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ABSTRACT

Laminar fMRI at ultra-high magnetic field strength is typically carried out using the
Blood Oxygenation Level-Dependent (BOLD) contrast. Despite its unrivalled
sensitivity to detecting activation, the BOLD contrast is limited in its spatial specificity
due to signals stemming from intra-cortical ascending and pial veins. Alternatively,
regional changes in perfusion (i.e., cerebral blood flow through tissue) are
colocalised to neuronal activation, which can be non-invasively measured using
arterial spin labelling (ASL) MRI. In addition, ASL provides a quantitative marker of
neuronal activation in terms of perfusion signal, which is simultaneously acquired
along with the BOLD signal. However, ASL for laminar imaging is challenging due to
the lower SNR of the perfusion signal and higher RF power deposition i.e., specific
absorption rate (SAR) of ASL sequences. In the present study, we present for the
first time in humans, isotropic sub-millimetre spatial resolution functional perfusion
images using Flow-sensitive Alternating Inversion Recovery (FAIR) ASL with a 3D-
EPI readout at 7T. We show that robust statistical activation maps can be obtained
with perfusion-weighting in a single session. We observed the characteristic BOLD
amplitude increase towards the superficial laminae, and, in apparent discrepancy,
the relative perfusion profile shows a decrease of the amplitude and the absolute
perfusion profile a much smaller increase towards the cortical surface. Considering
the draining vein effect on the BOLD signal using model-based spatial ‘convolution’,
we show that the empirically measured perfusion and BOLD profiles are, in fact,
consistent with each other. This study demonstrates that laminar perfusion fMRI in
humans is feasible at 7T and that caution must be exercised when interpreting BOLD
signal laminar profiles as direct representation of the cortical distribution of neuronal

activity.
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INTRODUCTION

Neuronal activity in the brain is associated with an increased metabolic demand
accompanied by changes in haemodynamics such as blood oxygenation, flow and
volume (for reviews see: [1—4]). Functional magnetic resonance imaging (fMRI) is a
technique that can non-invasively measure these changes and allows inferring the
spatial pattern of neuronal activity while performing a task or at rest. Improvements
in MRI technology over the past decades, such as higher magnetic field strengths,
novel sequences, optimised pulse designs, and parallel imaging, have pushed the
spatial and temporal limits to an extent wherein MRI at ultra-high magnetic field
(UHF, =7T) can routinely achieve sub-millimetre spatial resolution voxels in humans,
for both structural and functional imaging (see Special Issues: [5,6] and reviews
therein). While fMRI investigations have vyielded robust, reproducible functional
parcellation [7] of different brain areas consistent with previous ex vivo cyto- and
myelo-architectural studies [8,9], the advantages of UHF fMRI have enabled
neuroscientists to investigate the mesoscopic circuitry within regions across cortical
depths and, to a lesser extent, columns in humans (see Special Issue: [10] and

reviews therein).

A vast majority of standard-resolution and laminar fMRI studies have been
performed using the Blood Oxygenation Level-Dependent (BOLD) contrast [11,12].
While the BOLD contrast excels in its sensitivity to detect signal changes due to its
high signal-to-noise (SNR), it is inherently limited in its spatial specificity relative to
site of neuronal activation because of strong signal bias introduced via the intra-
cortical ascending veins [13] and by the non-local signal spread (drainage effect)

through pial veins [14,15]. Studies investigating the specificity of the laminar BOLD
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82 response in humans and animals [16-20] have consistently observed the largest
83 signal change in the BOLD signal at the superficial layers and pial surface despite
84 the fact that the peak of the neuronal activity is expected in the input layers (layer IV
85 in human V1) for feed-forward stimuli [21,22]. Some earlier studies have investigated
86 the leakage of the signal between laminae during steady-state [22—24]. Recently, a
87 fully dynamical model of the laminar BOLD signal has been developed [13] that
88 enables model-driven “deconvolution” (i.e. removal of the intra-cortical ascending
89 venous signal) of the measured BOLD signal profiles to unravel the underlying
90 neuronally-driven signal profiles. However, theoretical assumptions of these model-

91 driven approaches have not yet been subjected to experimental validation.

92 The versatility of MRI provides the means to also measure other (non-BOLD)
93 haemodynamic response parameters such as cerebral blood volume (CBV) using
94  vascular space occupancy (VASO) [25-27] or cerebral blood flow (CBF) through
95 tissue (perfusion) using arterial spin labelling (ASL) [28-30]. Most studies using
96 these non-BOLD approaches have been carried out in animal models [3,4,31] and
97 have only been applied to high-resolution human studies with the advent of UHF
98 fMRI [32—-34]. From the perspective of laminar fMRI, animal studies have shown that
99 perfusion-weighting is a highly desirable contrast, even more so than total CBV, due
100 to its spatial proximity to neuronal activation [18,35]. While CBV-weighted imaging
101 using VASO has seen a resurgence for laminar fMRI applications [36], perfusion-
102  weighted fMRI using ASL has been mostly limited to relatively low spatial resolution
103 (= 2-4 mm) studies [37] (but see [38]). Achieving higher spatial resolutions, let alone
104  sub-millimetre resolutions, with perfusion-weighting and adequate brain coverage is
105 challenging. This is due to the relatively lower SNR of the perfusion-weighted signal

