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19 Abstract
20 Optical coherence tomography angiography is a noninvasive imaging modality to 
21 establish the diagnosis of retinal vascular diseases. However, angiography images are 
22 significantly interfered if patients jitter or blink. In this study, a novel retinal image 
23 analysis method to accurately detect blood vessels and compensate the effect of 
24 interference was proposed. We call this the patch U-Net compensation (PUC) system, 
25 which is based on the famous U-Net. Several techniques, including a better training 
26 mechanism, direction criteria, area criteria, gap criteria, and probability map criteria, 
27 have been proposed to improve its accuracy. Simulations show that the proposed PUC 
28 achieves much better performance than state-of-art methods.

29 Introduction
30 Retinal vasculature analysis is a critical subject in diagnosing and managing retinal 
31 vascular diseases. Optical coherence tomography angiography (OCTA) is an 
32 advanced rapid noninvasive method that can acquire the images for retinal 
33 vasculature analysis [1-4]. Chorioretinal vasculature contains a three-dimensional 
34 layered structure and it comprises a superficial layer, a deep layer, an outer retinal 
35 layer, and a choriocapillary layer. OCTA facilitates the detection of retinopathy [5], 
36 glaucoma [6], and diabetic complications [7]. However, OCTA images can be 
37 affected by human interference. For example, patients may blink unconsciously 
38 during OCTA infrared scanning. Therefore, it is common for an OCTA image to 
39 product several megascopic artifacts. Additionally, the vasculature sometimes tends 
40 to be rare, small, and thin due to some disease. These problems may degrade the 
41 quality of an OCTA image. In this study, we tried to solve the following two 
42 problems for OCTA image analysis: 

43 i) The image quality problem of noise-interfered blood vessels:   

44 The noise may be caused by the environment, equipment, the vessel in the next 
45 layer, and small nerve fibers in the plexus. Additionally, as indicated previously, the 
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46 motion of a patient may produce flicker noise. 

47 ii) Disease problem:

48 In a healthy retinal image, vessels are evenly distributed on the retina. However, in 
49 a diseased retinal image, severe vascular non-perfusion may occur. There are large 
50 empty / black areas, making it difficult for a doctor to identify whether a cluster of 
51 bright pixels in the dark region is indeed a vessel or an artifact. 

52 Considering the above problems, some advanced noise filters and thresholding 
53 methods have been proposed. For example, the adaptive thresholding methods 
54 proposed in Phansalkar et al. [8] and Cole et al. [9] and the multiple enface image 
55 averaging Uji et al. [10] were well-known methods for image intensity 
56 enhancement. Moreover, to reduce the noise and enhance the visual ability of the 
57 retina, in [11-18], several techniques were adopted, including the Gabor-filter-based 
58 method [11], the Frangi-filter-based methods [12], the filter-bank-based architecture 
59 [13, 17], the optically-oriented-flux [14] and thresholding [18]. In [15], the 
60 compressive sensing method was applied to remove the noise of OCTA images. In 
61 [16], the generalized Gauss-Markov random field and the guided bidirectional 
62 graph search method were applied to perform retinal vessel segmentation in OCTA 
63 images, respectively. However, these methods are not unsupervised and parameter-
64 sensitive and may produce unexpected noise by personal setting operations. In 
65 recent years, with the fast development of deep learning, several learning-based 
66 segmentation methods, including the convolutional neural network (CNN)-based 
67 [19] and the U-Net-based methods [20, 21] have been proposed. These methods can 
68 reproduce the curvilinear vessel shape for healthy retinas. However, when handling 
69 diseased retinal images, there are some limitations and the performance is affected 
70 by the artifact and the non-uniform distribution of vessels. Therefore, in this study, 
71 we integrated the advantages of deep learning networks and conventional methods 
72 and proposed the patch U-Net compensation (PUC) algorithm. The main concepts 
73 of the proposed PUC algorithm are summarized as follows:

74 a) To solve the vessel segmentation problem:

75 We modified the original U-Net model [20] by varying its training process to make 
76 the model fit OCTA images perfectly. This modified U-Net model is treated as the 
77 backbone of the proposed PUC algorithm. It can well identify the vessels with large 
78 curvature.  

