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Abstract: In many important contexts involving measurements of biological entities, there are distinct1

categories of information: some information is easy-to-obtain information (EI) and can be gathered2

on virtually every subject of interest, while other information is hard-to-obtain information (HI) and3

can only be gathered on some of the biological samples. For example, in the context of drug discovery,4

measurements like the chemical structure of a drug are EI, while measurements of the transcriptome5

of a cell population perturbed with the drug is HI. In the clinical context, basic health monitoring6

is EI because it is already being captured as part of other processes, while cellular measurements7

like flow cytometry or even ultimate patient outcome are HI. We propose building a model to make8

probabilistic predictions of HI from EI on the samples that have both kinds of measurements, which9

will allow us to generalize and predict the HI on a large set of samples from just the EI. To accomplish10

this, we present a conditional Generative Adversarial Network (cGAN) framework we call the Feature11

Mapping GAN (FMGAN). By using the EI as conditions to map to the HI, we demonstrate that12

FMGAN can accurately predict the HI, with heterogeneity in cases of distributions of HI from EI. We13

show that FMGAN is flexible in that it can learn rich and complex mappings from EI to HI, and can14

take into account manifold structure in the EI space where available. We demonstrate this in a variety15

of contexts including generating RNA sequencing results on cell lines subjected to drug perturbations16

using drug chemical structure, and generating clinical outcomes from patient lab measurements.17

Most notably, we are able to generate synthetic flow cytometry data from clinical variables on a cohort18

of COVID-19 patients—effectively describing their immune response in great detail, and showcasing19

the power of generating expensive FACS data from ubiquitously available patient monitoring data.20

Keywords: generative adversarial networks; drug perturbations; conditional generative models21

Bigger Picture: Many experiments face a trade-off between gathering easy-to-collect information22

on many samples or hard-to-collect information on a smaller number of small due to costs in terms of23

both money and time. We demonstrate that a mapping between the easy-to-collect and hard-to-collect24

information can be trained as a conditional GAN from a subset of samples with both measured. With25

our conditional GAN model known as Feature-Mapping GAN (FMGAN), the results of expensive26

experiments can be predicted, saving on the costs of actually performing the experiment. This can have27
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major impact in many settinsg. We study two example settings. First, in the field of pharmaceutical28

drug discovery early phase pharmaceutical experiments require casting a wide net to find a few29

potential leads to follow. In the long term, development pipelines can be re-designed to specifically30

utilize FMGAN in an optimal way to accelerate the process of drug discovery. FMGAN can also have31

a major impact in clinical setting, where routinely measured variables like blood pressure or heart rate32

can be used to predict important health outcomes and therefore deciding the best course of treatment.33

1. Introduction34

When collecting information on biological entities, for example hospital patients, cells, or drugs,35

we are often faced with the choice of collecting easy-to-obtain information (EI) on many entities or36

collecting hard-to-obtain information (HI) on a few entities. For example, in a drug library of millions37

of drugs, it is easy to obtain chemical structure information but hard to obtain RNA sequencing38

information of cells treated with drugs. On patients, it may be easy to obtain information such as heart39

rate and lab values, but hard to obtain blood flow cytometry information. Here, we present a neural40

network-based method that can bridge the gap between these sources of information on entities like41

drugs or patients.42

We introduce a framework based on a conditional Generative Adversarial Network (cGAN) that43

we call Feature Mapping GAN (FMGAN), which learns a mapping from EI to a distribution of HI.44

The FMGAN takes in noise as input, the EI information as the condition and the HI as the output. For45

instance, given the chemical structure of a drug, we can build a mapping to the RNA sequencing of46

cells under the drug. Here, the EI is the chemical structure and is used as the condition for the cGAN.47

Corresponding HI is then produced by the generator of the cGAN. We showcase this in many settings48

involving different information obtained on drugs and patients.49

Our use of a GAN-based framework is motivated by our applications’ having complex,50

one-to-many relationships between the EI and the HI. To illustrate this further, consider a simple linear51

mapping between an EI variable and an HI variable. The linearity guarantees that small changes in the52

EI will result in a small change in the HI, i.e. the mapping is smooth. However, with chemical structure,53

for example, this is known not to be true: a small change in chemical structure can lead to vastly54

different properties of a drug. Non-linear mappings can also be simple, such as a simple threshold55

decision: if a particular clinical variable completely determines patient outcome, a logical decision56

with a threshold would suffice. However, clinical outcomes are the result of complex couplings57

between large groups of variables. This necessitates a rich mechanism of mapping EI to HI, capable of58

representing the necessary complexity. Moreover, the mapping has to be stochastic. Since, it is unlikely59

that the EI has complete information about the drug or patient in question, it is important for each60

EI condition to be able to map to a range or a distribution of HI conditions. For example, replicates61

of a drug perturbation experiment result in different gene expression results even when applied on62

the same cell line [1]. This stochastic response can only be captured by a generative model that can63

produce stochastic output. As GANs learn complex mappings from a random noise space (and, for64

cGANs, an EI space) to the HI space, they have the required complexity and stochasticity. And with65

their flexible training paradigm, they do so without having to make strong assumptions like those66

involved in choosing a parametric family for the form of the HI distribution.67

One of our motivating examples through this paper is the drug discovery process. A major part68

of pharmacological research is devoted to drug discovery, where a large number of drug compounds69

have to be sorted to find a small number of promising candidates [2]. This search can be guided by70

information about the drug itself, as well as by the past history of how other drugs have performed [3].71

By looking for drugs similar to ones that have shown success previously, promising candidates with72

improved toxicity or efficacy can be identified. Improvements in this form of research, called hit-to-lead,73

can save significant time and money. The search for promising candidate drugs is a daunting task, since74

the state space of molecular libraries is in the millions, and possible drugs is in the tens of thousands75

or more [4].76
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Here we specifically consider measurements involving drug perturbations, a commonly used77

technique for measuring the effect of a drug [5–7]. We utilize drug perturbation data from the L100078

Connectivity Map dataset [1]. Perturbation involves introducing the drug to a sample of cells and79

then measuring the gene expression of those cells after the drug treatment. By comparing the gene80

expression of the cells before and after drug treatment, researchers can infer information about what the81

drug does and how it works. Because perturbing a cell line with a drug involves physically performing82

an experiment, including obtaining the cells, applying the drug, and getting the sequencing results, this83

process can be expensive and time-consuming. We use the FMGAN to generate the RNA-sequencing84

results from the drug structure to speed this process up by not having to perform all of the experiments85

exhaustively. If only a subset of the drugs have a priori RNA-sequencing measurements, the rest can86

be generated with the FMGAN, obviating the need for additional experimentation on a large number87

of candidates.88

Another motivating setting is that of clinical data. In the clinical setting, some measurements89

are readily available EI, either because they are already measured as part of the standard patient90

monitoring, or because they are non-invasive and do not pose any risk. We work with two clinical91

datasets of this type. The first is an Electronic Intensive Care Unit (eICU) Collaborative Research92

