

1 **Scaffold-scaffold interactions regulate cell polarity in a bacterium**

2 Wei Zhao^{1*}, Samuel W. Duvall^{1*}, Kimberly A. Kowallis¹, Chao Zhang¹, Dylan T. Tomares¹,
3 Haley N. Petitjean¹, W. Seth Childers¹

4 ¹Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

5 *Equal contributions

6

7

8 Corresponding Author:

9 W. Seth Childers

10 Chevron Science Center, Room 801

11 219 Parkman Avenue

12 Pittsburgh, PA 15260

13 Phone Number: 412-624-3058

14 E-mail: wschild@pitt.edu

15

16

17

18

19 **Abstract**

20 The localization of two biochemically distinct signaling hubs at opposite cell poles provides
21 the foundation for asymmetric cell division in *Caulobacter crescentus*. Here we identify an
22 interaction between the scaffolds PodJ and PopZ that regulates the assembly of the new cell
23 pole signaling complex. Time-course imaging of a mCherry-sfGFP-PopZ fluorescent timer
24 throughout the cell cycle revealed that existing PopZ resides at the old cell pole while newly
25 translated PopZ accumulates at the new cell pole. Our studies suggest that interactions between
26 PodJ and PopZ promotes the sequestration of older PopZ and robust accumulation of newl
27 PopZ at the new cell pole. Elimination of the PodJ-PopZ interaction impacts PopZ client
28 proteins, leading to chromosome segregation defects in one-third of cells. Additionally, this
29 PopZ-PodJ interaction is crucial for anchoring PodJ and preventing PodJ extracellular loss at
30 the old cell pole through unknown mechanism. Therefore, segregation of PopZ protein at the
31 old pole and recruitment of newly translated PopZ at the new pole via the PodJ scaffold ensures
32 stringent inheritance and maintenance of the polarity axis within dividing *C. crescentus* cells.

33

34 **Keywords:** *Caulobacter crescentus*; asymmetric cell division; cell polarity; scaffold proteins;
35 PodJ; PopZ; cell-cycle regulation

36

37 **Introduction**

38 Scaffolding proteins can direct and rewire information flow in cellular signaling
39 networks¹. Through the recruitment of signaling proteins into multi-enzymatic complexes,
40 scaffolding proteins give rise to cellular functions such as cytoskeletal dynamics, cell polarity,
41 division, and morphogenesis^{1,2}. In the bacterium *Caulobacter crescentus*, a set of

42 spatiotemporally distributed scaffolding proteins are essential for the establishment and
43 maintenance of cell polarity. This underlying asymmetry enables *Caulobacter crescentus* to
44 divide into a motile swarmer cell and a sessile stalked cell³⁻⁵ (Figure 1).

45 Amongst the client proteins asymmetrically polarized are a set of two-component
46 signaling systems that collectively regulate the master regulator CtrA_{3,6-10}. This intricate
47 subcellular organization of CtrA regulators leads to selective CtrA phosphorylation at the new
48 swarmer pole and dephosphorylation CtrA at the old stalked cell pole (Figure 1)^{6,11}.
49 Consequently, not only temporal¹² but also spatial¹³ regulation of CtrA phosphorylation
50 coordinate transcription of more than 90 developmental genes¹⁴. A scaffolding factor that is
51 required for cell polarity is the protein PopZ. PopZ self-assembles as a micron-sized
52 biomolecular condensate at each cell pole^{13,15,16}. Single-molecule tracking experiments¹³, FLIP
53 studies¹⁶, and *E. coli* reconstitution strategies^{2,16,17} have shown that PopZ dynamically recruits
54 multiple distinct protein clients at each cell poles in pre-divisional cells¹⁸. However, the
55 mechanisms that enable a common scaffold to promote the formation of two compositionally
56 distinct biomolecular condensates remains unclear.

57 The new and old cell pole signaling hubs share some common clients, while others are
58 selectively recruited to each signaling hub. The PopZ scaffold promotes bipolar accumulation
59 of the histidine kinase CckA and its modulator DivL¹⁶. PopZ also serves as an attachment site
60 for the ParB-*parS* centromere during chromosome segregation^{15,18}. On the other hand, the
61 histidine kinase DivJ specifically resides at the old cell pole, and the scaffolding protein SpmX
62 mediates this specific recruitment. SpmX bridges the interaction between PopZ and DivJ, and
63 can even nucleate the formation of new PopZ microdomains at ectopic poles upon
64 overexpression².

65 At the new cell pole, the scaffold proteins PopZ and PodJ play roles in polar assembly.
66 Deletion of the PodJ scaffold results in failure to recruit PleC histidine kinase to the new cell
67 pole^{19,20} and less monopolar accumulation of DivL at the new cell pole²¹. Moreover, $\Delta podJ$
68 strains exhibited moderate loss of the localization of PopZ's client proteins at the new cell
69 pole²¹. Downstream, this resulted in the down-regulation of the CtrA signaling pathway^{21,22}
70 and reduced levels of the CtrA-regulated gene PilA^{19,21,22}. Therefore, these previous studies
71 suggest that similar to that of PopZ and SpmX at the old cell pole², there are functional
72 interactions between the PopZ and PodJ scaffolds at the opposite cell pole. Here we
73 characterize the physical interactions between PopZ and PodJ within the new cell pole
74 microdomain, and we demonstrate that PodJ-PopZ interaction coordinates the signaling
75 transductions between their respective clients to ensure reliable asymmetric cell division.

76

77 **Results**

78 *Newly translated PopZ accumulates at the new cell pole*

79 A critical step in *C. crescentus* cell-cycle progression is the transition of PopZ from
80 being localized exclusively at the old cell pole to accumulate at both cell poles. Given that
81 PopZ scaffolds multiple cell-cycle factors^{16,23}, we asked how the cell-pole condensates remain
82 distinct during this change in localization patterns. One possible model is that PopZ can unbind
83 its scaffold clients at the old cell pole and self-assemble as a separate matrix at the new cell
84 pole. Alternatively, the accumulation of PopZ at the new cell pole may originate from the
85 newly translated PopZ. In support of this second model, an increase in PopZ expression is
86 observed at the same time as it is found that PopZ accumulates at the new cell pole²⁴. We
87 approached this question with a tandem fluorescent timer by fusing PopZ to one fluorescent

88 protein that matures rapidly (sfGFP) and one that matures substantially more slowly (mCherry)
89 (Figure 2A)²⁵. Protein that exhibits high sfGFP fluorescence and weak mCherry fluorescence
90 represents a newly translated protein. Protein that exhibits high sfGFP and high mCherry
91 represents older protein. In past work applying this fluorescent timer approach, we
92 demonstrated that in newborn swarmer cells, newly translated SpmX-mCherry-sfGFP
93 accumulates at the old cell pole and ages as cells mature into pre-divisional cells²⁶.

94 Time-course imaging on a synchronized *C. crescentus* population of mCherry-sfGFP-
95 PopZ revealed that the new cell pole PopZ exhibited high sfGFP but weak mCherry signals at
96 30-minutes post-synchrony. In contrast, the old cell pole contained PopZ protein displayed
97 both high sfGFP and mCherry signals (Figure 2A). At later time points in the cell cycle, 120-
98 minutes post-synchrony, both high levels of sfGFP and mCherry can be observed at the new
99 cell pole. This experiment indicated that older mCherry-sfGFP-PopZ is sequestered at the old
100 cell pole, while the new cell pole is populated with newly translated PopZ protein. It is
101 reasonable to presume that the sequestration of the old-new PopZ scaffolds may play a role in
102 preventing the homogenization of PopZ and its clients at the new and old cell pole. Since PopZ
103 subcellular localization abides by DNA occlusion mechanism²⁷, a key question that follows is
104 what promotes the accumulation of the newly translated PopZ at the new cell pole.

105 ***PodJ regulates the amount of PopZ localized at the new cell pole***

106 Previous studies have shown that ZitP²⁸, TipN²⁹, and ParA³⁰ play redundant roles in
107 the accumulation of PopZ at the new cell pole but implicate one or more additional unknown
108 players. We hypothesized that a PopZ-PodJ scaffold-scaffold interaction may occur since only
109 PodJ could provide the recruitment capability in these players at the new cell pole^{19-22,31}.

