

1    **Title:** State-dependent changes in perception and coding in the mouse somatosensory cortex

2    **Running head:** State-dependent changes in the vibrissal cortex

3    **Conrad CY Lee <sup>1,2</sup>, Ehsan Kheradpezhohu <sup>1,2</sup>, Mathew E. Diamond <sup>2,3</sup> & Ehsan**

4    **Arabzadeh <sup>1,2</sup>**

5        1. Eccles Institute of Neuroscience, John Curtin School of Medical Research, The  
6        Australian National University, Canberra, Australian Capital Territory 2601, Australia

7        2. Australian Research Council Centre of Excellence for Integrative Brain Function, The  
8        Australian National University Node, Canberra, Australian Capital Territory 2601,  
9        Australia

10      3. Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste,  
11      Italy

12

13    **Corresponding Author and Lead Contact:**

14    **Name:** Conrad Chun Yin Lee

15    **Address:** Eccles Institute of Neuroscience, John Curtin School of Medical Research, The  
16    Australian National University, Canberra, Australian Capital Territory 2601, Australia

17    **Email:** conrad.lee@anu.edu.au

18    **Phone:** +612 6154353

19 **Highlights**

20 • Network synchrony and pupil diameter are coupled to changes in behavioral state.

21 • High behavioral state results in enhanced information transmission capacity at the

22 population level, with neurometric curve in each behavioral state mirroring the

23 corresponding psychometric performance

24 • Behavioral state and calcium signal in primary somatosensory cortex predict choice

25 outcome.

26

27 **eTOC**

28 **In Brief**

29 Lee et al. investigates the relationship between behavioral states and information processing

30 in the primary somatosensory cortex. They demonstrate increases in behavioral state results

31 in decrease cortical variability, enhanced information transmission capacity and stimulus

32 encoding at the population level.

33 **SUMMARY**

34 An animal's behavioral state is reflected in the dynamics of cortical population activity and  
35 its capacity to process sensory information. To better understand the relationship between  
36 behavioral states and information processing, mice are trained to detect varying amplitudes of  
37 whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons (n=1436) in the  
38 vibrissal primary somatosensory cortex are imaged across different behavioral states, defined  
39 based on detection performance (low to high-state) and pupil diameter. The neurometric  
40 curve in each behavioral state mirrors the corresponding psychometric performance, with  
41 calcium signals predictive of the animal's choice outcome. High behavioral states are  
42 associated with lower network synchrony, extending over shorter cortical distances. The  
43 decrease of correlations in variability across neurons in the high state results in enhanced  
44 information transmission capacity at the population level. The observed state-dependent  
45 changes suggest that the coding regime within the first stage of cortical processing may  
46 underlie adaptive routing of relevant information through the sensorimotor system.

47 **Keywords**

48 State, awake-behaving, electrophysiology, whisker, sensory processing

## 49 INTRODUCTION

50 The precision with which sensory neurons represent the environment constrains the quality of  
51 subsequent processing in higher cortical areas, ultimately influencing the organism's  
52 behavior. However, the activity of sensory cortical neurons can be fully explained only by  
53 considering externally-generated afferent (sensory) signals in conjunction with internally-  
54 generated activity in the brain (Erchova et al., 2002; McGinley et al., 2015). This internally  
55 generated activity – also referred to as spontaneous activity – depends largely on the  
56 behavioral state of the animal. Behavioral state can range from active engagement with the  
57 environment to quiet wakefulness, and sleep. Changes in behavioral state are reflected in the  
58 population activity of cortical neurons (Sabri and Arabzadeh, 2018). This is often  
59 characterized by the level of correlated activity: from desynchronized during active  
60 engagement to strongly synchronized during sleep (Harris and Thiele, 2011).

61  
62 The ecological demands of natural environments vary over time, and animals benefit from  
63 tuning neuronal processing to match current behavioral goals (Kayser et al., 2005). How do  
64 behavioral states, and the corresponding cortical states, impact sensory coding and perceptual  
65 performance? Some studies report an increased sensory response in desynchronized states  
66 due to lower noise correlations (Beaman et al., 2017; Engel et al., 2016; Minces et al., 2017;  
67 Vinck et al., 2015), whilst others report the opposite (Fanselow and Nicollelis, 1999;  
68 Hentschke et al., 2006; Krupa et al., 2004; Sachidhanandam et al., 2013). Here, we  
69 investigate how the efficiency of sensory processing and the conversion of sensory  
70 information into a decision depend on behavioral state. To achieve this, we trained mice to  
71 detect vibrations applied to their whiskers. Rodents are frequently active in darkness and can  
72 detect minute vibrations from approaching predators and produce vibration signals to warn  
73 other members of the colony (Randall, 2010). To detect small vibrations, rodents can  
74 immobilize their array of whiskers to acquire sensory information (Diamond and Arabzadeh,  
75 2013; Diamond et al., 2008a). As head-fixed mice performed the task, we used two-photon  
76 calcium imaging to monitor population activity in the vibrissal area of the primary  
77 somatosensory cortex (vS1) and thus establish how the dynamics of vS1 populations vary  
78 from state to state. We aimed to address the following questions: 1) how does behavioral  
79 state affect encoding of sensory inputs by single neurons? 2) How does behavioral state  
80 influence cortical population dynamics and synchrony? 3) How do these changes in encoding  
81 in turn influence perceptual choice?

82 **RESULTS**

83 **Detection performance and cortical activity in response to vibration stimuli**

84 Head-fixed mice (n=7) were injected with GCaMP6f in the vS1 cortex and trained to perform  
85 a whisker vibration detection task (Fig. 1A). A series of pulsatile vibrations was presented via  
86 a piezo driven mesh on the left whisker pad at amplitudes of 0, 10, 20, 40, or 80 $\mu$ m. Mice  
87 were rewarded for licking the spout on trials with vibration (amplitudes of 10, 20, 40, 80 $\mu$ m);  
88 licking in the absence of vibration (amplitude of 0 $\mu$ m) was not rewarded (Fig. 1B). In order  
89 to capture time-varying global arousal states, mice were allowed to perform this task for an  
90 extended period (median session duration, 52 mins/400 trials; interquartile range: 39-59 mins  
91 /300-400 trials). Mice successfully refrained from licking when the vibration was absent  
92 (Fig. 1C; the rate of licking on stimulus absent trials was not different from rate of pre-trial  
93 licking;  $p=0.136$ , Wilcoxon rank-sum). In the presence of the vibration, three measures were  
94 found to vary in a graded manner with stimulus amplitude. First, mice licked at a higher rate  
95 with increasing amplitude (Fig. 1C; ROC analysis - Fig. S1A). Second, they showed faster  
96 response times with increasing amplitude (Fig. 1C; Fig. S1B). Third, they showed increased  
97 detection rates, with the shape of a compressive sigmoid (Fig 1D). Overall, the behavioral  
98 results indicate that the stimulus intensities covered a range from near-threshold to reliably  
99 detectable.

100 We used two-photon calcium imaging to monitor population response of layer 2/3 neurons  
101 (example imaging window in Fig. 1A insert). Overall, we recorded a total of 1436 cells  
102 across 7 mice (Fig. 1E). Calcium fluorescence was modulated by the onset of the vibration  
103 with a heterogeneous profile, including stimulus-evoked increases and decreases in activity.  
104 Figure 1E illustrates the heterogeneity by sorting cells based on their average 1s evoked  
105 response. Regardless of sign of modulation, across the entire imaged population, neurons  
106 showed a graded response to stimulus amplitude: excited neurons (n = 948) became more  
107 excited as stimulus intensity increased; inhibited neurons (n = 488) became more inhibited as  
108 stimulus intensity increased (Fig.1F). Restricting analysis to significantly responsive cells  
109 also showed the same response profile (Fig. S2; excited neurons, n= 343; inhibited neurons, n  
110 = 274). To combine both excited and inhibited neurons, we computed the area under the 1-s  
111 duration fluorescence trace for all imaged neurons as a measure of stimulus-evoked  
112 modulation (Fig. 1G). Area under the curve values exhibited a graded response to the  
113 stimulus, in the form of a sigmoidal function with a compressive non-linearity at ~40 $\mu$ m. The

114 relation of calcium fluorescence to stimulus intensity (Fig. 1G) closely matched the relation  
115 of response rate to stimulus intensity (Fig. 1D) (behavioral response function inflection point  
116 11.3  $\mu$ m; fluorescence response function inflection point 12.1  $\mu$ m), suggesting fluorescence  
117 magnitude as a neurometric correlate of the psychometric detection function.

118

### 119 **Behavioral state affects single-cell coding of stimulus intensity**

120 As mice were allowed to perform the detection task for an extended period each session, we  
121 were able to image the same cells over different levels of arousal. Behavioral performance  
122 was not static – it waxed and waned throughout each session between periods of high and low  
123 detection rates (Fig. 2A, black). On selected sessions, we observed a general slowly  
124 progressing decrease in performance. This may reflect changes in the animal's motivation  
125 over time. We examined this by taking into account the false alarm rate (response to stimulus  
126 absent trials) across time (Fig. 2A, dash black line). On average, we observed a small but  
127 significant correlation between hit rate and false alarm rate over time ( $r = 0.22, p=5.4 \times 10^{-9}$   
128 \*\*). This slow time course of motivation could have a different impact on sensory coding  
129 than the faster trial-by-trial variability. Overall, across all recorded sessions, mice  
130 predominately correctly rejected stimulus-absent trials. Critically, the observed fluctuations  
131 in detection rate across time were correlated with pupil diameter (Fig. 2A, orange; see  
132 example video – Video. S1). Cross-correlation analysis revealed a moderate coupling  
133 between pupil dilation and detection performance (Fig. 2B-right). The temporal relationship  
134 was consistently observed across sessions, with pupil diameter lagging behind performance  
135 by a median of 9.2 trials (Fig. 2B, left).

136 Next, we quantified the temporal profile of changes in behavioral performance. Stimuli were  
137 distributed into blocks of 5 trials, within which 4 vibration amplitudes (10, 20, 40 and 80  $\mu$ m)  
138 were presented in a randomized fashion along with the no-vibration trial (0  $\mu$ m amplitude).  
139 This allowed us to quantify behavioral state by calculating the detection rate within each  
140 block (0%: no detection; 100%: all four amplitudes detected). Hereafter, we refer to this  
141 block detection rate as behavioral state. To capture the temporal dynamics of state changes,  
142 we computed the auto-correlation of behavioral state for each session (Fig. 2C, left). Across  
143 all sessions, the analysis revealed a high correlation ( $r = 0.82$ ) between adjacent blocks (5  
144 trials) and an average half width of 27 blocks. Overall, the behavioral state showed a robust  
145 correlation with pupil diameter: as the detection rate increased, pupil diameter increased (Fig.

146 2D) and dilation variance decreased (Fig. S3A). Similarly, hit rate increased as pupil diameter  
147 increased (Fig. S3B).

