48 hours under anaerobic conditions before
162 transfer to liquid medium for 48-72 hours at 37°C. *E. coli* and *S. gallolyticus* were grown overnight on
163 plated under aerobic conditions before transfer to liquid culturing in BHI for 24 hours at 37°C. Bacteria
164 were pelleted by centrifugation at 4600 rpm for 10 minutes and frozen at -20°C. Bacterial pellets were
165 thawed and dissolved in PBS until 1 optical density (OD at 620 nm) of which 50 µL was used for
166 experiments to determine bacterial DNA release by Triton and saponin treatment.

167 To create a mock community, 1 OD bacterial PBS suspensions were mixed in 400 µL (40% *B. vulgatus*,
168 30% *E. coli*, 20%, *S. gallolyticus* and 10% *C. intestinalis*) and were pelleted for each experimental
169 condition.

170

171 *Bacterial DNA release by treatment with Triton and saponin*

172 Bacteria were dissolved in PBS with final concentrations of Triton or saponin of 0.1%, 0.025%, 0.0125%
173 and 0.006%. Bacteria were incubated for 30 minutes at 37°C with a soap or PBS only. Samples were
174 centrifuged at 10000 x g for 10 minutes and the DNA concentration was measured with Qubit
175 Fluorometer 2.0 (Thermofisher scientific) using the Qubit dsDNA HS assay kit (Q32856, Thermofisher).

176 A Mann-Whitney U-test was used to compare the DNA in the supernatants of samples exposed to a
177 soap versus PBS.

178

179 *Effects of Saponin 0.0125% on human tissue lysis*

180 To test whether saponin 0.0125% was able to induce human cell lysis, resected human colon biopsies
181 of an estimated size of 5 mm were processed according to our optimized protocol up to the step of
182 selective cell lysis using saponin (see figure 1 and supplementary file 1). During this last step, cell pellets
183 were incubated with either 0.0125% saponin or PBS in turboDNase buffer, but without turboDNase
184 enzyme. Samples were incubated at 37°C for 30 minutes to lyse the cells and the supernatant was
185 cleared from cell debris by two centrifugation cycles of 10 minutes at 10000 x g at 4°C. DNA in the
186 supernatant was precipitated with 100% ethanol and centrifuged at 10000 x g at 4°C for 20 minutes.
187 Precipitated DNA was washed with 70% ethanol and centrifuged at 10000 x g at 4°C for 20 minutes.
188 Lastly, DNA was air dried and resuspended dH₂O.

189

190 *Quantitative Real-time PCRs for 16s rRNA*

191 Each reaction for qPCR consisted of 0.4 µM forward primer, 0.4 µM reverse primer, 1X Power SYBR
192 Green (A4368702, Applied biosystems). The amount of DNA in each reaction was 1 ng and 0.1 ng for
193 biopsies that were ~5 mm and ~2 mm, respectively. Primers for host (human or zebrafish) and bacteria
194 (all bacteria, *Firmicutes*, *Bacteroidetes*, γ -*Proteobacteria* and *Actinobacteria*) were used and evaluated
195 before (21-23) and are reported in our Supplementary table 1 (22-27). qPCRs were performed with a
196 7500 Fast Real-Time PCR system (Applied Biosystems®). Samples were heated to 50°C for 2 minutes,
197 95°C for 10 minutes, 30 cycles of 95°C for 15 seconds and 60°C for 1 minute, followed by a continuous
198 sequence of 95°C for 15 seconds, 60°C for 1 minute, 95°C for 30 seconds and 60°C for 15 seconds.
199 Melting curves were generated to evaluate the specificity of the PCR-product.

200 DNA isolated from the mock community (described above) was used as a positive control. Only for
201 supplementary figure 1, a human fecal isolate was used as a positive control. DNA isolated from human
202 blood served as a negative control.

203

204 *Statistical analysis of qPCRs*

205 To evaluate differences in bacterial content between samples, the universal 16S rRNA signal of the
206 sample was calibrated using the universal 16S rRNA signal of the positive control (ΔCt); a mock
207 community isolate that resembles the gut microbiome. Fold difference was calculated by $2^{\Delta Ct}$. To
208 study bacterial composition, the 16S rRNA signal of *Firmicutes*, *Bacteroidetes*, *Actinobacteria* or γ -
209 *Proteobacteria* was calibrated with the 16S rRNA signal of the Universal signal of the same sample
210 (ΔCt). Subsequently, the ΔCt was compared to the ΔCt in a control sample ($\Delta\Delta Ct$). Fold difference was

211 calculated by $2^{-\Delta\Delta Ct}$. Paired samples were analysed with a paired-T test. In case of unmatched samples,
212 the Mann-Whitney U-test was used for comparison.
213 A Friedman test was used to evaluate which soap resulted in the most similar bacterial composition to
214 PBS. All statistical tests were performed using Graphpad Prism version 5.0.

215

216 *Shotgun metagenomic sequencing of human colon biopsies*

217 DNA was isolated using the DNeasy Powerlyzer Powersoil kit (Qiagen), as described in supplementary
218 file 1. DNA concentration was measured as described previously 521 human colon tissue DNA isolates
219 were sent to Novogene Bioinformatics Technology Co., Ltd in Hongkong for sequencing. Samples were
220 processed using low input NEBnext library preparation and paired-end sequencing was performed on
221 the Illumina Novaseq 6000 with 350 bp insert size and a read length of 150 bp. 1.2 GB output data in
222 FastQ format was guaranteed per sample. Samples were measured for DNA concentration, construct
223 length and a quality check was performed on the library preparation. 13 samples were not sequenced
224 due to failed library preparation.

225

226 *Bioinformatics analysis*

227 Quality control, trimming, and removal of adaptors was performed using FastQC version 0.11.9 and
228 trimmomatic version 0.35. An assembly dataset was generated by filtering out the human reads using
229 BBMap version 38.84 with the GRCh38 version of the human genome. Filtered reads were assembled
230 with metaSPAdes version 3.13.1. The taxonomic classification of contigs was determined with CAT v.
231 4.6 (PMID:31640809) using the NCBI NR as database for taxonomic assignments. bwa version 0.7.17
232 and samtools version 1.9 were used to map all the reads to the classified contigs and the human
233 genome and to estimate the coverage statistics. Only samples with more than 2.0e04 bacterial reads
234 were used, resulting in 225 metagenomes derived from human colon biopsies with an average of 11
235 million reads per sample. Shannon diversity (alpha) and the UniFrac diversity (beta)(28) were
236 estimated from the taxonomic distribution of reads at the genus level. Diversity indices and phylum-
237 level classifications were compared to values obtained from literature (29-32)

238

239

240 **Results**

241

242 *Whole tissue digestion including PBS wash is required to capture the collective tissue microbiome*

243 It is hypothesized that a major bulk of human DNA in the microbial DNA isolate could be avoided by
244 only isolating DNA from washed tissue (biopsy wash). To test this, the biopsy and biopsy wash were
245 isolated separately with the Ultra-Deep Microbiome prep-kit (Molzym) in combination with our bead-
246 beating protocol. While biopsies were isolated with the full protocol including tissue digestion,
247 selective lysis and removal of human DNA using strategy 1 (see methods), these steps were omitted
248 for the biopsy wash (path A in Figure 1). Similar universal bacterial 16S rRNA signals were obtained
249 from DNA isolates of the biopsy wash and biopsies (Figure 2). This suggests that isolating DNA from
250 the biopsy wash would only represent a selective part of the microbial community and hence isolation
251 of the whole biopsy including the biopsy wash is necessary to capture the collective tissue microbiome.

252

253 *DNA-isolation using strategy 1 changes microbial composition*

254 Interestingly, the biopsy wash appeared to have relatively more Gram-positive and fewer Gram-
255 negative bacteria compared to the microbiota remaining in the matched biopsy. This difference was
256 significant for *Bacteroidetes* ($p=0.02$) and *Actinobacteria* ($p=0.02$) (figure 2). Theoretically, this
257 discrepancy could be caused by isolation of different bacterial populations: e.g. bacteria in the outer
258 mucus layer (biopsy wash) and inner mucus layer or within the tissue (biopsy) of which the latter may
259 remain attached to the biopsy after vortexing in PBS. Alternatively, we hypothesized that one of the
260 buffers in the Ultra-deep microbiome prepkit could cause premature lysis of especially Gram-negative
261 bacteria to which the biopsy washes were not exposed. Therefore, we tested the effect of strategy 1
262 on bacterial composition by applying DNA isolation on a pure bacterial culture; a mock community.
263 We compared the full protocol (similarly to the biopsy) or a part of the protocol (similarly to the biopsy
264 wash, Path A in Figure 1). We found that the full strategy 1 protocol, which includes selective cell lysis
265 and DNase treatment, resulted on average in a 15-fold lower signal of γ -Proteobacteria ($p=0.03$) and
266 a 27-fold lower signal of *Bacteroidetes* ($p=0.03$) as opposed to the incomplete protocol (see
267 supplementary figure 2). This suggests that strategy 1 disfavors isolation of Gram-negative bacteria
268 versus Gram-positive bacteria.

269

270 *The microbial community composition is preserved with 0.0125% saponin while selectively lysing*
271 *human cells*

272 Because strategy 1 changed microbial composition, strategy 2 was established using similar, but
273 tweakable steps, including tissue digestion with proteinase K, selective human cell lysis with soaps and
274 DNase treatment to remove host cell DNA after lysis. First, we tested which soap would effectively lyse

275 human cells without affecting the composition of the microbiome. Hence, we tested whether
276 treatment with different concentrations of Triton and saponin would result in bacterial DNA release
277 (eDNA).