110 We observed that sfGFP-PodJ was able to accumulate at the poles in over 90% of cells
111 in the $\Delta popZ$ strain (Figure S1A). However, we also observed an increase in cells exhibiting
112 bipolar localization (Figure S1A). This increase in PodJ bipolar accumulation could be due to
113 differences in PodJ protein levels or changes levels of PodJ proteolysis. For example, in strains
114 lacking the PodJ protease PerP, the number of cells that exhibit bipolar accumulation of PodJ
115 substantially increased (Figure S1B), consistent with past observations³². Notably, we did not
116 observe an increase in diffuse PodJ in the $\Delta popZ$ strain. Therefore PodJ's ability to accumulate
117 at the cell poles is independent of the PopZ scaffold.

118 We did, however, observe a 3-fold reduction of PopZ accumulation at the new cell pole
119 in the $\Delta podJ$ versus wild-type strain (Figure 3A). Expression of sfGFP-PodJ from the
120 chromosomal xylose locus recovered the robust PopZ accumulation at the new cell pole
121 (Figure 3A). These results suggest that PodJ plays a role in regulating the amount of PopZ
122 accumulation at the new cell pole. We also observed that cells without full-length PodJ also
123 showed a decrease in total cell mCherry-PopZ intensity (Figure 3C). This suggests that deleting
124 the native *podJ* gene may alter PopZ transcription levels. Hence, the decreased mcherry-PopZ
125 accumulation at the new cell pole may be due to reduced expression of mCherry-PopZ or loss
126 of physical recruitment. We therefore, examined the distribution of PopZ in cells by
127 constitutive expression of mCherry-PopZ from the vanillate locus. Also, a 4-fold reduction in
128 the fraction of mCherry-PopZ signal at the new cell pole was observed in $\Delta podJ$ compared to
129 the wild-type strain (Figure S2A, S2B). Therefore, higher levels of PopZ expression alone are
130 not capable of rescuing the loss of PopZ accumulation at the new cell pole.

131 We also performed time-lapse microscopy experiments to examine the mCherry-PopZ
132 localization throughout the cell cycle starting with a synchronized population of swarmer cells

133 (Figure S2C). Images were acquired every minute, and kymographs were constructed to show
134 the fluorescence intensity along the cell body over time. In wild-type cells, robust mCherry-
135 PopZ foci accumulated at the new cell pole approximately 40 minutes post-synchrony (Figure.
136 S2C, Movie S1). However, in a Δ podJ strain, we detected significantly reduced signal at the
137 new cell pole (Figure S2C, Movie S2). Moreover, a subset of nascent swarmer cells that lacked
138 any observable PopZ focus were observed (Figure S2D). This loss of PopZ could be
139 complemented by expressing sfGFP-PodJ (Figure S2D). Amongst these swarmer cells, we
140 found 91% of cells ultimately accumulated PopZ at the correct, old cell pole (Figure S2E). We
141 observed that 9% of these cells accumulated PopZ at the new cell pole after inheriting no PopZ
142 (Figure S2E). Thus, this subpopulation of swarmer cells exhibited an abnormal switching of
143 the polarity axis.

144 This observed reduction in PopZ new cell pole accumulation mirrors loss other
145 redundant factors (TipN₃₃ and ZitP₂₈) that play roles in promoting PopZ new cell pole
146 accumulation. This redundancy in PopZ recruitment likely reflects how deletion of *podJ* does
147 not result in phenotypes seen in cells with *popZ* deleted¹⁵. Collectively, these results suggest
148 that the degree and the time of PopZ accumulation at the new cell pole depends on PodJ, but
149 PodJ cell pole accumulation is independent of PopZ.

150

151 ***PodJ deletion impacts ParB segregation in a subset of cells.***

152 Past work from Brun and co-workers have shown that the PopZ client CckA exhibits
153 reduced new cell pole localization when *podJ* is deleted or truncated²¹. Another critical role of
154 PopZ is to tether the ParB/origin segregation complex at the cell poles¹⁵. The robust tethering
155 of ParB to the cell poles involves simultaneous interactions with numerous ParB/*parS*

156 complexes^{17,34}. Therefore, we investigated if the reduction of PopZ accumulation at the new
157 cell pole impacted ParB tethering. Previously, Bowman and co-workers demonstrated that
158 ParB was tethered more stably at the new cell pole than at the old cell pole after chromosome
159 segregation²³. We observed that ParB-CFP was able to readily accumulate at the new cell pole,
160 while ParB-CFP foci were more mobile at both the swarmer and stalk pole, with the greater
161 change in mobility at the swarmer cell pole when cells lacking PodJ (Figure 4A). This
162 observation suggests that a PodJ mediated recruitment of PopZ impacts the dynamics of the
163 ParB/origin complex at the cell pole. This close association of ParB with the cell poles is likely
164 due to the lower degree of subcellular accumulation of PopZ at the new cell pole. Alternatively,
165 it may also suggest that the Pod-PopZ interaction allosterically impacts the PopZ-ParB
166 interaction.

167 Additionally, we observed that 35% of cells displayed ParB focus detachment
168 phenotypes in the *podJ* deletion strain at both cell poles. In the most prevalent cases, the ParB
169 focus would translocate across the cell to the new cell pole before chromosome duplication
170 (Figure 4B). This premature centromere translocation results in the reversal of the inherited
171 cell polarity axis. In another case, we observed new and old cell pole ParB foci coalescing into
172 a single focus at the middle cell, then separating back to the cell poles (Figure 4C). Consistent
173 with the mobility analysis results (Figure 4A), these phenotypes suggest the PodJ recruitment
174 of PopZ facilitates robust PopZ-ParB chromosome tethering at the new cell pole.

175 Given that ParB also directly interacts with the cell division inhibitor protein MipZ³⁵,
176 we examined the impact of the *podJ* deletion upon MipZ and FtsZ. These ParB segregation
177 defects also resulted in a less robust MipZ localization at the cell poles and a more diffuse FtsZ
178 Z-ring assembly (Figure S3A, S3B). Overall in the *podJ* deletion strain, cells were viable as

179 chromosome segregation, and division processes remained mostly functional. However, PodJ's
180 interaction with PopZ seems to fine-tune chromosome segregation such that it avoids polarity
181 axis inversions.

182 ***PodJ promotes bipolarization of PopZ in *E. coli****

183 To determine if PodJ and PopZ interact directly, we heterologously co-expressed PopZ
184 and PodJ scaffolds in *E. coli* (Figure 5A, 5B). Notably, the γ -proteobacterium *E. coli* is highly
185 divergent from the alphaproteobacterium *C. crescentus* and does not contain any *C. crescentus*
186 polarity protein homologs. *E. coli* has thus been used extensively as an orthologous system for
187 testing *C. crescentus* protein-protein interactions^{15,16,27,28}. A previous screen of PopZ
188 interaction partners indicates that PopZ and PodJ were only partially co-localized when co-
189 expressed in *E. coli*¹⁶ despite their co-localization in *C. crescentus*. This previous study utilized
190 a C-terminal fluorescent protein fusion to PodJ, while previous PodJ studies have used an N-
191 terminal fluorescent protein fusion of PodJ^{32,36}. Therefore, we hypothesized that the C-terminal
192 fluorescent protein fusion might impact PodJ localization and therefore disturb PodJ-PopZ
193 binding. To test this idea, we heterologously expressed an N-terminal fluorescent fusion
194 protein of PodJ in *E. coli*. As shown in Figure 5A, YFP-PodJ exhibited readily bipolar
195 localization in about 80% of *E. coli* cells (Figure 5A, S4). PopZ accumulates at a single cell
196 pole in about 75% of cells when expressed alone, as observed in past studies^{18,27} (Figure 5A,
197 S4). However, mCherry-PopZ co-localized in a bipolar pattern when co-expressed with YFP-
198 PodJ (Figure 5A, 5B). Therefore, these experiments indicated that PodJ could bipolarize PopZ
199 in *E. coli* (Figure 5, S4). Interestingly, this PodJ-mediated bipolarization of PopZ might be a
200 general feature of membrane-bound PopZ client proteins as SpmX₂, ZitP₂₈, and DivL₁₆ all can
201 bipolarize PopZ in *E. coli*.

202

203 ***PopZ-PodJ interaction is conserved amongst alphaproteobacteria***

204 A subset of alphaproteobacteria encodes both PopZ and PodJ scaffolding proteins.
205 Notably, in the alphaproteobacteria *Agrobacterium tumefaciens*, past studies have
206 demonstrated a strong genetic interaction between PodJ and PopZ^{37,38}. However, from these
207 prior studies, it remains unclear if *At*PodJ and *At*PopZ interact directly or indirectly. To test
208 this idea, we expressed PodJ fusion proteins from select alphaproteobacteria together with their
209 corresponding PopZ variants in *E. coli* (Figure 5C). Each mCherry-PopZ homolog
210 accumulated at a single cell pole when expressed alone, similar to *Cc*PopZ (Figure 5C). Each
211 YFP-PodJ variant accumulated at the cell poles, but compared to *Cc*PodJ, the variants
212 displayed heterogeneity in their subcellular localization pattern. However, in each case, we
213 observed that co-expression with PodJ results in bipolarization of PopZ (Figure 5C). These
214 experiments indicate that the interaction between PopZ and PodJ is direct and conserved
215 amongst alphaproteobacteria that contain both PopZ and PodJ.