148 Neuronal activity in vS1 varied in relation to behavioral state. Three example neurons (Fig.  
149 2E) show typical modulations of evoked response with state. Overall, as state transitioned  
150 from low (0-25%) to high (75-100%), response magnitude for a given stimulus amplitude  
151 increased: excited cells became more excited and inhibited cells became more inhibited (Fig.  
152 S4A). How do these response modulations influence the coding efficiency in vS1 cortex?  
153 Figures 2F and 2G plot the calcium response functions separately for excited and inhibited  
154 neurons. Consistent with the response profile of the example neurons, neurometric functions  
155 both for the excited and inhibited populations became steeper as state transitioned from low  
156 to high in a manner suggestive of gain modulation. The same profile was found when  
157 analysis was restricted to significantly responsive cells (Fig. S4B & C) or when sorting cells  
158 based on a smaller, 50ms window (Fig. S4D). Next, we obtained behavioral psychometric  
159 curves (Fig. 2H) and compared them with the population neurometric function across all  
160 1436 neurons by calculating the area under the curve values as before (Fig. 2I). The calcium  
161 response profiles (Fig. 2I) showed a leftward shift as state transitioned from low to high  
162 (inflection points for 0-25%, 50%, 75-100% at 22 $\mu$ m, 15 $\mu$ m, 8 $\mu$ m, respectively). The  
163 leftward shift was accompanied by a gain modulation of population neurometric functions:  
164 magnitude of change in fluorescence (% $\Delta$ F/F) at inflection point increased as state  
165 transitioned from low to high (for 0-25%, 50%, 75-100% at 2.28, 2.35, 2.40% $\Delta$ F/F,  
166 respectively). Again, there was a remarkable correlation between the neurometric and  
167 psychometric functions across states (Fig. 2H; inflection points for 0-25%: 26 $\mu$ m;  
168 50%:16 $\mu$ m; 75-100%:8 $\mu$ m). The observation of the elevated neuronal response profile during  
169 high-state may have resulted from the higher proportion of hit trials. Previous studies have  
170 shown the response of vS1 to be modulated by choice (Poulet and Crochet, 2019;  
171 Sachidhanandam et al., 2013; Yamashita and Petersen, 2016; Yang et al., 2016). We  
172 performed two additional analyses to better dissociate the sensory component of the evoked  
173 response from the motor/decision component. When restricting our analysis to examine only  
174 hit trials, we observed a similar response profile (Fig. 2J). In the same light, when restricting  
175 our analysis to the first 50ms (to isolate biphasic motor response observed in experiments  
176 using electrophysiology (Sachidhanandam et al., 2013; Yamashita and Petersen, 2016), we  
177 also observed a similar response profile (Fig. S4E). Finally, given the changes in overall  
178 motivation observed by the decreasing false alarm over time (Fig. 2A dash line), we isolated

179 blocks of trials in which false alarm rates were zero (see methods for detail). This analysis  
180 also produced similar results (Fig S4F). Overall, as state transitioned from low to high,  
181 calcium response profile became steeper in a manner suggestive of gain modulation.

182

### 183 **Behavioral state affects population coding of stimulus intensity**

184 How does behavioral state affect the dynamic interaction between cells and in turn determine  
185 the efficiency of the population code? It is well known that stimulus-independent trial-to-trial  
186 correlations in activity (also known as noise correlation) limit the quantity of information any  
187 neuronal population can carry about the sensory input (Averbeck et al., 2006; Josić et al.,  
188 2009; Kohn et al., 2016; Pola et al., 2003). We therefore quantified how noise correlation  
189 varied across behavioral states. The analyses revealed a significant drop in pairwise  
190 correlation ( $p=2.75 \times 10^{-48}**$ , student t-test) as the state transitioned from low to high (Fig.  
191 3A). This trend was consistent across mice (Fig. 3B,  $p=0.012^*$ , student t-test). Whisker  
192 tracking indicated no significant difference in whisker movement between behavioral states  
193 (Fig. S5). Noise-correlation strongly varied with cell to cell distance – nearby cells exhibited  
194 higher noise-correlation compared to distant pairs (Fig. 3C). From 25 $\mu$ m to 400 $\mu$ m, the drop-  
195 off in correlation with distance was steeper and dropped to a lower plateau in the higher  
196 behavioral state.

197 On theoretical grounds, noise correlation is expected to reduce the efficiency of information  
198 transmission by a population (Averbeck et al., 2006; Safaai et al., 2013). We performed linear  
199 discriminant analysis to quantify how reliably an ideal observer of the population activity  
200 could decode stimulus intensity. Given the levels of noise correlation (Fig. 3A-C), we expect  
201 greater information transmission efficiency at higher states. This hypothesis was confirmed  
202 by characterizing the accuracy of decoding the presence (versus absence) of the 20 $\mu$ m  
203 vibration with growing population size (Fig. 3D - example session; Fig. 3E- average across  
204 all sessions). For the same population of neurons, decoding accuracy rose more sharply and  
205 plateaued at a higher decoding performance in high state (green) compared to low state  
206 (blue). To examine the contribution of noise-correlation to decoding accuracy, we  
207 decorrelated the activity of neurons by shuffling trials. As shown in Figure 3F, decorrelating  
208 responses led to a significant increase in decoding accuracy for 20 $\mu$ m stimuli in both low-  
209 state (blue;  $p=4.31 \times 10^{-76}**$ , Wilcoxon sign-rank) and high-state (green;  $p=3.04 \times 10^{-14}**$ ,  
210 Wilcoxon sign-rank). However, the decorrelation-induced increase in accuracy was

211 significantly greater in low-state than in high-state ( $p = 4.57 \times 10^{-32}$  \*\*, Wilcoxon rank-sum).  
212 Finally, the enhanced population coding in high state was systematically observed across  
213 imaging sessions with various population sizes and was present across all stimulus intensities  
214 (Fig. 3G).

215

## 216 **Calcium responses reflect choice outcome**

217 Sensory-evoked activity in vS1 might be expected to predict the subsequent perceptual  
218 choice. We asked how the neuronal responses correlate with the mouse's upcoming behavior,  
219 focusing on hit and miss trials. With data from all behavioral states pooled, average response  
220 magnitude on hit trials was significantly larger than on miss trials for both excited and  
221 inhibited cells (Fig. 4A, 500ms window post stimulus, excited:  $p = 1.93 \times 10^{-21}$  \*\*; inhibited:  
222  $p = 3.08 \times 10^{-8}$ , \*\* Wilcoxon rank sum). Next, we asked how neuronal activity can dissociate  
223 between hit and miss outcomes in different behavioral states (Fig. 4B & C) (ungrouped  
224 categories shown in Fig. S6A). We observed a greater difference between hit and miss  
225 response magnitudes in high behavioral states (75-100% detection blocks) compared to low  
226 behavioral states (0-25% detection blocks). We quantified the state-related differences in  
227 cortical activity after controlling for trial outcome (hit versus miss). Hit trials during high  
228 state elicited a significantly greater neuronal response magnitude (both excitation and  
229 inhibition) than hit trials during low state (excitation:  $p = 1.33 \times 10^{-10}$  \*\*; inhibition:  $p = 1.40 \times 10^{-10}$  \*\*). Similarly, miss trials during high state elicited a significantly greater neuronal response  
230 magnitude than miss trials during low state (excitation:  $p = 2.6 \times 10^{-6}$ ; inhibition:  $p = 2.9 \times 10^{-10}$  \*\*). From Figure 1D & G, detection rate and calcium response of vS1 neurons is modulated  
231 by the strength of the stimulus. Therefore, the proportion of stimulus intensities contributing  
232 to hits and miss trials could be different between high and low state. Nevertheless, further  
233 analysis examining calcium response across stimulus intensity for hit and miss trials in  
234 different behavioral state provided similar results. Overall, hit trials produced larger calcium  
235 response than miss trials across stimulus intensities (Fig. 4D). On a similar note, we  
236 performed a complementary analysis in which behavioral state was calculated in the absence  
237 of the current trial outcome (see Methods for detail). This analysis also produced similar  
238 results (Fig. S6B). Finally, we examined neuronal activity of trials in which the stimulus was  
239 absent. For both correct rejection and false alarm trials, there was no significant difference in  
240 results (Fig. S6B). For both correct rejection and false alarm trials, there was no significant difference in  
241 calcium response between high behavioral states (75-100% detection blocks) and low  
242 calcium response between high behavioral states (75-100% detection blocks) and low

243 behavioral states (0-25% detection blocks) (False alarm:  $p = 0.6635$ ; correct rejection:  $p =$   
244 0.6256, Wilcoxon rank-sum; Fig 4C). Together, these findings imply that the changes in  
245 behavioral performance may be defined by the quality of stimulus encoding within vS1.

## 246 DISCUSSION

247 We investigated the relationship between behavioral state, sensory evoked responses in single  
248 neurons, and the dynamics of neuronal population activity in head-fixed mice performing a  
249 vibration detection task. Mice reported the presence of a whisker vibration stimulus (0-80 $\mu$ m  
250 amplitude) by licking a reward spout and withheld licking during the absence of a vibration  
251 stimulus (0 $\mu$ m). In order to capture the transitions between different behavioral states, we  
252 allowed mice to perform this task for an extended period each day. Simultaneously, calcium  
253 fluorescence in the vibrissae area of the primary somatosensory cortex (vS1) was imaged  
254 using a two-photon excitation microscope. As the mice transitioned from low to high  
255 behaving states, both psychometric and neurometric curves shifted towards lower stimulus  
256 intensities. This enhanced detection sensitivity at the level of single neurons was  
257 accompanied by a state-induced reduction in correlated activity across neurons.

258 Studies investigating cortical state have used whiskers and their central processing pathway  
259 as a model sensory system due to the ecological relevance of touch in rodents' exploration of  
260 their environment. Using its whiskers, a rodent can quickly obtain sufficient information to  
261 complete complex behavioral tasks, such as discriminating between textures (Diamond et al.,  
262 2008b; von Heimendahl et al., 2007; Kuruppath et al., 2014; Zuo et al., 2015), detecting and  
263 discriminating vibrations (Fassihi et al., 2014; Lee et al., 2016) and localizing objects  
264 (Gordon et al., 2013; O'Connor et al., 2010; Yang et al., 2016). Studies have used whisker  
265 movement as a proxy for cortical state (Eggermann et al., 2014; Muñoz et al., 2017; Poulet  
266 and Petersen, 2008; Poulet et al., 2012) in the absence of a tactile behavioral task, large  
267 amplitude of whisker movement was considered as active state whilst no whisker movement  
268 was considered as quiet-quiescence. However, when seeking to acquire signals from a  
269 moving object (i.e. a vibration), rodents can actively immobilize their whiskers to optimize  
270 sensitivity (Diamond and Arabzadeh, 2013; Lee et al., 2016, 2019). It is therefore imperative  
271 to consider this "receptive mode" when investigating cortical state in the whisker system.

272 Pupil diameter change has historically been hypothesized to correlate with changes in brain  
273 state (Hess and Polt, 1960) and our results indicate a strong correlation between pupil size

274 and local detection performance (Fig. 2D). The lag of 9.2 trials suggests that whisker  
275 vibration detection accompanies alertness in real time, while the sympathetic control of the  
276 pupil follows by about 1 minute (the elapsed time of 9.2 trials). The immediateness of  
277 detection performance is one justification of taking this measure as a proxy or identifier for  
278 behavioral state.

279 We observed a heterogeneous response to the vibration, with some cells excited and others  
280 inhibited. Critically, we demonstrate that behavioral state modulated evoked response in vS1.  
281 As behavioral state transitioned from low to high, the amplitude of evoked response in vS1  
282 increased - excited cells became more excited and inhibited cells became more inhibited (Fig.  
283 2 and Fig. S4A). As behavioral state transitioned from low to high, the amplitude of evoked  
284 response in vS1 increased - excited cells became more excited and inhibited cells became  
285 more inhibited (Fig. 2 and Fig. S4A). Overall, the high-state decreased synchrony (Fig. 3A-  
286 C) while enhancing the evoked responses of vS1 neurons. This finding is different from  
287 previous observation in the vS1 cortex where the desynchronized state produced lower  
288 evoked responses of cortical neurons (Otazu et al., 2009; Sachidhanandam et al., 2013). The  
289 difference may be due to parameters of our behavioral task which demands the whisker  
290 system to operate in the receptive mode, actively keeping whiskers stationary (Diamond and  
291 Arabzadeh, 2013). The increased amplitude of evoked inhibition in the high behavioral state  
292 was also an interesting finding. Fast spiking parvalbumin expressing interneurons receive  
293 strong direct sensory input from the thalamus and are responsible for feedforward inhibition  
294 (Sermet et al., 2019; Yu et al., 2019). The increased inhibition in high state could be  
295 attributed to enhanced activation of these fast spiking interneurons. Alternatively, as  
296 excitatory local neurons (e.g. L2/3 and L4 spiny neurons) become more responsive to sensory  
297 stimulation, they supply a greater input to inhibitory interneurons, which in turn, may result  
298 in stronger inhibition upon their targets. The observed spectrum of excitation and inhibition  
299 would therefore depend on the complex interaction between excitatory and inhibitory input a  
300 particular cell receives (Baker et al., 2019; Okun and Lampl, 2008; Taub et al., 2013; Zagha  
301 et al., 2016). We speculate that the simultaneous and opposite rescaling of the response  
302 magnitude of excited and inhibited neurons reflects a mechanism that conserves homeostatic  
303 balance across the range of states that sensory cortex naturally cycles through (Xue et al.,  
304 2014; Zhou et al., 2014).