Database dataset, which includes as EI standard clinical measurements such as body temperature,93

heart monitoring, and standard blood work [8,9]. With this EI we generated predicted clinical mortality,94

a measurement whose value can normally only be obtained too late to act upon. Rather than due95

to financial expense, this measurement is hard-to-obtain because it is irreversible, involving patient96

mortality. With the FMGAN, predictions can be accurately generated from the EI and thus preventative97

measures can be taken while positive interventions are still possible.98

The second clinical dataset we work with uses similar clinical measurements as EI, but this time99

on COVID-19 patients from Yale New Haven Hospital. In this case, the HI information are future100

single-cell flow cytometry measurements from samples gathered on some of the patients. In practice,101

these types of single-cell measurements cannot be performed exhaustively on every patient in the102

clinic, for reasons of cost as well as time sensitivity. Thus, we use the FMGAN to be able to generate103

future flow cytometry data which depicts compartments of the immune system from readily available104

clinical data. With the FMGAN, we are then able to generate flow cytometry data for any number of105

patients who only have clinical measurements available. This can be valuable as immune responses106

have been shown to be highly predictive of mortality in COVID-19 [10].107

In each of these datasets we not only utilize the natural flexibility of the cGAN in mapping, but108

also explicitly design mechanisms for the cGAN to take advantage of any structure that does exist in the109

EI. While EI-HI mapping is rarely linear or simple, there are many instances in which the HI is smooth110

and respects geometric or manifold structure in the EI—which can be explicitly represented. Here, we111

show two ways of of taking into account latent structure in the EI. The first is by embedding the EI into112

lower dimensional manifold-intrinsic coordinates, such as with the PHATE dimensionality-reduction113

method, which has been shown to preserve manifold affinity [11]. We show this on the case of drug114

perturbations where we measure some genes on perturbed cell lines, and impute the other genes. Since115

the underlying cellular manifold measured is the same, both measured and withheld genes should116

respect this structure. We also show this on clinical data where ICU measurements are embedded117

with PHATE and then the embeddings are used to impute clinical outcomes. The second situation,118

rather than embedding EI with PHATE, is to use a convolutional neural network to find a latent space119

embedding of the data. We use this encoding of the EI where it is the chemical structure of the drug.120

Here, we create a rich set of convolutional features of the chemical structure by treating it as an image.121

In particular a small change in the structure can be reflected as larger changes in convolutional filter122

outputs, and thus the latent space has more regularity with respect to the mapping than the original123

chemical structure space.124
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Figure 1. (a) The measurements on data are separated into “easy-to-collect information” (EI) and “hard-to-collect
information” (HI). The easy-to-collect measurements are available on all data, while the hard-to-collect
measurements are only available on some data. (b) With a Conditional GAN, we can learn to model the relationship
between these two categories of measurements.

2. Results125

2.1. FMGAN126

The FMGAN we propose uses a conditional Generative Adversarial Network (cGAN) to generate127

hard-to-collect information (like sequencing results from a perturbation experiment) from other128

easy-to-collect information (like basic information on the drugs used). Specifically, we propose a cGAN129

with the easy-to-collect information as conditions and the hard-to-collect information as the data130

distribution. A cGAN is a generative model that learns to generate points based on a conditional label131

that is given to the generator G. In the adversarial learning framework, G is guided into generating132

realistic data during training by another network, the discriminator D, that tries to distinguish between133

samples from the real data and samples from the generated data. The generator G and discriminator134

D are trained by alternating optimization of G and D.135

A standard GAN learns to map from random stochastic input z ∼ N(0, 1) (or a similarly simple
distribution) to the data distribution by training G and D in alternating gradient descent with the
following objective:

min
G

max
D

Ex∼P(x)log(D(x)) +Ez∼Pz log(1− D(G(z)))

The generator in a cGAN receives both the random stochastic input z and a conditional label l and
thus has the following objective:

min
G

max
D

Exl∼P(x|l)log(D(x|l)) +Ez∼Pz log(1− D(G(z|l)))

The cGAN was originally used in image generation contexts, where the condition referred to136

what type of image should be generated (e.g. a dog). The cGAN is useful in this context because137

the generator G receives a sample from a noise distribution (as in a typical GAN) as well as the138

condition. Thus, it is able to generate a distribution that is conditioned on the label, as opposed to a139

single deterministic output conditioned on the label. In the original use case, it can learn to generate a140

wide variety of images of dogs when given the conditional label for dogs, for example. While many141

previous methods exist for generating a single output from a single input, there are few alternatives for142

generating a distribution of outputs from a single input without placing assumptions on the parametric143

form of the output distribution.144

The framework of the FMGAN is summarized in Figure 1. The columns of the data are separated145

into easy-to-collect information (EI) and hard-to-collect information (HI). In the notation of the GAN,146

we use the EI as the conditional label l and the HI as the data x. For observations that have both, we147
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train the FMGAN with the generator receiving a label l and a noise point z, while the discriminator148

receives the label l and both real points x and the generated points G(z|l). Then, after training, the149

generator can generate points for conditions l without known data x. This allows us to impute HI150

where we only have EI.151

The FMGAN architecture is designed to take advantage of complex relationships between the152

condition space and the data space. A single underlying entity (e.g. a drug or a patient) has a153

representation in both spaces. In the EI space, the drug is a point, while in the HI space the drug is154

represented by a distribution of cells perturbed by it. Despite the difference in structure, the FMGAN155

is able to leverage regularities in the relationship between the two spaces. This relies on the FMGAN156

being able to leverage manifold structure inherent within each space (for more discussion of manifold157

structure, please see the supplementary information).158

In some cases, the data modality for the EI is difficult to utilize: for example, the chemical159

structure of the drug. The chemical structure can be represented as a string sequence called SMILES or160

a two-dimensional image of the structure diagram. Small changes in the chemical structure can have161

large changes on its function, but may appear to be minor changes to the overall SMILES string or162

the overall structure diagram image. Thus, we use an embedding neural network, parameterized as163

a convolutional network, to process these representations into a more regular space where standard164

distances and directions are meaningful. This parameterization is crucial, as originally the structure is165

not linear (or else simpler models could leverage it). But with convolutional networks, small changes in166

the input can cascade down into deeper layers in complex ways and make potentially large, meaningful167

shifts in the embedding. We further detail the architecture and design of this network in the Methods168

section.169

2.2. Modeling drug perturbation experiments170

We first demonstrate the results of our FMGAN model on data from the L1000 Connectivity Map171