278 First, pure bacterial cultures of *Streptococcus gallolyticus* (*Firmicutes*), *Bacteroides vulgatus*
279 (*Bacteroidetes*), *Escherichia coli* (γ -*Proteobacteria*) and *Collinsella intestinalis* (*Actinobacteria*) (figure
280 3a) were exposed to Triton and saponin. While *C. intestinalis* was resistant to lysis under all conditions,
281 *B. vulgatus* and *S. gallolyticus* were susceptible to lysis in the presence of Triton, with higher
282 concentrations leading to more eDNA. Triton did not affect the amount of eDNA of *E. coli* and *C.*
283 *intestinalis*. Saponin was shown to be a milder soap, as it only increased eDNA of *E. coli* at a
284 concentration of 0.1%.

285 Secondly, it was tested whether Triton and saponin would change the bacterial composition of tissue
286 from 2 patients (patient 1 and patient 2). DNA was isolated using the protocol including either saponin
287 (0.0125% or 0.025%) or Triton (0.025% or 0.006%) and the relative abundance of *Firmicutes*,
288 *Bacteroidetes*, *Actinobacteria* and γ -*Proteobacteria* was compared to isolations performed without
289 soap (PBS). For each phylum, the soap creating the lowest distance to PBS was ranked 1, followed by
290 rank 2, 3, and 4 (supplementary figure 3). Saponin 0.0125% led to the smallest difference in abundance
291 with PBS across all bacterial phyla (supplementary figure 3, figure 3b). Triton 0.006% and Triton 0.025%
292 ranked significantly higher ($p < 0.05$ and $p < 0.001$ respectively) (figure 3b). Additionally, the *Firmicutes*
293 to *Bacteroidetes* ratio was only maintained in the saponin 0.0125% condition (supplementary figure
294 4). Thus, saponin 0.0125% preserved relative bacterial composition within the samples.

295 Thirdly, we tested whether saponin 0.0125% would mediate human cell lysis by exposing 2 sets of 3
296 tissue homogenates (size: ~5 mm) to either PBS or saponin 0.0125%. The tissue supernatant treated
297 with saponin contained more than twice the amount of eDNA compared to tissue in PBS only ($p = 0.05$)
298 (figure 3c). This shows that exposure of tissue to saponin 0.0125% induces selective lysis of host cells,
299 while keeping bacterial cells intact and maintaining bacterial composition.

300

301 *Strategy 2 increases the bacterial to human signal*

302 After specific eDNA release of human tissue, DNase treatment should be performed to degrade the
303 released human DNA. Degradation of eDNA significantly reduced free DNA in the supernatant (figure
304 4b). The significant lower DNA yield after DNase treatment was associated with an increased bacterial
305 signal in qPCR ($p = 0.004$) (figure 4a), which is indicative of a greater bacterial to human DNA fraction in
306 the tissue DNA isolate.

307 Next, we validated our protocol on biopsies from resected colons, which were taken using a forceps to
308 represent clinical biopsies taken during colonoscopy (size: ~2 mm). 20 biopsies of 2 different patients

309 were taken; patient 1 and 2. Each biopsy was matched with a biopsy that was isolated under similar
310 conditions, but without DNase treatment. DNase treatment reduced the human signal in qPCR to 0.53
311 (CI:0.42-0.65), but increased the bacterial signal 6.8-fold (CI: 2.2-10.52) (figure 3d). Triton 0.006% and
312 saponin 0.0125% gave an enrichment of greater than 4 in both patients (figure 3c). Interestingly, also
313 in absence of soap (PBS control) DNase treatment resulted in bacterial signal enrichment. This could
314 be explained by the presence of human eDNA due to human cell lysis that may occur during repetitive
315 heating and centrifugation. Ultimately, the bacterial enrichment protocol of strategy 2 was applied in
316 an independent laboratory to isolate bacterial DNA from fish gills. Use of saponin 0.0125% and DNase
317 treatment doubled the bacterial in qPCR and reduced host signal by factor 135 times, indicating that
318 our enrichment protocol is reproducible and applicable for a wider variety of tissues (see
319 supplementary table 2).

320 Taken together, our results show that strategy 2, including host cell lysis with 0.0125% saponin and
321 DNase treatment, successfully decreases human DNA in the sample and boosts the bacterial signal.

322

323 *Bacterial composition of human colon tissue by shotgun metagenomics resembles that previously
324 reported by 16S rRNA analysis*

325 Finally, we applied our newly developed approach to clinically acquired colonic biopsies that were
326 isolated using our optimized bacterial DNA isolation protocol (supplementary file 1). After degradation
327 of the human DNA, remaining DNA was extracted and analysed with shotgun metagenome
328 sequencing. Metagenomic analysis revealed that the most common phyla were *Firmicutes* (49.5%),
329 *Bacteroidetes* (22.2%), *Actinobacteria* (10.3%), *Proteobacteria* (7.7%), *Verrocumicrobia* (0.6%) and
330 others (9.7%). We compared our data to bacterial composition of human colon tissues reported in
331 literature. Thus far, shotgun metagenomics of microbiomes from tissue samples has been impeded by
332 lack of DNA yield, so shotgun metagenomics has not been reported for colonic biopsies before. Here,
333 we compared our data to samples sequenced by 16S rRNA sequencing (table 1). We found a
334 comparable distribution of bacterial phyla. Furthermore, the Shannon diversity of our study (3.2) was
335 within range of other studies (2.4-3.7). Lastly, our study resulted in an average pairwise UniFraq
336 distance of 0.54 (Fig 5b) which was similar to the UniFraq distance reported in Momozawa *et al.* (0.55).
337 Taken together, with our optimized bacterial DNA isolation protocol (strategy 2) in combination with
338 shotgun metagenomic sequencing, we were able to reproduce previously reported tissue microbial
339 profiles. To our knowledge, this is the first time that colon tissue profiles have been reported with
340 shotgun metagenomics and whereby PCR-induced bias has been omitted.

341

342 **Discussion**

343 Bacterial DNA isolation from tissues is complicated by large amounts of host DNA. While several
344 strategies, protocols and commercial kits have been developed to tackle this problem, so far none of
345 these considered all elements that we considered important for analysis of tissue microbiomes. In this
346 study we developed a protocol, inspired by Molzym (33), Hasan *et al.* (8), and the Human microbiome
347 project (HMP) (21), that enriched bacterial DNA through selective lysis of host DNA with 0.0125%
348 saponin and subsequent DNase treatment. This resulted in a bacterial DNA isolate in which all bacterial
349 subsets were represented, without inducing lysis of bacterial cells or skewing bacterial composition in
350 clinical samples. Of note, our strategy was shown to work also on fish gills and hence can be applied
351 or tailored to other tissues in a similar manner.

352 We started out testing the Ultra-Deep Microbiome prep-kit (Molzym) in combination with bead-
353 beating (strategy 1), because both methods perform well in microbiome research (4, 9, 11, 14, 16, 34).
354 The inclusion of bead-beating enhanced isolation of all bacterial phyla, particularly *Actinobacteria*
355 (supplementary figure 1). Furthermore, we noticed that the detection of Gram-negative bacteria could
356 be improved by introducing a PBS wash, which we suspect to be caused by the premature lysis of
357 Gram-negative bacteria during the bacterial enrichment steps of this kit (supplementary figure 2). This
358 important limitation has been suggested before (35).

359 The protocol that we set-up (strategy 2) is an extended version of the protocol that we developed for
360 processing fecal samples (21). This protocol has been modified from the HMP protocol and includes an
361 enzymatic lysis step with mutanolysin, heat-shock and bead-beating. Our bead-beating process has
362 been optimized on a cultured mock community that includes gut bacteria with different susceptibility
363 to lysis. Importantly, fine-tuning of bead-beating speed and duration may be required for each specific
364 bead-beater. It has been questioned whether bead-beating improves bacterial DNA isolation from
365 tissues (36), because it may contribute to some level of DNA degradation (20, 36). However, according
366 to more recent studies, bead-beating does not cause DNA shearing (6, 10) and results in identification
367 of extra species in tissue isolates (18). In our protocol and other studies, bead-beating has proven to
368 result in higher DNA yields (36), more efficient isolation of Gram-positive bacteria (9, 16), a community
369 structure that most closely resembles bacterial input (4), and higher microbial diversity (10). Together,
370 these findings suggest that bead-beating should be included, however it has to be performed with the
371 right type of beads under the right conditions.

372 Another important step in our protocol is the removal of human DNA from the isolate. Previous studies
373 have reported human DNA removal (by qPCR) of roughly >90% in saliva and subgingival plaque samples
374 with Molysis (15) and >90% in nasopharyngeal aspirate using TurboDNase (8). Our results showed a

375 reduction of human DNA (by qPCR) of roughly 50% in tissue biopsies. To test whether TurboDNase was
376 working well, we tested whether TurboDNase was able to remove DNA in DNA isolates. These results
377 (not shown) showed that TurboDNase decreased the DNA concentration by 94%. We conclude that a
378 large amount of human DNA is still inaccessible for DNase-mediated degradation during our protocol.
379 Interestingly, the use of TurboDNase without detergent, also increased the bacterial to human DNA
380 ratio. This was also observed before (8). In the study of *Hasan et al.*, the use of detergent resulted in a
381 higher pathogen to host DNA ratio, while the attributable effect of detergent was not evident in our
382 study (figure 4c). We suspect that our results are impacted by variety in tissue biopsy size and hence
383 total amount of human DNA. A 2-fold decrease of human DNA signal was associated with an ~7-fold
384 increase in bacterial DNA signal in qPCR, indicating that human DNA content interferes strongly with
385 the bacterial DNA signal. While it is evident that human DNA remains in the isolate, we have chosen
386 to stick to a mild detergent (saponin 0.0125%) to prevent distortion of the microbiome profile, which
387 may come at cost of complete human cell lysis.