305

306 The increase in evoked response amplitude was stimulus intensity-dependent while  
307 maintaining this inhibition-excitation balance (Fig. 2F & 2G). In the literature, the  
308 relationship of state and sensory representation has been unclear. Some studies report an  
309 increased sensory response in desynchronized states due to lower noise correlations (Beaman  
310 et al., 2017; Engel et al., 2016; Mincs et al., 2017; Vinck et al., 2015), whilst others report  
311 the opposite (Fanselow and Nicolelis, 1999; Hentschke et al., 2006; Krupa et al., 2004;  
312 Sachidhanandam et al., 2013). In our study, evoked responses increased in a non-linear  
313 fashion, improving detection sensitivity as animals transitioned from low to high state,  
314 mirroring the behavioral performance as mice transitioned from one state to another (Fig. 2H  
315 & 2I). Previous research using electrophysiology shows that when a mouse is engaged in a  
316 detection task, neurons in vS1 show a biphasic response to the whisker stimulus. This  
317 biphasic response is comprised of an early (< 50ms) sensory component and a late (50-  
318 300ms) response strongly modulated by the animal's response (Sachidhanandam et al., 2013;  
319 Yamashita and Petersen, 2016). The dynamics of calcium signals restricts our temporal  
320 resolution. Nevertheless, when restraining our analysis to the first 50ms, the response profile  
321 showed a similar effect (Fig. S4E). Further restricting to our analysis to hold behavioral  
322 action constant by examining hit trials only also showed similar effect (Fig. 2J). On selected  
323 sessions, we observed a general change in motivation and engagement. As shown in the  
324 example session in Figure 2A, at the beginning of a session, mice may perform with high  
325 detection rates but at the expense of a high false alarm. This is likely to reflect the high  
326 motivation to receive sucrose reward at the beginning of a session. Eventually, false alarm  
327 rate decreases while the detection rate is conserved and the mouse performs optimally. This  
328 slow change in motivation could have an impact on sensory coding. Nevertheless, by  
329 restricting analysis to block of trials in which false alarm rates were zero, we continued to  
330 observe evoked responses to increase in a non-linear fashion, improving detection sensitivity  
331 as animals transitioned from low to high state (Fig S4F).

332  
333 As behavioral state transitioned from low to high, the neuronal population showed less  
334 synchrony as measured by pairwise noise-correlations (Fig. 3A &B). This is consistent with  
335 previous findings in which spontaneous fluctuations in firing rates and intracellular potential  
336 show large coordinated fluctuations in cortical population (DeWeese and Zador, 2006;  
337 Ferezou et al., 2007; Harris and Thiele, 2011; Luczak et al., 2009; Poulet and Petersen, 2008).  
338 These packets of population activity in the synchronized state, interspersed with periods of  
339 silence, impose a high level of correlated activity between adjacent neurons (de la Rocha et

340 al., 2015; Scholvinck et al., 2015). In addition to increased synchrony, spatial-temporal  
341 dynamics (degree of synchrony across distance) can inform the degree of network  
342 dependence (Okun et al., 2015). We found that the strength of correlation decreased with  
343 distance (Fig. 3C). This profile of correlation strength with distance supports the idea that  
344 nearby neurons share similar excitatory and inhibitory inputs. Overall, our findings are  
345 consistent with the distance-dependent decline seen in other studies (Rothschild et al., 2010;  
346 Sabri et al., 2016). However, typically these studies examine larger-scale spatial-temporal  
347 correlations that may be driven by connectivity between adjacent barrels and barrel-septum  
348 connectivity (Sabri et al., 2016). Here, we document state-dependent dynamics on the scale  
349 of a single barrel column (~250 $\mu$ m).

350 We performed classification analysis as a function of stimulus intensity, the size of the  
351 coding population, and behavioral state (Fig. 3E & G). In high behavioral states, where there  
352 was a lower-level of correlated activity amongst neurons, decoding performance sharply  
353 increased and plateaued at a higher level of accuracy than in low behavioral states. This is  
354 consistent with previous studies in which desynchronized state improves the signal-to-noise  
355 ratio of the neural code by reducing correlated fluctuations in neural activity, thereby  
356 allowing more accurate decisions (Cohen and Maunsell, 2009; Mitchell et al., 2009). In  
357 general, correlations among neurons pose constraints on the amount of information encoded  
358 in the population and on the decoding. Higher correlation implies redundancy in information.  
359 In our study, removal of correlated activity by cross-trial shuffling led to a greater increase in  
360 decoding performance in low states (Fig. 3F), indicating that the diminished transmission of  
361 information in low states originated both from lower average stimulus-evoked signal per trial  
362 (Fig. 2) as well as from high noise correlation. The observed sharp increase in decoding may  
363 reflects the tendency of calcium imaging towards more active neurons and therefore, most  
364 informative neurons. Alternatively, trained expertise in our vibration detection may have  
365 resulted in increased population efficiency to decode stimulus presentation compared to a  
366 naïve untrained mouse. The sharp increase may also reflect neural heterogeneity where a  
367 small but highly informative subset of neurons sufficiently carries most of the information  
368 from the observed population (Ince et al., 2013; Panzeri et al., 2015).

369 There is a complex interaction between cortical state, the degree of whisker movement,  
370 sensory evoked responses at the level of single neurons and the correlation in activity across  
371 neuronal populations. Whisker movement affects the membrane potential of vS1 neurons and  
372 their evoked response to passive whisker stimulation (Crochet and Petersen, 2006). Beyond

373 single-cell responses, pairwise correlation among vS1 neurons is typically higher in quiet,  
374 immobile wakefulness compared to active exploration and whisking activity (Poulet and  
375 Petersen, 2008). Whilst behavioral state is often determined by the absence and presence of  
376 whisker movement (Poulet and Crochet, 2019), a further distinction can be made within  
377 periods of no whisker movement to separate epochs of active engagement in detection from  
378 periods of passive resting. In our task, when animals are highly engaged (high-state), whisker  
379 movements may be actively suppressed in order to optimize stimulus detection (Kyriakatos et  
380 al., 2016). In contrast to the high pairwise correlations observed during low-state, active  
381 engagement during high state may have decreased pairwise correlations and in turn improved  
382 sensory encoding.

383 Finally, we examined the correspondence between the vibration-evoked activity in vS1 and  
384 perceptual choice of the mouse. We found that state modulated both vS1 activity and  
385 behavioral choices. Consistent with recent research, vS1 neurons showed robust choice-  
386 related activity (Poulet and Crochet, 2019; Sachidhanandam et al., 2013; Yamashita and  
387 Petersen, 2016; Yang et al., 2016) – higher responses were associated with hits; lower  
388 responses were associated with misses (Fig. 4A-C). The observed choice related activity was  
389 further modulated by behavioral state and this was observed consistently across all stimulus  
390 intensities (Fig. 4C & Fig. 4D). However, it is important to note that the observed correlation  
391 between vS1 and behavior does not necessarily indicate a causal relation. The extent to which  
392 various sensory decision tasks require the direct involvement of sensory cortex remains  
393 debated. Whilst some studies show whisker sensory behaviors such as gap crossing (Hutson  
394 and Masterton, 1986), roughness discrimination (Guic-Robles et al., 1992), object  
395 localization (O'Connor et al., 2010), and vibration discrimination (Miyashita and Feldman,  
396 2013) requires vS1, other studies identify cases where vS1 is not required for active detection  
397 of objects and passive detection of air puff stimuli (Hong et al., 2018; Hutson and Masterton,  
398 1986). This disparity likely rests on specific differences in the experimental context such as  
399 goal-directed versus habitual reflexive behaviors (Yeomans et al., 2002), appetitive versus  
400 aversive conditioning (Guic-Robles et al., 1992; Hutson and Masterton, 1986) or specific  
401 stimulus parameters such as stimulus duration and reward schedules (Krupa et al., 2001;  
402 Miyashita and Feldman, 2013; O'Connor et al., 2010). The capacity of the brain to generate  
403 alternative processing pathways or strategies in response to the loss of function of vS1 must  
404 also be considered. Nevertheless, if vS1 is not required for sensory decision making, one  
405 alternative explanation for the observed results is that neuronal activity in the somatosensory

406 cortex and behavioral outcomes may both be modulated by state independently. State may  
407 affect behavioral outcomes via subcortical processing circuits such as brainstem (Tsunematsu  
408 et al., 2020) and thalamic nuclei (Sieveritz et al., 2019) and superior colliculus (Crapse et al.,  
409 2018; Wang et al., 2020) . The state-modulations in subcortical circuits may then be  
410 transmitted to sensory cortex producing choice-related activity in vS1(Yang et al., 2016). In  
411 this respect, long-range synchronization between brain regions may underlie functional  
412 coupling of areas co-engaged in a given task (Melloni et al., 2007). For example, motor  
413 cortex feedback influences sensory processing by modulating network state and the  
414 coherence between rat sensorimotor system and hippocampus is enhanced during tactile  
415 discrimination (Grion et al., 2016). Future experiments can investigate how long-range  
416 synchronization and decision outcomes are affected by specific demands of the paradigm and  
417 the animal's engagement in the task.

418

419 The circuit mechanism underlying state modulation is varied, with disinhibition being a key  
420 local correlate of response modulation (Chen et al., 2015; Gentet, 2012; Jackson et al., 2016).  
421 For example, vasoactive intestinal peptide (VIP) expressing inhibitory neurons in super-  
422 granular layers of sensory cortex receive corticocortical inputs from motor areas (Lee et al.,  
423 2013) or cholinergic projections from basal forebrain (Zagha and McCormick, 2014). The  
424 activation of VIP interneurons in turn inhibit the somatostatin (SOM) expressing inhibitory  
425 neurons located in L2/3. Consequently, this disinhibits the inhibition that L2/3 pyramids  
426 receive from SOM interneurons and thus trigger the cortical network into a more active  
427 desynchronized state. Alternatively, a range of neuromodulatory inputs that arrive into the  
428 sensory cortex can influence cortical state (Lee and Dan, 2012). For example, noradrenergic  
429 afferents originating from the locus coeruleus contribute to state transition and have been  
430 shown to increases neuronal excitability in the somatosensory cortex and improve sensory  
431 detection and processing (Sabri and Arabzadeh, 2018; Safaai et al., 2015). In future studies of  
432 this detection task, it will be important to study the role of specific subtypes of inhibitory  
433 neurons in different cortical layers of vS1 to reveal the neural circuits of sensorimotor  
434 transformation from whisker stimulus to goal-directed licking.

435

436 **Acknowledgements**

437 The experiments were supported by an Australian Research Council (ARC) Discovery  
438 Project (DP170100908), NHMRC project grants (APP1124411), and the ARC Centre of  
439 Excellence for Integrative Brain Function (ARC Centre Grant CE140100007).

440

441 **Author contributions**

442 C.C.Y.L and E.A. conceived and designed the project. C.C.Y.L and E.K. performed the  
443 experiments. C.C.Y.L., M.E.D., and E.A. analysed the data. C.C.Y.L., M.E.D., and E.A.  
444 wrote the manuscript. All authors edited the manuscript and approved the final version.

