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Abstract

Optical coherence tomography angiography is a noninvasive imaging modality to
establish the diagnosis of retinal vascular diseases. However, angiography images are
significantly interfered if patients jitter or blink. In this study, a novel retinal image
analysis method to accurately detect blood vessels and compensate the effect of
interference was proposed. We call this the patch U-Net compensation (PUC) system,
which is based on the famous U-Net. Several techniques, including a better training
mechanism, direction criteria, area criteria, gap criteria, and probability map criteria,
have been proposed to improve its accuracy. Simulations show that the proposed PUC
achieves much better performance than state-of-art methods.

Introduction

Retinal vasculature analysis is a critical subject in diagnosing and managing retinal
vascular diseases. Optical coherence tomography angiography (OCTA) is an
advanced rapid noninvasive method that can acquire the images for retinal
vasculature analysis [1-4]. Chorioretinal vasculature contains a three-dimensional
layered structure and it comprises a superficial layer, a deep layer, an outer retinal
layer, and a choriocapillary layer. OCTA facilitates the detection of retinopathy [5],
glaucoma [6], and diabetic complications [7]. However, OCTA images can be
affected by human interference. For example, patients may blink unconsciously
during OCTA infrared scanning. Therefore, it is common for an OCTA image to
product several megascopic artifacts. Additionally, the vasculature sometimes tends
to be rare, small, and thin due to some disease. These problems may degrade the
quality of an OCTA image. In this study, we tried to solve the following two
problems for OCTA image analysis:

i) The image quality problem of noise-interfered blood vessels:

The noise may be caused by the environment, equipment, the vessel in the next
layer, and small nerve fibers in the plexus. Additionally, as indicated previously, the
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motion of a patient may produce flicker noise.
i1)  Disease problem:

In a healthy retinal image, vessels are evenly distributed on the retina. However, in
a diseased retinal image, severe vascular non-perfusion may occur. There are large
empty / black areas, making it difficult for a doctor to identify whether a cluster of
bright pixels in the dark region is indeed a vessel or an artifact.

Considering the above problems, some advanced noise filters and thresholding
methods have been proposed. For example, the adaptive thresholding methods
proposed in Phansalkar et al. [8] and Cole et al. [9] and the multiple enface image
averaging Uji et al. [10] were well-known methods for image intensity
enhancement. Moreover, to reduce the noise and enhance the visual ability of the
retina, in [11-18], several techniques were adopted, including the Gabor-filter-based
method [11], the Frangi-filter-based methods [12], the filter-bank-based architecture
[13, 17], the optically-oriented-flux [14] and thresholding [18]. In [15], the
compressive sensing method was applied to remove the noise of OCTA images. In
[16], the generalized Gauss-Markov random field and the guided bidirectional
graph search method were applied to perform retinal vessel segmentation in OCTA
images, respectively. However, these methods are not unsupervised and parameter-
sensitive and may produce unexpected noise by personal setting operations. In
recent years, with the fast development of deep learning, several learning-based
segmentation methods, including the convolutional neural network (CNN)-based
[19] and the U-Net-based methods [20, 21] have been proposed. These methods can
reproduce the curvilinear vessel shape for healthy retinas. However, when handling
diseased retinal images, there are some limitations and the performance is affected
by the artifact and the non-uniform distribution of vessels. Therefore, in this study,
we integrated the advantages of deep learning networks and conventional methods
and proposed the patch U-Net compensation (PUC) algorithm. The main concepts
of the proposed PUC algorithm are summarized as follows:

a)  To solve the vessel segmentation problem:

We modified the original U-Net model [20] by varying its training process to make
the model fit OCTA images perfectly. This modified U-Net model is treated as the
backbone of the proposed PUC algorithm. It can well identify the vessels with large
curvature.

b)  To solve the diseases retinal image problem:

We developed several techniques for artifact identification and vessel compensation
to address the problem well.

First, we proposed an artifact identification technique based on corner detection,
edge detection, and ridge detection [22]. A novel direction estimation method and
area thresholding method were adopted to identify whether a cluster of bright pixels
was a real noise or a small vessel. Its idea is based on human vision. It applies the
fact that the vessel should be ridge-like and fiber-like to distinguish the artifacts and
small vessels.
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(d) Choriocapillaris layer  (€) Vessel density
of superficial layer

{f) Red points are blocd vessels

Fig 1. Outputs of the OCTA machine of RTVue XR 100 Avanti Edition, including (a)(b)(c)(d) four layers, (¢) the
vessel density map, and (f) cross-sectional images. The red points indicate vessels.

