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Abstract  
Decision-making underpins many important facets of our lives. Here, we 

assessed if a general ability factor underpins decision-making abilities. Using 

factor analysis of 32 decision-making measures in 830 adolescents and young 

adults, we identified a common factor we refer to as `decision acuity’ that was 

distinct from IQ and reflected advantageous decision-making abilities. Decision 

acuity decreased with low general social functioning and aberrant thinking. 

Crucially, decision acuity and IQ​ ​had dissociable neural signatures in terms of 

resting-state functional connectivity involving specific neural networks. Finally, 

decision acuity was reliable and its relationship with functional connectivity was 

stable when measured in the same individuals 18 months later. We conclude 

that our behavioural and brain data demonstrate a new cognitive construct 

encapsulating ability to perform decision-making across distinct domains, and 

that the expression of this construct may be important for understanding 

psychopathology. 
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A generic decision-making ability predicts psychopathology 

in adolescents and young adults and is reflected in distinct 

brain connectivity patterns   

Introduction  
Decision-making abilities are important for economic performance and 

social adaptation, and a computational characterization of decision-making 

processes is likely to advance the understanding of psychiatric disorders 

(Scholl & Klein-Flügge, 2018)​. Yet, unlike traditional cognitive constructs 

such as intelligence, the distribution and covariation of decision-making 

characteristics in the population is unknown and the reliability of 

behavioral tasks typically used to measure them has been questioned 

(Brown et al., 2020; Hedge et al., 2020)​. Likewise, we know little about 

the neural underpinnings of decision-making during adolescence and early 

adulthood, a crucial period for brain maturation ​(Giedd, 2004; Whitaker et 

al., 2016)​. Advancing our understanding here is rendered quite important 

by the fact that the bulk of psychopathology emerges during adolescence 

and early adulthood ​(Paus et al., 2008)​.  
 

Decision-making involves an interplay of multiple cognitive abilities 

needed to evaluate available options and settle on a course of action 

(Kable & Glimcher, 2009; Phelps et al., 2014)​. Reinforcement-learning has 

helped characterize the computational and neurobiological processes by 

which individuals evaluate options ​(Dayan & Daw, 2008; Sutton & Barto, 

1998)​. This literature is often framed in terms of model-based and 

model-free evaluations ​(Daw et al., 2005; Dolan & Dayan, 2013)​. In the 

former, the value of different actions is calculated prospectively based on 

the goals and actions that will lead to these goals. In contrast, the latter 

involves learning the value of actions by associating them with the value 

of experienced outcomes. 

 

The relative importance of different evaluation systems is an important 

individual difference, likely to be trait-like at least in part. Importantly, 

model based and model free approaches trade off at different levels in 

different individuals  ​(Eppinger et al., 2017; Kool et al., 2017)​. Similarly, 

the impact of Pavlovian heuristics, that is, the propensity to attach value 

to specific actions by mere association with perceived features of a 

context, also varies across individuals (de Boer et al., 2019; Guitart-Masip 

et al., 2012; Moutoussis et al., 2018). Individuals also differ with respect 

to other factors affecting the evaluation of options, for example, in their 

aversion to variability of outcomes for an action rather than its mean 

outcome ​(Christopoulos et al., 2009; Payzan-LeNestour et al., 2013)​. 
Similarly, individuals balance the need to actively collect rewards against 

the risks of potential dangers in the environment ​(Bach et al., 2020; Loh 

et al., 2017; O’Neil et al., 2015)​. In the temporal domain, individuals 

balance a need to exploit known choices against uncertainty of exploring 

unknown ones (Badre, Doll, Long, & Frank, 2012; Sutton & Barto, 1998). 

Finally, understanding of intentions and emotions of others has a big 

impact when making decisions in social contexts (King-Casas et al., 2008; 

Moutoussis, Dolan, & Dayan, 2016). 
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Although fundamental decision-making characteristics are likely to be 

largely distinct, we hypothesised that they would also be subject to 

covariation in the population. In this frame of reference, shared variance 

along latent dimensions is analogous to the structure of intelligence, 

where a cornucopia of abilities covaries with latent dimensions such as 

general and domain-specific intelligence (Van Der Maas et al., 2006). We 

hypothesised that the main constructs influencing performance across 

distinct instances of decision-making would include sensitivity to gains and 

losses, the extent to which model-based approaches dominate choice 

evaluation, an overall propensity to take risks, and an ability to make 

good social judgements.  

 

To assess dimensions of decision-making ability, we examined a battery of 

seven decision-making tasks (table 1), administered to 830 14-24 year 

olds sampled from a pool of about 2400 young people living in the 

community in England (Kiddle et al., 2017). We used computational 

modelling and key descriptive statistics to extract component measures of 

decision-making (Bach et al., 2014; Fett et al., 2012; Moutoussis, Bentall, 

El-Deredy, & Dayan, 2011; Moutoussis et al., 2018, 2016; Rigoli et al., 

2016; Shahar, Hauser, et al., 2019). We then derived latent cognitive 

constructs underlying decision-making across tasks, by submitting the 

component measures to factor analysis (see Methods) and assessed their 

reliability using the data of 571 participants that performed the 

decision-making battery a second time on a follow up 18 months apart on 

average. Next, we characterised the relationship between the inferred 

latent cognitive constructs and external measures such as age, IQ, and 

mental health characteristics. Here, we hypothesized that latent 

dimensions of decision-making would correlate with self-reported 

psychological dispositions and mental health symptoms. To test this latter 

hypothesis, we utilised participants' derived scores for both general and 

specific factors of dispositions (Polek et al., 2018) and mental health 

symptoms (St Clair et al., 2017). 
 

Crucially, we also characterised the neural circuitry underpinning the 

latent decision-making factors. To achieve that, we analysed functional 

connectivity from resting-state fMRI data (rsFC), providing a metric of 

coupling between blood-oxygen-level-dependent (BOLD) time series from 

different brain regions or networks (nodes). Patterns of rsFC are known to 

behave to a large degree as dispositions (Finn et al., 2015) and predict a 

subject's cognitive abilities in other domains (Dubois, J., Galdi, P., Lynn, 

P.K., & Adolphs, R., 2018; Kong et al., 2018; Li et al., 2019; Rosenberg et 

al., 2015; Smith et al., 2015). We thus asked which connectivity networks 

predict latent decision-making factors and whether the identified 

connectivity networks were stable over time. 