388 While our protocol is optimized for our research goal, it may require small adaptations for other
389 research objectives. For example, since an important part of our protocol is a DNase step in which
390 bacterial DNA is still protected by cell wall separation, this DNA isolation protocol may not be optimal
391 to detect bacteria without a cell-wall, like mycoplasma. Study of these types of bacteria requires a
392 different approach, of which antibody mediated filtering of bacterial DNA may still be an option. Small
393 adaptations in the protocol may also improve the detection of certain bacterial subtypes, albeit at the
394 cost of less efficient isolation of others. For example, Streptococci DNA-yields may be even higher with
395 more intense bead-beating than in the current protocol. However, we chose to analyze the
396 microbiome as unbiased as possible.

397 Our shotgun metagenome sequencing results showed that we were able to produce bacterial profiles
398 with Shannon diversity and UniFrac distance that is comparable to 16S rRNA sequencing data of colon
399 tissues, indicating that this sequencing method can be used for tissue microbiome profiling.
400 Nevertheless, small differences were observed between the bacterial composition of our study
401 (shotgun) and three other studies (16S rRNA); we observed fewer *Bacteroidetes* and more
402 *Actinobacteria*. Importantly, similar differences were found in another study comparing shotgun
403 metagenomics with 16S rRNA in stool samples. Ranjan *et al.* reported fewer *Bacteroidetes* with
404 shotgun metagenomics (14-21%) than with 16S rRNA sequencing (34%) and more *Actinobacteria* with
405 shotgun metagenomics (4-7%) than with 16S rRNA sequencing (0.4%) (12). Hence, the differences
406 observed between the colon tissue microbiomes of our and other studies, may be caused by
407 amplification biases.

408 Taken together, here we show for the first time a protocol to be used for tissue shotgun metagenomics
409 of colon biopsies that omits 16S rRNA amplification steps. Our protocol is mild enough to maintain
410 isolation of Gram-negative bacteria, while it also includes steps that facilitate isolation of sturdy
411 bacteria like *Actinobacteria* and *Firmicutes*. Importantly, our protocol can also be tailored to isolate
412 microbiomes from other tissues, as has been demonstrated by its application to fish gills by an
413 independent laboratory. In other words, our protocol can be immediately used for analysis of stool
414 and colon tissue samples, but may also serve as a foundation for isolation protocols of other study
415 material. Moreover, while we chose shotgun metagenome sequencing, our protocol may also be used
416 in combination with 16S rRNA amplicon sequencing. Thereby our protocol is applicable to many
417 different research settings where it contributes to improved bacterial detection and facilitates analysis
418 of a wide spectrum of bacteria. This way our protocol may contribute to both fundamental and clinical
419 microbiome research, further illuminating the role of microbiome in health and disease.

420

421

422

423

424 **References**

425 1. Lynch SV, Pedersen O. 2016. The Human Intestinal Microbiome in Health and Disease. *N Engl*
426 *J Med* 375:2369-2379.

427 2. Saffarian A, Mulet C, Regnault B, Amiot A, Tran-Van-Nhieu J, Ravel J, Sobhani I, Sansonetti PJ,
428 Pedron T. 2019. Crypt- and Mucosa-Associated Core Microbiotas in Humans and Their
429 Alteration in Colon Cancer Patients. *MBio* 10.

430 3. Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA,
431 Sikaroodi M, Gillevet PM. 2012. Colonic mucosal microbiome differs from stool microbiome in
432 cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. *Am J Physiol*
433 *Gastrointest Liver Physiol* 303:G675-85.

434 4. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. 2012. Evaluation of methods for the extraction
435 and purification of DNA from the human microbiome. *PLoS One* 7:e33865.

436 5. Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Ponten T, Gupta R, Licht
437 TR. 2014. Choice of bacterial DNA extraction method from fecal material influences
438 community structure as evaluated by metagenomic analysis. *Microbiome* 2:19.

439 6. Wagner Mackenzie B, Waite DW, Taylor MW. 2015. Evaluating variation in human gut
440 microbiota profiles due to DNA extraction method and inter-subject differences. *Front*
441 *Microbiol* 6:130.

442 7. Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP,
443 Patel R. 2016. Comparison of microbial DNA enrichment tools for metagenomic whole genome
444 sequencing. *J Microbiol Methods* 127:141-145.

445 8. Hasan MR, Rawat A, Tang P, Jithesh PV, Thomas E, Tan R, Tilley P. 2016. Depletion of Human
446 DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by
447 Next-Generation Sequencing. *J Clin Microbiol* 54:919-27.

448 9. Knudsen BE, Bergmark L, Munk P, Lukjancenko O, Prieme A, Aarestrup FM, Pamp SJ. 2016.
449 Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome
450 Composition. *mSystems* 1.

451 10. Lim MY, Song EJ, Kim SH, Lee J, Nam YD. 2018. Comparison of DNA extraction methods for
452 human gut microbial community profiling. *Syst Appl Microbiol* 41:151-157.

453 11. Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ, Hager KR, Vo AT, Brittnacher MJ, Radey
454 MC, Hayden HS, Eng A, Miller SI, Borenstein E, Hoffman LR. 2019. Human and Extracellular
455 DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields
456 Optimized Viable Microbiome Profiles. *Cell Rep* 26:2227-2240 e5.

457 12. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. 2016. Analysis of the microbiome:
458 Advantages of whole genome shotgun versus 16S amplicon sequencing. *Biochem Biophys Res*
459 *Commun* 469:967-77.

460 13. Taddese R, Garza DR, Ruiter LN, de Jonge MI, Belzer C, Aalvink S, Nagtegaal ID, Dutilh BE, Boleij
461 A. 2019. Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. *bioRxiv*
462 doi:10.1101/2019.12.14.876367:2019.12.14.876367.

463 14. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K. 2018. Improving saliva
464 shotgun metagenomics by chemical host DNA depletion. *Microbiome* 6:42.

465 15. Horz HP, Scheer S, Vianna ME, Conrads G. 2010. New methods for selective isolation of
466 bacterial DNA from human clinical specimens. *Anaerobe* 16:47-53.

467 16. Biesbroek G, Sanders EA, Roeselers G, Wang X, Caspers MP, Trzcinski K, Bogaert D, Keijser BJ.
468 2012. Deep sequencing analyses of low density microbial communities: working at the
469 boundary of accurate microbiota detection. *PLoS One* 7:e32942.

470 17. Bjerre RD, Hugerth LW, Boulund F, Seifert M, Johansen JD, Engstrand L. 2019. Effects of
471 sampling strategy and DNA extraction on human skin microbiome investigations. *Sci Rep*
472 9:17287.

473 18. Yu G, Hu N, Wang L, Wang C, Han XY, Humphry M, Ravel J, Abnet CC, Taylor PR, Goldstein AM.
474 2017. Gastric microbiota features associated with cancer risk factors and clinical outcomes: A
475 pilot study in gastric cardia cancer patients from Shanxi, China. *Int J Cancer* 141:45-51.

476 19. de Boer R, Peters R, Gierveld S, Schuurman T, Kooistra-Smid M, Savelkoul P. 2010. Improved
477 detection of microbial DNA after bead-beating before DNA isolation. *J Microbiol Methods*
478 80:209-11.

479 20. Moen AE, Tannaes TM, Vatn S, Ricanek P, Vatn MH, Jahnsen J. 2016. Simultaneous purification
480 of DNA and RNA from microbiota in a single colonic mucosal biopsy. *BMC Res Notes* 9:328.

481 21. Couto Furtado Albuquerque M, van Herwaarden Y, Kortman GAM, Dutilh BE, Bisseling T, Boleij
482 A. 2017. Preservation of bacterial DNA in 10-year-old guaiac FOBT cards and FIT tubes. *J Clin*
483 *Pathol* 70:994-996.

484 22. Yang YW, Chen MK, Yang BY, Huang XJ, Zhang XR, He LQ, Zhang J, Hua ZC. 2015. Use of 16S
485 rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant
486 Bacteria in Mouse Feces. *Appl Environ Microbiol* 81:6749-56.

487 23. Bacchetti De Gregoris T, Aldred N, Clare AS, Burgess JG. 2011. Improvement of phylum- and
488 class-specific primers for real-time PCR quantification of bacterial taxa. *J Microbiol Methods*
489 86:351-6.

490 24. Bennis S, Guissi S, Mohamed IH, Ouldim K, Tazi M. Recherche de mutation V600E du gène B-
491 raf dans trois types de tumeurs cancéreuses: colorectale, mélanome et cérébrale.

492 25. Gorissen M, Bernier NJ, Nabuurs SB, Flik G, Huisng MO. 2009. Two divergent leptin paralogues
493 in zebrafish (*Danio rerio*) that originate early in teleostean evolution. *J Endocrinol* 201:329-39.

494 26. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S
495 rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial
496 populations. *Appl Environ Microbiol* 56:1919-25.

