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Abstract

Decision-making underpins many important facets of our lives. Here, we
assessed if a general ability factor underpins decision-making abilities. Using
factor analysis of 32 decision-making measures in 830 adolescents and young
adults, we identified a common factor we refer to as " decision acuity’ that was
distinct from IQ and reflected advantageous decision-making abilities. Decision
acuity decreased with low general social functioning and aberrant thinking.
Crucially, decision acuity and IQ had dissociable neural signatures in terms of
resting-state functional connectivity involving specific neural networks. Finally,
decision acuity was reliable and its relationship with functional connectivity was
stable when measured in the same individuals 18 months later. We conclude
that our behavioural and brain data demonstrate a new cognitive construct
encapsulating ability to perform decision-making across distinct domains, and
that the expression of this construct may be important for understanding
psychopathology.
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A generic decision-making ability predicts psychopathology
in adolescents and young adults and is reflected in distinct
brain connectivity patterns

Introduction

Decision-making abilities are important for economic performance and
social adaptation, and a computational characterization of decision-making
processes is likely to advance the understanding of psychiatric disorders
(Scholl & Klein-Flugge, 2018). Yet, unlike traditional cognitive constructs
such as intelligence, the distribution and covariation of decision-making
characteristics in the population is unknown and the reliability of
behavioral tasks typically used to measure them has been questioned
(Brown et al., 2020; Hedge et al., 2020). Likewise, we know little about
the neural underpinnings of decision-making during adolescence and early
adulthood, a crucial period for brain maturation (Giedd, 2004; Whitaker et
al., 2016). Advancing our understanding here is rendered quite important
by the fact that the bulk of psychopathology emerges during adolescence
and early adulthood (Paus et al., 2008).

Decision-making involves an interplay of multiple cognitive abilities
needed to evaluate available options and settle on a course of action
(Kable & Glimcher, 2009; Phelps et al., 2014). Reinforcement-learning has
helped characterize the computational and neurobiological processes by
which individuals evaluate options (Dayan & Daw, 2008; Sutton & Barto,
1998). This literature is often framed in terms of model-based and
model-free evaluations (Daw et al., 2005; Dolan & Dayan, 2013). In the
former, the value of different actions is calculated prospectively based on
the goals and actions that will lead to these goals. In contrast, the latter
involves learning the value of actions by associating them with the value
of experienced outcomes.

The relative importance of different evaluation systems is an important
individual difference, likely to be trait-like at least in part. Importantly,
model based and model free approaches trade off at different levels in
different individuals (Eppinger et al., 2017; Kool et al., 2017). Similarly,
the impact of Pavlovian heuristics, that is, the propensity to attach value
to specific actions by mere association with perceived features of a
context, also varies across individuals (de Boer et al., 2019; Guitart-Masip
et al., 2012; Moutoussis et al., 2018). Individuals also differ with respect
to other factors affecting the evaluation of options, for example, in their
aversion to variability of outcomes for an action rather than its mean
outcome (Christopoulos et al., 2009; Payzan-LeNestour et al., 2013).
Similarly, individuals balance the need to actively collect rewards against
the risks of potential dangers in the environment (Bach et al., 2020; Loh
et al., 2017; O'Neil et al., 2015). In the temporal domain, individuals
balance a need to exploit known choices against uncertainty of exploring
unknown ones (Badre, Doll, Long, & Frank, 2012; Sutton & Barto, 1998).
Finally, understanding of intentions and emotions of others has a big
impact when making decisions in social contexts (King-Casas et al., 2008;
Moutoussis, Dolan, & Dayan, 2016).


https://www.zotero.org/google-docs/?4GxjJs
https://www.zotero.org/google-docs/?rrswXe
https://www.zotero.org/google-docs/?JYD1Zm
https://www.zotero.org/google-docs/?JYD1Zm
https://www.zotero.org/google-docs/?UKU75Z
https://www.zotero.org/google-docs/?7hrJDP
https://www.zotero.org/google-docs/?nLLiSF
https://www.zotero.org/google-docs/?nLLiSF
https://www.zotero.org/google-docs/?Cyl9kI
https://www.zotero.org/google-docs/?7bxpuB
https://www.zotero.org/google-docs/?mxkLZE
https://www.zotero.org/google-docs/?o2AfTU
https://www.zotero.org/google-docs/?o2AfTU
https://doi.org/10.1101/2020.08.20.259697
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259697; this version posted August 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Although fundamental decision-making characteristics are likely to be
largely distinct, we hypothesised that they would also be subject to
covariation in the population. In this frame of reference, shared variance
along latent dimensions is analogous to the structure of intelligence,
where a cornucopia of abilities covaries with latent dimensions such as
general and domain-specific intelligence (Van Der Maas et al., 2006). We
hypothesised that the main constructs influencing performance across
distinct instances of decision-making would include sensitivity to gains and
losses, the extent to which model-based approaches dominate choice
evaluation, an overall propensity to take risks, and an ability to make
good social judgements.

To assess dimensions of decision-making ability, we examined a battery of
seven decision-making tasks (table 1), administered to 830 14-24 year
olds sampled from a pool of about 2400 young people living in the
community in England (Kiddle et al., 2017). We used computational
modelling and key descriptive statistics to extract component measures of
decision-making (Bach et al., 2014; Fett et al., 2012; Moutoussis, Bentall,
El-Deredy, & Dayan, 2011; Moutoussis et al., 2018, 2016; Rigoli et al.,
2016; Shahar, Hauser, et al., 2019). We then derived latent cognitive
constructs underlying decision-making across tasks, by submitting the
component measures to factor analysis (see Methods) and assessed their
reliability using the data of 571 participants that performed the
decision-making battery a second time on a follow up 18 months apart on
average. Next, we characterised the relationship between the inferred
latent cognitive constructs and external measures such as age, 1Q, and
mental health characteristics. Here, we hypothesized that latent
dimensions of decision-making would correlate with self-reported
psychological dispositions and mental health symptoms. To test this latter
hypothesis, we utilised participants' derived scores for both general and
specific factors of dispositions (Polek et al., 2018) and mental health
symptoms (St Clair et al., 2017).

