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Abstract

Functional connectivity (FC) describes the statistical dependence between brain regions in resting-state
fMRI studies and is usually estimated as the Pearson correlation of time courses. Clustering reveals
densely coupled sets of regions constituting a set of resting-state networks or functional systems. These
systems manifest most clearly when FC is sampled over longer epochs lasting many minutes but appear
to fluctuate on shorter time scales. Here, we propose a new approach to track these temporal
fluctuations. Un-wrapping FC signal correlations yields pairwise co-fluctuation time series, one for each
node pair/edge, and reveals fine-scale dynamics across the network. Co-fluctuations partition the
network, at each time step, into exactly two communities. Sampled over time, the overlay of these
bipartitions, a binary decomposition of the original time series, very closely approximates functional
connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across
participants and imaging sessions and disclose fine-scale profiles of the time-varying levels of expression
of functional systems. Our findings document that functional systems appear transiently and
intermittently, and that FC results from the overlay of many variable instances of system expression.
Potential applications of this decomposition of functional connectivity into a set of binary patterns are
discussed.
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Introduction

Modern network neuroscience conceptualizes the brain as an interconnected dynamic multiscale
system (Bullmore and Sporns, 2009; Bassett and Sporns 2017; Betzel and Bassett, 2017). At the level of
the whole brain, anatomical projections between brain regions shape spontaneous dynamics and
constrain the brain’s momentary responses to changes in input, internal state, and environmental
demand (Honey et al. 2009; Sudrez et al. 2020). Statistical dependencies among regional time courses
are described as ‘functional connectivity’, quantified with a variety of bivariate metrics (Friston 2011,
Buckner et al 2013). In extant fMRI research, the Pearson correlation of blood oxygenation level
dependent (BOLD) time courses remains in wide use, generally applied to long epochs of resting or task-
evoked responses. The resulting correlation matrix, representing a functional network (Power et al
2011) or “functional connectome’ (Biswal et al. 2010), provides a summary representation of the
system’s pairwise dependencies.

Functional connectivity, measured during the resting-state, exhibits highly consistent patterns across
imaging sessions (Horien et al. 2019), participant cohorts (Dadi et al. 2019), and parcellations (Arslan
2018), while also expressing individual differences (Marek et al. 2019), state-dependent changes (Betzel
et al. 2020), and genetic associations (Demeter et al. 2020). Among its characteristic network features is
community structure, the presence of reproducible modules consisting of regions that are internally
densely coupled, reflecting their coherent and correlated activity over time. These intrinsic connectivity
(Damoiseaux et al. 2006), or resting-state networks (RSNs), have become enshrined in the cognitive
neuroscience literature, providing a fundamental taxonomy and topographic reference frame for
mapping brain/behavior relations (Ito et al. 2017; Uddin et al. 2019). Canonical sets of RSNs have been
proposed (Power et al. 2011; Yeo et al. 2011), and their consistent spatial layout has been shown to
reflect patterns of co-activation in task-driven fMRI activation studies (Laird et al. 2011). As internally
coherent, co-activated, co-fluctuating systems they may be taken to represent ‘building blocks’ of the
brain’s cognitive architecture that supports specialized brain function. RSNs are not, however, sharply
delineated. As has been noted in early mapping studies (Fox et al. 2005), and later revealed with data-
driven community detection and clustering approaches (Power et al, 2011; Yeo et al. 2011), functional
connectivity exhibits communities at multiple spatial scales, arranged in an overlapping nested hierarchy
(Doucet et al. 2011; Akiki and Abdallah 2019). Furthermore, most cognitive processes do not occur
within single RSNs, and indeed may require breaking modular boundaries and dynamic reconfiguration
of neural resources, including the network’s nodes and edges (Petersen and Sporns, 2015; Braun et al.
2015; Alavash et al. 2019).

Functional systems or RSNs manifest in long-time samples of resting brain activity — indeed, their
reproducibility across imaging sessions sharply increases with the length of time samples, leveling off at
time scales of tens of minutes (Gordon et al 2017). This raises the question whether RSNs manifest only
on longer time scales or whether they also ‘exist’ at shorter time scales. Recent studies of time-varying
functional connectivity (tvFC; Heitmann and Breakspear, 2018; Lurie et al. 2020; Kucyi et al. 2018) have
addressed the issue, approaching fine temporal structure and dynamics of FC through the use of shorter
data samples, e.g. sliding windows or instantaneous co-activation patterns that result in temporally
ordered sequences of functional networks and network states (Liu and Duyn 2013; Allen et al. 2014;
Shakil et al 2016; Preti et al 2017). These studies have provided evidence for significant fluctuations of
functional connections and network communities on time scales of tens of seconds to minutes (Liao et
al 2017; Grandjean et al. 2017; Liégeois et al. 2019; Vohryzek et al. 2020; Hilger et al. 2020). These
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fluctuations involve a shifting balance between segregated (high modularity) and integrated (low
modularity) states (Zalesky et al. 2014; Betzel et al. 2016), with episodes of high modularity exhibiting
consistent topology across time (Fukushima et al. 2018) and subject to modulation by task performance
or behavior (Shine et al. 2016; Cohen 2018).

Recently, we suggested a new approach to functional connectivity, by focusing on the dynamics and
networks formed by ‘edge time series’ (Faskowitz et al. 2020; Esfahlani et al. 2020). The approach
unwraps time-averaged FC into time series of co-fluctuating signals on network edges resolved at the
time scale of single frames in MRI acquisition, thus allowing inspection of network dynamics at fine time
scales. Here we build on this approach and show that a simple proxy for the resulting framewise
community structure, expressed as a set of bipartitions of the network into two positively co-fluctuating
ensembles of nodes, represents a compact decomposition of the full functional connectivity. Examining
the patterns and frequencies of these bipartitions allows addressing several issues related to FC
dynamics. How well do bipartitions, sampled at fine-scale temporal resolution, represent ‘classic’
system-level architecture as derived from long-time FC? How does the community structure of single
frames combine into the community structure of FC? Do systems, as coherent blocks, manifest
continuously or do they appear transiently at short time scales? Do systems differ in their patterns of
‘functional expression’ across time?

Results
Extraction of Bipartitions from Time Series

This expository section introduces the basic constructs employed in this study (Fig. 1); for more detail
see Methods.

Starting from node time series (BOLD activations), the cross-correlation between each pair of nodes
defines their linear statistical dependence (Fig. 1A). The correlations of all node pairs within a given
system are that system’s functional connectivity. Employing a standard definition of the cross-
correlation, the average of the products of the standard scores of the two variables, yields scalar
correlation estimates. Omitting the averaging step retains the summands, corresponding to a temporal
un-wrapping of the scalar correlation estimates into vectors (time series) along each edge (node pair).
These ‘edge time series’ represent co-fluctuations of node pairs, which are positive when the sign of the
two node’s signal amplitude agrees, and negative otherwise. The average of these edge time series is
equivalent to the value of the corresponding correlation (functional connectivity) and, when computed
across all edges, is equivalent to the FC matrix (Fig 1B). A useful summary metric aggregates the
amplitudes of all edge co-fluctuations, computed as the square root of the sum of their squared values
(root sum square), here denoted RSS. High RSS values indicate that node signals strongly
agree/disagree at a given point in time.