  

We found evidence of a single dimension of covariation in the population            

to which multiple decision-making tasks contributed. This dimension,        

which we term 'decision acuity', reflected speed of learning, ability to heed            

cognitively distant outcomes, and low decision variability. It showed an          

acceptable reliability much higher than typical decision-making tasks        

(Moutoussis et al., 2018) and was associated with distinct patterns of           
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rsFC. Finally, decision acuity was distinct from IQ, as it had a distinct             

functional connectivity signature and was differentially related to        

psychological dispositions and symptoms. 

 

Results 

'Decision acuity' is an important dimension of decision-making 
A total of 830 young people aged 14-24 were tested with a battery of              

tasks assessing fundamental components of decision-making. 349 among        

them underwent brain functional magnetic resonance imaging at rest, on          

the same day as cognitive testing, to assess functional connectivity.          

Scanned participants had no history of neuropsychiatric disorder and were          

confirmed to be healthy on SCID interview. The Methods section and           

online Supplement provide further detail. 

 

The decision-making tasks included in the cognitive task battery are          

described in table 1. Conceptual decision-making constructs overlapped        

across tasks in the battery, although each task also had a unique focus.             

Thus we expected participants to show how much they cared about           

outcomes (reward sensitivity) in almost all tasks. In a similar vein, we            

expected participants engaging in more sophisticated planning to show         

increased model-basedness (table 1, task F), better information-gathering        

(task E), and less temporal discounting (task D). Likewise, we expected           

participants more capable in interpersonal decision-making to learn more         

from others (task D) and invest more in benign partners (task F). Finally,             

we expected those showing excessive risk tolerance to avoid hazards less           

(task B) and to be less economic risk-averse (esp. in task C). In all, we               

obtained 32 decision-making measures which we subjected to factor         

analyses. See Methods for details of the factor-analytic approach,         

including dimensionality estimation and stability analyses. 

 

 

Table 1 ​: Cognitive task battery. 

Task (with key reference) Key constructs assessed Key individual parameters and descriptives 
measures. 

A. Go-NoGo task 
(Guitart-Masip et al., 
2012) 

Pavlovian biases, i.e. 
propensity to engage in action 
in order to obtain rewards and 
to abstain from action to avoid 
losses; Motivational power of 
outcomes; Instrumental 
learning rate in the appetitive 
and aversive domains. 

1. Pavlovian Bias; 

2.-3. Reaction times for action choices in the 
context of threat vs. opportunity. 
4. Sensitivity to outcomes. 
5. General bias for action rather than 
non-action; 
6. Motivation-independent, 'irreducible', 
variability in decision-making; 
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7.-8. Learning rates in the appetitive and       
aversive contexts. 

B. Approach-Avoidance 
conflict task 
(Bach et al., 2014) 

Willingness to expose oneself 
to different levels of risk for 
the sake of amassing 
rewards. 

9.-11. Factor-analytic scores summarizing 
variance over a comprehensive set of 
behavioural measures in the task. 
Approximately corresponding to sensitivity to 
overall level of threat, sensitivity to the time 
dependency of threat, and overall 
performance. 

C. Roulette task 
(Symmonds et al., 2011) 
 
(NB: administered at 
baseline only) 
 

Baseline taste for gambling 
Risk-avoidance (preference 
for outcome distributions of 
low variance). 

12. Overall preference for gambling over 
known returns. 
13. Preference weight for variance, compared 
to the mean, of an outcome distribution, 
named 'Economic risk preference'; 
14. Effect of outcome distribution asymmetry 
(skewness) on preferences. 
15. Sensitivity to expected value of 
outcomes. 

D. Interpersonal- 
Discounting task 
(Moutoussis et al., 2016) 

Baseline inter-temporal 
discounting; shift in 
discounting preferences upon 
exposure to peers' 
preferences. 

16. Basic hyperbolic temporal discounting 
coefficient; 
17. Relevance of others' observed 
preferences to the self; 
18. Discounting taste uncertainty, i.e. 
uncertainty about one's own tastes in this 
domain. 
19. Decision variability over choosing for 
others  
20. Irreducible decision noise. 

E. Information Gathering 
task 
(Moutoussis, Bentall, 
El-Deredy, & Dayan, 
2011) 

Assessment of whether future 
decisions will on balance be 
more advantageous if one 
gathers more information. 

21. Information Sampling noise, which 
determines not only decision variability but 
also effective depth of planning. 
22. Subjective cost of every piece of 
information asked for when experimenter 
imposes no such costs explicitly; 
23.-24. Ditto if a fixed, external cost-per-step 
is imposed. 

F. Multi-round 
Investor-Trustee task 
(Fett et al., 2012) 

Overall strategies used to 
elicit cooperation and avoid 
being exploited by one's 
anonymous, task partner. 

25. Initial trust, i.e. the amount given by the 
investor to the Trustee before they have any 
specific information about them. 
26. Cooperativeness: Average degree to 
which Investor and Trustee tended to 
respond to reductions (or increases) in each 
other's contributions in kind. 
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27. Responsiveness: Average magnitude of 
responding to the partner’s change in 
contribution. 

