

# Intronic enhancers regulate the expression of genes involved in tissue-specific functions and homeostasis

Beatrice Borsari<sup>\*1</sup>, Pablo Villegas-Mirón<sup>\*2</sup>, Hafid Laayouni<sup>2</sup>, Alba Segarra-Casas<sup>2</sup>, Jaume Bertranpetti<sup>2</sup>, Roderic Guigó<sup>1,3</sup> and Sandra Acosta<sup>†2</sup>

<sup>1</sup>Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain

<sup>2</sup>Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain

<sup>3</sup>Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain

## **Running title:**

Intronic enhancers lead tissue-specific regulation.

## **Keywords:**

enhancers, introns, gene regulation, tissue function, tissue patterning

---

\*Beatrice Borsari and Pablo Villegas-Mirón contributed equally to this work.

†Correspondence should be addressed to E-mail: [sandra.acosta@upf.edu](mailto:sandra.acosta@upf.edu) (Sandra Acosta)

## Abstract

Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We found that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, while housekeeping genes are more often controlled by intergenic enhancers. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, while the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.

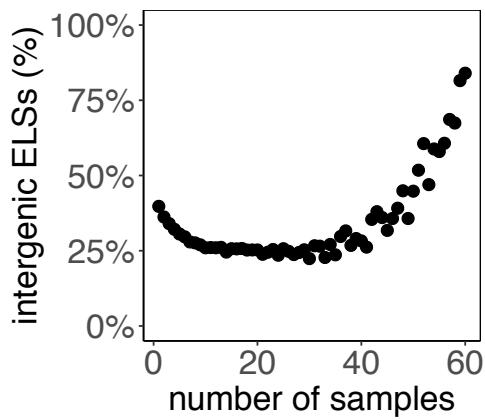
## 1 **Introduction**

2 Multiple layers of molecular and cellular events tightly control the level, time and spatial distribution of expres-  
3 sion of a particular gene. This wide range of mechanisms, known as gene regulation, defines tissue-specific  
4 gene expression signatures (Melé et al., 2015), which account for all the processes controlling the tissue func-  
5 tion and maintenance, namely tissue homeostasis. Both the level and spatio-temporal pattern of expression  
6 of a gene are determined by a combination of regulatory elements (REs) controlling its transcriptional activa-  
7 tion. Most genes contributing to tissue-specific expression signatures are actively transcribed in more than  
8 one tissue, but at different levels and with distinct patterns of expression in time and space, suggesting that  
9 the regulation of these genes is different across tissues. Nevertheless, approximately 10-20% of all genes  
10 are ubiquitously expressed (*housekeeping genes*), and they are involved in basic cell maintenance functions  
11 (Pervouchine et al., 2015; Zabidi et al., 2015; Eisenberg and Levanon, 2013).

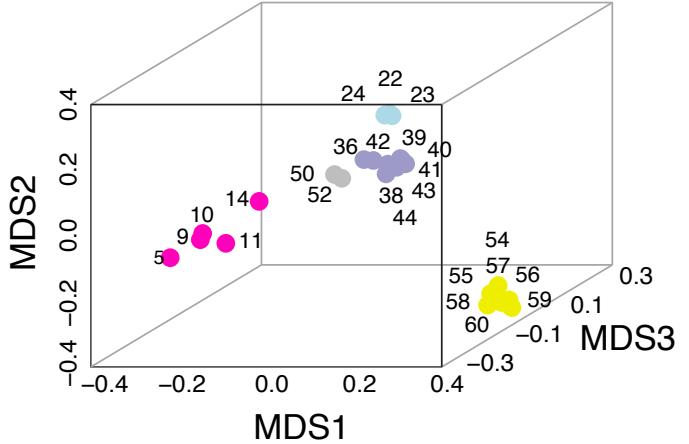
12 *cis*-REs (CREs) are distributed across the whole genome, and changes in chromatin facilitate the tran-  
13 scriptional control over their target genes (Chen et al., 2019; Hawkins et al., 2010; Choukallah et al., 2015).  
14 The activation of CREs depends on several epigenetic features, including combinations of different transcrip-  
15 tion factors' binding sites, and it is positively correlated with the H3K27ac histone modification signal (Heinz  
16 et al., 2015; Heintzman et al., 2007). Epigenetic features in specific tissues may change throughout the life-  
17 span of individuals. During development, embryos undergo dramatic morphological and functional changes.  
18 These changes shape cell fate and identity as a result of tightly regulated transcriptional programs, which  
19 in turn are intimately associated with CREs' activity and chromatin dynamics (Shlyueva et al., 2014; Bonev  
20 et al., 2017; Rand and Cedar, 2003; Gilbert et al., 2003).

21 Notably, key CREs known to regulate gene expression have been reported to locate in introns of their  
22 target genes (Ott et al., 2009; Kawase et al., 2011). However, it is unknown whether this is either a sporadic  
23 feature associated with certain types of genes - for instance long genes, such as HBB ( $\beta$ -globin) (Gillies  
24 et al., 1983) or CFTR (Ott et al., 2009) -, a common regulatory mechanism to most genes (Khandekar et al.,  
25 2007; Levine, 2010), or a pattern of biological significance. To delve into this question, we analyzed the  
26 genomic location of CREs across a panel of 87 adult and embryonic human cell types available from the  
27 Encyclopedia of DNA Elements (ENCODE) Project (Abascal et al., 2020). We found that highly shared CREs  
28 are mostly intergenic, while tissue-specific CREs tend to accumulate in introns. The prevalence of intronic  
29 CREs correlates with the level of specialization of the tissues, with the more differentiated ones presenting  
30 enrichment of intronic CREs. Moreover, intronic CREs target genes involved in tissue-specific functions and  
31 homeostasis, suggesting their implication in the functional specificity of tissues.

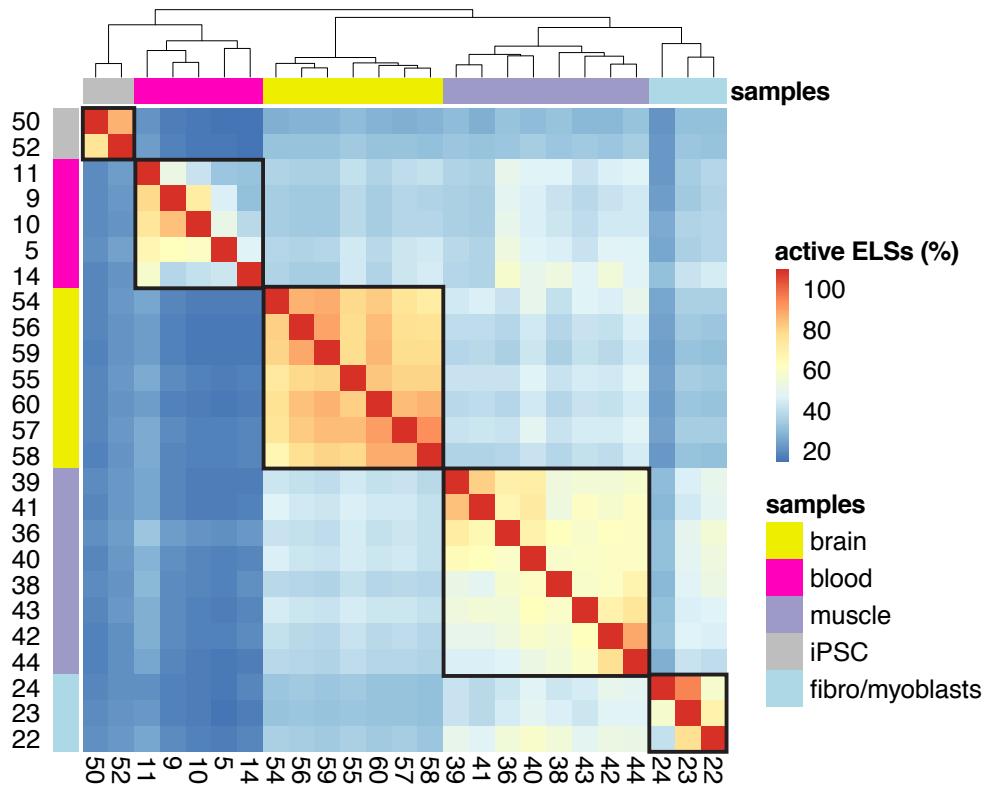
## 32 **Results**


### 33 **Enhancer-like regulatory elements define tissue-specific signatures**

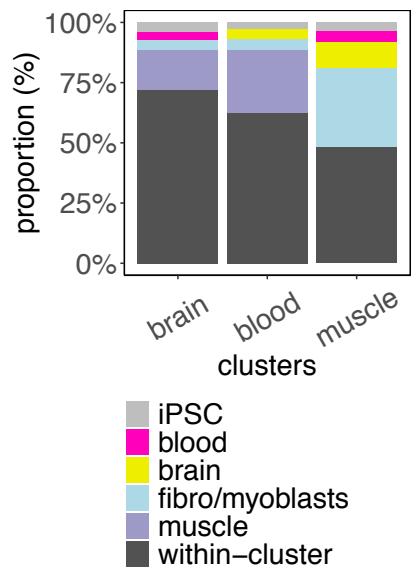
34 We leveraged the cell type-agnostic registry of candidate *cis*-Regulatory Elements (cCREs) generated for  
35 the human genome (hg19) by the ENCODE Project. We focused on the set of 991,173 cCREs classified