216

217 ***PopZ interacts directly with PodJ's CC4-6 domain***

218 To determine the PopZ binding site within PodJ, we screened the capability of PopZ to
219 bind to the library of PodJ domain deletion variants through co-expression in *E. coli* (Figure
220 6A, S4). We considered the following outcomes as an indication of a PopZ interaction with
221 the PodJ variants: (1) the two proteins are 100% co-localized, and (2) the localization pattern
222 of either protein is changed after co-expression. We found that the deletion of the C-terminal
223 periplasmic domain or the intrinsically disordered PSE domain in PodJ did not disrupt the
224 PodJ-PopZ interaction (Figure 6A, Figure S4). In contrast, the deletion of the CC4-6 domain

225 disrupted PopZ co-localization with PodJ (Figure 6A). We then expressed YFP-CC4-6 alone
226 and observed that it was diffuse through the cytoplasm in *E. coli*. However, it co-localized with
227 mCherry-PopZ at the cell pole when co-expressed in *E. coli* (Figure 6A). These data indicate
228 that coiled-coil 4-6 in PodJ is critical for co-localization with PopZ in *E. coli*.

229 To confirm that this PopZ-PodJ protein-protein interaction is direct, we performed *in*
230 *vitro* fluorescence polarization assays to detect PopZ-PodJ binding. In these assays, we mixed
231 16 μ M PopZ together with 100 nM BODIPY-PodJ CC4-6 or BODIPY-PodJ PSE fluorescently
232 labeled proteins. As shown in Figure 6B, PopZ bound to PodJ CC4-6 but did not bind to the
233 PodJ PSE construct. Both the *E. coli* heterologous expression assays and *in vitro* biochemical
234 assays show that the coiled-coil 4-6 region of PodJ is the site of interaction with PopZ.

235 ***PodJ-PopZ interaction regulates PopZ new pole localization and loss of PodJ from cells***

236 In *C. crescentus* Δ podJ, we observed that the expression of sfGFP-PodJ Δ CC4-6 was
237 able to localize at the new cell pole (Figure 6C). One notable difference is that sfGFP-
238 PodJ Δ CC4-6 exhibited an increased mid-cell accumulation versus sfGFP-PodJ. A second
239 critical difference is that sfGFP-PodJ Δ CC4-6 recruited about 2-fold less PopZ to the new cell
240 pole than the expression of sfGFP-PodJ (Figure 6C, 6D). A comparison of PopZ cell pole
241 intensity ratio (old/new) in the wild-type strain versus the PodJ Δ CC4-6 strain and the Δ podJ
242 strain shows the ratio increases in cells lacking PodJ with a functional PopZ binding site
243 (Figure 6D). Taken together, these results suggest that the PodJ CC4-6 binding site contributes
244 to PopZ accumulation at the new cell pole.

245 To our surprise, we observed that sfGFP-PodJ Δ CC4-6 foci outside of the cell,
246 specifically at the old cell pole (Figure 6E). We also observed a similar phenomenon when
247 expressing sfGFP-PodJ in *popZ* deletion strain (Figure 6F). One possible explanation is the

248 formation of minicells, which have been described in previous studies of PopZ²⁷ and SpmX³⁹
249 mutant strains, and SpmX overproducing cells². Previous work from Thanbichler et al.
250 demonstrated that mini-cell formation is commonly the result of chromosome detachment
251 errors, as observed in MipZ mutant strains³⁵. This is partially consistent with our observation
252 of increased ParB mobility at the cell poles and abnormal ParB translocation events (Figure
253 4B, 4C). However, given the role of the PopZ-PodJ interaction at the cell poles, we would
254 expect mini-cell formation to occur equally at both poles especially at the new cell pole.
255 Ebersbach et al. previously showed that minicells produced in the *popZ* deletion strain occur
256 exclusively at the new cell pole²⁷. In contrast, in the *popZ* deletion strain we observed
257 extracellular PodJ-rich foci exclusively at the old cell pole (Figure 6D). In addition, these foci
258 were significantly smaller than mini-cells and not observable by phase in most cases. Another
259 possibility for the observed extracellular PodJ is that PodJ or a complex, including PodJ, is
260 secreted from the cell body. This could occur via the CpaC outer membrane secretion channel,
261 which remains assembled at the old cell pole after facilitating the secretion of the PilA pilin
262 protein at the new cell pole early in the cell cycle^{19,40}. Notably, a second factor that plays a
263 role in pilus assembly, CpaE, is recruited to the cell pole by the PodJ scaffolding protein and
264 is required for CpaC localization^{19,40}. Investigation of this process and its relevance to cell-
265 cycle regulation will require further genetic studies. Regardless of the mechanism of PodJ loss,
266 these results suggest that PopZ-PodJ interaction is critical for robust tethering of the
267 chromosome at the cell poles (Figure 4) and prevention of loss of PodJ from the cell body
268 (Figure 6).

269 **Discussion**

270 Recently, biomolecular condensation has emerged as an organizing principle of the
271 bacterial cytoplasm^{13,41-44}. Moreover, it has been shown that the scaffolding protein PopZ play
272 an essential role in the formation of two biomolecular condensates at each cell pole^{13,16}. Here
273 we have discovered a direct and conserved interaction between the PopZ and PodJ scaffolds
274 (Figure 6B, S5) influences the composition and the size of biomolecular condensates at the
275 new cell pole (Figure 3, S2)¹³. In the absence of PodJ, we observed a 3 to 4-fold reduction in
276 the amount of PopZ that localized to the new cell pole (Figure 3, S5). This reduction in new
277 cell pole localized PopZ also had an impact upon tethering of ParB to the cell poles. We
278 observed erroneous ParB translocations from the old cell pole to the new cell pole before
279 chromosome duplication in the *podJ* deletion strain (Figure 4B, S5). Therefore, PodJ plays a
280 role in ensuring cells inherit and maintain their polarity axis. Overall, the observed segregation
281 and division phenotypes were mild, indicating that PopZ has the ability to self-assemble at the
282 new cell pole as other redundant proteins play a role in PopZ new-pole promotion (Figure
283 S5)^{28,30}.

284 A key event in *C. crescentus* asymmetric division is the formation of a signaling hub
285 at the new cell pole that is compositionally distinct from the old cell pole (Figure S5). Previous
286 fluorescence recovery after photobleaching (FRAP) experiments^{13,16} and single-molecule
287 tracking experiments¹⁵ collectively indicate that PopZ is sequestered at the old poles for long
288 periods of time. From these past experiments, we hypothesized that PopZ accumulation at the
289 new cell pole primarily occurs through the assembly of newly translated PopZ. To distinguish
290 newly translated from older PopZ, we applied a fluorescent-timer approach. These fluorescent-
291 timer protein fusions demonstrated that newly translated protein was enriched at the new cell
292 pole (Figure 2), while old PopZ protein was sequestered mainly at the old cell pole. Thus the

293 combination of single-molecule tracking (< 1 min)¹⁵, FRAP (0-10 min)^{13,16}, and fluorescent
294 timer data (>10 min) (Figure 1) allow tracking of protein over a range of timescales, and each
295 of these methods suggests that sequestration of static PopZ assemblies play a role in preventing
296 the scrambling of contents at the cell poles.

297 Super-resolution imaging of the cell poles suggests that the molecular organization is
298 well mixed at the spatial resolution of approximately 20 nm⁴⁵. In the absence of protein-protein
299 interaction information, the PopZ-CckA-DivL and PodJ-PleC complexes could either be
300 interacting and well mixed or non-interacting and phase-separated into discrete clusters at the
301 new cell pole. Our observation of a direct-scaffold interaction between PodJ and PopZ (Figure
302 3, 6, S2) likely mediates placement of PleC, CckA, DivL as a well-defined signaling complex
303 in alphaproteobacteria (Figure 5). This proximity would support previously proposed models
304 in which PleC's dephosphorylation of DivK~P may generate localized zones of
305 unphosphorylated DivK~P^{11,19}. In contrast, simple co-localization of signaling proteins at the
306 cell poles as heterogeneous clusters and without direct interactions may not overcome the rapid
307 DivK diffusion rates that generate shallow DivK~P gradients across the cell⁴⁶.

