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1 Abstract: In many important contexts involving measurements of biological entities, there are distinct
2 categories of information: some information is easy-to-obtain information (EI) and can be gathered
s onvirtually every subject of interest, while other information is hard-to-obtain information (HI) and
s can only be gathered on some of the biological samples. For example, in the context of drug discovery,
s measurements like the chemical structure of a drug are EI, while measurements of the transcriptome
s of a cell population perturbed with the drug is HI. In the clinical context, basic health monitoring
»  is El because it is already being captured as part of other processes, while cellular measurements
s like flow cytometry or even ultimate patient outcome are HI. We propose building a model to make
s  probabilistic predictions of HI from EI on the samples that have both kinds of measurements, which
1o will allow us to generalize and predict the HI on a large set of samples from just the EI. To accomplish
1 this, we present a conditional Generative Adversarial Network (cGAN) framework we call the Feature
1= Mapping GAN (FMGAN). By using the EI as conditions to map to the HI, we demonstrate that
1z FMGAN can accurately predict the HI, with heterogeneity in cases of distributions of HI from EI. We
12 show that FMGAN is flexible in that it can learn rich and complex mappings from EI to HI, and can
s take into account manifold structure in the EI space where available. We demonstrate this in a variety
s of contexts including generating RNA sequencing results on cell lines subjected to drug perturbations
1z using drug chemical structure, and generating clinical outcomes from patient lab measurements.
1= Most notably, we are able to generate synthetic flow cytometry data from clinical variables on a cohort
1 of COVID-19 patients—effectively describing their immune response in great detail, and showcasing
20 the power of generating expensive FACS data from ubiquitously available patient monitoring data.

n  Keywords: generative adversarial networks; drug perturbations; conditional generative models

Bigger Picture: Many experiments face a trade-off between gathering easy-to-collect information

N
N

=3 on many samples or hard-to-collect information on a smaller number of small due to costs in terms of
2 both money and time. We demonstrate that a mapping between the easy-to-collect and hard-to-collect
= information can be trained as a conditional GAN from a subset of samples with both measured. With
26 our conditional GAN model known as Feature-Mapping GAN (FMGAN), the results of expensive
27 experiments can be predicted, saving on the costs of actually performing the experiment. This can have
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2s IMajor impact in many settinsg. We study two example settings. First, in the field of pharmaceutical
2 drug discovery early phase pharmaceutical experiments require casting a wide net to find a few
s potential leads to follow. In the long term, development pipelines can be re-designed to specifically
s utilize FMGAN in an optimal way to accelerate the process of drug discovery. FMGAN can also have
;2 amajor impact in clinical setting, where routinely measured variables like blood pressure or heart rate
33 can be used to predict important health outcomes and therefore deciding the best course of treatment.

sa 1. Introduction

35 When collecting information on biological entities, for example hospital patients, cells, or drugs,
s we are often faced with the choice of collecting easy-to-obtain information (EI) on many entities or
sz collecting hard-to-obtain information (HI) on a few entities. For example, in a drug library of millions
s of drugs, it is easy to obtain chemical structure information but hard to obtain RNA sequencing
3o information of cells treated with drugs. On patients, it may be easy to obtain information such as heart
« rate and lab values, but hard to obtain blood flow cytometry information. Here, we present a neural
a  network-based method that can bridge the gap between these sources of information on entities like
a2 drugs or patients.

43 We introduce a framework based on a conditional Generative Adversarial Network (cGAN) that
s« we call Feature Mapping GAN (FMGAN), which learns a mapping from EI to a distribution of HI.
a5 The FMGAN takes in noise as input, the EI information as the condition and the HI as the output. For
s instance, given the chemical structure of a drug, we can build a mapping to the RNA sequencing of
4z cells under the drug. Here, the EI is the chemical structure and is used as the condition for the cGAN.
ss  Corresponding HI is then produced by the generator of the cGAN. We showcase this in many settings
4 involving different information obtained on drugs and patients.

50 Our use of a GAN-based framework is motivated by our applications’ having complex,
s one-to-many relationships between the EI and the HI. To illustrate this further, consider a simple linear
s2 mapping between an El variable and an HI variable. The linearity guarantees that small changes in the
ss  El will result in a small change in the HI, i.e. the mapping is smooth. However, with chemical structure,
s« for example, this is known not to be true: a small change in chemical structure can lead to vastly
ss different properties of a drug. Non-linear mappings can also be simple, such as a simple threshold
ss decision: if a particular clinical variable completely determines patient outcome, a logical decision
s» with a threshold would suffice. However, clinical outcomes are the result of complex couplings
ss between large groups of variables. This necessitates a rich mechanism of mapping EI to HI, capable of
s representing the necessary complexity. Moreover, the mapping has to be stochastic. Since, it is unlikely
e that the EI has complete information about the drug or patient in question, it is important for each
e EI condition to be able to map to a range or a distribution of HI conditions. For example, replicates
ez of a drug perturbation experiment result in different gene expression results even when applied on
es the same cell line [1]. This stochastic response can only be captured by a generative model that can
s« produce stochastic output. As GANs learn complex mappings from a random noise space (and, for
es CGANSs, an El space) to the HI space, they have the required complexity and stochasticity. And with
es their flexible training paradigm, they do so without having to make strong assumptions like those
ez involved in choosing a parametric family for the form of the HI distribution.

o8 One of our motivating examples through this paper is the drug discovery process. A major part
es of pharmacological research is devoted to drug discovery, where a large number of drug compounds
70 have to be sorted to find a small number of promising candidates [2]. This search can be guided by
= information about the drug itself, as well as by the past history of how other drugs have performed [3].
=2 By looking for drugs similar to ones that have shown success previously, promising candidates with
»s improved toxicity or efficacy can be identified. Improvements in this form of research, called hit-to-lead,
7¢ can save significant time and money. The search for promising candidate drugs is a daunting task, since
7 the state space of molecular libraries is in the millions, and possible drugs is in the tens of thousands
76 Or more [4].
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7 Here we specifically consider measurements involving drug perturbations, a commonly used

7e technique for measuring the effect of a drug [5-7]. We utilize drug perturbation data from the L1000

7 Connectivity Map dataset [1]. Perturbation involves introducing the drug to a sample of cells and

s then measuring the gene expression of those cells after the drug treatment. By comparing the gene

a1 expression of the cells before and after drug treatment, researchers can infer information about what the

s2 drug does and how it works. Because perturbing a cell line with a drug involves physically performing
es anexperiment, including obtaining the cells, applying the drug, and getting the sequencing results, this
ss process can be expensive and time-consuming. We use the FMGAN to generate the RNA-sequencing
es results from the drug structure to speed this process up by not having to perform all of the experiments

e exhaustively. If only a subset of the drugs have a priori RNA-sequencing measurements, the rest can

sz be generated with the FMGAN, obviating the need for additional experimentation on a large number

ss of candidates.