106  owing to the low microvascular density and T1 recovery of the labelled arterial water
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107  signal, and the higher RF power deposition of ASL sequences in general. The SNR
108 limitation can be addressed to some extent by moving to UHF. The gain in SNR due
109 to increased field strength [39] and the prolonged longitudinal relaxation times (T1)
110 [40,41] allows longer post-labelling delays, thereby, improving the perfusion SNR
111 [33]. Recent developments using ASL at 7 T [32,33,42—44] have enabled pushing
112  the spatial resolution for perfusion-mapping to the sub-millimetre regime [45,46] by
113  overcoming several technical challenges; i.e. optimisation of sequence and pulse
114  design [34,44,47], using dielectric pads [48] in order to improve the labelling

115  efficiency [33], and utilisation of a 3D-EPI readout [49].

116  Taking together these advantages at UHF, the spatial specificity of the perfusion
117  signal and the fact that ASL acquires both BOLD and perfusion-weighted images
118  simultaneously makes ASL a very attractive tool for laminar fMRI. In the present
119  study, we build on our previous work to acquire, for the first time, sub-millimetre
120 resolution simultaneous BOLD and perfusion-weighted fMRI of the human visual
121 cortex at 7T. We demonstrate that robust, participant-specific, single-session, high-
122  resolution perfusion activation maps can be obtained for laminar fMRI in humans at
123 7T. We probe the cortical depth-dependence of BOLD and perfusion-weighted
124  signals in response to visual stimulation in humans and reconcile our experimental

125 findings using the recently proposed dynamic model of the laminar BOLD signal.

126
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127 METHODS

128  Seven healthy volunteers (median age=28 years) participated in the study following
129  screening and having given written informed consent. The study was approved by
130 the Ethics Review Committee for Psychology and Neuroscience (ERCPN) at
131 Maastricht University and all procedures followed the principles expressed in the

132  Declaration of Helsinki.

133  Data acquisition

134  Data were acquired on a whole-body Siemens Magnetom 7T research scanner with
135 a gradient system capable of maximum gradient amplitude of 70 mT/m and
136  maximum slew rate of 200 T/m/s (Siemens Healthineers, Erlangen, Germany) and a
137  32-channel receive phased array head coil (Nova Medical, USA). The participant
138 placement and preparatory procedure followed the protocol previously described in
139  [33,42]. In short, the eye centres were taken as iso-centre reference (instead of the
140 eyebrows, as is typically done) and supplementary cushions were provided to the
141  participants under the neck, to ensure that the large feeding arteries to the brain
142  were parallel to the Bo. In addition, two 18x18x0.5 cm3 high-permittivity dielectric
143  pads containing a 2.8:1 solution of calcium titanate (CaTiOs) and heavy water (D20)
144 by weight [50] were placed on either side of the head at the level of the participant's

145  temporal lobes to increase B1 (therefore, labelling) efficiency at 7T [51].

146  Stimulus paradigm: Full contrast black-and-white radial flickering checkerboard
147  was presented using PsychoPy v 1.90.0 [52] for 20 s (stimulus on) followed by 40 s
148  of an iso-luminant grey background (stimulus off). Each functional run lasted ~12

149  minutes consisting of a 30 s initial baseline period and ten stimulus on-off blocks.


https://doi.org/10.1101/2020.08.22.261693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.261693; this version posted August 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

150 The participants were instructed to remain motionless and fixate on a central fixation

151  dot throughout each of the four functional runs.

152  Anatomical MRI: Anatomical data were acquired using a 3D-MP2RAGE [53] at 0.9
153  mm isotropic spatial resolution (192 sagittal slices; GRAPPA = 3; FOVreads = 230 mm;
154  phase-encoding = A>>P; Tli/Tl2 = 900/2750 ms; at/a2 = 5°/3°; TE/TR = 2.39/4500
155  ms; partial-Fourierphase = 6/8; bandwidth = 250 Hz/px; echo-spacing = 6.6 ms, TA =6

156  min).

157  Functional MRI: Functional data were acquired at 0.9 mm isotropic resolution using
158 a pulsed ASL (PASL) sequence [29] with a 3D-EPI readout [49] employing a FAIR
159  [54] QUIPSS II [30] labelling scheme (44 axial slices; GRAPPA = 4; FoVreads = 192
160 mm; phase-encoding = A>>P; TE/TR = 15/2850 ms; a=19°; TI1/T12 = 700/1891 ms;
161  partial-Fourierphase = 5/8; partial-Fouriersice = 7/8; Ref. lines PE = 64; Ref. scan mode
162 = FLASH [55]; bandwidth = 1124 Hz/px; echo-spacing = 1.02 ms, repetitions = 230,
163 TA =11 min). The labelling was achieved using a tr-FOCI inversion pulse [47] (10ms)
164  that provided efficient (up to 95%) slab-selective inversion despite inhomogeneous
165 B+1 and SAR constraints at high field [33,36]. Immediately after each of the four
166  functional runs, five volumes with opposite phase-encoding were acquired for run-
167 wise distortion-correction. All the ASL data were reconstructed using GRAPPA
168 kernel of size {3,2} [42] and 8 iterations of the POCS algorithm [36,56]. The
169 functional data acquisition slab was oriented to cover as much of the occipital lobe

170  as possible in all participants centred on the calcarine sulcus (S3 Fig a).