308 More broadly, recent work has identified an array of scaffolds that promote the
309 organization of bacterial cytoplasm from signaling biochemistry^{16,45} to RNA biochemistry⁴¹
310 through self-assembly as biomolecular condensates. Key questions remain as to the factors that
311 promote co-assembly, phase separation, and compositional control of these bacterial
312 biomolecular condensates. Future studies will be needed to determine if PodJ can self-assemble
313 and whether it is homogenously integrated at the membrane-PopZ microdomain surface. In
314 contrast, the absence of these scaffold-scaffold interactions, and other yet to be learned
315 mechanisms, may facilitate phase separation of distinct biomolecular condensates. For

316 example, *C. crescentus* contains three known spatially resolved biomolecular condensates:
317 BR-bodies involved in mRNA decay dispersed in the cell-body⁴¹, and two PopZ-mediated
318 assemblies at opposite cell poles¹⁶. System-level understanding of the bacterial cytoplasm
319 organization within these biomolecular condensates will center on understanding the breadth
320 of scaffold-scaffold interactions.

321

322 **Acknowledgments.** We thank Jared Schrader and Tom Mann for providing critical reviews of
323 the manuscript. We also thank Lucy Shapiro for providing critical *C. crescentus* strains that
324 supported this study.

325

326 **Methods**

327

328 **Bacterial Strains**

329 All experiments were performed using *Caulobacter crescentus* NA1000 (also known as
330 CB15N) and *Escherichia coli* BL21. *E. coli* BL21 was purchased from Promega. *C. crescentus*
331 NA1000 was a kind gift from Dr. Lucy Shapiro (Stanford University School of Medicine).

332 More strains and expression plasmids used in this study are listed in Table S1. All relevant
333 primers are given in detail in Table S2. Plasmid and strain construction are described in the
334 supplemental information. Transformations and phage transductions were carried out as
335 described⁴⁷.

336

337 **Growth Conditions and Inducer Concentrations**

338 *C. crescentus* strains were grown at 28°C in PYE (peptone yeast extract) or M2G (minimal
339 medium supplemented with glucose)⁴⁷. When needed, *C. crescentus* cells were synchronized
340 as described⁴⁸, and swarmer cells were harvested by Percoll density-gradient centrifugation. *E.*
341 *coli* strains used for protein purifications and microscopy experiments were grown at 37 °C in
342 LB medium unless otherwise stated. When required, protein expression was induced by adding
343 0.002-0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) or 0.5-10 mM arabinose in *E.*
344 *coli*, and 0.003%–0.3% xylose or 0.05-0.5 mM vanillic acid in *C. crescentus* unless otherwise
345 stated. The induction time for microscopy experiments is 2 hours in *E. coli* and 3 hours in *C.*
346 *crescentus*. Generalized CR30 phage transduction was performed as described⁴⁷.

347

348 **Phase Contrast, DIC, and Epifluorescence Microscopy**

349 Cells were imaged after being immobilized on a 1.5% agarose pad containing corresponding
350 inducers when required. Phase microscopy was performed by using a Nikon Eclipse Ti-E
351 inverted microscope equipped with an Andor Ixon Ultra DU897 EMCCD camera and a Nikon
352 CFI Plan-Apochromat 100X/1.45 Oil objective. DIC (differential interference contrast)
353 microscopy was performed using the same microscope and camera but with a Nikon CFI Plan-
354 Apochromat 100X/1.45 Oil DIC objective with a Nikon DIC polarizer and slider in place. The
355 excitation source was a Lumencor SpectraX light engine. Chroma filter cube
356 CFP/YFP/MCHRY MTD TI was used to image ECFP (465/25M), EYFP (545/30M), and
357 mCherry (630/60M). Chroma filter cube DAPI/GFP/TRITC was used to image EGFP, sfGFP,
358 and mNeonGreen (515/30M). Images were collected and processed with Nikon NIS-Elements
359 AR software.

360

361 **Time-lapse Microscopy**

362 sfGFP-PodJ, mCherry-PopZ, or SpmX-mCherry were tracked using phase and fluorescence
363 microscopy. During time-lapse experiments, phase and fluorescence images were taken in 1
364 min intervals for sfGFP-PodJ, mCherry-PopZ, and SpmX-mCherry for 1-2 cell divisions (~ 4
365 h). ParB-CFP fast time-lapses images were recorded every 4 minutes over 20 minutes. Long
366 ParB-CFP time-lapses were recorded every 15 minutes for 3-4 hours. The imaging system used
367 was the Nikon Eclipse Ti-E microscope equipped with an Andor Ixon Ultra DU897 EMCCD
368 camera and NIS-Elements software. *C. crescentus* cells with corresponding expression gene
369 were grown to the early-log phase in M2G or PYE medium ($OD_{600} = 0.2$), and then induced

370 by xylose or vanillic acid for 2 hours before synchronization. Swarmer cells were isolated from
371 the culture by centrifugation (20 mins at 11,000 rpm, 4°C) after mixture with 1 volume of
372 Percoll (GE Healthcare). The synchronized swarmer cells were pipetted onto an agarose (2%)
373 pad containing medium with inducers and sealed with wax. NIS-Elements software was used
374 to align time-lapse images post-acquisition.

375

376 **ParB-CFP tracking analysis**

377 MicrobeJ₄₉ was used to track ParB-CFP foci during fast time-lapse experiments. Predivisional
378 cells that had already segregated a ParB-CFP focus to the new cell pole were at t=0 were
379 analyzed. Maxima were tracked, and the raw distance changes for each 4-minute difference
380 were averaged for new and old cell pole ParB-CFP foci. Averages for two separate experiments
381 were pooled and plotted. A student's t-test was used to determine statistical significance.

382

383 **Fluorescence Intensity Profile Analysis**

384 sfGFP-PodJ variants expressing mCherry-PopZ from the native PopZ promoter were imaged
385 using the above methods. After imaging, predivisional cells expressing sfGFP-PodJ variants
386 were oriented by visualization of the stalk. The average fluorescence intensity profile using
387 normalized cell length was generated using MicrobeJ₄₉ with the new pole at 0.0 and old pole
388 at 1.0. mCherry-PopZ was made in the same way in the same strains. MipZ and FtsZ analysis
389 were performed in the same way.

390

391 **Purification of PodJ and PopZ**

392 Protein expression of all PodJ variants followed the same protocol and is described in detail
393 below for PodJ (1-635). To purify the cytoplasmic portion of PodJ(1-635), Rosetta (DE3)
394 containing plasmid pwz091 was grown in 6 liters LB medium (20 µg/ml chloramphenicol and
395 100 µg/ml ampicillin) at 37°C. The culture was then induced at an OD₆₀₀ of 0.4–0.6 with 0.5
396 mM IPTG overnight at 18°C. The cells were harvested, resuspended in the lysis buffer (50 mM
397 Tris-HCl, 700 mM KCl, 20 mM Imidazole, 0.05% dextran sulfate, pH 8.0), in the presence of
398 protease inhibitor cocktail tablets without EDTA (Roche).

399 The cell suspension was lysed with three passes through an EmulsiFlex-C5 cell disruptor
400 (AVESTIN, Inc., Ottawa, Canada), and the supernatant was collected by centrifuging at 13000
401 g for 30 min at 4°C. Also, the insoluble cell debris was resuspended by the recovery buffer (50
402 mM Tris-HCl, 1000 mM KCl, 20 mM Imidazole, 0.05% dextran sulfate, pH 8.0) and its
403 supernatant was collected as well as the previous centrifugation. The combined supernatants
404 were loaded onto a 5 ml HisTrapTM HP column (GE Healthcare) and purified with the ÄKTATM
405 FPLC System. After washing with 10 volumes of wash buffer (50 mM Tris-HCl, 300 mM KCl,
406 and 25 mM imidazole, pH 8.0), the protein was collected by elution from the system with
407 elution buffer (50 mM Tris-HCl, 300 mM KCl, and 500 mM imidazole, pH 8.0), and
408 concentrated to a 3 ml volume using Amicon Centrifugal Filter Units, resulting in > 95%
409 purity. All PodJ variants were dialyzed with a buffer containing 50 mM Tris-HCl (pH 8.0),
410 300 mM KCl, and then aliquoted to a small volume (100 µl) and kept frozen at -80°C until
411 use.