Crucially, we also characterised the neural circuitry underpinning the
latent decision-making factors. To achieve that, we analysed functional
connectivity from resting-state fMRI data (rsFC), providing a metric of
coupling between blood-oxygen-level-dependent (BOLD) time series from
different brain regions or networks (nodes). Patterns of rsFC are known to
behave to a large degree as dispositions (Finn et al., 2015) and predict a
subject's cognitive abilities in other domains (Dubois, J., Galdi, P., Lynn,
P.K., & Adolphs, R., 2018; Kong et al., 2018; Li et al., 2019; Rosenberg et
al., 2015; Smith et al., 2015). We thus asked which connectivity networks
predict latent decision-making factors and whether the identified
connectivity networks were stable over time.

We found evidence of a single dimension of covariation in the population
to which multiple decision-making tasks contributed. This dimension,
which we term 'decision acuity', reflected speed of learning, ability to heed
cognitively distant outcomes, and low decision variability. It showed an
acceptable reliability much higher than typical decision-making tasks
(Moutoussis et al., 2018) and was associated with distinct patterns of
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rsFC. Finally, decision acuity was distinct from IQ, as it had a distinct
functional connectivity signature and was differentially related to
psychological dispositions and symptoms.

Results

'Decision acuity' is an important dimension of decision-making

A total of 830 young people aged 14-24 were tested with a battery of
tasks assessing fundamental components of decision-making. 349 among
them underwent brain functional magnetic resonance imaging at rest, on
the same day as cognitive testing, to assess functional connectivity.
Scanned participants had no history of neuropsychiatric disorder and were
confirmed to be healthy on SCID interview. The Methods section and
online Supplement provide further detail.

The decision-making tasks included in the cognitive task battery are
described in table 1. Conceptual decision-making constructs overlapped
across tasks in the battery, although each task also had a unique focus.
Thus we expected participants to show how much they cared about
outcomes (reward sensitivity) in almost all tasks. In a similar vein, we
expected participants engaging in more sophisticated planning to show
increased model-basedness (table 1, task F), better information-gathering
(task E), and less temporal discounting (task D). Likewise, we expected
participants more capable in interpersonal decision-making to learn more
from others (task D) and invest more in benign partners (task F). Finally,
we expected those showing excessive risk tolerance to avoid hazards less
(task B) and to be less economic risk-averse (esp. in task C). In all, we
obtained 32 decision-making measures which we subjected to factor
analyses. See Methods for details of the factor-analytic approach,
including dimensionality estimation and stability analyses.

Table 1: Cognitive task battery.

Task (with key reference) [Key constructs assessed Key individual parameters and descriptives
measures.

A. Go-NoGo task Pavlovian biases, i.e. 1. Pavlovian Bias;

(Guitart-Masip et al., propensity to engage in action

2.-3. Reaction times for action choices in the
context of threat vs. opportunity.

4. Sensitivity to outcomes.

5. General bias for action rather than
non-action;

6. Motivation-independent, 'irreducible’,
variability in decision-making;

2012) in order to obtain rewards and
to abstain from action to avoid
losses; Motivational power of
outcomes; Instrumental
learning rate in the appetitive
and aversive domains.
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7.-8. Learning rates in the appetitive and
aversive contexts.

B. Approach-Avoidance
conflict task
(Bach et al., 2014)

\Willingness to expose oneself
to different levels of risk for
the sake of amassing
rewards.

9.-11. Factor-analytic scores summarizing
variance over a comprehensive set of
behavioural measures in the task.
IApproximately corresponding to sensitivity to
overall level of threat, sensitivity to the time
dependency of threat, and overall
performance.

C. Roulette task
(Symmonds et al., 2011)

(NB: administered at
baseline only)

Baseline taste for gambling
Risk-avoidance (preference
for outcome distributions of
low variance).

12. Overall preference for gambling over
known returns.

13. Preference weight for variance, compared
to the mean, of an outcome distribution,
named 'Economic risk preference’;

14. Effect of outcome distribution asymmetry
(skewness) on preferences.

15. Sensitivity to expected value of
outcomes.

D. Interpersonal-
Discounting task
(Moutoussis et al., 2016)

Baseline inter-temporal
discounting; shift in
discounting preferences upon
exposure to peers'
preferences.

16. Basic hyperbolic temporal discounting
coefficient;

17. Relevance of others' observed
preferences to the self;

18. Discounting taste uncertainty, i.e.
uncertainty about one's own tastes in this
domain.

19. Decision variability over choosing for
others

20. Irreducible decision noise.

E. Information Gathering
task

(Moutoussis, Bentall,
El-Deredy, & Dayan,
2011)

IAssessment of whether future
decisions will on balance be
more advantageous if one
gathers more information.

21. Information Sampling noise, which
determines not only decision variability but
also effective depth of planning.

22. Subjective cost of every piece of
information asked for when experimenter
imposes no such costs explicitly;

23.-24. Ditto if a fixed, external cost-per-step
is imposed.

F. Multi-round
Investor-Trustee task
(Fett et al., 2012)

Overall strategies used to
elicit cooperation and avoid
being exploited by one's
anonymous, task partner.

25. Initial trust, i.e. the amount given by the
investor to the Trustee before they have any
specific information about them.

26. Cooperativeness: Average degree to
which Investor and Trustee tended to
respond to reductions (or increases) in each
other's contributions in kind.
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27. Responsiveness: Average magnitude of
responding to the partner’s change in
contribution.

G. Two-Step task
(Daw et al., 2011)

Strength of habitual
('model-free') and
goal-directed ('model-based')
decision-making

28. Goal-directedness: tendency to shift in
decisions as a consequence of a different
decision being more advantageous according
to the transition probabilities inherent in the

task.