(CMap) dataset [1]. The CMap dataset contains a matrix of genes by count values on various cell172

lines under different drug perturbations. We examine the A375 cell line, a cell line from a human173

diagnosed with malignant melanoma. In this densely measured dataset, we have all gene expression174

measurements for each drug. Each drug also has various numbers of replicates of the same experiment.175

These replicates produce variable effects, motivating the need for a framework that is capable of176

modeling such stochasticity.177

We design four separate experiments with this dataset:178

1. A proof-of-concept that the cGAN framework can effectively model and predict gene expression179

values when the conditions are known to be meaningful because they are selected holdout genes180

from the expression matrix itself.181

2. An experiment where the conditions are taken from a non-linear dimensionality reduction182

method applied to the expressions.183

3. A test of the full FMGAN pipeline where conditions represent chemical structure in the form of184

SMILES strings, and thus embeddings for conditions must be learned.185

4. A variation of the chemical structure conditions where they are represented as images of structure186

diagram.187

In each dataset, the measurement we choose for evaluation is maximum mean discrepancy188

(MMD) [12]. We choose this because we require a metric that is a distance between distributions, not a189

distance merely between points. Taking the mean of a distance between points would not capture the190

accuracy of any moments in the desired distribution beyond the first one. For the experiments based on191

drug metadata (the SMILES strings and the chemical structure images experiments), we consider the192

drug’s distribution to be all of the gene profiles from that drug. For the experiments with conditions193

derived from each gene profile (the heldout genes and dimensionality-reduction experiments), we194

take a neighborhood of drugs around each condition and compare the predicted distribution of gene195

profiles for those drugs with the true distribution.196
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Figure 2. The formation of easy-to-collect (red columns) and hard-to-collect (white columns) data for each
experiment with drug perturbation data. (a) in the held-out genes experiment, the easy-to-collect measurements
are taken from held-out genes (b) in the PHATE coordinate experiment, they are the result of running on the
genes matrix (c) in the SMILES string experiment, the easy-to-collect data is an embedding from processing this
representation with a CNN (d) in the structure diagram experiment, it is the same as in the SMILES string experiment
except run on the structure diagrams.

We compare our FMGAN to a baseline not built off of the cGAN framework. In developing a197

baseline, we must compare to a model that takes in a point and outputs an entire distribution. As198

most existing work yields deterministic output, we create our own stochastic distribution yielding199

model to compare to. This model, which we term simply “Baseline”, takes a condition and a sample200

from a random noise distribution as input, just like our FMGAN. However, unlike our model which201

uses adversarial training and a deep neural network, the Baseline is a simpler, feed forward neural202

network that minimizes the mean-squared-error (MSE) between the output of a linear transformation203

and the real gene profile for that condition. As it is given noise input as well as a condition, it is still204

able to generate whole distributions as predictions for each condition, rather than deterministic single205

points. As generating conditional distributions (especially based off of oddly structured conditions like206

images or strings) is relatively understudied in the computational biology field, we find no directly207

comparably published methods that can be applied to this problem, thus necessitating our creating208

Baseline.209

2.2.1. Predicting gene expression under drug perturbation210

To show our cGAN can learn informative mappings from the EI space to the gene expression211

space, as distinct from the rest of the process, we first choose a means of obtaining EI that are known212
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to be meaningfully connected to the gene expression space. Specifically, we artificially hold out ten213

genes and use their values as EI, with the GAN tasked with generating the values for all other genes.214

This experimental design is summarized in Figure 2a. We choose the ten genes algorithmically by215

selecting one randomly and then greedily adding to the set the one with the least shared correlation216

with the others, to ensure the information in their values have as little redundancy as possible: PHGDH,217

PRCP, CIAPIN1, GNAI1, PLSCR1, SOX4, MAP2K5, BAD, SPP1, and TIAM1. In addition to dividing218

up the gene space to use these ten genes to predict all of the rest, we also divide up the cell space and219

train on 80% of the cell data, with the last 20% heldout for testing.220

We find our cGAN is able to successfully leverage information in the EI space to accurately model221

the data. We designed our proof of concept deliberately so that the true values are known for each gene222

expression and drug we ask our network to predict. These values can be compared to the predictions223

with MMD for a measure of accuracy.224

Our cGAN is able to generate predictions with an MMD of 2.847 between it and the validation225

set (drugs it has never previously seen), showing it very effectively learned to model the dependency226

structure between the EI space and the HI space, even on newly introduced drugs (Table 1). This is in227

comparison to the Baseline model, which has a higher (worse) MMD of 2.922. It is noteworthy that the228

FMGAN outperforms the baseline even in this case, where no processing of the EI needs to take place,229

as they are numerically meaningful values to begin with.230

We also can visualize the embedding spaces learned by the generator to investigate the model.231

Shown in Figure 3a are the generator’s embeddings colored by each of the heldout genes. As we can232

see, the generator found some of these more informative in learning an EI embedding than others. We233

can quantify this by building a regression model to try to predict the value of each gene given the234

embedding to determine the most valuable of the heldout genes. By this measure, PHGDH, PRCP, and235

GNAI1 are the most important genes. Analyzing the embeddings in this way is useful for determining236

which part of the EI space was most informative for generating the HI space, and we will continue to237

do this with more complex EI in later experiments.238

2.2.2. PHATE coordinates as conditions for manifold-structured EI239

Our next experiment formulates the EI space not as individual heldout genes, but instead on a240

dimensionality-reduced representation of the whole space. We theorize that this approach would be241

beneficial over the previous held-out-genes experiment if the EI data exhibits manifold structure. If242

it does, this processing will have made a geometric representation of the EI that corresponds to the243

HI, and thus the mapping is computationally simpler. Previous work has shown that gene expression244

profiles often do exhibit this manifold structure [11,13,14].245

We run the embedding tool PHATE on the gene profiles to calculate two coordinates, which we246

then use as EI in our FMGAN [11]. Doing so preserves the manifold structure of the data, allowing247

for a meaningful transformation to the HI space. This process is depicted in Figure 2b. As usual, we248

separate cells into an 80%/20% training/testing split for evaluation purposes, after being subsampled249

to ten thousand points for computational feasibility with the dimensionality reduction method, and250

we report scores on the evaluation points.251

As shown in Table 1, once again the FMGAN better models the target distribution, as measured252

by MMD between its predictions in the neighborhood of each point and the true values. The FMGAN’s253

predictions had an MMD of 0.179, compared to the baseline MMD of 0.330 (a 45.7% improvement). It254

is also interesting to note that although the MMDs are not directly comparable across the experiments255