80 Another motivating setting is that of clinical data. In the clinical setting, some measurements

o0 are readily available EI, either because they are already measured as part of the standard patient

o1 Mmonitoring, or because they are non-invasive and do not pose any risk. We work with two clinical

.2 datasets of this type. The first is an Electronic Intensive Care Unit (eICU) Collaborative Research

o3 Database dataset, which includes as EI standard clinical measurements such as body temperature,

s« heart monitoring, and standard blood work [8,9]. With this EI we generated predicted clinical mortality,

»s a measurement whose value can normally only be obtained too late to act upon. Rather than due

s to financial expense, this measurement is hard-to-obtain because it is irreversible, involving patient

oz mortality. With the FMGAN, predictions can be accurately generated from the EI and thus preventative

es measures can be taken while positive interventions are still possible.

99 The second clinical dataset we work with uses similar clinical measurements as EI, but this time

10 on COVID-19 patients from Yale New Haven Hospital. In this case, the HI information are future
101 single-cell flow cytometry measurements from samples gathered on some of the patients. In practice,
102 these types of single-cell measurements cannot be performed exhaustively on every patient in the
103 clinic, for reasons of cost as well as time sensitivity. Thus, we use the FMGAN to be able to generate
10s  future flow cytometry data which depicts compartments of the immune system from readily available
105 clinical data. With the FMGAN, we are then able to generate flow cytometry data for any number of
106 patients who only have clinical measurements available. This can be valuable as immune responses
17 have been shown to be highly predictive of mortality in COVID-19 [10].
108 In each of these datasets we not only utilize the natural flexibility of the cGAN in mapping, but
10 also explicitly design mechanisms for the cGAN to take advantage of any structure that does exist in the
10 EI. While EI-HI mapping is rarely linear or simple, there are many instances in which the HI is smooth
11 and respects geometric or manifold structure in the EI—which can be explicitly represented. Here, we
12 show two ways of of taking into account latent structure in the EL The first is by embedding the EI into
us  lower dimensional manifold-intrinsic coordinates, such as with the PHATE dimensionality-reduction
us  method, which has been shown to preserve manifold affinity [11]. We show this on the case of drug
us perturbations where we measure some genes on perturbed cell lines, and impute the other genes. Since
ue the underlying cellular manifold measured is the same, both measured and withheld genes should
1z respect this structure. We also show this on clinical data where ICU measurements are embedded
us  with PHATE and then the embeddings are used to impute clinical outcomes. The second situation,
1o rather than embedding EI with PHATE, is to use a convolutional neural network to find a latent space
120 embedding of the data. We use this encoding of the EI where it is the chemical structure of the drug.
11 Here, we create a rich set of convolutional features of the chemical structure by treating it as an image.
122 In particular a small change in the structure can be reflected as larger changes in convolutional filter
123 outputs, and thus the latent space has more regularity with respect to the mapping than the original
12 chemical structure space.
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Figure 1. (a) The measurements on data are separated into “easy-to-collect information” (EI) and “hard-to-collect
information” (HI). The easy-to-collect measurements are available on all data, while the hard-to-collect
measurements are only available on some data. (b) With a Conditional GAN, we can learn to model the relationship
between these two categories of measurements.

125 2. Results

126 2.1. FMIGAN

127 The FMGAN we propose uses a conditional Generative Adversarial Network (cGAN) to generate
12s  hard-to-collect information (like sequencing results from a perturbation experiment) from other
120 easy-to-collect information (like basic information on the drugs used). Specifically, we propose a cGAN
130 with the easy-to-collect information as conditions and the hard-to-collect information as the data
11 distribution. A cGAN is a generative model that learns to generate points based on a conditional label
132 thatis given to the generator G. In the adversarial learning framework, G is guided into generating
133 realistic data during training by another network, the discriminator D, that tries to distinguish between
13 samples from the real data and samples from the generated data. The generator G and discriminator
135 D are trained by alternating optimization of G and D.
A standard GAN learns to map from random stochastic input z ~ N(0,1) (or a similarly simple
distribution) to the data distribution by training G and D in alternating gradient descent with the
following objective:

minmax B, _p(y) 0g(D(x)) + Explog(1 ~ D(G(z)))

The generator in a cGAN receives both the random stochastic input z and a conditional label / and
thus has the following objective:

minmax By, _p(s(y10g(D(x]1)) + Ez-p,log(1 — D(G(z]1))

136 The cGAN was originally used in image generation contexts, where the condition referred to
13z what type of image should be generated (e.g. a dog). The cGAN is useful in this context because
13z the generator G receives a sample from a noise distribution (as in a typical GAN) as well as the
130 condition. Thus, it is able to generate a distribution that is conditioned on the label, as opposed to a
140 single deterministic output conditioned on the label. In the original use case, it can learn to generate a
11 wide variety of images of dogs when given the conditional label for dogs, for example. While many
12 previous methods exist for generating a single output from a single input, there are few alternatives for
13 generating a distribution of outputs from a single input without placing assumptions on the parametric
1as  form of the output distribution.

145 The framework of the FMGAN is summarized in Figure 1. The columns of the data are separated
16 into easy-to-collect information (EI) and hard-to-collect information (HI). In the notation of the GAN,
1z we use the EI as the conditional label I and the HI as the data x. For observations that have both, we
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s train the FMGAN with the generator receiving a label I and a noise point z, while the discriminator
e receives the label I and both real points x and the generated points G(z|I). Then, after training, the
10 generator can generate points for conditions / without known data x. This allows us to impute HI
151 where we only have EL

152 The FMGAN architecture is designed to take advantage of complex relationships between the
153 condition space and the data space. A single underlying entity (e.g. a drug or a patient) has a
1ss Trepresentation in both spaces. In the EI space, the drug is a point, while in the HI space the drug is
15 represented by a distribution of cells perturbed by it. Despite the difference in structure, the FMGAN
156 is able to leverage regularities in the relationship between the two spaces. This relies on the FMGAN
157 being able to leverage manifold structure inherent within each space (for more discussion of manifold
e structure, please see the supplementary information).

159 In some cases, the data modality for the EI is difficult to utilize: for example, the chemical
10 structure of the drug. The chemical structure can be represented as a string sequence called SMILES or
11 a two-dimensional image of the structure diagram. Small changes in the chemical structure can have
162 large changes on its function, but may appear to be minor changes to the overall SMILES string or
163 the overall structure diagram image. Thus, we use an embedding neural network, parameterized as
1es  a convolutional network, to process these representations into a more regular space where standard
1es  distances and directions are meaningful. This parameterization is crucial, as originally the structure is
166 Not linear (or else simpler models could leverage it). But with convolutional networks, small changes in
167 the input can cascade down into deeper layers in complex ways and make potentially large, meaningful
1ee  shifts in the embedding. We further detail the architecture and design of this network in the Methods
160 section.

w0 2.2. Modeling drug perturbation experiments

171 We first demonstrate the results of our FMGAN model on data from the L1000 Connectivity Map
12 (CMap) dataset [1]. The CMap dataset contains a matrix of genes by count values on various cell
173 lines under different drug perturbations. We examine the A375 cell line, a cell line from a human
17a  diagnosed with malignant melanoma. In this densely measured dataset, we have all gene expression
175 measurements for each drug. Each drug also has various numbers of replicates of the same experiment.
1w These replicates produce variable effects, motivating the need for a framework that is capable of
17z modeling such stochasticity.