29. Learning rate

30. Perseveration tendency
31. Reward sensitivity

others related to it)

Working with the full battery and the larger, baseline sample, we
discerned four stable decision-making factors, but only the first loaded on
measures from multiple tasks. We named this factor 'decision acuity' or d,
as it loaded negatively on decision variability measures, especially
decision temperature, and loaded positively on measures contributing to
profitable decision-making, such as low temporal discounting and faster
learning rates (Figure 1 and supplemental table S1). Thus, participants
with  high d had low decision variability in economic-risk,
information-gathering, Go-NoGo and Two-Step tasks and had fast reaction
times and high learning rates in the Go-NoGo task. Note that a decision
temperature parameter can always be re-written as the inverse of reward
(and/or loss) sensitivity one. Hence the prominent role of
negatively-loading temperature parameters in d supported our a priori
hypothesis that reward sensitivity constitutes an important shared
characteristic across tasks. Still in the baseline sample, we confirmed that
d correlated with profitable decision-making by estimating a measure of
aggregate task performance which was based on net points won across
tasks, and separate from the components of d (Pearson r=0.50, p
<1le-10; see Supplement part C for details). Remarkably, d predicted this
aggregate measure of performance independently from IQ, whereas most
of the effect of IQ on performance depended on its shared variance with d
(performance in tasks and d sharing common-method variance being a
caveat here).

The other three factors clearly addressed within-task behaviours, rather
than hypothesized global decision-making constructs and were thus of
peripheral interest here. The second selected the Delegated
Inter-temporal Discounting task (D.), the third the Information Gathering
task (E.) and the fourth the Economic Risk preference task (C; Figure S2).
Over all factors, constituent cognitive measures showed high uniqueness

32. Eligibility trace (propensity of learning to
affect not just the current state but also
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scores, as expected from each task being designed to have a unique
focus. 22 of the 32 measures had uniqueness > 80% (Figure 1B).

Decision Acuity increased with age, follow-up and IQ

We first examined how d depended on age, both across and within
participants. Linear mixed effects (LME) modelling over baseline and
follow-up showed a strong fixed-effect dependence on age (beta=0.24,
SE=0.022, p ~ 0.0 (undetectable)). d was stable from baseline to
follow-up, although slightly less so than WASI IQ (r=0.68, p~0.0 for d;
0.77, p~0.0 for WASI IQ; 95% CI for the difference =-0.135 to -0.044;
Fig. 1B) and improved with testing wave (effect size=0.38, p~0.0), but
we found no evidence here or in subsequent analyses that its rate of
increase depended on baseline age. We then confirmed that both matrix
and vocabulary raw IQ (WASI) subscores robustly correlated with d (fixed
effect betas = 0.088, 0.179, SE= 0.008, 0.018, p ~ 0.0). However
inclusion of raw IQ scores did not affect the significance of age as a
regressor (age beta=0.121, SE=0.020, p ~ 0.0). Therefore, not only did
decision acuity increase with age in our sample, but so did the component
that was independent of IQ abilities. IQ subscores and age together
accounted for r’adj=0.31 of the variance in d at baseline.

At baseline, d scores for males were higher than females, t-test p=8.6e-5,
effect size = 0.27. However, if both IQ subscores and age were entered in
LME, the correlation between d and self-reported sex was no longer
significant. Thus, any uncorrected sex dependence is likely to be due to
participant self-selection, that is, amongst males, higher IQ participants
volunteered relative to amongst females.

Mental health factors were specifically associated with Decision
Acuity

We next examined the relationship between d and psychological
symptoms and dispositions, using scores from published studies of the
community sample from whence our participants were sampled (Polek et
al., 2018; St Clair et al., 2017). These studies have established that the
best descriptions in the symptom and disposition domains were provided
by bi-factor models, each comprising a superordinate 'general factor' and
subordinate 'specific factors'. Symptoms were described by a general
distress factor (a.k.a. 'p-factor’, (Caspi et al., 2014) and 5 specific
factors: Mood, Self-confidence, Worry, Aberrant thinking and Antisocial
behaviour. Dispositions were described by a general social functioning
factor and 4 specific factors, Social sensitivity, Sensation seeking, Effortful
control, and Suspiciousness.

d could be significantly predicted by symptoms and dispositions. To test
for this, we used LME analysis with participant as random effect, two
timepoints of symptoms and decision acuity, and one (baseline) score per
participant of dispositions. We first regressed all six symptom scores and
five disposition scores against d, allowing all to compete to explain
variance. We found that amongst symptom scores, d was most strongly
and negatively associated with the 'Aberrant thinking' specific factor,
(p=0.0007, bz=-0.19, SE(bz)=0.051). No other symptom factors were
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significant, (symptom general factor, 'Distress', p=0.82, others ranging
from p=0.35 to 0.99). d significantly related to the general disposition
factor, ‘general social functioning’ (p=0.0002, bz=0.36, SE(bz)=0.096). It
did not relate to specific dispositions (p ranging from 0.47 to 0.80). We
then additionally included raw IQ scores in the LME models. As expected,
both raw IQ scores and age significantly predicted d, and model fit
improved substantially (BIC = 4873 vs. 5083 without IQ). Inclusion of IQ
reduced significance of ‘Aberrant thinking’, which draws on schizotypy and
obsessionality, to trend level, p=0.074, bz=-0.10, SE(bz)=0.053) but if
anything strengthened the significance of ‘Prosociality’ (p=0.0001,
bz=0.32, SE(bz)= 0.084). All these analyses also accounted for age as
above, and did not benefit from more complex models of age.
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Decison Aculty loadings (4-factor sol.)
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B.

decision Aculty at baseline vs. main follow-up
r=0.68, p~0.0
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Figure 1. A. Decision Acuity common Factor over cognitive parameters, based on the
validated 4-factor analysis applied to our whole sample. See supplement table S1 for the key
to measure labels. The top half of variables load positively, while grey vertical lines give a
visual indication of which measures are important, being the thresholds used for inclusion of
variables in the confirmatory analyses B. Decision Acuity was strongly correlated between
baseline and follow-up, as expected for a dispositional measure. Mauve is regression line,
black is identity line.
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Patterns of brain Connectivity are associated with Decision Acuity
differently from IQ

Out of 349 subjects who were scanned at baseline, we discarded baseline
scans without acceptable imaging data quality (3), whose ME-ICA
denoising did not converge (4), who had a diagnosis of depression (36) or
who had excessive motion while scanning (8), leaving 298 baseline scans
for analysis. A further three subjects were removed from analyses
involving IQ scores as they did not complete the IQ tests, leaving 295
subjects for analysis. A population-average parcellation of brain data was
obtained using independent component analysis in our sample, resulting
in 168 networks (nodes) within each of which activity was highly
correlated (see Online Methods for details). Patterns of connectivity
between nodes were then estimated as partial correlation values, or
resting state functional connectivity (rsFC). We then used rsFC values as
features in sparse partial least squares (SPLS) analyses, to predict
decision acuity and composite IQ. We used cross-validation to prevent
overfitting, and predictive accuracy was assessed as Pearson's correlation
coefficient between true scores and values predicted by the model (Figure
S4 and Online Methods for details).