171 Data processing

172  The anatomical data were pre-processed in SPM12 r7487

173 (https://www fil.ion.ucl.ac.uk/spm/software/spm12/)  [57,58] and FSL v. 6.0

8
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174 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)[59,60]. This anatomical pre-processing workflow was

175 developed particular to work well for MP2RAGE data. First, the second inversion
176  image of the MP2RAGE was subjected to the automated segmentation in SPM12
177  [61]. The bias-corrected second inversion image was used to create a whole-brain
178 mask using FSL BET [62]. The thresholded non-brain tissue classes from the
179 SPM12 segmentation were summed together to create a mask of the non-brain
180 tissue and large sinuses (for illustration of the analysis steps, see S1 Fig). The non-
181  brain mask was manually curated in cases, in which the automatic masks were sub-
182 optimal. The T1-w MP2RAGE image was bias-corrected using SPM12 and was
183  stripped off the non-brain tissue and large sinuses using the mask obtained from the
184  second inversion image. This pre-processed T1-w MP2RAGE was supplied as input
185 to the high-resolution recon-all pipeline of Freesurfer v.6.0

186  (https://surfer.nmr.mgh.harvard.edu/) [63]. Additionally, the MP2RAGE T1 map was

187 supplied as an additional input (T2-w proxy) to Freesurfer for pial surface
188  optimisation. The segmentation and surface construction were done in the native
189 resolution and the segmentation quality in the occipital lobe was manually curated. A
190  probabilistic retinotopic atlas was applied to the Freesurfer reconstructed data using

191 neuropythy (https://github.com/noahbenson/neuropythy) [64] to obtain participant-

192  specific V1 and V2 regions-of-interest (ROIs) (S3 Fig b). Following the automatic
193  segmentation and reconstruction, the WM surface was extended into WM by 30% of
194  the cortical thickness to account for any discrepancy of the GM-WM boundary when
195 using T1-w MP2RAGE images[65]. The first inversion image of the MP2RAGE was
196  used to check the extended WM boundaries due to its sharp WM-GM contrast. We
197 also extended the pial boundary by the same amount into the CSF to sample the

198 signal away from the pial boundary. Then, we generated a total of twenty-one
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199 intermediate equi-volume surfaces within the GM using Surface tools

200 (https://github.com/kwagstyl/surface tools) [66] (S3 Fig c).

201 The functional datasets were pre-processed using Advanced Normalization Tools

202  (ANTs) v.2.3.1 (https://github.com/ANTsX/ANTs) [67,68]. First, the functional runs

203 were subjected to affine realignment. Next, the temporal mean of the functional run
204 and the temporal mean of the opposite phase-encoded run were used to calculate
205 an undistorted template image and the distortion-correction warps were saved.
206 Lastly, a transformation matrix was calculated for each functional run to the T1-w
207 data using the visual alignment tools in ITK-SNAP v.3.6 [69] and a final rigid
208 alignment using ANTs. All transforms were concatenated and applied to the
209 unprocessed functional datasets in a single resampling step using a 4th degree B-
210 spline interpolation. This workflow was particularly developed keeping in mind the
211 need in laminar fMRI analyses [70]. It minimises resolution losses due to multiple
212 interpolation steps while providing the high-quality registration accuracy that is

213  required in laminar fMRI studies.

214  Statistical analyses of the functional data were carried out using FSL FEAT [71,72]
215 by modelling three regressors i.e., the stimulus design convolved with the canonical
216  haemodynamic response function (HRF) representing the BOLD signal, the
217  alternating label-control acquisition of the ASL sequence representing the baseline
218  perfusion-weighting and the combination of these two regressors representing the
219  perfusion activation. Due to the disparity in the spatial spreads of the BOLD and
220 perfusion activation (Fig 2), a mask of the overlap between the BOLD and perfusion
221  activation cluster thresholded masks from FEAT was created. This ensured that we

222 sampled the BOLD and perfusion signals from the same voxels.

10
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223 Laminar analyses were carried out in Freesurfer by sampling the functional time-
224  series signal from the ROIs using nearest-neighbour interpolation. No surface or
225 intra-cortical smoothing was applied. The laminar time-courses sampled from V1 and
226 V2 across all participants were imported into MATLAB R2016b (MathWorks, USA)
227  for the time-series analyses. The BOLD and perfusion-weighted time-courses were
228 obtained for each lamina by applying surround-averaging and surround-subtraction,
229 respectively [73—-75] and the event-related average time-courses were calculated.
230 The event-related average BOLD time-course was subsequently rescaled to percent
231 BOLD signal change relative to the pre-stimulus baseline (~10 s). The analysis of the
232  perfusion time-series followed several steps: First, the perfusion-weighted time-
233  series is a measure of the modulation depth (or the magnitude of the zig-zag) of the
234 raw ASL time-course in MRI signal units (S5 Fig). It is important to note that these
235 data are not scaled in physiological units and is representative of the perfusion SNR
236  of the data. We then derived the following measures from perfusion-weighted time-
237 course: absolute and relative perfusion change, and baseline perfusion. Absolute
238 perfusion change was calculated by taking the change in the perfusion activation
239 (i.e., by subtracting the pre-stimulus baseline) per lamina and then normalising the
240 signal with the mean of the EPI (to account for transmit-receive biases). The
241  absolute perfusion change, thus obtained, is in arbitrary units but proportional to the
242  quantitative perfusion change. The absolute perfusion change can then be rescaled
243 into physiological units, as typically done in perfusion quantification studies [37,76].
244  Relative perfusion change is the percentage change in the perfusion signal due to
245 activation per depth relative to its respective baseline. Note that the relative
246  perfusion change does not need to be divided by the mean EPI image for scaling (as