412 His-PopZ was expressed and purified the same as described ¹⁷.

413

414 **Fluorescence Polarization Assay**

415 To label PodJ_PSE (471-635) and PodJ_CC4-6 (250-430), we cloned a cysteine just after the
416 6X-His-tag proteins at the N-terminal of each protein. PodJ_PSE (Cys) and PodJ_CC4-6 (Cys)
417 expression and purification followed the same protocol as PodJ mentioned above. These two
418 proteins were labeled at the cysteine using thiol-reactive BODIPY™ FL N-(2-Aminoethyl)
419 Maleimide (Thermo Fisher). The proteins were mixed with 10-fold excess BODIPY™ FL N-
420 (2-Aminoethyl) Maleimide and allowed to react for 2 hours at room temperature, and the
421 unreacted dye was quenched with mercaptoethanol (5% final concentration). The labeled
422 proteins were purified via dialysis to remove unreacted fluorescent dye (5 times, 500 ml buffer,
423 and 30 mins each).

424 Fluorescence polarization binding assays were performed by mixing 100 nM labeled proteins
425 with 0, 0.25, 0.5, 1, 2, 4, 8, 16 μ M partner protein (PopZ or BSA) for 45 minutes to reach
426 binding equilibrium at the room temperature. Fluorescent proteins were excited at 470 nm, and
427 emission polarization was measured at 530 nm in a UV-vis Evol 600
428 spectrophotometer (Thermo). Fluorescent polarization measurements were performed in
429 triplicates, and three independent trials were averaged with error bars representing the standard
430 deviation.

431 **Quantification and Statistical Analyses**

432 FIJI/ImageJ^{50, 51}, and MicrobeJ⁴⁹ were used for image analysis. The number of replicates and
433 the number of cells analyzed per replicate is specified in corresponding legends. All

434 experiments were replicated at least 2 times, and statistical comparisons were carried out using
435 GraphPad Prism with two-tailed Student's t-tests. Differences were considered to be significant
436 when p values were below 0.05. In all figures, measurements are shown as mean \pm standard
437 deviations (s.d.).

438

439 **Kymograph Analyses**

440 Kymographs of fluorescence intensity was obtained by using the built-in kymograph function
441 of MicrobeJ⁴⁹. The background signal was subtracted before the kymograph analysis, and the
442 observation of stalk at the pole of *C. crescentus* cell was defined as the old pole. The
443 predivisional cell was selected as the start point in Figure 1C and Figure 3C. In Figure 1C,
444 another round of kymograph analysis was performed after the first cell division. The new pole
445 **b** became the old pole after cell division and another two new poles (**c** and **d**) were formed.

446

447 **Calculation of Subcellular Co-Localization with PodJ variants**

448 To interpret the co-localization ratio in Figure 4C and Figure S2, we used strict criteria to
449 calculate how the proteins interact with the PodJ variants, *i.e.*, (I), the localization patterns of
450 the interaction proteins are changed after co-expression. (II), the two proteins are 100% co-
451 localized at the pole (binding) or drive each other apart from the pole (dispersion). Failure to
452 meet either of these two criteria means the interaction of the two proteins is undetermined.
453 About 200 cells were analyzed for each interaction set.

454

455 **References**

456 1 Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for
457 controlling the flow of cellular information. *Science* **332**, 680-686,
458 doi:10.1126/science.1198701 (2011).

459 2 Perez, A. M. *et al.* A Localized Complex of Two Protein Oligomers Controls
460 the Orientation of Cell Polarity. *mBio* **8**, doi:10.1128/mBio.02238-16 (2017).

461 3 Lasker, K., Mann, T. H. & Shapiro, L. An intracellular compass spatially
462 coordinates cell cycle modules in *Caulobacter crescentus*. *Current opinion in*
463 *microbiology* **33**, 131-139, doi:10.1016/j.mib.2016.06.007 (2016).

464 4 Curtis, P. D. & Brun, Y. V. Getting in the loop: regulation of development in
465 *Caulobacter crescentus*. *Microbiology and molecular biology reviews : MMBR*
466 **74**, 13-41, doi:10.1128/MMBR.00040-09 (2010).

467 5 Bergé, M. & Viollier, P. H. End-in-Sight: Cell Polarization by the Polygamic
468 Organizer PopZ. *Trends in microbiology* **26**, 363-375,
469 doi:<https://doi.org/10.1016/j.tim.2017.11.007> (2018).

470 6 Matroule, J. Y., Lam, H., Burnette, D. T. & Jacobs-Wagner, C. Cytokinesis
471 monitoring during development; rapid pole-to-pole shuttling of a signaling
472 protein by localized kinase and phosphatase in *Caulobacter*. *Cell* **118**, 579-
473 590, doi:10.1016/j.cell.2004.08.019 (2004).

474 7 Wheeler, R. T. & Shapiro, L. Differential localization of two histidine kinases
475 controlling bacterial cell differentiation. *Molecular cell* **4**, 683-694 (1999).

476 8 Jacobs, C., Hung, D. & Shapiro, L. Dynamic localization of a cytoplasmic
477 signal transduction response regulator controls morphogenesis during the
478 *Caulobacter* cell cycle. *Proceedings of the National Academy of Sciences of*
479 *the United States of America* **98**, 4095-4100, doi:10.1073/pnas.051609998
480 (2001).

481 9 Angelastro, P. S., Sliusarenko, O. & Jacobs-Wagner, C. Polar localization of
482 the CckA histidine kinase and cell cycle periodicity of the essential master
483 regulator CtrA in *Caulobacter crescentus*. *Journal of bacteriology* **192**, 539-
484 552, doi:10.1128/JB.00985-09 (2010).

485 10 Tsokos, C. G., Perchuk, B. S. & Laub, M. T. A dynamic complex of signaling
486 proteins uses polar localization to regulate cell-fate asymmetry in *Caulobacter*
487 *crescentus*. *Developmental cell* **20**, 329-341,
488 doi:10.1016/j.devcel.2011.01.007 (2011).

489 11 Tsokos, C. G., Perchuk, B. S. & Laub, M. T. A Dynamic Complex of Signaling
490 Proteins Uses Polar Localization to Regulate Cell-Fate Asymmetry in
491 *Caulobacter crescentus*. *Developmental Cell* **20**, 329-341,
492 doi:10.1016/j.devcel.2011.01.007 (2011).

493 12 Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. Genes directly
494 controlled by CtrA, a master regulator of the *Caulobacter* cell cycle.
495 *Proceedings of the National Academy of Sciences of the United States of*
496 *America* **99**, 4632-4637, doi:10.1073/pnas.062065699 (2002).

497 13 Lasker, K. *et al.* Selective sequestration of signalling proteins in a
498 membraneless organelle reinforces the spatial regulation of asymmetry in

499 14 Caulobacter crescentus. *Nature microbiology* **5**, 418-429,
500 doi:10.1038/s41564-019-0647-7 (2020).

501 14 Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. Genes directly
502 controlled by CtrA, a master regulator of the Caulobacter cell cycle.
503 *Proceedings of the National Academy of Sciences of the United States of*
504 *America* **99**, 4632-4637, doi:10.1073/pnas.062065699 (2002).

505 15 Bowman, G. R. *et al.* A polymeric protein anchors the chromosomal
506 origin/ParB complex at a bacterial cell pole. *Cell* **134**, 945-955,
507 doi:10.1016/j.cell.2008.07.015 (2008).

508 16 Holmes, J. A. *et al.* Caulobacter PopZ forms an intrinsically disordered hub in
509 organizing bacterial cell poles. *Proceedings of the National Academy of*
510 *Sciences of the United States of America* **113**, 12490-12495,
511 doi:10.1073/pnas.1602380113 (2016).

512 17 Ptacin, J. L. *et al.* Bacterial scaffold directs pole-specific centromere
513 segregation. *Proceedings of the National Academy of Sciences of the United*
514 *States of America* **111**, E2046-2055, doi:10.1073/pnas.1405188111 (2014).

515 18 Holmes, J. A. *et al.* Caulobacter PopZ forms an intrinsically disordered hub in
516 organizing bacterial cell poles. *Proceedings of the National Academy of*
517 *Sciences*, doi:10.1073/pnas.1602380113 (2016).

518 19 Viollier, P. H., Sternheim, N. & Shapiro, L. Identification of a localization factor
519 for the polar positioning of bacterial structural and regulatory proteins.
520 *Proceedings of the National Academy of Sciences of the United States of*
521 *America* **99**, 13831-13836, doi:10.1073/pnas.182411999 (2002).