Scores for d predicted on the basis of functional connectivity, d,,
significantly correlated with measured d controlling for demographic and
imaging-related covariates (see methods for details), r=0.145, p<10°®.
The correlation between measured IQ and IQ predicted on the basis of
rsFC using all connections was lower but also significant (r=0.092,

p=9e-5).

To interpret the neuroanatomical structure of the predictive model, we
first partitioned the nodes into anatomically meaningful 'modules' using a
community detection algorithm ((Blondel et al., 2008); see Methods), and
then asked how well each of these modules predicted d. The community
detection algorithm clustered the nodes into modules based on the
strength of their intrinsic connectivity into disjoint communities to some
extent analogous to large-scale functional networks. As shown in figure 2,
we obtained the following modules: anterior temporal cortex including the
medial temporal lobe (ATC); frontal pole (FPL); frontoparietal control
network (FPN); left dorsolateral prefrontal cortex (LDC); medial prefrontal
cortex (MPC); orbitofrontal cortex, medial and lateral (OFC); opercular
cortex (OPC); posterior cingulate cortex (PCC); posterior temporal cortex
(PTC); right dorsolateral prefrontal cortex (RDC); subcortical (SUB);
salience network (SAN); somatosensory and motor areas (SMT); visual
regions (VIS). We fitted a different SPLS model to the subset of
connections involving the nodes in each module, including both intra- and
inter-modular connections.
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Figure 2. Modules detected by the community structure algorithm. The
168 nodes of the parcellation were clustered in 14 modules with high
average rsFC among their nodes. ATC, anterior temporal cortex including
the medial temporal lobe; FPL, frontal pole; FPN, frontoparietal control
network; LDC, left dorsolateral prefrontal cortex; MPC, medial prefrontal
cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, opercular
cortex; PCC, posterior cingulate cortex; PTC, posterior temporal cortex;
RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience
network; SMT, somatosensory and motor areas; VIS, visual regions.

The correlation between measured and predicted d scores was significant
for the FPN, MPC, OFC, OPC, PCC,SMT, and VIS modules after correction
for multiple tests (Figure 3A, Table 2), with the strongest correlations for
OFC, PCC and SMT. For the PCC and SMT modules, the correlation
coefficients exceeded to a small degree the correlation for a model
employing all possible connections. This can be explained as a result of
feature selection. In the full model it is harder to select just the right
features and protect against over-fitting, resulting in a greater penalty in
predictive accuracy. On the other hand, the model trained only on a
smaller set of features is less likely to overfit. This paradoxical increase in
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accuracy for a model with less features is known to be stronger when the
number of observations is small, relative to the number of features (Chu,
Hsu, Chou, Bandettini, & Lin, 2012), which is the case in our dataset. The
different modules comprised diverse humbers of nodes but there was no
significant association between the number of model features and the
correlation between observed and predicted scores (d: r=0.356, p=0.193;
IQ composite scores: r=-0.158, p=0.574).

Out of 235 subjects who were scanned at follow-up, adhering to the same
criteria as for the baseline data, we discarded those without acceptable
imaging data quality (4), whose ME-ICA denoising did not converge (5),
and who presented with excessive motion (3), leaving 223 subjects
available for analysis. We applied the model trained on the baseline data
to the follow-up data (see online methods) for the modules where the
prediction was significant at baseline. Importantly, the prediction of a
subject at follow-up did not involve their own rsFC baseline data (see
online methods), as this would have inflated the estimate of predictive
performance. The baseline model predicted significantly the follow-up d
values based on the follow-up connectivity data when using either all the
connections or those with networks in the FPN, MPC, OFC and SMT
modules, controlling for demographic and imaging related covariates, and
correcting for multiple tests (Figure 3B, Table 2).

In order to assess whether d and IQ can be predicted by specific rsFC
patterns, or alternatively whether both are underpinned by similar
patterns of neural connectivity, we controlled for IQ the partial correlation
coefficients between d, and d, on top of the nuisance covariates previously
included. In a complementary manner, we controlled for d the partial
correlation between IQ,, and IQ (on top of the nuisance covariates). After
correction for IQ composite scores, and correcting for multiple
comparisons, the correlation between d and d,. remained significant for
OPC, PCC and SMT (Figure 3C, Table 2), suggesting that these modules
reflect decision acuity over and above their relation to IQ. On the other
hand, the correlation between IQpr and IQ was significant for OPC and
PTC after controlling for d (Figure 3D, Table 2), suggesting that these
modules reflect IQ over and above their relation to decision acuity. These
analyses demonstrate that decision acuity and IQ have distinguishable
and specific signatures in functional connectivity networks: decision acuity
taps on the default mode, salience and sensorimotor networks, whereas
IQ taps on the salience network but also on temporal networks associated
with language processing.
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A Correlation between observed and predicted d at baseline B Correlation between observed and predicted d at follow-up
(Controlling for all covariates except 1Q) (Contralling for all covariates except 1Q)
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Figure 3. Model predictive performance for each of the functional
modules. A. Coefficient for the correlation between observed d and d,
predicted by models trained on all connections, and the connections
involving nodes in each module. B. Correlation between observed d and
d, predicted by models trained on the baseline data. Only modules for
which the prediction was significant at baseline are shown here. All the
models included as covariates demographic and imaging-related factors
(brain volume, scanning site, head motion; see Online Methods). C. As in
A., correlation between observed d and d,,, but here additionally
correcting for IQ. D. Correlation between observed and predicted IQ, but
correcting for imaging related factors and decision acuity. In all plots, the
leftmost bar corresponds to the model which includes all connections. The
whiskers indicate the intervals containing the lower 95 % probability mass
for the null distribution, corresponding to one-tailed tests. * significant
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uncorrected ** significant with FDR correction for the 15 tests. ATC,
anterior temporal cortex including the medial temporal lobe; FPL, frontal
pole; FPN, frontoparietal control network; LDC, left dorsolateral prefrontal
cortex; MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial
and lateral; OPC, opercular cortex; PCC, posterior cingulate cortex; PTC,
posterior temporal cortex; RDC, right dorsolateral prefrontal cortex; SUB,
subcortical; SAN, salience network; SMT, somatosensory and motor
areas; VIS, visual regions.
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Prediction of d at baseline Prediction of d at follow-up Prediction of d at baseline Prediction of IQ at baseline