Removing amplitudes and retaining only the sign of co-fluctuation along edges naturally partitions the
network into exactly two sets of nodes (Fig 1C), one set comprising nodes with positive z-scores and a
complementary set comprising the remaining nodes with negative z-scores. This is equivalent to
thresholding each frame’s node vector at z = 0. The two sets of nodes internally co-fluctuate positively
and exhibit negative co-fluctuations between them, thus defining a bipartition of the network.
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Figure 1: Schematic illustration of main constructs related to time series and bipartitions. (A) Two node time series
(BOLD signals, converted to standard scores, for nodes i and j) and the corresponding edge time series (BOLD
signal co-fluctuation, computed as the product of the two node time series, for edge i, j). Positive (negative) BOLD
signals and positive (negative) co-fluctuations indicated in red (blue). (B) Edge i, j time series (same as in panel A)
depicted as a matrix row. The set of all (N2 — N)/2 edge time series for a given network composed of N nodes
can be folded into N x N matrix form. Examples of single time steps (frames) of such N x N edge co-fluctuation
matrices are shown at the bottom of the panel. The time-average of these single frame matrices is the network’s
functional connectivity. (C) Binarized edge i, j time series, by thresholding co-fluctuations at z = 0. Positive
elements correspond to time points where nodes i and j exhibit positive co-fluctuations (i.e. the sign of their BOLD
signals agree). Frames at the bottom of the panel correspond to the frames shown in panel (B). Each frame is split
into exactly two communities. The time-average of these frames is equivalent to the agreement matrix (consensus
co-classification) of these communities.

Reversing the sign of BOLD amplitudes will retain the exact same co-fluctuation pattern and bipartition;
we will therefore disregard the signs of z-scored node amplitudes in further analysis. Note also that
applying the z = 0 threshold, while inherent to the computation of FC from edge time series, should not
imply functional activation of nodes above z = 0 — it merely indicates that regions are active above or
below their own mean.

Bipartitions divide the network into exactly two communities, and, over all time frames, these
community assignments can be combined into a co-assignment or agreement matrix. In network
science, agreement matrices are often used to represent graded assessments of community affiliation
(also called co-classification or co-assignment), for example in consensus clustering (Lancichinetti and
Fortunato 2012) and multi-resolution community detection (Jeub et al. 2018). In general, the agreement
matrix expresses the frequency with which each node pair is grouped into the same community across
many partitions. Here, we calculate the agreement of many bipartitions across many time points.
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Figure 2: Example of edge time series, FC, bipartitions and agreement matrix, for one representative participant,
one imaging session, in a 200 node parcellation of the cerebral cortex. (A) Edge time series recording co-
fluctuations between node pairs (19900 unique edges) over 1100 frames (left). The vector of the means of these
time series (middle), when refolded into matrix form (right), is equal to the functional connectivity. Nodes are
ordered according to 7 canonical functional systems. (B) Thresholding the edge time series at z=0 yields binary
time series that track whether co-fluctuations are positive or negative (left). Their average (middle) records, for
each edge (node pair), the frequency of positive co-fluctuation which corresponds to their co-assignment
(agreement) to the same bipartite community. The agreement matrix (right) is constructed from the complete set
of bipartitions and is very highly correlated with the FC matrix (Pearson’s r = 0.967, Spearman’s @ = 0.963, cosine
similarity = 0.962; all computed on the upper-diagonal 19900 element vector).

Bipartitions, as special cases of partitions that bisect the network into two communities, are described
by a binary node vector of community assignments. The similarity between two such vectors can be
measured with several distance metrics such as the Jaccard distance, the cosine similarity, the variation
of information, or the mutual information. Here, we adopt mutual information (M) as the principal
metric used for assessing similarity between bipartitions. The other metrics are highly correlated with
MI, and their application gives qualitatively similar results to those reported in this article.

Variations of the bipartition approach are possible. For example, the zero-threshold dividing each frame
into two sets of nodes based on the sign of their z-scored time courses may be modified by adopting an
arbitrary threshold 6 . Another approach is to define two thresholds +6 and —8 that separate highly
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positive and highly negative activations from activations near the temporal mean, thus yielding
tripartions.

Bipartitions are Strongly Related to Functional Connectivity

All analyses reported in this article have been carried out on four sessions of resting-state fMRI acquired
in a cohort of 95 participants, a quality-controlled subset of the ‘100 unrelated’ Human Connectome
Project (Glasser et al. 2013) cohort. After pre-processing and nuisance regression each of the four scan
sessions was comprised of 1100 frames (TR = 720 ms, total length 792 seconds). BOLD time courses from
cerebral cortex were parcellated into 200 nodes according to a standard template (Schaefer et al 2018).
Some variations of MRI pre-processing were explored and are discussed below, including a second
parcellation scheme into a finer set of 300 nodes and an alternative nuisance regression strategy that
retains the global signal (referred to ‘non-GSR data’). For details see ‘Methods’. To allow division of
brain regions into a set of functional systems each network node was assigned to one of seven canonical
RSNs (Yeo et al. 2011), comprising the visual (VIS), somatomotor (SOM), dorsal attention (DAN), ventral
attention (VAN), limbic (LIM), frontoparietal (FP) and default mode (DMN) systems.

Classic FC is equal to the mean over all frames (time points) of the edge time series (Fig 2A). Edge time
series can be converted to binary form by applying a threshold based on the sign of the momentary co-
fluctuation, an operation that results in a series of bipartitions (Fig 2B). The agreement matrix
constructed from these bipartitions is highly correlated with the corresponding FC matrix (#* = 0.964
0.008, 95 participants, one session). The strong correlation between this bipartition overlay and
traditional FC is robust against different choices of node parcellation and fMRI pre-processing. Fig S1
shows consistently strong similarity between FC and agreement matrix for a finer nodal parcellation
(300 nodes) and for time series data omitting global signal regression. Interestingly, for both variants of
preprocessing the agreement matrix, after null subtraction, contains negative entries, representing node
pairs whose co-assignment into the same module was below chance. In global-signal regressed data
these entries strongly overlap with negative functional connectivity. Variants of the bipartition approach
also yield high matches of agreement and FC matrices. Adopting an arbitrary (non-zero) threshold 8 to
create bipartitions, or adopting an approach using tripartitions, results in close approximation of FC over
a wide range of the 8 parameter (Fig S2).

The set of bipartitions is a binary decomposition of functional connectivity. The characteristic patterning
of FC is constructed from the specific spatiotemporal patterns of the constituent bipartitions, as shown
in Fig. 3. Subsampling randomly chosen bipartitions gradually approximates FC, with even modest
proportions of frames (around 10%) resulting in a very close match with the full-length FC estimate (Fig
3A). When varying run length and using all frames, the quality of the match between agreement and FC
matrices remains high even when runs are short (Fig S3). Prior work (Esfahlani et al. 2020) noted that
selecting edge time series frames based on their rankings in RSS magnitude approximates FC more
quickly when frames are ranked from high to low RSS amplitudes, as opposed to ranking them from low
to high. Bipartitions behave very similarly (Fig 3B). This effect persists when accounting for the
autocorrelation structure (temporal adjacency) of the selected frames (Fig 3C). The level to which
bipartitions approximate FC is unrelated to framewise head motion. ‘Scrubbing’ (removing) high motion
frames (retaining only the frames below the 90 percentile of the framewise displacement) does not
significantly affect the match between agreement and FC matrices (Fig S4).
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Figure 3: legend on following page