522 20 Hinz, A. J., Larson, D. E., Smith, C. S. & Brun, Y. V. The Caulobacter
523 crescentus polar organelle development protein PodJ is differentially localized
524 and is required for polar targeting of the PleC development regulator.
525 *Molecular microbiology* **47**, 929-941, doi:10.1046/j.1365-2958.2003.03349.x
526 (2003).

527 21 Curtis, P. D. *et al.* The scaffolding and signalling functions of a localization
528 factor impact polar development. *Molecular microbiology* **84**, 712-735,
529 doi:10.1111/j.1365-2958.2012.08055.x (2012).

530 22 Lawler, M. L., Larson, D. E., Hinz, A. J., Klein, D. & Brun, Y. V. Dissection of
531 functional domains of the polar localization factor PodJ in Caulobacter
532 crescentus. *Molecular microbiology* **59**, 301-316, doi:10.1111/j.1365-
533 2958.2005.04935.x (2006).

534 23 Bowman, G. R. *et al.* Caulobacter PopZ forms a polar subdomain dictating
535 sequential changes in pole composition and function. *Molecular microbiology*
536 **76**, 173-189, doi:10.1111/j.1365-2958.2010.07088.x (2010).

537 24 Schrader, J. M. *et al.* Dynamic translation regulation in Caulobacter cell cycle
538 control. *Proceedings of the National Academy of Sciences of the United*
539 *States of America* **113**, E6859-E6867, doi:10.1073/pnas.1614795113 (2016).

540 25 Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation
541 time of fluorescent proteins in living cells. *Nature methods* **15**, 47-51,
542 doi:10.1038/nmeth.4509 (2018).

543 26 Schrader, J. M. *et al.* Dynamic translation regulation in *Caulobacter* cell cycle
544 control. *Proceedings of the National Academy of Sciences* **113**, E6859-
545 E6867, doi:10.1073/pnas.1614795113 (2016).

546 27 Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A self-
547 associating protein critical for chromosome attachment, division, and polar
548 organization in *caulobacter*. *Cell* **134**, 956-968, doi:10.1016/j.cell.2008.07.016
549 (2008).

550 28 Berge, M. *et al.* Modularity and determinants of a (bi-)polarization control
551 system from free-living and obligate intracellular bacteria. *eLife* **5**,
552 doi:10.7554/eLife.20640 (2016).

553 29 Lam, H., Schofield, W. B. & Jacobs-Wagner, C. A landmark protein essential
554 for establishing and perpetuating the polarity of a bacterial cell. *Cell* **124**,
555 1011-1023, doi:10.1016/j.cell.2005.12.040 (2006).

556 30 Laloux, G. & Jacobs-Wagner, C. Spatiotemporal control of PopZ localization
557 through cell cycle-coupled multimerization. *The Journal of cell biology* **201**,
558 827-841, doi:10.1083/jcb.201303036 (2013).

559 31 Duerig, A. *et al.* Second messenger-mediated spatiotemporal control of
560 protein degradation regulates bacterial cell cycle progression. *Genes &*
561 *development* **23**, 93-104, doi:10.1101/gad.502409 (2009).

562 32 Chen, J. C., Viollier, P. H. & Shapiro, L. A membrane metalloprotease
563 participates in the sequential degradation of a *Caulobacter* polarity
564 determinant. *Molecular microbiology* **55**, 1085-1103, doi:MMI4443 [pii]
565 10.1111/j.1365-2958.2004.04443.x [doi] (2005).

566 33 Schofield, W. B., Lim, H. C. & Jacobs-Wagner, C. Cell cycle coordination and
567 regulation of bacterial chromosome segregation dynamics by polarly localized
568 proteins. *The EMBO journal* **29**, 3068-3081, doi:10.1038/emboj.2010.207
569 (2010).

570 34 Ptacin, J. L. *et al.* A spindle-like apparatus guides bacterial chromosome
571 segregation. *Nature cell biology* **12**, 791-U746, doi:10.1038/ncb2083 (2010).

572 35 Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating
573 chromosome segregation with cell division in *Caulobacter*. *Cell* **126**, 147-162,
574 doi:10.1016/j.cell.2006.05.038 (2006).

575 36 Chen, J. C. *et al.* Cytokinesis signals truncation of the PodJ polarity factor by
576 a cell cycle-regulated protease. *The EMBO journal* **25**, 377-386,
577 doi:10.1038/sj.emboj.7600935 (2006).

578 37 Anderson-Furgeson, J. C., Zupan, J. R., Grangeon, R. & Zambryski, P. C.
579 Loss of PodJ in *Agrobacterium tumefaciens* Leads to Ectopic Polar Growth,
580 Branching, and Reduced Cell Division. *Journal of bacteriology* **198**, 1883-
581 1891, doi:10.1128/jb.00198-16 (2016).

582 38 Grangeon, R., Zupan, J., Jeon, Y. & Zambryski, P. C. Loss of PopZ At activity
583 in *Agrobacterium tumefaciens* by Deletion or Depletion Leads to Multiple
584 Growth Poles, Minicells, and Growth Defects. *mBio* **8**,
585 doi:10.1128/mBio.01881-17 (2017).

586 39 Radhakrishnan, S. K., Thanbichler, M. & Viollier, P. H. The dynamic interplay
587 between a cell fate determinant and a lysozyme homolog drives the

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

asymmetric division cycle of *Caulobacter crescentus*. *Genes & development* **22**, 212-225, doi:10.1101/gad.1601808 (2008).

40 Viollier, P. H., Sternheim, N. & Shapiro, L. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. *The EMBO journal* **21**, 4420-4428, doi:10.1093/emboj/cdf454 (2002).

41 Al-Husini, N., Tomares, D. T., Childers, W. S. & Schrader, J. α -proteobacterial RNA degradosomes assemble liquid-liquid phase separated RNP bodies. *Molecular cell* (2018).

42 Al-Husini, N. *et al.* BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates. *Molecular cell*, doi:10.1016/j.molcel.2020.04.001 (2020).

43 Monterroso, B. *et al.* Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. *EMBO reports* **20**, doi:10.15252/embr.201845946 (2019).

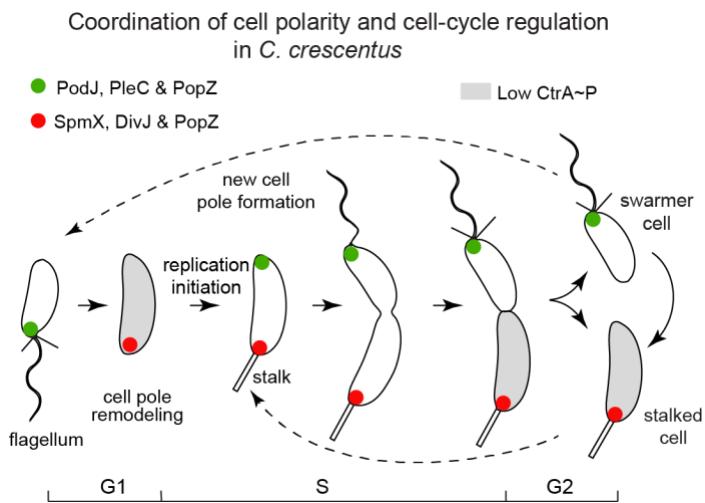
44 Heinkel, F. *et al.* Phase separation and clustering of an ABC transporter in *Mycobacterium tuberculosis*. *Proceedings of the National Academy of Sciences of the United States of America* **116**, 16326-16331, doi:10.1073/pnas.1820683116 (2019).

45 Lasker, K. *et al.* Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in *Caulobacter crescentus*. *Nature microbiology*, doi:10.1038/s41564-019-0647-7 (2020).

46 Tropini, C. & Huang, K. C. Interplay between the localization and kinetics of phosphorylation in flagellar pole development of the bacterium *Caulobacter crescentus*. *PLoS computational biology* **8**, e1002602, doi:10.1371/journal.pcbi.1002602 (2012).