79 b) To solve the diseases retinal image problem:

80 We developed several techniques for artifact identification and vessel compensation 
81 to address the problem well.   

82 First, we proposed an artifact identification technique based on corner detection, 
83 edge detection, and ridge detection [22]. A novel direction estimation method and 
84 area thresholding method were adopted to identify whether a cluster of bright pixels 
85 was a real noise or a small vessel. Its idea is based on human vision. It applies the 
86 fact that the vessel should be ridge-like and fiber-like to distinguish the artifacts and 
87 small vessels. 

88
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89
90 Fig 1. Outputs of the OCTA machine of RTVue XR 100 Avanti Edition, including (a)(b)(c)(d) four layers, (e) the 
91 vessel density map, and (f) cross-sectional images. The red points indicate vessels.
92

93
94 Fig 2. (a) An OCTA raw image with noise (marked by red arrows); (b) the ground truth; (c) the scanning artifact 
95 problem (red ellipse) and noise (green ellipses) may be misidentified as vessels and affect the performance.  
96
97
98 Subsequently, an adaptive compensation technique was applied to the 
99 remaining vessels. The U-Net [20, 21] performs vessel identification 

100 globally since its loss function is determined from whole pixels, not for the 
101 pixels in a special region. Therefore, we proposed a region-adaptive 
102 technique to connect small fragments in suspected regions to refine the 
103 output locally. These compensation techniques will be illustrated in detail in 
104 Sections “Compensation methods for noise reduction” and “Vessel 
105 compensation”.
106
107
108
109
110
111
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112 OCTA images and challenges in analysis
113 RTVue XR 100 Avanti Edition [23], which is an OCTA machine, provides the 
114 scanned images from the retina by the reflections on different vessels, as shown in 
115 Fig 1(f), to obtain four-layer information, as shown in Figs. 1(a)(b)(c)(d). Retina 
116 vessels are distributed like tree branches. Larger vessels (i.e. arterioles and venules) 
117 are mainly found in the superficial layer, while small vessels (capillaries) can be 
118 found in both superficial and deep layers. Vascular non-perfusion in superficial 
119 layer is an important feature of diagnosing and evaluating retinal vascular diseases.

120 Although OCTA machine may provide a vessel density map [24-27], as shown in 
121 Fig 1(e), the result is not robust to artifacts and noise, which may be misidentified 
122 as small vessels. How to filter the noise, like the red arrows, as shown in Fig 2(a), 
123 and retrieve the true vessels, as shown in Fig 2(b), is a challenging problem. Even 
124 when the patient moves the head slightly or blinks a little, noise is produced. 
125 Moreover, the scanning artifact problem may form a straight line in an OCTA 
126 image. It is often misidentified as a vessel. Consequently, it is insufficient to use 
127 only the intensity information to distinguish between vessels and noise. In 
128 particular, if the intensities of scanning artifacts are high and the vessels are blurred, 
129 using only the intensity information to identify vessels may cause several errors. 
130 Therefore, instead of applying some simple rules for vessel detection, a more 
131 sophisticated method is required.    

132 In an OCTA image, if there is some bright region that is in fact not a vessel, then it 
133 is treated as noise. Due to machine oscillation and the motions of patients, most 
134 noise is either pepper-like or white-noise-like. Because the vessels, which are 
135 usually ridge-like, have several high-frequency components, it is suitable to apply 
136 the frequency-based filter (e.g., the lowpass filter) to remove the noise. Several 
137 studies [8-21] have been proposed to remove the bulk motion noise problems, as 
138 shown in Fig 2(a). However, it is still a challenge to deal with the strong artifacts 
139 and straight artifact lines, as shown in Fig 2(c). 