Representing the fMRI time series as a series of bipartitions allows computing their pairwise similarity
(quantified as mutual information) across time. Fig 3D displays an example of such a similarity matrix for
a single participant and a single run. Notably, some instances of bipartitions recur throughout the run as
indicated by strongly positive MI between remote time points (off-diagonal entries in the matrix plot).
Reordering frames by RSS magnitude on each session, followed by averaging over all participants,
reveals that high similarity of bipartitions is largely restricted to episodes when RSS amplitudes are near


https://doi.org/10.1101/2020.08.23.263541
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263541; this version posted August 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3 (previous page): Spatiotemporal patterns of bipartitions. (A) Reconstruction of FC by the agreement
matrix constructed from bipartitions as a function of the number of randomly selected time steps (frames). The
sample size is varied between 10 and 1100 frames (full length of imaging session), in steps of 10 frames.
Correlation of agreement and (full-length) FC is plotted for each of 95 participants (light lines; means shown in
black line). (B) Same approach as in panel (A) but with frames selected after ordering them by RMS amplitude. Blue
lines show results after selecting between 10 and 1100 frames in descending order of amplitude (going from high
to low-amplitude frames), red lines show results after moving in reverse order (going from low to high amplitude
frames). (C) Ratio of FC/A correlation when comparing data in panel (B) against a null model (25 independent runs)
where frame numbers are shifted by a random offset, thus preserving their number, temporal spacing and hence
signal autocorrelations. Ratios greater than 1 indicate better reconstruction than achieved by the null model. (D)
Pairwise mutual information between bipartitions on adjacent frames, for a single representative participant and
imaging session. Plots displays percentiles of the Ml distribution (90%, 95" and 99" percentiles). Note recurrent Ml
peaks between remote frames. (E) Mean pairwise M, over all participants on a single session, computed after
ranking each participant’s frames by RSS amplitude. Note high mean Ml is predominantly evident on high-
amplitude frames. (F) Scatter plot of pairwise Ml (adjacent frames) versus RSS amplitude (computed as the mean
of the two adjacent frames), in one representative participant on one imaging session. The two measures are
significantly correlated (Spearman’s ¢ = 0.502, p = 107%). (G) Switching rates of brain regions, plotted as the ratio of
rates observed when RSS amplitudes are high versus low. To compute rates, the bipartition communities on
selected frames (top or bottom 10% RSS amplitude) and their immediate temporal successors were compared to
identify those regions that switched their community affiliation. Data were aggregated across all participants and
all 4 imaging sessions. The plot shows each region’s number of switches during high RSS amplitude frames divided
by the number during low RSS amplitude frames. All regions’ ratios are less than 1, indicating lower switch rates
on high-amplitude frames, with lowest rates exhibited by regions in lateral parietal, medial parietal, and medial
frontal cortex (light colors).

maximal (Fig 3E). The bipartition similarity between adjacent time points (pairwise Ml) is correlated with
RSS amplitude (Fig 3F shows data from one representative participant; p = 0.502, p = 107%; p'=0.494 +
0.049, 95 participants, one session). Lower values of pairwise M| occur when RSS amplitudes are small,
and higher pairwise Ml occurs predominantly when RSS amplitudes are large. This relationship indicates
that the community structure expressed in frame-wise bipartitions is more stable (changes less) when
overall co-fluctuations, across the entire network, are large. These time points correspond to moments
when BOLD time series (and hence co-fluctuations), on average, exhibit larger amplitudes, i.e. are
farther from their zero mean. Different nodes switch at different rates (Fig 3G), with several DMN
regions (parcels ‘DefA_IPL_1’ and ‘DefA_PCC_1’, both hemispheres) and VAN regions (parcel
‘SalVentA_ParOper_1’, right hemisphere) remaining most stably associated with their host communities
during high-amplitude epochs.

Principal component analysis (PCA), applied to the set of bipartitions extracted from each participant’s
BOLD time course, yields a small number of principal components (PCs) that account for significant
portions of the observed variance and exhibit consistent topography across participants (Fig 4A). The
largest PC (PC1), on average, accounts for approximately 12% of the variance (12.334 + 2.082, range
19.989 to 8.780, 95 participants, one session). Averaged across participants and projected onto the
cortical surface, the PC1 pattern corresponds to a mode that splits the brain into two co-fluctuating
ensembles comprising most regions belonging to the VIS, SOM, DAN and VAN systems on one side
versus most regions belonging to the LIM, FP and DMN systems on the other (Fig 4B). The PC1 loadings
follow time courses that are positively correlated with RSS amplitude (Fig 4C), indicating that the
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Figure 4: Principal components of bipartitions, and relation to RMS, gradients and Louvain. (A) Largest principal
component (PC1) derived from PCA of the complete set of bipartitions, for each participant, single session. All 95
PC1’s are shown, rectified and z-scored to facilitate comparison across participants. The component generally
captures a mode that bisects the brain into two sets of functional systems (VIS, SOM, DAN, VAN vs. LIM, FP, DMN).
(B) Topography of the PC1 mode (averaged over 95 participants). (C) Boxplot of correlations (Spearman’s ), across
participants, of the PC1 loadings, on 1100 frames, with the RMS amplitude computed from the edge time series.
Note that components are binned by the order in which they appear in each participant’s PCA but may not directly
correspond in terms of spatial topography. Higher-order PCs, accounting for larger percentages of the variance, are
more strongly positively correlated with RSS. (D) Comparison of the node vectors of the PC1 mode (left), the
principal gradient computed from the FC matrix (middle), and the principal component of the PCA of the
bipartitions derived by modularity maximization of the FC matrix, using the Louvain algorithm (right). All three
vectors represent averages over 95 participants, one session and are z-scored. All pairwise correlations are r >
0.98.

connectivity mode inscribed in PC1 is most strongly expressed at time points with high-amplitude
network-wide co-fluctuations. The PC1 as derived from sets of bipartitions is related to several other
more familiar constructs (Fig 4D). It is virtually equivalent to the principal eigenvector of FC (or, more
precisely, its corresponding covariance matrix), and thus also exhibits strong resemblance to
connectivity ‘gradients’ (Margulies et al. 2016). We derived principal components of the affinity matrix
computed from FC (equivalent to the principal FC eigenmode) as in the example shown in Fig 4D. The
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resulting pattern is very highly correlated with the PC1 derived from bipartitions. Furthermore, the
bipartition PC1 pattern closely resembles the first principal component of bipartitions identified by
applying the Louvain modularity maximization algorithm to the long-time averaged FC matrix (Fig 4D).
These strong relationships indicate that the set of bipartitions encapsulates characteristic features of the
FC matrix, including its eigenmodes and community structure.

Collectively, these results demonstrate a strong relationship between bipartitions and traditional
functional connectivity as expressed in the FC matrix. The set of bipartitions derived from the BOLD time
series reflects several important spatial and topographic features of FC, while also disclosing its fine
temporal structure.

Bipartitions Map onto Basis Sets of Templates

Bipartitions divide the network, at each point in time, into exactly two communities. These two
communities are often approximately equal in size, with only 5% comprising node sets that have fewer
than 70 (out of 200) members. This fact begs the question of how these large communities relate to
canonical subdivisions of the brain into several, much more compact functional systems, the largest of
which (the DMN in the 200 node parcellation) comprising 46 nodes. One way to address this question is
to compare each of the empirically observed bipartitions to a standard or basis set of templates that
split the brain into bipartitions defined along the boundaries of canonical functional systems (Fig 5A).
The basis set used here comprises 7 templates that divide 7 canonical RSNs (Yeo et al. 2011) into 1
versus 6 networks, 21 templates that divide them into 2 versus 5 networks, and 35 templates that divide
them into 3 versus 4 networks, for a total of 63 such templates. Since these templates are drawn along
RSN boundaries (which themselves are defined based on their coherent co-fluctuations over long time
scales) one would expect that bipartitions observed at each frame will at least partially align with the
boundaries of the 7 systems as captured in the 63 template basis set.