36 as Enhancer-Like Signatures (ELSs), defined as DNAse hypersensitive sites supported by the H3K27ac epi-  
37 genetic signal, and assessed their presence-absence patterns across 60 adult cell type-specific catalogues  
38 (Table S1; see Methods). We first explored the data with multidimensional scaling (MDS), which uncovered  
39 tissue-specific presence-absence patterns (Fig. S1A). Indeed, the separation of samples driven by ELSs'  
40 activity was comparable to the one obtained from the analysis of Genotype-Tissue Expression (GTEx) data  
41 (Melé et al., 2015), with blood and brain as the most diverging samples. This suggests a correlation between  
42 gene regulation mechanisms orchestrated by ELSs and tissue-specific gene expression patterns, which has  
43 been previously described (Pennacchio et al., 2007; Ernst et al., 2011).

44 Interestingly, we observed that the proportion of active ELSs located in intergenic regions was positively  
45 correlated with the number of samples in which ELSs were active (Spearman's  $\rho = 0.55$ ;  $p$  value = 6.2e-06;  
46 Fig. 1A), suggesting a functional role for the genomic location of ELSs. Thus, to untangle the relationship  
47 between genomic location and cell-type specificity of ELSs, we selected a subset of 25 samples that clustered  
48 into 5 main groups - iPSCs, fibro/myoblasts, muscle, blood and brain samples (Fig. 1B-C; Table S1, *Samples'*  
49 *Cluster*) - according to their MDS proximity and consistently with their tissue of origin and function. This  
50 curated subset of samples allowed us to study enhancer activity in a tissue-specific manner, and compare  
51 it with regulatory mechanisms shared among tissues. Tissues represented by only one sample were not  
52 included in the subsequent analysis. Indeed, the fact that the *ad hoc* tissues' functional clustering is supported  
53 by tissue-specific enhancer signatures suggests a direct link between ELSs' activity and the regulation of  
54 tissue-specific functions. We defined *tissue-active* ELSs as those active in  $\geq 80\%$  of the samples within  
55 a given cluster (Table S2, **Tissue-active ELSs**; see Methods). As expected, in some cases we observed  
56 shared regulatory activity between tissues, in other words a fraction of ELSs active in a given cluster were  
57 also active in samples belonging to other clusters. For instance, approximately 1,700 blood-active ELSs were  
58 also active in all the seven brain samples (Fig. S1B). Because of this overlap, we defined sets of *tissue-*  
59 *specific* ELSs (Table S2, see Methods) as those active in  $\geq 80\%$  of the samples within the tissue cluster  
60 and in at most one sample outside the cluster. Due to their small size, for iPSC and fibro/myoblast clusters  
61 we considered as tissue-specific those ELSs active exclusively within their clusters (see Methods). The  
62 overlap of tissue-specific ELSs with samples from other clusters is depicted in Fig. 1D. The majority of brain-  
63 and blood-specific ELSs were active only within their tissue cluster (71.9% and 62.3%, respectively), while  
64 a considerable fraction (52.0%) of muscle-specific ELSs was shared with one sample from other clusters,  
65 mostly with fibro/myoblast samples (33.1%). This is consistent with the samples' MDS proximity observed in  
66 Fig. 1B, suggesting a functional relevance of the genes regulated by shared ELSs. In addition, we identified  
67 a set of 208 ELSs active in all the 25 samples (Table S2, **Common ELSs**).


**A**




**B**



**C**



**D**

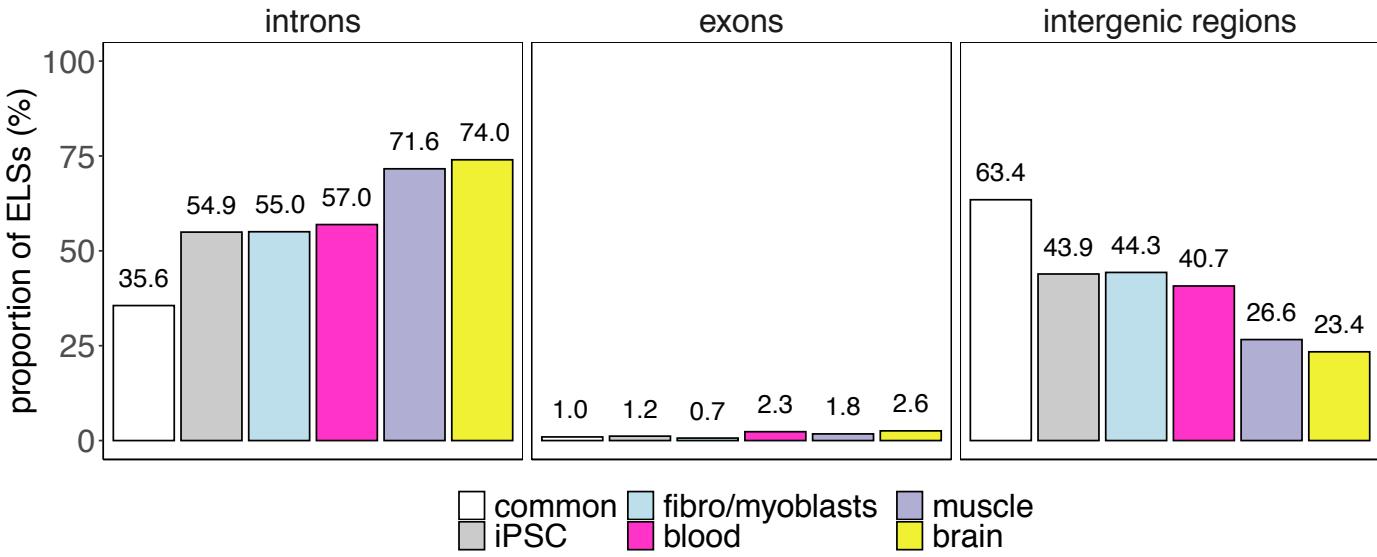


**Figure 1.** **A:** Highly-shared ELSs are more frequently located in intergenic regions. The scatter plot represents the proportion of intergenic ELSs active in increasing numbers of human adult samples (Spearman's  $\rho = 0.55$ ;  $p$  value = 6.2e-06). **B:** MDS distribution of human adult samples defined by ELSs' activity. Analogous representation to Figure S1A for the subset of 25 selected adult human samples. **C:** Samples' clustering defined by ELSs' presence-absence patterns (clustering method: *complete*; clustering distance: *euclidean*). The heatmap represents the percentage of ELSs active in row  $i$  that are also active in column  $j$ . For this analysis we considered 268,214 of the 991,173 ELSs that were active in at least 2 of the 25 selected human adult samples. The correspondence between samples and numbers is reported in Table S1. **D:** Tissue-specific ELSs. The barplot represents the type of samples found within sets of brain-, blood- and muscle-specific ELSs. As described in Methods (section *Tissue-active, tissue-specific and common ELSs*), most of tissue-specific ELSs are only active in the samples of the corresponding cluster ("within-cluster", black), but a few of them may be active in at most one outer sample (i.e. a sample that does not belong to the tissue cluster, coloured). iPSC- and fibro/myoblasts-specific ELSs are not represented, since we did not allow outer samples given their small cluster sizes (2 and 3, respectively; see Methods).