178 We design four separate experiments with this dataset:

179 1. A proof-of-concept that the cGAN framework can effectively model and predict gene expression
180 values when the conditions are known to be meaningful because they are selected holdout genes
181 from the expression matrix itself.

182 2. An experiment where the conditions are taken from a non-linear dimensionality reduction
183 method applied to the expressions.

184 3. A test of the full FMGAN pipeline where conditions represent chemical structure in the form of
165 SMILES strings, and thus embeddings for conditions must be learned.

186 4. A variation of the chemical structure conditions where they are represented as images of structure
187 diagram.

188 In each dataset, the measurement we choose for evaluation is maximum mean discrepancy

10 (MMD) [12]. We choose this because we require a metric that is a distance between distributions, not a
100 distance merely between points. Taking the mean of a distance between points would not capture the
11 accuracy of any moments in the desired distribution beyond the first one. For the experiments based on
102 drug metadata (the SMILES strings and the chemical structure images experiments), we consider the
13 drug’s distribution to be all of the gene profiles from that drug. For the experiments with conditions
10e derived from each gene profile (the heldout genes and dimensionality-reduction experiments), we
15 take a neighborhood of drugs around each condition and compare the predicted distribution of gene
16 profiles for those drugs with the true distribution.
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Figure 2. The formation of easy-to-collect (red columns) and hard-to-collect (white columns) data for each
experiment with drug perturbation data. (a) in the held-out genes experiment, the easy-to-collect measurements
are taken from held-out genes (b) in the PHATE coordinate experiment, they are the result of running on the
genes matrix (c) in the SMILES string experiment, the easy-to-collect data is an embedding from processing this
representation with a CNN (d) in the structure diagram experiment, it is the same as in the SMILES string experiment
except run on the structure diagrams.

We compare our FMGAN to a baseline not built off of the cGAN framework. In developing a
baseline, we must compare to a model that takes in a point and outputs an entire distribution. As
most existing work yields deterministic output, we create our own stochastic distribution yielding
model to compare to. This model, which we term simply “Baseline”, takes a condition and a sample
from a random noise distribution as input, just like our FMGAN. However, unlike our model which
uses adversarial training and a deep neural network, the Baseline is a simpler, feed forward neural
network that minimizes the mean-squared-error (MSE) between the output of a linear transformation
and the real gene profile for that condition. As it is given noise input as well as a condition, it is still
able to generate whole distributions as predictions for each condition, rather than deterministic single
points. As generating conditional distributions (especially based off of oddly structured conditions like
images or strings) is relatively understudied in the computational biology field, we find no directly
comparably published methods that can be applied to this problem, thus necessitating our creating
Baseline.

2.2.1. Predicting gene expression under drug perturbation

To show our cGAN can learn informative mappings from the EI space to the gene expression
space, as distinct from the rest of the process, we first choose a means of obtaining EI that are known
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213 to be meaningfully connected to the gene expression space. Specifically, we artificially hold out ten
zs genes and use their values as EI, with the GAN tasked with generating the values for all other genes.
215 This experimental design is summarized in Figure 2a. We choose the ten genes algorithmically by
26 selecting one randomly and then greedily adding to the set the one with the least shared correlation
21z with the others, to ensure the information in their values have as little redundancy as possible: PHGDH,
s PRCP, CIAPIN1, GNAIL, PLSCR1, SOX4, MAP2K5, BAD, SPP1, and TIAM1. In addition to dividing
210 Up the gene space to use these ten genes to predict all of the rest, we also divide up the cell space and
220 train on 80% of the cell data, with the last 20% heldout for testing.

221 We find our cGAN is able to successfully leverage information in the EI space to accurately model
22 the data. We designed our proof of concept deliberately so that the true values are known for each gene
223 expression and drug we ask our network to predict. These values can be compared to the predictions
222 with MMD for a measure of accuracy.

225 Our cGAN is able to generate predictions with an MMD of 2.847 between it and the validation
226 set (drugs it has never previously seen), showing it very effectively learned to model the dependency
227 structure between the EI space and the HI space, even on newly introduced drugs (Table 1). This is in
226 comparison to the Baseline model, which has a higher (worse) MMD of 2.922. It is noteworthy that the
220 FMGAN outperforms the baseline even in this case, where no processing of the El needs to take place,
230 as they are numerically meaningful values to begin with.

231 We also can visualize the embedding spaces learned by the generator to investigate the model.
232 Shown in Figure 3a are the generator’s embeddings colored by each of the heldout genes. As we can
233 see, the generator found some of these more informative in learning an EI embedding than others. We
23s  can quantify this by building a regression model to try to predict the value of each gene given the
235 embedding to determine the most valuable of the heldout genes. By this measure, PHGDH, PRCP, and
23s  GNAII are the most important genes. Analyzing the embeddings in this way is useful for determining
23z which part of the EI space was most informative for generating the HI space, and we will continue to
238 do this with more complex EI in later experiments.

230 2.2.2. PHATE coordinates as conditions for manifold-structured EI

240 Our next experiment formulates the EI space not as individual heldout genes, but instead on a
21 dimensionality-reduced representation of the whole space. We theorize that this approach would be
22 beneficial over the previous held-out-genes experiment if the EI data exhibits manifold structure. If
23 it does, this processing will have made a geometric representation of the EI that corresponds to the
2aa  HI, and thus the mapping is computationally simpler. Previous work has shown that gene expression
2es  profiles often do exhibit this manifold structure [11,13,14].

246 We run the embedding tool PHATE on the gene profiles to calculate two coordinates, which we
2z then use as EI in our FMGAN [11]. Doing so preserves the manifold structure of the data, allowing
24 for a meaningful transformation to the HI space. This process is depicted in Figure 2b. As usual, we
200 separate cells into an 80%/20% training/testing split for evaluation purposes, after being subsampled
=0 to ten thousand points for computational feasibility with the dimensionality reduction method, and
=1 we report scores on the evaluation points.