Comparison of templates with observed bipartitions over time allows tracking of several metrics: a) the
similarity (mutual information, MI) of each bipartition with each basis set template; b) the identification
of the single basis set template that most closely resembles the observed bipartition; and c) computing
which of these best-matched templates occur most frequently and which correlate most strongly with
frame-wise measures such as RSS amplitude. Fig 5B shows examples of three MI time courses for three
examples of templates (cf Fig 5A), one each that divides the network into 1+6, 2+5 and 3+4 systems. The
full set of 63 M1 time courses represent how well each observed bipartition resembles each of the 63
basis set templates and may be interpreted as an index of how strongly a given template is realized at a
given point in time. Selecting, at each time frame, the template for which the MI is maximal allows
representing the sequence of highly variable bipartitions as a sequence of integers, each representing
the single best match (highest MI) out of the 63 templates. Fig S5 provides examples of observed
bipartitions and their best matches in the template set determined by maximal M1, for three example
templates.

For each participant and scan session, templates can be ordered by their median frequency, based on
the number of times they were selected as the best match for the observed bipartitions (Fig 5C). Once a
single best-matching basis set template is assignhed to each frame, their occurrence can be compared
against RSS amplitude (Fig 5D). The most frequently observed basis set template (template 63) most
strongly correlates with frame-wise RSS, indicating that it is predominantly expressed when BOLD
signals and their co-fluctuation patterns exhibit high amplitudes. Note that the template 63 pattern
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Figure 5: Matching bipartitions to a template basis set. (A) lllustration of the template basis set and examples of
templates. Each template is a binary 200200 node mask, defining a bipartition along the boundaries of 7
canonical resting-state networks. The complete set of 63 templates is indicated at the top. For example, template
1 divides the brain’s 200 nodes into those belonging to the VIS network (29 nodes) and the complement, the
remaining 171 nodes. Three example templates are shown at the bottom of the panel. (B) Time courses of the
mutual information computed between the observed bipartition and three example templates from the basis set,
for a single participant on a single imaging session. (C) Templates that best match observed bipartitions are
aggregated across each imaging session and each participant. The boxplot shows their median frequency in order
of abundance, across all 95 participants, single session. The frequency is stated as the number of frames when a
given template provide the best match (out of 1100 total). (D) Each template’s time course of MI, relative to the
observed bipartitions on a given session, was correlated to the same session’s RSS amplitude. The boxplot shows
the median correlation (Spearman’s @) across all 95 participants.

strongly resembles the PC1 extracted from observed bipartitions (cf Fig 4A). Qualitatively similar
rankings of basis set templates and correlations with RSS amplitude are obtained for a finer node
parcellation and for non-GSR data (Fig S6).

The best-matching template set represents a highly compressed set of features of the frame-wise
decomposition, specific to each imaging session and to each participant. Discarding the temporal
ordering of the templates which is immaterial for computing or reconstructing FC, results in a string of
63 numbers encoding a frequency spectrum. Two other aspects of the template set are worth noting.
First, the agreement matrix of the template set, as encoded in the 63-element vector, closely matches
the down-sampled system-wise FC (Fig S7). Second, the shape of the frequency spectrum across the
participant cohort is significantly correlated between imaging sessions. For example, template
frequencies for template 63 across all 95 participants is correlated when comparing the mean of
sessions 1 and 2 and the mean of sessions 3 and 4 (Fig S8). This correlation suggests that, even after
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Figure 6: Searching for sets of bipartitions using an optimization approach. (A) Evolution of the objective function
(1-Pearson’s correlation) for a single representative participant, single session, single run. (B) Comparison of
observed agreement matrix and optimized agreement matrix, the latter retrieved after optimization was
terminated (same data as in plot in panel A). (C) Both, observed and optimized sets of bipartitions were compared
against the 63 template basis set (cf Fig 4) to retrieve best matches. Their distributions and frequencies were
highly correlated (Spearman’s @ = 0.840 + 0.034, range 0.770 to 0.913, 95 participants); correlation magnitudes are
shown as a histogram. (D) Example of best matching templates obtained from observed and optimized
bipartitions, in a single participant, single session, single run (Spearman’s @ = 0.871, p = 0).

considerable compression of the information contained in the original time series, template frequencies
retain some information about individual differences.

Observed Bipartitions are Constrained by Functional Connectivity

So far, findings indicate that the set of bipartitions observed during single resting-state fMRI runs closely
approximates FC (Fig 2) and exhibits characteristic spatiotemporal patterns (Fig 3,4,5). Working
backwards from a given FC matrix, we can ask to what extent does the long-term pattern constrain the
set of underlying fine-scale bipartitions from which it is composed? Obviously, many different sets of
bipartitions (many different sets of time courses) can yield identical FC. To what extent are sets of
bipartitions free to vary once their final superposition in FC is fixed?
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An optimization approach, searching the space of all possible bipartitions, can help address this question
(Fig 6). The approach adopts a variant of the Metropolis algorithm (Metropolis et al. 1953) by
maximizing an objective function, defined as the similarity between an empirically observed agreement
matrix (which, as established above, very closely resembles FC) and an agreement matrix derived from a
set of bipartitions that are subject to incremental optimization. The initial state consists of a completely
random set of bipartitions that give rise to a flat agreement matrix. Then, at each subsequent iteration,
a single node’s community affiliation on a single time frame (both chosen uniformly and randomly) is
swapped. The objective function is re-computed after each swap, and the swap is retained if similarity is
increased, subject to a simulated annealing paradigm (Kirkpatrick et al. 1983) applied to ensure that the
end state corresponds, as closely as possible, to a global optimum. Three different objective functions
are employed, the Pearson correlation, the cosine distance and root-mean-square distance (additional
data shown in Fig S9), with near-identical outcomes. Applying the algorithm to data from single
participants and single imaging sessions succeeds in identifying sets of bipartitions that closely
approximate the agreement matrix derived from the empirical BOLD time series (Fig 6A). Importantly,
the optimized set of bipartitions resembles the set of observed bipartitions, as determined by
comparing their respective best-matching basis set templates (Fig. 6B). Optimization yields closely
matching sets of bipartitions also when the optimized set of bipartitions is significantly smaller than the
length of the original time series (Fig S9). For example, if the optimized set is limited to 1/10%" of the
length of the original time series (110 frames), optimization still converges and resulting bipartitions
continue to resemble those in the observed set.

These findings suggest that the set of bipartitions encountered in the decomposition of fMRI data is
constrained by the long-time average functional connectivity. Recall that each bipartition represents a
snapshot of how co-fluctuations distribute across the network, and that the total set of these snapshots
exhibits significant fluctuations across time. The optimization approach suggests that these fluctuations
are necessary for reconstructing long-time averages in FC, as optimized bipartitions strongly resemble
and are as variable as the observed set.