445

446 **Declaration of interests**

447 The authors declare no competing interests.

448 **REFERENCE**

449 Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, population coding  
450 and computation. *Nat. Rev. Neurosci.* 7, 358–366.

451 Baker, C., Ebsch, C., Lampl, I., and Rosenbaum, R. (2019). Correlated states in balanced  
452 neuronal networks. *Phys. Rev. E* 99, 52414.

453 Beaman, C.B., Eagleman, S.L., and Dragoi, V. (2017). Sensory coding accuracy and  
454 perceptual performance are improved during the desynchronized cortical state. *Nat.*  
455 *Commun.* 8, 1308.

456 Carvell, G.E., and Simons, D.J. (2017). Effect of whisker geometry on contact force  
457 produced by vibrissae moving at different velocities. *J. Neurophysiol.* 118, 1637–1649.

458 Chen, N., Sugihara, H., and Sur, M. (2015). An acetylcholine-activated microcircuit drives  
459 temporal dynamics of cortical activity. *Nat. Neurosci.* 18, 892–902.

460 Clack, N.G., O'Connor, D.H., Huber, D., Petreanu, L., Hires, A., Peron, S., Svoboda, K., and  
461 Myers, E.W. (2012). Automated tracking of whiskers in videos of head fixed rodents. *PLoS*  
462 *Comput. Biol.* 8.

463 Cohen, M.R., and Maunsell, J.H.R. (2009). Attention improves performance primarily by  
464 reducing interneuronal correlations. *Nat. Neurosci.* 12, 1594–1600.

465 Crapse, T.B., Lau, H., and Basso, M.A. (2018). A Role for the Superior Colliculus in  
466 Decision Criteria. *Neuron* 97, 181–194.

467 Crochet, S., and Petersen, C.C.H. (2006). Correlating whisker behavior with membrane  
468 potential in barrel cortex of awake mice. *Nat. Neurosci.* 9, 608–610.

469 DeWeese, M.R., and Zador, A.M. (2006). Non-Gaussian Membrane Potential Dynamics  
470 Imply Sparse, Synchronous Activity in Auditory Cortex. *J. Neurosci.* 26, 12206–12218.

471 Diamond, M.E., and Arabzadeh, E. (2013). Whisker sensory system - From receptor to  
472 decision. *Prog. Neurobiol.* 103, 28–40.

473 Diamond, M.E., von Heimendahl, M., Knutson, P.M., Kleinfeld, D., and Ahissar, E. (2008a).  
474 “Where” and “what” in the whisker sensorimotor system. *Nat. Rev. Neurosci.* 9, 601–612.

475 Diamond, M.E., Von Heimendahl, M., and Arabzadeh, E. (2008b). Whisker-mediated texture  
476 discrimination. *PLoS Biol.* 6, 1627–1630.

477 Eggermann, E., Kremer, Y., Crochet, S., and Petersen, C.C.H. (2014). Cholinergic Signals in  
478 Mouse Barrel Cortex during Active Whisker Sensing. *Cell Rep.* 9, 1654–1660.

479 Engel, T.A., Steinmetz, N.A., Gieselmann, M.A., Thiele, A., Moore, T., and Boahen, K.  
480 (2016). Selective modulation of cortical state during spatial attention. *Science* (80-. ). 354,  
481 1140–1144.

482 Erchova, I.A., Lebedev, M.A., and Diamond, M.E. (2002). Somatosensory cortical neuronal  
483 population activity across states of anaesthesia. *Eur. J. Neurosci.* 15, 744–752.

484 Fanselow, E.E., and Nicollelis, M.A.L. (1999). Behavioral modulation of tactile responses in  
485 the rat somatosensory system. *J. Neurosci.* 19, 7603–7616.

486 Fassihi, A., Akrami, A., Esmaeili, V., and Diamond, M.E. (2014). Tactile perception and  
487 working memory in rats and humans. *Proc. Natl. Acad. Sci. U. S. A.* *111*, 2331–2336.

488 Ferezou, I., Haiss, F., Gentet, L.J., Aronoff, R., Weber, B., and Petersen, C.C.H. (2007).  
489 Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. *Neuron*  
490 *56*, 907–923.

491 Gentet, L.J. (2012). Functional diversity of supragranular GABAergic neurons in the barrel  
492 cortex. *Front. Neural Circuits* *6*, 1–13.

493 Gordon, G., Dorfman, N., and Ahissar, E. (2013). Reinforcement active learning in the  
494 vibrissae system: Optimal object localization. *J. Physiol. Paris* *107*, 107–115.

495 Grion, N., Akrami, A., Zuo, Y., Stella, F., and Diamond, M.E. (2016). Coherence between  
496 Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.  
497 *PLoS Biol.* *14*, e1002384.

498 Guic-Robles, E., Jenkins, W.M., and Bravo, H. (1992). Vibrissal roughness discrimination is  
499 barrelcortex-dependent. *Behav. Brain Res.* *48*, 145–152.

500 Harris, K.D., and Thiele, A. (2011). Cortical state and attention. *Nat. Rev. Neurosci.* *12*, 509–  
501 523.

502 von Heimendahl, M., Itskov, P.M., Arabzadeh, E., and Diamond, M.E. (2007). Neuronal  
503 activity in rat barrel cortex underlying texture discrimination. *PLoS Biol* *5*, e305.

504 Hentschke, H., Haiss, F., and Schwarz, C. (2006). Central signals rapidly switch tactile  
505 processing in rat barrel cortex during whisker movements. *Cereb. Cortex* *16*, 1142–1156.

506 Hess, E.H., and Polt, J.M. (1960). Pupil size as related to interest value of visual stimuli.  
507 *Science* (80-. ). *132*, 349–350.

508 Hong, Y.K., Lacefield, C.O., Rodgers, C.C., and Bruno, R.M. (2018). Sensation, movement  
509 and learning in the absence of barrel cortex. *Nature* *561*, 542–546.

510 Hutson, K.A., and Masterton, R.B. (1986). The sensory contribution of a single vibrissa's  
511 cortical barrel. *J. Neurophysiol.* *56*, 1196–1223.

512 Ince, R.A.A., Panzeri, S., and Kayser, C. (2013). Neural codes formed by small and  
513 temporally precise populations in auditory cortex. *J. Neurosci.* *33*, 18277–18287.

514 Jackson, J., Ayzenshtat, I., Karnani, M.M., and Yuste, R. (2016). VIP+ interneurons control  
515 neocortical activity across brain states. *J. Neurophysiol.* *115*, 3008–3017.

516 Josić, K., Shea-Brown, E., Doiron, B., and de la Rocha, J. (2009). Stimulus-dependent  
517 correlations and population codes. *Neural Comput.* *21*, 2774–2804.

518 Kayser, C., Petkov, C.I., Lippert, M., and Logothetis, N.K. (2005). Mechanisms for allocating  
519 auditory attention: An auditory saliency map. *Curr. Biol.* *15*, 1943–1947.

520 Kohn, A., Coen-Cagli, R., Kanitscheider, I., and Pouget, A. (2016). Correlations and  
521 Neuronal Population Information. *Annu. Rev. Neurosci.* *39*, 237–256.

522 Krupa, D.J., Matell, M.S., Brisben, A.J., Oliveira, L.M., and Nicolelis, M.A.L. (2001).  
523 Behavioral properties of the trigeminal somatosensory system in rats performing whisker-

524 dependent tactile discriminations. *J. Neurosci.* *21*, 5752–5763.

525 Krupa, D.J., Wiest, M.C., Shuler, M.G., Laubach, M., and Nicolelis, M.A.L. (2004). Layer-  
526 specific somatosensory cortical activation during active tactile discrimination. *Science* (80-. ).  
527 *204*, 1989–1992.

528 Kuruppath, P., Gugig, E., and Azouz, R. (2014). Microvibrissae-Based Texture  
529 Discrimination. *J. Neurosci.* *34*, 5115–5120.

530 Kyriakatos, A., Sadashivaiah, V., Zhang, Y., Motta, A., Auffret, M., and Petersen, C.C.H.  
531 (2016). Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task.  
532 *Neurophotonics* *4*, 031204.

533 de la Rocha, J., Mochol, G., Sakata, S., Hermoso-Mendizabal, A., and Harris, K.D. (2015).  
534 Stochastic transitions into silence cause noise correlations in cortical circuits. *Proc. Natl.  
535 Acad. Sci.* *112*, :3529–34.

536 Lee, S.H., and Dan, Y. (2012). Neuromodulation of Brain States. *Neuron* *76*, 209–222.

537 Lee, C.C.Y., Diamond, M.E., and Arabzadeh, E. (2016). Sensory Prioritization in Rats:  
538 Behavioral Performance and Neuronal Correlates. *J. Neurosci.* *36*, 3243–3253.

539 Lee, C.C.Y., Clifford, C.W.G., and Arabzadeh, E. (2019). Temporal cueing enhances  
540 neuronal and behavioral discrimination performance in rat whisker system. *J. Neurophysiol.*  
541 *121*, 1048–1058.

542 Lee, S., Kruglikov, I., Huang, Z.J., Fishell, G., and Rudy, B. (2013). A disinhibitory circuit  
543 mediates motor integration in the somatosensory cortex. *Nat. Neurosci.* *16*, 1662–1670.

544 Luczak, A., Barthó, P., and Harris, K.D. (2009). Spontaneous Events Outline the Realm of  
545 Possible Sensory Responses in Neocortical Populations. *Neuron* *62*, 413–425.

546 McGinley, M.J., Vinck, M., Reimer, J., Batista-Brito, R., Zagha, E., Cadwell, C.R., Tolias,  
547 A.S., Cardin, J.A., and McCormick, D.A. (2015). Waking State: Rapid Variations Modulate  
548 Neural and Behavioral Responses. *Neuron* *87*, 1143–1161.

549 Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., and Rodriguez, E. (2007).  
550 Synchronization of neural activity across cortical areas correlates with conscious perception.  
551 *J. Neurosci.* *27*, 2858–2865.

552 Minces, V., Pinto, L., Dan, Y., and Chiba, A.A. (2017). Cholinergic shaping of neural  
553 correlations. *Proc. Natl. Acad. Sci.* *114*, 5725–5730.

554 Mitchell, J.F., Sundberg, K.A., and Reynolds, J.H. (2009). Spatial Attention Decorrelates  
555 Intrinsic Activity Fluctuations in Macaque Area V4. *Neuron* *63*, 879–888.

556 Miyashita, T., and Feldman, D.E. (2013). Behavioral detection of passive whisker stimuli  
557 requires somatosensory cortex. *Cereb. Cortex* *23*, 1655–1662.

558 Muñoz, W., Tremblay, R., Levenstein, D., and Rudy, B. (2017). Layer-specific modulation of  
559 neocortical dendritic inhibition during active wakefulness. *Science* (80-. ). *355*, 954–959.

560 O'Connor, D.H., Clack, N.G., Huber, D., Komiyama, T., Myers, E.W., and Svoboda, K.  
561 (2010). Vibrissa-based object localization in head-fixed mice. *J. Neurosci.* *30*, 1947–1967.

562 Okun, M., and Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during  
563 ongoing and sensory-evoked activities. *Nat. Neurosci.* *11*, 535–537.

564 Okun, M., Steinmetz, N.A., Cossell, L., Iacaruso, M.F., Ko, H., Barthó, P., Moore, T., Hofer,  
565 S.B., Mrsic-Flogel, T.D., Carandini, M., et al. (2015). Diverse coupling of neurons to  
566 populations in sensory cortex. *Nature* *521*, 511–515.

567 Otazu, G.H., Tai, L.H., Yang, Y., and Zador, A.M. (2009). Engaging in an auditory task  
568 suppresses responses in auditory cortex. *Nat. Neurosci.* *12*, 646–654.