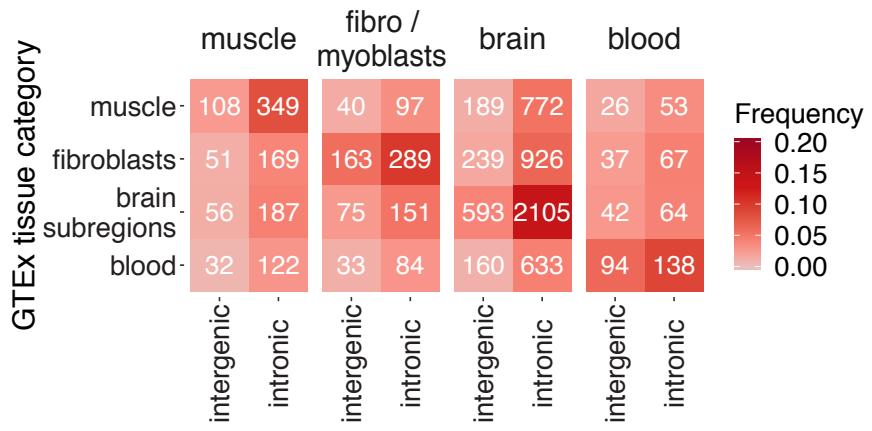
## 68 The genomic location of regulatory elements correlates with their tissue-homeostatic func- 69 tions

70 We next explored the genomic location of the sets of common and tissue-specific ELSs. While common  
71 ELSs were preferentially located in intergenic regions (63.4%, Fig. 2A), the majority of muscle- and brain-  
72 specific ELSs fell inside introns (71.6% and 74.0%, respectively; Fig. 2A). These significant differences in  
73 genomic distribution between tissue-specific and common regulatory elements (Table S3) are consistent with  
74 our initial observation of a high sharing rate of intergenic ELSs across samples (Fig. 1A). In contrast, the iPSC,  
75 fibro/myoblasts and blood clusters - which comprise undifferentiated, non-specialized or more heterogeneous  
76 cell types, respectively - showed a more even distribution of tissue-specific ELSs between intergenic and  
77 intronic regions (Fig. 2A). Overall, we observed a scarcity of exonic ELSs (Fig. 2A, Table S4).

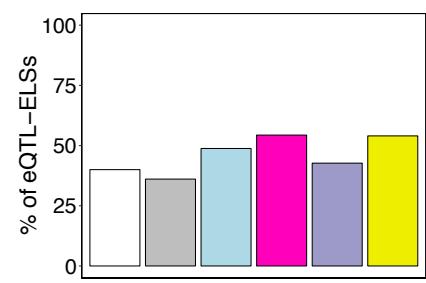
78 Genes harboring tissue-specific ELSs may present distinctive features, including differences in intron  
79 length and density. To rule out any bias in our analyses, we compared these features between genes hosting  
80 common and tissue-specific ELSs. While the number of introns per hosting gene was comparable across  
81 groups (Kruskal-Wallis  $p$  value test = 0.98; Fig. S2A), we reported significant differences in the median  
82 intron length per gene (Kruskal-Wallis  $p$  value test  $< 2.2\text{e-}16$ ; Fig. S2A). Moreover, we observed significant  
83 differences in the intronic ELSs' density (Kruskal-Wallis  $p$  value test  $< 2.2\text{e-}16$ ), with higher values for brain  
84 and muscle, suggesting that the enrichment of tissue-specific ELSs in intronic regions is not biased by the  
85 intron length (Fig. S2A).


86 We subsequently explored whether the genes harboring tissue-specific intronic ELSs perform functions  
87 associated with tissue homeostasis maintenance and response to stimuli. We performed a Gene Ontology  
88 (GO) enrichment analysis on the genes containing tissue-specific intronic ELSs. Indeed, the enrichment of  
89 terms associated with tissue-specific cellular components is consistent with the ELSs' identity (Table S5). For  
90 instance, genes hosting brain-specific ELSs perform functions associated with synapses and axons, while in  
91 the case of muscle and blood we found significant terms related to sarcolemma, Z-disc and contractile fibers,  
92 and immunological synapses and cell membranes, respectively. Conversely, genes harboring common ELSs  
93 reported terms related to non-specific cell membrane composition (Table S5). Although this suggests an impli-  
94 cation of intronic ELSs in tissue-specific functions, likely through tissue-specific gene regulation mechanisms,  
95 there is no proven association of intronic ELSs being direct regulators of their host genes.

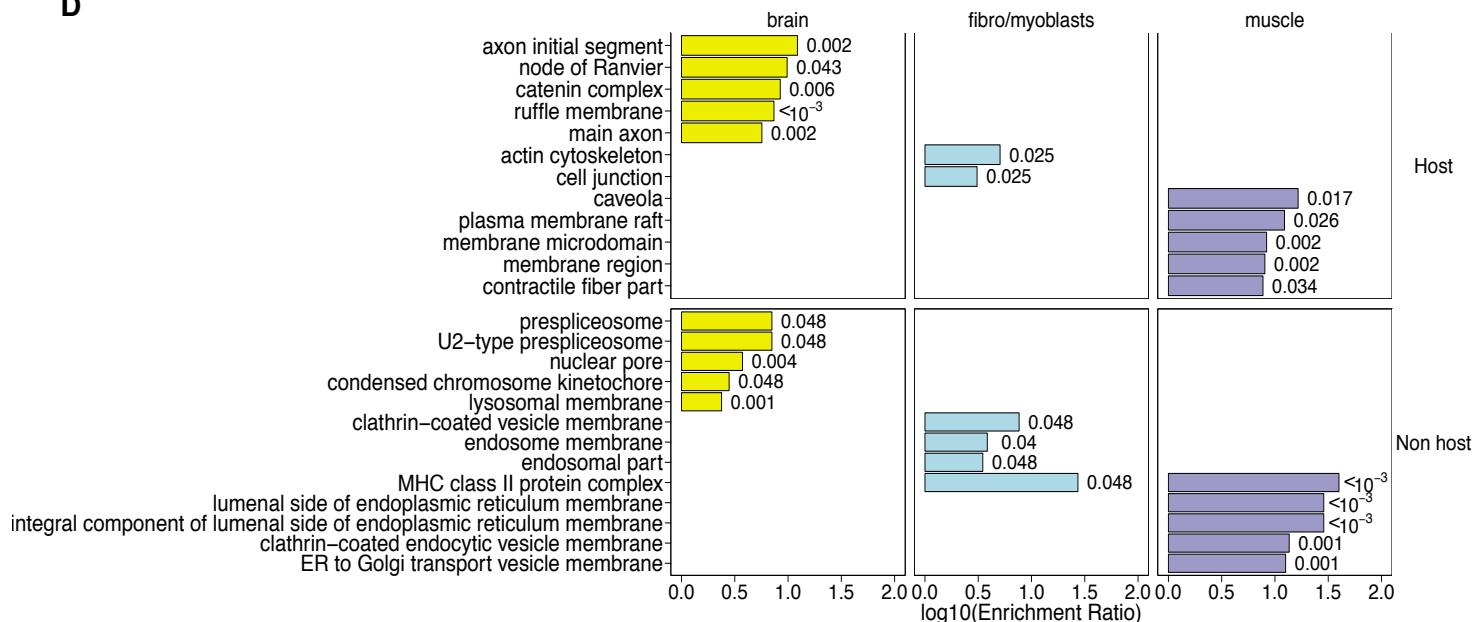
96 To address this issue, we integrated our ELS analysis with the catalogue of expression Quantitative Trait  
97 Loci (eQTLs) provided by the Genotype-Tissue Expression (GTEx) Project (Aguet et al., 2017). Among the  
98 35,275 common and tissue-specific ELSs, 5,941 overlap with a significantly associated eQTL-eGene pair,  
99 hereafter referred to as eQTL-ELSs. The proportion of eQTL-ELSs was similar among groups, with the  
100 exception of iPSC, which are not represented in the GTEx sampling collection (Fig. S2B). This allowed  
101 us to leverage the eQTL-ELSs pairs to explore the biological function of the genomic distribution of ELSs,  
102 focusing on eQTLs regulating gene expression in the four GTEx categories matching our samples' clusters  
103 (fibroblasts, blood, muscle and brain subregions; see Methods). In line with the above-mentioned results,  
104 highly specialized tissues such as brain and muscle showed the highest proportion of intronic vs intergenic


105   ELSs hosting eQTLs detected in the corresponding tissue: brain (2,105 (78%) vs 593 (22%)), muscle (349  
106   (76%) vs 108 (24%)), fibro/myoblasts (289 (63%) vs 163 (37%)), blood (138 (59%) vs 94 (41%)) (Figure  
107   2B). Conversely, common eQTL-ELSs were more frequently located in intergenic elements (5 (25%) vs 15  
108   (75%)) (data not shown). Overall, these results indicate a potential functional role of the genomic distribution  
109   of ELSs in the regulation of tissue-specific gene expression. Still, although there is a clear trend of eQTL-  
110   ELSs' specificity per tissue, many of these eQTLs are not exclusive to a single tissue. For this reason, we  
111   validated our observations with a GO enrichment analysis on the sets of genes associated with intronic and  
112   intergenic eQTL-ELSs. GO analysis on muscle- and brain-specific eQTL-ELSs showed a clear prevalence of  
113   tissue-specific homeostatic functions for those genes targeted by intronic eQTL-ELSs (for instance, muscle:  
114   carbohydrate and amino acid metabolism; brain: cell projection and organization). On the contrary, in the  
115   case of blood we found significantly enriched GO terms only for genes targeted by intergenic eQTL-ELSs  
116   (Table S6). This might be due to the fact that blood comprises different cell types and can be considered  
117   a more heterogeneous tissue. Overall, these results suggest that intronic eQTL-ELSs are involved in the  
118   regulation of genes controlling tissue-specific functions and tissue homeostasis.