Expression of Canonical Systems varies across Time

The findings presented so far suggest that bipartitions offer an opportunity to compress time courses
into discrete feature sets that retain long-time characteristics of FC while also disclosing fine-scale
dynamics. A complementary approach to extract fine-scale network states is possible, as explored in this
final section. The expression of individual functional systems across time can be tracked directly, by
examining co-fluctuation patterns at fine-scale temporal resolution. The mean co-fluctuation of
functional systems can be computed across all 7x7 subblocks (each system and each system interaction),
yielding 28 unique time series. An example is shown in Fig. 7A. The temporal averages of these time
series are identical to the corresponding down-sampled 7x7 functional connectivity matrix (cf Fig S7).
On each time step, mean co-fluctuations are compared to a null distribution derived by randomly
shuffling system labels and recomputing co-fluctuations (100 independent shuffles per time step). This
comparison yields z-scores for each system and pair-wise system interaction, where the z-score
expresses how much the signal deviates from the label-reshuffling null. Discretizing these time courses
by applying a z-score threshold yields discrete ‘network states’, with systems and between-system
interactions either exceeding or failing to exceed the threshold of expression. Visual inspection of a
sample time course (Fig 7B) suggests each of the seven RSN is significantly expressed, as indicated by
exceeding the co-fluctuation z-score threshold, only intermittently, on a fraction of time points. Recall
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Figure 7: legend on following page

that co-fluctuations should not be taken as ‘mean activation time courses’ as they take on positive
values when participating nodes are either jointly above or jointly below their long-time z=0 means.

Considering the above-threshold expression of each of the seven RSNs (leaving aside their mutual
interactions, and noting that strongly negative z-scores do not occur) yields, for each point in time, a
binary seven-element vector (a total of 128 such states are possible, with between 0 and 7 RSNs
expressed at a given time). Aggregating these states (95 participants, 4 sessions, 418,000 frames)
provides summary statistics on their frequency (Fig 7C). The most frequent state (occurring in
approximately 13% of all frames) is one where no RSN is strongly expressed. Individual participants
range between 7.4% and 22.4%, and expression levels are correlated across imaging sessions (p = 0.477,
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Figure 7 (previous page): Temporal patterns of RSN expression. (A) Edge time series (cf Fig 2) were aggregated
(averaged) based on edges’ placement within or between 7 canonical functional systems. This is equivalent to
down-sampling 200x 200 (node x node) frames into a 7 x 7 (system x system) matrix, the latter comprising 28
unique elements. The plot shows the resulting 28 edge time series, for a single participant, single imaging session.
Note that within-system time courses exhibit intermittent peaks of high and almost exclusively positive co-
fluctuations. Between-system interactions show similar intermittency, with both positive and negative co-
fluctuations. (B) Same data as in panel A, after discretizing time courses by applying a threshold after z-scoring
against a label permuting null model. The threshold shown here is set at z = 6/—6. (C) Each column (time step) in
panel B correspond to a discrete system state. The plot at the left shows the most frequent states encountered
after aggregating all 95 participants, all 4 sessions (comprising a total of 418,000 time steps and states). States are
displayed by frequency, ordered top to bottom. States with frequencies less than 1 % of total frames are not
shown. Frequencies are plotted at the right, in corresponding order. Variants of the plot for different z-thresholds
are shown in Fig S10. (D) Relation of system states with best-matching templates form the 63 template basis set.
Each row of the matrix is normalized to 1. Note that the most frequent system state (no system strongly co-
fluctuating) has no clear correspondence with basis set. Other states correlate strongly with specific basis set
templates, establishing a link between bipartitions and system states. (E) Average co-fluctuation patterns
computed across frames during which specific system states are encountered (top 10 most frequent states
shown).

p = 10®, 95 participants, mean of sessions 1 and 2 versus mean of sessions 3 and 4; Fig S10). The next
most frequent states predominantly include those where single RSNs are significantly expressed, while
states that involve simultaneous co-expression of multiple systems are less frequent. Frequency ranks of
states remain stable when changing z-thresholds (Fig S10).

As discussed above, bipartitions decompose FC into sequences of two-community assignment vectors
that can be matched to templates from a basis set. As defined in this section, network states also
represent sequences of discrete patterns directly derived from significant excursions of edge time series.
How do these two representations relate to each other? Network states derived from system-wise
expression levels partially reflect the community structure of bipartitions. Many of the states expressing
one or several canonical functional systems have clear counterparts within the bipartition template set,
i.e. the two representations coincide in time (Fig 7D). Aggregating the bipartitions observed on each
time point corresponding to the ten most frequent network states confirms that most states map onto
consistent patterns of co-fluctuation as indexed by the bipartition approach (Fig 7E). This comparison
establishes a relationship between network states as defined here, through frame-wise averaging of co-
fluctuations, and the community structure of bipartitions as defined in previous sections. Both represent
compact descriptions of the dynamic expression of functional systems on fine time scales.

Discussion

Fine-scale analysis of BOLD signal co-fluctuations (edge time series) demonstrates that canonical
functional systems are not expressed uniformly or stably across time. Instead their levels of expression
fluctuate significantly, as individual functional systems coalesce and dissolve, singly or in varying
combinations. While found reliably and reproducibly in long-time scale FC, the appearance of a stable
functional systems architecture is the result of the overlap of many transient and fleeting
manifestations. The proposed decomposition of FC into bipartitions and networks states allows tracking
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these dynamics at fine time scales, only limited by the acquisition rate of single MRI frames. The
approach complements traditional network analysis of FC, estimated on long time scales) and of time-
varying FC, estimated on shorter windows or epochs.

We propose that FC can be decomposed into sets of bipartitions that map onto discrete network states.
These bipartitions exhibit characteristic spatiotemporal patterns, with systems and combinations of
systems expressed at different times, and in varying combinations. The most common patterns are
those where none of the systems are expressed, or where systems are expressed singly and in isolation.
The statistics of bipartitions and network states are reproducible across imaging sessions and
participants, and do not appear to depend critically on choices made in fMRI preprocessing (e.g.
parcellations and global signal regression). Their patterning reflects, and through superposition creates,
the complex multiscale community structure of long-time FC, which has been, to this point, the primary
target of functional network analysis.

Our work builds on and extends previous investigations of time-varying functional connectivity that has
provided evidence for time-dependent fluctuations in functional connections (Chang and Glover 2010)
and network patterns and states (Allen et al. 2014; Zalesky et al. 2014; Pedersen et al. 2018; Shine and
Poldrack 2018; Lurie et al. 2020). Consistent with prior studies of tvFC our approach reveals
spatiotemporal patterns of network-wide co-fluctuations. Notably, we detect a dominant (segregated or
modular) connectivity mode that covaries with overall signal amplitudes (RSS), appears intermittently
over time and exhibits consistent topography (Shine et al. 2016; Betzel et al. 2016; Fukushima et al
2018). Unlike many tvFC studies, our approach does not require defining sliding windows and hence
allows tracking system dynamics at higher temporal resolution. The decomposition of the edge time
series into discrete sets of bipartitions and/or network states offers not only a highly compressed
encoding of system dynamics but also potential new targets for analysis and modeling of both resting
and task-evoked fMRI time series data. We note that the decomposition approach presented here is
closely related to other methods, including CAPs and iCAPs (Liu and Dyun 2013; Karahanoglu and Van De
Ville 2015; Liu et al 2018), which measures instantaneous patterns of co-activation. Our method is
distinct in that it does not require the user to specify a seed region or a threshold for an ‘event’
(Tagliazucchi et al. 2012; Petridou et al. 2013; Cifre et al. 2020). More importantly, the temporal average
of edge time series generated by our approach is exactly equal to time-averaged FC, making it possible
to measure the precise contributions of individual frames to the static correlation pattern.