497 27. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP,
498 Wagner M. 1998. Combined molecular and conventional analyses of nitrifying bacterium
499 diversity in activated sludge: *Nitrosococcus mobilis* and *Nitrospira*-like bacteria as dominant
500 populations. *Appl Environ Microbiol* 64:3042-51.

501 28. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial
502 communities. *Appl Environ Microbiol* 71:8228-35.

503 29. Djuric Z, Bassis CM, Plegue MA, Sen A, Turgeon DK, Herman K, Young VB, Brenner DE, Ruffin
504 MT. 2019. Increases in Colonic Bacterial Diversity after omega-3 Fatty Acid Supplementation
505 Predict Decreased Colonic Prostaglandin E2 Concentrations in Healthy Adults. *J Nutr* 149:1170-
506 1179.

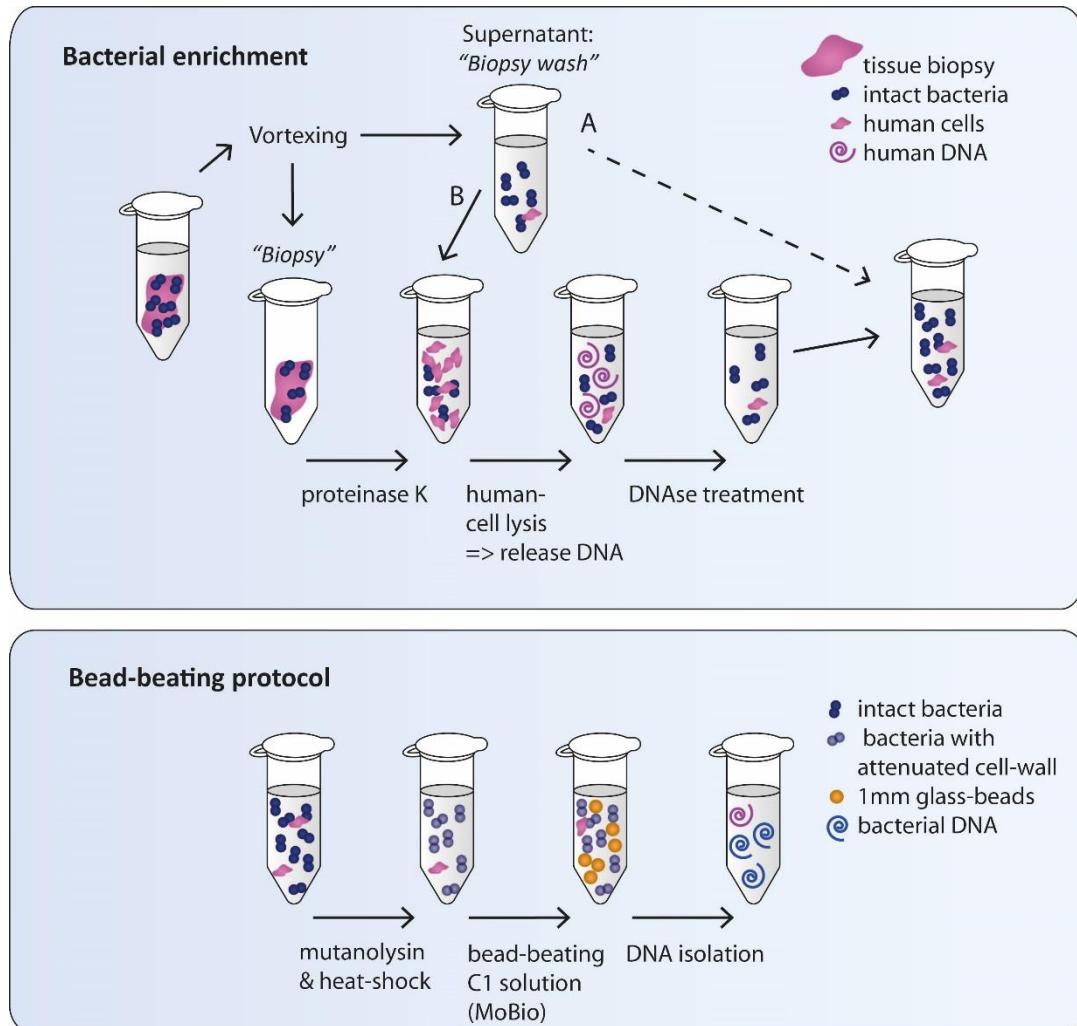
507 30. Kiely CJ, Pavli P, O'Brien CL. 2018. The role of inflammation in temporal shifts in the
508 inflammatory bowel disease mucosal microbiome. *Gut Microbes* 9:477-485.

509 31. Momozawa Y, Deffontaine V, Louis E, Medrano JF. 2011. Characterization of bacteria in
510 biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S
511 rRNA gene in human. *PLoS One* 6:e16952.

512 32. Watt E, Gemmell MR, Berry S, Glaire M, Farquharson F, Louis P, Murray GI, El-Omar E, Hold GL.
513 2016. Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy
514 for endoscopic colonic biopsies. *Microbiome* 4:61.

515 33. Molzym. <https://www.molzym.com/next-generation-sequencing/ultra-deep-microbiome-prep>. accessed on 21-08-2020.

516 34. Allali I, Delgado S, Marron PI, Astudillo A, Yeh JJ, Ghazal H, Amzazi S, Keku T, Azcarate-Peril MA.
517 2015. Gut microbiome compositional and functional differences between tumor and non-
518 tumor adjacent tissues from cohorts from the US and Spain. *Gut Microbes* 6:161-72.

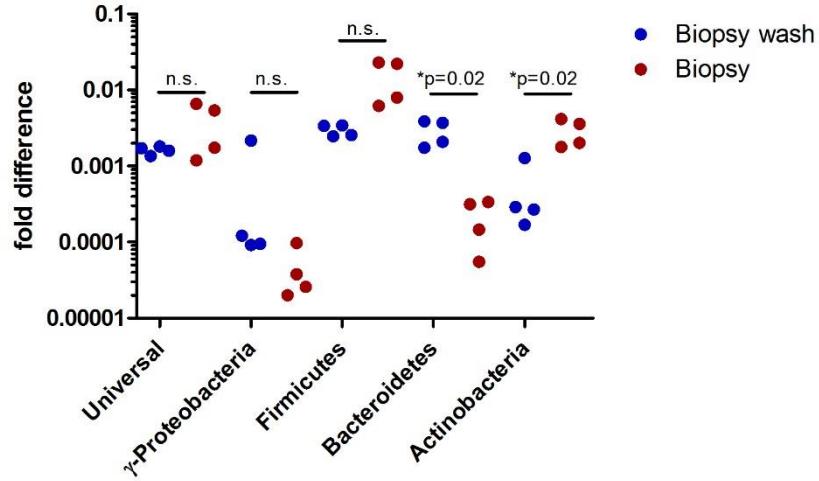

519 35. Loonen AJ, Bos MP, van Meerbergen B, Neerken S, Catsburg A, Dobbelaer I, Penterman R,
520 Maertens G, van de Wiel P, Savelkoul P, van den Brule AJ. 2013. Comparison of pathogen DNA
521 isolation methods from large volumes of whole blood to improve molecular diagnosis of
522 bloodstream infections. *PLoS One* 8:e72349.

523

524 36. Carbonero F, Nava GM, Benefiel AC, Greenberg E, Gaskins HR. 2011. Microbial DNA extraction
525 from intestinal biopsies is improved by avoiding mechanical cell disruption. *J Microbiol*
526 *Methods* 87:125-7.