(a) Interference noise (b) Ground truth (c) Noise pollutions in unhealth OCTA image

Fig 2. (a) An OCTA raw image with noise (marked by red arrows); (b) the ground truth; (c) the scanning artifact
problem (red ellipse) and noise (green ellipses) may be misidentified as vessels and affect the performance.

Subsequently, an adaptive compensation technique was applied to the
remaining vessels. The U-Net [20, 21] performs vessel identification
globally since its loss function is determined from whole pixels, not for the
pixels in a special region. Therefore, we proposed a region-adaptive
technique to connect small fragments in suspected regions to refine the
output locally. These compensation techniques will be illustrated in detail in
Sections “Compensation methods for noise reduction’ and “Vessel
compensation”.
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OCTA images and challenges in analysis

RTVue XR 100 Avanti Edition [23], which is an OCTA machine, provides the
scanned images from the retina by the reflections on different vessels, as shown in
Fig 1(f), to obtain four-layer information, as shown in Figs. 1(a)(b)(c)(d). Retina
vessels are distributed like tree branches. Larger vessels (i.e. arterioles and venules)
are mainly found in the superficial layer, while small vessels (capillaries) can be
found in both superficial and deep layers. Vascular non-perfusion in superficial
layer is an important feature of diagnosing and evaluating retinal vascular diseases.

Although OCTA machine may provide a vessel density map [24-27], as shown in
Fig 1(e), the result is not robust to artifacts and noise, which may be misidentified
as small vessels. How to filter the noise, like the red arrows, as shown in Fig 2(a),
and retrieve the true vessels, as shown in Fig 2(b), is a challenging problem. Even
when the patient moves the head slightly or blinks a little, noise is produced.
Moreover, the scanning artifact problem may form a straight line in an OCTA
image. It is often misidentified as a vessel. Consequently, it is insufficient to use
only the intensity information to distinguish between vessels and noise. In
particular, if the intensities of scanning artifacts are high and the vessels are blurred,
using only the intensity information to identify vessels may cause several errors.
Therefore, instead of applying some simple rules for vessel detection, a more
sophisticated method is required.

In an OCTA image, if there is some bright region that is in fact not a vessel, then it
is treated as noise. Due to machine oscillation and the motions of patients, most
noise is either pepper-like or white-noise-like. Because the vessels, which are
usually ridge-like, have several high-frequency components, it is suitable to apply
the frequency-based filter (e.g., the lowpass filter) to remove the noise. Several
studies [8-21] have been proposed to remove the bulk motion noise problems, as
shown in Fig 2(a). However, it is still a challenge to deal with the strong artifacts
and straight artifact lines, as shown in Fig 2(c).

In Fig 2(c), the red circles represent the strange thin straight line which comes from
blink interference during the horizontal infrared scanning procedure and the green
circle represents the noise interference from the OCTA machine. In this study, we
used the direction criteria and the area criterion in Section “Compensation methods
for noise reduction” to remove this type of noise.
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147  Fig 3. Architecture of the proposed PUC system.
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Materials and Methods

The U-Net, which is a multilayer deep learning model, has been applied in medical
image processing [20, 21]. For example, in [20], the U-Net was applied to neuronal
membrane image processing. However, OCTA images have denser vessel distributions
and the noise interference problem is more severe in OCTA images than in other
medical images. Therefore, in this study, we proposed an advanced method based on
modifying the U-Net model to achieve a better vessel extraction result. The architecture
of the proposed algorithm is plotted in Fig 3. It comprises two parts: (i) the patch U-Net
and (ii) compensation methods.

Patch U-Net

The U-Net is widely used for segmentation. However, when we adopted it directly on
OCTA images, the performance may be limited. If one feeds the original OCTA image
into the U-Net directly, the training process may not be convergent to a good vessel
detection result. Furthermore, taking the whole OCTA image may increase the use of
the GPU memory. Because OCTA images are complicated and include several tiny
vessels and artifact interferences, we found that using the U-Net directly could not
describe the details of tiny vessels. Most of time, the model often ignores both tiny
vessels and artifacts.

To deal with this problem, an interesting patch-based training strategy was proposed in
this study. We also developed a meaningful and significant patch training strategy in
OCTA image training on the U-Net-based model. We divided the input OCTA image
into small and fixed size patches. Considering that the vessels in OCTA images were
relatively small, using the proposed patch-based training strategy is very helpful for
detecting tiny vessels successfully without increasing the effect of noise.