569 Panzeri, S., Macke, J.H., Gross, J., and Kayser, C. (2015). Neural population coding:  
570 Combining insights from microscopic and mass signals. *Trends Cogn. Sci.* *19*, 162–172.

571 Pola, G., Thiele, A., Hoffmann, K.P., and Panzeri, S. (2003). An exact method to quantify the  
572 information transmitted by different mechanisms of correlational coding. *Netw. Comput.*  
573 *Neural Syst.* *14*, 35–60.

574 Poulet, J.F.A., and Crochet, S. (2019). The cortical states of wakefulness. *Front. Syst.*  
575 *Neurosci.* *12*.

576 Poulet, J.F.A., and Petersen, C.C.H. (2008). Internal brain state regulates membrane potential  
577 synchrony in barrel cortex of behaving mice. *Nature* *454*, 881–885.

578 Poulet, J.F.A., Fernandez, L.M.J., Crochet, S., and Petersen, C.C.H. (2012). Thalamic control  
579 of cortical states. *Nat. Neurosci.* *15*, 370–372.

580 Randall, J.A. (2010). Drummers and stompers:vibrational communication in mammals. In  
581 The Use of Vibrations in Communication: Properties, Mechanisms and Function across Taxa,  
582 pp. 99–120.

583 Rothschild, G., Nelken, I., and Mizrahi, A. (2010). Functional organization and population  
584 dynamics in the mouse primary auditory cortex. *Nat. Neurosci.* *13*, 353–360.

585 Sabri, M.M., and Arabzadeh, E. (2018). Information processing across behavioral states:  
586 Modes of operation and population dynamics in rodent sensory cortex. *Neuroscience* *368*,  
587 214–228.

588 Sabri, M.M., Adibi, M., and Arabzadeh, E. (2016). Dynamics of population activity in rat  
589 sensory cortex: Network correlations predict anatomical arrangement and information  
590 content. *Front. Neural Circuits* *10*.

591 Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y., and Petersen, C.C.H.  
592 (2013). Membrane potential correlates of sensory perception in mouse barrel cortex. *Nat.*  
593 *Neurosci.* *16*, 1671–1677.

594 Safaai, H., Heimendahl, M. von, Sorando, J.M., Diamond, M.E., and Maravall, M. (2013).  
595 Coordinated Population Activity Underlying Texture Discrimination in Rat Barrel Cortex. *J.*  
596 *Neurosci.* *33*, 5843–5855.

597 Safaai, H., Neves, R., Eschenko, O., Logothetis, N.K., and Panzeri, S. (2015). Modeling the  
598 effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing.  
599 *Proc. Natl. Acad. Sci.* *112*, 12834–12839.

600 Scholvinck, M.L., Carandini, M., Saleem, A.B., Harris, K.D., and Benucci, A. (2015).

601 Cortical State Determines Global Variability and Correlations in Visual Cortex. *J. Neurosci.*  
602 35, 170–178.

603 Sermet, B.S., Truschow, P., Feyerabend, M., Mayrhofer, J.M., Oram, T.B., Yizhar, O.,  
604 Staiger, J.F., and Petersen, C.C.H. (2019). Pathway-, layer-and cell-type-specific thalamic  
605 input to mouse barrel cortex. *Elife* 8, e52665.

606 Sieveritz, B., García-Muñoz, M., and Arbuthnott, G.W. (2019). Thalamic afferents to  
607 prefrontal cortices from ventral motor nuclei in decision-making. *Eur. J. Neurosci.* 49, 646–  
608 657.

609 Taub, A.H., Katz, Y., and Lampl, I. (2013). Cortical balance of excitation and inhibition is  
610 regulated by the rate of synaptic activity. *J. Neurosci.* 33, 14359–14368.

611 Tsunematsu, T., Patel, A.A., Onken, A., and Sakata, S. (2020). State-dependent brainstem  
612 ensemble dynamics and their interactions with hippocampus across sleep states. *Elife* 9,  
613 e52244.

614 Vinck, M., Batista-Brito, R., Knoblich, U., and Cardin, J.A. (2015). Arousal and Locomotion  
615 Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding. *Neuron* 86,  
616 740–754.

617 Wang, L., McAlonan, K., Goldstein, S., Gerfen, C.R., and Krauzlis, R.J. (2020). A causal  
618 role for mouse superior colliculus in visual perceptual decision-making. *J. Neurosci.* 40,  
619 3768–3782.

620 Xue, M., Atallah, B. V., and Scanziani, M. (2014). Equalizing excitation-inhibition ratios  
621 across visual cortical neurons. *Nature* 511, 596–600.

622 Yamashita, T., and Petersen, C.C.H. (2016). Target-specific membrane potential dynamics of  
623 neocortical projection neurons during goal-directed behavior. *Elife* 5, e15798.

624 Yang, H., Kwon, S.E., Severson, K.S., and O'Connor, D.H. (2016). Origins of choice-related  
625 activity in mouse somatosensory cortex. *Nat. Neurosci.* 19, 127–134.

626 Yeomans, J.S., Li, L., Scott, B.W., and Frankland, P.W. (2002). Tactile, acoustic and  
627 vestibular systems sum to elicit the startle reflex. *Neurosci. Biobehav. Rev.* 26, 1–11.

628 Yu, J., Hu, H., Agmon, A., and Svoboda, K. (2019). Recruitment of GABAergic Interneurons  
629 in the Barrel Cortex during Active Tactile Behavior. *Neuron* 104, 412–427.

630 Zagha, E., and McCormick, D.A. (2014). Neural control of brain state. *Curr. Opin.*  
631 *Neurobiol.* 29, 178–186.

632 Zagha, E., Murray, J.D., and McCormick, D.A. (2016). Simulating cortical feedback  
633 modulation as changes in excitation and inhibition in a cortical circuit model. *ENeuro* 3,  
634 0208–0216.

635 Zhou, M., Liang, F., Xiong, X.R., Li, L., Li, H., Xiao, Z., Tao, H.W., and Zhang, L.I. (2014).  
636 Scaling down of balanced excitation and inhibition by active behavioral states in auditory  
637 cortex. *Nat. Neurosci.* 17, 841–850.

638 Zuo, Y., Safaai, H., Panzeri, S., Diamond, M.E., Zuo, Y., Safaai, H., and Notaro, G. (2015).  
639 Complementary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in

640 Rat S1 and S2 Cortex Complementary Contributions of Spike Timing and Spike Rate to  
641 Perceptual Decisions in Rat S1 and S2 Cortex. *Curr. Biol.* 25, 357–363.

642

643 **FIGURE LEGENDS**

644 **Figure 1. A.** Schematic diagram of the behavioral setup. As the mouse performed the  
645 vibration detection task, we imaged neuronal activity from the vibrissal area of the primary  
646 somatosensory cortex using two-photo excitation microscopy (GCaMP6f). Stimuli were  
647 presented via a mesh place on the left whisker pad and sucrose reward was provided via a  
648 capacitive sensing drink spout. **B.** A 300ms 40Hz vibration stimulus was presented at one of  
649 five possible intensities (0, 10, 20, 40, 80 $\mu$ m). Licking the drink spout during stimulus  
650 presentation (10-80 $\mu$ m) resulted in delivery of sucrose reward. Licking the drink spout at any  
651 other time did not result in delivery of sucrose. Each stimulus presentation had an inter-  
652 trial/stimulus interval of 5-10s. **C.** Licking profile during an example session. In the raster  
653 plot, each lick is represented as a dot and each line represents a trial. Every color represents a  
654 different intensity. Average peri-stimulus time histograms are presented with same color  
655 notation as in raster plot. Shaded error bars represent SEM. **D.** Hit rate for all mice (n=7) as a  
656 function of stimulus intensity. Line represents the best fit of a cumulative Gaussian function.  
657 **E.** Every line represents one cell (n=1436). All trials of 80 $\mu$ m vibration are averaged for each  
658 cell. Cells are sorted based on their average activity 1 second post-stimulus onset. Scale is  
659 logarithmic. **F.** Average calcium trace in response to all stimulus intensities (top), along with  
660 corresponding neurometric curve (bottom). Fluorescence values are calculated from 0-1s  
661 post-stimulus window. Color notion as in C. Left panels, positive responding cells of E  
662 (n=948). Right panels, negative responding cells of E (n=534). **G.** Response modulation as  
663 function of stimulus intensity for all cells in E. Responses is calculated by average area under  
664 the curve (0-1s post-stimulus window). Continuous line represents the best fit of a cumulative  
665 Gaussian function.

666  
667 **Figure 2. A.** Changes in pupil diameter (orange), detection performance (black) and false  
668 alarm rate (black dashed) of an example session. Lines indicate 10 trial sliding averages of  
669 respective measurements. Insert, screenshot of example pupil and estimation of pupil size. **B.**  
670 Left, cross-correlogram of performance and pupil diameter in an example session. Right, trial  
671 location of peak correlation across all sessions. **C.** Left, auto-correlation of performance in an  
672 example session. Black dash line represents correlation coefficient at 1 block distance (5  
673 trials). Gray dash line represents block distance at 0.5 correlation coefficient. Right,  
674 frequency distribution of correlation coefficient at 1 block distance across all sessions. **D.**  
675 Pupil diameter (average pupil size -5-0s from stimulus onset) as a function of behavioral  
676 state. **E.** Average response of 3 example cells to 0, 40 and 80 $\mu$ m at 0-25% (blue), 50%  
677 (turquoise), and 75-100% (green) behavioral state. **F.** Neurometric response of top 50%  
678 responding cells for 3 behavioral states. Color notation retained from E. **G.** Neurometric  
679 response of bottom 50% responding cells for 3 behavioral states. Color notation retained from  
680 E. **H.** Psychometric curves averaged across all mice for 3 behavioral states (blue: 0-25%;  
681 turquoise: 50%; green: 75-100%). Continuous line represents the best fit of a cumulative  
682 Gaussian function to each of the three behavioral states. **I.** Neurometric response of all cells  
683 as calculated by area under the curve (0-1s window post-stimulus onset) for 3 behavioral  
684 states. Continuous line represents the best fit of a cumulative Gaussian function to each of the  
685 three behavioral states. **J.** Neurometric response of all cells as calculated by area under the  
686 curve (0-1s window post-stimulus onset) of trials in which animal responded (Hit for  
687 stimulus present – filled circle; False-alarm for stimulus absent- filled triangle) in 3  
688 behavioral states. Continuous line represents the best fit of a cumulative Gaussian function to  
689 each of the three behavioral states.