247 it appears both in the nominator and the denominator and thus cancels out). The

11
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248 baseline perfusion (Fig 1) was calculated using simple subtraction of the label-
249  control time-points during the baseline period (~0-30 s at the beginning of the run)
250 and pre-stimulus intervals (~0-10 s before stimulus onset) of the stimulus blocks.
251 Laminar steady-state profiles of the BOLD signal, absolute, and relative perfusion
252  change signals were calculated by averaging the respective signals within the ~14-
253 28 s interval following stimulus onset. The baseline perfusion laminar profile (S4 Fig)

254  was obtained by averaging within the entire the ROls.

255 Simulating the laminar BOLD signal from the measured perfusion profile

256  The experimentally measured laminar BOLD response profiles in V1 and V2 regions
257 were compared to theoretical predictions of the dynamical laminar BOLD signal
258 model proposed by Havlicek and Uludag using publicly available MATLAB code

259  (https://github.com/martinhavlicek/laminar BOLD model) and plausible assumptions

260 regarding physiology and acquisition parameters at 7T. The measured absolute
261  perfusion laminar profiles (both baseline and activation) were used to input the
262 physiological parameters of the model. The total amount of venous baseline CBV
263 (CBVo) was set to 2 mL, of which 50% relates to microvasculature and 50% to the
264 ascending veins. The baseline CBV (CBVo) distribution was set to be constant
265 across laminae in the microvasculature but increased linearly towards the surface in
266 the ascending veins (slope, s = 0.4). The measured baseline perfusion signal in this
267 analysis (CBFo) is proportional to CBF in physiological units. Assuming that the CBVo
268 in microvasculature (1 mL /100 g) is divided uniformly between all laminae and the
269 mean transit time through microvasculature (averaged across all laminae) is ~1 s
270 (also see Table 2), a scaling factor x = 5520 was estimated such that an average

271 CBFo ~60 mL /min/100 g was obtained. Given the variation of CBFo across laminae,

12
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272  the lamina-specific transit times through microvasculature varied between ~0.6 s
273  near the superficial laminae to ~1.2 s in the deeper laminae (0.5 s variation in transit
274  time through capillaries between superficial and deeper laminae). The lamina-
275  specific transit times through ascending veins were then calculated using the central
276  volume principle (for details, see [13]). Lamina-specific changes in relative CMRO:2
277  were obtained by assuming a linear coupling (n = 3) between CBF and CMROz2 [77].
278  All other parameters were defined as in the default scenario described in [13].
279 Please note that we did not fit the model to data but used experimentally obtained
280 perfusion-weighted signal data and plausible biophysical parameters to generate a

281  prediction of the laminar BOLD signal profile.

282

13
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283 RESULTS

284 Baseline perfusion: Fig 1a and b show two representative slices (one superior, one
285 inferior) of the average baseline perfusion map and the perfusion temporal signal-to-
286 noise (tSNR) of a participant overlaid on the T1-w anatomical image. These maps
287 show that the average perfusion signal is highly localised to the GM ribbon and
288 demonstrates the quality of the co-registration between the acquisition slab with the
289 anatomy as indicated by the absence of signal shifted into the ventricles and the
290 clearly defined sulci (wherever resolvable). The perfusion-weighted data shown in

291 Fig 1ais in arbitrary MRI signal units.

292  Functional activation: Robust statistical activation was obtained for all participants
293 for both the BOLD (Fig 2a) and perfusion signals (Fig 2b). The BOLD activation
294  envelopes a much larger swath of cortex than perfusion activation does (Fig 2a, 2b,
295 left panel). This is expected given the differences in the detection sensitivity (i.e.
296 functional contrast-to-noise (fCNR)) between the BOLD and perfusion signals and

297  the presence of BOLD signal in pial veins.

298 In addition, the BOLD activation obtained follows the characteristic localisation
299 pattern observed with standard GE-EPI studies. That is, the largest BOLD activated
300 voxels are always localised at the CSF-GM boundary (Fig 2a, purple zoomed-out
301 boxes). In contrast, the perfusion activation was observed to be more spatially
302 localised to the GM ribbon with the highest activated voxels localised mid- to deep-
303 GM (Fig 2b, green zoomed-out boxes). The activation maps are shown in the three
304 orthogonal views to highlight the consistency of the GM localisation of activation in

305 3D.