(Figure 3A) (Figure 3B) controlling for IQ (Figure 3C) controlling for d (Figure 3D)
Network| r p value (Fl;]l;af;:r.} r p value (F%Eag;:-r.) r p value (F%;a:::: ir.} r p value (F%;ag: ir.)
All 0.145 |< le-6 < le-G** 0.081 0.005 0.018%* 0.021 |0.241 0.651 -0.054 |0.972 1.000
AITC 0.038 |0.116 0.158 0.052 0.048 0.102* 0.018 |0.304 0.651 -0.169 |1.000 1.000
FPL -0.019|0.773 0.773 0.023 0.242 0.363 -0.016 |0.712 1.000 0.036 |0.130 0.488
FPN 0.059 |0.019 0.036%* 0.085 0.002 0.012%* -0.007 |0.605 1.000 -0.045 |0.979 1.000
LDC 0.023 |0.218 0.273 -0.055 0.943 0.985 -0.051 |0.950 1.000 0.069 |0.015 0.073*
MPC 0.069 |0.004 0.011%* 0.118 9.38e-05  |7.03e-04** 0.017 |0.268 0.651 -0.052 |0.960 1.000
OFC 0.143 |< 1le-6 < le-6** 0.083 0.006 0.018%* 0.032  |0.153 0.574 0.013  |0.320 0.960
OPC 0.123 |6.79e-06  |2.04e-05** 0.015 0.333 0.455 0.181 |<1le-6 < le-6** 0.170 |<1e-6 < le-6**
PCC 0.199 |< le-6 < le-6** -0.049 0.915 0.985 0.104 [2.11e-04 |0.001** -0.044 |D.955 1.000
PTC -0.023 0.769 0.773 0.167 < le-6 3e-06%* -0.035 |0.877 1.000 0.113  |7.2e-05 5.4e-04**
RDC 0.037 |0.047 0.078* -0.072 0.985 0.985 -0.101  |1.000 1.000 -0.019 |0.727 1.000
SAN 0.034 |0.106 0.158 0.004 0.448 0.560 -0.138  |1.000 1.000 -0.103  |1.000 1.000
SMT 0.159 |< le-6 < le-G** 0.068 0.010 0.025%* 0.107 |2.77e-05  [2.07e-04** -0.095 |1.000 1.000
SUB -0.006 0.577 0.666 0.022 0.229 0.363 -0.020 |0.77. 1.000 -0.061 [0.980 1.000
IVIS 0.062 |0.012 0.025** 0.033 0.178 0.334 -0.078  |0.998 1.000 -0.008 |0.606 1.000

Table 2. Correlation coefficients between observed and predicted scores,

corresponding to the plots in Figure 3. * significant uncorrected **
significant with FDR correction for the 15 tests.

Discussion

This, to our knowledge, is the first study characterising a distribution of
core decision-making measures in an epidemiologically informed sample
of adolescents and young adults and relating them to brain function. We
found that decision-making performance could be described by a broad
construct receiving contributions from multiple domains of cognition. We
term this 'decision acuity', d. In our sample, d showed satisfactory
longitudinal stability, increased with age and with IQ. d also had specific
associations with mental health measures, over and above IQ.
Importantly, decision acuity showed a temporally stable association with
rsFC, involving networks known to be engaged by decision-making
processes. Moreover, rsFC patterns associated with d and IQ were
distinguishable and specific, despite showing some overlap.

Decision acuity had an interpretable structure, conducive to good
decision-making. It increased as decision variability lessened, evidenced
by its loadings on decision-noise-like parameters across all the tasks that
provided such measures. The most prominent such loadings were inverse
temperature parameters, also known as reward sensitivities. By definition,
high temperature (a.k.a. reduced reward sensitivity) agents care less
about relevant outcomes. This supported our hypothesis that reward
sensitivity loaded on an important common factor. However, d also
received substantial contributions from measures that did not directly
reflect reward sensitivity, but characterised good decision-making. These
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included low temporal discounting, fast reaction times, high learning
rates, baseline trust in others, low propensity for retaliation, low
propensity to show a Pavlovian bias and low lapse rates. Such
non-temperature constructs may also be linked to decision variability,
albeit less directly.

An interesting interpretation of this pattern is that lower-acuity
participants may find it too costly to eliminate computational errors in the
fast pace of many tasks. For example, the computations required to make
decisions about outcomes far in the future may be hard to perform for
low-d agents, resulting in discounting-like behaviour. Lapse rates may be
understood as 'floor' error rates imposed by computational costs. Higher
decision variability may also be driven by effective beliefs about the world,
for example a belief that over-values exploration. If working out the
correct action is too difficult, trial-and-error may be an alternative way to
find answers, so this may be a compensatory or adaptation strategy in the
face of limited cognitive resources. Overall, the contrast of noise with
precision-enhancing measures in this factor is reminiscent of the
association between low ability to reach goals and low policy precision in
active inference (Friston et al., 2013). The agnostic derivation but
interpretable nature of d can thus be seen as an example of data-driven
ontology (Eisenberg et al., 2019).