The topography of the dominant principal component of the bipartitions bears strong resemblance to
the principal mode of BOLD dynamics observed during high RSS amplitude ‘events’ (Esfahlani et al.
2020), as well as patterns characterized by strong excursions (Betzel et al. 2016) or high modularity
(Fukushima et al 2018) in time-varying functional connectivity. Similar patterns representing a de-
coupling of mainly task-positive from task-negative regions have been described and interpreted in
previous studies as a major intrinsic/extrinsic dichotomy in functional architecture (Fox et al. 2005;
Golland et al. 2008; Doucet et al. 2011; Zhang et al. 2019). The pattern reported here is also very highly
correlated with cortical gradients (Margulies et al. 2016), specifically those derived from eigen-
decompositions of the functional connectivity matrix. Indeed, this strong resemblance is due to a
mathematical relationship between sets of frame-wise bipartitions described here (a compression of the
original time series) and the spatial patterns of FC eigenmodes. Going beyond static patterns such as
gradients (see also Faghiri et al. 2019), our approach links these connectivity eigenmodes to fluctuating
levels of expression of specific functional systems at fine-scale temporal resolution. Their relation to
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sequences of cognitive processes, e.g. those underlying ongoing thought (Mckeown et al 2020), is an
attractive topic for future study.

We employed an optimization approach to explore whether a given FC matrix can be decomposed into
sets of bipartitions that differ radically from the ones that are empirically observed. Our findings suggest
this is not the case. Given an observed pattern of FC, the set of frame-wise patterns from which it is
composed, or into which it can be decomposed, is not free to vary. Instead, the statistics of these
patterns appear strongly constrained by the correlation structure inscribed in long-time FC.
Optimizations invariably retrieve sets of patterns that resemble those observed empirically, even though
no dynamic generative model is employed. This makes it harder to dismiss the observed frame-wise
patterns as artifactual or as massively corrupted by noise or uncertainty. Instead it appears that the
fluctuating and variable patterns of observed bipartitions are necessary, in the sense that it is difficult if
not impossible to construct the observed pattern of FC from a radically different (‘stationary’,
temporally smoother, less variable) set of frames.

This work opens new avenues for future research. The decomposition of BOLD time series into a set of
bipartitions and/or network states represents a compression or encoding of the system’s dynamics into
a much more compact feature set. Such feature sets may provide novel opportunities for mapping
individual differences, relations to demographic or behavioral measures, task-rest reconfigurations, or
relation to the underlying anatomy. They may also serve as input for machine learning or multivariate
statistical mapping, including those probing the relation of brain to behavior. In addition, we note that
the proposed scheme may also apply to brain data obtained with other acquisition methods, including
more highly resolved recordings of neuronal populations or individual neurons. The decomposition of FC
into framewise contributions allows to selectively recombine subsets of frames to get different patterns
of FC. It might be possible to select specific subsets of frames/templates to amplify a brain/behavior
correlation.

Limitations of the approach should be noted. As is the case with all studies employing functional
neuroimaging, the present work inherits most drawbacks of fMRI methodology including its limited
temporal and spatial resolution, the indirect link to underlying neural activity, and measurement noise
and statistical biases. Following good practices in data preprocessing, the use of multiple data sources
and cautious interpretation of findings can at least partially guard against these limitations. It should
also be noted that the basic methodological framework transcends the limitations of fMRI as its
mathematical and algorithmic core applies to all time-dependent data sources regardless of origin.
Future work should aim to reproduce and refine the proposed feature sets, spatiotemporal patterns,
and statistics on system expression by leveraging new data sources and participant cohorts.
Interventional studies and multi-modal experimentation are needed to identify putative neurobiological
mechanisms that underpin or drive temporal fluctuations.

In conclusion, fine-scale temporal fluctuations in the community structure of resting brain activity
suggest that the brain’s functional systems express only transiently, intermittently, and infrequently
across time. Their robust manifestation over long-time scales results from the superposition of large
numbers of spatially distinct and temporally variable patterns. Novel insights and applications may
result from the proposed decomposition of brain dynamics into network bipartitions and states.
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Materials and Methods
Data Set and fMRI Preprocessing

All analyses reported in this article were carried out on data originally collected by The Human
Connectome Project (HCP) (van Essen et al 2013), specifically resting-state fMRI data from 100 unrelated
adult participants (54% female, mean age = 29.11 +/- 3.67, age range = 22-36). The study was approved
by the Washington University Institutional Review Board and informed consent was obtained from all
subjects. Participants underwent four roughly 15-minute resting-state fMRI scans (here referred to as
four imaging sessions) spread out over a two-day span. For a full description of the imaging parameters
and image preprocessing see Glasser et al. (2013). Briefly, data were acquired with a gradient-echo EPI
sequence (run duration = 14:33 min, TR = 720 ms, TE = 33.1 ms, flip angle = 52, 2 mm isotropic voxel
resolution, multiband factor = 8). Participants were instructed to keep their eyes open and fixate on a
cross. Images were collected on a 3T Siemens Connectome Skyra with a 32-channel head coil.
Participants were considered for data exclusion based on the mean and mean absolute deviation of the
relative root-mean square motion across either four resting state MRI scans (file:
Movement_RelativeRMS.txt) or one diffusion MRI scan (file:
eddy_unwarped_images.eddy_movement_rms), resulting in four summary motion measures. If a
subject exceeded 1.5 times the interquartile range (in the adverse direction) of the measurement
distribution in 2 or more of these measures, the participant was excluded. These exclusion criteria were
established before the current study commenced. Four participants were excluded based on these
criteria. One participant was excluded for software error during diffusion MRI processing. Even though
diffusion MRI was not part of the present study, this subset was created to include participants with
adequate resting-state and diffusion data for future analysis. The remaining subset of 95 participants
have the following demographic characteristics: 56% female, mean age = 29.29 +/- 3.66, age range = 22-
36. Finally, we note here that we defined framewise displacement as the relative root-mean square
motion (file: Movement_RelativeRMS.txt), which was computed with the FSL function rmsdiff via the
HCP pipelines. We used this information to censor the resting state scans at a frame-by-frame level in a
supplementary analysis.

HCP data were minimally preprocessed as described in Glasser et al. (2013). Briefly, data were corrected
for gradient distortion, susceptibility distortion, and motion, and then aligned to a corresponding T1-
weighted (T1w) image with one spline interpolation step. This volume was further corrected for
intensity bias and normalized to a mean of 10000. This volume was then projected onto the 32k fs LR
mesh, excluding outliers, and aligned to a common space using a multi-modal surface registration
(Robinson et al. 2014).