252 As shown in Table 1, once again the FMGAN better models the target distribution, as measured
23 by MMD between its predictions in the neighborhood of each point and the true values. The FMGAN's
zss  predictions had an MMD of 0.179, compared to the baseline MMD of 0.330 (a 45.7% improvement). It
265 is also interesting to note that although the MMDs are not directly comparable across the experiments
=6 (because the target distribution is changing each time, from all drugs in neighborhood around a
=7 coordinate to all drugs with the same metadata), the PHATE coordinates provide the most accurate
=ss  predictions.
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Figure 3. (a) Visualization of the embedding of cells in the held-out genes experiment, colored by each held-out
gene. The network has inferred the structure of the space from these genes. (b) The raw data, colored by the
expression of gene EIF4G2, separated into the three most abundant drugs: BRD-K60230970, BRD-K50691590, and
BRD-K79090631. (c) The generator’s embedding space of drugs from the SMILES strings experiment, with the same
three drugs highlighted. The embedding in shows that the drugs with similar distributions have been embedded
into similar locations in the learned embedding space. (d) The same as in (c) but with the structure diagram

experiment.
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20 2.2.3. Predicting Gene Expression from Drug Chemical Structure

260 Next, we test the full pipeline of FMGAN by using SMILES string embeddings as the EI
201 (summarized in Figure 2c). This is a much more challenging test case, because in the previous
262 cases each point in HI space had a distinct condition, and in the case of the PHATE coordinates, that
263 condition was derived from the data it had to predict. In this case, many different data points have the
26s same condition, and thus the relationship is much less direct between the EI and the HI.

265 An additional wrinkle also arises in this setting where the conditions to the cGAN are learned
266 from a raw data structure, rather than a priori existing in their final numerical form like heldout genes
26z or PHATE coordinates. Since G and D are trained adversarially and each depends on the embedder E,
20 the networks could try to beat each other by manipulating the embeddings into being non-informative
200 for the other network. Thus, we let G and D learn their own embedder E, thus removing the incentive
20 to make E non-informative.

2 As in the previous experiment, we separate the data into an 80%/20% training/testing split for
22 evaluation purposes, but this time split along the drugs since each condition gives rise to many points
s in the Hl space. Table 1 indicates that the FMGAN had an MMD of 1.191 compared to the baseline of
zza 1.510 (a 21.1% improvement).

zrs  EI Space Analysis

276 In this section, we investigate further the EI space learned from the SMILES strings by the
2z generator. In the two previous experiments, the conditions given to the FMGAN had information
e more readily available, either in the form of raw data or even more informative PHATE coordinates.
270 The SMILES strings, by contrast, must be informatively processed for the learned conditions to be
2e0 meaningful.

281 In this learned EI space, there is one condition coordinate for each drug (while the HI consists of
22 many perturbations from each drug). Shown in Figure 3b is the raw data colored by the value of gene
2es  BIFAG2. Then, all of the perturbations from each of three drugs are shown separately: BRD-K60230970,
2ea  BRD-K50691590, and BRD-K79090631. As we can see, the first two are characterized by high expression
2es  Of this gene and are quite similar to each other. The third, however, is quite distinct, in a separate space
206 Of the embedding, and is characterized by much lower expression of this gene.

287 We compare this to the embedding learned by the generator, which we show in Figure 3c. In this
20 plot, each drug is one point, colored by the mean gene value of all perturbations for that drug and
200 With a point whose size is scaled by the number of perturbations for that drug. We see that the first
200 two drugs are in the central part of the space, and closer to each other than they are to BRD-K79090631.
201 The drug BRD-K79090631 is off in a different part of the space, along with other drugs low in EIF4G2.
202 This shows that the learned conditions from the generator have indeed identified information about
203 the drugs and taken complex sequential representations and mapped them into a much simpler space.

206 2.2.4. Predicting gene expression from drug structure diagrams

205 The final experiment we consider for the drug perturbation data is the formation of the condition
206 space from an image representation of the chemical structure (Figure 3d). These images are downloaded
207 from the PubChem PUG REST API [15]. An example image for the drug BRD-U86686840 is shown
20¢ in Figure 2d. They are given as input to a two-dimensional CNN designed for image processing, as
200 points in the original h x w x c pixel space, with 1 = w = 64 and ¢ = 3. While a CNN is used in both
s00 the SMILES string case and this one, the underlying data is in a fundamentally different structure. As
so1  in the SMILES string experiment, both the generator and the discriminator learned their own CNN to
302 develop embeddings adversarially.

303 Table 1 shows that the FMGAN performed slightly better with these chemical structure diagrams
s0a  as compared to the SMILES strings (1.177 MMD). The baseline model scored significantly worse
s0s  Wwith these images as compared to the SMILES strings. This illustrates the FMGAN's flexibility,
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MMD Scores Heldout PHATE SMILES | Structure
Genes Coordinates

Image

FMGAN 2.847 0.179 1.191 1.177

Baseline 2.922 0.330 1.510 1.798

10 of 21

Table 1. MMD scores (lower is better) across all datasets for the drug data for both models. The
FMGAN more accurately predicts the distribution from each condition for all methods of forming the
condition space.
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Figure 4. (a) The raw data from the eICU clinical outcomes experiment, along with FMGAN generated data and a
linear regression baseline. (b) Quantitative evaluation of the model and the baseline.

306 as it performs comparably with drastically different structures (a long one-dimensional string as
sz opposed to a natural image). That the chemical structure images perform slightly better is perhaps
sos  a sign that two-dimensional image convolutional networks are currently more effective at distilling
300 this information than one-dimensional sequence convolutional networks, but the FMGAN's flexible
a0 framework allows it to keep improving with advances in deep learning architectures. Another
su possibility is that the structure diagrams have relevant information more easily separable from
a1z irrelevant information, making them an easier statistical task.

a1z El Space Analysis

314 In Figure 3d, we show the learned embedding from the generator. We color the embedding by
a5 the same gene and highlight the same three drugs as in the previous experiment: BRD-K60230970,
a1.s BRD-K50691590, and BRD-K79090631. As before the learned conditions have taken a space where it
a1z is hard to characterize the information it contains (raw images in pixel space) and mapped them to
se  a simpler space with numerically meaningful points. This can be seen by noting that the two drugs
;10 with similar distributions in the raw data (BRD-K60230970 and BRD-K50691590) have been mapped to
;20 nearly identical conditions, while they are separate from the drug with a very different distribution
sz (BRD-K79090631). In fact, this goes towards an explanation of the improvement in performance over
322 the SMILES string model, as the embedder has placed the drugs with similar distributions closer to
;23 each other in conditions, making the generator’s job easier.

52 2.3. Predicting clinical outcomes

325 We demonstrate the versatility of our proposed method by experimenting on data in a very
226 different context from the drug perturbations of the previous section. Here we work on clinical data
;27 from two different datasets. In each case, we use data derived from clinical measurements on patients
228 to predict their clinical outcomes.

a2 2.3.1. Predicting eICU clinical outcomes

330 For our first clinical experiment, we use data from patients at high risk for mortality due to
31 severe illness, selected from the eICU Collaborative Research Database [8,9]. As conditions for the
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2 FMGAN, we use measurements that are components of the in the widely-used APACHE score.
a3 The APACHE score predicts mortality from age, immunocompromised status, heart measures, and
:3a  respiratory measures [16]. We pass these features through PHATE to develop conditions and then
;s predict mortality as our response variable. For more details on the data and pre-processing, please see
336 the Supplementary Information.