High decision acuity was associated with older age, increasing by 0.37 SD
over the decade of 14 to 24 years of age, once raw IQ scores were
accounted for. This is important as component parameters have been
found to have weak or variable relationships with age in this same sample
(Moutoussis et al., 2018, 2016). Developmentally, d increasing with age
may reflect a process whereby adolescents and younger adults get more
confident with the outcome of their actions as they age. Next, d was
associated with psychopathology over and above 1IQ, specifically
increasing with the self-assessed interpersonal competence (‘general
social functioning factor’). d also decreased with schizotypy/obsessionality
traits (‘(Aberrant thinking’ factor), but this could be better explained by
raw IQ scores. d explained a small proportion of the variance in
psychopathology, as risk factors often do (Pearson et al., 2015). Overall,
though related to IQ, d had distinct relationships with mental health
measures.

Decision acuity was also associated with specific, distributed patterns of
resting-state brain connectivity. The whole brain, connectivity-based
predictive model depended on connections spread across the entire brain,
implying that d, like IQ, depends on more extensive systems than those
typically observed for state-tapping tasks in functional imaging studies
(e.g. medial prefrontal, dorsolateral prefrontal). Strikingly, the pattern of
connections predicting d was structured, with connections involving nodes
in FPN, MPC, OFC, OPC, PCC, SMT and VIS being most predictive of d,
irrespective of age and sex. Furthermore, the models trained at baseline
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on all the features, as well as those restricted on features within FPN,
MPC, OFC and SMT, were also predictive of d at follow-up, demonstrating
the stability over time of the relationship between rsFC in these modules
and d.

It is unsurprising that decision acuity could be predicted by connections
involving MPC and OFC, as these regions are typically recruited by
decision-making tasks (Garvert et al., 2015; Padoa-Schioppa & Assad,
2006; Rushworth et al., 2011). Circuits involving these regions receive
highly processed sensory information and support goal-directed behaviour
by representing subjective value of stimuli and choices. The OFC also
supports credit assignment during reward learning (Jocham et al., 2016;
Walton et al., 2010) probably by representing the associations between
stimuli and outcomes (Boorman et al., 2016; Padoa-Schioppa & Assad,
2006; Stalnaker et al., 2018). Finally, the OFC has also been suggested to
support the representation of latent states necessary to navigate
decision-making tasks (Schuck et al., 2016; Wilson et al., 2014).
Similarly, involvement of the PCC, FPN and SMT is not surprising. Activity
in the posterior cingulate cortex has been observed during
decision-making tasks and it has been suggested that the PCC monitors
the environment to detect transitions to new states (Pearson et al., 2011).
Although the frontoparietal circuit has mainly been associated with
performance of working-memory tasks (Murray et al., 2017), it has been
shown that working memory mechanisms contribute to learning in typical
reinforcement learning tasks (Collins et al., 2017; Collins & Frank, 2018).
Finally, connections involving motor and somatosensory areas may
contribute to adaptive decision-making. For example, in our tasks, motor
actions were orthogonalized with respect to choices, and recent work
suggests that only the more able decision-makers successfully uncouple
motor action and option choice (Shahar, Moran, et al., 2019). Hence, SMT
connectivity may be important to achieve this decoupling. Similarly, active
suppression of Pavlovian tendencies that can corrupt optimal
decision-making may also involve optimal sensorimotor functioning
(Cavanagh et al., 2013; Swart et al., 2018).

Our ability to predict decision acuity at baseline when controlling for IQ, as
well as IQ when controlling for decision acuity, based on particular
connectivity modules demonstrates that both constructs have specific
signatures in rsFC. This demonstrates that decision acuity has a
neurobiological substrate distinct from that of IQ and further validates the
distinctiveness of their association with psychological measures. Although
IQ absorbed the predictive ability of the connections within the FPN, the
MPC, and OFC, decision acuity tapped on modules within the default mode
(PCC), salience (OPC) and sensorimotor (SMT) networks independently of
IQ. On the other hand, IQ tapped on the salience network (OPC) too, but
also on temporal networks associated with language processing (PTC),
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consistent with the vocabulary subscale of IQ being heavily reliant on
linguistic ability (Axelrod, 2002). Interestingly, connections within the
OPC, which encompasses the insula, independently contributed to
predicting both decision acuity and IQ at baseline. As part of the salience
network, these regions may contribute to modulate the switching between
internally and externally directed cognitions (Uddin, 2015).

Decision acuity was related to the mental health indicator, ‘general social
functioning’, independently from IQ. This suggests that differences in
decision acuity may confer (or indicate) vulnerability to specific
psychopathologies. Future studies can usefully build on these
observations, as rsFC data can be acquired quickly and does not impose
cognitive demands on patients. This endeavour can benefit from
advances in computational modelling of cognitive and behavioural data
(Huys, Maia, & Frank, 2016), improvements in imaging data collection,
processing and modelling (Ciric et al., 2018; Kundu et al., 2017; Todd et
al., 2016; Vidaurre, Smith, & Woolrich, 2017), and initiatives to acquire
high quality large-scale datasets (Kiddle et al., 2017; Van Essen et al.,
2013).

We acknowledge limitations of the present study. We had a retention rate
between baseline and follow up of 70%. Although this is acceptable, it
meant that our follow-up sample was smaller and we had reduced power
to detect longitudinal effects. Although epidemiologically stratified, our
sample was a volunteer one, introducing potential self-selection biases.
Finally, the reliability and ecological validity of task-based measures would
benefit from further improvement.

Conclusion

We describe a new cognitive construct, decision acuity, that captures
global decision-making ability. High decision acuity prominently reflected
low decision variability. Decision acuity showed acceptable reliability,
increased with age and was associated with mental health symptoms
independently of intelligence. Crucially, it was associated with distinctive
resting-state networks, in particular in brain regions typically engaged by
decision-making tasks. The association between decision acuity and
functional connectivity was temporally stable and distinct from that of IQ.