14
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306 Finally, the ASL time-courses exhibit a zig-zag modulation that is characteristic of
307 ASL sequences (due to the acquisition of alternating label and control volumes)
308 demonstrating the high quality of the data. The modulation depth of this zig-zag
309 represents the amount of labelled spins delivered to the tissue and is, therefore,
310 proportional to tissue perfusion. In Fig 2 (purple), the ASL time-course obtained from
311 the highest BOLD signal activated voxels shows the typically observed increase in
312  the BOLD signal magnitude during activation with weaker zig-zag modulation. On the
313 other hand, the ASL time-course obtained from the highest perfusion-activated
314  voxels (Fig 2, green) shows the strong zig-zag modulation throughout but with lower
315 BOLD signal modulation. All three key differences between the BOLD and perfusion

316  activation signals were consistently observed in all the participants.

317 Laminar analysis

318 The group-average laminar time-courses of BOLD signal change, absolute perfusion
319 change, and relative perfusion change are shown in Fig 3 for V1 and in Fig 4 for V2.
320 The temporal behaviour of the three sampled signals across all laminae is presented
321 as a heatmap in the top row with time along the X-axis and the cortical depth along
322 the Y-axis and the magnitude of the signal in colour code. We observed inter-
323 regional differences with laminar responses of all three signals, with V2 having a
324 lower amplitude than V1. The laminar profiles of the BOLD signal change exhibit
325 positive slopes (Slope V1: 4.88 £ 0.129, Slope V2: 4.81 £ 0.195) with a strong linear
326 trend (R? V1: 0.986, R? V2: 0.967). The laminar profiles of the relative perfusion
327 change, on the other hand, exhibit negative slopes (Slope V1: -4.91 + 0.27, Slope
328 V2. -4.64 + 0.111) with a strong linear trend (R? V1: 0.939, R? V2: 0.988).

329 Interestingly, the absolute perfusion changes exhibit a moderately positive slope
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330 (Slope V1: 3.35 £ 0.68, Slope V2: 3.80 + 0.485) albeit without a strong linear trend
331 (R?V1: 0.537, R? V2: 0.745). In the perfusion signals, slight oscillatory behaviour is

332 observed during the post-stimulus period.

333 Simulations of the laminar BOLD signal

334 Fig 5 shows the simulated laminar BOLD signal profile (solid blue lines) and the
335 experimentally measured laminar BOLD signal profiles (dotted purple lines, see Fig
336 3, 4). The measured and simulated profiles were highly congruent (Pearson’s
337  correlation: r = 0.9984 for V1, r = 0.9977 for V2), demonstrating that, despite the
338 discrepancy of the relative & absolute perfusion and the BOLD signal profiles, they

339 are in fact compatible with each other.

340
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341 DISCUSSION

342 Here, we demonstrated, for the first time in humans, isotropic sub-millimetre spatial
343 resolution perfusion fMRI using ASL. We found incongruent cortical depth profiles
344  between the BOLD signal and perfusion changes, which, however, turned out to be
345 physiologically consistent with each other after employing a dynamical BOLD signal

346 model.

347  Functional BOLD and perfusion activation

348 We obtained robust participant-specific, single-session activation maps for
349 simultaneously acquired isotropic sub-millimetre spatial resolution BOLD and
350 perfusion signals at 7T. We observed a larger spread of activation for the BOLD
351 signal (Fig 2a) compared to the perfusion signal (Fig 2b). This is expected because
352 the detection sensitivity of the perfusion signal (fCNR) is much lower than that of the
353 BOLD signal [33,37,38]. Additionally, this can also be explained by the higher spatial
354  specificity of the perfusion signal compared to the BOLD signal, which is susceptible
355 to non-local signal spread due to downstream venous bias away from the actual site
356 of activation [14]. This is also observed in high-resolution fMRI with the highest
357 BOLD activated voxels located at the CSF-GM boundary (Fig 2a). On the other
358 hand, the perfusion activation map exhibits a well-defined localisation to the cortical
359 ribbon (Fig 2b), mostly located in cortical GM [18]. Importantly, given that perfusion
360 signal has much lower fCNR than the BOLD signal in standard resolution studies (2-
361 4 mm in each direction), it was not necessarily expected that ASL will have enough
362 sensitivity at submillimetre resolution for detecting perfusion activation. One reason
363 that with increasing resolution there is enough perfusion fCNR is that not only image

364 SNR but also partial voluming with CSF and WM is decreased, i.e. thermal and
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365 physiological noise coming from outside GM are reduced. This is different for the
366 BOLD signal as pial vessels located in CSF (see Fig 2a) do contribute to the overall
367 BOLD signal in low resolution studies and therefore increases in spatial resolution
368 decrease both image SNR and overall signal contribution. That is, going from low- to
369 high-spatial resolution penalizes CNR of the BOLD signal more than of the perfusion

370 signal.

371 Recently, a novel fMRI approach called VAPER [78] has also been put forward as a
372 contrast useful for perfusion-weighted high-resolution fMRI by mixing VASO and
373 perfusion contrasts. Although the combination of two contrasts boosts VAPER'’s
374  sensitivity, it markedly complicates its ability to quantify perfusion but also, its
375 physiological specificity. Thus, established ASL techniques remain the most feasible
376 way to acquire in vivo perfusion-weighted images that can be straightforwardly
377 validated using quantitative fMRI models, and can be expected to provide
378 reproducible results across a wide range of sequence parameters and field strengths
379 [33]. In this regard, the present study is the first demonstration in humans of the
380 improved spatial specificity of the perfusion signal compared to the BOLD signal

381 using ASL at a sub-millimetre spatial resolution.