G. Two-Step task 
(Daw et al., 2011) 

Strength of habitual 
('model-free') and 
goal-directed ('model-based') 
decision-making 

28. Goal-directedness: tendency to shift in 
decisions as a consequence of a different 
decision being more advantageous according 
to the transition probabilities inherent in the 
task. 
29. Learning rate 
30. Perseveration tendency 
31. Reward sensitivity 
32. Eligibility trace (propensity of learning to 
affect not just the current state but also 
others related to it) 

 

 

Working with the full battery and the larger, baseline sample, we           

discerned four stable decision-making factors, but only the first loaded on           

measures from multiple tasks. We named this factor 'decision acuity' or ​d​,            

as it loaded negatively on decision variability measures, especially         

decision temperature, and loaded positively on measures contributing to         

profitable decision-making, such as low temporal discounting and faster         

learning rates (Figure 1 and supplemental table S1). Thus, participants          

with high ​d ​had low decision variability in economic-risk,         

information-gathering, Go-NoGo and Two-Step tasks and had fast reaction         

times and high learning rates in the Go-NoGo task. Note that a decision             

temperature parameter can always be re-written as the inverse of reward           

(and/or loss) sensitivity one. Hence the prominent role of         

negatively-loading temperature parameters in ​d supported our a priori         

hypothesis that reward sensitivity constitutes an important shared        

characteristic across tasks. Still in the baseline sample, we confirmed that           

d correlated with profitable decision-making by estimating a measure of          

aggregate task performance which was based on net points won across           

tasks, and separate from the components of ​d ​(Pearson r=0.50, p           

<1e-10; see Supplement part C for details). Remarkably, ​d predicted this           

aggregate measure of performance independently from IQ, whereas most         

of the effect of IQ on performance depended on its shared variance with ​d              

(performance in tasks and ​d ​sharing common-method variance being a          

caveat here). 

 

The other three factors clearly addressed within-task behaviours, rather         

than hypothesized global decision-making constructs and were thus of         

peripheral interest here. The second selected the Delegated        

Inter-temporal Discounting task (D.), the third the Information Gathering         

task (E.) and the fourth the Economic Risk preference task (C; Figure S2).             

Over all factors, constituent cognitive measures showed high uniqueness         
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scores, as expected from each task being designed to have a unique            

focus. 22 of the 32 measures had uniqueness > 80% (Figure 1B).  

Decision Acuity increased with age, follow-up and IQ 

We first examined how ​d ​depended on age, both across and within            

participants​. ​Linear mixed effects (LME) modelling over baseline and         

follow-up showed a strong fixed-effect dependence on age (beta=0.24,         

SE=0.022, p ~ 0.0 (undetectable)). ​d was stable from baseline to           

follow-up, although slightly less so than WASI IQ (r=0.68, p~0.0 for d;            

0.77, p~0.0 for WASI IQ; 95% CI for the difference =-0.135 to -0.044;             

Fig. 1B) and improved with testing wave (effect size=0.38, p~0.0), but           

we found no evidence here or in subsequent analyses that its rate of             

increase depended on baseline age. We then confirmed that both matrix           

and vocabulary raw IQ (WASI) subscores robustly correlated with ​d (fixed           

effect betas = 0.088, 0.179, SE= 0.008, 0.018, p ~ 0.0). However            

inclusion of raw IQ scores did not affect the significance of age as a              

regressor (age beta=0.121, SE=0.020, p ~ 0.0). Therefore, not only did           

decision acuity increase with age in our sample, but so did the component             

that was independent of IQ abilities. IQ subscores and age together           

accounted for r​2​adj=0.31 of the variance in ​d​ at baseline.  

At baseline, ​d scores for males were higher than females, t-test p=8.6e-5,            

effect size = 0.27. However, if both IQ subscores and age were entered in              

LME, the correlation between ​d ​and self-reported sex was no longer           

significant. Thus, any uncorrected sex dependence is likely to be due to            

participant self-selection, that is, amongst males, higher IQ participants         

volunteered relative to amongst females. 

Mental health factors were specifically associated with Decision 

Acuity 

We next examined the relationship between d and psychological         

symptoms and dispositions, using scores from published studies of the          

community sample from whence our participants were sampled ​(Polek et          

al., 2018; St Clair et al., 2017)​. These studies have established that the             

best descriptions in the symptom and disposition domains were provided          

by bi-factor models, each comprising a superordinate 'general factor' and          

subordinate 'specific factors'. Symptoms were described by a general         

distress factor (a.k.a. 'p-factor', ​(Caspi et al., 2014) and 5 specific           

factors: Mood, Self-confidence, Worry, Aberrant thinking and Antisocial        

behaviour. Dispositions were described by a general social functioning         

factor and 4 specific factors, Social sensitivity, Sensation seeking, Effortful          

control, and Suspiciousness. 

d could be significantly predicted by symptoms and dispositions. To test           

for this, we used LME analysis with participant as random effect, two            

timepoints of symptoms and decision acuity, and one (baseline) score per           

participant of dispositions. We first regressed all six symptom scores and           

five disposition scores against ​d​, allowing all to compete to explain           

variance. We found that amongst symptom scores, ​d was most strongly           

and negatively associated with the 'Aberrant thinking' specific factor,         

(p=0.0007, bz=-0.19, SE(bz)=0.051). No other symptom factors were        
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significant, (symptom general factor, 'Distress', p=0.82, others ranging        

from p=0.35 to 0.99). ​d significantly related to the general disposition           

factor, ‘general social functioning’ (p=0.0002, bz=0.36, SE(bz)=0.096). It        

did not relate to specific dispositions (p ranging from 0.47 to 0.80). We             

then additionally included raw IQ scores in the LME models. As expected,            

both raw IQ scores and age significantly predicted ​d, ​and model fit            

improved substantially (BIC = 4873 vs. 5083 without IQ). Inclusion of IQ            

reduced significance of ‘Aberrant thinking’, which draws on schizotypy and          

obsessionality, to trend level, p=0.074, bz=-0.10, SE(bz)=0.053) but if         

anything strengthened the significance of ‘Prosociality’ (p=0.0001,       

bz=0.32, SE(bz)= 0.084). All these analyses also accounted for age as           

above, and did not benefit from more complex models of age. 
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Figure 1.​ ​A.​ Decision Acuity common Factor over cognitive parameters, based on the 

validated 4-factor analysis applied to our whole sample. See supplement table S1 for the key 

to measure labels. The top half of variables load positively, while grey vertical lines give a 

visual indication of which measures are important, being the thresholds used for inclusion of 

variables in the confirmatory analyses ​B. ​Decision Acuity was strongly correlated between 

baseline and follow-up, as expected for a dispositional measure. Mauve is regression line, 

black is identity line. 