690

691 **Figure 3. A.** Noise correlation of cells in example session between 0-25% (blue) and 75-  
692 100% (green). Cells in 0-25% blocks exhibit higher noise-correlation than 75-100%. Insert  
693 indicates histogram distribution from line of equivalence. **B.** Noise correlation for each  
694 mouse between 0-25% and 75-100% (gray). Average noise correlation averaged across all  
695 mice between 0-25% and 75-100% (black). **C.** Noise correlation averaged across all mice as a  
696 function of cell distance. Blue: 0-25%; Green: 75-100%. Error bars represent SEM. **D.**  
697 Linear decoding accuracy of an example session for 20 $\mu$ m between 0-25% (blue) and 75-  
698 100% (green) as a function of number of cells. Error bars represent SEM. **E.** Linear decoding  
699 accuracy across all sessions for 20 $\mu$ m between 0-25% (blue) and 75-100% (green) as a  
700 function of number of cells, up to median population size (20 cells). Error bars represent  
701 SEM. **F.** Comparison of linear decoding accuracy of 20 $\mu$ m stimulus between de-correlated  
702 trials (by shuffling) and actual data. Each dot denotes the average accuracy of a particular  
703 session of a particular population size. **G.** Average linear decoding accuracy for each session  
704 across stimulus intensities using all significantly responsive cells recorded simultaneously.  
705 Asterisks represents  $p < 0.01$ , Wilcoxon rank-sum test. Error bars represent SEM.  
706

707 **Figure 4. A.** Average traces of top 25% and bottom 25% responding cells in response to hit  
708 (solid line), and miss (dash line) trials. Shaded error represents SEM. **B.** Average traces of  
709 top 25% and bottom 25% responding cells to hit and miss trials in low behavioral state (0-  
710 25%, blue) and high behavioral state (75-100%, green). Shaded error represents SEM. **C.**  
711 Left: 1 second average response of top 25% and bottom 25% responding cells for hit and  
712 miss trial in low behavioral state (0-25%, blue) and high behavioral state (75-100%, green).  
713 Right: 1 second average response of top 25% and bottom 25% responding cells for correct  
714 rejection and false alarm trial in low behavioral state (0-25%, blue) and high behavioral state  
715 (75-100%, green). Error bars represents SEM. **D.** Average calcium response profile of cells  
716 as calculated by area under the curve (0-1s window post-stimulus onset) for hits (filled  
717 circles), miss (open circles), false alarm (filled triangle) and correct rejection (open triangle)  
718 across 3 behavioral states.  
719

720 **Supplementary Figure 1. A.** Lick rate and area under ROC across stimulus intensity. Black  
721 open circles represent average AUROC across all mice. Black closed circles represent  
722 average lick rate across all mice. Gray open circles represent AUROC for each mouse. Gray  
723 closed circles represent lick rate for each mouse. **B.** Reaction time across stimulus intensity.  
724 Black dots represent average first lick response time across all mice. Gray dots represent first  
725 lick response time for each mouse.  
726

727 **Supplementary Figure 2.** Calcium response functions of significantly responsive cells at  
728 80 $\mu$ m as determined by Wilcoxon sign-rank test. **A.** Average calcium response of  
729 significantly excited cells. Line represents the best fit of a cumulative Gaussian function. **B.**  
730 Average calcium response of significantly inhibited cells. Line represents the best fit of a  
731 cumulative Gaussian function.  
732

733 **Supplementary Figure 3. A.** Variance of pupil diameter as a function of behavioral state  
734 performance. Error bars represent SEM. **B.** Hit rate as a function of pupil diameter. Error  
735 bars represent SEM.  
736

737 **Supplementary Figure 4. A.** Scatter plot of evoked response (0-1s post stimulus) across all  
738 cells (n=1436) of high state (75-100%) against low state (0-25%). Black line represents line  
739 of equivalence. Red line represents linear fit. **B.** Average calcium response profile of  
740 significantly excited cells at all 3 behavioral states. Line represents the best fit of a

741 cumulative Gaussian function. **C.** Average calcium response profile of significantly inhibited  
742 cells at all 3 behavioral states. Line represents the best fit of a cumulative Gaussian function.  
743 **D.** Average evoked response (0-1s post stimulus) of excited and inhibited cells across all 3  
744 behavioral states sorted based on a 50ms window post stimulus. **E.** Average calcium  
745 response profile of cells as calculated by area under the curve (0-50ms window post-stimulus  
746 onset) for 3 behavioral states. **F.** Average calcium response profile of cells as calculated by  
747 area under the curve (0-1s window post-stimulus onset) for 3 behavioral states limited to  
748 blocks in which false alarm rate was zero (no response to stimulus absent trials).  
749

750 **Supplementary Figure 5.** **A.** Screenshot image of whisker tracking video. Dashed area  
751 represent region of interest used to calculate percentage change in pixel as a measure of  
752 whisker movement. **B.** Left: Whisker and box plot indicating median pixel change (red) in  
753 whisker ROI across different behavioral states. Box contains the 25th and 75th percentile;  
754 whiskers mark the 5th and 95th percentile. Right: Mean and standard error of mean of pixel  
755 change in whisker ROI across different behavioral states.

756  
757 **Supplementary Figure 6.** **A.** 1 second average response of top 25% and bottom 25%  
758 responding cells for hit and miss trials in all behavioral state categories. Error bars represent  
759 SEM. **B.** Same calculations as A for state categories after excluding the response to the  
760 current trial of interest (see methods for detail).  
761

762 **STAR METHODS**

763 **RESOURCE AVAILABILITY**

764 **Lead Contact**

765 Further information and requests for resources and reagents should be directed to and will be  
766 fulfilled by the Lead Contact, Conrad Chun Yin Lee ([conrad.lee@anu.edu.au](mailto:conrad.lee@anu.edu.au)).

767

768 **Materials Availability**

769 This study did not generate new unique reagents.

770

771 **Data and Code Availability**

772 The dataset generated during this study is available at: <https://osf.io/de5rh>.

773 The MATLAB codes generated during this study are available from lead contact on request.

774

775 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

776

777 **Mice**

778 Subjects were seven 4 week old male C57BL6J with initial weights of 20-25g. All procedures  
779 were approved by the Animal Care and Ethics Committee at the Australian National  
780 University. Mice were house in independently ventilated and air filtered transparent plastic  
781 boxes in a climate controlled colony room on a 12/12 hour light/dark cycle, where lights were  
782 turned off at 7pm. Mice were water restricted to motivate animal to perform the detection  
783 task. Mice had abundant access to water for 2-3hrs after training sessions and were provided  
784 with ad-lib food. All mice gained weight at a normal rate throughout the entire duration of the  
785 experiment.

786

787 **METHODS DETAIL**

788 **Surgery**

789 Mice underwent surgery for viral infection and head-post implantation. They were  
790 anesthetized with isoflurane (~2% by volume in O<sub>2</sub>) and their eyes were covered with a thin  
791 layer of Viscotears liquid gel (Alcon, UK) and kept on a thermal blanket to maintain body  
792 temperature (Physitemp Instruments). The scalp and periosteum over the dorsal surface of the  
793 skull were removed. A circular craniotomy was made over the right barrel cortex (3mm  
794 diameter; center relative to Bregma: lateral 3mm; posterior 1.8mm) with the dura left intact.  
795 GCamp6f (AAV1.Syn.GCamp6f.WPRE.SV40) were injected in 4-6 sites within the  
796 craniotomy (4 injections at 32nL per site; depth, 230-250μm; rate ~92 nLs<sup>-1</sup>) using a glass  
797 pipette (15-25μm, tip diameter) via a Nanoject II injector (Drumont scientific, PA). After  
798 viral injection, the craniotomy was covered with a glass imaging window 3mm in diameter  
799 and 150±20μm in thickness (Warner Instruments, CT). This was glued to the bone  
800 surrounding the craniotomy. Custom made head posts were fixed to the skull above lambda  
801 using a thin layer of cyanoacrylate adhesive and secured to the skull using dental acrylic. A  
802 small well was built surrounding the craniotomy window using dental acrylic to  
803 accommodate distilled water required for immersion lens for two-photon microscope  
804 imaging.

805 **Apparatus**

806 Mice were trained to perform a vibration detection task while head-fixed. All behavioral  
807 apparatus was controlled by custom written script in MATLAB (The Mathworks) and  
808 interfaced through a data acquisition card (National Instruments, Austin, TX) at a sampling

809 rate of 100kHz. The vibration stimulus was presented to the left whisker pad via an aluminum  
810 mesh (2x2cm) attached to a ceramic piezoelectric wafer (Morgan Matroc, Bedford, OH). The  
811 mesh was slanted parallel to the animal's left whisker pad (~2mm from the surface of the  
812 snout). Spacing on the mesh was arranged in a grid with each opening adjacent to one  
813 another. Each opening was approximately 150 $\mu$ m apart. At 2mm from the surface of the  
814 snout, the diameter of the whiskers of a mouse is approximately 80 $\mu$ m (Carvell and Simons,  
815 2017). Using a microscope, we adjusted the position of the vibrating mesh to reliably engage  
816 the maximums number of whiskers to reduce the possibility of poor whisker engagement.  
817 Any whiskers that did not enter through an opening on the mesh were rested against the wire  
818 structure of the mesh. The vibration stimulus was a series of discrete gaussian deflections.  
819 Each deflection lasted for 15ms and was followed by a 10ms pause before the next deflection,  
820 yielding a frequency of 40Hz. The total stimulus duration was 300ms. The stimulus  
821 amplitude ranged from 0 $\mu$ m, 10 $\mu$ m, 20 $\mu$ m, 40 $\mu$ m, and 80  $\mu$ m. A custom steel "lick-port" was  
822 used to record licks and to deliver 5% sucrose reward and was attached to a  
823 micromanipulator to adjust distance for each animal. The lick-port was placed within reach of  
824 the tongue at ~0.5mm below the lower lip and ~5mm posterior to the tip of the nose. The  
825 lick-port was connected to an Arduino Uno acting as a capacitive sensor. The capacitive  
826 voltage was sent to data acquisition card and a software threshold was set to determine if a  
827 lick was present or absent. The sucrose was delivered via a gravity feed solenoid valve. Mice  
828 were placed in an acrylic (4cm inner diameter) tubes such that their heads extended out the  
829 front and they could use their front paws to grip the tube edge. A surgically implanted custom  
830 head post that extended to the sides of the mice was used to immobilize the animal. Mice  
831 were thereby head-fixed in a natural crouching position with their whiskers free to move  
832 around the space surround their head.

833 For recording, the animal was transferred to a two-photon imaging microscope system  
834 (ThorLabs, MA) with a Cameleon (Coherent) TiLSapphire laser tuned at 920nm and focused  
835 by a water-immersion Nikon objective (x16, 0.58NA). All image acquisition was performed  
836 via ThorImage (ThorLabs, MA) and frames were synchronized with the stimulus presentation  
837 via the data acquisition card.

### 838 **Training and behavioral task**

839 Training began after surgery and recovery. Animals experienced 4 days of water restriction.  
840 During this period, mice were handled to adapt to the experimenter and to the head fixation  
841 setup. This involved picking up mice and running the animal through the acrylic tube. With a  
842 hemostatic forcep, mice were held in position in the head-fixation post for increasingly longer  
843 duration (from 1seconds to 60seconds). Once mice adapted to hand held head-fixation, they  
844 were head-fixed into the post for increasingly longer duration (from 1minute to 10 minutes).  
845 At each fixation, mice were rewarded with 5% sucrose from a pipette held by the  
846 experimenter.

847 Training began once the animal adapted to head-fixation with one session during which the  
848 mouse was rewarded for every lick recorded on the lick-port. When the animal licked, the  
849 vibration stimulus was presented for 1 second. By the end of the sessions, mice reliably  
850 triggered and consumed the sucrose reward. At the next phase of training, the vibration  
851 stimulus was presented indefinitely, until the mice licked the lick-port to trigger release of  
852 sucrose. The mice had to trigger the reward three times, after which a 60 seconds no-go  
853 period was enforced. During this period, no stimulus was presented and any licks of the lick-  
854 port did not release any sucrose. This reinforced the association that licking during the  
855 vibration stimulus resulted in a reward, whilst licking when the stimulus was absent resulted

856 in no reward. In three to four sessions, mice reliably triggered reward during the stimulus  
857 period and refrained when no stimulus was present. Next, the stimulus period was reduced to  
858 1 second, and the stimulus was either 80 $\mu$ m (go) or 0um (no-go). Between each stimulus  
859 presentation, a variable inter-trial interval was enforced, which varied between 5-7 seconds.  
860 After mastering this easy version of the task (above ~85% correct), the stimulus period was  
861 reduced from 1 second to 300ms over four sessions and the inter-trial-interval was increased  
862 to 5-10 seconds. Once mastered, mice advanced to the final version of the task in which 5  
863 stimulus amplitudes (0 $\mu$ m, 10 $\mu$ m, 20 $\mu$ m, 40 $\mu$ m, 80 $\mu$ m) were introduced. Amplitudes were  
864 pseudo randomized in 5 trials blocks, such that each block contained all possible stimulus  
865 amplitude. Mice performed the detection task for an extended period each day (~400 trials),  
866 in order to obtain different periods of global arousal states. This was critical as mice  
867 experienced the same stimulus intensities and have the same opportunity to response across  
868 the entire session.