After obtained the outputs of the U-net for all patches, we fused these results. However,
if one performs fusion directly, the discontinuous edge problem may occur at the
boundaries of patches, as shown in Fig 4(b). Therefore, we proposed a patch ensemble
method to address this issue. We applied the following methods to ensure that the
output had continuous edges.

First, suppose that H is the input size of the U-Net, H is the output size of the U-Net,
and kxk is the number of patches divided from the input image I. We padded each patch
before network prediction to avoid the edge truncation effect. According to Algorithm
1, we generated, padded, and resized patches and used them as the inputs for U-Net
training.

Second, we input a set of new patches U, (j =1, 2, ..., kxk) to the U-Net model to
acquire accurate output O; (j = 1, 2, ..., kxk) for the final ensemble procedure, as shown
in Algorithm 2. Then, we resized the outputs and combined these by orders of
Algrithom] division orders.

The hyper-parameters are as follows: the input OCTA image size is N = 304, H is 572,
H is 388, and k = 4. We divided the raw image into 16 uniform patches with size of
76x76. Then, each patch is symmetrically padded and treated as the input of the U-Net.
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194
Algorithm 1: Generate Patches
Input: the square OCTA image / from dataset D where size(/) = NxN
(default: the size of the U-Net input is H and size of the U-Net output is H)
1. Divide ] into kxk patches Py, P,, ..., Py and each one has Exﬂ pixels
2. For each patch P;
a. Perform symmetrically padding for P;:
P(—z’,n):P(z',n), P(N/k—l-i—r,n):P(N/k—l—r,n),
P(m,—r)zP(m Z') P(m N/k—1+z'):P(m,N/k—1—T),
where 7=1,2,....,dand d = N H -
k 2H
b. Resize the patch to HxH pixels and obtain U;
Output: patches U; (j = 1, 2, ..., kxk) and size(U;) = HxH.
They will be treated as the inputs of the U-net.
195
Algorithm 2: Patch Ensemble Methods
Input: O; (=1, 2, ..., kxk) which are the outputs of the U-Net and size(0)) = Axa
1. Create an empty matrix A/ which has NxN pixels
2. Resize each patch O, to %x% pixels and obtain T;
3. PasteT;(j=1,2, ..., kxk ) on the matrix M according to the orders that follow the division orders in Step 1
of Algorlthm 1
Output: a predicted image M, which has NxN pixels
196
-ed
e3 el
- L€
el 457 2 - - b
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: 2 ed p0
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Compensation methods for noise reduction

After applying the patch U-Net to determine vessels from the retinal image, the
output was compensated to distinguish between the noise and true vessels. The
proposed compensation method comprises two parts: (a) the noise reduction part
and (b) the vessel compensation part. The noise reduction part applies two methods,
(1) direction criteria and (ii) area criteria, to refine the output of the patch U-Net
model and remove the noise and artifact parts. The detail of the vessel
compensation part will be described in Section “Vessel compensation”.

1) Direction criteria:

First, the output of the patch U-Net may contain some fragments and noise, as
shown in Fig 5(a). We removed them according to their unique features. We can
apply the techniques of feature point classification, which can classify a point into a
peak, a ridge pixel, an edge pixel, a corner, or a flat pixel [22]. For each pixel, we
observed the variations along the eight local directions, which were denoted by el, -
el, e2, -e2, e3, -e3, e4, and -e4. To determine el, first, we computed the
convolution with the kernel matrix K and took the angle:

0, = angle(U (m,m)*K)~7- = angle[g‘zv“U(m —x,n —y)K(x,y)J_%

(2
where * means convolution, U(m, n) is the output of the patch U-Net, and
X+
K(ry)=—=E—
VYT for3<x, y<3and (x, ) = (0, 0),
K(x, y) = 0 otherwise. Then, el was determined from
el = (cos 6, ,.sin, )
: 7, 3)

Note that el varies with the location (m, n). Second, we performed clockwise
rotation for el with 45°, 90°, and 135° to produce e2, e3, and e4, respectively, as
shown in Fig 5(c). Then, we computed the variations along the directions of tel,
te2, +e3, and ted4, respectively. For example, to compute the variation along el for
pixel (x, ), we first set

p,=U(m+tcosd

m,n 2

n+tsm¢9m,n),t:0,l’2,3' @)
If m+tcosb,,, or n+tsiné,,, is not an integer, then bilinear interpolation will be
applied. Then, the variation along el (denoted by V}) was determined from the
weighted sum of p,—py:

Vi= Z?:l Wt(Pt - Po); 4)
where w, = cos (2(3)),t =13 (6)

The variations along e2, €3, e4, —el, —e2, —e3, and —e4 (denoted by V>, V3, V4, V4,
V., Vi, and V.4, respectively) can also be determined from Eq (4)-Eq (6) but G,,,, in
(4) is replaced by 6,,,, + kn/4 where k=1, 2, 3, -4, -3, -2, and -1, respectively.

ii) Area criteria

After denoising by the direction criteria, we tried to remove the artifacts. Different
from noise, the artifact is not an isolated dot and cannot be removed by the direction
criteria. However, we found that the artifact usually has a very small area. For a
304x304 image, if a region with an area smaller than 7 pixels, it could be absolutely
defined as an artifact. Therefore, we use a well-known contour algorithm [28] to
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determine all isolated regions and filter the regions whose area is less than 7 pixels.

Vessel compensation

In addition to noise and artifact removal, we also propose several techniques for
fragment connection. In a blurred OCTA image, sometimes some parts of the vessel
are not well detected and a vessel will be broken into several fragments in the
detection output. Because a vessel should have a line shape, after performing the
patch U-Net, it is appropriate to connect the two fragments that have a small gap, as
shown in Figs. 6(b)(c). Therefore, we proposed a geometric method to connect
vessel fragments.

iii)  Gap criteria
If a group of segments in the detection result corresponds to the same vessel in the
ground truth, then they have line shapes and their directions and locations should be
similar to those of some surrounding fragments. By contrast, noise and artifact parts
are usually isolated dots. Although the noise from the scanning artifact also has a
line shape, it is very thin and too straight and can be well removed by the U-Net.
Therefore, we used the famous principal component analysis method to determine
the principal axis of the smaller fragment, as shown in Fig 6(d). The normalized
principle axis is denoted by el and the direction orthogonal to el is denoted by e3.
Then, we determined the line that could connect the end points of the two
fragments. If the projections of the line on el and e3 are « and S, respectively, and

Ja© +(3pB) <threshold )

then the gap can possibly be a part of a vessel. In simulations, the threshold is
chosen as 8, which is 1/38 of the image width. We used 3 f instead of fto ensure
that the connecting line had less projection on e3.

iv)  Probability map criteria

However, if one connects two fragments according to only the length of the gap, it
is not enough to predict a more complicated association between two isolated
fragments. Therefore, we also adopt the possibility map acquired from the output of
the patch U-Net to determine whether two fragments should be connected. The
original U-Net architecture always uses a fixed threshold (¢4 = 0.5) to conclude
whether a pixel belongs to the vessel or the background. However, it does not
consider the association with neighboring regions. In the proposed algorithm, we
adopted an adaptive threshold. For the gap between two fragments that satisfies Eq
(7), more attention should be paid and we lowered the threshold for the pixels
within the gap to make them easier to be identified as vessel pixels.

Moreover, for the non-gap part, the possibility map of the U-Net is also beneficial
for refining the vessel detection output. If U(m, n) and A(m, n) are the possibility
map of the U-Net and the intensity of the original OCTA image, respectively, when
U(m, n) + A(m, n)/800 = th,, = 104/160 then the pixel (m, n) is identified as a vessel
pixel. When U(m, n) + A(m, n)/800 < thy,,,, = 95/160, (m, n) is identified as a
background pixel. If both the two inequalities are not satisfied, the criterion of U(m,
n) > 0.5 is applied to determine whether a pixel is a vessel pixel.
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Results

Database

Our database was obtained from the Chang Gung Memorial Hospital, Keelung, Taiwan.
The study followed the tenets of the Declaration of Helsinki and it was approved by the
Chang Gung Memorial Hospital Institutional Review Board. All OCTA images used in
this study were the superficial layer of retinal vasculatures and had a size of 304x304.
Half of the images were from eyes with retinopathy and others were from healthy cases.
As a practical clinical scenario, most images in the database were interfered with by
noise or artifacts. It comprises 42 raw OCTA images with 42 annotated ground truth,
including 17 training images, 17 validation images, and 8 test images. For the training
network, we also applied data augmentations (flipping horizontally or vertically and
rotating in degrees [-45, 45]).

Evaluation

We use four metrics for evaluation: (i) accuracy, (ii) precision, (iii) recall (sensitivity),

and (iv) the F1 score (Dice similarity coefficient). They are computed from the number
of true-positive, true-negative, false-positive, and false-negative cases (denoted by TP,

TN, FP, and FN, respectively):

TP TP

Precision = ————, Recall (Sensitivity) = TP EN Accuracy =
TP + TN
TP+ TN + FP + FN°
. . Recall - Precision
F1 Score (DICE coefficient) = 2 ——— recision” (8)

Among these metrics, the F1 score takes both precision and recall into consideration and
can well reflect the performance of an algorithm.