382 A recent review of non-BOLD laminar fMRI methods illustrated the potential of the
383 3D-EPI PASL sequence for perfusion-weighted laminar fMRI applications at ultra-
384 high field. As highlighted in the review, the perfusion contrast has been highly
385 desired for laminar fMRI [79] as the perfusion signal is relatively unaffected by the
386 venous compartments, both by the pial and ascending veins, and the large arterial
387 compartments. In comparison, the BOLD signal is heavily weighted towards the

388 venous compartments and the VASO signal can have contributions from both arterial
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389 and venous in addition to microvasculature CBV changes [34,80,81]. The reason for
390 the high perfusion localisation specificity is that the tagged arterial water is mostly
391 exchanged with the tissue at the level of the capillaries. In addition, the transit delay
392 for the labelled blood to arrive at the region-of-interest (in this case, occipital lobe)
393 can be ~1-1.3 s [82]. Together with the blood transit time within tissue on the order of
394 ~1-2.5 s [83] only little longitudinal magnetisation of the tag remains (due to T1
395 decay), i.e. that almost no magnetisation of the label is present in venous blood (see
396 S8 Fig), except for artefacts caused by labelling of venous blood superior to the
397 imaging slab in some ASL schemes (see [76]). The transit time for the acquisition in
398 the present study was optimised for the visual cortex and is reflected in the inter-
399 regional differences in the baseline perfusion signal and its temporal stability of the
400 tissue (Fig 1). The absence of the venous bias and the signal being dominated by
401 the capillary compartment implies that the perfusion contrast more closely follows
402 both the spatial profile and the amplitude of cortical metabolism and neuronal
403 activation. Another important aspect of ASL acquisitions is the possibility to obtain a

404 quantitative estimate of the baseline signal across depths.

405 The difference between the highly BOLD-activated or highly perfusion-activated
406 voxels is readily visible in the ASL time-courses (see Fig 2). The time-courses for
407 perfusion activation show reduced amplitude of the signal envelope and larger
408 difference between pairs of data points (i.e. the zig-zag modulation) indicating that
409 these voxels contain signals from mostly the microvasculature and that observed
410 responses are indeed capturing the changes in perfusion. In contrast, there are small
411  zig-zag changes relative to the overall signal envelope in the time-courses for the
412  highest BOLD activation, reflecting a smaller contribution from microvasculature.

413  This means that the spatial non-overlap that we observe between the perfusion and
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414 BOLD signals is driven largely by differences in the underlying physiology and not

415 the differences in SNR.

416 Laminar BOLD and perfusion responses

417  We replicated previous findings [21,84,85] that the event-related average BOLD
418 signal amplitude (Fig 3 and 4, first column) increases towards the CSF-GM boundary
419 (e.g., [86,87]). The BOLD signal increase to the superficial layers is well understood
420 and can be attributed to two signal biases: a) increase in baseline CBV of the intra-
421  cortical ascending veins and b) the non-local blooming effect from the pial veins
422  ([88], and for overview see, [2]). The presence of these biases in the BOLD signal
423 makes the interpretation of the measured laminar signal profile, specifically in the
424  superficial layers, challenging [89]. One approach to deal with the issue of spatial
425 bias in GE-BOLD signal is model-driven spatial “deconvolution” [22,24] , which,
426  however, has not yet been validated with another (simultaneously) acquired fMRI

427  modality.

428 The profile of the relative perfusion change (Fig 3 and 4, right column) exhibits the
429  opposite behaviour (compared to the BOLD profile) with the magnitude of the signal
430 increasing towards the GM-WM boundary with a strong linear trend. Furthermore,
431  QUIPSS Il pulses were employed in the present study allowing clear-cut definition of
432 the tagged bolus. This means that the observed patterns of laminar signal behaviour
433 are unlikely to be due to undelivered tagged blood in the diving arterioles. Although
434  the impact of the QUIPSS Il pulse depends on the chosen parameters and the arrival
435 times to the regions-of-interest, an increase in blood flow upon activation can result
436 in a more complete delivery of the tagged spins to the tissue, including the deeper

437 layers at the time of volume acquisition. This could yield a larger fractional perfusion
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438 change in the deeper layers relative to the baseline condition. While it is usually
439 argued that for feed-forward stimuli the peak in activation must be in the middle
440 layers, electrophysiological evidence, histology, and a previous BOLD signal study
441  after spatial “deconvolution” (Marquardt et al., 2018) support the view that V1 also
442  receives high input into layer VI in addition to layer IV. Please note that despite the
443  high spatial resolution used in this study, we do not detect a fine-grained distinction
444  between laminae. The perfusion spatial profile obtained, thus, represents a
445  smoothed version of the underlying neuronal activity. For example, data shown in Fig
446 4b and 4d in [22] and in [90] (see Fig 9 in [22]) are compatible with the spatial
447  profiles found in the current study. We find that the relative increase in the perfusion
448  signal in the middle to deeper layers is also consistent with animal literature (see

449  also [18,91,92].