119   Next, we wanted to understand the relationship between the intronic ELSs and their harboring genes.  
120   Of note, the proportion of intronic eQTL-ELSs targeting their host genes was comparable among groups of  
121   samples, but always below the 54.3% (Fig. 2C). Most interestingly, eQTL-ELSs regulating the expression of  
122   the host gene are associated with tissue-specific functions, with genes involved in axonal components for the  
123   brain (e.g. NRCAM), actin cytoskeleton for fibroblasts (e.g. FMN1) or contractility-related terms for muscle  
124   (e.g. SYNM). However, those targeting the expression of non-hosting genes are involved in homeostatic  
125   functions not directly associated with the tissue function. For instance, the brain presents significant terms  
126   related to the splicing proteins (e.g. SF3A1, SF3B1), a widely extended process in the brain and responsible  
127   of the fine tuning of several brain functions (Vuong et al., 2016) (Fig. 2D). Overall, this suggests that other  
128   mechanistic strategies may account for the intronic preference of regulatory elements in highly specialized  
129   tissues.


**A**




**B**



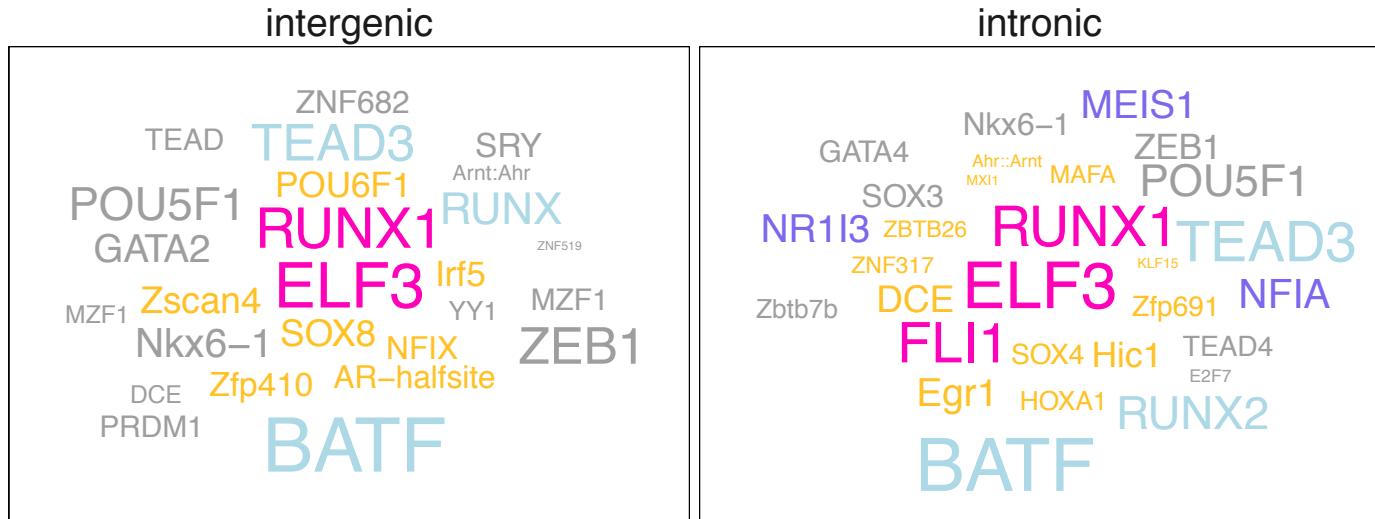
**C**



**D**

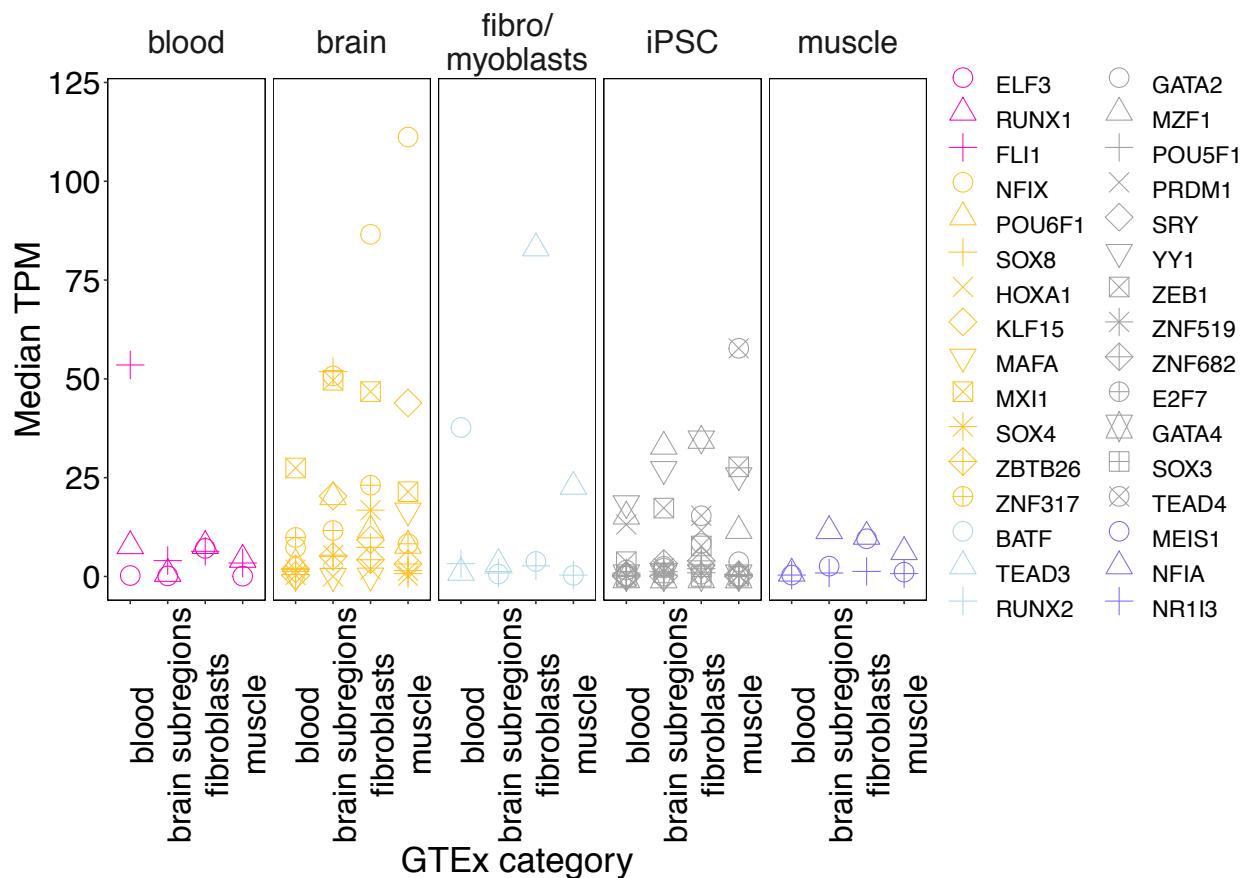


**Figure 2.** **A:** Proportions of common and tissue-specific ELSs identified in the 25 selected human adult samples that overlap intronic, exonic and intergenic regions. **B:** Number of intergenic and intronic muscle-, fibro/myoblasts-, brain- and blood-specific ELSs harboring eQTLs detected in Muscle, Fibroblasts, Brain subregions and Blood GTEx samples. Coloured cells represent the proportion of eQTL-ELSSs over the total amount of tissue-specific ELSs within each group. **C:** Proportions of common and tissue-specific eQTL-ELSSs targeting their host genes. These proportions were computed over the total amount of intronic eQTL-ELSSs within each group. **D:** Top five enriched GO terms associated with the hosting and non-hosting eQTL-ELSSs regulated genes. *P* value (FDR corrected) is reported for each enriched term.