Methods

Participants

Participants were invited from a non-clinical community sample until 780
were evenly recruited across 5 age bins (14-16 years,16-18 etc.) and two
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sexes. Of these, 300 healthy participants were invited for MRI scanning.
We supplemented this non-clinical sample with 50 young people recently
diagnosed with DSM-5 major depressive disorder. The depressed cohort
was excluded from MRI analyses reported here. The study was approved
by the Cambridge Research Ethics Committee (12/EE/0250). All
participants (and their parents, if less than 16 years old) gave informed
consent to participate.

Decision measures

We used a task battey to assess fundamental aspects of decision-making,
namely sensitivity to rewards and losses, attitudes to risk, inter-temporal
and reflection impulsivity, pro-sociality and goal-directedness. The battery
is presented in table 1 and described in more detail in the supplement.
Good performance attracted proportionally greater fees in real money (see
Supplement).

Key measures were first extracted from each task according to published
methodologies. 830 participants (including all scanned participants)
yielded usable data across tasks.

We were interested in whether common factors operated across domains
of decision-making. We therefore pre-processed the data to reduce strong
correlations among measures within-task, which would otherwise
dominate the factor analysis, as is described in the Supplement. In total
we formed 32 measures, listed in table 1 and detailed in the Supplement.

Derivation, validation and psychometric correlates of Decision Acuity
We tailored our analysis to test the hypothesis that around three
dimensions of covariation would meaningfully load across decision-making
measures, expecting reward sensitivity, risk preferences,
goal-directedness and prosociality to be represented in these dimensions.
We allowed, however, the data to determine the number of factors in the
model. We used an exploratory-confirmatory approach to establish the
structure of the factor model using the baseline data. Then, we made use
of the longitudinal nature of our sample to test the temporal stability and
predictive validity of the key derived measure.

Task measures at baseline only were randomly divided into a 'discovery'
and 'testing' samples. N=416 participants were used for exploratory
common factor analysis (ECFA) and 414 were used for out-of-sample
testing. We found loadings on the first ECFA factor to vary smoothly
across all parameters, and the great majority of loadings to be lower than
the conventional threshold of 0.4 (Muthén & Muthén, 2008) (cf. Figure 1).
Therefore, for the out-of-sample confirmatory analysis, we allowed for all
decision-making items to contribute, recognizing that individual item
weights might be poorly estimated, but expecting that the resulting
overall scores would be well estimated. We tested this by comparing (i)
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discovery vs. test samples and (ii) purposeful half-splits of the population
with respect to sex and age (see Supplement). Overall, the exploratory
analyses suggested that only one common factor, - which we termed
'decision acuity', d - was relevant to our study questions and that within
the range of three to five factors, d scores were not sensitive to the exact
number of factors. (see supplement). We thus opted for a 4-factor model
for all subsequent analyses.

We then tested whether decision acuity as a construct was stable with
respect to (i) the random discovery/confirmation split (ii) median-split age
and (iii) sex ( Supplement B). Finally, we tested for external validity of
decision acuity in correlating with (iv) mental health scores for
symptomatology and dispositions, using bifactor scores and (v) patterns
of functional brain connectivity, as described in Results.

MRI data acquisition

MRI scans were acquired on three identical 3T whole-body MRI systems
(Magnetom TIM Trio; VB17 software version; Siemens Healthcare): two
located in Cambridge and one located in London. Reliability of the MRI
procedures across sites has been demonstrated elsewhere (Weiskopf et
al., 2013). Structural MRI scans were acquired using a multi-echo
acquisition protocol with six equidistant echo times between 2.2 and 14.7
ms, and averaged to form a single image of increased signal-to-noise ratio
(SNR); TR = 18.70 ms, 1.0 mm isotropic voxel size, field of view (FOV) =
256 x 256, and 176 sagittal slices with parallel imaging using GRAPPA
factor 2 in anterior-posterior phase-encoding direction. Resting-state
blood-oxygen-level dependent (BOLD) fMRI (rsfMRI) data were acquired
using multi-echo acquisition protocol with three echo times (TE = 13, 31,
48 ms), TR of 2420 ms, 263 volumes, 3.8 mm isotropic voxel size, 34
oblique slices with sequential acquisition and a 10% gap, FOV = 240 x
240 mm and matrix size = 64 x 64 x 34. The duration of the functional
scan was approximately 11 minutes.

Connectivity Analysis

The rsfMRI data were denoised with multi-echo independent component
analysis (ME-ICA) (Kundu et al., 2017). ME-ICA leverages the echo time
dependence of the BOLD signal to separate BOLD-related from artifactual
signal sources, like head motion. The functional images were normalized
to MNI space by composing a rigid transformation of the average
functional image to the participant’s structural image and a non-linear
transformation of the structural image to the MNI template, and finally
smoothed with a 5 mm full-width-at-half-maximum Gaussian kernel.
Following (Smith et al., 2015), group-ICA was applied to the
pre-processed fMRI baseline data to decompose it in 200 nodes, 32 of
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which were identified as artefacts by visual inspection and excluded. The
remaining 168 nodes are either confined brain regions or networks formed
by regions where BOLD signal time-series are strongly correlated. Multiple
spatial regressions against the group-ICA spatial maps were used to
estimate time-series for each network and subject, for both baseline and
follow-up scans. RsFC matrices (168 x 168 nodes) were then computed
using partial correlation with limited L2 regularisation (Smith et al., 2011).
All these preprocessing steps were conducted with the ME-ICA toolbox
(https://afni.nimh.nih.gov/pub/dist/src/pkundu/README.meica) and the
FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl).

The obtained rsFC values were used as features in a sparse partial least
squares (SPLS) model to predict two outcome measures of interest
(decision acuity and IQ composite scores). SPLS ((Chun & Keles, 2010);
'spls' R library, https://cran.r-project.org/web/packages/spls/) is a
multivariate regression model that simultaneously achieves data reduction
and feature selection. It has application in datasets with highly correlated
features and sample size much smaller than the total number of features,
as was the case in the present study. SPLS models are governed by two
parameters (number of latent components and a threshold controlling
model sparsity) that were adjusted using a nested cross-validation
scheme (i.e. using data in the training dataset only) with 10 folds
(supplement Figure S4).