 

 

 

  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.20.259697doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.259697
http://creativecommons.org/licenses/by/4.0/


 

 

Patterns of brain Connectivity are associated with Decision Acuity         

differently from IQ 

 

Out of 349 subjects who were scanned at baseline, we discarded baseline 

scans without acceptable imaging data quality (3), whose ME-ICA 

denoising did not converge (4), who had a diagnosis of depression (36) or 

who had excessive motion while scanning (8), leaving 298 baseline scans 

for analysis. A further three subjects were removed from analyses 

involving IQ scores as they did not complete the IQ tests, leaving 295 

subjects for analysis. A population-average parcellation of brain data was 

obtained using independent component analysis in our sample, resulting 

in 168 networks (nodes) ​within​ each of which activity was highly 

correlated (see Online Methods for details). Patterns of connectivity 

between ​ nodes were then estimated as partial correlation values, or 

resting state functional connectivity (rsFC). We then used rsFC values as 

features in sparse partial least squares (SPLS) analyses, to predict 

decision acuity and composite IQ. We used cross-validation to prevent 

overfitting, and predictive accuracy was assessed as Pearson's correlation 

coefficient between true scores and values predicted by the model (Figure 

S4 and Online Methods for details).  
 

Scores for ​d​ predicted on the basis of functional connectivity, ​d​pr​, 

significantly correlated with measured ​d ​controlling for demographic and 

imaging-related covariates (see methods for details), r=0.145, p<10​-6​. 
The correlation between measured IQ and IQ predicted on the basis of 

rsFC using all connections was lower but also significant (r=0.092, 

p=9e-5). 
  

To interpret the neuroanatomical structure of the predictive model, we 

first partitioned the nodes into anatomically meaningful 'modules' using a 

community detection algorithm (​(Blondel et al., 2008)​; see Methods), and 

then asked how well each of these modules predicted ​d. ​The community 

detection algorithm clustered the nodes into modules based on the 

strength of their intrinsic connectivity into disjoint communities to some 

extent analogous to large-scale functional networks. As shown in figure 2, 

we obtained the following modules: anterior temporal cortex including the 

medial temporal lobe (ATC); frontal pole (FPL); frontoparietal control 

network (FPN); left dorsolateral prefrontal cortex (LDC); medial prefrontal 

cortex (MPC); orbitofrontal cortex, medial and lateral (OFC); opercular 

cortex (OPC); posterior cingulate cortex (PCC); posterior temporal cortex 

(PTC); right dorsolateral prefrontal cortex (RDC); subcortical (SUB); 

salience network (SAN); somatosensory and motor areas (SMT); visual 

regions (VIS). We fitted a different SPLS model to the subset of 

connections involving the nodes in each module, including both intra- and 

inter-modular connections.  
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Figure 2. ​Modules detected by the community structure algorithm. The 

168 nodes of the parcellation were clustered in 14 modules with high 

average rsFC among their nodes. ATC, anterior temporal cortex including 

the medial temporal lobe; FPL, frontal pole; FPN, frontoparietal control 

network; LDC, left dorsolateral prefrontal cortex; MPC, medial prefrontal 

cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, opercular 

cortex; PCC, posterior cingulate cortex; PTC, posterior temporal cortex; 

RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience 

network; SMT, somatosensory and motor areas; VIS, visual regions.  

 
The correlation between measured and predicted ​d​ scores was significant 

for the FPN, MPC, OFC, OPC, PCC,SMT, and VIS modules after correction 

for multiple tests (Figure 3A, Table 2), with the strongest correlations for 

OFC, PCC and SMT. For the PCC and SMT modules, the correlation 

coefficients exceeded to a small degree the correlation for a model 

employing all possible connections. This can be explained as a result of 

feature selection. In the full model it is harder to select just the right 

features and protect against over-fitting, resulting in a greater penalty in 

predictive accuracy. On the other hand, the model trained only on a 

smaller set of features is less likely to overfit. This paradoxical increase in 
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accuracy for a model with less features is known to be stronger when the 

number of observations is small, relative to the number of features (Chu, 

Hsu, Chou, Bandettini, & Lin, 2012), which is the case in our dataset. The 

different modules comprised diverse numbers of nodes but there was no 

significant association between the number of model features and the 

correlation between observed and predicted scores (​d ​: r=0.356, p=0.193; 

IQ composite scores: r=-0.158, p=0.574).  

 

Out of 235 subjects who were scanned at follow-up, adhering to the same 

criteria as for the baseline data, we discarded those without acceptable 

imaging data quality (4), whose ME-ICA denoising did not converge (5), 

and who presented with excessive motion (3), leaving 223 subjects 

available for analysis. We applied the model trained on the baseline data 

to the follow-up data (see online methods) for the modules where the 

prediction was significant at baseline. Importantly, the prediction of a 

subject at follow-up did not involve their own rsFC baseline data (see 

online methods), as this would have inflated the estimate of predictive 

performance. The baseline model predicted significantly the follow-up ​d 

values based on the follow-up connectivity data when using either all the 

connections or those with networks in the FPN, MPC, OFC and SMT 

modules, controlling for demographic and imaging related covariates, and 

correcting for multiple tests (Figure 3B, Table 2).  