140 In Fig 2(c), the red circles represent the strange thin straight line which comes from 
141 blink interference during the horizontal infrared scanning procedure and the green 
142 circle represents the noise interference from the OCTA machine. In this study, we 
143 used the direction criteria and the area criterion in Section “Compensation methods 
144 for noise reduction” to remove this type of noise.
145
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146
147 Fig 3. Architecture of the proposed PUC system.
148

149
150 Fig 4. Illustration of the problem in the assembling process of the patch U-Net.  
151

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.20.258905doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.258905
http://creativecommons.org/licenses/by/4.0/


Aug. 17, 2020 6/16

152 Materials and Methods
153 The U-Net, which is a multilayer deep learning model, has been applied in medical 
154 image processing [20, 21]. For example, in [20], the U-Net was applied to neuronal 
155 membrane image processing. However, OCTA images have denser vessel distributions 
156 and the noise interference problem is more severe in OCTA images than in other 
157 medical images. Therefore, in this study, we proposed an advanced method based on 
158 modifying the U-Net model to achieve a better vessel extraction result. The architecture 
159 of the proposed algorithm is plotted in Fig 3. It comprises two parts: (i) the patch U-Net 
160 and (ii) compensation methods.

161 Patch U-Net
162 The U-Net is widely used for segmentation. However, when we adopted it directly on 
163 OCTA images, the performance may be limited. If one feeds the original OCTA image 
164 into the U-Net directly, the training process may not be convergent to a good vessel 
165 detection result. Furthermore, taking the whole OCTA image may increase the use of 
166 the GPU memory. Because OCTA images are complicated and include several tiny 
167 vessels and artifact interferences, we found that using the U-Net directly could not 
168 describe the details of tiny vessels. Most of time, the model often ignores both tiny 
169 vessels and artifacts.

170 To deal with this problem, an interesting patch-based training strategy was proposed in 
171 this study. We also developed a meaningful and significant patch training strategy in 
172 OCTA image training on the U-Net-based model. We divided the input OCTA image 
173 into small and fixed size patches. Considering that the vessels in OCTA images were 
174 relatively small, using the proposed patch-based training strategy is very helpful for 
175 detecting tiny vessels successfully without increasing the effect of noise.  

176 After obtained the outputs of the U-net for all patches, we fused these results. However, 
177 if one performs fusion directly, the discontinuous edge problem may occur at the 
178 boundaries of patches, as shown in Fig 4(b). Therefore, we proposed a patch ensemble 
179 method to address this issue. We applied the following methods to ensure that the 
180 output had continuous edges. 

181 First, suppose that 𝐻 is the input size of the U-Net, 𝐻 is the output size of the U-Net, 
182 and kk is the number of patches divided from the input image 𝐼. We padded each patch 
183 before network prediction to avoid the edge truncation effect. According to Algorithm 
184 1, we generated, padded, and resized patches and used them as the inputs for U-Net 
185 training. 

186 Second, we input a set of new patches Uj (j = 1, 2, …, kk) to the U-Net model to 
187 acquire accurate output Oj (j = 1, 2, …, kk) for the final ensemble procedure, as shown 
188 in Algorithm 2. Then, we resized the outputs and combined these by orders of 
189 Algrithom1 division orders. 

190 The hyper-parameters are as follows: the input OCTA image size is N = 304, 𝐻 is 572, 
191 𝐻 is 388, and k = 4. We divided the raw image into 16 uniform patches with size of 
192 7676. Then, each patch is symmetrically padded and treated as the input of the U-Net. 
193
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194
Algorithm 1: Generate Patches
Input: the square OCTA image I from dataset D where size(I) = NN  
(default: the size of the U-Net input is 𝐻 and size of the U-Net output is 𝐻)

1. Divide I into 𝑘𝑘 patches P1, P2, …, Pkk and each one has 𝑁𝑘
𝑁
𝑘 pixels  

2. For each patch Pj         
a. Perform symmetrically padding for Pj: 
     ,       ,   
     ,     ,       

     where  = 1, 2, …., d and            

b. Resize the patch to 𝐻𝐻 pixels and obtain Uj   
Output: patches Uj (j = 1, 2, …, kk) and size(Uj) = HH. 

They will be treated as the inputs of the U-net.     