47 Ely, B. Genetics of *Caulobacter crescentus*. *Methods in enzymology* **204**, 372-384 (1991).

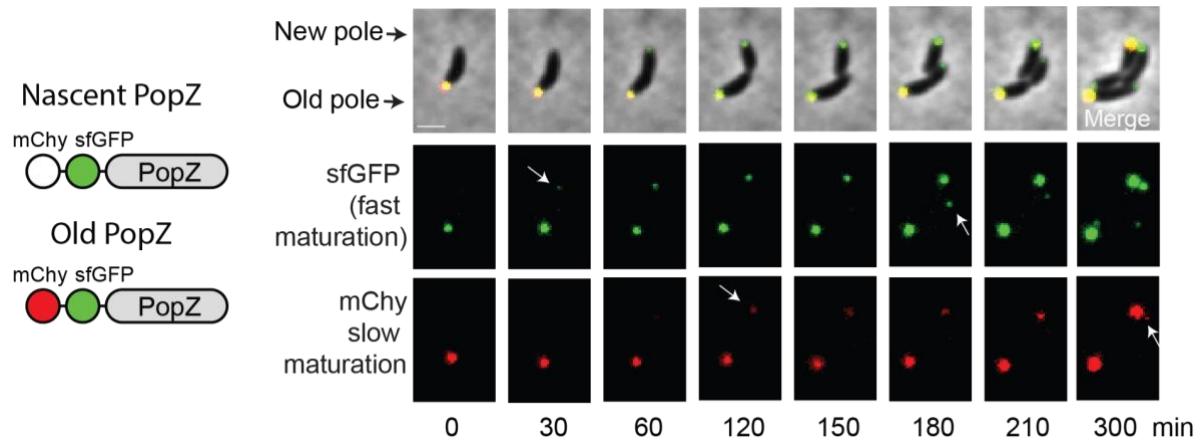
48 Evinger, M. & Agabian, N. Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. *Journal of bacteriology* **132**, 294-301 (1977).


49 Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. *Nature microbiology* **1**, 16077, doi:10.1038/nmicrobiol.2016.77 (2016).

50 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nature methods* **9**, 676-682, doi:10.1038/nmeth.2019 (2012).

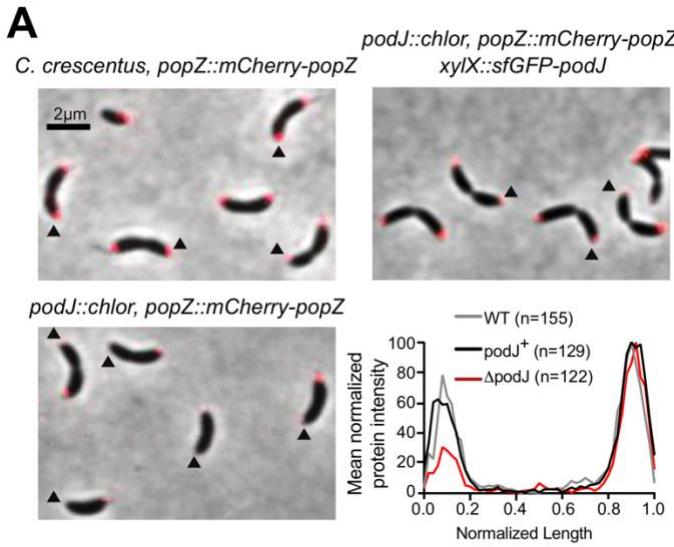
51 Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. *Bioinformatics* **25**, 1463-1465, doi:10.1093/bioinformatics/btp184 (2009).

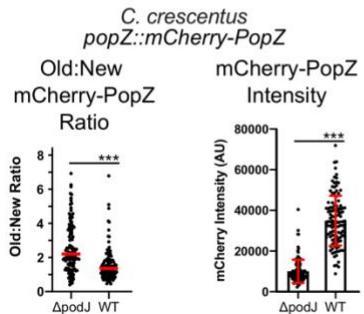
629 **Figure Legends**


630

631 **Figure 1: The PopZ and PodJ scaffold proteins are involved in the asymmetric**
632 **accumulation of signaling proteins at the new cell pole. Swarmer cells of *Caulobacter***
633 ***crescentus* differentiate into stalked cells, which is associated with cell pole remodeling of a**
634 **PodJ-rich signaling hub (green) into a SpmX-rich signaling hub (red). At the new pole of the**
635 **stalked cells, a PodJ-rich signaling hub with scaffolding protein PopZ accumulates gradually**
636 **upon initiation of replication. Cell division results in daughter cells that involved unequal**
637 **inheritance of a PodJ-rich signaling hub in swarmer cell and a SpmX-rich signaling hub in**
638 **stalked cell.**

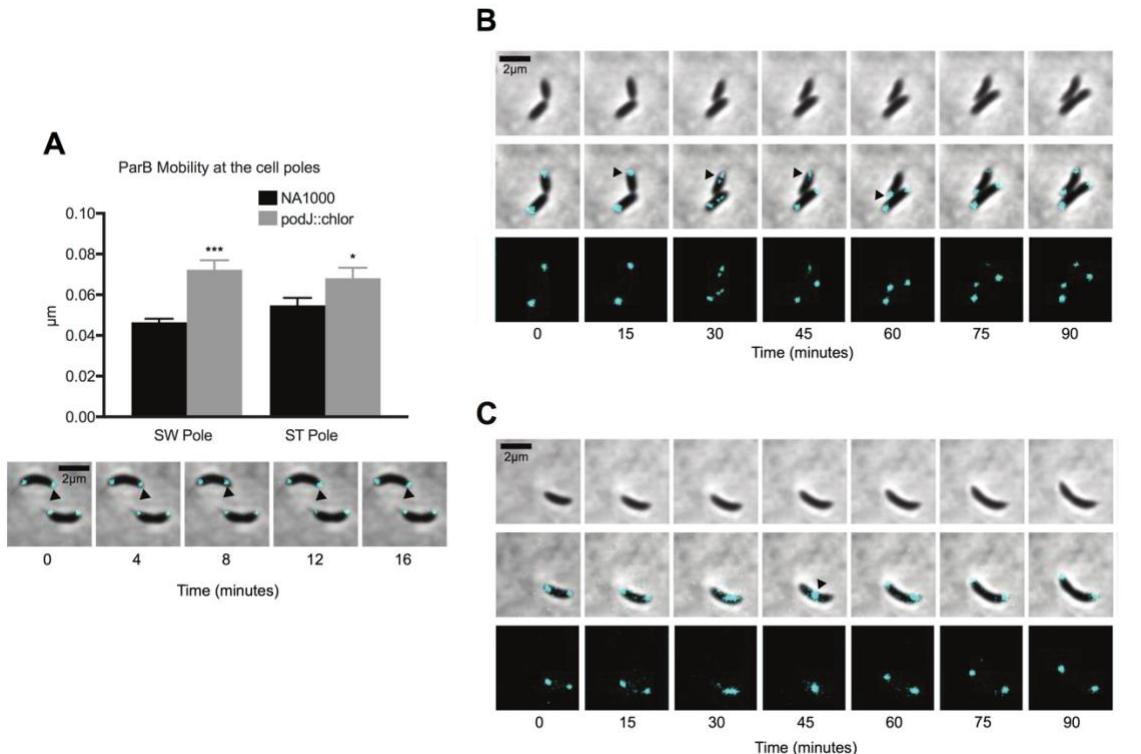
639


640


641 **Figure 2: Newly translated PopZ localizes to the new cell pole in developing cells.**

642 mCherry-sfGFP-PopZ is expressed under the xylose promoter in NA1000 cells. mCherry (t_{50}
643 maturation time of 45 min at 32°C) and sfGFP (t_{50} maturation time of 19 minutes at 32°C)
644 chromophores mature at different times so newly synthesized PopZ will appear green and older
645 synthesized PopZ appears as yellow. At time 0 min, the old pole shows both green and red
646 indicating it is older yellow PopZ. At times 30-60 min a green PopZ focus appears at the
647 opposite pole. At time 120 min the new foci contain both green and red fluorescence, indicating
648 the subsequent maturation of the mCherry chromophore. Subsequently, in the second round of
649 cell division, a green PopZ focus appears at the new cell pole of the divided cell at time 180
650 min as the newly translated PopZ appears at the new cell pole.