130 **The enrichment of transcription factor binding sites in tissue-specific ELSs is independent  
131 of their genomic location**

132 The activation of ELSs is a dynamic process depending, mainly, on its accessible chromatin to be bound  
133 by transcription factors (TFs). Thus, tissue-specific gene expression programs may be controlled by the  
134 underlying signature of TFs-ELSs pairing (Schmitt et al., 2016). We next wondered whether the specific  
135 distribution of ELSs, i.e. intronic *vs* intergenic, was associated with a different transcription factor binding  
136 site (TFBS) signature that could account for their tissue specificity. For this purpose we explored, using the  
137 software HOMER (Heinz et al., 2010), TFBSs differences between intronic and intergenic ELSs that were  
138 either common or specific to a given tissue. We observed a high sharing rate of TFBSs between intronic  
139 and intergenic ELSs, suggesting that there is a strong prevalence of certain transcriptional programs in each  
140 tissue independently of the genomic location of ELSs. Notably, there are no enriched TFBSs in common  
141 ELSs, either intronic or intergenic (Fig. 3A and Table S7). Amongst the TFBSs enriched in the tissue-specific  
142 intronic and intergenic ELSs, there are some that are well known to control tissue-specific homeostatic events,  
143 such as FLI1 and RUNX in blood controlling adult endothelial hemogenesis (Lis et al., 2017), and POU6F1  
144 (Brn5), SOX4 and SOX8 in brain controlling the adult neural plasticity (McClard et al., 2018). POU5F1 (Oct4)  
145 is required for iPSC reprogramming, and MEIS1 in muscle is key for cardiomyogenesis (Dupays et al., 2015).  
146 Although a great number of the TFs identified in our analysis are known for shaping the functions of certain  
147 tissues, the vast majority of these TFs are ubiquitously or widely expressed in several tissues (Fig. 3B),  
148 suggesting that the tissue-specificity of gene regulation does not arise from the transcription factor's potential  
149 to bind an ELS, but most likely from the genomic localization of the ELSs.

150 **The genomic location of developmental ELSs is not associated with tissue specificity**


151 Tissue-specific homeostatic features vary dramatically among different adult tissues. For instance, blood  
152 comprises a number of cell types characterized by heterogeneous functions and high turnover. On the other  
153 hand, muscles are formed by fewer cell types, mainly dedicated to the same function and with limited cell  
154 division capacity. The maintenance of tissue homeostasis is ensured by quiescent adult stem cells with  
155 features similar to their developmental native lineage (Rué and Martinez Arias, 2015; Biteau et al., 2011).  
156 During development, tissues mature to fully reach their functional capacity in adulthood. Still, whether the  
157 regulatory features of a given tissue are reminiscent of their developmental lineage remains largely unknown.  
158 For this reason, we assessed the activity of the 991,173 cell type-agnostic ELSs across 27 embryonic samples  
159 (Table S8). The correlation between the percentage of intergenic ELSs and the number of samples in which  
160 ELSs are active was lower compared to adult samples (Spearman's  $\rho = 0.38$ ;  $p$  value = 0.054; Fig. 4A). MDS  
161 analysis highlighted three main groups of embryonic samples: stem cells (ESC), neural progenitors, and a  
162 heterogeneous group of more differentiated cell types (Fig. 4B; Table S8, Samples' Group). The three groups  
163 of samples were associated with 3,112, 784 and 1,166 specific ELSs, respectively (Table S9). Although the  
164 majority of these ELSs were active only within the corresponding cluster, we reported that 26.2% of the

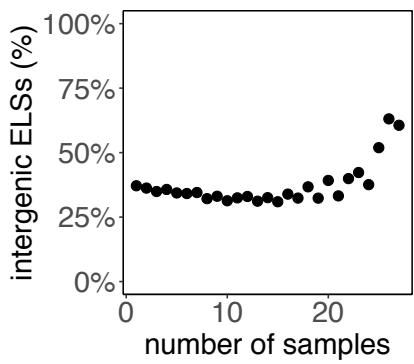
A



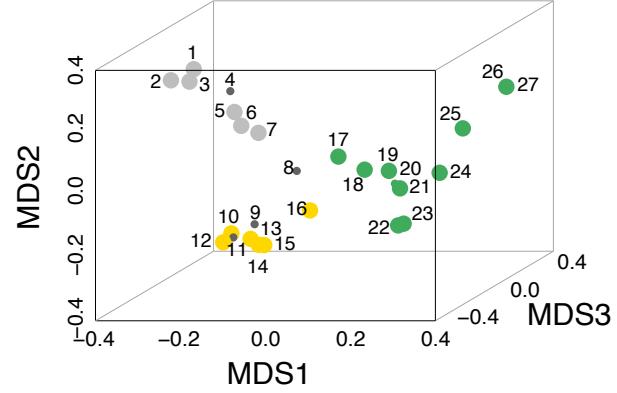
a blood a brain a fibro/myoblasts a iPSC a muscle

B

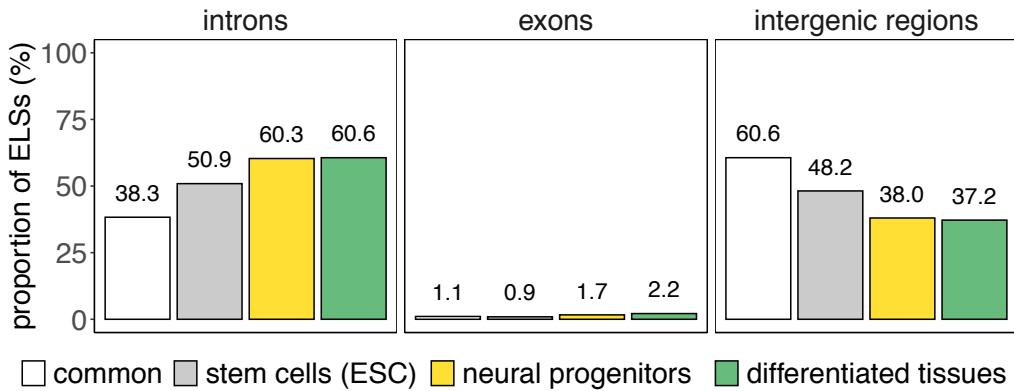



**Figure 3.** **A:** Word cloud reporting the TFBSs significantly enriched in intronic and intergenic tissue-specific ELSSs. No significant TFBSs were found in common ELSSs. The size of the word represents the significance of TFBSs enrichment. **B:** Median expression, in the four matching GTEx tissues categories, of the TFs associated with significantly enriched TFBSs in each cluster.

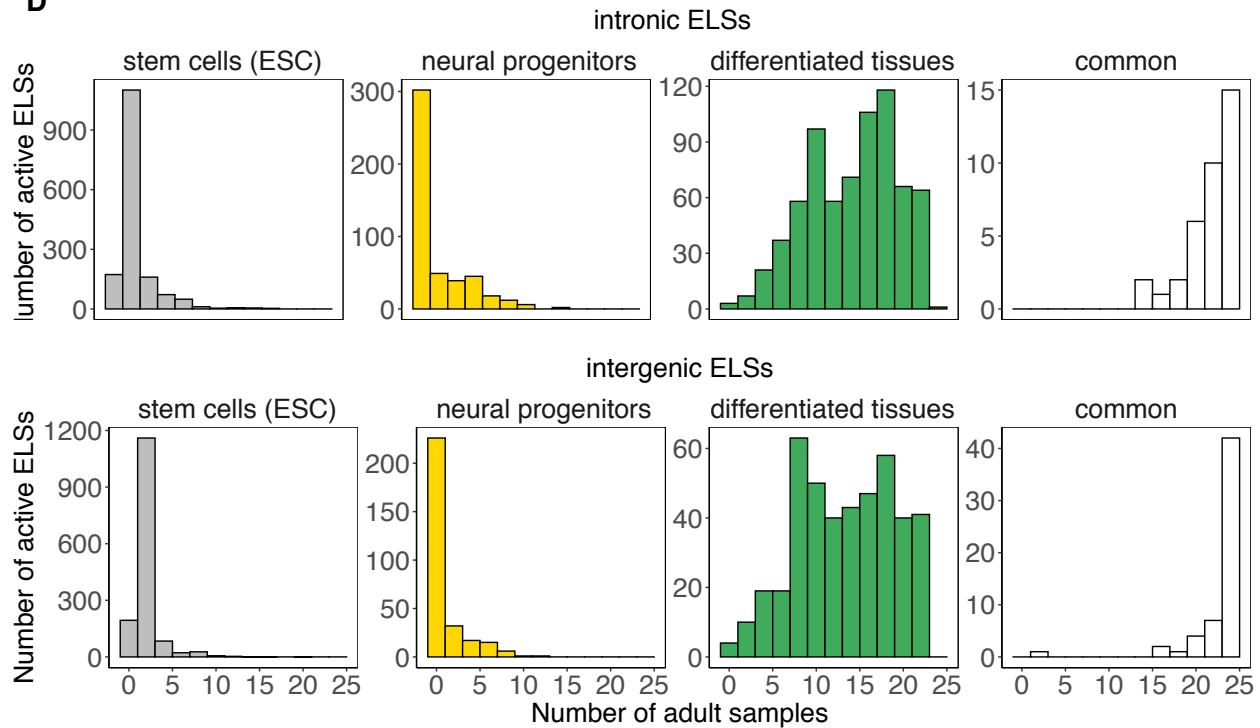
165 neural progenitors-specific ELSs were also active in one ESC sample (Fig. S3A). On the contrary, we  
166 identified only 94 ELSs common to all embryonic samples (Table S9). The proportion of specific intronic  
167 ELSs was higher for neural progenitors and differentiated tissues (60.3% and 60.6%, respectively; Fig. 4C)  
168 compared to ESC-specific (50.9%) and common (38.3%) ELSs, but lower with respect to clusters of adult  
169 muscle and brain samples (71.6% and 74.0%, respectively, Fig. 2A). As in the case of adult samples, we  
170 observed a scarcity of exonic ELSs (Fig. 4C, Table S11), while we could not find significant associations  
171 between the frequency of group-specific intronic ELSs and features of intron length and density (Figs. S3B).  
172 On the other hand, the density of ELSs per introns (Fig. S3B) was similar to the one observed in adult  
173 samples (Fig. S2A).