450 The absolute perfusion signal change profile (Fig 3 and 4, middle column) exhibits a
451 weak positive slope and non-linear behaviour across depths. However, both relative
452 and absolute signal changes are derived from the same perfusion-weighted signal
453 obtained after surround-subtraction and the difference stems from the spatial profile
454  of the baseline perfusion (S5 Fig). Please note, that the increase of the absolute
455  perfusion signal from WMB to CSFB (by ~30-50%) is much smaller than that of the
456 BOLD signal (by ~100-120%). Additionally, in contrast to the BOLD signal, the
457 absolute perfusion change drops beyond the CSF border. Taken together, the
458 relative and absolute perfusion signal changes differ in their depth-dependent
459  behaviour and both differ from the BOLD signal either in the sign of their slope or the

460 relative increase of the profile towards the surface.
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461 In order to test if this discrepancy between the relative & absolute perfusion profiles
462 and BOLD profile can be reconciled, we simulated the BOLD signal profile from the
463 measured perfusion profiles using the recent dynamical laminar BOLD signal model
464  (for details, see S4 Fig). We show that the positive slope and the relative increase of
465 the measured BOLD profile can be obtained from the laminar profile of the relative
466 (having negative slope) and absolute (having much smaller increase towards the
467 surface) perfusion signal by modelling the ascending vein bias, i.e., simulating the
468 laminar BOLD response in a forward manner. Therefore, we conclude that despite
469 their seemingly contrasting behaviours, the BOLD and perfusion signal profiles are,

470 in fact, physiologically consistent with each other.

471  Additionally, the BOLD time-courses exhibit a strong post-stimulus undershoot (PSU)
472  consistent with previous studies [84,93]. Interestingly, our perfusion measures also
473  exhibit PSUs but with smaller amplitudes relative to the positive response. In
474  contrast to the smooth recovery of the PSU to baseline in the BOLD signal, the
475 perfusion PSU exhibits slight oscillatory behaviour. These post-stimulus oscillatory
476 transients are consistent with previous reports of perfusion measurements in
477 humans (e.g., [94]) and with optical imaging in rodents [95]. The oscillatory transients
478 observed in the previous perfusion study in humans [94] could not resolve any
479  depth-dependent modulations owing to its much lower spatial resolution (i.e. 2.65 x
480 2.65 x 5 mm3). The post-stimulus oscillations in our study near the WM boundary are
481  smoother and evolve with a different oscillatory phase than near the CSF boundary,
482  where the oscillations are more pronounced (Fig 3 and 4, middle panels). While it is
483 interesting, pin-pointing the exact vascular physiology that elicits this behaviour is

484  beyond the scope of this study.
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485 Taken together, we believe that the current study presents a breakthrough in non-
486 BOLD fMRI research with the development of sub-millimetre resolution perfusion
487  fMRI using ASL and its feasibility for layer-specific investigations, which has hitherto

488 been an uncharted territory in humans.

489 Data processing

490 We developed a novel workflow to pre-process anatomical images (S1 Fig) by using
491 the second inversion image of the MP2RAGE and SPM'’s segmentation to
492  automatically mask out the sagittal and transverse sinuses that are crucial for highly
493 accurate pial surface delineation using Freesurfer's recon-all. In some participants,
494  the workflow required (albeit very little) manual corrections of the segmentation
495 masks. Additionally, we supplied the quantitative T1 map of the MP2RAGE as a
496 proxy T2 in the recon-all stage 3 to further improve the pial surface reconstruction.
497 We used an open-source python package neuropythy [64] to apply a probabilistic
498 atlas of retinotopy in participant’s native space to generate automatic labels of V1
499 and V2 (S3 Fig b). We qualitatively compared this atlas-based approach on a
500 separate dataset of pRF mapping that was acquired using the same scanner, head
501  coil and similar coverage (data not shown) and found high degree of overlap. Please
502 note, the focus of the present work is distinguishing the BOLD and perfusion signals
503 and does not rely on the perfect delineation of V1 and V2 borders. Cortical layering
504 was done using the equi-volume approach [96] using Surface tools [97] as equi-
505 volumetric layering is not natively supported in Freesurfer. Nevertheless, for spatial
506 resolutions such as the present study the exact choice of the layering model does
507 not affect our main conclusions [98]. Even though the layering is done on the whole

508 cortical ribbon, we manually ensured that the delineations were accurate within the
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509 V1 and V2 masks in each participant. As ASL measures the BOLD signal
510 simultaneously with perfusion, the BOLD signal profile serves as an internal control
511  for the accuracy of the segmentation and layering. The BOLD signal spatial profile
512  for feed-forward stimuli (such as checkerboards as used in this study) is well known
513 and the BOLD signal derived from the ASL data reproduces this well-known
514  amplitude increase towards the surface of the cortex (see Fig 3 and 4), confirming

515 the accuracy of the data processing in this study.

516 We have previously encouraged studies to align anatomical-to-functional data in
517  order to reduce the blurring due to the application of several resampling steps on the
518 high-resolution, high-fidelity laminar fMRI datasets [84]. While minimal processing
519 approaches for fMRI have been proposed [99], as far as we know, they have not
520 been applied to laminar fMRI. To this end, our workflow using the ANTs framework
521  estimates, combines and applies transformations of motion, distortion-correction and
522  co-registration to the anatomical image in a single resampling step, thereby reducing
523 the amount of smoothing resulting from the processing of the data. Please note, in
524 some ASL acquisitions there may be strong differences in image contrast between
525 the label and control images and the choice of realignment cost-function may impact
526  the quality of correction. However, this was not the case for the present study (S7
527 Fig). Importantly, as can be seen in Fig 2, high values of perfusion were tightly
528 confined to the GM ribbon illustrating the high accuracy of the segmentation and co-

529  registration in the present study.