651



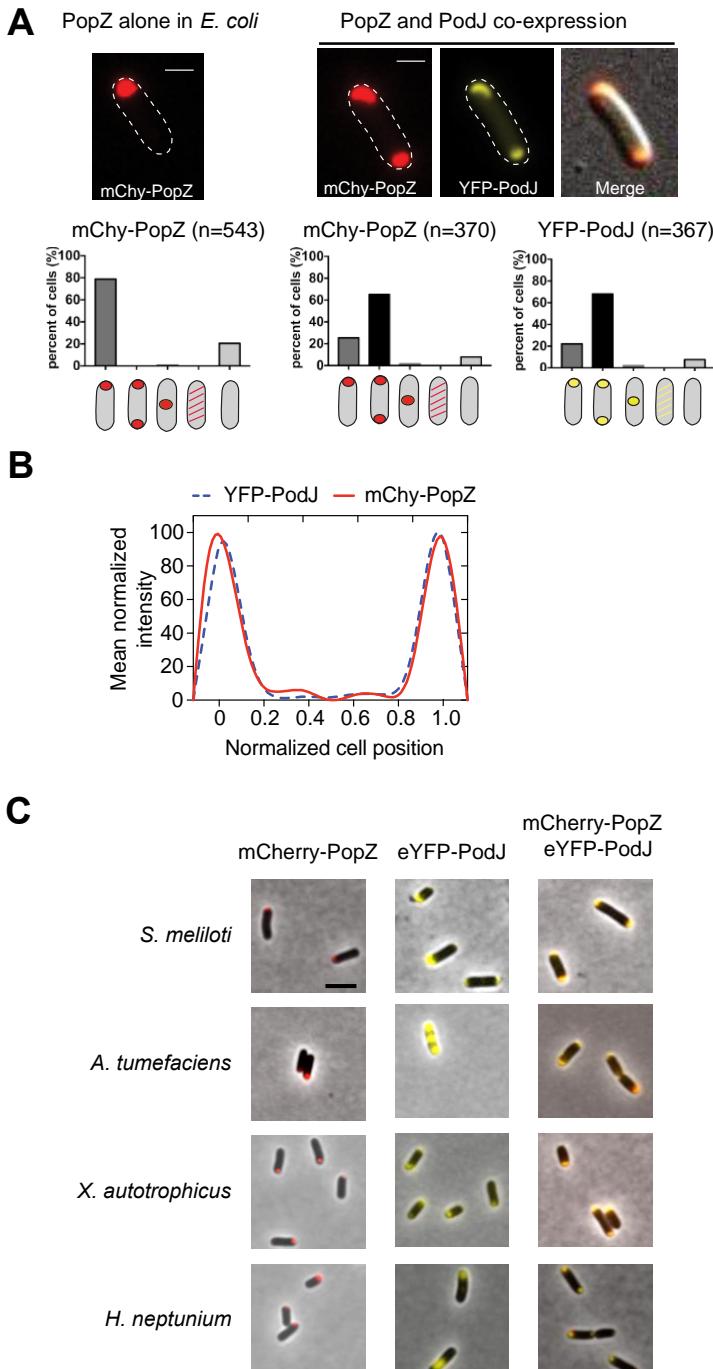
B

652

653 **Figure 3: PodJ regulates PopZ assembly at the new cell pole.** Analysis of the impact of
654 the $\Delta podJ$ upon mCherry-PopZ's localization pattern in *C. crescentus*. The expression of the
655 sole copy *popZ* was induced from PopZ's native promoter in the chromosome. (A) mCherry-
656 PopZ localization in predivisional cells in the wild-type (bipolar) versus the *podJ* deletion *C.*
657 *crescentus* (monopolar). The quantitative analysis reveals a substantial reduction of PopZ
658 abundance at the new cell pole of $\Delta podJ$ predivisional cells. Bars, 2 μ m. (B) Comparison of
659 the percentage of cells displaying bipolar PopZ in wild-type and $\Delta podJ$. Analysis of
660 Old/New cell pole ratio and total cell intensity of mCherry-PopZ in different PodJ
661 backgrounds. *** indicates $p < 0.0001$. Red line indicates mean. Red bars indicated mean \pm
662 standard deviation. Statistical analysis done using student's t-test.

663

664 **Figure 4: *C. crescentus* strains lacking PodJ exhibit chromosome segregation defects (A)**


665 Analysis of ParB foci mobility at the cell poles in wild-type versus $\Delta podJ$ strains. Cells shown

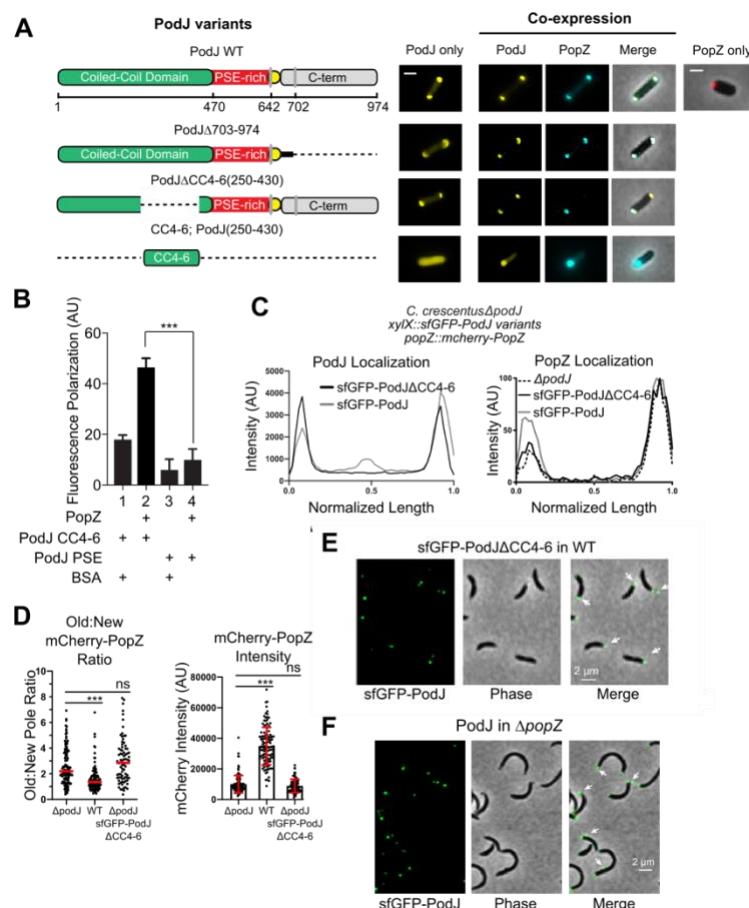
666 are $\Delta podJ$ background. *** indicates $p < 0.0001$ and * indicates $p < 0.05$. Student's t-test used

667 for statistical significance. (B and C) Observed chromosome translocation defects in the $\Delta podJ$

668 strain.

669

670


671

672 **Figure 5: PodJ bipolarizes PopZ when expressed in *E. coli*, via an interaction conserved**
673 **across alphaproteobacteria. (A)** Heterologous expression of YFP-PodJ and mCherry-PopZ
674 in *E. coli*. Co-expression with PodJ causes bipolar PopZ accumulation in *E. coli*. (B) Mean

675 protein intensity of YFP-PodJ and mCherry-PopZ versus cell length (n = 370). The signal
676 intensity was normalized with the highest value as 100% in each strain. **(C)** Co-expression of
677 PopZ-PodJ scaffold pairs from *Sinhorhizobium meliloti*, *Agrobacterium tumefaciens*,
678 *Xanthobacter autotrophicus*, and *Hyphomonas neptunium*. All PopZ homologs accumulate
679 specifically at one cell pole when expressed alone. Co-expression of PopZ together with PodJ
680 results in co-localized PopZ-PodJ bipolar localization.

681

682

683 **Figure 6: PopZ binds directly to the coiled-coil 4-6 region of PodJ. (A)** Co-expression of
 684 PodJ variants together with PopZ in *E. coli* reveals that the coiled-coil 4-6 region in PodJ is
 685 necessary for the interaction with PopZ (please refer to Figure S4 for more details). (B)
 686 Fluorescence polarization binding assay of the BODIPY dye-labeled PodJ_PSE or
 687 PodJΔCC4-6 mixed with 10 μM PopZ, using BSA as a negative control. PopZ binds
 688 specifically to the CC4-6 domain of PodJ. However, PopZ does not bind to its PSE-rich
 689 domain. (C) Fluorescent plots normalized by cell length where 0.0 is the new cell pole, 1.0 is
 690 the old cell pole with the expression of sfGFP-PodJ variants from the xylose promoter in *C.*
 691 *crescentus*. These Δ*podJ* cells are also expressing mCherry-PopZ from the *popZ* promoter.
 692 (D) Analysis of Old/New cell pole ratio and total cell intensity of mCherry-PopZ in different

693 PodJ backgrounds. *** indicates $p < 0.0001$. Red line indicates mean. Red bars indicated
694 mean \pm standard deviation. Statistical analysis done using student's t-test. (E) Loss of PodJ-
695 PopZ interaction results in stalk-pole specific foci that contain PodJ Δ CC4-6 protein. (F)
696 sfGFP-PodJ in Δ popZ cells. Arrows indicate sfGFP-PodJ found outside of the cell or in non-
697 polar regions of the cell.