174 When studying the genes harboring developmental group-specific intronic ELSs, we observed that they  
175 are enriched in functions consistent with the corresponding adult tissue (Table S12). For instance, the ones  
176 hosting neural progenitors-specific ELSs are enriched in neural development-related terms, such as axono-  
177 genesis and dendritic spine organization. Notably, genes harboring developmental common ELSs are en-  
178 riched in protein complexes like nBAF and SWI/SNF, known developmental chromatin remodelers (Alver  
179 et al., 2017).

180 Lastly, in an attempt to define the amount of regulatory activity shared by embryonic and adult samples as  
181 an indicator of the reminiscent embryonic function in adult tissue homeostasis, we computed, for specific and  
182 common embryonic ELSs, the number of adult tissues in which they were found active. As expected, whereas  
183 ELSs specific to stem cells and neural progenitors were active in a limited set of adult samples, embryonic  
184 differentiated tissues reported a higher degree of shared regulatory activity with adult cell types. Moreover,  
185 ELSs active in all embryonic samples (common) were also active in the majority of adult samples (Fig. 4D).  
186 Overall, these results show that the genomic location of ELSs is dynamic throughout development, and shifts  
187 towards intronic localization during tissue maturation.


**A**




**B**



**C**



**D**



**Figure 4.** **A:** Scatter plot representing the percentage of intergenic ELSSs active in increasing numbers of human embryonic samples (Spearman's  $\rho = 0.38$ ;  $p$  value = 0.054). The degree of correlation between ELSSs' sharing and the percentage of intergenic ELSSs is lower compared to the one observed for adult samples. **B:** MDS representation of the dissimilarities between the 27 human embryonic samples according to the pattern of activity of ELS-cREs (analogous to Fig. 1B). The correspondence between samples and numbers is reported in Table S8. The MDS highlights 3 main groups of embryonic samples. **C:** Proportions of common and group-specific ELSSs identified in embryonic samples that overlap intronic, exonic and intergenic regions. **D:** Rate of sharing of intronic (upper panel) and intergenic (lower panel) ELSSs between embryonic and adult samples. The histogram represents the number of selected adult samples ( $n = 25$ ) in which embryonic ELSSs are active.

188 **Discussion**

189 In this study, we show the central role of intronic Enhancer-Like Signatures (ELSs) in the control of tissue-  
190 specific expression signatures. Tissue-specific homeostasis is a dynamic process encompassing the coor-  
191 dinated expression in time and space of a wealth of genes, mainly controlled by active ELSs. ENCODE  
192 data suggests that about half of these ELSs are intergenic, and 38% are intronic (ENCODE SCREEN Port-  
193 tal: <https://screen-v10.wenglab.org/>, section “About”). The enrichment in intronic ELSs in the most  
194 specialized tissues observed in our study, independently of the sequence - in terms of transcription factor  
195 binding sites - suggests an important role of the genomic location of ELSs. Since Heitz described in 1928  
196 (Heitz, 1928) euchromatin as chromosomal regions enriched in genes, and heterochromatin as inactive or  
197 passive chromatin regions, this dual definition has been shaped throughout the years but it still remains vastly  
198 correct (De Laat and Duboule, 2013; DeMare et al., 2013; Ernst and Kellis, 2010). Intergenic regions are  
199 often transcriptionally and regulatory silenced, and notably they are more frequent in adult than embryonic  
200 tissues (Heinz et al., 2015). A similar correlation is observed in our data, since embryonic ELSs are not  
201 so frequently found in intronic elements as in adults, suggesting that the maturation and tissue commitment  
202 correlated with the ELS distribution across the whole genome. One could hypothesize that the enriched pres-  
203 ence of intronic ELSs in specialized tissues is advantageous for the control of the gene expression signature  
204 of a particular tissue, for instance granting ELSs accessibility in open DNA regions (genes) and avoiding  
205 leaky activity of ELSs. Introns have been long observed as gene expression regulators throughout different  
206 mechanisms (Rose, 2019; Chorev and Carmel, 2012; Shaul, 2017). Introns regulatory potential has been  
207 longly associated with the regulation of the host gene’s expression in several different ways, often related  
208 to alternative splicing, intron retention (Jacob and Smith, 2017), non-sense mediated decay (Lewis et al.,  
209 2003), and even with the control of transcription initiation via recruitment of RNA Polymerase II (Bieberstein  
210 et al., 2012). However, here we found that about half of the eQTL-ELSs located in introns do not regulate the  
211 expression of the host gene. This is important regulatory information since it disentangles the presence of  
212 intronic ELSs from the regulation of the host gene, opening new opportunities to identify the regulatory mech-  
213 anisms controlling tissue-specific gene expression. Overall, our results suggest that the genomic distribution  
214 of tissue-specific active ELSs is not stochastic and mainly overlaps with intronic elements. The opposite hap-  
215 pens to active ELSs common to all tissues. These results suggest that introns play a role in the regulation of  
216 gene expression in a tissue-specific manner.

217 **Methods**

218 **The ENCODE registry of candidate *cis*-Regulatory Elements**

219 The cell type-agnostic registry of human candidate *cis*-Regulatory Elements (cCREs) available from the EN-  
220 CODE portal corresponds to a subset of 1,310,152 representative DNase hypersensitivity sites (rDHSs) in the  
221 human genome with epigenetic activity further supported by histone modification (H3K4me3 and H3K27ac)  
222 or CTCF-binding data (<https://screen-v10.wenglab.org/>; section “About”). It comprises 991,173  
223 Enhancer-Like Signatures (ELS), 254,880 Promoter-Like Signatures (PLS), and 64,099 CTCF-only Signa-  
224 tures. In addition, cell type-specific catalogues are provided for those cell types with available DNase and  
225 ChIP-seq ENCODE data.

226 **Selection of cCREs with enhancer-like signature (ELS) across human samples**

227 We downloaded the set of 1,310,152 cell type-agnostic cCREs for human assembly 19 (hg19) from the  
228 ENCODE SCREEN webpage (<https://screen-v10.wenglab.org/>; file ID: ENCFF788SJC). From the  
229 ENCODE portal ([https://www.encodeproject.org/matrix/?type=Annotation&encyclopedia\\_version=ENCODE+v4&annotation\\_type=candidate+Cis-Regulatory+Elements&assembly=hg19](https://www.encodeproject.org/matrix/?type=Annotation&encyclopedia_version=ENCODE+v4&annotation_type=candidate+Cis-Regulatory+Elements&assembly=hg19)),  
230 we retrieved cell type-specific registries of cCREs for 60 adult and 27 embryonic human samples with avail-  
231 able DNase data and ChIP-seq H3K4me3 and H3K27ac data. The ENCODE File Identifiers for the adult  
232 and embryonic datasets are reported in Table S1 and S8, respectively. We focused on the 991,173 cell type-  
233 agnostic cCREs with ELS activity, and generated a binary table in which we assessed, for a given cCRE,  
234 the presence/absence of ELS activity annotation (column 9 = “255, 205, 0”) in each of the 60 adult and 27  
235 embryonic samples. A binary distance matrix between all pairs of adult samples was used to perform mul-  
236 tidimensional scaling (MDS) in three dimensions. This resulted in the selection of 25 adult samples. The  
237 same procedure was applied, independently, to the embryonic samples. In this case, IMR-90, mesendoderm,  
238 mesodermal cell, endodermal cell and ectodermal cell samples were not included in subsequent analyses.