530 Limitations

531  The goal of the present study was to demonstrate the feasibility of using perfusion-

532 weighted contrast with ASL for laminar fMRI and, to that end, we employed a block
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533 design with a strong feed-forward visual stimulus that is known to elicit widespread
534  activation. Due to the lower SNR of the perfusion-signal, we averaged 40 min worth
535 of functional runs. While there is the undoubted benefit in spatial specificity, ASL
536 may not be well-suited for all laminar fMRI studies, particularly those with small effect
537  sizes. In addition, GE-BOLD laminar fMRI data are routinely acquired with 0.6-0.8
538 mm isotropic resolutions, higher than the current ASL study. While the use of Partial-
539  Fourier acquisition can reduce the effective spatial resolution along a dimension, the
540 amount of blurring was reduced by using POCS reconstruction algorithm instead of
541  zero-filling. Nevertheless, to the best of our knowledge, this study remains the
542  highest spatial resolution functional ASL study in humans till date. Going forward,
543  sub-millimetre resolution ASL can be invaluable to studies that are examining BOLD
544  signal physiology, for validating existing models or for brain areas contaminated by

545 close large pial veins.

546  The lowest achievable TE in the present study was 15 ms owing to the EPI readout,
547  which is not ideally suited for perfusion imaging. Although, it would be desirable to
548 achieve shorter TEs (e.g. ~3 ms or less) for better perfusion-weighting, it is currently
549  not possible using conventional Cartesian EPI. To this end, there has been recent
550 progress in non-Cartesian (e.g. spiral readouts) ASL fMRI at ultra-high field
551  [100,101]. Dual-echo spiral acquisitions can be particularly useful for simultaneous
552  perfusion and BOLD imaging achieving the first echo at ~2 ms (perfusion-weighted)
553 and the second echo at ~25 ms (BOLD) at 7T. However, these non-Cartesian
554  acquisitions are prone to inaccuracies in the spiral trajectories due to gradient
555 imperfections that require real-time monitoring and correction using specialised field-

556  monitoring hardware [100]. However, research and development are still underway
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557 to address these technical challenges in non-Cartesian imaging and currently sub-

558  millimetre fMRI acquisitions have not been demonstrated.

559  We show that high-resolution ASL at ultra-high field is possible using the standard
560 commercial head-coil with single-channel transmit (NOVA Medical, USA). However,
561 the B1" inhomogeneities remain a major hurdle [33]. While We were able to mitigate
562 this to some extent using dielectric pads [50,51], Future studies will be able to take
563 advantage of advances in parallel transmission (pTx) technology [102] or the use of
564  dedicated labelling-only RF-coils [103—106] to potentially further optimise high-
565 resolution ASL fMRI at ultra-high fields. Having demonstrated the feasibility of
566 perfusion-weighted laminar fMRI using ASL at a sub-millimetre spatial resolution,
567  future studies will be able to systematically evaluate different properties ASL and its

568 impact on the perfusion signal evolution at ultra-high field.

569
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910 FIGURES

(a) perfusion-weighting

911
912 Fig 1. The average baseline perfusion (a) and perfusion tSNR (b) maps from a

913  superior (left) and inferior (right) slice of an example participant is shown overlaid on
914  the corresponding T1-w anatomy.

915
916
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917

918 Fig 2. (a, left-right) BOLD signal activation map of an example participant, averaged
919 over all runs, overlaid on the inflated left hemisphere reconstruction from Freesurfer.
920 Contours of the V1 (blue) and V2 (green) labels obtained from Neuropythy are also
921 overlaid on the inflated surface. Cropped orthogonal views of the participant’s
922 occipital lobe with the BOLD signal activation map overlaid in voxel space.
923 Boundaries of the different laminar surfaces are also overlaid, colour-coded from
924  cyan (pial)-to-magenta (white). The purple dotted square inset indicates the zoomed-
925 out views presented below. Event-related average ASL time-course of highly BOLD
926  activated voxels across runs for this participant is shown to the right. (b, left-right)
927 The same are presented for perfusion activation in green. The error-bars indicate

928 SEM across trials.
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Fig 3. Laminar BOLD and perfusion signal changes in human V1 ROI obtained using

sub-millimetre 3D-EPI ASL at 7T. (top row) Heatmap representations of the group-

average BOLD signal change, absolute perfusion change, and relative perfusion

change with cortical depth along Y-axis and time along the X-axis. (middle row) Five

out of the twenty-three total laminar time-courses for the respective sampled signals.

(bottom row) Laminar profiles of the positive responses for the respective sampled

signals with cortical depth along X-axis. Error-bars indicate SEM across participants.

The black bar in the middle row indicates the stimulus duration.
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939 Fig 4. same as Fig 3 for V2 ROI.
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942

943  Fig 5. Laminar profiles of the BOLD signal for V1 and V2 ROls. The measured
944  responses are the same as the BOLD signal profiles in Fig 3 and 4. The simulated

945  profiles are obtained using the dynamical laminar BOLD model [13].
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