527

528

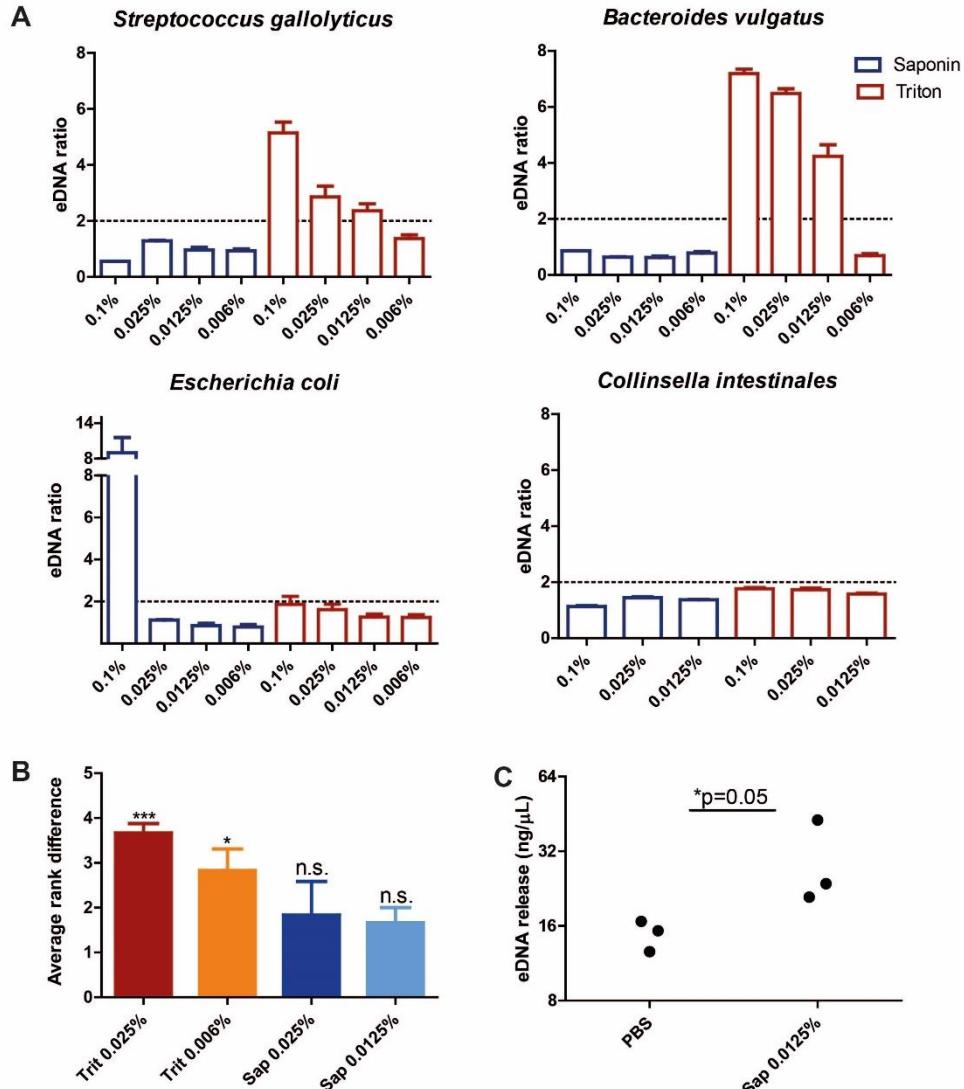


529

530 **Figure 1. Schematic drawing of DNA isolation protocol strategy 2.**

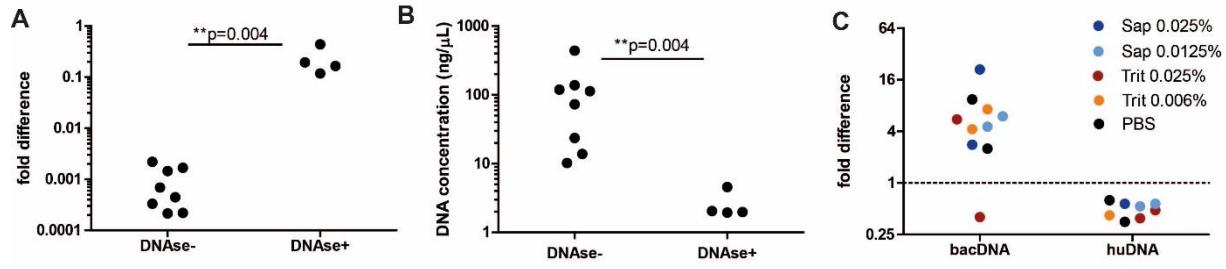
531 **A. Bacterial enrichment:** A tissue biopsy is vortexed in PBS to separate bacteria from the biopsy. The biopsy is
532 retrieved for digestion with proteinase K, while the supernatant (biopsy wash) is saved on ice and added back for
533 DNA isolation at a later timepoint (timepoint A or B; B in the final protocol). Bacteria in the biopsy wash are
534 thereby minimally exposed to reagents that could cause possible lysis. Subsequently, 0.0125% saponin in PBS is
535 added to the cell suspension inducing lysis of human cells, but not bacterial cells. DNA in the supernatant is
536 depleted through DNase treatment. The remaining sample has reduced human DNA content and still intact
537 bacteria.

538 **B. Bead-beating protocol:** The sample is further processed by our previously optimized bead-beating protocol.
539 Mutanolysin treatment followed by heat-shock are applied to attenuate cell-walls of Gram-positive bacteria (e.g.
540 *Streptococci* and *Actinobacteria*) to make them more susceptible for mechanical lysis. Subsequently, the sample
541 is bead-beated with 1 mm glass-beads in C1 buffer of the Powerlyser powersoil DNA isolation kit and further
542 isolated according to the manufacturer's protocol. The resulting DNA isolate is enriched for bacterial DNA.

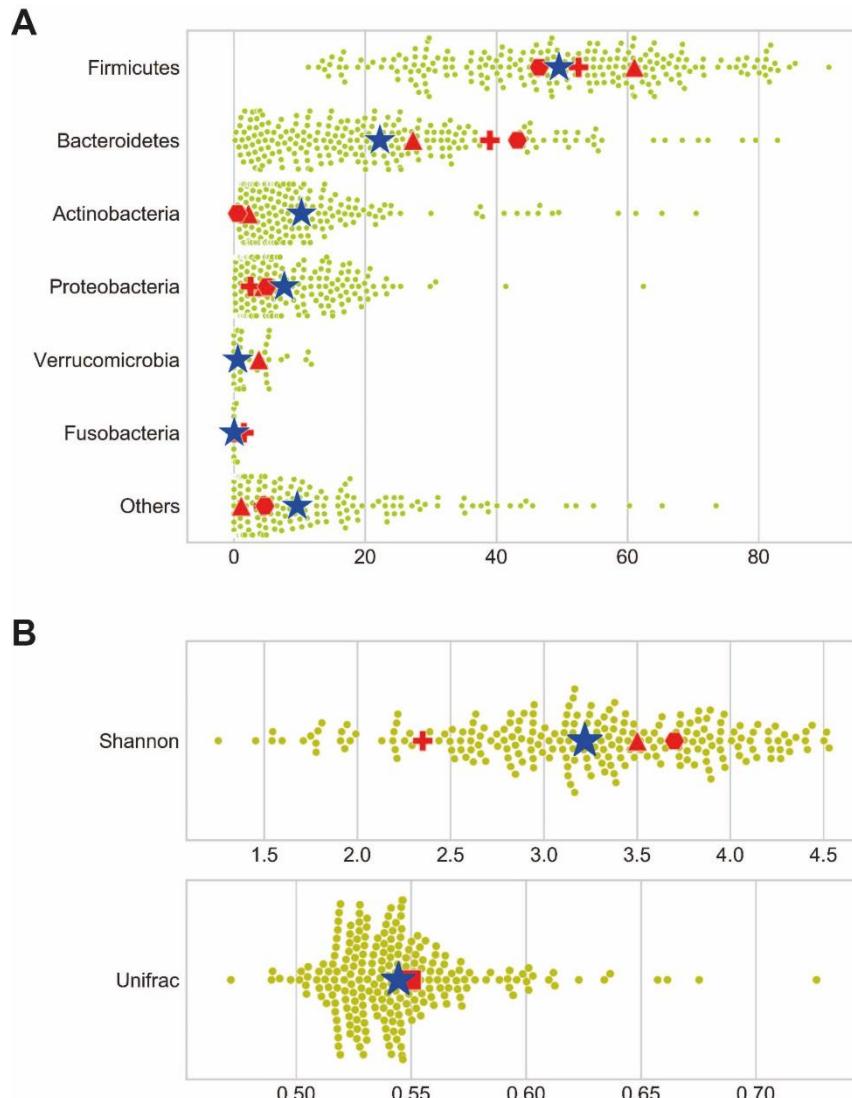

543

544 **Figure 2. Whole tissue digestion is required to isolate all bacteria.** Two matched biopsies (~5 mm) were washed
545 in PBS, after which DNA of the Biopsy wash and the Biopsy was isolated separately. For every DNA isolate a
546 duplicate was run, of which each value is plotted relative to the mock community (ΔCt). Paired T-tests revealed
547 that DNA from the biopsy isolates contained a similar bacterial fraction, albeit with fewer *Bacteroidetes* and more
548 *Actinobacteria*. Hence, whole tissue digestion is required to analyze the complete bacterial component of the
549 tissue.

550


551

552


553

554 **Figure 3. Saponin 0.0125% induces human cell lysis, without inducing bacterial cell lysis.** The effect of Triton
555 and saponin on bacterial cell lysis was measured. This experiment was performed for *Streptococcus galolyticus*
556 (*Firmicutes*), *Bacteroides vulgatus* (*Bacteroidetes*), *Escherichia coli* (γ -*Proteobacteria*) and *Collinsella intestinalis*
557 (*Actinobacteria*). An increase of more than 2 was considered relevant. Results show that Triton affects bacterial
558 cell lysis in *Streptococcus galolyticus* and *Bacteroides vulgatus*, but not in *Escherichia coli* and *Collinsella*
559 *intestinalis*. Saponin only induced cell lysis at 0.1% in *E. coli*. B) Biopsies were isolated with strategy 2 in
560 combination with Triton (Trit) and saponin (Sap) at different concentrations. The relative bacterial signal for
561 *Firmicutes*, *Bacteroidetes*, *Actinobacteria* and γ -*Proteobacteria* was calibrated with the universal 16S rRNA signal
562 (ΔCt) and was compared to PBS ($\Delta\Delta Ct$). Similarity to PBS was calculated through ranking using the Friedman test.
563 Both saponin concentrations most closely resembled bacterial composition in PBS and hence preserved bacterial
564 composition at phylum level in the colon biopsies. C) DNA release of biopsies was measured after exposure to
565 either PBS or saponin 0.0125%. More external DNA (eDNA) was measured after incubation with saponin 0.0125%
566 ($p=0.05$), suggesting that human cell lysis was induced, although eDNA was also detected in the sample with PBS
567 alone.