195
Algorithm 2: Patch Ensemble Methods
Input: Oj (j = 1, 2, …, kk) which are the outputs of the U-Net and size(Oj) = 𝐻𝐻  

1. Create an empty matrix M which has NN pixels 
2. Resize each patch Oj to 𝑁𝑘

𝑁
𝑘 pixels and obtain Tj  

3. Paste Tj (j = 1, 2, …, kk ) on the matrix M according to the orders that follow the division orders in Step 1 
of Algorithm 1

Output: a predicted image 𝑀, which has 𝑁𝑁 pixels

196

197

198 Fig 5. Illustration of the method of direction criteria.

199

200
201 Fig 6. Illustrations of the gap criteria.
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202 Compensation methods for noise reduction
203 After applying the patch U-Net to determine vessels from the retinal image, the 
204 output was compensated to distinguish between the noise and true vessels. The 
205 proposed compensation method comprises two parts: (a) the noise reduction part 
206 and (b) the vessel compensation part. The noise reduction part applies two methods, 
207 (i) direction criteria and (ii) area criteria, to refine the output of the patch U-Net 
208 model and remove the noise and artifact parts. The detail of the vessel 
209 compensation part will be described in Section “Vessel compensation”.

210 i) Direction criteria:

211 First, the output of the patch U-Net may contain some fragments and noise, as 
212 shown in Fig 5(a). We removed them according to their unique features. We can 
213 apply the techniques of feature point classification, which can classify a point into a 
214 peak, a ridge pixel, an edge pixel, a corner, or a flat pixel [22]. For each pixel, we 
215 observed the variations along the eight local directions, which were denoted by e1, -
216 e1, e2, -e2, e3, -e3, e4, and -e4. To determine e1, first, we computed the 
217 convolution with the kernel matrix K and took the angle:    

218                (2)

219 where * means convolution, U(m, n) is the output of the patch U-Net, and  

220                     for -3 < x, y < 3 and (x, y)  (0, 0),                        

221 K(x, y) = 0 otherwise. Then, e1 was determined from 

222                                                   .                       (3)
223 Note that e1 varies with the location (m, n). Second, we performed clockwise 
224 rotation for e1 with 45, 90, and 135 to produce e2, e3, and e4, respectively, as 
225 shown in Fig 5(c). Then, we computed the variations along the directions of e1, 
226 e2, e3, and e4, respectively. For example, to compute the variation along e1 for 
227 pixel (x, y), we first set 

228                     , t = 0, 1, 2, 3.              (4)

229 If m+tcosm,n or n+tsinm,n is not an integer, then bilinear interpolation will be 
230 applied. Then, the variation along e1 (denoted by V1) was determined from the 
231 weighted sum of pnp0:      

232                                         𝑉1 =  ∑3
𝑡=1 𝑤𝑡(𝑝𝑡 ― 𝑝0),                                    (5)

233                               where  𝑤𝑡 = cos (𝜋
2

(𝑡
4

)),𝑡 = 1~3 .     (6)

234 The variations along e2, e3, e4, e1, e2, e3, and e4 (denoted by V2, V3, V4, V-1, 
235 V-2, V-3, and V-4, respectively) can also be determined from Eq (4)-Eq (6) but m,n in 
236 (4) is replaced by m,n + k/4 where k = 1, 2, 3, -4, -3, -2, and -1, respectively.

237 ii) Area criteria

238 After denoising by the direction criteria, we tried to remove the artifacts. Different 
239 from noise, the artifact is not an isolated dot and cannot be removed by the direction 
240 criteria. However, we found that the artifact usually has a very small area. For a 
241 304304 image, if a region with an area smaller than 7 pixels, it could be absolutely 
242 defined as an artifact. Therefore, we use a well-known contour algorithm [28] to 

 , ( , ) ( , ) ( , )
2 2m n

x y
angle U m n angle U m x n y K x y 

 
        

 
K

2 2
( , ) x jyK x y

x y





 , ,cos ,sinm n m ne1

, ,( cos , sin )t m n m np U m t n t   
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243 determine all isolated regions and filter the regions whose area is less than 7 pixels.

244

245 Vessel compensation
246  In addition to noise and artifact removal, we also propose several techniques for 
247 fragment connection. In a blurred OCTA image, sometimes some parts of the vessel 
248 are not well detected and a vessel will be broken into several fragments in the 
249 detection output. Because a vessel should have a line shape, after performing the 
250 patch U-Net, it is appropriate to connect the two fragments that have a small gap, as 
251 shown in Figs. 6(b)(c). Therefore, we proposed a geometric method to connect 
252 vessel fragments.