(because the target distribution is changing each time, from all drugs in neighborhood around a256

coordinate to all drugs with the same metadata), the PHATE coordinates provide the most accurate257

predictions.258
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Figure 3. (a) Visualization of the embedding of cells in the held-out genes experiment, colored by each held-out
gene. The network has inferred the structure of the space from these genes. (b) The raw data, colored by the
expression of gene EIF4G2, separated into the three most abundant drugs: BRD-K60230970, BRD-K50691590, and
BRD-K79090631. (c) The generator’s embedding space of drugs from the SMILES strings experiment, with the same
three drugs highlighted. The embedding in shows that the drugs with similar distributions have been embedded
into similar locations in the learned embedding space. (d) The same as in (c) but with the structure diagram
experiment.
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2.2.3. Predicting Gene Expression from Drug Chemical Structure259

Next, we test the full pipeline of FMGAN by using SMILES string embeddings as the EI260

(summarized in Figure 2c). This is a much more challenging test case, because in the previous261

cases each point in HI space had a distinct condition, and in the case of the PHATE coordinates, that262

condition was derived from the data it had to predict. In this case, many different data points have the263

same condition, and thus the relationship is much less direct between the EI and the HI.264

An additional wrinkle also arises in this setting where the conditions to the cGAN are learned265

from a raw data structure, rather than a priori existing in their final numerical form like heldout genes266

or PHATE coordinates. Since G and D are trained adversarially and each depends on the embedder E,267

the networks could try to beat each other by manipulating the embeddings into being non-informative268

for the other network. Thus, we let G and D learn their own embedder E, thus removing the incentive269

to make E non-informative.270

As in the previous experiment, we separate the data into an 80%/20% training/testing split for271

evaluation purposes, but this time split along the drugs since each condition gives rise to many points272

in the HI space. Table 1 indicates that the FMGAN had an MMD of 1.191 compared to the baseline of273

1.510 (a 21.1% improvement).274

EI Space Analysis275

In this section, we investigate further the EI space learned from the SMILES strings by the276

generator. In the two previous experiments, the conditions given to the FMGAN had information277

more readily available, either in the form of raw data or even more informative PHATE coordinates.278

The SMILES strings, by contrast, must be informatively processed for the learned conditions to be279

meaningful.280

In this learned EI space, there is one condition coordinate for each drug (while the HI consists of281

many perturbations from each drug). Shown in Figure 3b is the raw data colored by the value of gene282

EIF4G2. Then, all of the perturbations from each of three drugs are shown separately: BRD-K60230970,283

BRD-K50691590, and BRD-K79090631. As we can see, the first two are characterized by high expression284

of this gene and are quite similar to each other. The third, however, is quite distinct, in a separate space285

of the embedding, and is characterized by much lower expression of this gene.286

We compare this to the embedding learned by the generator, which we show in Figure 3c. In this287

plot, each drug is one point, colored by the mean gene value of all perturbations for that drug and288

with a point whose size is scaled by the number of perturbations for that drug. We see that the first289

two drugs are in the central part of the space, and closer to each other than they are to BRD-K79090631.290

The drug BRD-K79090631 is off in a different part of the space, along with other drugs low in EIF4G2.291

This shows that the learned conditions from the generator have indeed identified information about292

the drugs and taken complex sequential representations and mapped them into a much simpler space.293

2.2.4. Predicting gene expression from drug structure diagrams294

The final experiment we consider for the drug perturbation data is the formation of the condition295

space from an image representation of the chemical structure (Figure 3d). These images are downloaded296

from the PubChem PUG REST API [15]. An example image for the drug BRD-U86686840 is shown297

in Figure 2d. They are given as input to a two-dimensional CNN designed for image processing, as298

points in the original h x w x c pixel space, with h = w = 64 and c = 3. While a CNN is used in both299

the SMILES string case and this one, the underlying data is in a fundamentally different structure. As300

in the SMILES string experiment, both the generator and the discriminator learned their own CNN to301

develop embeddings adversarially.302

Table 1 shows that the FMGAN performed slightly better with these chemical structure diagrams303

as compared to the SMILES strings (1.177 MMD). The baseline model scored significantly worse304

with these images as compared to the SMILES strings. This illustrates the FMGAN’s flexibility,305
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MMD Scores
Heldout
Genes

PHATE
Coordinates SMILES

Chemical
Structure

Image

FMGAN 2.847 0.179 1.191 1.177
Baseline 2.922 0.330 1.510 1.798

Table 1. MMD scores (lower is better) across all datasets for the drug data for both models. The
FMGAN more accurately predicts the distribution from each condition for all methods of forming the
condition space.

Figure 4. (a) The raw data from the eICU clinical outcomes experiment, along with FMGAN generated data and a
linear regression baseline. (b) Quantitative evaluation of the model and the baseline.

as it performs comparably with drastically different structures (a long one-dimensional string as306

opposed to a natural image). That the chemical structure images perform slightly better is perhaps307

a sign that two-dimensional image convolutional networks are currently more effective at distilling308

this information than one-dimensional sequence convolutional networks, but the FMGAN’s flexible309

framework allows it to keep improving with advances in deep learning architectures. Another310

possibility is that the structure diagrams have relevant information more easily separable from311

irrelevant information, making them an easier statistical task.312

EI Space Analysis313

In Figure 3d, we show the learned embedding from the generator. We color the embedding by314

the same gene and highlight the same three drugs as in the previous experiment: BRD-K60230970,315

BRD-K50691590, and BRD-K79090631. As before the learned conditions have taken a space where it316

is hard to characterize the information it contains (raw images in pixel space) and mapped them to317

a simpler space with numerically meaningful points. This can be seen by noting that the two drugs318

with similar distributions in the raw data (BRD-K60230970 and BRD-K50691590) have been mapped to319

nearly identical conditions, while they are separate from the drug with a very different distribution320

(BRD-K79090631). In fact, this goes towards an explanation of the improvement in performance over321

the SMILES string model, as the embedder has placed the drugs with similar distributions closer to322

each other in conditions, making the generator’s job easier.323

2.3. Predicting clinical outcomes324

We demonstrate the versatility of our proposed method by experimenting on data in a very325

different context from the drug perturbations of the previous section. Here we work on clinical data326

from two different datasets. In each case, we use data derived from clinical measurements on patients327

to predict their clinical outcomes.328

2.3.1. Predicting eICU clinical outcomes329

For our first clinical experiment, we use data from patients at high risk for mortality due to330

severe illness, selected from the eICU Collaborative Research Database [8,9]. As conditions for the331
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FMGAN, we use measurements that are components of the in the widely-used APACHE score.332