 
In order to assess whether ​d ​and IQ can be predicted by specific rsFC 

patterns, or alternatively whether both are underpinned by similar 

patterns of neural connectivity, we controlled for IQ the partial correlation 

coefficients between ​d​pr ​and ​d​, on top of the nuisance covariates previously 

included. In a complementary manner, we controlled for ​d ​the partial 

correlation between ​IQ​
pr​ ​and ​IQ​ (on top of the nuisance covariates). After 

correction for IQ composite scores, and correcting for multiple 

comparisons, the correlation between ​d​ and ​d ​pr​ remained significant for 

OPC, PCC and SMT (Figure 3C, Table 2), suggesting that these modules 

reflect decision acuity over and above their relation to IQ. On the other 

hand, the correlation between IQ​pr ​ and IQ was significant for OPC and 

PTC after controlling for ​d​ (Figure 3D, Table 2), suggesting that these 

modules reflect IQ over and above their relation to decision acuity. These 

analyses demonstrate that decision acuity and IQ have distinguishable 

and specific signatures in functional connectivity networks: decision acuity 

taps on the default mode, salience and sensorimotor networks, whereas 

IQ taps on the salience network but also on temporal networks associated 

with language processing.​.  
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Figure 3. ​Model predictive performance for each of the functional 

modules. ​A.​ Coefficient for the correlation between observed ​d​ and ​d​pr 

predicted by models trained on all connections, and the connections 

involving nodes in each module. ​B. ​ Correlation between observed d and 

d ​pr ​predicted by models trained on the baseline data. Only modules for 

which the prediction was significant at baseline are shown here. All the 

models included as covariates demographic and imaging-related factors 

(brain volume, scanning site, head motion; see Online Methods). ​C. ​ As in 

A., correlation between observed ​d​ and ​d​pr​, but here additionally 

correcting for IQ. ​D. ​Correlation between observed and predicted IQ, but 

correcting for imaging related factors and decision acuity. In all plots, the 

leftmost bar corresponds to the model which includes all connections. The 

whiskers indicate the intervals containing the lower 95 % probability mass 

for the null distribution, corresponding to one-tailed tests. * significant 
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uncorrected ** significant with FDR correction for the 15 tests. ATC, 

anterior temporal cortex including the medial temporal lobe; FPL, frontal 

pole; FPN, frontoparietal control network; LDC, left dorsolateral prefrontal 

cortex; MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial 

and lateral; OPC, opercular cortex; PCC, posterior cingulate cortex; PTC, 

posterior temporal cortex; RDC, right dorsolateral prefrontal cortex; SUB, 

subcortical; SAN, salience network; SMT, somatosensory and motor 

areas; VIS, visual regions.  
 
 
  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.20.259697doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.259697
http://creativecommons.org/licenses/by/4.0/


 

 
 

 
 
Table 2. ​Correlation coefficients between observed and predicted scores, 
corresponding to the plots in Figure 3. ​* significant uncorrected ** 

significant with FDR correction for the 15 tests. 
 
 
Discussion 
This, to our knowledge, is the first study characterising a distribution of 

core decision-making measures in an epidemiologically informed sample 

of adolescents and young adults and relating them to brain function. We 

found that decision-making performance could be described by a broad 

construct receiving contributions from multiple domains of cognition. We 

term this  'decision acuity', ​d​. In our sample, ​d​ showed satisfactory 

longitudinal stability, increased with age and with IQ. ​d ​also had specific 

associations with mental health measures, over and above IQ. 

Importantly, decision acuity showed a temporally stable association with 

rsFC, involving networks known to be engaged by decision-making 

processes. Moreover, rsFC patterns associated with ​d​ and IQ were 

distinguishable and specific, despite showing some overlap. 

  

Decision acuity had an interpretable structure, conducive to good 

decision-making. It​ ​increased as decision variability lessened, evidenced 

by its loadings on decision-noise-like parameters across all the tasks that 

provided such measures. The most prominent such loadings were inverse 

temperature parameters, also known as reward sensitivities. By definition, 

high temperature (a.k.a. reduced reward sensitivity) agents care less 

about relevant outcomes. This supported our hypothesis that reward 

sensitivity loaded on an important common factor. However, ​d​ also 

received substantial contributions from measures that did not directly 

reflect reward sensitivity, but characterised good decision-making. These 
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included low temporal discounting, fast reaction times, high learning 

rates, baseline trust in others, low propensity for retaliation, low 

propensity to show a Pavlovian bias and low lapse rates. Such 

non-temperature constructs may also be linked to decision variability, 

albeit less directly.  

An interesting interpretation of this pattern is that lower-acuity 

participants may find it too costly to eliminate computational errors in the 

fast pace of many tasks. For example, the computations required to make 

decisions about outcomes far in the future may be hard to perform for 

low-​d​ agents, resulting in discounting-like behaviour. Lapse rates may be 

understood as 'floor' error rates imposed by computational costs. Higher 

decision variability may also be driven by effective beliefs about the world, 

for example a belief that over-values exploration. If working out the 

correct action is too difficult, trial-and-error may be an alternative way to 

find answers, so this may be a compensatory or adaptation strategy in the 

face of limited cognitive resources. Overall, the contrast of noise with 

precision-enhancing measures in this factor is reminiscent of the 

association between low ability to reach goals and low policy precision in 

active inference (Friston et al., 2013). The agnostic derivation but 

interpretable nature of ​d ​can thus be seen as an example of data-driven 

ontology (Eisenberg et al., 2019). 

High decision acuity was associated with older age, increasing by 0.37 SD 

over the decade of 14 to 24 years of age, once raw IQ scores were 

accounted for. This is important as component parameters have been 

found to have weak or variable relationships with age in this same sample 

(Moutoussis et al., 2018, 2016). Developmentally,  ​d ​increasing with age 

may reflect a process whereby adolescents and younger adults get more 

confident with the outcome of their actions as they age. Next, ​d​ was 

associated with psychopathology over and above IQ,  specifically 

increasing with the self-assessed interpersonal competence (‘general 

social functioning factor’). ​d ​also decreased with schizotypy/obsessionality 

traits (‘Aberrant thinking’ factor), but this could be better explained by 

raw IQ scores. ​d​ explained a small proportion of the variance in 

psychopathology, as risk factors often do (Pearson et al., 2015). Overall, 

though related to IQ, ​d​ had distinct relationships with mental health 

measures.  

Decision acuity was also associated with specific, distributed patterns of 

resting-state brain connectivity. The whole brain, connectivity-based 

predictive model depended on connections spread across the entire brain, 

implying that ​d​, like IQ, depends on more extensive systems than those 

typically observed for state-tapping tasks in functional imaging studies 

(e.g. medial prefrontal, dorsolateral prefrontal). Strikingly, the pattern of 

connections predicting ​d​ was structured, with connections involving nodes 

in FPN, MPC, OFC, OPC, PCC, SMT and VIS being most predictive of ​d​, 
irrespective of age and sex. Furthermore, the models trained at baseline 
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on all the features, as well as those restricted on features within FPN, 

MPC, OFC and SMT, were also predictive of ​d​ at follow-up, demonstrating 

the stability over time of the relationship between rsFC in these modules 

and ​d​.  