337 Figure 4 shows the real data, which is noisy but still shows different density of mortality in
s3e  different parts of the space. We also see the FMGAN generated data next to it: qualitatively, these
330 predictions resemble the raw data to a substantial degree. As a baseline, we can build a linear
sa0  regression model that tries to predict this response variable as a function of the coordinates. Due
s to the probabilistic nature of the response, the linear regression predicts a low chance of mortality
sz everywhere in the space, with a slight uptick in probability in the dense region.

343 This is different from our FMGAN, which better models the binary nature of the output: in each
:as  region there are some zeros and some ones as opposed to every point having a small constant value
s like 0.1. To quantify the accuracy of each model, we have to develop an evaluation criterion that
a6 looks at different regions and compares the true number of mortalities and predicted number in that
a7 region. This metric assumes that within each local neighborhood, which point gets which label is
se  partially determined by randomness, and that the true signal is the proportion of points within that
a0 neighborhood. Using this metric, we can compute the prediction error as the difference between the
ss0  predicted number of mortalities in a neighborhood and the true number.

351 Specifically, we compute K partitions of the data using the nearest neighbors clustering algorithm.
52 In each neighborhood, we compare the proportion of positive predictions (using a threshold of 0.5) and
353 the proportion of real positive outcomes with a mean-squared error measurement. Figure 4b shows
ssa  this for varying numbers of neighborhoods K. Also, while our model naturally outputs data like the
sss  underlying data and thus has an easily identifiable threshold of 0.5 for a positive prediction, the linear
16 regression does not have an obvious choice for a threshold for a positive prediction. We use both the
sz default 0.5 (labeled LinearRegression') and the i percentile of the output, where i is chosen to match
s the total proportion of real responses equal to one and the predicted proportion responses equal to
350 ONne.

360 Figure 4b shows a chart of these values for increasing numbers of neighborhoods to divide the
s space into. The errors for the linear regression models range from 0.02 to 0.10 depending on the
2 neighborhood size, while the FMGAN remains below 0.01 for all neighborhood sizes. This means
:es  the regression model has at least doubled the error of the FMGAN in each neighborhood size. The
ses  stochasticity in the data makes it so that the GAN framework, which incorporates stochastic noise
ses  input, is best able to generate output like the real data.

ses  2.3.2. Predicting COVID-19 clinical outcomes

367 In this section we present an experiment that learns a mapping between clinical measurements
see  and FACS measurements from COVID-19 patients [17]. The clinical measurements are taken from the
se0  first 24 hours in the ICU, with a patient’s record being the most extreme value taken during that period
a0 when more than one record is taken. To test the ability of FMGAN to make practical, and actionable
snn  predictions we learn to generate the first flow cytometry measurement, taken from anywhere from the
sz first week to the eleventh week of the stay. Thus, we model future flow cytometry with present clinical
sz data.

374 The conditions we use for the FMGAN, as in the previous experiment, are PHATE coordinates of
a5 embedded clinical variables. In the PHATE embedding each patient is represented by a a vector of
s7e  variables, listed in the supplement in Table 3. For each of 129 patients, we also have matched FACS
a7 measurements on 14 proteins obtained from each patient, which are listed in the supplement in Table 4.
s7e  While the clinical measurements are relatively easy and inexpensive to obtain, FACS samples are
a9 comparatively expensive and time-consuming to obtain. Thus, we wish to learn a model that can
se0  accurately generate FACS data from a patient’s clinical measurements alone.
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Generating FACS Data from Clinical Measurements Conditions
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Figure 5. FACS data generated from clinical measurements in the COVID-19 data. Top row: for all 13 held-out
patients, the real FACS measurements. Second row: for all 13 held-out patients, generated FACS measurements
from the FMGAN. Third row: a single patient’s real FACS measurements. Bottom row: a single patient’s generated
FACS measurements.

301 To evaluate the ability of the FMGAN to perform this generation, we train on 90% of the patients
se2  (116) and withhold 10% of the patients (13) for evaluation. We train to generate a distribution of FACS
:es  measurements from each single condition corresponding to a patient’s clinical measurements. In
sea  Figure 5, we see the resulting data from all 13 heldout patients in the top row. In the second row, we
ses  see the corresponding FMGAN generated data. Remarkably, the FMGAN learned to accurately model
;s the true distribution of FACS data even for the never-before-seen patients. Distinct populations of
sez  cells are visible: CD3+ T cell populations including both CD4+ (T helper cells) and CD8+ (Cytotoxic T
;s cells), as well as a CD38+ population. With each protein marker, the FMGAN accurately models the
se0  underlying data distribution.

390 In the bottom two rows of Figure 5, we see the FMGAN model the distribution from a single
s01  patient accurately, as well. This per-patient generation forms the basis for our quantification of the
32 model’s accuracy. We utilize the same baseline as in the previous section. For each patient, we
:03  measure the distribution distance between the predicted distribution and the true distribution of
s0s  FACS data (scored by MMD, as before). Table 2 shows the FMGAN is able to produce distributions
a5 very close to the true underlying distribution for each patient, while the baseline model does not. As
»s each distribution is complex with many different cell populations with varying proportions, it is not
sz surprising that the more richly expressive FMGAN is better able to model the true data.

308 We note that with the FMGAN, we are able to predict the FACS measurements on
:00 Never-before-seen patients, based on their clinical measurement alone. However, this relied upon
a0 the patients in the training set being representative of the patients in the held-out set. In practical
a1 applications, this means that the population of patients would need to be chosen carefully and diversely
a2 for the predictions to be meaningful for future patients.
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[ MMD Scores | COVID-19 FACS data |

FMGAN 0.022 +/-0.008
Baseline 0.898 +/-0.015

Table 2. MMD scores (lower is better) on the COVID-19 data, with mean and standard deviation across
the 13 held-out patients. The FMGAN outperforms the baseline significantly.

s03 3. Methods

s0a 3.1. Conditional Generative Adversarial Networks

408 In a Generative Adversarial Network (GAN), samples from the generator G can be obtained
s0s by taking samples from z ~ Z and then performing the forward pass with the learned weights of
«07 the network. But while the values of z control which points G generates, we do not know how to
s ask for specific types of points from G (more discussion of the original, unconditional GAN is in the
a0 Supplementary Information).
410 The lack of this functionality motivated the need for the conditional GAN (cGAN) framework [18,
aun 19]. The cGAN augments the standard GAN by introducing label information for each point. These
a1z labels stratify the total population of points into different groups. The generator is provided a given
a3 label in addition to the random noise as input, and the discriminator is provided with not only real
a1s  and generated points, but also the labels for each point. As a result, the generator not only learns to
a5 generate realistic data, but it also learns to generate realistic data for a given label.
416 After training, the labels, whose meaning is known to us, can be provided to the generator to
a7 generate points of a particular type on demand. Because G is provided both a label and a random
a1s  sample from Z, the cGAN is able to model not just a mapping from a label to a single point, but instead
a0 a mapping from a label to an entire distribution.
Expressing the cGAN formula mathematically yields a similar equation as to the original GAN,
except with the modeled data distributions being marginal distributions conditioned on the label / of
each point:

minmax By, _p(,ylog (D(x/1)) + Ex-p.log(1— D(G(zI1)))

a20 Learning a generative model conditioned on the labels allows information sharing across labels,
a1 another advantage of the cGAN framework. Since the generator G must share weights across labels,
a2z the signal for any particular label /; is blended with the signal from all other labels [;, j # i, allowing
a3 for learning without massive amounts of data for each label.