## 869 **Whisker Tracking**

870 A high speed camera (Mikrotron EoSens CL, Unterschleissheim Germany) was placed above  
871 the whisker pad capturing 1000 frames per second at a resolution of 400x480 pixels. A panel  
872 of infra-red LEDs illuminated the floor below the whisker pad. 1 second videos clips were  
873 captured centered at each stimulus onset. We quantified whisker movement by first filtering  
874 each frame via edge detection and measuring the percentage change in pixel intensity from  
875 one frame to another in a 200x50 pixel ROI that contained only the ipsilateral whisker pad  
876 (Fig.S5A and Video S2). Whisker movement was quantified from a 300ms window before  
877 the stimulus onset. All whisker tracking and behavior was performed in darkness. In total, we  
878 captured whisking data for 3 mice over 12 sessions each. On average each session was  
879 ~90mins long, totaling 54hrs of high-speed video data. Pixel change analysis captures both  
880 whisking amplitude and velocity. We cannot separate these two factors from our  
881 measurement. However, from our observation in Supplementary Video 2, pixel change  
882 analysis in Supplementary Figure 5 and tracking via WHISK (Clack et al., 2012), we  
883 observed no whisking activity nor differences in pixel change/whisker movement.

## 884 **Pupillography**

885 A camera (DMK22BUC03, The Image Source, Taiwan) capturing at 30 frames per second,  
886 was place at an oblique angle focusing on the mouse's left eye. The infra-red light used to  
887 illuminate the floor for whisker tracking was also used to illuminate the pupil. All pupil  
888 tracking and behavior was performed in darkness. We took precaution in turning off  
889 computer monitors and another other light source that could influence pupil dilation. Pupil  
890 area was isolated using a custom written MATLAB code that utilized a combination of frame  
891 scaling and circle Hough transformation.

## 892 **QUANTIFICATION AND STATISTICAL ANALYSIS**

893

## 894 **Behavioral analysis**

895 Hit trials were defined as the presence of at least one lick 0-300ms post stimulus onset and no  
896 licks 300ms before stimulus onset. Miss trials were defined as the absence of lick 0-300ms  
897 post stimulus onset. Behavioral stimulus detectability was computed from distributions of  
898 lick counts occurring 1s before and after each stimulus onset. A criterion shifted in steps of  
899 one lick across the two distributions was used to determine the hit and false alarms of a

900 stimulus condition, thus forming a receiver operating characteristic (ROC) curve.  
901 Detectability was expressed as the area under the ROC. State was classified into three  
902 categories based on the mice performance by calculating the detection rate within each block  
903 (0%: no detection; 100%: all four amplitudes detected): low-state (0-25%), intermediate-state  
904 (50%) and high-state (75-100%). Since the 5 stimulus intensities were randomized in blocks  
905 of 5 trials, state performance was calculated as the average detection performance for each 5  
906 trial block. The ranges of state performance were then separated into the three categories – 0-  
907 25%, 50%, 75-100%.

908 On selected sessions, we observed a general decline in motivation over time. This was  
909 characterized by changes in false alarm (behavioral response to zero stimulus intensity) over  
910 time. To account for changes in motivation and task engagement, we restricted our analysis to  
911 trials in which false alarm was zero. For majority of trials, this was the case – mice correctly  
912 rejected zero stimulus intensity by withholding licking. In each 5 trial block (containing all  
913 stimulus intensities: 0, 10, 20, 40, 80 $\mu$ m), we excluded blocks of trials in which the mice  
914 responded to the 0 $\mu$ m stimulus (false alarm). Calcium response profile for each behavioral  
915 state was then calculated with the remaining blocks of trials (Fig. S4F).

916 As state was defined by stimulus present trials including the trial of interest, the observed  
917 effect of outcome modulation may be confounded by the current trial of interest. To mitigate  
918 this, we performed an additional analysis to supplement our choice outcome analysis (Fig.  
919 S6B). This analysis was performed at each 5 trial block to contain all stimulus intensity: 0,  
920 10, 20, 40, 80 $\mu$ m. Like before, for every trial within each block, we defined behavioral state  
921 by calculating the detection performance for all stimulus present trials (10, 20 40 80 $\mu$ m).  
922 However, in this complementary analysis, the current trial was excluded in the calculation.  
923 This resulted in 4 behavioral state categories: 0%, 33.3%, 66.6%, and 100%.

## 924 **Neuronal response analysis**

925 Image stacks were corrected for motion and regions of interest (ROIs) were selected for each  
926 cell in each session using Suite2P (Pachitariu et al., 2016). Raw fluorescence  $F$  was obtained  
927 for each cell by averaging across pixels within each ROI. Baseline fluorescence  $F_0$  was  
928 calculated by determining the average  $F$  in the preceding 500ms time window from stimulus  
929 onset. The change in fluorescence relative to baseline,  $\Delta F/F$ , was computed by taking the  
930 difference between  $F$  and  $F_0$  and dividing by  $F_0$ . For all fluorescence heat maps and average  
931 traces, plots were generated by a sliding window average of 10 frames at steps of 1 frame.

## 932 **Cross-correlation analysis**

933 Cross correlation between pupil diameter and performance was calculated from a 5 trial  
934 sliding window. Pupil diameter was calculated as the average diameter in each window. To  
935 perform cross correlation, both measurements were normalized to vary between 0-1.  
936 Correlations were also bias corrected for different lag lengths. To calculate correlation  
937 coefficient between neuron pairs, we computed the normalized cross correlogram of each cell  
938 pairs during periods of spontaneous activity (0-4s window before stimulus onset). Baseline  
939 fluorescence  $F_0$  was calculated by determining the average  $F$  in the preceding 4-5s time  
940 window from stimulus onset. Finally, we calculated the maximum height of the correlogram  
941 as a measure of correlation strength.

## 942 **Noise-correlation and classification analysis**

943 For noise correlation, in order to remove any effect of stimulus on correlation, we only  
944 performed the pairwise correlations on the spontaneous activity (4s before stimulus onset).  
945 For each cell pair, the mean fluorescence activity is calculated on each trial and correlated.  
946 Classification analysis employed a linear discrimination classifier, training with 90% of data  
947 points and testing on the remaining 10%. The classifier classified calcium response from a 1s  
948 window post stimulus onset. This response was baseline corrected (1s pre stimulus onset).  
949 We classified stimulus present trials (10-80 $\mu$ m) against stimulus absent trials (0 $\mu$ m). The  
950 decoding accuracy for each neuron population size was calculated as the average  
951 performance over 100 classifying iterations. Figure 3D shows an example session of  
952 decoding 20 $\mu$ m stimulus present trials against 0 $\mu$ m stimulus absent trials. Figure 3E shows  
953 the average across all sessions for decoding 20 $\mu$ m stimulus present trials against 0 $\mu$ m  
954 stimulus absent trials. To examine the contribution of noise-correlation to decoding accuracy,  
955 we decorrelated the activity of neurons by shuffling the trial order within each trial category  
956 (ie. shuffling within stimulus present trials and stimulus absent trials for each stimulus  
957 amplitude and behavioral state). Trial order was averaged over 100 shuffles for neuron  
958 population size iteration. Figure 3F shows the improvement of decoding accuracy for 20 $\mu$ m  
959 vs 0 $\mu$ m stimulus across all imaging session and population size. Decorrelating the activity by  
960 shuffling trial order improved decoding accuracy in low- state compared to high-state.