It is unsurprising that decision acuity could be predicted by connections 

involving MPC and OFC, as these regions are typically recruited by 

decision-making tasks ​(Garvert et al., 2015; Padoa-Schioppa & Assad, 

2006; Rushworth et al., 2011)​. Circuits involving these regions receive 

highly processed sensory information and support goal-directed behaviour 

by representing subjective value of stimuli and choices. The OFC also 

supports credit assignment during reward learning ​(Jocham et al., 2016; 

Walton et al., 2010)​ probably by representing the associations between 

stimuli and outcomes ​(Boorman et al., 2016; Padoa-Schioppa & Assad, 

2006; Stalnaker et al., 2018)​. Finally, the OFC has also been suggested to 

support the representation of latent states necessary to navigate 

decision-making tasks ​(Schuck et al., 2016; Wilson et al., 2014)​. 
Similarly, involvement of the PCC, FPN and SMT is not surprising. Activity 

in the posterior cingulate cortex has been observed during 

decision-making tasks and it has been suggested that the PCC monitors 

the environment to detect transitions to new states ​(Pearson et al., 2011)​. 
Although the frontoparietal circuit has mainly been associated with 

performance of working-memory tasks ​(Murray et al., 2017)​, it has been 

shown that working memory mechanisms contribute to learning in typical 

reinforcement learning tasks ​(Collins et al., 2017; Collins & Frank, 2018)​. 
Finally, connections involving motor and somatosensory areas may 

contribute to adaptive decision-making. For example, in  our tasks, motor 

actions were orthogonalized with respect to choices, and recent work 

suggests that only the more able decision-makers successfully uncouple 

motor action and option choice (Shahar, Moran, et al., 2019). Hence, SMT 

connectivity may be important to achieve this decoupling. Similarly, active 

suppression of Pavlovian tendencies that can corrupt optimal 

decision-making may also involve optimal sensorimotor functioning 

(Cavanagh et al., 2013; Swart et al., 2018)​.  

 

Our ability to predict decision acuity at baseline when controlling for IQ, as 

well as IQ when controlling for decision acuity, based on particular 

connectivity modules demonstrates that both constructs have specific 

signatures in rsFC. This demonstrates that decision acuity has a 

neurobiological substrate distinct from that of IQ and further validates the 

distinctiveness of their association with psychological measures. Although 

IQ absorbed the predictive ability of the connections within the FPN, the 

MPC, and OFC, decision acuity tapped on modules within the default mode 

(PCC), salience (OPC) and sensorimotor (SMT) networks independently of 

IQ. On the other hand, IQ tapped on the salience network (OPC) too, but 

also on temporal networks associated with language processing (PTC), 
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consistent with  the vocabulary subscale of IQ being heavily reliant on 

linguistic ability ​(Axelrod, 2002)​. Interestingly, connections within the 

OPC, which encompasses the insula, independently contributed to 

predicting both decision acuity and IQ at baseline. As part of the salience 

network, these regions may contribute to modulate the switching between 

internally and externally directed cognitions ​(Uddin, 2015)​. 

Decision acuity was related to the mental health indicator, ‘general social 

functioning’, independently from IQ. This suggests that differences in 

decision acuity may confer (or indicate) vulnerability to specific 

psychopathologies. Future studies can usefully build on these 

observations,  as rsFC data can be acquired quickly and does not impose 

cognitive demands on patients.  This endeavour can benefit from 

advances in computational modelling of cognitive and behavioural data 

(Huys, Maia, & Frank, 2016), improvements in imaging data collection, 

processing and modelling (Ciric et al., 2018; Kundu et al., 2017; Todd et 

al., 2016; Vidaurre, Smith, & Woolrich, 2017), and initiatives to acquire 

high quality large-scale datasets (Kiddle et al., 2017; Van Essen et al., 

2013).  

 

We acknowledge limitations of the present study. We had a retention rate 

between baseline and follow up of  70%. Although this is acceptable, it 

meant that our follow-up sample was smaller and we had reduced power 

to detect longitudinal effects. Although epidemiologically stratified, our 

sample was a volunteer one, introducing potential self-selection biases. 

Finally, the reliability and ecological validity of task-based measures would 

benefit from further improvement.  

 

Conclusion 

 
We describe a new cognitive construct, decision acuity, that captures          

global decision-making ability. High decision acuity prominently reflected        

low decision variability. Decision acuity showed acceptable reliability,        

increased with age and was associated with mental health symptoms          

independently of intelligence. Crucially, it was associated with distinctive         

resting-state networks, in particular in brain regions typically engaged by          

decision-making tasks. The association between decision acuity and        

functional connectivity was temporally stable and distinct from that of IQ.  

 

 

Methods 

Participants 
Participants were invited from a non-clinical community sample until 780          

were evenly recruited across 5 age bins (14-16 years,16-18 etc.) and two            
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sexes. Of these, 300 healthy participants were invited for MRI scanning.           

We supplemented this non-clinical sample with 50 young people recently          

diagnosed with DSM-5 major depressive disorder. The depressed cohort         

was excluded from MRI analyses reported here. The study was approved           

by the Cambridge Research Ethics Committee (12/EE/0250). All        

participants (and their parents, if less than 16 years old) gave informed            

consent to participate.  

Decision measures 
We used a task battey to assess fundamental aspects of decision-making, 

namely sensitivity to rewards and losses, attitudes to risk, inter-temporal 

and reflection impulsivity, pro-sociality and goal-directedness. The battery 

is presented in table 1 and described in more detail in the supplement. 

Good performance attracted proportionally greater fees in real money (see 

Supplement).  

Key measures were first extracted from each task according to published 

methodologies. 830 participants (including all scanned participants) 

yielded usable data across tasks. 