a2« 3.2. Chemical Structure and SMILES Strings

425 Conditional GANs are a powerful construction for guided generation, but require some known
a2 label space to be used. While the label space must be relevant to the measured data space for an
sz informative model to be learned, the relationship need not be simple and can be noisy. When the data
a2 space is gene expression after a drug perturbation, as in our application here, one relevant source of
420 labels is metadata about the structure of the drug used for the perturbation. We consider two ways of
a0 representing this structure for our label space: a one-dimensional sequence of letters called a Simplified
ann Molecular-Input Line-Entry System (SMILES) string, and a two-dimensional image called a structure
a2 diagram.

a3 SMILES strings

434 A SMILES string encodes the chemical structure of a drug in a variable-length set of standard
a5 letters and symbols. Each character in the string represents an element of the chemical’s physical
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a3 formation, for example an atom, a bond, or a ring. For example, the common molecule glucose has the
a7 following structure:

438 OC[C@@H](O1)[C@@H](0)[C@H](O)[C@@H](O)[C@@H](O)1

430 The letters indicate elements oxygen, carbon, and hydrogen, with @ denoting steriochemical
a0 configuration, and brackets and parentheses representing bonds and branches, respectively. Clearly,
a1 while providing rich information about the drug, this representation does not immediately lend itself
sz to use as a condition. In order to distill these variable-length sequences into a fixed-size representation
a3 where similar structures have similar representations, we use a sequence-encoding neural network to
saa  embed each structure into a latent space.

ass  Structure diagram

as6 An alternate way of representing chemical structure, more intelligible for a human observer than
sz SMILES strings, is a structure diagram. These have letters representing elements as in the SMILES
ws  strings, but also are distinguished by colors, while different types of bonds are indicated with simple
a9 lines. These images are downloaded from the PubChem PUG REST API [15]. While specifying how
a0 to get information about the structure out of this image explicitly would be impossible (in terms of
42 RGB pixels), a neural network can learn how to process these images itself in order to accomplish
sz its training objective, all through a completely differentiable optimization with stochastic gradient
a3 descent.

s 3.3. FMGAN

ass We describe the architecture for the FMGAN in this section. In the SMILES strings experiment, to
sse  Obtain a fixed-length Dg-dimensional vector for each string, we represent each input as a sequence
a7 of length Ns; vectors, with Ns; being the longest SMILES string in the database. Each element
a8 in the sequence is a vector representing the character in that position of the sequence (with a null
a0 token padding the end of any sequence shorter than Neq). As is standard in language processing, we
w0 learn character-level embeddings simultaneously with the sequence-level processing. Let V be the
ss1  vocabulary, or set of all characters. The character-level embeddings are rows of a |V| x D, matrix W,
sz where |V] is the number of characters in the vocabulary and Dy, is a hyperparameter, the size of the
a3 character embedding. Each input is then represented as a sequence where the i element is the row of
asss W corresponding to the i character in the SMILES string.

465 The size of the vocabulary (number of characters including start, end, and null tokens) is 43. We
sss chose the size of the character-level embedding to be 100. The embedder network E consists of two
sz convolutional layers with 64 and 32 filters, respectively, each with a kernel-size of 40 and stride-length 2
ses  with batch normalization and a leaky ReLU activation applied to the output. These convolutional layers
aso are followed by four fully-connected layers which gradually reduce the dimensionality of the data with
a0 400,200,100, and 50 filters, respectively. All layers except the last one have batch normalization and
ann leaky ReLU activations. The generator and discriminator have the same architecture as the previous
a2 experiment.

ar3 This input representation is then passed through E, a convolutional neural network (CNN), which
a7za  produces the sequence embeddings. E performs one-dimensional convolutions over each sequence
ars followed by fully-connected layers, eventually outputting a single Dg-dimensional vector for each
aze  SMILES string. We let these embeddings form the condition space for the next stage in FMGAN, the
a7z conditional GAN.

478 For the structure diagram experiment, we start with images that are points in & x w x c space, with
are  h = w = 64 and c = 3. They are then processed with a CNN. The CNN consists of four convolutional
a0 layers with stride 2, kernel size 3, and filters of 32, 64, 128, and 256, respectively. Batch normalization
«ex  and a ReLU activation was used for each layer. Finally, after the convolutions, one fully connected
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a2 layer maps the flattened output to a 100-dimensional point, representing the embedding learned for
aes  the particular diagram.

484 For both experiments, the generator structure, after the drugs are processed into conditions, is
«es  the same. Let ¢; be the condition for drug i formed by the embedder. Let x; be the D,-dimensional
ass  corresponding gene expression profile from a perturbation experiment performed with drug i. We
se7  build a GAN that trains a generator G to model the underlying data distribution conditioned upon the
ass  structure pgu,(x|c). G takes as input both a sample from a noise distribution (we choose an isotropic
w0 Gaussian) z ~ Z, and a condition ¢;. G maps these inputs to a Dy-dimensional point. Then, the
a0 discriminator D takes both a Dy-dimensional point and a condition ¢ and outputs a single scalar
w01 representing whether it thinks the point was generated by G or was a sample from pg,;,. These
w2 networks then train in the standard alternating gradient descent paradigm of GANs previously
03 detailed.

a0s For specific hyperparameter choices and data dimensionality details, we refer to the
a5 Supplementary Information.
a96 We note a few additional points about the FMGAN framework. First, since everything in the

207 network including the character-level embeddings, the embedder E, and the GAN are all expressed
w8 differentiably, the whole pipeline can be trained at once in an end-to-end manner. Thus, the
a0 character-level embeddings and the convolutional weights can be optimized for producing SMILES
soo  strings embeddings useful for this specific task and context. This is a powerful consequence, as defining
s.  what makes a good static embedding of a high-dimensional sequence may be ambiguous without
so2 reference to a particular task.

sos 4. Discussion

s0s The FMGAN model allows us to predict hard-to-obtain information for samples where we only
sos directly measure easy-to-obtain information. We demonstrate that the FMGAN can accurately model
sos Never-before-seen samples in these contexts. In the drug discovery context, this allows the potential
so7 impact of saving on expense and time by not performing as many physical experiments and instead
soe modeling their results. In the clinical context, this allows for the modeling of patient data sooner, with
soo more time to take positive interventions.