The APACHE score predicts mortality from age, immunocompromised status, heart measures, and333

respiratory measures [16]. We pass these features through PHATE to develop conditions and then334

predict mortality as our response variable. For more details on the data and pre-processing, please see335

the Supplementary Information.336

Figure 4 shows the real data, which is noisy but still shows different density of mortality in337

different parts of the space. We also see the FMGAN generated data next to it: qualitatively, these338

predictions resemble the raw data to a substantial degree. As a baseline, we can build a linear339

regression model that tries to predict this response variable as a function of the coordinates. Due340

to the probabilistic nature of the response, the linear regression predicts a low chance of mortality341

everywhere in the space, with a slight uptick in probability in the dense region.342

This is different from our FMGAN, which better models the binary nature of the output: in each343

region there are some zeros and some ones as opposed to every point having a small constant value344

like 0.1. To quantify the accuracy of each model, we have to develop an evaluation criterion that345

looks at different regions and compares the true number of mortalities and predicted number in that346

region. This metric assumes that within each local neighborhood, which point gets which label is347

partially determined by randomness, and that the true signal is the proportion of points within that348

neighborhood. Using this metric, we can compute the prediction error as the difference between the349

predicted number of mortalities in a neighborhood and the true number.350

Specifically, we compute K partitions of the data using the nearest neighbors clustering algorithm.351

In each neighborhood, we compare the proportion of positive predictions (using a threshold of 0.5) and352

the proportion of real positive outcomes with a mean-squared error measurement. Figure 4b shows353

this for varying numbers of neighborhoods K. Also, while our model naturally outputs data like the354

underlying data and thus has an easily identifiable threshold of 0.5 for a positive prediction, the linear355

regression does not have an obvious choice for a threshold for a positive prediction. We use both the356

default 0.5 (labeled LinearRegression1) and the ith percentile of the output, where i is chosen to match357

the total proportion of real responses equal to one and the predicted proportion responses equal to358

one.359

Figure 4b shows a chart of these values for increasing numbers of neighborhoods to divide the360

space into. The errors for the linear regression models range from 0.02 to 0.10 depending on the361

neighborhood size, while the FMGAN remains below 0.01 for all neighborhood sizes. This means362

the regression model has at least doubled the error of the FMGAN in each neighborhood size. The363

stochasticity in the data makes it so that the GAN framework, which incorporates stochastic noise364

input, is best able to generate output like the real data.365

2.3.2. Predicting COVID-19 clinical outcomes366

In this section we present an experiment that learns a mapping between clinical measurements367

and FACS measurements from COVID-19 patients [17]. The clinical measurements are taken from the368

first 24 hours in the ICU, with a patient’s record being the most extreme value taken during that period369

when more than one record is taken. To test the ability of FMGAN to make practical, and actionable370

predictions we learn to generate the first flow cytometry measurement, taken from anywhere from the371

first week to the eleventh week of the stay. Thus, we model future flow cytometry with present clinical372

data.373

The conditions we use for the FMGAN, as in the previous experiment, are PHATE coordinates of374

embedded clinical variables. In the PHATE embedding each patient is represented by a a vector of375

variables, listed in the supplement in Table 3. For each of 129 patients, we also have matched FACS376

measurements on 14 proteins obtained from each patient, which are listed in the supplement in Table 4.377

While the clinical measurements are relatively easy and inexpensive to obtain, FACS samples are378

comparatively expensive and time-consuming to obtain. Thus, we wish to learn a model that can379

accurately generate FACS data from a patient’s clinical measurements alone.380

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.20.259598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.259598
http://creativecommons.org/licenses/by-nd/4.0/


Version August 20, 2020 submitted to Cell Patterns 12 of 21

Figure 5. FACS data generated from clinical measurements in the COVID-19 data. Top row: for all 13 held-out
patients, the real FACS measurements. Second row: for all 13 held-out patients, generated FACS measurements
from the FMGAN. Third row: a single patient’s real FACS measurements. Bottom row: a single patient’s generated
FACS measurements.

To evaluate the ability of the FMGAN to perform this generation, we train on 90% of the patients381

(116) and withhold 10% of the patients (13) for evaluation. We train to generate a distribution of FACS382

measurements from each single condition corresponding to a patient’s clinical measurements. In383

Figure 5, we see the resulting data from all 13 heldout patients in the top row. In the second row, we384

see the corresponding FMGAN generated data. Remarkably, the FMGAN learned to accurately model385

the true distribution of FACS data even for the never-before-seen patients. Distinct populations of386

cells are visible: CD3+ T cell populations including both CD4+ (T helper cells) and CD8+ (Cytotoxic T387

cells), as well as a CD38+ population. With each protein marker, the FMGAN accurately models the388

underlying data distribution.389

In the bottom two rows of Figure 5, we see the FMGAN model the distribution from a single390

patient accurately, as well. This per-patient generation forms the basis for our quantification of the391

model’s accuracy. We utilize the same baseline as in the previous section. For each patient, we392

measure the distribution distance between the predicted distribution and the true distribution of393

FACS data (scored by MMD, as before). Table 2 shows the FMGAN is able to produce distributions394

very close to the true underlying distribution for each patient, while the baseline model does not. As395

each distribution is complex with many different cell populations with varying proportions, it is not396

surprising that the more richly expressive FMGAN is better able to model the true data.397

We note that with the FMGAN, we are able to predict the FACS measurements on398

never-before-seen patients, based on their clinical measurement alone. However, this relied upon399

the patients in the training set being representative of the patients in the held-out set. In practical400

applications, this means that the population of patients would need to be chosen carefully and diversely401

for the predictions to be meaningful for future patients.402
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MMD Scores COVID-19 FACS data

FMGAN 0.022 +/- 0.008
Baseline 0.898 +/- 0.015

Table 2. MMD scores (lower is better) on the COVID-19 data, with mean and standard deviation across
the 13 held-out patients. The FMGAN outperforms the baseline significantly.