240 **Intersection of ELSs with genes, introns, exons and intergenic regions**

241 Genes, exons and introns’ coordinates were obtained from GENCODE v19 annotation ([https://www.gencodegenes.org/human/release\\_19.html](https://www.gencodegenes.org/human/release_19.html)). The overlap between ELSs and genes, exons and in-  
242 trons was computed using BEDTools intersectBed v2.27.1 (Quinlan and Hall, 2010). The proportions of  
243 ELSs overlapping intronic segments (Figs. 2A, 4C) also include a limited set of ELSs overlapping both in-  
244 tronic and exonic regions (common adult ELSs: 2.4%; iPSC-specific ELSs: 3.1%; fibro/myoblasts-specific  
245 ELSs: 4.5%; blood-specific ELSs: 5.6%; muscle-specific ELSs: 4.4%; brain-specific ELSs: 7.4%; common  
246 embryonic ELSs: 7.4%; differentiated tissues-specific ELSs: 5.1%; neural progenitors-specific ELSs: 5.0%;  
247 ESC-specific ELSs: 3.2%). On the other hand, we defined as exonic ELSs those intersecting exclusively  
248 exonic regions (Figs. 2A, 4C). The overlap of ELSs with intergenic regions was obtained by intersecting the  
249 former with the genes’ coordinates using the BEDTools intersectBed option -v.

## 251 **Tissue-active, tissue-specific and common ELSs**

252 Tissue-active ELSs are ELSs active (see Methods section *Selection of cCREs with enhancer-like signature*  
253 (*ELS*) *across human samples*) in  $\geq 80\%$  of the samples within a given group of samples (blood = 4/5; muscle  
254 = 6/8; brain = 6/7; stem cells = 5/6; neural progenitors = 5/6; differentiated tissues = 8/10). Because of the  
255 small sample size, we required iPSC- and fibro/myoblasts ELSs to be active in 100% of the samples (2/2;  
256 3/3). Tissue-specific ELSs are tissue-active ELSs that are active in 0 (iPSC, fibro/myoblasts) or at most 1  
257 (all other groups) outer samples (i.e. samples outside the considered group). Common adult and embryonic  
258 ELSs are ELSs active in 100% of the samples (25/25 and 22/22, respectively). To rule out indirect effects  
259 of ELS activity related to promoter regions, we discarded common and tissue-specific ELSs overlapping any  
260 annotated Transcription Start Site (TSS,  $\pm 2\text{Kb}$ ) in GENCODE v19.

## 261 **Assessing enhancer regulatory activity**

262 ELSs were annotated by using the GTEx v7 (Aguet et al., 2017) significant variant-gene pairs from 46 dif-  
263 ferent tissues (number of samples with genotype  $\geq 70$ ). Only single-tissue eQTL-eGene associations with a  
264 qval  $\leq 0.05$  were used. Similar GTEx tissues were grouped in unique categories in order to consider the most  
265 complete catalogue of eQTL-eGene pairs per group of samples. These categories were named as follows:  
266 fibroblasts (Skin Not Sun Exposed Suprapubic, Cells Transformed Fibroblasts), blood (Whole Blood, Spleen),  
267 muscle (Skeletal Muscle), brain subregions (all brain subregions, Pituitary Gland, Nerve Tibial), cardiovas-  
268 cular (Heart Atrial Appendage, Heart Left Ventricle, Artery Aorta, Artery Coronary, Artery Tibial), digestive  
269 (Liver, Pancreas, Small Intestine Terminal Ileum, Stomach, Colon Sigmoid, Colon Transverse, Esophagus  
270 Gastroesophageal Junction, Esophagus Mucosa, Esophagus Muscularis, Adipose Subcutaneous, Adipose  
271 Visceral Omentum), gland (Adrenal Gland, Thyroid, Minor Salivary Gland), breast (Breast Mammary Tissue),  
272 lung (Lung), sexual (Ovary, Prostate, Testis, Uterus, Vagina). Bedtools (Quinlan and Hall, 2010) was used  
273 to intersect the tissue-specific ELSs' coordinates with the *cis*-eQTLs' positions in the considered genomic  
274 locations (intronic and intergenic). We kept all eQTL-eGene pairs that were found significantly associated  
275 with the matching eQTL-ELS's tissue category (brain, blood, muscle and fibro/myoblasts). In the case of  
276 iPSC-specific and common ELSs, we considered those eQTL-eGene pairs that were significantly reported in  
277 all the tissues. The resulting intersected ELSs were considered as being responsible for the regulation of the  
278 associated eGene. The functional enrichment of the ELSs' target genes was performed by the online utility  
279 WebGestalt (Liao et al., 2019).

## 280 ***cis*-Regulatory Elements and Transcription Factor Binding Sites**

281 Transcription factor binding sites (TFBSs) were predicted by using the motif discovery software HOMER  
282 (Heinz et al., 2010) This program performs a differential motif discovery by taking two sets of genomic regions  
283 (findMotifGenome.pl script) and identifying the motifs that are enriched in one set of sequences relative to  
284 a background list of regions. We analysed the tissue-specific ELSs' binding motifs by considering the ELS  
285 regions from all the other tissues as background. We searched for 6-mer and 7-mer length motifs as a way

286 to focus on enriched core motif sequences and avoid redundancy from longer motifs with similar functions.  
287 A hypergeometric test and FDR correction were applied for the motif enrichment. Only significantly enriched  
288 motifs were considered in the subsequent analysis. The word size in Figure 3A is proportional to the sig-  
289 nificance of the enrichment, it is calculated as the difference of sequence frequencies where the TFBS is  
290 found in the target and background lists of regions. The functionality of the predicted TFBSs was assessed  
291 by analysing the tissue-specific expression of the transcription factors that bind to them. GTEx expression  
292 data (v7) was analysed for those transcription factors whose TFBSs were reported as significant by HOMER  
293 in all tissues and genomic locations.

## 294 **Data access**

295 All ENCODE data used in this study is publicly available on the ENCODE portal (<https://www.encodeproject.org/>). GTEx gene expression and eQTL data is available on the GTEx portal (<https://www.gtexportal.org>).

298 **Acknowledgments**

299 B.B. is supported by the fellowship 2017FI\_B00722 from the Secretaría d'Universitats i Recerca del Depar-  
300 tament d'Empresa i Coneixement (Generalitat de Catalunya) and the European Social Fund (ESF). P.V-M.  
301 is supported by an FPI PhD fellowship (FPI-BES-2016-077706) part of the "Unidad de Excelencia María de  
302 Maeztu" funded by the MINECO (ref: MDM-2014-0370). S.A. is supported by a fellowship from the Secretaría  
303 d'Universitats i Recerca del Departament d'Empresa i Coneixement (Generalitat de Catalunya) (BP-2017-  
304 00176). We thank the ENCODE and GTEx Consortia for data production. We thank Diego Garrido-Martín  
305 (R. Guigó Lab) for valuable statistical advice.

306 *Author Contributions:* S.A., B.B, and P.V-M. designed the study, analyzed the data and wrote the manuscript  
307 with feedback from all the authors. H.L. and A.S-C. analyzed the data.

308 **Competing interest statement**

309 The authors declare no competing interests.

## 310 References

311 Abascal, F., Acosta, R., Addleman, N. J., Adrian, J., Afzal, V., Aken, B., Akiyama, J. A., Jammal, O. A.,  
312 Amrhein, H., Anderson, S. M., et al. (2020). Expanded encyclopaedias of DNA elements in the human and  
313 mouse genomes. *Nature*, 583(7818):699–710.

314 Aguet, F., Brown, A. A., Castel, S. E., Davis, J. R., He, Y., Jo, B., Mohammadi, P., Park, Y. S., Parsana,  
315 P., Segrè, A. V., et al. (2017). Genetic effects on gene expression across human tissues. *Nature*,  
316 550(7675):204–213.