Predicted scores were estimated by 20-fold cross-validation repeated 5
times. For each training-testing partition we performed the following
steps. To elucidate whether the predictions were driven by rsFC values
independently of age, sex or covariates of no interest (see below), we
fitted a linear model to the training dataset and regressed out from the
target variable (in both training and testing datasets) age , sex and their
interaction as well as brain volume, scanning site and head-motion-related
parameters. Head motion is known to originate spurious correlations that
bias connectivity estimates and therefore (besides the ME-ICA
preprocessing explained above) we regressed out average framewise
displacement (FD), a summary index of the amount of in-scanner motion
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), and the degrees of
freedom resulting from the ME-ICA denoising, which may differ across
subjects depending on how much nuisance variance is removed from their
data. As an additional control for head motion, subjects whose mean FD
was above 0.3 mm were not included in the analysis. We also
standardized both training and testing data with respect to the mean and
standard deviation of the training data (separately for each feature). As a
first step to filter out uninformative features and speed up computations,
only those significantly (p < 0.05) correlated with the outcome variable in
the training dataset were entered in the SPLS model. We then used a
bagging strategy where data were resampled with replacement 200 times
and as many SPLS models were fitted to the resampled datasets, and
their feature weights averaged to produce a final model. The purpose of
this step was 1) to improve the generalizability of the final average model
and 2) to allow estimation of the stability of the feature weights selected.
The final, average model was used to compute the predicted scores for
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the testing partition. The same procedure was repeated for all folds to
obtain one predicted score for each subject, where the predicted score for
each participant depended only on data from other subjects in the sample.
These procedures were implemented with R (https://www.r-project.org/)
and MATLAB (https://www.mathworks.com).

Network node community structure

To enhance our understanding of the anatomical distribution of the
predictive connections, we performed a ‘virtual lesion’ analysis (Dubois, J.
et al., 2018), which entails assessing the performance of the model when
it is trained only on subsets of connections instead of the full ensemble.
First, we partitioned the set of nodes into disjoint modules or communities
(to some extent analogous to large-scale functional networks (Smith et
al., 2009)) formed by nodes which displayed high connectivity among
them but lower connectivity with nodes in other modules. We obtained the
community structure directly from our dataset instead of relying on
previous partitions that have been derived from adult connectomes (Ito et
al., 2017; Power et al., 2011) (Ito et al., 2017; Power et al., 2011),
because brain connectivity of adolescents and adults is known to differ
(Fair et al., 2009).

To produce the partition, we averaged the baseline rsFC matrices across
participants and removed negative entries. The resulting matrix was
submitted to the Louvain community detection algorithm for weighted
graphs (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and this
partition was refined using a modularity fine-tuning algorithm (Sun,
Danila, Josi¢, & Bassler, 2009). Since the algorithm is not deterministic, it
was applied 100 times and the results gathered in a nodes x nodes
consensus matrix that indicates the frequency by which the corresponding
node pair was assigned to the same module. The consensus matrix was
partitioned repeatedly until convergence. The algorithm depends on a
parameter y that controls the resolution (which determines the ensuing
number of modules). We adjusted this parameter to maximize the
normalized mutual information between solutions at different resolutions.
The optimal value of y ensures the most stable partitioning and in our
dataset (y=2.7) led to a solution with 14 modules, a number that yielded
interpretable modules and is on par with the cardinality used in previous
studies. These analyses are similar to those reported in (Geerligs,
Rubinov, Cam-CAN, & Henson, 2015) and were performed with the Brain
Connectivity Toolbox ( (Rubinov & Sporns, 2010),
www.brain-connectivity-toolbox.net) for MATLAB. Having parcellated the
connectome in the 14 modules, we trained the prediction model for each
one of them using only connections implicating nodes in that module (i. e.
either connections among nodes in the module or connections between
nodes in the module and the rest of the brain). We employed the same
module decomposition in the analysis concerning the follow-up dataset.
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Predictive performance

We assessed predictive performance as the Pearson correlation coefficient
r between measured d and (cross-validated) predicted d (d,,), averaged
across repetitions of the cross-validation splits. After Fisher
transformation, the null distribution of r should follow a zero-centered
Gaussian distribution. In order to appraise significance, we estimated the
variance of this distribution by generating 30 random permutations of the
target variable (Winkler et al., 2016) and repeating the model-fitting
procedures mentioned above, separately for each fold. We then derived
p-values for the observed r from the estimated null distribution. We
assessed predictive performance for a model based on the full set of
connections, as well as for models trained on the subsets of connections
corresponding to the modules described in the previous subsection.

To demonstrate that the relationships between connectivity and decision
acuity were stable over time and replicate, we used the model estimated
at baseline to predict d based on the follow-up rsFC data for modules that
were significant at baseline. Given that the data at baseline and follow-up
are not independent, we kept the same cross-validation fold structure in
both datasets, so that the prediction of a subject at follow-up did not
involve their own rsFC baseline data, as this would have inflated the
estimates of predictive performance at follow-up.

Connectivity patterns predictive of d vs 1Q

For imaging analyses, we derived a composite score of IQ by averaging
standardized vocabulary and matrix IQ subscores, rather than using the
standardized WASI score, because of two reasons. First, we wanted
analyses involving both age and IQ to have a straightforward
interpretation where IQ represents a measure of raw ability, as opposed
to age-standardized ability, and explicitly test for age-dependence
separately. Second, we found evidence (Results) that our sample was
different from the original on which standardised scores were derived, and
hence the standardisation procedure might be invalid. Next, we trained
models both on the complete set of connections and the subsets
corresponding to the individual modules to predict the IQ composite
scores, as we had done previously to predict d, yielding 1Q,,, and assessed
predictive performance for each of the modules separately. To compare
the connectivity patterns that were predictive of d with those predictive of
IQ, for each of the modules we assessed the partial correlation between d
and d, when controlling for IQ, and the partial correlation between IQ and
IQ,, when controlling for d. In all these analyses we corrected for age, sex
and imaging-related confounds as above.
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