253 iii) Gap criteria

254 If a group of segments in the detection result corresponds to the same vessel in the 
255 ground truth, then they have line shapes and their directions and locations should be 
256 similar to those of some surrounding fragments. By contrast, noise and artifact parts 
257 are usually isolated dots. Although the noise from the scanning artifact also has a 
258 line shape, it is very thin and too straight and can be well removed by the U-Net. 
259 Therefore, we used the famous principal component analysis method to determine 
260 the principal axis of the smaller fragment, as shown in Fig 6(d). The normalized 
261 principle axis is denoted by e1 and the direction orthogonal to e1 is denoted by e3. 
262 Then, we determined the line that could connect the end points of the two 
263 fragments. If the projections of the line on e1 and e3 are  and , respectively, and 

264                                                ,        (7)
265 then the gap can possibly be a part of a vessel. In simulations, the threshold is 
266 chosen as 8, which is 1/38 of the image width. We used 3 instead of  to ensure 
267 that the connecting line had less projection on e3.  

268 iv) Probability map criteria

269 However, if one connects two fragments according to only the length of the gap, it 
270 is not enough to predict a more complicated association between two isolated 
271 fragments. Therefore, we also adopt the possibility map acquired from the output of 
272 the patch U-Net to determine whether two fragments should be connected. The 
273 original U-Net architecture always uses a fixed threshold (th = 0.5) to conclude 
274 whether a pixel belongs to the vessel or the background. However, it does not 
275 consider the association with neighboring regions. In the proposed algorithm, we 
276 adopted an adaptive threshold. For the gap between two fragments that satisfies Eq 
277 (7), more attention should be paid and we lowered the threshold for the pixels 
278 within the gap to make them easier to be identified as vessel pixels.    

279 Moreover, for the non-gap part, the possibility map of the U-Net is also beneficial 
280 for refining the vessel detection output. If U(m, n) and A(m, n) are the possibility 
281 map of the U-Net and the intensity of the original OCTA image, respectively, when 
282 U(m, n) + A(m, n)/800  thup = 104/160 then the pixel (m, n) is identified as a vessel 
283 pixel. When U(m, n) + A(m, n)/800  thdown = 95/160, (m, n) is identified as a 
284 background pixel. If both the two inequalities are not satisfied, the criterion of U(m, 
285 n) > 0.5 is applied to determine whether a pixel is a vessel pixel.

2 2(3 ) threshold  
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Results

Database
Our database was obtained from the Chang Gung Memorial Hospital, Keelung, Taiwan. 
The study followed the tenets of the Declaration of Helsinki and it was approved by the 
Chang Gung Memorial Hospital Institutional Review Board. All OCTA images used in 
this study were the superficial layer of retinal vasculatures and had a size of 304304. 
Half of the images were from eyes with retinopathy and others were from healthy cases. 
As a practical clinical scenario, most images in the database were interfered with by 
noise or artifacts. It comprises 42 raw OCTA images with 42 annotated ground truth, 
including 17 training images, 17 validation images, and 8 test images. For the training 
network, we also applied data augmentations (flipping horizontally or vertically and 
rotating in degrees [-45, 45]).

Evaluation
We use four metrics for evaluation: (i) accuracy, (ii) precision, (iii) recall (sensitivity), 
and (iv) the F1 score (Dice similarity coefficient). They are computed from the number 
of true-positive, true-negative, false-positive, and false-negative cases (denoted by TP, 
TN, FP, and FN, respectively):                   

     Precision =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ,       Recall (Sensitivity) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁,       Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ,      

     F1 Score (DICE coefficient) =  2
𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.          (8)

Among these metrics, the F1 score takes both precision and recall into consideration and 
can well reflect the performance of an algorithm.