317 Alver, B. H., Kim, K. H., Lu, P., Wang, X., Manchester, H. E., Wang, W., Haswell, J. R., Park, P. J., and  
318 Roberts, C. W. M. (2017). The SWI/SNF chromatin remodelling complex is required for maintenance of  
319 lineage specific enhancers. *Nature Communications*, 8(1):1–10.

320 Bieberstein, N. I., Oesterreich, F. C., Straube, K., and Neugebauer, K. M. (2012). First exon length controls  
321 active chromatin signatures and transcription. *Cell Reports*, 2(1):62–68.

322 Biteau, B., Hochmuth, C. E., and Jasper, H. (2011). Maintaining tissue homeostasis: Dynamic control of  
323 somatic stem cell activity.

324 Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Lv, X.,  
325 Hugnot, J. P., Tanay, A., et al. (2017). Multiscale 3D Genome Rewiring during Mouse Neural Development.  
326 *Cell*, 171(3):557–572.

327 Chen, C., Yu, W., Tober, J., Blobel, G. A., Speck, N. A., and Correspondence, K. T. (2019). Spatial Genome  
328 Re-organization between Fetal and Adult Hematopoietic Stem Cells.

329 Chorev, M. and Carmel, L. (2012). The function of introns. *Frontiers in Genetics*, 3(APR):55.

330 Choukrallah, M. A., Song, S., Rolink, A. G., Burger, L., and Matthias, P. (2015). Enhancer repertoires are  
331 reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. *Nature  
332 Communications*, 6(1):1–11.

333 De Laat, W. and Duboule, D. (2013). Topology of mammalian developmental enhancers and their regulatory  
334 landscapes.

335 DeMare, L. E., Leng, J., Cotney, J., Reilly, S. K., Yin, J., Sarro, R., and Noonan, J. P. (2013). The genomic  
336 landscape of cohesin-Associated chromatin interactions. *Genome Research*, 23(8):1224–1234.

337 Dupays, L., Shang, C., Wilson, R., Kotecha, S., Wood, S., Towers, N., and Mohun, T. (2015). Sequential Bind-  
338 ing of MEIS1 and NKX2-5 on the Popdc2 Gene: A Mechanism for Spatiotemporal Regulation of Enhancers  
339 during Cardiogenesis. *Cell Reports*, 13(1):183–195.

340 Eisenberg, E. and Levanon, E. Y. (2013). Human housekeeping genes, revisited.

341 Ernst, J. and Kellis, M. (2010). Discovery and characterization of chromatin states for systematic annotation  
342 of the human genome. *Nature Biotechnology*, 28(8):817–825.

343 Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shores, N., Ward, L. D., Epstein, C. B., Zhang, X., Wang, L.,  
344 Issner, R., Coyne, M., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell  
345 types. *Nature*, 473(7345):43–49.

346 Gilbert, N., Boyle, S., Sutherland, H., Heras, J. d. L., Allan, J., Jenuwein, T., and Bickmore, W. A. (2003).  
347 Formation of facultative heterochromatin in the absence of HP1. *The EMBO Journal*, 22(20):5540–5550.

348 Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S. (1983). A Tissue-specific Transcription Enhancer  
349 Element Is Located in the Major Intron of a Rearranged Immunoglobulin Heavy Chain Gene. Technical  
350 report.

351 Hawkins, R. D., Hon, G. C., Lee, L. K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L. E., Kuan, S., Luu, Y.,  
352 Klugman, S., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human  
353 cells. *Cell Stem Cell*, 6(5):479–491.

354 Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S.,  
355 Qu, C., Ching, K. A., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters  
356 and enhancers in the human genome. *Nature Genetics*, 39(3):311–318.

357 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H., and  
358 Glass, C. K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory  
359 elements required for macrophage and B cell identities. *Molecular cell*, 38(4):576–589.

360 Heinz, S., Romanoski, C. E., Benner, C., and Glass, C. K. (2015). The selection and function of cell type-  
361 specific enhancers.

362 Heitz, E. (1928). Das Heterochromatin der Moose. *Jahrbücher für wissenschaftliche Botanik*, 69.

363 Jacob, A. G. and Smith, C. W. J. (2017). Intron retention as a component of regulated gene expression  
364 programs.

365 Kawase, S., Imai, T., Miyauchi-Hara, C., Yaguchi, K., Nishimoto, Y., Fukami, S. I., Matsuzaki, Y., Miyawaki, A.,  
366 Itohara, S., and Okano, H. (2011). Identification of a novel intronic enhancer responsible for the transcrip-  
367 tional regulation of *musashi1* in neural stem/progenitor cells. *Molecular Brain*, 4(1):14.

368 Khandekar, M., Brandt, W., Zhou, Y., Dagenais, S., Glover, T. W., Suzuki, N., Shimizu, R., Yamamoto, M., Lim,  
369 K. C., and Engel, J. D. (2007). A Gata2 intronic enhancer confers its pan-endothelia-specific regulation.  
370 *Development*, 134(9):1703–1712.

371 Levine, M. (2010). Transcriptional enhancers in animal development and evolution.

372 Lewis, B. P., Green, R. E., and Brenner, S. E. (2003). Evidence for the widespread coupling of alternative  
373 splicing and nonsense-mediated mRNA decay in humans. *Proceedings of the National Academy of Sciences of the United States of America*, 100(1):189–192.

375 Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., and Zhang, B. (2019). WebGestalt 2019: gene set analysis toolkit  
376 with revamped UIs and APIs. *Nucleic Acids Research*, 47(W1):W199–W205.

377 Lis, R., Karrasch, C. C., Poulos, M. G., Kunar, B., Redmond, D., Duran, J. G., Badwe, C. R., Schachterle, W.,  
378 Ginsberg, M., Xiang, J., et al. (2017). Conversion of adult endothelium to immunocompetent haematopoietic  
379 stem cells. *Nature*, 545(7655):439–445.

380 McClard, C. K., Kochukov, M. Y., Herman, I., Liu, Z., Eblimit, A., Moayed, Y., Ortiz-Guzman, J., Colchado, D.,  
381 Pekarek, B., Panneerselvam, S., et al. (2018). POU6f1 mediates neuropeptide-dependent plasticity in the  
382 adult brain. *Journal of Neuroscience*, 38(6):1443–1461.

383 Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., Young, T. R., Goldmann,  
384 J. M., Pervouchine, D. D., Sullivan, T. J., et al. (2015). The human transcriptome across tissues and  
385 individuals. *Science*, 348(6235):660–665.

386 Ott, C. J., Blackledge, N. P., Kerschner, J. L., Leir, S. H., Crawford, G. E., Cotton, C. U., and Harris, A.  
387 (2009). Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. *Proceedings of  
388 the National Academy of Sciences of the United States of America*, 106(47):19934–19939.

389 Pennacchio, L. A., Loots, G. G., Nobrega, M. A., and Ovcharenko, I. (2007). Predicting tissue-specific en-  
390 hancers in the human genome. *Genome Research*, 17(2):201–211.

391 Pervouchine, D. D., Djebali, S., Breschi, A., Davis, C. A., Barja, P. P., Dobin, A., Tanzer, A., Lagarde, J.,  
392 Zaleski, C., See, L. H., et al. (2015). Enhanced transcriptome maps from multiple mouse tissues reveal  
393 evolutionary constraint in gene expression. *Nature Communications*, 6(1):1–11.

394 Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features.  
395 *Bioinformatics*, 26(6):841–842.

396 Rand, E. and Cedar, H. (2003). Regulation of imprinting: A multi-tiered process. *Journal of Cellular Biochem-  
397 istry*, 88(2):400–407.

398 Rose, A. B. (2019). Introns as Gene Regulators: A Brick on the Accelerator. *Frontiers in Genetics*,  
399 9(FEB):672.

400 Rué, P. and Martinez Arias, A. (2015). Cell dynamics and gene expression control in tissue homeostasis and  
401 development. *Molecular Systems Biology*, 11(2):792.

402 Schmitt, A. D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C. L., Li, Y., Lin, S., Lin, Y., Barr, C. L., et al. (2016). A  
403 Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. *Cell  
404 Reports*, 17(8):2042–2059.

405 Shaul, O. (2017). How introns enhance gene expression.

406 Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: From properties to genome-wide  
407 predictions.

408 Vuong, C. K., Black, D. L., and Zheng, S. (2016). The neurogenetics of alternative splicing.

409 Zabidi, M. A., Arnold, C. D., Schernhuber, K., Pagani, M., Rath, M., Frank, O., and Stark, A. (2015).  
410 Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. *Nature*,  
411 518(7540):556–559.