568
569 **Figure 4. DNAse treatment lowers total DNA yield and improves bacterial to human DNA signal.** A+B) To test
570 the effectiveness of bacterial DNA enrichment, isolations were performed on tissues (~5 mm) with or without
571 the biopsy wash included in the DNAse treatment (DNAse+ and DNAse- respectively, which represent path B and
572 A respectively in figure 1). DNAse treatment results higher bacterial signal ($p=0.004$) (A) which corresponds with
573 a lower DNA yield ($p=0.004$) (B). These results suggest that DNAse treatment on the PBS wash enriches the
574 bacterial DNA content of the isolate, illustrating that PBS wash should be included during DNAse treatment (path
575 B in figure 1). C) To test the effect of enrichment on small-sized biopsies, 5 pairs of forceps biopsies were taken
576 from resected colons of 2 patients. Each pair was isolated with a different soap condition of which 1 sample was
577 isolated with DNAse and the other without. The fold difference between these samples (ΔCt) is plotted. DNAse
578 treatment resulted in a 1.9-fold reduction of human DNA signal (huDNA ratio 0.53, CI: 0.42-0.65). The bacterial
579 signal was enriched 6.8-fold on average (CI: 2.2-10.52) upon DNA treatment. Triton 0.006% and saponin 0.0125%
580 with DNAse rendered more than 4.3 and 4.5-fold increased bacterial signal respectively in both patients.

581

582

583 **Figure 5. Human colon tissue microbiomes of our study (shotgun metagenomics) versus other studies (16S**
584 **rRNA).** A) The relative abundance of bacterial phyla is shown for study (dots) and the average is marked by a blue
585 star. Averages of Diuric *et al.* (red triangle), Kiely *et al.* (red cross) and Watt *et al.* (red hexagon) are plotted in the
586 graph. The Shannon diversity index and UniFrac distance are represented in B), in which red square represents
587 Momozawa *et al.*

588

589 **Table 1. Microbiome profiles of human colon biopsies of our study (WGS) resemble those that have been**
590 **previously published (16S rRNA).** We compared our microbiome profiles to those reported in Djuric *et al.*, Kiely
591 *et al.*, Watt *et al.* and Momozawa *et al.*. These results are represented with a symbol in figure 5. In this table we
592 report the relative abundances of bacterial phyla in percentage. Also, the Shannon index, inverse Simpson index
593 (I. Simpson index) and UniFrac distance (UniFrac d.) are given when reported.

594

	Our study	Djuric <i>et al.</i>	Kiely <i>et al.</i>	Watt <i>et al.</i>	Momozawa <i>et al.</i>
Symbol Fig.5	Blue star	Red triangle	Red cross	Red hexagon	Red square
<i>Firmicutes</i>	49.5	61	52.5	46.5	--
<i>Bacteroidetes</i>	22.2	27.3	39	43.2	--
<i>Actinobacteria</i>	10.3	2.2	--	0.5	--
<i>Proteobacteria</i>	7.7	4.5	2.5	5.1	--
<i>Verromicrobia</i>	0.6	3.8	--	--	--
<i>Fusobacteria</i>	0.0	0.1	1.5	--	--
Others	9.7	1.1	4.5	4.7	--
Shannon index	3.2	3.5	2.4	3.7	--
I.Simpson index	5.8	20.3	--	20	--
UniFrac d.	0.54	--	--	--	0.55

595

596 **Supplementary Data**

597

598 **Supplementary Table 1. Primers for qPCR.**

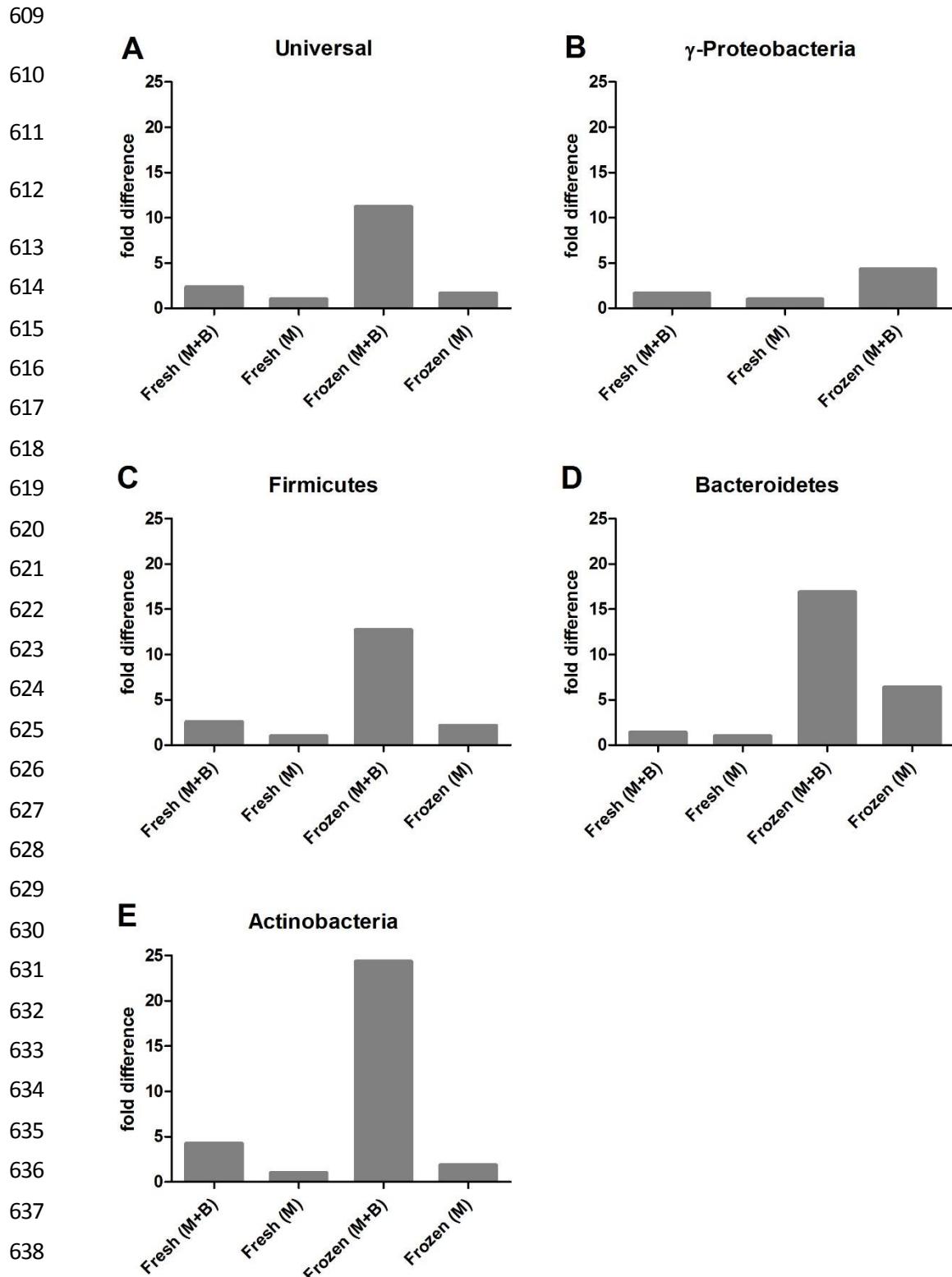
599

Target	Forward primer	Reverse primer	References
Universal bacteria	926F: AAACTCAAAGAATTGACGG	1062R: CTCACRRACGAGCTGAC	Yang <i>et al.</i> & De Gregoris <i>et al.</i>
Firmicutes	928FirmF: TGAAACTYAAAGGAATTGACG	1040FirmR: ACCATGCACCACCTGTC	De Gregoris <i>et al.</i>
Bacteroidetes	Bac960F: GTTAATTGATGATACGCGAG	Bac1100R: TTAASCCGACACCTCACGG	Yang <i>et al.</i>
γ-proteobacteria	1080γF: TCGTCAGCTCGTGYGTGA	γ1202R: CGTAAGGGGCCATGATG	De Gregoris <i>et al.</i>
Actinobacteria	Act664: TGTAGCGGTGGAATGCGC	Act941R: AATTAAGCCACATGCTCCGCT	Yang <i>et al.</i>
Human KRAS	P696: AGGCCTGCTGAAAATGACTG	P488: TGGATCATATTGTCACAAAA	Bennis <i>et al.</i>
Universal bacteria (used for fish gill experiment)	616F: AGAGTTGATYMTGGCTCAG	Eub338IR: GCTGCCTCCGTAGGAGT	Juretschko <i>et al.</i> , 1998 Amman <i>et al.</i> , 1990
Zebrafish	LepA gen: GACTGCACACTGAAGGAATC	Lep A gen: GCACTGCTCTAGAAAAGC	Gorissen <i>et al.</i> , 2009

600

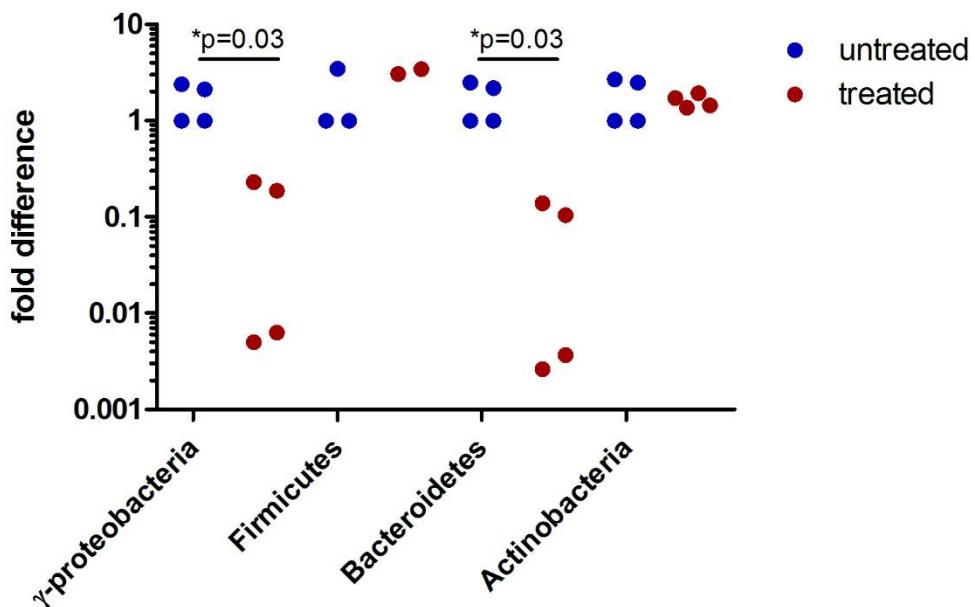
601

602


603 **Supplementary table 2. Bacterial enrichment using saponin 0.0125% and TurboDNase improves bacterial to**
604 **fish DNA ratio in qPCR.** DNA isolations were performed with and without DNase treatment. Ct values are given
605 in the upper part. In the lower part, the fold difference (FD) between the signal with and without DNA isolation
606 is shown.