3. Methods403

3.1. Conditional Generative Adversarial Networks404

In a Generative Adversarial Network (GAN), samples from the generator G can be obtained405

by taking samples from z ∼ Z and then performing the forward pass with the learned weights of406

the network. But while the values of z control which points G generates, we do not know how to407

ask for specific types of points from G (more discussion of the original, unconditional GAN is in the408

Supplementary Information).409

The lack of this functionality motivated the need for the conditional GAN (cGAN) framework [18,410

19]. The cGAN augments the standard GAN by introducing label information for each point. These411

labels stratify the total population of points into different groups. The generator is provided a given412

label in addition to the random noise as input, and the discriminator is provided with not only real413

and generated points, but also the labels for each point. As a result, the generator not only learns to414

generate realistic data, but it also learns to generate realistic data for a given label.415

After training, the labels, whose meaning is known to us, can be provided to the generator to416

generate points of a particular type on demand. Because G is provided both a label and a random417

sample from Z, the cGAN is able to model not just a mapping from a label to a single point, but instead418

a mapping from a label to an entire distribution.419

Expressing the cGAN formula mathematically yields a similar equation as to the original GAN,
except with the modeled data distributions being marginal distributions conditioned on the label l of
each point:

min
G

max
D

Exl∼P(x|l)log(D(x|l)) +Ez∼Pz log(1− D(G(z|l)))

Learning a generative model conditioned on the labels allows information sharing across labels,420

another advantage of the cGAN framework. Since the generator G must share weights across labels,421

the signal for any particular label li is blended with the signal from all other labels lj, j 6= i, allowing422

for learning without massive amounts of data for each label.423

3.2. Chemical Structure and SMILES Strings424

Conditional GANs are a powerful construction for guided generation, but require some known425

label space to be used. While the label space must be relevant to the measured data space for an426

informative model to be learned, the relationship need not be simple and can be noisy. When the data427

space is gene expression after a drug perturbation, as in our application here, one relevant source of428

labels is metadata about the structure of the drug used for the perturbation. We consider two ways of429

representing this structure for our label space: a one-dimensional sequence of letters called a Simplified430

Molecular-Input Line-Entry System (SMILES) string, and a two-dimensional image called a structure431

diagram.432

SMILES strings433

A SMILES string encodes the chemical structure of a drug in a variable-length set of standard434

letters and symbols. Each character in the string represents an element of the chemical’s physical435
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formation, for example an atom, a bond, or a ring. For example, the common molecule glucose has the436

following structure:437

OC[C@@H](O1)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)1438

The letters indicate elements oxygen, carbon, and hydrogen, with @ denoting steriochemical439

configuration, and brackets and parentheses representing bonds and branches, respectively. Clearly,440

while providing rich information about the drug, this representation does not immediately lend itself441

to use as a condition. In order to distill these variable-length sequences into a fixed-size representation442

where similar structures have similar representations, we use a sequence-encoding neural network to443

embed each structure into a latent space.444

Structure diagram445

An alternate way of representing chemical structure, more intelligible for a human observer than446

SMILES strings, is a structure diagram. These have letters representing elements as in the SMILES447

strings, but also are distinguished by colors, while different types of bonds are indicated with simple448

lines. These images are downloaded from the PubChem PUG REST API [15]. While specifying how449

to get information about the structure out of this image explicitly would be impossible (in terms of450

RGB pixels), a neural network can learn how to process these images itself in order to accomplish451

its training objective, all through a completely differentiable optimization with stochastic gradient452

descent.453

3.3. FMGAN454

We describe the architecture for the FMGAN in this section. In the SMILES strings experiment, to455

obtain a fixed-length DE-dimensional vector for each string, we represent each input as a sequence456

of length Nseq vectors, with Nseq being the longest SMILES string in the database. Each element457

in the sequence is a vector representing the character in that position of the sequence (with a null458

token padding the end of any sequence shorter than Nseq). As is standard in language processing, we459

learn character-level embeddings simultaneously with the sequence-level processing. Let V be the460

vocabulary, or set of all characters. The character-level embeddings are rows of a |V| ×Dchar matrix W,461

where |V| is the number of characters in the vocabulary and Dchar is a hyperparameter, the size of the462

character embedding. Each input is then represented as a sequence where the ith element is the row of463

W corresponding to the ith character in the SMILES string.464

The size of the vocabulary (number of characters including start, end, and null tokens) is 43. We465

chose the size of the character-level embedding to be 100. The embedder network E consists of two466

convolutional layers with 64 and 32 filters, respectively, each with a kernel-size of 40 and stride-length 2467

with batch normalization and a leaky ReLU activation applied to the output. These convolutional layers468

are followed by four fully-connected layers which gradually reduce the dimensionality of the data with469

400, 200, 100, and 50 filters, respectively. All layers except the last one have batch normalization and470

leaky ReLU activations. The generator and discriminator have the same architecture as the previous471

experiment.472

This input representation is then passed through E, a convolutional neural network (CNN), which473

produces the sequence embeddings. E performs one-dimensional convolutions over each sequence474

followed by fully-connected layers, eventually outputting a single DE-dimensional vector for each475

SMILES string. We let these embeddings form the condition space for the next stage in FMGAN, the476

conditional GAN.477

For the structure diagram experiment, we start with images that are points in h x w x c space, with478

h = w = 64 and c = 3. They are then processed with a CNN. The CNN consists of four convolutional479

layers with stride 2, kernel size 3, and filters of 32, 64, 128, and 256, respectively. Batch normalization480

and a ReLU activation was used for each layer. Finally, after the convolutions, one fully connected481
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layer maps the flattened output to a 100-dimensional point, representing the embedding learned for482

the particular diagram.483

For both experiments, the generator structure, after the drugs are processed into conditions, is484

the same. Let ci be the condition for drug i formed by the embedder. Let xi be the Dx-dimensional485

corresponding gene expression profile from a perturbation experiment performed with drug i. We486

build a GAN that trains a generator G to model the underlying data distribution conditioned upon the487

structure pdata(x|c). G takes as input both a sample from a noise distribution (we choose an isotropic488

Gaussian) z ∼ Z, and a condition ci. G maps these inputs to a Dx-dimensional point. Then, the489

discriminator D takes both a Dx-dimensional point and a condition c and outputs a single scalar490

representing whether it thinks the point was generated by G or was a sample from pdata. These491

networks then train in the standard alternating gradient descent paradigm of GANs previously492

detailed.493

For specific hyperparameter choices and data dimensionality details, we refer to the494

Supplementary Information.495

We note a few additional points about the FMGAN framework. First, since everything in the496

network including the character-level embeddings, the embedder E, and the GAN are all expressed497

differentiably, the whole pipeline can be trained at once in an end-to-end manner. Thus, the498

character-level embeddings and the convolutional weights can be optimized for producing SMILES499

strings embeddings useful for this specific task and context. This is a powerful consequence, as defining500

what makes a good static embedding of a high-dimensional sequence may be ambiguous without501

reference to a particular task.502

4. Discussion503

The FMGAN model allows us to predict hard-to-obtain information for samples where we only504

directly measure easy-to-obtain information. We demonstrate that the FMGAN can accurately model505

never-before-seen samples in these contexts. In the drug discovery context, this allows the potential506

impact of saving on expense and time by not performing as many physical experiments and instead507

modeling their results. In the clinical context, this allows for the modeling of patient data sooner, with508

more time to take positive interventions.509

Furthermore, the flexible framework of the cGAN we develop for the FMGAN allows for EI that510

requires advanced processing to be used as the conditional input. We demonstrate this on images511

and long one-dimensional sequences, but this can extended to other difficult-to-represent data. For512

example, in the clinical setting, the advances in natural language processing achieved by deep neural513

networks could be utilized to process doctor’s notes as raw text and then incorporated into the model.514