 

We were interested in whether common factors operated across domains 

of decision-making. We therefore pre-processed the data to reduce strong 

correlations among measures within-task, which would otherwise 

dominate the factor analysis, as is described in the Supplement. In total 

we formed 32 measures, listed in table 1 and detailed in the Supplement. 

Derivation, validation and psychometric correlates of Decision Acuity 
We tailored our analysis to test the hypothesis that around three 

dimensions of covariation would meaningfully load across decision-making 

measures, expecting reward sensitivity, risk preferences, 

goal-directedness and prosociality to be represented in these dimensions. 

We allowed, however,  the data to determine the number of factors in the 

model. We used an exploratory-confirmatory approach to establish the 

structure of the factor model using the baseline data. Then, we made use 

of the longitudinal nature of our sample to test the temporal stability and 

predictive validity of the key derived measure. 

Task measures at baseline only were randomly divided into a 'discovery' 

and 'testing' samples. N=416 participants were used for exploratory 

common factor analysis (ECFA) and 414 were used for out-of-sample 

testing. We found  loadings on the first ECFA factor to vary smoothly 

across all parameters, and the great majority of loadings to be lower than 

the conventional threshold of 0.4 (​Muthén & Muthén, 2008) ​ (cf. Figure 1). 

Therefore, for the out-of-sample confirmatory analysis, we allowed for all 

decision-making items to contribute, recognizing that individual item 

weights might be poorly estimated, but expecting that the resulting 

overall scores would be well estimated. We tested this by comparing (i) 
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discovery vs. test samples and (ii) purposeful half-splits of the population 

with respect to sex and age (see Supplement).  Overall, the exploratory 

analyses suggested that only one common factor,  - which we termed 

'decision acuity', ​d​ - was relevant to our study questions and that within 

the range of three to five factors, ​d​ scores were not sensitive to the exact 

number of factors. (see supplement). We thus opted for a 4-factor model 

for all subsequent analyses.  

 

We then tested whether decision acuity as a construct was stable with 

respect to (i) the random discovery/confirmation split (ii) median-split age 

and (iii) sex ( Supplement B). Finally, we tested for external validity of 

decision acuity in correlating with (iv) mental health scores for 

symptomatology and dispositions, using bifactor scores and (v) patterns 

of functional brain connectivity, as described in Results. 

 

MRI data acquisition 
MRI scans were acquired on three identical 3T whole-body MRI systems 

(Magnetom TIM Trio; VB17 software version; Siemens Healthcare): two 

located in Cambridge and one located in London. Reliability of the MRI 

procedures across sites has been demonstrated elsewhere (Weiskopf et 

al., 2013). Structural MRI scans were acquired using a multi-echo 

acquisition protocol with six equidistant echo times between 2.2 and 14.7 

ms, and averaged to form a single image of increased signal-to-noise ratio 

(SNR); TR = 18.70 ms, 1.0 mm isotropic voxel size, field of view (FOV) = 

256 x 256, and 176 sagittal slices with parallel imaging using GRAPPA 

factor 2 in anterior-posterior phase-encoding direction. Resting-state 

blood-oxygen-level dependent (BOLD) fMRI (rsfMRI) data were acquired 

using multi-echo acquisition protocol with three echo times (TE = 13, 31, 

48 ms), TR of 2420 ms, 263 volumes, 3.8 mm isotropic voxel size, 34 

oblique slices with sequential acquisition and a 10% gap, FOV = 240 x 

240 mm and matrix size = 64 x 64 x 34. The duration of the functional 

scan was approximately 11 minutes. 

 

Connectivity Analysis 
The rsfMRI data were denoised with multi-echo independent component 

analysis (ME-ICA) (Kundu et al., 2017). ME-ICA leverages the echo time 

dependence of the BOLD signal to separate BOLD-related from artifactual 

signal sources, like head motion. The functional images were normalized 

to MNI space by composing a rigid transformation of the average 

functional image to the participant’s structural image and a non-linear 

transformation of the structural image to the MNI template, and finally 

smoothed with a 5 mm full-width-at-half-maximum Gaussian kernel. 

Following (Smith et al., 2015), group-ICA was applied to the 

pre-processed fMRI baseline data to decompose it in 200 nodes, 32 of 
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which were identified as artefacts by visual inspection and excluded. The 

remaining 168 nodes are either confined brain regions or networks formed 

by regions where BOLD signal time-series are strongly correlated. Multiple 

spatial regressions against the group-ICA spatial maps were used to 

estimate time-series for each network and subject, for both baseline and 

follow-up scans. RsFC matrices (168 x 168 nodes) were then computed 

using partial correlation with limited L2 regularisation (Smith et al., 2011). 

All these preprocessing steps were conducted with the ME-ICA toolbox 

(​https://afni.nimh.nih.gov/pub/dist/src/pkundu/READ ​M​E.meica ​) and the 

FMRIB Software Library (FSL, ​https://fsl.fmrib.ox.ac.uk/fsl ​). 
 

The obtained rsFC values were used as features in a sparse partial least 

squares (SPLS) model to predict two outcome measures of interest 

(decision acuity and IQ composite scores). SPLS ((Chun & Kele​ş, 2010); 
'spls' R library, ​https://cran.r-project.org/web/packages/spls/​) is a 

multivariate regression model that simultaneously achieves data reduction 

and feature selection. It has application in datasets with highly correlated 

features and sample size much smaller than the total number of features, 

as was the case in the present study. SPLS models are governed by two 

parameters (number of latent components and a threshold controlling 

model sparsity) that were adjusted using a nested cross-validation 

scheme (i.e. using data in the training dataset only) with 10 folds 

(supplement Figure S4).  
 