	Without enrichment (Ct)		With enrichment (Ct)	
	Bacterial signal	Host signal	Bacterial signal	Host signal
Fish gill isolate	32.08	30.45	33.01	23.47
	35.47	31.02	33.22	22.96
	35.94	31.58		
	29.13	28.25		
	27.95	30.17		
Average	32.114	30.294	33.115	23.215

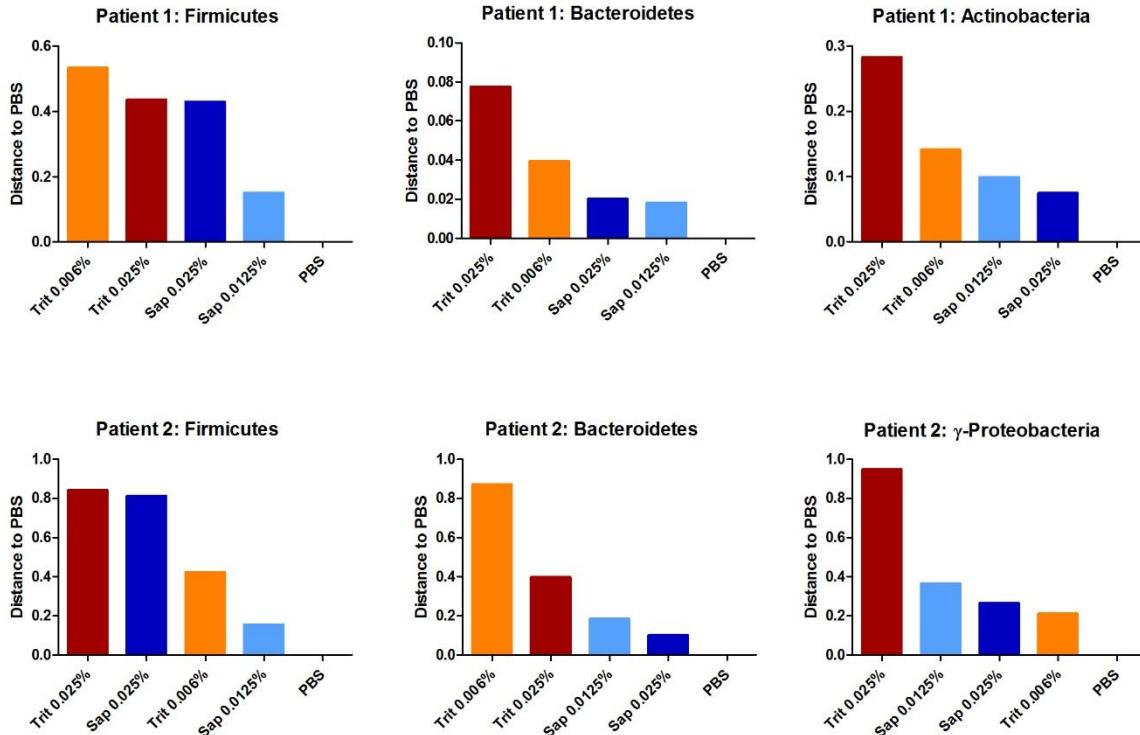
607


	$\Delta Ct = Ct \text{ with} - Ct \text{ without}$	
	FD Bacterial ($2^{\Delta Ct}$)	FD Host ($2^{\Delta Ct}$)
FD	2.001386775	0.0073962
1/FD	0.499653546	135.20456

608

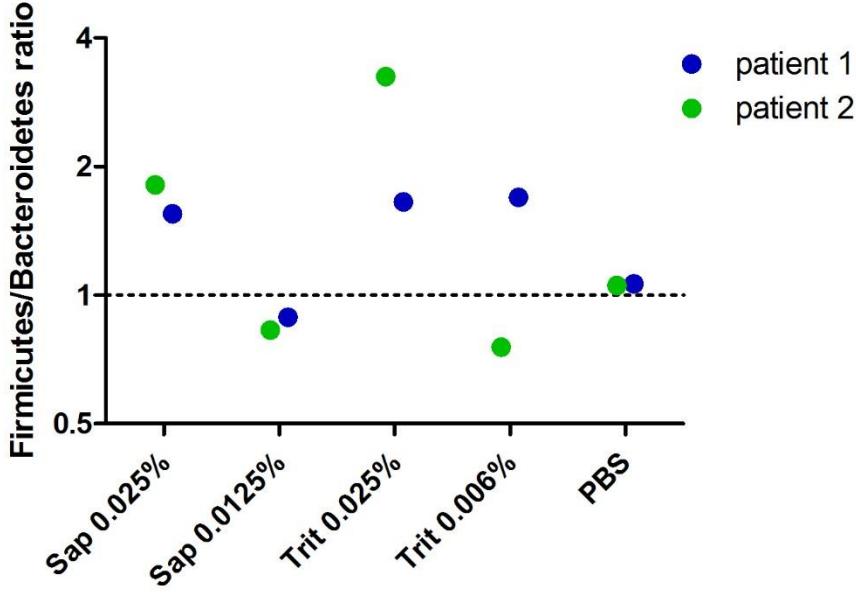
640 **Supplementary figure 1. Ultra-deep microbiome prep kit performs better frozen tissue in combination with**
641 **our optimized bead-beating protocol.** Healthy biopsies (~5 mm) from 1 patient were either snap-frozen (frozen)
642 or immediately isolated with the Ultra-deep microbiome prep kit (fresh). Isolation was either performed with the
643 full protocol provided by Molzym (M) or was combined with bead-beating (M+B). The fold difference represents
644 the bacterial signal relative to the positive control (feces) (ΔCt) and was compared to sample Fresh (M) ($\Delta\Delta Ct$).

645



646

647 **Supplementary figure 2. Ultra-Deep Microbiome prep on bacterial mock community results in**
648 **underrepresentation of γ-Proteobacteria and Bacteroidetes.** Two bacterial pellets (mock community) were
649 isolated with the full protocol (treated), whereas 2 pellets were isolated skipping proteinase K, mild lysis and
650 DNA treatment (untreated). To investigate alterations in bacterial composition, each sample was calibrated with
651 its own universal 16s rRNA signal (ΔCt) and was compared to one untreated sample ($\Delta\Delta Ct$). Each sample was run
652 as a PCR duplicate of which both data points were plotted. Mann-Whitney T-test revealed a significant decrease
653 compared to PBS for γ-Proteobacteria and Bacteroidetes.


654

655

656

657 **Supplementary figure 3. Effect of soap on bacterial composition.** Colonic biopsies (~3 mm) from 2 patients were
658 isolated with our protocol using different soaps and concentrations. The bacterial signal for *Firmicutes*,
659 *Bacteroidetes*, *Actinobacteria* and γ -*Proteobacteria* was calibrated with the universal 16S rRNA signal of the same
660 patient (ΔCt) and was compared to PBS sample of the same patient ($\Delta\Delta Ct$). Difference to PBS was plotted.
661

662

663 **Supplementary figure 4. Firmicutes to Bacteroidetes ratio is least affected by saponin 0.0125%.** This graph is
664 extracted from the same experiment as represented in supplementary figure 4. For both *Bacteroidetes* and
665 *Firmicutes* the signal was calibrated with the positive control (mock community) (ΔCt). The enrichment ratio was
666 calculated by $2^{-\Delta Ct(Firmicutes)}/2^{-\Delta Ct(Bacteroidetes)}$.

667

668

669 **Supplementary file 1: Protocol**

670 **Bacterial DNA isolation from tissue with bacterial enrichment and bead-beating.**

671

672 **Reference: Optimized DNA isolation method for microbiome analysis of human tissues.** *Carljin Bruggeling*¹,

673 *Daniel R. Garza*², *Soumia Achouiti*¹, *Wouter Mes*³, *Bas E. Dutilh*^{2,4}, *Annemarie Boleij*¹*

674

675 **Goal:**

676 This protocol is optimized for bacterial DNA isolation from human colon tissue samples (~2-5mm). During
677 bacterial enrichment, the biopsy is vortexed in PBS to release bacteria from the biopsy. This supernatant ("biopsy
678 wash") is added back to the sample, after the rest of the biopsy is made into a cell-suspension using proteinase
679 K. The sample is treated with a soap to lyse human cells, which is combined with TurboDNase treatment to digest
680 external DNA. Subsequently, intact bacteria in the sample are sensitized to lysis using Mutanolysin and heat-
681 shock. Lastly, bead-beating is used for mechanical lysis, which is followed by standard DNA isolation procedures.