We demonstrate that the FMGAN is able to leverage structure in the condition space in both515

manifold form (from the PHATE coordinates) and discrete form (from chemical structure strings).516

While seemingly similar, these are very different from an information theoretical point of view. In517

the manifold setting, differences in input can create differences in output in a smooth way, but in the518

discrete setting, one small change in an individual feature may have a large effect on the output while519

another small change in a different feature has no effect on the output at all. For example, in a chemical520

structure string, modifications to some locations will not change the function at all, while in other521

locations a single change will determine function.522

While we demonstrate that the FMGAN can be usefully applied to generative problems in a wide523

variety of modalities, and, as we show, even in the presence of high amounts of stochasticity.524
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5. Software Availability616

https://github.com/KrishnaswamyLab/FMGAN617

6. Supplementary Information618

6.1. Generative Adversarial Networks619

Generative Adversarial Networks (GANs) are a deep learning framework for learning a generative620

model of a data distribution. In recent years, they have gained significant popularity by achieving621

state-of-the-art performance on applications to images, language, sequences, and many other data622

modalities [14,20–23]. GANs differ from other types of models by not using explicit likelihood623

measures nor relying on having a meaningful distance measure between points. Instead, they teach a624

generator neural network G with a second discriminator network D using the following equation:625

min
G

max
D

Ex∼Px [log(D(x))] +Ez∼Pz [log(1− D(G(z)))]

where x is the training data, z is a noise distribution that provides stochasticity to the generator626

and is chosen to be easy to sample from (typically an isotropic Gaussian).627

6.2. Conditional Generative Adversarial Networks628

Conditional Generative Adversarial Networks (cGANs) originated from the desire for having629

greater control over generation from GANs. In the case where external information, such as class630

labels, are available, we would like to be able to generate a random point from a specific class. The631

methods devised to achieve this involve providing a random label to the generator during training632

and then providing this label and the generated image to the discriminator. The discriminator also633

receives real images and their labels, allowing it to learn their joint distribution.634

Once the model has been trained in this way, control over generation can be used to generate a635

point from a particular class by feeding the desired class into the generator. This process especially636

benefits from having fine-grained, continuous conditions like we have, as this gives even more precise637

control over generation.638

6.3. Optimization639

The networks G and D take turns optimizing their objectives through alternating gradient descent.640

Throughout training, the discriminator provides gradient information to the generator guiding it to641

better quality generation. This powerful framework provides the ability to model arbitrarily complex642

distributions without making any explicit parametric or limiting assumptions about their shape.643

Theoretical analysis of GANs have shown their ability to converge to an optimal point where the644

generated distribution is indistinguishable from the true distribution [24–26]. The ability to converge645

to this optimal generative model without specifying a distribution distance is especially helpful in our646

applications, where the points lie in high dimensions and the curse of dimensionality makes distances647

problematic [27].648

Manifold learning649

A useful assumption in representation learning is that high biomedical dimensional data originates650

from an intrinsic low dimensional manifold that is mapped via nonlinear functions to observable high651

dimensional measurements; this is commonly referred to as the manifold assumption. In particular,652

we believe that since biological entities like patients, cells lie in lower dimensional spaces because653

of informational redundancy and coordination between measured features (coordinating genes, or654

coordinated combinations of residues on molecules). Further, we believe that these low dimensional655
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spaces form smoothly varying patches because of natural heterogeneity between entities. The fact that656

the manifold model is successful in modeling biological entities has been shown in literature numerous657

times [28] and has lead to successful methods data denoising [29], clustering [30], visualization [31],658

and progression analysis [32].659

Formally, let Md be a hidden d dimensional manifold that is only observable via a collection660

of n � d nonlinear functions f1, . . . , fn : Md → R that enable its immersion in a high dimensional661

ambient space as F(Md) = {f(z) = ( f1(z), . . . , fn(z))T : z ∈ Md} ⊆ Rn from which data is collected.662

Conversely, given a dataset X = {x1, . . . , xN} ⊂ Rn of high dimensional observations, manifold663

learning methods assume data points originate from a sampling Z = {zi}N
i=1 ∈Md of the underlying664

manifold via xi = f(zi), i = 1, . . . , n, and aim to learn a low dimensional intrinsic representation that665

approximates the manifold geometry of Md.666

To learn a manifold geometry from collected data, we use the popular diffusion maps construction667

of [33] that uses diffusion coordinates to provide a natural global coordinate system derived from668

eigenfunctions of the heat kernel, or equivalently the Laplace-Beltrami operator, over manifold669

geometries. This construction starts by considering local similarities defined via a kernel K(x, y),670

x, y ∈ F(Md), that captures local neighborhoods in the data. We note that a popular choice for K is the671

Gaussian kernel exp(−‖x− y‖2/σ), where σ > 0 is interpreted as a user-configurable neighborhood672

size. However, such neighborhoods encode sampling density information together with local geometric673

information. To construct a diffusion geometry that is robust to sampling density variations we use an674

anisotropic kernel675

K(x, y) =
G(x, y)

‖G(x, ·)‖α
1‖G(y, ·)‖α

1
, G(x, y) = e−

‖x−y‖2
σ

as proposed in [33], where 0 ≤ α ≤ 1 controls the separation of geometry from density, with α = 0676

yielding the classic Gaussian kernel, and α = 1 completely removing density and providing a geometric677

equivalent to uniform sampling of the underlying manifold. Next, the similarities encoded by K are678

normalized to define transition probabilities p(x, y) = K(x,y)
‖K(x,·)‖1

that are organized in an N × N row679

stochastic matrix680

Pij = p(xi, xj) (1)

that describes a Markovian diffusion process over the intrinsic geometry of the data. Finally, a681

diffusion map [33] is defined by taking the eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λN and (corresponding)682

eigenvectors {φj}N
j=1 of P, and mapping each data point xi ∈ X to an N dimensional vector Φt(xi) =683

[λt
1φ1(xi), . . . , λt

NφN(xi)]
T , where t represents a diffusion-time (i.e., number of transitions considered684

in the diffusion process). In general, as t increases, most of the eigenvalues λt
j, j = 1, . . . , N, become685

negligible, and thus truncated diffusion map coordinates can be used for dimensionality reduction686

[33].687

PHATE for structure-preserving visualization of Data688

Several dimensionality reduction methods that render data into 2-D visuals like PCA and tSNE.689