Predicted scores were estimated by 20-fold cross-validation repeated 5         

times. For each training-testing partition we performed the following         

steps. To elucidate whether the predictions were driven by rsFC values           

independently of age, sex or covariates of no interest (see below), we            

fitted a linear model to the training dataset and regressed out from the             

target variable (in both training and testing datasets) age , sex and their             

interaction as well as brain volume, scanning site and head-motion-related          

parameters. Head motion is known to originate spurious correlations that          

bias connectivity estimates and therefore (besides the ME-ICA        

preprocessing explained above) we regressed out average framewise        

displacement (FD), a summary index of the amount of in-scanner motion           

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), and the degrees of           

freedom resulting from the ME-ICA denoising, which may differ across          

subjects depending on how much nuisance variance is removed from their           

data. As an additional control for head motion, subjects whose mean FD            

was above 0.3 mm were not included in the analysis. We also            

standardized both training and testing data with respect to the mean and            

standard deviation of the training data (separately for each feature). As a            

first step to filter out uninformative features and speed up computations,           

only those significantly (p < 0.05) correlated with the outcome variable in            

the training dataset were entered in the SPLS model. We then used a             

bagging strategy where data were resampled with replacement 200 times          

and as many SPLS models were fitted to the resampled datasets, and            

their feature weights averaged to produce a final model. The purpose of            

this step was 1) to improve the generalizability of the final average model             

and 2) to allow estimation of the stability of the feature weights selected.             

The final, average model was used to compute the predicted scores for            
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the testing partition. The same procedure was repeated for all folds to            

obtain one predicted score for each subject, where the predicted score for            

each participant depended only on data from other subjects in the sample.            

These procedures were implemented with R (​https://www.r-project.org/​)       

and MATLAB (​https://www.mathworks.com ​). 
 

Network node community structure 
To enhance our understanding of the anatomical distribution of the          

predictive connections, we performed a ‘virtual lesion’ analysis (Dubois, J.          

et al., 2018), which entails assessing the performance of the model when            

it is trained only on subsets of connections instead of the full ensemble.             

First, we partitioned the set of nodes into disjoint modules or communities            

(to some extent analogous to large-scale functional networks (Smith et          

al., 2009)) formed by nodes which displayed high connectivity among          

them but lower connectivity with nodes in other modules. We obtained the            

community structure directly from our dataset instead of relying on          

previous partitions that have been derived from adult connectomes (Ito et           

al., 2017; Power et al., 2011) (Ito et al., 2017; Power et al., 2011),              

because brain connectivity of adolescents and adults is known to differ           

(Fair et al., 2009).  

 

To produce the partition, we averaged the baseline rsFC matrices across           

participants and removed negative entries. The resulting matrix was         

submitted to the Louvain community detection algorithm for weighted         

graphs (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and this         

partition was refined using a modularity fine-tuning algorithm (Sun,         

Danila, Josić, & Bassler, 2009). Since the algorithm is not deterministic, it            

was applied 100 times and the results gathered in a nodes x nodes             

consensus matrix that indicates the frequency by which the corresponding          

node pair was assigned to the same module. The consensus matrix was            

partitioned repeatedly until convergence. The algorithm depends on a         

parameter γ that controls the resolution (which determines the ensuing          

number of modules). We adjusted this parameter to maximize the          

normalized mutual information between solutions at different resolutions.        

The optimal value of γ ensures the most stable partitioning and in our             

dataset (γ=2.7) led to a solution with 14 modules, a number that yielded             

interpretable modules and is on par with the cardinality used in previous            

studies. These analyses are similar to those reported in (Geerligs,          

Rubinov, Cam-CAN, & Henson, 2015) and were performed with the Brain           

Connectivity Toolbox ( (Rubinov & Sporns, 2010),       

www.brain-connectivity-toolbox.net​) for MATLAB. Having parcellated the      

connectome in the 14 modules, we trained the prediction model for each            

one of them using only connections implicating nodes in that module (i. e.             

either connections among nodes in the module or connections between          

nodes in the module and the rest of the brain). We employed the same              

module decomposition in the analysis concerning the follow-up dataset. 
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Predictive performance 
We assessed predictive performance as the Pearson correlation coefficient 

r​ between measured ​d​ and (cross-validated) predicted ​d​ (​d ​
pr​), averaged 

across repetitions of the cross-validation splits. After Fisher 

transformation, the null distribution of ​r​ should follow a zero-centered 

Gaussian distribution. In order to appraise significance, we estimated the 

variance of this distribution by generating 30 random permutations of the 

target variable  ​(Winkler et al., 2016)​ and repeating the model-fitting 

procedures mentioned above, separately for each fold. We then derived 

p-values for the observed ​r​ from the estimated null distribution. We 

assessed predictive performance for a model based on the full set of 

connections, as well as for models trained on the subsets of connections 

corresponding to the modules described in the previous subsection. 

To demonstrate that the relationships between connectivity and decision 

acuity were stable over time and replicate, we used the model estimated 

at baseline to predict ​d​ based on the follow-up rsFC data for modules that 

were significant at baseline. Given that the data at baseline and follow-up 

are not independent, we kept the same cross-validation fold structure in 

both datasets, so that the prediction of a subject at follow-up did not 

involve their own rsFC baseline data, as this would have inflated the 

estimates of predictive performance at follow-up. 

Connectivity patterns predictive of ​d​ vs IQ 
For imaging analyses, we derived a composite score of IQ by averaging            

standardized vocabulary and matrix IQ subscores, rather than using the          

standardized WASI score, because of two reasons. First, we wanted          

analyses involving both age and IQ to have a straightforward          

interpretation where IQ represents a measure of raw ability, as opposed           

to age-standardized ability, and explicitly test for age-dependence        

separately. Second, we found evidence (Results) that our sample was          

different from the original on which standardised scores were derived, and           

hence the standardisation procedure might be invalid. Next, we trained          

models both on the complete set of connections and the subsets           

corresponding to the individual modules to predict the IQ composite          

scores, as we had done previously to predict ​d​, yielding IQ​
pr​, and assessed             

predictive performance for each of the modules separately. To compare          

the connectivity patterns that were predictive of ​d with those predictive of            

IQ, for each of the modules we assessed the partial correlation between ​d             

and ​d​
pr ​when controlling for ​IQ​, and the partial correlation between ​IQ and 

 
           

IQ​
pr ​when controlling for ​d​. In all these analyses we corrected for age, sex

 
             

and imaging-related confounds as above.  
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