682 Hereby we provide a stepwise protocol, in which blue text represents suggested actions.

683

684 **Material**

- 685 ✓ PBS: Tris-HCL(220/12257974/1110, Braun)
- 686 ✓ Proteinase K (19133, Qiagen)
- 687 ✓ Saponin 0.0125% (47036-50G, Sigma-Aldrich) in PBS, 0.2µm filtered
- 688 ✓ TurboDNase with 10x buffer (AM2239, Qiagen)
- 689 ✓ Mutanolysin 10 KU in 2mL ddH2O (SAE0092, Sigma Aldrich)
- 690 ✓ DNeasy Powerlyzer Powersoil kit (Qiagen)
- 691 ✓ (previously known as MoBio Powerlyzer PowerSoil DNA isolation kit)
 - 692 ○ Bead solution
 - 693 ○ Solution C1 to C6
 - 694 ○ Beads (0.1 mm glass beads)
 - 695 ○ 3 sets of 2 mL collection tubes
 - 696 ○ 1 set of spin filters

697

698 **Preparation:**

699 Assure the following:

- 700 ✓ Clean desk with chloride
- 701 ✓ Centrifuge at 4°C
- 702 ✓ 70, 37, 65 and 95 °C incubator
- 703 ✓ Ice bucket
- 704 ✓ Bead-beater available

705

706 **Part 1: Bacterial enrichment**

707 PBS wash and host tissue digestion:

- 708 1. Prepare 2 sets of 1.5 mL Eppendorf tubes, of which 1 set with 500 μ L PBS
- 709 2. Put frozen biopsies in 500 μ L PBS in 1.5 mL tube (use pipettip)
- 710 3. Vortex tubes 5 min (speed 8/9)
Make PBS/Proteinase K mix
- 712 4. Transfer the supernatant (“biopsy wash”) to a new tube and keep on ice
- 713 5. If biopsy is ~2 mm: add 197 μ L of PBS and 3 μ L of Proteinase K to biopsy
For larger biopsies: add 180 μ L of PBS and 20 μ L of Proteinase K to biopsy
- 715 6. Short spin down
- 716 7. Incubate samples at 70°C, 400 rpm 15 minutes
Set incubator to 37°C
- 718 8. Vortex shortly to assist tissue to fall apart
- 719 9. Add 700 μ L PBS to “biopsy wash” and add to matched biopsy (digested)
- 720 10. Spin at 10 000 x g for 10 min 4°C
Make Saponin/TurboDNase/Buffer mix
- 722 11. Discard supernatant, save pellet

723

724 Host cell lysis and DNA digestion:

- 725 12. Add per biopsy 100 μ L mix:
 - 88 μ L Saponin
 - 10 μ L buffer 10X Turbo DNase buffer
 - 2 μ L TurboDNase (2 Units/ μ L)
- 729 13. Resuspend by vortexing 15 seconds
- 730 14. Short spin down
- 731 15. Incubate at 37°C for 30 minutes 400 rpm
- 732 16. Add 1.3 mL PBS
- 733 17. Centrifuge at 10 000 x g, 10 minutes at 4°C
- 734 18. Discard supernatant by pipetting
Make mutanolysin mix
- 736 19. Add 1 mL PBS and resuspend pellet by vortexing
- 737 20. Centrifuge at 10 000 x g, 10 minutes at 4°C
- 738 21. Discard supernatant by pipetting
- 739 22. Store pellets at -20°C or go to step 23.

740 **Part 2: Bead-beating protocol**

741 Bead beating preparation:

- 742 23. Add 180 μ L of Bead solution + 20 μ L of mutanolysin per sample
- 743 24. Resuspend by vortexing
- 744 25. Incubate at 37°C for 60 minutes 400 rpm
Set up the heater at 65°C
- 746 26. Put tubes in the incubator at 400 rpm:
 - 65°C for 10 minutes,
 - heat-up to 95°C (7 minutes)
 - 95°C for 10 minutes
- 750 27. Cool down to room temperature and spin down shortly

751

752 Bead-beating:

753 28. Add 550 µL of Power bead solution to the sample
754 29. Vortex tubes for 30 to 40 seconds
755 30. Add mixture to bead-tubes
756 31. Add 60 µL of solution C1 (first solution of DNeasy isolation kit)
757 *Prevent cooling the sample, but bring ice for the following step*
758 32. Bead-beat with the MagNA Lyser:
759 - 6400 rpm for 30 seconds
760 - On ice for 30 seconds
761 - 6400 rpm for 30 seconds
762 *Keep samples on ice*
763

764 Bacterial DNA extraction

765 33. Centrifuge at 10 000 x g for 2 minutes
766 34. Transfer supernatant to new set of collection tubes
767 *Keep a maximum total volume of 500 µL
768 35. Add 250 µL of solution C2, Vortex for 5 seconds, incubate on ice for 5 minutes
769 36. Centrifuge at 10 000 x g for 1 minute
770 37. Transfer up to 600 - 800 µL to the 2 mL collection tubes
771 38. Add 200 µL of solution C3, vortex briefly, then place on ice for 5 minutes
772 39. Centrifuge at 10 000 x g for 1 minute
773 40. Transfer up to 750 µL of supernatant to the 2 mL collection tubes
774 41. Add as much as possible without disturbing the pellet (~850 µL)
775 42. Shake solution C4, add 1.2 mL (2x 600 µL), Vortex for 5 seconds
776 43. Add as much as possible, ~1 mL, avoid that it is so full that it splashes
777 44. Load approximately 675 µL onto a spin filter, centrifuge at 10 000 x g for 1 minute, Discard the flow (do this 3 until the sample is finished)
779 45. Add 500 µL of solution C5, centrifuge at 10 000 x g for 30 seconds
780 46. Discard the flow through
781 47. Centrifuge at 10 000 x g for 1 minute
782 48. Carefully place spin filter in new set of collection tubes
783 49. Add 50 µL of solution C6 to the center of the membrane
784 50. Centrifuge at 10 000 x g for 30 seconds
785 51. Discard the Spin Filter
786 52. Store the extracted DNA at -80°C

787

788 **Supplementary file 2: CTAB Extraction**

789

790 **Buffer**

791 100 mM Tris-HCl
792 100 mM Na-EDTA
793 1.5 M NaCl
794 2% CTAB
795 0.05 mg/ml proteinase K

796

797

798

808

809 **CTAB extraction of genomic DNA from de-enriched zebrafish gills**

810 - After the digestion of gill samples with DNase, resuspend washed pellet in 100 µL CTAB extraction
811 buffer and incubate at 37°C for 30 min., mixing every 5 minutes by inverting the tubes
812 - Add 25 µL 10% SDS to sample, mix well and incubate for 1 hour at 65°C. Mix every 5 minutes by
813 inverting the tubes
814 - Add 125 µL chloroform:isoamyl alcohol and mix thoroughly for 20 seconds
815 - Centrifuge samples at max. speed for 15 minutes
816 - Transfer aqueous phase into clean tubes, discard waste into container in fumehood
817 - Add 0.6 volumes of isopropanol to samples and incubate overnight at -20°C
818 - Centrifuge samples at max. speed for 15 minutes
819 - Pour off isopropanol carefully (don't lose pellet)
820 - Wash pellet with 500 µL 70% EtOH, centrifuge 10 min. at maximum g
821 - Pour off ethanol carefully
822 - Leave tubes open for 5 minutes to evaporate remaining ethanol
823 - Resuspend pellet in 200 µL autoclaved milliQ
824

825 **RNase treatment of DNA extractions**

826 - Add 1 µL (10 mg/ml) RNase A to samples, incubate at 37°C for 30 minutes
827 - Add 200 µL phenol:chloroform:isoamyl alcohol, mix thoroughly for 20 seconds
828 - Centrifuge 15 min. at maximum speed
829 - Transfer aqueous phase into new tube, discard phenol waste into container in fumehood
830 - Add 2 volumes of 100% EtOH and 0.1 volume of NaAc, mix by inverting tube
831 - Incubate at -20°C for 1 hour
832 - Pellet DNA by centrifuging for 20 minutes at max. speed
833 - Wash pellet with 500 µL 70% EtOH, centrifuge 10 minutes at max. speed
834 - Pour off ethanol carefully, spin down the rest of the ethanol by short centrifugation
835 - Remove residual ethanol by pipetting, without disturbing the pellet
836 - Dry pellet until all ethanol is evaporated
837 - Resuspend pellet in 50 µL autoclaved milliQ water
838

839

840

799 **Material**

800 10% SDS
801 Chloroform:isoamyl alcohol (24:1)
802 Isopropanol
803 Phenol:chloroform:isoamyl alcohol (25:24:1)
804 3M Na-acetate
805 100% EtOH
806 70% EtOH
807 Autoclaved milliQ H₂O

841 PCR

842

qPCR programme

3:00	96 °C	1x
0:15	96 °C	
0:20	58 °C	40x
0:30	72 °C	
2:00	72 °C	1x

843

qPCR mix

SYBR mix 2x	10 µL
Forward	0.6 µL
Reverse	0.6µL
H2O	... µL (upto 20 µL)
DNA	5 ng

844

845