510 Furthermore, the flexible framework of the cGAN we develop for the FMGAN allows for EI that
su requires advanced processing to be used as the conditional input. We demonstrate this on images
si2  and long one-dimensional sequences, but this can extended to other difficult-to-represent data. For
s13 example, in the clinical setting, the advances in natural language processing achieved by deep neural
sie  networks could be utilized to process doctor’s notes as raw text and then incorporated into the model.
s15 We demonstrate that the FMGAN is able to leverage structure in the condition space in both
sis  manifold form (from the PHATE coordinates) and discrete form (from chemical structure strings).
sz While seemingly similar, these are very different from an information theoretical point of view. In
sie  the manifold setting, differences in input can create differences in output in a smooth way, but in the
s10  discrete setting, one small change in an individual feature may have a large effect on the output while
s20 another small change in a different feature has no effect on the output at all. For example, in a chemical
s structure string, modifications to some locations will not change the function at all, while in other
s22 locations a single change will determine function.

523 While we demonstrate that the FMGAN can be usefully applied to generative problems in a wide
s24 variety of modalities, and, as we show, even in the presence of high amounts of stochasticity.
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s1s 5. Software Availability
617 https:/ / github.com/KrishnaswamyLab/FMGAN

s1s 6. Supplementary Information

e1o  0.1. Generative Adversarial Networks

620 Generative Adversarial Networks (GANSs) are a deep learning framework for learning a generative
ez model of a data distribution. In recent years, they have gained significant popularity by achieving
22 state-of-the-art performance on applications to images, language, sequences, and many other data
e2s modalities [14,20-23]. GANSs differ from other types of models by not using explicit likelihood
s2« measures nor relying on having a meaningful distance measure between points. Instead, they teach a
e2s generator neural network G with a second discriminator network D using the following equation:

minmax Byp, [log(D(x))] + Ez~p, [log(1 — D(G(2)))]

626 where x is the training data, z is a noise distribution that provides stochasticity to the generator
ez and is chosen to be easy to sample from (typically an isotropic Gaussian).

e2s  0.2. Conditional Generative Adversarial Networks

620 Conditional Generative Adversarial Networks (cGANSs) originated from the desire for having
es0 greater control over generation from GANSs. In the case where external information, such as class
es1 labels, are available, we would like to be able to generate a random point from a specific class. The
ez methods devised to achieve this involve providing a random label to the generator during training
ess and then providing this label and the generated image to the discriminator. The discriminator also
esa receives real images and their labels, allowing it to learn their joint distribution.

635 Once the model has been trained in this way, control over generation can be used to generate a
e3s point from a particular class by feeding the desired class into the generator. This process especially
sz benefits from having fine-grained, continuous conditions like we have, as this gives even more precise
ese control over generation.

e30  0.3. Optimization

640 The networks G and D take turns optimizing their objectives through alternating gradient descent.
sa1 Throughout training, the discriminator provides gradient information to the generator guiding it to
eaz better quality generation. This powerful framework provides the ability to model arbitrarily complex
eas distributions without making any explicit parametric or limiting assumptions about their shape.

64s Theoretical analysis of GANs have shown their ability to converge to an optimal point where the
ess generated distribution is indistinguishable from the true distribution [24-26]. The ability to converge
ess to this optimal generative model without specifying a distribution distance is especially helpful in our
a7 applications, where the points lie in high dimensions and the curse of dimensionality makes distances
sse problematic [27].

seo Manifold learning

650 A useful assumption in representation learning is that high biomedical dimensional data originates
es1 from an intrinsic low dimensional manifold that is mapped via nonlinear functions to observable high
es2  dimensional measurements; this is commonly referred to as the manifold assumption. In particular,
ess  we believe that since biological entities like patients, cells lie in lower dimensional spaces because
ess Of informational redundancy and coordination between measured features (coordinating genes, or
ess  coordinated combinations of residues on molecules). Further, we believe that these low dimensional
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ess  spaces form smoothly varying patches because of natural heterogeneity between entities. The fact that
es7  the manifold model is successful in modeling biological entities has been shown in literature numerous
ese  times [28] and has lead to successful methods data denoising [29], clustering [30], visualization [31],
eso and progression analysis [32].

660 Formally, let M? be a hidden d dimensional manifold that is only observable via a collection
esx  Of n > d nonlinear functions fi,..., f : M? — R that enable its immersion in a high dimensional
es= ambient space as F(M?) = {f(z) = (f1(2),..., fa(2))T : z € M4} C R" from which data is collected.
ssa Conversely, given a dataset X = {x1,...,xy} C R" of high dimensional observations, manifold
ss« learning methods assume data points originate from a sampling Z = {z;}}, € M? of the underlying
ses manifold via x; = f(z;),i =1,...,n, and aim to learn a low dimensional intrinsic representation that
ess approximates the manifold geometry of M.

667 To learn a manifold geometry from collected data, we use the popular diffusion maps construction
ess  Of [33] that uses diffusion coordinates to provide a natural global coordinate system derived from
seo eigenfunctions of the heat kernel, or equivalently the Laplace-Beltrami operator, over manifold
7o geometries. This construction starts by considering local similarities defined via a kernel X(x,y),
en X,y € F(MY), that captures local neighborhoods in the data. We note that a popular choice for X is the
o= Gaussian kernel exp(—||x — y||?/c), where o > 0 is interpreted as a user-configurable neighborhood
o3 size. However, such neighborhoods encode sampling density information together with local geometric
eza information. To construct a diffusion geometry that is robust to sampling density variations we use an
e7s anisotropic kernel

_ S(x,y) _
X9 = 5w S =e

76 as proposed in [33], where 0 < a < 1 controls the separation of geometry from density, with « = 0
erz  yielding the classic Gaussian kernel, and &« = 1 completely removing density and providing a geometric
ers equivalent to uniform sampling of the underlying manifold. Next, the similarities encoded by X are

ero normalized to define transition probabilities p(x,y) = %

_ =yl
o

that are organized in an N x N row
eso  stochastic matrix

P;; = p(xi, x)) @

se1 that describes a Markovian diffusion process over the intrinsic geometry of the data. Finally, a
es2 diffusion map [33] is defined by taking the eigenvalues 1 = A1 > Ay > --- > Ay and (corresponding)
ess eigenvectors {gbj}]-li , of P, and mapping each data point x; € X to an N dimensional vector ®;(x;) =
oss  [AL1(x;), ..., AN (x;)]T, where t represents a diffusion-time (i.e., number of transitions considered
ses in the diffusion process). In general, as t increases, most of the eigenvalues A;, j=1,...,N,become
ess negligible, and thus truncated diffusion map coordinates can be used for dimensionality reduction
sz [33].

ess PHATE for structure-preserving visualization of Data

689 Several dimensionality reduction methods that render data into 2-D visuals like PCA and tSNE.
eo0 [34] and UMAP [35] exist. However, they often cannot handle the degree of noise in biomedical data.
s More importantly, most of these methods are not constructed to preserve the global manifold structure
ez Of the data. PCA cannot denoise in non-linear dimensions, tSNE/UMAP effectively only constrains
03 for near neighbor preservation—losing global structure. This motivated us to develop a method of
e0s dimensionality reduction that retains both local and global structure, and denoises data [31].