[34] and UMAP [35] exist. However, they often cannot handle the degree of noise in biomedical data.690

More importantly, most of these methods are not constructed to preserve the global manifold structure691

of the data. PCA cannot denoise in non-linear dimensions, tSNE/UMAP effectively only constrains692

for near neighbor preservation—losing global structure. This motivated us to develop a method of693

dimensionality reduction that retains both local and global structure, and denoises data [31].694

PHATE also builds upon the diffusion-based manifold learning framework described above,695

and involves the creation of a diffused Markov transition matrix from cellular data, as in MAGIC,696

Pt (Equation 1). PHATE collects all of the information in the diffusion operator into two dimensions697

such that global and local distances are retained. To achieve this, PHATE considers the ith row698
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of P as the representation of the ith datapoint in terms of its t-step diffusion probabilities to all699

other datapoints. PHATE then preserves a novel distance between two datapoints, based on this700

representation called potential distance (pdist). Potential distance is an M-divergence between the701

distribution in row i, Pt
i,. and the distribution in row j, Pt

j,.. These are indeed distributions as Pt is702

Markovian: pdist(i, j) =
√

∑k(log(Pt(i, k)− Pt(j, k))2.703

The log scaling inherent in potential distance effectively acts as a damping factor which makes704

faraway points similarly equal to nearby points in terms of diffusion probability. This gives PHATE705

the ability to maintain global context. These potential distances are embedded with metric MDS as a706

final step to derive a data visualization. We have shown that PHATE outperforms tSNE [34], UMAP707

[35], force directed layout and 12 other methods on preservation of manifold affinity, and adjusted708

rand index on clustered datasets, in a total of 1200 comparisons on synthetic and real datasets. In [31]709

we also showcased the ability of PHATE to reason about differentiation systems and differentiation710

trajectories in human embryonic cell development.711

6.4. Maximum Mean Discrepancy712

To evaluate the accuracy of the predicted distribution with respect to the true distribution for
a given condition, we utilize maximum mean discrepancy (MMD) [36]. The MMD is a distribution
distance based on a kernel applied to pairwise distances of each distribution. Specifically, MMD is
calculated as:

MMD(X, Y) =
1
n

Σ
i 6=i′

k(xi, xi′) +
1
m

Σ
i 6=i′

k(yi, yi′)−
2

mn
Σ

i 6=j
k(xi, yj)

for finite samples from distributions X = {x1, ...xm} and Y = {y1, ...yn} and kernel function k.713

Two distributions have zero MMD if and only if they are equal. MMD has been used successfully714

in biological systems in the past, particularly in detecting whether two systems were different in715

distribution [37].716

6.5. eICU Clinical data717

A patient cohort at high risk for mortality due to severe illness was selected from the eICU718

Collaborative Research Database, a public multicenter critical care database containing 200,859 ICU719

admissions with 139,367 unique patients admitted to critical care units between 2014 and 2015 [8,9].720

After excluding patients who did not have a calculated risk score for mortality, the APACHE IVa score721

and who had at least one vital sign, the final dataset contained 146,587 encounters with 118,638 unique722

patients. The structured datafields from automated vital signs, laboratory results, and treatments for723

the patient cohort were extracted and transformed as described by a recent manuscript by taking724

the most abnormal values in the first 24 hours from ICU admission and multiple imputation using725

Bayesian Ridge Regression was used to fill missing variables [38].726

Alanine Aminotransferase Antibiotic Aspartate Aminotransferase
Bilevel Positive Airway Pressure Blood Urea Nitrogen Chloride

Continuous Positive Airway Pressure Creatinine Ferritin
Glucose High-Flow Nasal Cannula High-sensitivity C-Reactive Protein

Hydroxychloroquine Mechanical Ventilation Nasal Cannula
Non-rebreather Mask Oxygen Saturation Procalcitonin

Respiratory Rate Steroid Systolic Blood Pressure
Tocilizumab White Blood Cell Count

Table 3. Clinical variables for the COVID-19 dataset.
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CCR7 CD3 CD4 CD8 CD25 CD38 CD45RA
CD127 CXCR5 FSC HLA-DR PD1 SSC TIM3

Table 4. Flow cytometry markers for the COVID-19 dataset.

6.6. COVID-19 Clinical data727

The cohort of patients included only those who were hospitalized at any of 6 hospitals in the728

Yale-New Haven Health System (Bridgeport, Greenwich, St. Raphael’s Campus, Westerley, Lawrence729

and Memorial, York Street Campus) during the period between March 1st, 2020 and June 1st, 2020730

with a positive COVID test (nasopharyngeal source) between admission and discharge. Only the first731

encounter was included in the dataset for patients with multiple encounters during the time period of732

observation. Patients with a positive test prior to hospital admission but not tested during admission733

or tested negative during admission were not included in the cohort. Data for these patients was734

then extracted from the electronic health record (Epic, Verona, WI) and included data domains of735

demographics (e.g. age and sex), medical history (e.g. history of diabetes), laboratory samples (e.g.736

white blood cell count), as well as vital signs (e.g. blood pressure measurement). Pre-defined outcomes737

included in-hospital mortality, transfer to the intensive care unit (ICU), as well as requirement for738

invasive ventilation. In-hospital mortality was measured as patients being discharged from the hospital739

with a deceased status. ICU care was measured through location data for patients and was manually740

validated through chart review. Ventilation status was measured through procedure orders placed741

during the patient’s hospitalization and were validated through chart review.742

Time-varying data, specifically vital signs as well as laboratory studies, were extracted at all743

timepoints of measurement during a patient’s admission.744

Features were selected from a predictive model developed to predict early hospital respiratory745

decompensation among patients with Covid-19 and augmented with treatment received. There were a746

total of 19 clinical, laboratory, and treatment variables extracted: systolic blood pressure, respiratory747

rate, oxygen saturation, blood urea nitrogen, creatinine,chloride, glucose, white blood cell count,748

alanine aminotransferase, aspartate aminotransferase, high-sensitivity C-reactive protein, ferritin,749

procalcitonin, age, gender, and treatment with hydroxychloroquine, steroid, antibiotic, or tocilizumab.750

Only complete cases, or patients with recorded values for all 19 variables in the first 24 hours, were751

included in the final dataset.752

As preprocessing, the most abnormal value in the first 24 hours was selected for the clinical753

and laboratory variables according to the methodology described in a previous electronic health754

record-based study. The categorical variables for treatment were coded as binary (1 for received, 0 for755

not recorded).756

c© 2020 by the authors. Submitted to Cell Patterns for possible open access publication757

under the terms and conditions of the Creative Commons Attribution (CC BY) license758
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