A functional parcellation designed to optimize both local gradient and global similarity measures of the
fMRI signal (Schaefer et al 2017; Schaefer200) was used to define 200 regions (parcels or nodes) of the
cerebral cortex. These nodes can be mapped to a set of canonical functional networks [Yeo]; in the
current study we adopt a mapping to 7 canonical networks that comprise the visual (VIS), somatomotor
(SOM), dorsal attention (DAN), ventral attention (VAN), limbic (LIM), frontoparietal (FP) and default
mode (DMN) systems. For HCP data, the Schaefer200 is openly available in 32k fs LR space as a cifti file.
A second processing variant used a finer parcellation into 300 nodes (Schaefer300) following the same
basic procedure.
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We employed two variants in preprocessing to explore the robustness of main findings reported in this
article. All analyses were first carried out on data processed with the inclusion of global signal
regression. For this strategy, the mean BOLD signal for each cortical node was linearly detrended, band-
pass filtered (0.008-0.08 Hz) (Parkes et al. 2018), confound regressed and standardized using Nilearn's
signal.clean, which removes confounds orthogonally to the temporal filters (Lindquist et al. 2019). The
confound regression employed (Satterthwaite et al. 2013) included 6 motion estimates, time series of
the mean CSF, mean WM, and mean global signal, the derivatives of these nine regressors, and the
squares of these 18 terms. Following confound regression and filtering, the first and last 50 frames of
the time series were discarded. Furthermore, a spike regressor was added for each fMRI frame
exceeding a motion threshold (0.25 mm root mean squared displacement). This confound strategy has
been shown to be effective in reducing motion-related artifacts (Parkes et al. 2018). For validation, we
also preprocessed the data using aCompCor (Behzadi et al. 2007). These data were linearly detrended,
bandpass filtered, and trimmed identically to the previous strategy. This confound regression included
five high-variance signals estimated from the CSF and white matter each (10 total), as well as 6 motion
estimates, their derivatives, and the squares of these 12 terms. This strategy did not incorporate spike
regressors. Following preprocessing and nuisance regression, residual mean BOLD time series at each
node was recovered using Connectome Workbench. All data was visually inspected.

Functional Connectivity and Edge Time Series

Functional connectivity (FC) is generally estimated from fMRI data by computing the Pearson correlation
between the BOLD time series recorded from each node pair. Hence, each FC estimate represents a
linear similarity between the respective time courses, interpreted as their mutual statistical
dependence. It is, by definition, a non-directed non-causal metric that does not distinguish between
node pairs that are structurally (anatomically) coupled or un-coupled. All node pairs maintain nonzero
FC, and FC estimates may be negative or positive. In a system comprised of N nodes, the system’s FC
matrix has dimensions [N x N], due to symmetry with a total of K = (N2 — N)/2 unique entries (all
node pairs i, j with i # j).

One definition of the Pearson correlation coefficient states that it is the mean of the product of the
standard scores of the two individual variables. Specifically,

_ 1 i Xi—)? yl_Y
r’”’_n—l,1 Sy Sy
=

where X = %Z?zlxi is the mean of x (and applied analogously fory) and s, = \/ﬁ}]?zl(xi —-X)2is

the standard deviation of x (and applied analogously for y), and n is the number of observations (for
time series data the number of observations is equal to the number of time points). Thus, there are
three steps involved in this computation, the conversion of two node time series to z-scores (note that

z(x;) = (%)), forming their product to create a single time series for node pair i, j, and finally

forming the mean of this pairwise time series to yield the FC estimate for the node pair (cf Fig 1). This
procedure, when repeated for all pairs of nodes, results in a node-by-node correlation matrix, i.e. an
estimate of FC. Following an approach developed in prior work (Faskowitz et al 2020; Esfahlani et al
2020; Jo et al 2020), we may omit the final averaging step and retain the time series for each node pair.
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Since each node pair subtends a unique network edge, we refer to this construct as ‘edge time series’.
The mean of each edge time series is equal to the corresponding node pair’s FC. Rather than collapsing
all time steps into a single scalar FC estimate, omitting the averaging step effectively un-wraps FC into a
set of edge time series that track ‘co-fluctuation’ between each node pair. At each point in time, the
edge time series report a product of two z-scored BOLD signals, which is positive if both signals are
above or below their respective zero mean, and negative otherwise. The amplitude of their product
varies with the joint amplitudes of the two signals. The full set of edge time series comprises a matrix of
dimension [K x T], with K equal to the number of unique edges and T equal to the number of time
points.

At each moment in time, the amplitude of the co-fluctuations along all edges can be computed as the
‘root sum square’, denoted RSS. This metric takes on high amplitude when edge-wise co-fluctuations,
on average, are high (either positively or negatively), and it takes on low amplitudes when co-
fluctuations are low (again, irrespective of their sign). Prior work has utilized RSS to track co-fluctuation
amplitudes and stratify or order time points according to their magnitudes. High-amplitude time points
coincide with intermittent and recurrent patterns of network activity and connectivity (Esfahlani et al
2020).

Bipartitions and Agreement Matrix

Edge time series can be converted to binary form, by applying a threshold at the zero crossings that
retains only if co-fluctuations are positive or negative. Positive co-fluctuations occur if and only if two
signals both exhibit above mean (positive z-score) amplitudes or if both exhibit below mean (negative z-
score) amplitudes. Negative co-fluctuations occur when the two signals deviate in opposite directions. A
simple extension of this fact is that, on each time step, positively co-fluctuating node pairs split the
network into exactly two communities that are fluctuating negatively with respect to each other. This
obligatory two-community split results in a bipartition of the network. The network’s time evolution
may be represented as a sequence or set of such bipartitions. Adopting bipartitions largely removes
information on signal amplitudes (recall that the bipartition does depend on standardizing the individual
node time series) while creating a compact description of the original FC as a set of finely resolved
modular partitions, without the need to perform computational community detection. Communities
are directly evident from the binary edge time series.

It is common practice in network science to combine multiple partitions, for example those obtained
from multiple runs of a community detection algorithm, into a single co-classification or agreement
matrix (Lancichinetti and Fortunato, 2012; Jeub et al. 2018). The elements of this matrix express, for
each node pair, the frequency with which the two nodes are assigned to the same network community.
To correct for the rate at which this occurs due to chance, one can subtract the expected frequency if
community labels are randomly permuted. Under the assumption that for each sampled partition the
number and sizes of clusters are fixed but nodes are otherwise assigned randomly to clusters, one
obtains a constant null computed as (Jeub et al. 2018)

z ch |Cks||Cks|_1
P = 7 k=1 N N-1

where [ is the number of samples, Cy, is the partition of the k-th sample, |Cy| is the number of nodes in
cluster s of partition Ci, and N is the number of nodes. In applications to bipartitions from time series,
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l is equal to the number of time points T. Subtracting the constant null results in agreement matrices
that contain negative entries for all node pairs where the observed frequency of co-classification is
smaller than that expected under the adopted null model. The subtraction step does not change relative
order of frequencies in the agreement matrix and hence has no impact on correlations or similarity
metrics computed against FC.

Bipartition Similarity

Similarity or distance between two modular partitions can be defined in several ways, including the
mutual information computed as

" , P(m,m")

meM mreMr

where M and M’ indicate the two partitions, m and m’ indicate modules belonging to the two partitions,
and P(m,m") = % with n,,,,, corresponding to the number of nodes that are members of module

m as well as module m’ (Rubinov and Sporns, 2011). In the case of bipartitions, other metrics such as
the cosine similarity or the Jaccard distance are also possible. In practice, all these metrics give highly
similar results. We adopt the mutual information as the principal metric for assessing similarity
between pairs of bipartitions.

Modularity Maximization

Modularity maximization is a commonly used approach for detecting communities in brain networks
(Newman and Girvan 2004; Sporns and Betzel 2016) that attempts to partition a network into non-
overlapping communities such that the observed density of connections within subnetworks maximally
exceeds what would be expected by chance. The choice of null models should reflect the nature of the
network data, which in our case is a correlation matrix (MacMahon and Garlaschelli 2015). We adopt a
constant null (the Potts model; Traag et al. 2011) and retain the full FC matrix, including its negative
entries, for the purpose of community detection by applying the Louvain algorithm. Louvain bipartitions
are identified by first scanning a wide range of the resolution parameter, selecting upper and lower
limits within which a two-community structure appears, followed by a finer sampling of this range to
retrieve a large set of bipartitions (1000 samples).