Experiments

In Table 1, we compare the proposed algorithm with several popular retinal vessel
detection algorithms [11-14, 19, 21], including signal-processing-based methods [11, 12],
traditional machine-learning-based methods [13, 14], and deep-learning-based methods
[19, 21] associated with OCTA images. The results in Table 1 show that the proposed
algorithm has a significantly better performance than the state-of-the-art methods.
Compared to the study in [21], which is called the automated and network structure
preserving segmentation (ANSPS) method, the F1 score of the proposed algorithm is
3.60% higher. Compared to other methods, the F1 score of the proposed algorithm is
5.17%-13.91 % higher.

Moreover, in Table 2, we conduct an ablation study. We test the performance of the
proposed algorithm where (i) only the patch U-Net is adopted, (ii) direction criteria are
adopted, (iii) direction + area criteria are adopted, (iv) direction + area + gap criteria are
adopted, and (v) all the proposed techniques (the patch U-net and the direction + area + gap
+ probability map criteria) are applied. The results in Table 2 show that the proposed
direction and area criteria are indeed beneficial in improving the performance of vessel
detection, since they can remove noise and artifacts. However, if one applies the gap
criteria alone without using the probability map criteria, the F1 score is decreased. If both
the gap and the probability map criteria are applied, the F1 score can be significantly
improved.
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Table 1. Performance Comparison for Vessel Detection in Retinal OCTA Images

F1 (DICE) Precision Recall Accuracy
1. Multiscale [12] 0.7061 0.9382 0.5691 0.8973
2. Gabor [11] 0.7315 0.9661 0.5919 0.9073
3. Scird-ts [13] 0.784 0.7883 0.7877 0.9101
4. OOF[14] 0.7935 0.8411 0.76 0.9178
5.CNN[19] 0.7263 0.8344 0.6506 0.8973
6. ANSPS [21] 0.8092 0.7585 0.8835 0.9166
7. Proposed 0.8452 0.8541 0.8449 0.9344

Table 2. Ablation Study of the Proposed Algorithms

F1 (DICE) Precision Recall Accuracy

(i) PUN 0.7899 0.7128 0.9032 0.9028
(i) PUN+DC 0.8315 0.793 0.8857 0.9244
(iii) PUN+DC

LAC 0.8376 0.8258 0.8594 0.9286
(iv) PUN+DC

LACHGC 0.8313 0.8096 0.8648 0.9253
(v) PUN + DC

+ AC + GC + PMC 0.8452 0.8541 0.8449 0.9344
(Our PUC system)

'PUN, patch U-Net, DC, direction criteria, AC, area criteria, GC, gap criteria, PMC, probability map criteria, PUC,

patch U-Net compensation

Moreover, in Figs. 7 and 8, we perform a visual comparison of the proposed algorithm and
other vessel detection algorithms. Compared to traditional signal processing methods and
machine learning methods [11-14], the proposed algorithm can well retrieve the details of
vessels. Even if the widths of the vessels are very small, they can be retrieved well by the
proposed algorithm. Compared to the CNN-based method, when using the proposed
algorithm, the small vessels can be well detected and the widths of the detected vessels
match those in the ground truth. Compared to the ANSPS method [21], the proposed
algorithm is more robust to the interference of noise and artifacts. Moreover, the
connectivity of the detected vessels of the proposed algorithm is better than those of other
algorithms.

In retinal OCTA image analysis, it is important to retrieve the details of vessels while
avoiding noise interference. However, there is usually a tradeoff between the two goals.
With the proposed algorithm, both the two goals can be well achieved and high-quality
vessel detection results can be acquired.
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Conclusion

A novel PUC algorithm has been proposed for blood vessel detection on defective
OCTA images. It adopts various techniques, including the deep learning architecture,
the noise and artifact removal mechanism using the direction and area criteria, and the
vessel compensation mechanism using the gap and probability map criteria. The
proposed algorithm effectively compensates the disadvantages of learning-based
methods and can well identify whether a small bright region is a true vessel or artifact.
Through the proposed compensation method, we do not require a large amount of
training data as regular CNN-based methods. The proposed algorithm can facilitate the
evaluation of the vessel density and is beneficial for retinal diagnosis.
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