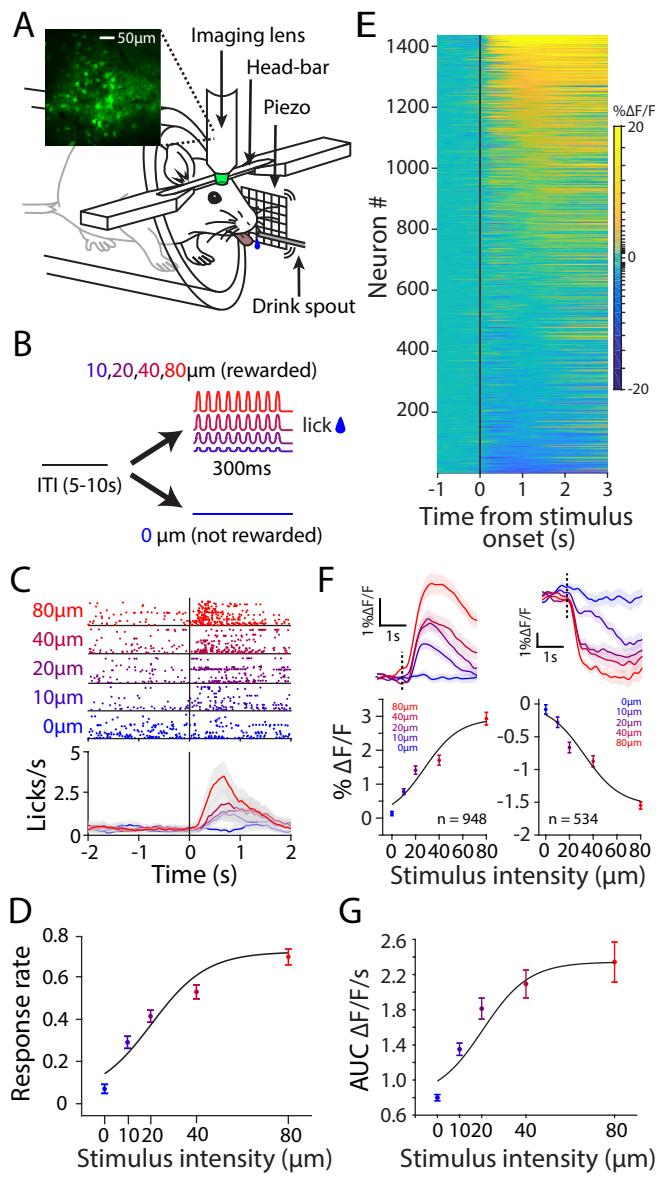



Figure 1

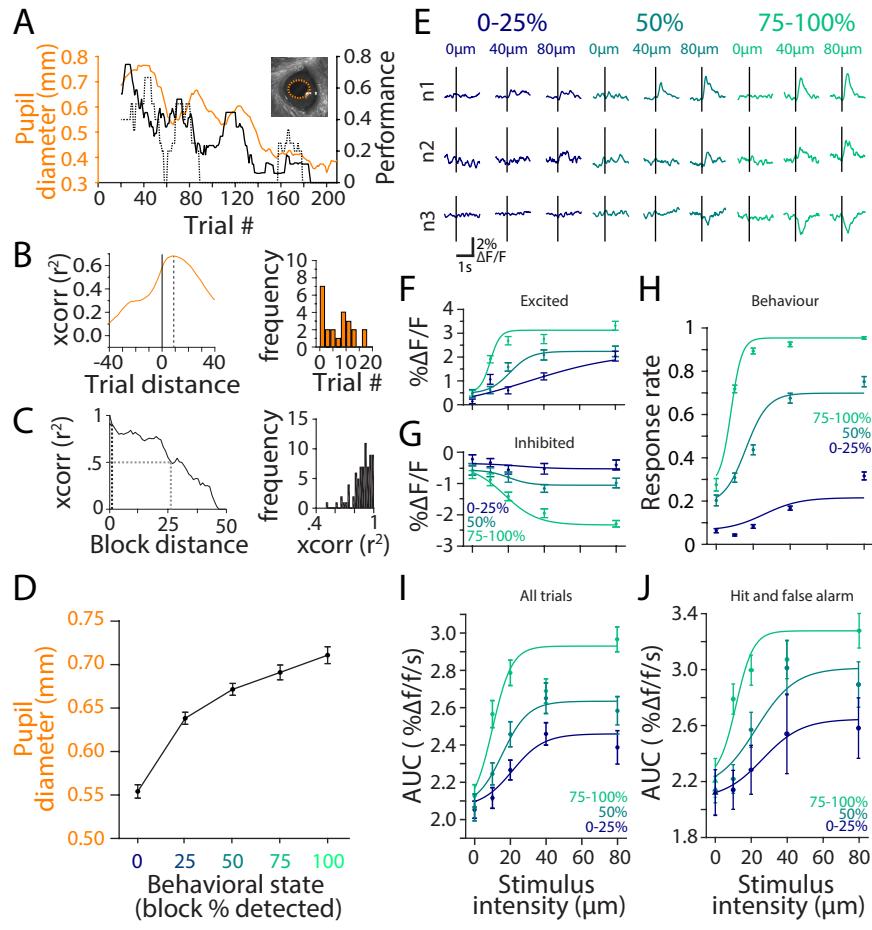



Figure 2

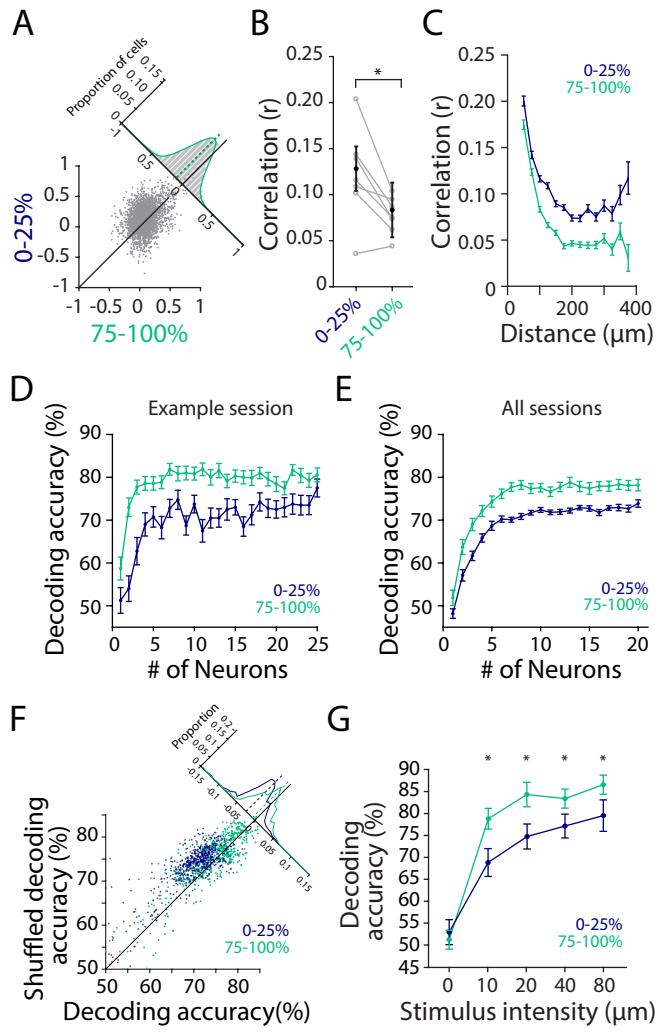
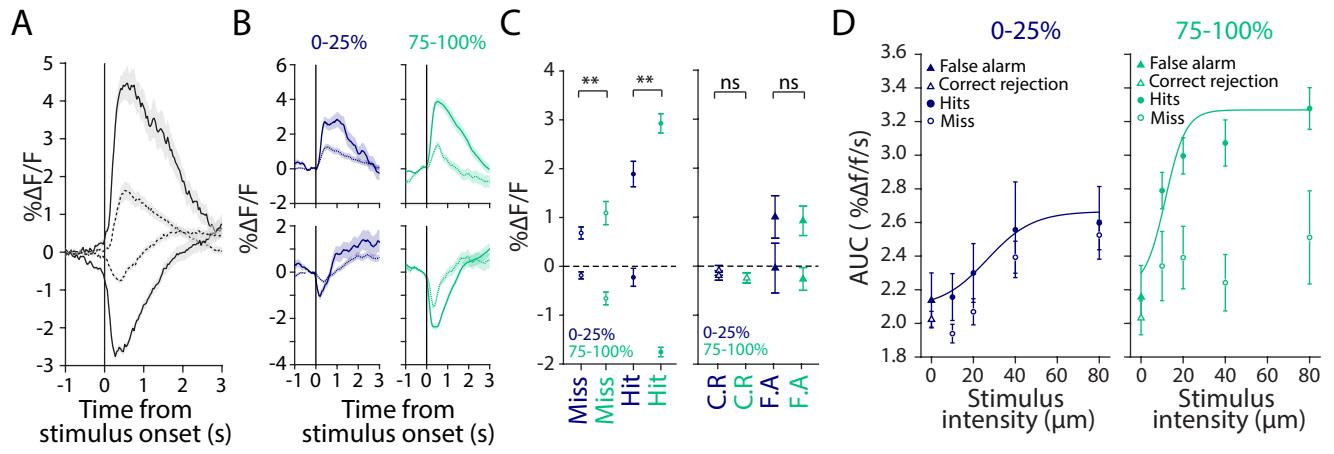
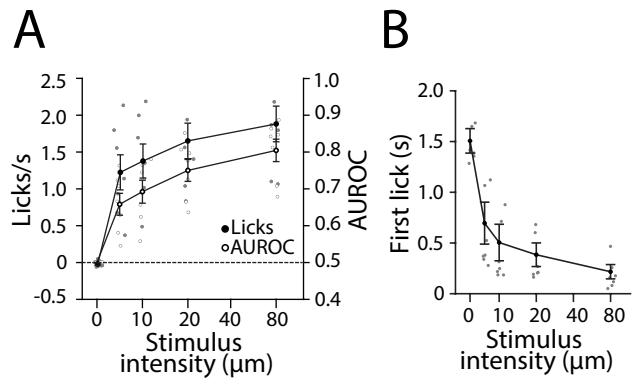
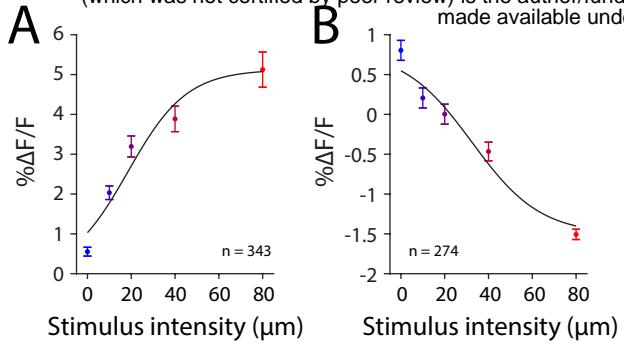
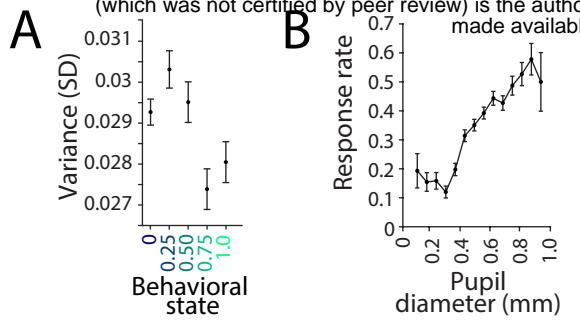
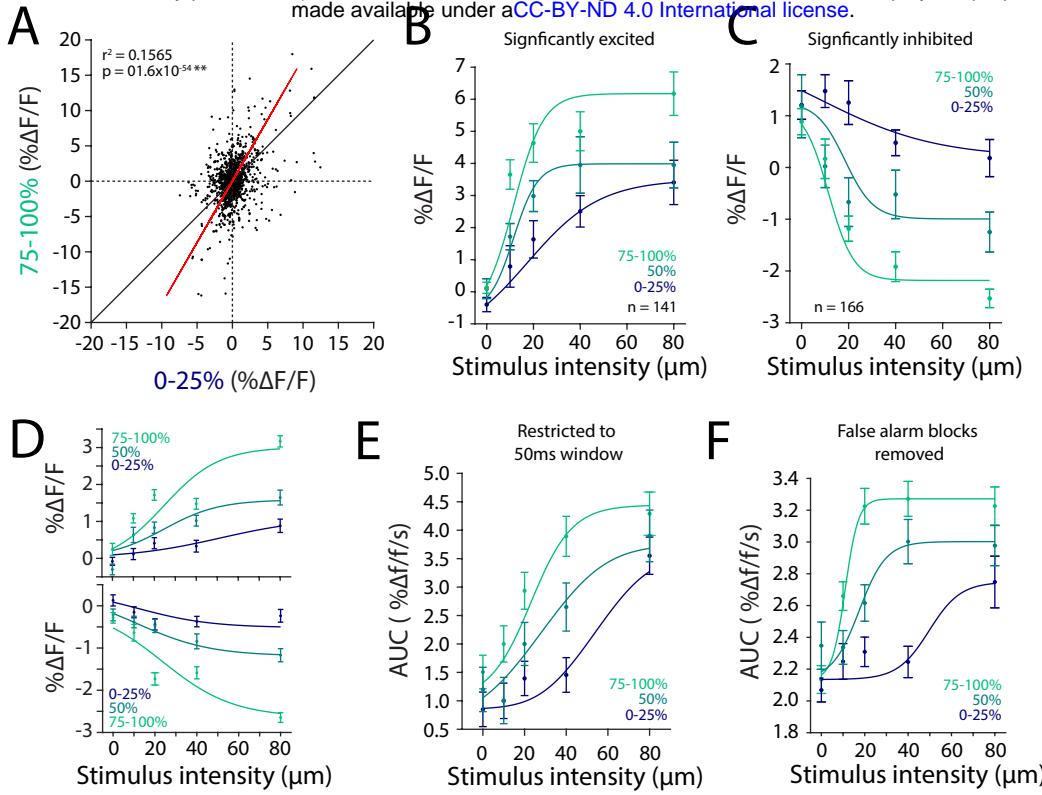



Figure 3

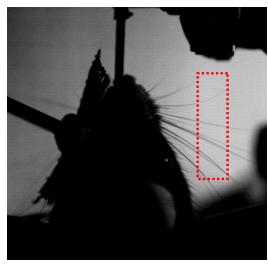


Figure 4



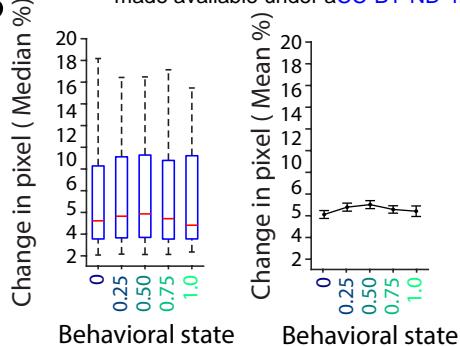

Supplementary Figure 1



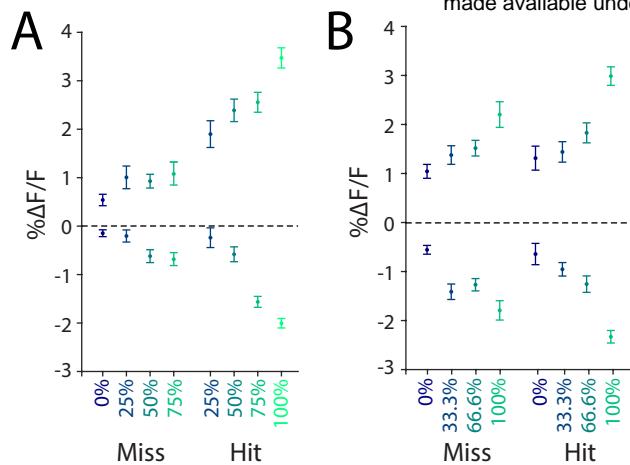
Supplementary Figure 2




Supplementary Figure 3




Supplementary Figure 4


A



B



Supplementary Figure 5



Supplementary Figure 6