695 PHATE also builds upon the diffusion-based manifold learning framework described above,
eos and involves the creation of a diffused Markov transition matrix from cellular data, as in MAGIC,
o7 P! (Equation 1). PHATE collects all of the information in the diffusion operator into two dimensions
eos such that global and local distances are retained. To achieve this, PHATE considers the ith row
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s0o Of P as the representation of the ith datapoint in terms of its ¢-step diffusion probabilities to all
70 other datapoints. PHATE then preserves a novel distance between two datapoints, based on this
71 representation called potential distance (pdist). Potential distance is an M-divergence between the
702 distribution in row i, Pf and the distribution in row j, P]t These are indeed distributions as P! is
703 Markovian: pdist(i,j) = /Y (log(P(i, k) — P(j,k))2.

708 The log scaling inherent in potential distance effectively acts as a damping factor which makes
70s faraway points similarly equal to nearby points in terms of diffusion probability. This gives PHATE
s the ability to maintain global context. These potential distances are embedded with metric MDS as a
707 final step to derive a data visualization. We have shown that PHATE outperforms tSNE [34], UMAP
70e  [35], force directed layout and 12 other methods on preservation of manifold affinity, and adjusted
700 rand index on clustered datasets, in a total of 1200 comparisons on synthetic and real datasets. In [31]
7o we also showcased the ability of PHATE to reason about differentiation systems and differentiation
71 trajectories in human embryonic cell development.

7z 6.4. Maximum Mean Discrepancy

To evaluate the accuracy of the predicted distribution with respect to the true distribution for
a given condition, we utilize maximum mean discrepancy (MMD) [36]. The MMD is a distribution
distance based on a kernel applied to pairwise distances of each distribution. Specifically, MMD is
calculated as:

1 1 2
D(X,Y) = — Z k(xj,xp) + — Z k(yi, y#) — — Z k(x;, y;
MMD(X,Y) ni;éi’k(xl’xl )+ g i yi) mnizi (xl/y])
ns  for finite samples from distributions X = {x,..x,} and Y = {y1,..y»} and kernel function k.
na Two distributions have zero MMD if and only if they are equal. MMD has been used successfully
ns in biological systems in the past, particularly in detecting whether two systems were different in
716 distribution [37].

7z 6.5. eICU Clinical data

718 A patient cohort at high risk for mortality due to severe illness was selected from the eICU
7o  Collaborative Research Database, a public multicenter critical care database containing 200,859 ICU
720 admissions with 139,367 unique patients admitted to critical care units between 2014 and 2015 [8,9].
71 After excluding patients who did not have a calculated risk score for mortality, the APACHE IVa score
722 and who had at least one vital sign, the final dataset contained 146,587 encounters with 118,638 unique
=23 patients. The structured datafields from automated vital signs, laboratory results, and treatments for
722 the patient cohort were extracted and transformed as described by a recent manuscript by taking
725 the most abnormal values in the first 24 hours from ICU admission and multiple imputation using
726 DBayesian Ridge Regression was used to fill missing variables [38].

Alanine Aminotransferase Antibiotic Aspartate Aminotransferase
Bilevel Positive Airway Pressure Blood Urea Nitrogen Chloride
Continuous Positive Airway Pressure Creatinine Ferritin
Glucose High-Flow Nasal Cannula | High-sensitivity C-Reactive Protein
Hydroxychloroquine Mechanical Ventilation Nasal Cannula
Non-rebreather Mask Oxygen Saturation Procalcitonin
Respiratory Rate Steroid Systolic Blood Pressure
Tocilizumab White Blood Cell Count

Table 3. Clinical variables for the COVID-19 dataset.
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CCR7 CD3 CD4 CD8 CD25 | CD38 | CD45RA
CD127 | CXCR5 | FSC | HLA-DR | PD1 SSC TIM3

Table 4. Flow cytometry markers for the COVID-19 dataset.

72z 6.6. COVID-19 Clinical data

728 The cohort of patients included only those who were hospitalized at any of 6 hospitals in the
720 Yale-New Haven Health System (Bridgeport, Greenwich, St. Raphael’s Campus, Westerley, Lawrence
730 and Memorial, York Street Campus) during the period between March 1st, 2020 and June 1st, 2020
751 with a positive COVID test (nasopharyngeal source) between admission and discharge. Only the first
72 encounter was included in the dataset for patients with multiple encounters during the time period of
733 Observation. Patients with a positive test prior to hospital admission but not tested during admission
73¢  or tested negative during admission were not included in the cohort. Data for these patients was
735 then extracted from the electronic health record (Epic, Verona, WI) and included data domains of
73s demographics (e.g. age and sex), medical history (e.g. history of diabetes), laboratory samples (e.g.
737 white blood cell count), as well as vital signs (e.g. blood pressure measurement). Pre-defined outcomes
7¢  included in-hospital mortality, transfer to the intensive care unit (ICU), as well as requirement for
73 invasive ventilation. In-hospital mortality was measured as patients being discharged from the hospital
a0 with a deceased status. ICU care was measured through location data for patients and was manually
71 validated through chart review. Ventilation status was measured through procedure orders placed
=2 during the patient’s hospitalization and were validated through chart review.

743 Time-varying data, specifically vital signs as well as laboratory studies, were extracted at all
e timepoints of measurement during a patient’s admission.

745 Features were selected from a predictive model developed to predict early hospital respiratory
76 decompensation among patients with Covid-19 and augmented with treatment received. There were a
a7 total of 19 clinical, laboratory, and treatment variables extracted: systolic blood pressure, respiratory
e Tate, oxygen saturation, blood urea nitrogen, creatinine,chloride, glucose, white blood cell count,
740 alanine aminotransferase, aspartate aminotransferase, high-sensitivity C-reactive protein, ferritin,
750 procalcitonin, age, gender, and treatment with hydroxychloroquine, steroid, antibiotic, or tocilizumab.
71 Only complete cases, or patients with recorded values for all 19 variables in the first 24 hours, were
72 included in the final dataset.

753 As preprocessing, the most abnormal value in the first 24 hours was selected for the clinical
7sa and laboratory variables according to the methodology described in a previous electronic health
75 record-based study. The categorical variables for treatment were coded as binary (1 for received, 0 for
7e NoOt recorded).

757 © 2020 by the authors. Submitted to Cell Patterns for possible open access publication
7ss under the terms and conditions of the Creative Commons Attribution (CC BY) license
7s0  (http:/ /creativecommons.org/licenses/by/4.0/).
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