Experiments
In Table 1, we compare the proposed algorithm with several popular retinal vessel 
detection algorithms [11-14, 19, 21], including signal-processing-based methods [11, 12], 
traditional machine-learning-based methods [13, 14], and deep-learning-based methods 
[19, 21] associated with OCTA images. The results in Table 1 show that the proposed 
algorithm has a significantly better performance than the state-of-the-art methods. 
Compared to the study in [21], which is called the automated and network structure 
preserving segmentation (ANSPS) method, the F1 score of the proposed algorithm is 
3.60% higher. Compared to other methods, the F1 score of the proposed algorithm is 
5.17%-13.91 % higher. 

Moreover, in Table 2, we conduct an ablation study. We test the performance of the 
proposed algorithm where (i) only the patch U-Net is adopted, (ii) direction criteria are 
adopted, (iii) direction + area criteria are adopted, (iv) direction + area + gap criteria are 
adopted, and (v) all the proposed techniques (the patch U-net and the direction + area + gap 
+ probability map criteria) are applied. The results in Table 2 show that the proposed 
direction and area criteria are indeed beneficial in improving the performance of vessel 
detection, since they can remove noise and artifacts. However, if one applies the gap 
criteria alone without using the probability map criteria, the F1 score is decreased. If both 
the gap and the probability map criteria are applied, the F1 score can be significantly 
improved.
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Table 1. Performance Comparison for Vessel Detection in Retinal OCTA Images

F1 (DICE) Precision Recall Accuracy
1. Multiscale [12] 0.7061 0.9382 0.5691 0.8973
2. Gabor [11] 0.7315 0.9661 0.5919 0.9073
3. Scird-ts [13] 0.784 0.7883 0.7877 0.9101
4. OOF[14] 0.7935 0.8411 0.76 0.9178
5. CNN [19] 0.7263 0.8344 0.6506 0.8973
6. ANSPS [21] 0.8092 0.7585 0.8835 0.9166
7. Proposed 0.8452 0.8541 0.8449 0.9344

Table 2. Ablation Study of the Proposed Algorithms

F1 (DICE) Precision Recall Accuracy
(i) PUN 0.7899 0.7128 0.9032 0.9028
(ii) PUN+DC 0.8315 0.793 0.8857 0.9244
(iii) PUN+DC
+AC 0.8376 0.8258 0.8594 0.9286

(iv) PUN+DC
+AC+GC 0.8313 0.8096 0.8648 0.9253

(v) PUN + DC 
+ AC + GC + PMC
(Our PUC system)

0.8452 0.8541 0.8449 0.9344

1PUN, patch U-Net, DC, direction criteria, AC, area criteria, GC, gap criteria, PMC, probability map criteria, PUC, 
patch U-Net compensation

Moreover, in Figs. 7 and 8, we perform a visual comparison of the proposed algorithm and 
other vessel detection algorithms. Compared to traditional signal processing methods and 
machine learning methods [11-14], the proposed algorithm can well retrieve the details of 
vessels. Even if the widths of the vessels are very small, they can be retrieved well by the 
proposed algorithm. Compared to the CNN-based method, when using the proposed 
algorithm, the small vessels can be well detected and the widths of the detected vessels 
match those in the ground truth. Compared to the ANSPS method [21], the proposed 
algorithm is more robust to the interference of noise and artifacts. Moreover, the 
connectivity of the detected vessels of the proposed algorithm is better than those of other 
algorithms.                   

In retinal OCTA image analysis, it is important to retrieve the details of vessels while 
avoiding noise interference. However, there is usually a tradeoff between the two goals. 
With the proposed algorithm, both the two goals can be well achieved and high-quality 
vessel detection results can be acquired.  
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Fig 7. Illustration of the method of direction criteria.

Fig 8. Illustrations of the gap criteria.
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Conclusion
A novel PUC algorithm has been proposed for blood vessel detection on defective 
OCTA images. It adopts various techniques, including the deep learning architecture, 
the noise and artifact removal mechanism using the direction and area criteria, and the 
vessel compensation mechanism using the gap and probability map criteria. The 
proposed algorithm effectively compensates the disadvantages of learning-based 
methods and can well identify whether a small bright region is a true vessel or artifact. 
Through the proposed compensation method, we do not require a large amount of 
training data as regular CNN-based methods. The proposed algorithm can facilitate the 
evaluation of the vessel density and is beneficial for retinal diagnosis.
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