Gradients

So-called gradients, when computed from FC matrices, represent major connectivity modes (node
vectors) that can be mapped back onto the original node set, e.g. the surface of the cerebral cortex.
Following a standard workflow (de Wael et al. 2020), after starting from an FC matrix, we first derive an
affinity matrix that essentially represents a node-wise distance matrix of size [N x N]. Here, we compute
the affinity matrix from the full un-thresholded FC as the cosine similarity (1-cosine distance) for each
node pair excluding their mutual connections. The first principal component of the affinity matrix is
retained for purposes of analysis and comparison. It is virtually identical to the largest eigenvector of the
FC matrix. Other variants for computing the affinity matrix may include additional steps such as
thresholding or alternative distance transforms. These variants have no impact on the relevant findings
reported in this article.

Optimization
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The purpose of the optimization approach pursued in this study was to discover sets of bipartitions of N
nodes, comprising P instances, that approximate the observed bipartitions’ (size [N x T]) agreement
matrix. We adapted a variant of the Metropolis-Hastings algorithm (Metropolis et al. 1953) to generate
samples from the very large distribution of possible sets of bipartitions of size [N x P], starting from a
random sample and then iteratively creating variants that are either rejected or accepted, before
moving to the next iteration. The rejection or acceptance decision is governed by simulated annealing
(Kirkpatrick et al. 1983) and by an objective function D, taken here to be a measure of the distance
between the optimized and observed agreement matrix. New variants are accepted if the objective
function improves (lower distance) or if the annealing criterion e ~4P/Temp > R(0,1) is fulfilled, where
Temp refers to a simulated ‘temperature’ and R(0,1) is a random number uniformly drawn from the
[0,1] interval. Essentially, the annealing criterion allows suboptimal variants to pass, as a function of the
current temperature. The temperature decays exponentially as a function of the number of iterations, h,
asTemp = ToTexph. Temperature parameters T, Texp, Were selected such that stable solutions near
the global minimum (distance of zero) emerged in reasonable time. The initial conditions were chosen
as sets of completely random bipartitions, set with equal probability (‘flipping a coin’) on all node co-
assignments. On each step of the optimization, a single element in a single bipartition (both chosen at
random) was flipped. Note that this optimization procedure does not implement a true generative
process for bipartitions, as they are not derived from time series data and hence contain no information
on temporal sequences. While more realistic scenarios for discovering optimally matching sets of
bipartitions are conceivable, they were not pursued in the current study.

Three different formulations of the objective function were tested, all computed from the agreement
matrix’s K unique (upper triangle) elements, with highly reproducible results: (a) the Pearson
correlation; (b) the rank-order correlation (Spearman’s Q); and (c) the cosine similarity. Optimizations
were also carried out by substituting the observed agreement matrix with the observed FC matrix in the
objective function, with near-identical outcomes.

The number of bipartitions in the optimized set, P, is a free parameter. Different settings of P, varying
the number of bipartitions from 1100 (matching the number of experimental time steps T) down to 11,
were explored. Smaller values of P yield more compact optimized sets, while also resulting in less
accurate matches between the observed and the optimized agreement matrix.
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Figure S1: Comparison of FC and agreement matrix, for one representative participant, one imaging
session, under finer (300 node) parcellation (A) and when omitting global signal regression from fMRI
preprocessing (B). Across all 95 participants the corresponding mean correlations between FC and
agreement are @ = 0.960 £ 0.008 and @ = 0.964 + 0.009, respectively.
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Figure S2: Variant for thresholding to determine bipartitions or tripartitions (A) and impact on
correlation between FC and agreement matrices (B,C). (A) Plot at top shows example edge time series
(cf Fig 1) thresholded at z=0. Middle panel illustrates choice of an arbitrary threshold ‘tau’ (here tau =
0.8). Bottom panel shows application of two thresholds +tau and -tau to divide the time series into three
bins. (B) Correlation (Spearman’s Q) as a function of parameter tau, for 95 participants (plot shows
individuals as well as group mean). Note that the correlation remains strong over a wide range of the

‘tau’ parameter. (C) Same as panel B, but for tripartitions.
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Figure S3: Correlation between FC and agreement matrix as run length is varied from 10 to 1100 frames.
FC and agreement matrices were computed for each run length, and thus are both derived from the
same length time series data. Even short runs exhibit strong correlations between FC and the
corresponding agreement matrix.
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Figure S4: Impact of removing (‘scrubbing’) high-motion frames from each imaging session on the
measured correlation between FC and agreement matrix. Scrubbing was carried out by removing all
frames for which framewise displacement exceeded the 90" percentile for a given session. The
agreement matrix of the remaining 90% of frames was compared (correlated) with the FC (all frames),
plotted on the y-axis. The x-axis records correlations of agreement with FC when 90% of frames are
sampled at random from the original time series (mean of 100 samples). The plots show data for all 95
participants and for all 4 imaging sessions.
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Figure S5: Examples of empirically observed bipartitions that were matched to three different target
templates (templates 1, 17, 63; cf Fig 4). Bipartitions have been rectified to facilitate comparison to
template vectors (shown to the left in each of the three panels).
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Figure S6: Template frequency and correlation with RSS, for data applying a finer (300 node) parcellation

(A) and omitting global signal regression (B).
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Figure S7: Down-sampled FC (7x7 matrix of functional systems), template frequency vector, and
reconstructed agreement matrix, for one representative participant, single session. The template
frequency is derived by comparing members of the template basis set to the observed bipartition on
each time frame (cf. Fig 4). The agreement matrix on the right is computed from the agreement of the
templates as encoded in the vector (middle). Note that structure within systems (matrix elements on
the main diagonal) cannot be resolved due to the spatial resolution of the template set. The template
frequency vector, which is a highly compressed representation of the original time series, reproduces
significant variance in between-system interactions (compare to the down-sampled FC shown at the

right).
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Figure S8: Template frequencies across participants are consistent between imaging sessions. (A)
Template frequencies for template 63, per participant, were averaged for sessions 1 and 2 (x-axis) and
sessions 3 and 4 (y-axis). Each data point is a single participant. Sessions are correlated with 9 =0.444, p
= 6x10°®. (B) Distribution of cross-session correlations (computed as for panel A) for those templates
where the p-value is smaller than the Bonferroni-corrected a of 0.05/63. Note that many of the most
frequently occurring templates (cf Fig 4) exhibit significant cross-session correlations. This indicates that
some individual differences are preserved in the compressed template representation of individual
imaging sessions.
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Figure S9: Data from optimizations using Spearman’s Q (A) or ‘root-mean-square’ (B) in the objective
function. Both panels show optimized agreement matrices for the same participant shown in Fig 6. (C)
Histogram of match between template sets in observed and optimized bipartitions, over all 95
participants, single session. (D) Match between template sets in relation to the size (number of
bipartitions) of the optimized set. Note that even much more compact sets yield bipartition frequencies
that closely match those observed across all 1100 frames in the original time series. In all cases,
optimized templates are significantly similar to those found in the observed set.
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Figure S10: (A) Frequencies of the most abundant system state (pattern 1, cf Fig 7) are consistent across
imaging sessions (averages of sessions 1 and 2 on the x-axis, averages of sessions 3 and 4 on the y-axis).
Each data point corresponds to one participant. The correlation is @ = 0.477, p = 1x10°®. (B) Systems
states expressed during more than 1% of all frames, ranked by their frequency, when the z-threshold is
varied (z = 5, left panel; z = 8, right panel).
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